1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 gfp_flags |= mc->gfp_zero; 405 406 if (mc->kmem_cache) 407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 408 else 409 return (void *)__get_free_page(gfp_flags); 410 } 411 412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 413 { 414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 415 void *obj; 416 417 if (mc->nobjs >= min) 418 return 0; 419 420 if (unlikely(!mc->objects)) { 421 if (WARN_ON_ONCE(!capacity)) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 587 588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 591 node; \ 592 node = interval_tree_iter_next(node, start, last)) \ 593 594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 595 const struct kvm_mmu_notifier_range *range) 596 { 597 struct kvm_mmu_notifier_return r = { 598 .ret = false, 599 .found_memslot = false, 600 }; 601 struct kvm_gfn_range gfn_range; 602 struct kvm_memory_slot *slot; 603 struct kvm_memslots *slots; 604 int i, idx; 605 606 if (WARN_ON_ONCE(range->end <= range->start)) 607 return r; 608 609 /* A null handler is allowed if and only if on_lock() is provided. */ 610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 611 IS_KVM_NULL_FN(range->handler))) 612 return r; 613 614 idx = srcu_read_lock(&kvm->srcu); 615 616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 617 struct interval_tree_node *node; 618 619 slots = __kvm_memslots(kvm, i); 620 kvm_for_each_memslot_in_hva_range(node, slots, 621 range->start, range->end - 1) { 622 unsigned long hva_start, hva_end; 623 624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 626 hva_end = min_t(unsigned long, range->end, 627 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 628 629 /* 630 * To optimize for the likely case where the address 631 * range is covered by zero or one memslots, don't 632 * bother making these conditional (to avoid writes on 633 * the second or later invocation of the handler). 634 */ 635 gfn_range.arg = range->arg; 636 gfn_range.may_block = range->may_block; 637 638 /* 639 * {gfn(page) | page intersects with [hva_start, hva_end)} = 640 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 641 */ 642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 644 gfn_range.slot = slot; 645 646 if (!r.found_memslot) { 647 r.found_memslot = true; 648 KVM_MMU_LOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_lock)) 650 range->on_lock(kvm); 651 652 if (IS_KVM_NULL_FN(range->handler)) 653 break; 654 } 655 r.ret |= range->handler(kvm, &gfn_range); 656 } 657 } 658 659 if (range->flush_on_ret && r.ret) 660 kvm_flush_remote_tlbs(kvm); 661 662 if (r.found_memslot) 663 KVM_MMU_UNLOCK(kvm); 664 665 srcu_read_unlock(&kvm->srcu, idx); 666 667 return r; 668 } 669 670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 union kvm_mmu_notifier_arg arg, 674 gfn_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_mmu_notifier_range range = { 678 .start = start, 679 .end = end, 680 .arg = arg, 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .flush_on_ret = true, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range).ret; 688 } 689 690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 691 unsigned long start, 692 unsigned long end, 693 gfn_handler_t handler) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 const struct kvm_mmu_notifier_range range = { 697 .start = start, 698 .end = end, 699 .handler = handler, 700 .on_lock = (void *)kvm_null_fn, 701 .flush_on_ret = false, 702 .may_block = false, 703 }; 704 705 return __kvm_handle_hva_range(kvm, &range).ret; 706 } 707 708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 709 { 710 /* 711 * Skipping invalid memslots is correct if and only change_pte() is 712 * surrounded by invalidate_range_{start,end}(), which is currently 713 * guaranteed by the primary MMU. If that ever changes, KVM needs to 714 * unmap the memslot instead of skipping the memslot to ensure that KVM 715 * doesn't hold references to the old PFN. 716 */ 717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 718 719 if (range->slot->flags & KVM_MEMSLOT_INVALID) 720 return false; 721 722 return kvm_set_spte_gfn(kvm, range); 723 } 724 725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 726 struct mm_struct *mm, 727 unsigned long address, 728 pte_t pte) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 732 733 trace_kvm_set_spte_hva(address); 734 735 /* 736 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 737 * If mmu_invalidate_in_progress is zero, then no in-progress 738 * invalidations, including this one, found a relevant memslot at 739 * start(); rechecking memslots here is unnecessary. Note, a false 740 * positive (count elevated by a different invalidation) is sub-optimal 741 * but functionally ok. 742 */ 743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 745 return; 746 747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 748 } 749 750 void kvm_mmu_invalidate_begin(struct kvm *kvm) 751 { 752 lockdep_assert_held_write(&kvm->mmu_lock); 753 /* 754 * The count increase must become visible at unlock time as no 755 * spte can be established without taking the mmu_lock and 756 * count is also read inside the mmu_lock critical section. 757 */ 758 kvm->mmu_invalidate_in_progress++; 759 760 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 761 kvm->mmu_invalidate_range_start = INVALID_GPA; 762 kvm->mmu_invalidate_range_end = INVALID_GPA; 763 } 764 } 765 766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 767 { 768 lockdep_assert_held_write(&kvm->mmu_lock); 769 770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 771 772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 773 kvm->mmu_invalidate_range_start = start; 774 kvm->mmu_invalidate_range_end = end; 775 } else { 776 /* 777 * Fully tracking multiple concurrent ranges has diminishing 778 * returns. Keep things simple and just find the minimal range 779 * which includes the current and new ranges. As there won't be 780 * enough information to subtract a range after its invalidate 781 * completes, any ranges invalidated concurrently will 782 * accumulate and persist until all outstanding invalidates 783 * complete. 784 */ 785 kvm->mmu_invalidate_range_start = 786 min(kvm->mmu_invalidate_range_start, start); 787 kvm->mmu_invalidate_range_end = 788 max(kvm->mmu_invalidate_range_end, end); 789 } 790 } 791 792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 793 { 794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 795 return kvm_unmap_gfn_range(kvm, range); 796 } 797 798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 799 const struct mmu_notifier_range *range) 800 { 801 struct kvm *kvm = mmu_notifier_to_kvm(mn); 802 const struct kvm_mmu_notifier_range hva_range = { 803 .start = range->start, 804 .end = range->end, 805 .handler = kvm_mmu_unmap_gfn_range, 806 .on_lock = kvm_mmu_invalidate_begin, 807 .flush_on_ret = true, 808 .may_block = mmu_notifier_range_blockable(range), 809 }; 810 811 trace_kvm_unmap_hva_range(range->start, range->end); 812 813 /* 814 * Prevent memslot modification between range_start() and range_end() 815 * so that conditionally locking provides the same result in both 816 * functions. Without that guarantee, the mmu_invalidate_in_progress 817 * adjustments will be imbalanced. 818 * 819 * Pairs with the decrement in range_end(). 820 */ 821 spin_lock(&kvm->mn_invalidate_lock); 822 kvm->mn_active_invalidate_count++; 823 spin_unlock(&kvm->mn_invalidate_lock); 824 825 /* 826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 828 * each cache's lock. There are relatively few caches in existence at 829 * any given time, and the caches themselves can check for hva overlap, 830 * i.e. don't need to rely on memslot overlap checks for performance. 831 * Because this runs without holding mmu_lock, the pfn caches must use 832 * mn_active_invalidate_count (see above) instead of 833 * mmu_invalidate_in_progress. 834 */ 835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 836 hva_range.may_block); 837 838 /* 839 * If one or more memslots were found and thus zapped, notify arch code 840 * that guest memory has been reclaimed. This needs to be done *after* 841 * dropping mmu_lock, as x86's reclaim path is slooooow. 842 */ 843 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 844 kvm_arch_guest_memory_reclaimed(kvm); 845 846 return 0; 847 } 848 849 void kvm_mmu_invalidate_end(struct kvm *kvm) 850 { 851 lockdep_assert_held_write(&kvm->mmu_lock); 852 853 /* 854 * This sequence increase will notify the kvm page fault that 855 * the page that is going to be mapped in the spte could have 856 * been freed. 857 */ 858 kvm->mmu_invalidate_seq++; 859 smp_wmb(); 860 /* 861 * The above sequence increase must be visible before the 862 * below count decrease, which is ensured by the smp_wmb above 863 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 864 */ 865 kvm->mmu_invalidate_in_progress--; 866 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 867 868 /* 869 * Assert that at least one range was added between start() and end(). 870 * Not adding a range isn't fatal, but it is a KVM bug. 871 */ 872 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 873 } 874 875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 876 const struct mmu_notifier_range *range) 877 { 878 struct kvm *kvm = mmu_notifier_to_kvm(mn); 879 const struct kvm_mmu_notifier_range hva_range = { 880 .start = range->start, 881 .end = range->end, 882 .handler = (void *)kvm_null_fn, 883 .on_lock = kvm_mmu_invalidate_end, 884 .flush_on_ret = false, 885 .may_block = mmu_notifier_range_blockable(range), 886 }; 887 bool wake; 888 889 __kvm_handle_hva_range(kvm, &hva_range); 890 891 /* Pairs with the increment in range_start(). */ 892 spin_lock(&kvm->mn_invalidate_lock); 893 wake = (--kvm->mn_active_invalidate_count == 0); 894 spin_unlock(&kvm->mn_invalidate_lock); 895 896 /* 897 * There can only be one waiter, since the wait happens under 898 * slots_lock. 899 */ 900 if (wake) 901 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 902 } 903 904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 905 struct mm_struct *mm, 906 unsigned long start, 907 unsigned long end) 908 { 909 trace_kvm_age_hva(start, end); 910 911 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 912 kvm_age_gfn); 913 } 914 915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 916 struct mm_struct *mm, 917 unsigned long start, 918 unsigned long end) 919 { 920 trace_kvm_age_hva(start, end); 921 922 /* 923 * Even though we do not flush TLB, this will still adversely 924 * affect performance on pre-Haswell Intel EPT, where there is 925 * no EPT Access Bit to clear so that we have to tear down EPT 926 * tables instead. If we find this unacceptable, we can always 927 * add a parameter to kvm_age_hva so that it effectively doesn't 928 * do anything on clear_young. 929 * 930 * Also note that currently we never issue secondary TLB flushes 931 * from clear_young, leaving this job up to the regular system 932 * cadence. If we find this inaccurate, we might come up with a 933 * more sophisticated heuristic later. 934 */ 935 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 936 } 937 938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 939 struct mm_struct *mm, 940 unsigned long address) 941 { 942 trace_kvm_test_age_hva(address); 943 944 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 945 kvm_test_age_gfn); 946 } 947 948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 949 struct mm_struct *mm) 950 { 951 struct kvm *kvm = mmu_notifier_to_kvm(mn); 952 int idx; 953 954 idx = srcu_read_lock(&kvm->srcu); 955 kvm_flush_shadow_all(kvm); 956 srcu_read_unlock(&kvm->srcu, idx); 957 } 958 959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 960 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 961 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 962 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 963 .clear_young = kvm_mmu_notifier_clear_young, 964 .test_young = kvm_mmu_notifier_test_young, 965 .change_pte = kvm_mmu_notifier_change_pte, 966 .release = kvm_mmu_notifier_release, 967 }; 968 969 static int kvm_init_mmu_notifier(struct kvm *kvm) 970 { 971 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 972 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 973 } 974 975 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 976 977 static int kvm_init_mmu_notifier(struct kvm *kvm) 978 { 979 return 0; 980 } 981 982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 983 984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 985 static int kvm_pm_notifier_call(struct notifier_block *bl, 986 unsigned long state, 987 void *unused) 988 { 989 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 990 991 return kvm_arch_pm_notifier(kvm, state); 992 } 993 994 static void kvm_init_pm_notifier(struct kvm *kvm) 995 { 996 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 997 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 998 kvm->pm_notifier.priority = INT_MAX; 999 register_pm_notifier(&kvm->pm_notifier); 1000 } 1001 1002 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1003 { 1004 unregister_pm_notifier(&kvm->pm_notifier); 1005 } 1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 1007 static void kvm_init_pm_notifier(struct kvm *kvm) 1008 { 1009 } 1010 1011 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1012 { 1013 } 1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 1015 1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 1017 { 1018 if (!memslot->dirty_bitmap) 1019 return; 1020 1021 kvfree(memslot->dirty_bitmap); 1022 memslot->dirty_bitmap = NULL; 1023 } 1024 1025 /* This does not remove the slot from struct kvm_memslots data structures */ 1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1027 { 1028 if (slot->flags & KVM_MEM_GUEST_MEMFD) 1029 kvm_gmem_unbind(slot); 1030 1031 kvm_destroy_dirty_bitmap(slot); 1032 1033 kvm_arch_free_memslot(kvm, slot); 1034 1035 kfree(slot); 1036 } 1037 1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 1039 { 1040 struct hlist_node *idnode; 1041 struct kvm_memory_slot *memslot; 1042 int bkt; 1043 1044 /* 1045 * The same memslot objects live in both active and inactive sets, 1046 * arbitrarily free using index '1' so the second invocation of this 1047 * function isn't operating over a structure with dangling pointers 1048 * (even though this function isn't actually touching them). 1049 */ 1050 if (!slots->node_idx) 1051 return; 1052 1053 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1054 kvm_free_memslot(kvm, memslot); 1055 } 1056 1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1058 { 1059 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1060 case KVM_STATS_TYPE_INSTANT: 1061 return 0444; 1062 case KVM_STATS_TYPE_CUMULATIVE: 1063 case KVM_STATS_TYPE_PEAK: 1064 default: 1065 return 0644; 1066 } 1067 } 1068 1069 1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1071 { 1072 int i; 1073 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1074 kvm_vcpu_stats_header.num_desc; 1075 1076 if (IS_ERR(kvm->debugfs_dentry)) 1077 return; 1078 1079 debugfs_remove_recursive(kvm->debugfs_dentry); 1080 1081 if (kvm->debugfs_stat_data) { 1082 for (i = 0; i < kvm_debugfs_num_entries; i++) 1083 kfree(kvm->debugfs_stat_data[i]); 1084 kfree(kvm->debugfs_stat_data); 1085 } 1086 } 1087 1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1089 { 1090 static DEFINE_MUTEX(kvm_debugfs_lock); 1091 struct dentry *dent; 1092 char dir_name[ITOA_MAX_LEN * 2]; 1093 struct kvm_stat_data *stat_data; 1094 const struct _kvm_stats_desc *pdesc; 1095 int i, ret = -ENOMEM; 1096 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1097 kvm_vcpu_stats_header.num_desc; 1098 1099 if (!debugfs_initialized()) 1100 return 0; 1101 1102 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1103 mutex_lock(&kvm_debugfs_lock); 1104 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1105 if (dent) { 1106 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1107 dput(dent); 1108 mutex_unlock(&kvm_debugfs_lock); 1109 return 0; 1110 } 1111 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1112 mutex_unlock(&kvm_debugfs_lock); 1113 if (IS_ERR(dent)) 1114 return 0; 1115 1116 kvm->debugfs_dentry = dent; 1117 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1118 sizeof(*kvm->debugfs_stat_data), 1119 GFP_KERNEL_ACCOUNT); 1120 if (!kvm->debugfs_stat_data) 1121 goto out_err; 1122 1123 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1124 pdesc = &kvm_vm_stats_desc[i]; 1125 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1126 if (!stat_data) 1127 goto out_err; 1128 1129 stat_data->kvm = kvm; 1130 stat_data->desc = pdesc; 1131 stat_data->kind = KVM_STAT_VM; 1132 kvm->debugfs_stat_data[i] = stat_data; 1133 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1134 kvm->debugfs_dentry, stat_data, 1135 &stat_fops_per_vm); 1136 } 1137 1138 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1139 pdesc = &kvm_vcpu_stats_desc[i]; 1140 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1141 if (!stat_data) 1142 goto out_err; 1143 1144 stat_data->kvm = kvm; 1145 stat_data->desc = pdesc; 1146 stat_data->kind = KVM_STAT_VCPU; 1147 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1148 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1149 kvm->debugfs_dentry, stat_data, 1150 &stat_fops_per_vm); 1151 } 1152 1153 ret = kvm_arch_create_vm_debugfs(kvm); 1154 if (ret) 1155 goto out_err; 1156 1157 return 0; 1158 out_err: 1159 kvm_destroy_vm_debugfs(kvm); 1160 return ret; 1161 } 1162 1163 /* 1164 * Called after the VM is otherwise initialized, but just before adding it to 1165 * the vm_list. 1166 */ 1167 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1168 { 1169 return 0; 1170 } 1171 1172 /* 1173 * Called just after removing the VM from the vm_list, but before doing any 1174 * other destruction. 1175 */ 1176 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1177 { 1178 } 1179 1180 /* 1181 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1182 * be setup already, so we can create arch-specific debugfs entries under it. 1183 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1184 * a per-arch destroy interface is not needed. 1185 */ 1186 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1187 { 1188 return 0; 1189 } 1190 1191 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1192 { 1193 struct kvm *kvm = kvm_arch_alloc_vm(); 1194 struct kvm_memslots *slots; 1195 int r = -ENOMEM; 1196 int i, j; 1197 1198 if (!kvm) 1199 return ERR_PTR(-ENOMEM); 1200 1201 KVM_MMU_LOCK_INIT(kvm); 1202 mmgrab(current->mm); 1203 kvm->mm = current->mm; 1204 kvm_eventfd_init(kvm); 1205 mutex_init(&kvm->lock); 1206 mutex_init(&kvm->irq_lock); 1207 mutex_init(&kvm->slots_lock); 1208 mutex_init(&kvm->slots_arch_lock); 1209 spin_lock_init(&kvm->mn_invalidate_lock); 1210 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1211 xa_init(&kvm->vcpu_array); 1212 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1213 xa_init(&kvm->mem_attr_array); 1214 #endif 1215 1216 INIT_LIST_HEAD(&kvm->gpc_list); 1217 spin_lock_init(&kvm->gpc_lock); 1218 1219 INIT_LIST_HEAD(&kvm->devices); 1220 kvm->max_vcpus = KVM_MAX_VCPUS; 1221 1222 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1223 1224 /* 1225 * Force subsequent debugfs file creations to fail if the VM directory 1226 * is not created (by kvm_create_vm_debugfs()). 1227 */ 1228 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1229 1230 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1231 task_pid_nr(current)); 1232 1233 if (init_srcu_struct(&kvm->srcu)) 1234 goto out_err_no_srcu; 1235 if (init_srcu_struct(&kvm->irq_srcu)) 1236 goto out_err_no_irq_srcu; 1237 1238 refcount_set(&kvm->users_count, 1); 1239 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1240 for (j = 0; j < 2; j++) { 1241 slots = &kvm->__memslots[i][j]; 1242 1243 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1244 slots->hva_tree = RB_ROOT_CACHED; 1245 slots->gfn_tree = RB_ROOT; 1246 hash_init(slots->id_hash); 1247 slots->node_idx = j; 1248 1249 /* Generations must be different for each address space. */ 1250 slots->generation = i; 1251 } 1252 1253 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1254 } 1255 1256 for (i = 0; i < KVM_NR_BUSES; i++) { 1257 rcu_assign_pointer(kvm->buses[i], 1258 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1259 if (!kvm->buses[i]) 1260 goto out_err_no_arch_destroy_vm; 1261 } 1262 1263 r = kvm_arch_init_vm(kvm, type); 1264 if (r) 1265 goto out_err_no_arch_destroy_vm; 1266 1267 r = hardware_enable_all(); 1268 if (r) 1269 goto out_err_no_disable; 1270 1271 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1272 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1273 #endif 1274 1275 r = kvm_init_mmu_notifier(kvm); 1276 if (r) 1277 goto out_err_no_mmu_notifier; 1278 1279 r = kvm_coalesced_mmio_init(kvm); 1280 if (r < 0) 1281 goto out_no_coalesced_mmio; 1282 1283 r = kvm_create_vm_debugfs(kvm, fdname); 1284 if (r) 1285 goto out_err_no_debugfs; 1286 1287 r = kvm_arch_post_init_vm(kvm); 1288 if (r) 1289 goto out_err; 1290 1291 mutex_lock(&kvm_lock); 1292 list_add(&kvm->vm_list, &vm_list); 1293 mutex_unlock(&kvm_lock); 1294 1295 preempt_notifier_inc(); 1296 kvm_init_pm_notifier(kvm); 1297 1298 return kvm; 1299 1300 out_err: 1301 kvm_destroy_vm_debugfs(kvm); 1302 out_err_no_debugfs: 1303 kvm_coalesced_mmio_free(kvm); 1304 out_no_coalesced_mmio: 1305 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1306 if (kvm->mmu_notifier.ops) 1307 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1308 #endif 1309 out_err_no_mmu_notifier: 1310 hardware_disable_all(); 1311 out_err_no_disable: 1312 kvm_arch_destroy_vm(kvm); 1313 out_err_no_arch_destroy_vm: 1314 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1315 for (i = 0; i < KVM_NR_BUSES; i++) 1316 kfree(kvm_get_bus(kvm, i)); 1317 cleanup_srcu_struct(&kvm->irq_srcu); 1318 out_err_no_irq_srcu: 1319 cleanup_srcu_struct(&kvm->srcu); 1320 out_err_no_srcu: 1321 kvm_arch_free_vm(kvm); 1322 mmdrop(current->mm); 1323 return ERR_PTR(r); 1324 } 1325 1326 static void kvm_destroy_devices(struct kvm *kvm) 1327 { 1328 struct kvm_device *dev, *tmp; 1329 1330 /* 1331 * We do not need to take the kvm->lock here, because nobody else 1332 * has a reference to the struct kvm at this point and therefore 1333 * cannot access the devices list anyhow. 1334 */ 1335 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1336 list_del(&dev->vm_node); 1337 dev->ops->destroy(dev); 1338 } 1339 } 1340 1341 static void kvm_destroy_vm(struct kvm *kvm) 1342 { 1343 int i; 1344 struct mm_struct *mm = kvm->mm; 1345 1346 kvm_destroy_pm_notifier(kvm); 1347 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1348 kvm_destroy_vm_debugfs(kvm); 1349 kvm_arch_sync_events(kvm); 1350 mutex_lock(&kvm_lock); 1351 list_del(&kvm->vm_list); 1352 mutex_unlock(&kvm_lock); 1353 kvm_arch_pre_destroy_vm(kvm); 1354 1355 kvm_free_irq_routing(kvm); 1356 for (i = 0; i < KVM_NR_BUSES; i++) { 1357 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1358 1359 if (bus) 1360 kvm_io_bus_destroy(bus); 1361 kvm->buses[i] = NULL; 1362 } 1363 kvm_coalesced_mmio_free(kvm); 1364 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1365 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1366 /* 1367 * At this point, pending calls to invalidate_range_start() 1368 * have completed but no more MMU notifiers will run, so 1369 * mn_active_invalidate_count may remain unbalanced. 1370 * No threads can be waiting in kvm_swap_active_memslots() as the 1371 * last reference on KVM has been dropped, but freeing 1372 * memslots would deadlock without this manual intervention. 1373 * 1374 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1375 * notifier between a start() and end(), then there shouldn't be any 1376 * in-progress invalidations. 1377 */ 1378 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1379 if (kvm->mn_active_invalidate_count) 1380 kvm->mn_active_invalidate_count = 0; 1381 else 1382 WARN_ON(kvm->mmu_invalidate_in_progress); 1383 #else 1384 kvm_flush_shadow_all(kvm); 1385 #endif 1386 kvm_arch_destroy_vm(kvm); 1387 kvm_destroy_devices(kvm); 1388 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1389 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1390 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1391 } 1392 cleanup_srcu_struct(&kvm->irq_srcu); 1393 cleanup_srcu_struct(&kvm->srcu); 1394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1395 xa_destroy(&kvm->mem_attr_array); 1396 #endif 1397 kvm_arch_free_vm(kvm); 1398 preempt_notifier_dec(); 1399 hardware_disable_all(); 1400 mmdrop(mm); 1401 } 1402 1403 void kvm_get_kvm(struct kvm *kvm) 1404 { 1405 refcount_inc(&kvm->users_count); 1406 } 1407 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1408 1409 /* 1410 * Make sure the vm is not during destruction, which is a safe version of 1411 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1412 */ 1413 bool kvm_get_kvm_safe(struct kvm *kvm) 1414 { 1415 return refcount_inc_not_zero(&kvm->users_count); 1416 } 1417 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1418 1419 void kvm_put_kvm(struct kvm *kvm) 1420 { 1421 if (refcount_dec_and_test(&kvm->users_count)) 1422 kvm_destroy_vm(kvm); 1423 } 1424 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1425 1426 /* 1427 * Used to put a reference that was taken on behalf of an object associated 1428 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1429 * of the new file descriptor fails and the reference cannot be transferred to 1430 * its final owner. In such cases, the caller is still actively using @kvm and 1431 * will fail miserably if the refcount unexpectedly hits zero. 1432 */ 1433 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1434 { 1435 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1436 } 1437 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1438 1439 static int kvm_vm_release(struct inode *inode, struct file *filp) 1440 { 1441 struct kvm *kvm = filp->private_data; 1442 1443 kvm_irqfd_release(kvm); 1444 1445 kvm_put_kvm(kvm); 1446 return 0; 1447 } 1448 1449 /* 1450 * Allocation size is twice as large as the actual dirty bitmap size. 1451 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1452 */ 1453 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1454 { 1455 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1456 1457 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1458 if (!memslot->dirty_bitmap) 1459 return -ENOMEM; 1460 1461 return 0; 1462 } 1463 1464 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1465 { 1466 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1467 int node_idx_inactive = active->node_idx ^ 1; 1468 1469 return &kvm->__memslots[as_id][node_idx_inactive]; 1470 } 1471 1472 /* 1473 * Helper to get the address space ID when one of memslot pointers may be NULL. 1474 * This also serves as a sanity that at least one of the pointers is non-NULL, 1475 * and that their address space IDs don't diverge. 1476 */ 1477 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1478 struct kvm_memory_slot *b) 1479 { 1480 if (WARN_ON_ONCE(!a && !b)) 1481 return 0; 1482 1483 if (!a) 1484 return b->as_id; 1485 if (!b) 1486 return a->as_id; 1487 1488 WARN_ON_ONCE(a->as_id != b->as_id); 1489 return a->as_id; 1490 } 1491 1492 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1493 struct kvm_memory_slot *slot) 1494 { 1495 struct rb_root *gfn_tree = &slots->gfn_tree; 1496 struct rb_node **node, *parent; 1497 int idx = slots->node_idx; 1498 1499 parent = NULL; 1500 for (node = &gfn_tree->rb_node; *node; ) { 1501 struct kvm_memory_slot *tmp; 1502 1503 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1504 parent = *node; 1505 if (slot->base_gfn < tmp->base_gfn) 1506 node = &(*node)->rb_left; 1507 else if (slot->base_gfn > tmp->base_gfn) 1508 node = &(*node)->rb_right; 1509 else 1510 BUG(); 1511 } 1512 1513 rb_link_node(&slot->gfn_node[idx], parent, node); 1514 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1515 } 1516 1517 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1518 struct kvm_memory_slot *slot) 1519 { 1520 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1521 } 1522 1523 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1524 struct kvm_memory_slot *old, 1525 struct kvm_memory_slot *new) 1526 { 1527 int idx = slots->node_idx; 1528 1529 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1530 1531 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1532 &slots->gfn_tree); 1533 } 1534 1535 /* 1536 * Replace @old with @new in the inactive memslots. 1537 * 1538 * With NULL @old this simply adds @new. 1539 * With NULL @new this simply removes @old. 1540 * 1541 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1542 * appropriately. 1543 */ 1544 static void kvm_replace_memslot(struct kvm *kvm, 1545 struct kvm_memory_slot *old, 1546 struct kvm_memory_slot *new) 1547 { 1548 int as_id = kvm_memslots_get_as_id(old, new); 1549 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1550 int idx = slots->node_idx; 1551 1552 if (old) { 1553 hash_del(&old->id_node[idx]); 1554 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1555 1556 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1557 atomic_long_set(&slots->last_used_slot, (long)new); 1558 1559 if (!new) { 1560 kvm_erase_gfn_node(slots, old); 1561 return; 1562 } 1563 } 1564 1565 /* 1566 * Initialize @new's hva range. Do this even when replacing an @old 1567 * slot, kvm_copy_memslot() deliberately does not touch node data. 1568 */ 1569 new->hva_node[idx].start = new->userspace_addr; 1570 new->hva_node[idx].last = new->userspace_addr + 1571 (new->npages << PAGE_SHIFT) - 1; 1572 1573 /* 1574 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1575 * hva_node needs to be swapped with remove+insert even though hva can't 1576 * change when replacing an existing slot. 1577 */ 1578 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1579 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1580 1581 /* 1582 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1583 * switch the node in the gfn tree instead of removing the old and 1584 * inserting the new as two separate operations. Replacement is a 1585 * single O(1) operation versus two O(log(n)) operations for 1586 * remove+insert. 1587 */ 1588 if (old && old->base_gfn == new->base_gfn) { 1589 kvm_replace_gfn_node(slots, old, new); 1590 } else { 1591 if (old) 1592 kvm_erase_gfn_node(slots, old); 1593 kvm_insert_gfn_node(slots, new); 1594 } 1595 } 1596 1597 /* 1598 * Flags that do not access any of the extra space of struct 1599 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1600 * only allows these. 1601 */ 1602 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1603 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1604 1605 static int check_memory_region_flags(struct kvm *kvm, 1606 const struct kvm_userspace_memory_region2 *mem) 1607 { 1608 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1609 1610 if (kvm_arch_has_private_mem(kvm)) 1611 valid_flags |= KVM_MEM_GUEST_MEMFD; 1612 1613 /* Dirty logging private memory is not currently supported. */ 1614 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1615 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1616 1617 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1618 valid_flags |= KVM_MEM_READONLY; 1619 #endif 1620 1621 if (mem->flags & ~valid_flags) 1622 return -EINVAL; 1623 1624 return 0; 1625 } 1626 1627 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1628 { 1629 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1630 1631 /* Grab the generation from the activate memslots. */ 1632 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1633 1634 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1635 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1636 1637 /* 1638 * Do not store the new memslots while there are invalidations in 1639 * progress, otherwise the locking in invalidate_range_start and 1640 * invalidate_range_end will be unbalanced. 1641 */ 1642 spin_lock(&kvm->mn_invalidate_lock); 1643 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1644 while (kvm->mn_active_invalidate_count) { 1645 set_current_state(TASK_UNINTERRUPTIBLE); 1646 spin_unlock(&kvm->mn_invalidate_lock); 1647 schedule(); 1648 spin_lock(&kvm->mn_invalidate_lock); 1649 } 1650 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1651 rcu_assign_pointer(kvm->memslots[as_id], slots); 1652 spin_unlock(&kvm->mn_invalidate_lock); 1653 1654 /* 1655 * Acquired in kvm_set_memslot. Must be released before synchronize 1656 * SRCU below in order to avoid deadlock with another thread 1657 * acquiring the slots_arch_lock in an srcu critical section. 1658 */ 1659 mutex_unlock(&kvm->slots_arch_lock); 1660 1661 synchronize_srcu_expedited(&kvm->srcu); 1662 1663 /* 1664 * Increment the new memslot generation a second time, dropping the 1665 * update in-progress flag and incrementing the generation based on 1666 * the number of address spaces. This provides a unique and easily 1667 * identifiable generation number while the memslots are in flux. 1668 */ 1669 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1670 1671 /* 1672 * Generations must be unique even across address spaces. We do not need 1673 * a global counter for that, instead the generation space is evenly split 1674 * across address spaces. For example, with two address spaces, address 1675 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1676 * use generations 1, 3, 5, ... 1677 */ 1678 gen += kvm_arch_nr_memslot_as_ids(kvm); 1679 1680 kvm_arch_memslots_updated(kvm, gen); 1681 1682 slots->generation = gen; 1683 } 1684 1685 static int kvm_prepare_memory_region(struct kvm *kvm, 1686 const struct kvm_memory_slot *old, 1687 struct kvm_memory_slot *new, 1688 enum kvm_mr_change change) 1689 { 1690 int r; 1691 1692 /* 1693 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1694 * will be freed on "commit". If logging is enabled in both old and 1695 * new, reuse the existing bitmap. If logging is enabled only in the 1696 * new and KVM isn't using a ring buffer, allocate and initialize a 1697 * new bitmap. 1698 */ 1699 if (change != KVM_MR_DELETE) { 1700 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1701 new->dirty_bitmap = NULL; 1702 else if (old && old->dirty_bitmap) 1703 new->dirty_bitmap = old->dirty_bitmap; 1704 else if (kvm_use_dirty_bitmap(kvm)) { 1705 r = kvm_alloc_dirty_bitmap(new); 1706 if (r) 1707 return r; 1708 1709 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1710 bitmap_set(new->dirty_bitmap, 0, new->npages); 1711 } 1712 } 1713 1714 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1715 1716 /* Free the bitmap on failure if it was allocated above. */ 1717 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1718 kvm_destroy_dirty_bitmap(new); 1719 1720 return r; 1721 } 1722 1723 static void kvm_commit_memory_region(struct kvm *kvm, 1724 struct kvm_memory_slot *old, 1725 const struct kvm_memory_slot *new, 1726 enum kvm_mr_change change) 1727 { 1728 int old_flags = old ? old->flags : 0; 1729 int new_flags = new ? new->flags : 0; 1730 /* 1731 * Update the total number of memslot pages before calling the arch 1732 * hook so that architectures can consume the result directly. 1733 */ 1734 if (change == KVM_MR_DELETE) 1735 kvm->nr_memslot_pages -= old->npages; 1736 else if (change == KVM_MR_CREATE) 1737 kvm->nr_memslot_pages += new->npages; 1738 1739 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1740 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1741 atomic_set(&kvm->nr_memslots_dirty_logging, 1742 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1743 } 1744 1745 kvm_arch_commit_memory_region(kvm, old, new, change); 1746 1747 switch (change) { 1748 case KVM_MR_CREATE: 1749 /* Nothing more to do. */ 1750 break; 1751 case KVM_MR_DELETE: 1752 /* Free the old memslot and all its metadata. */ 1753 kvm_free_memslot(kvm, old); 1754 break; 1755 case KVM_MR_MOVE: 1756 case KVM_MR_FLAGS_ONLY: 1757 /* 1758 * Free the dirty bitmap as needed; the below check encompasses 1759 * both the flags and whether a ring buffer is being used) 1760 */ 1761 if (old->dirty_bitmap && !new->dirty_bitmap) 1762 kvm_destroy_dirty_bitmap(old); 1763 1764 /* 1765 * The final quirk. Free the detached, old slot, but only its 1766 * memory, not any metadata. Metadata, including arch specific 1767 * data, may be reused by @new. 1768 */ 1769 kfree(old); 1770 break; 1771 default: 1772 BUG(); 1773 } 1774 } 1775 1776 /* 1777 * Activate @new, which must be installed in the inactive slots by the caller, 1778 * by swapping the active slots and then propagating @new to @old once @old is 1779 * unreachable and can be safely modified. 1780 * 1781 * With NULL @old this simply adds @new to @active (while swapping the sets). 1782 * With NULL @new this simply removes @old from @active and frees it 1783 * (while also swapping the sets). 1784 */ 1785 static void kvm_activate_memslot(struct kvm *kvm, 1786 struct kvm_memory_slot *old, 1787 struct kvm_memory_slot *new) 1788 { 1789 int as_id = kvm_memslots_get_as_id(old, new); 1790 1791 kvm_swap_active_memslots(kvm, as_id); 1792 1793 /* Propagate the new memslot to the now inactive memslots. */ 1794 kvm_replace_memslot(kvm, old, new); 1795 } 1796 1797 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1798 const struct kvm_memory_slot *src) 1799 { 1800 dest->base_gfn = src->base_gfn; 1801 dest->npages = src->npages; 1802 dest->dirty_bitmap = src->dirty_bitmap; 1803 dest->arch = src->arch; 1804 dest->userspace_addr = src->userspace_addr; 1805 dest->flags = src->flags; 1806 dest->id = src->id; 1807 dest->as_id = src->as_id; 1808 } 1809 1810 static void kvm_invalidate_memslot(struct kvm *kvm, 1811 struct kvm_memory_slot *old, 1812 struct kvm_memory_slot *invalid_slot) 1813 { 1814 /* 1815 * Mark the current slot INVALID. As with all memslot modifications, 1816 * this must be done on an unreachable slot to avoid modifying the 1817 * current slot in the active tree. 1818 */ 1819 kvm_copy_memslot(invalid_slot, old); 1820 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1821 kvm_replace_memslot(kvm, old, invalid_slot); 1822 1823 /* 1824 * Activate the slot that is now marked INVALID, but don't propagate 1825 * the slot to the now inactive slots. The slot is either going to be 1826 * deleted or recreated as a new slot. 1827 */ 1828 kvm_swap_active_memslots(kvm, old->as_id); 1829 1830 /* 1831 * From this point no new shadow pages pointing to a deleted, or moved, 1832 * memslot will be created. Validation of sp->gfn happens in: 1833 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1834 * - kvm_is_visible_gfn (mmu_check_root) 1835 */ 1836 kvm_arch_flush_shadow_memslot(kvm, old); 1837 kvm_arch_guest_memory_reclaimed(kvm); 1838 1839 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1840 mutex_lock(&kvm->slots_arch_lock); 1841 1842 /* 1843 * Copy the arch-specific field of the newly-installed slot back to the 1844 * old slot as the arch data could have changed between releasing 1845 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1846 * above. Writers are required to retrieve memslots *after* acquiring 1847 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1848 */ 1849 old->arch = invalid_slot->arch; 1850 } 1851 1852 static void kvm_create_memslot(struct kvm *kvm, 1853 struct kvm_memory_slot *new) 1854 { 1855 /* Add the new memslot to the inactive set and activate. */ 1856 kvm_replace_memslot(kvm, NULL, new); 1857 kvm_activate_memslot(kvm, NULL, new); 1858 } 1859 1860 static void kvm_delete_memslot(struct kvm *kvm, 1861 struct kvm_memory_slot *old, 1862 struct kvm_memory_slot *invalid_slot) 1863 { 1864 /* 1865 * Remove the old memslot (in the inactive memslots) by passing NULL as 1866 * the "new" slot, and for the invalid version in the active slots. 1867 */ 1868 kvm_replace_memslot(kvm, old, NULL); 1869 kvm_activate_memslot(kvm, invalid_slot, NULL); 1870 } 1871 1872 static void kvm_move_memslot(struct kvm *kvm, 1873 struct kvm_memory_slot *old, 1874 struct kvm_memory_slot *new, 1875 struct kvm_memory_slot *invalid_slot) 1876 { 1877 /* 1878 * Replace the old memslot in the inactive slots, and then swap slots 1879 * and replace the current INVALID with the new as well. 1880 */ 1881 kvm_replace_memslot(kvm, old, new); 1882 kvm_activate_memslot(kvm, invalid_slot, new); 1883 } 1884 1885 static void kvm_update_flags_memslot(struct kvm *kvm, 1886 struct kvm_memory_slot *old, 1887 struct kvm_memory_slot *new) 1888 { 1889 /* 1890 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1891 * an intermediate step. Instead, the old memslot is simply replaced 1892 * with a new, updated copy in both memslot sets. 1893 */ 1894 kvm_replace_memslot(kvm, old, new); 1895 kvm_activate_memslot(kvm, old, new); 1896 } 1897 1898 static int kvm_set_memslot(struct kvm *kvm, 1899 struct kvm_memory_slot *old, 1900 struct kvm_memory_slot *new, 1901 enum kvm_mr_change change) 1902 { 1903 struct kvm_memory_slot *invalid_slot; 1904 int r; 1905 1906 /* 1907 * Released in kvm_swap_active_memslots(). 1908 * 1909 * Must be held from before the current memslots are copied until after 1910 * the new memslots are installed with rcu_assign_pointer, then 1911 * released before the synchronize srcu in kvm_swap_active_memslots(). 1912 * 1913 * When modifying memslots outside of the slots_lock, must be held 1914 * before reading the pointer to the current memslots until after all 1915 * changes to those memslots are complete. 1916 * 1917 * These rules ensure that installing new memslots does not lose 1918 * changes made to the previous memslots. 1919 */ 1920 mutex_lock(&kvm->slots_arch_lock); 1921 1922 /* 1923 * Invalidate the old slot if it's being deleted or moved. This is 1924 * done prior to actually deleting/moving the memslot to allow vCPUs to 1925 * continue running by ensuring there are no mappings or shadow pages 1926 * for the memslot when it is deleted/moved. Without pre-invalidation 1927 * (and without a lock), a window would exist between effecting the 1928 * delete/move and committing the changes in arch code where KVM or a 1929 * guest could access a non-existent memslot. 1930 * 1931 * Modifications are done on a temporary, unreachable slot. The old 1932 * slot needs to be preserved in case a later step fails and the 1933 * invalidation needs to be reverted. 1934 */ 1935 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1936 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1937 if (!invalid_slot) { 1938 mutex_unlock(&kvm->slots_arch_lock); 1939 return -ENOMEM; 1940 } 1941 kvm_invalidate_memslot(kvm, old, invalid_slot); 1942 } 1943 1944 r = kvm_prepare_memory_region(kvm, old, new, change); 1945 if (r) { 1946 /* 1947 * For DELETE/MOVE, revert the above INVALID change. No 1948 * modifications required since the original slot was preserved 1949 * in the inactive slots. Changing the active memslots also 1950 * release slots_arch_lock. 1951 */ 1952 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1953 kvm_activate_memslot(kvm, invalid_slot, old); 1954 kfree(invalid_slot); 1955 } else { 1956 mutex_unlock(&kvm->slots_arch_lock); 1957 } 1958 return r; 1959 } 1960 1961 /* 1962 * For DELETE and MOVE, the working slot is now active as the INVALID 1963 * version of the old slot. MOVE is particularly special as it reuses 1964 * the old slot and returns a copy of the old slot (in working_slot). 1965 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1966 * old slot is detached but otherwise preserved. 1967 */ 1968 if (change == KVM_MR_CREATE) 1969 kvm_create_memslot(kvm, new); 1970 else if (change == KVM_MR_DELETE) 1971 kvm_delete_memslot(kvm, old, invalid_slot); 1972 else if (change == KVM_MR_MOVE) 1973 kvm_move_memslot(kvm, old, new, invalid_slot); 1974 else if (change == KVM_MR_FLAGS_ONLY) 1975 kvm_update_flags_memslot(kvm, old, new); 1976 else 1977 BUG(); 1978 1979 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1980 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1981 kfree(invalid_slot); 1982 1983 /* 1984 * No need to refresh new->arch, changes after dropping slots_arch_lock 1985 * will directly hit the final, active memslot. Architectures are 1986 * responsible for knowing that new->arch may be stale. 1987 */ 1988 kvm_commit_memory_region(kvm, old, new, change); 1989 1990 return 0; 1991 } 1992 1993 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1994 gfn_t start, gfn_t end) 1995 { 1996 struct kvm_memslot_iter iter; 1997 1998 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1999 if (iter.slot->id != id) 2000 return true; 2001 } 2002 2003 return false; 2004 } 2005 2006 /* 2007 * Allocate some memory and give it an address in the guest physical address 2008 * space. 2009 * 2010 * Discontiguous memory is allowed, mostly for framebuffers. 2011 * 2012 * Must be called holding kvm->slots_lock for write. 2013 */ 2014 int __kvm_set_memory_region(struct kvm *kvm, 2015 const struct kvm_userspace_memory_region2 *mem) 2016 { 2017 struct kvm_memory_slot *old, *new; 2018 struct kvm_memslots *slots; 2019 enum kvm_mr_change change; 2020 unsigned long npages; 2021 gfn_t base_gfn; 2022 int as_id, id; 2023 int r; 2024 2025 r = check_memory_region_flags(kvm, mem); 2026 if (r) 2027 return r; 2028 2029 as_id = mem->slot >> 16; 2030 id = (u16)mem->slot; 2031 2032 /* General sanity checks */ 2033 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2034 (mem->memory_size != (unsigned long)mem->memory_size)) 2035 return -EINVAL; 2036 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2037 return -EINVAL; 2038 /* We can read the guest memory with __xxx_user() later on. */ 2039 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2040 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2041 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2042 mem->memory_size)) 2043 return -EINVAL; 2044 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2045 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2046 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2047 return -EINVAL; 2048 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2049 return -EINVAL; 2050 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2051 return -EINVAL; 2052 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2053 return -EINVAL; 2054 2055 slots = __kvm_memslots(kvm, as_id); 2056 2057 /* 2058 * Note, the old memslot (and the pointer itself!) may be invalidated 2059 * and/or destroyed by kvm_set_memslot(). 2060 */ 2061 old = id_to_memslot(slots, id); 2062 2063 if (!mem->memory_size) { 2064 if (!old || !old->npages) 2065 return -EINVAL; 2066 2067 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2068 return -EIO; 2069 2070 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2071 } 2072 2073 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2074 npages = (mem->memory_size >> PAGE_SHIFT); 2075 2076 if (!old || !old->npages) { 2077 change = KVM_MR_CREATE; 2078 2079 /* 2080 * To simplify KVM internals, the total number of pages across 2081 * all memslots must fit in an unsigned long. 2082 */ 2083 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2084 return -EINVAL; 2085 } else { /* Modify an existing slot. */ 2086 /* Private memslots are immutable, they can only be deleted. */ 2087 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2088 return -EINVAL; 2089 if ((mem->userspace_addr != old->userspace_addr) || 2090 (npages != old->npages) || 2091 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2092 return -EINVAL; 2093 2094 if (base_gfn != old->base_gfn) 2095 change = KVM_MR_MOVE; 2096 else if (mem->flags != old->flags) 2097 change = KVM_MR_FLAGS_ONLY; 2098 else /* Nothing to change. */ 2099 return 0; 2100 } 2101 2102 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2103 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2104 return -EEXIST; 2105 2106 /* Allocate a slot that will persist in the memslot. */ 2107 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2108 if (!new) 2109 return -ENOMEM; 2110 2111 new->as_id = as_id; 2112 new->id = id; 2113 new->base_gfn = base_gfn; 2114 new->npages = npages; 2115 new->flags = mem->flags; 2116 new->userspace_addr = mem->userspace_addr; 2117 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2118 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2119 if (r) 2120 goto out; 2121 } 2122 2123 r = kvm_set_memslot(kvm, old, new, change); 2124 if (r) 2125 goto out_unbind; 2126 2127 return 0; 2128 2129 out_unbind: 2130 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2131 kvm_gmem_unbind(new); 2132 out: 2133 kfree(new); 2134 return r; 2135 } 2136 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2137 2138 int kvm_set_memory_region(struct kvm *kvm, 2139 const struct kvm_userspace_memory_region2 *mem) 2140 { 2141 int r; 2142 2143 mutex_lock(&kvm->slots_lock); 2144 r = __kvm_set_memory_region(kvm, mem); 2145 mutex_unlock(&kvm->slots_lock); 2146 return r; 2147 } 2148 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2149 2150 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2151 struct kvm_userspace_memory_region2 *mem) 2152 { 2153 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2154 return -EINVAL; 2155 2156 return kvm_set_memory_region(kvm, mem); 2157 } 2158 2159 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2160 /** 2161 * kvm_get_dirty_log - get a snapshot of dirty pages 2162 * @kvm: pointer to kvm instance 2163 * @log: slot id and address to which we copy the log 2164 * @is_dirty: set to '1' if any dirty pages were found 2165 * @memslot: set to the associated memslot, always valid on success 2166 */ 2167 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2168 int *is_dirty, struct kvm_memory_slot **memslot) 2169 { 2170 struct kvm_memslots *slots; 2171 int i, as_id, id; 2172 unsigned long n; 2173 unsigned long any = 0; 2174 2175 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2176 if (!kvm_use_dirty_bitmap(kvm)) 2177 return -ENXIO; 2178 2179 *memslot = NULL; 2180 *is_dirty = 0; 2181 2182 as_id = log->slot >> 16; 2183 id = (u16)log->slot; 2184 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2185 return -EINVAL; 2186 2187 slots = __kvm_memslots(kvm, as_id); 2188 *memslot = id_to_memslot(slots, id); 2189 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2190 return -ENOENT; 2191 2192 kvm_arch_sync_dirty_log(kvm, *memslot); 2193 2194 n = kvm_dirty_bitmap_bytes(*memslot); 2195 2196 for (i = 0; !any && i < n/sizeof(long); ++i) 2197 any = (*memslot)->dirty_bitmap[i]; 2198 2199 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2200 return -EFAULT; 2201 2202 if (any) 2203 *is_dirty = 1; 2204 return 0; 2205 } 2206 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2207 2208 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2209 /** 2210 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2211 * and reenable dirty page tracking for the corresponding pages. 2212 * @kvm: pointer to kvm instance 2213 * @log: slot id and address to which we copy the log 2214 * 2215 * We need to keep it in mind that VCPU threads can write to the bitmap 2216 * concurrently. So, to avoid losing track of dirty pages we keep the 2217 * following order: 2218 * 2219 * 1. Take a snapshot of the bit and clear it if needed. 2220 * 2. Write protect the corresponding page. 2221 * 3. Copy the snapshot to the userspace. 2222 * 4. Upon return caller flushes TLB's if needed. 2223 * 2224 * Between 2 and 4, the guest may write to the page using the remaining TLB 2225 * entry. This is not a problem because the page is reported dirty using 2226 * the snapshot taken before and step 4 ensures that writes done after 2227 * exiting to userspace will be logged for the next call. 2228 * 2229 */ 2230 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2231 { 2232 struct kvm_memslots *slots; 2233 struct kvm_memory_slot *memslot; 2234 int i, as_id, id; 2235 unsigned long n; 2236 unsigned long *dirty_bitmap; 2237 unsigned long *dirty_bitmap_buffer; 2238 bool flush; 2239 2240 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2241 if (!kvm_use_dirty_bitmap(kvm)) 2242 return -ENXIO; 2243 2244 as_id = log->slot >> 16; 2245 id = (u16)log->slot; 2246 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2247 return -EINVAL; 2248 2249 slots = __kvm_memslots(kvm, as_id); 2250 memslot = id_to_memslot(slots, id); 2251 if (!memslot || !memslot->dirty_bitmap) 2252 return -ENOENT; 2253 2254 dirty_bitmap = memslot->dirty_bitmap; 2255 2256 kvm_arch_sync_dirty_log(kvm, memslot); 2257 2258 n = kvm_dirty_bitmap_bytes(memslot); 2259 flush = false; 2260 if (kvm->manual_dirty_log_protect) { 2261 /* 2262 * Unlike kvm_get_dirty_log, we always return false in *flush, 2263 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2264 * is some code duplication between this function and 2265 * kvm_get_dirty_log, but hopefully all architecture 2266 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2267 * can be eliminated. 2268 */ 2269 dirty_bitmap_buffer = dirty_bitmap; 2270 } else { 2271 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2272 memset(dirty_bitmap_buffer, 0, n); 2273 2274 KVM_MMU_LOCK(kvm); 2275 for (i = 0; i < n / sizeof(long); i++) { 2276 unsigned long mask; 2277 gfn_t offset; 2278 2279 if (!dirty_bitmap[i]) 2280 continue; 2281 2282 flush = true; 2283 mask = xchg(&dirty_bitmap[i], 0); 2284 dirty_bitmap_buffer[i] = mask; 2285 2286 offset = i * BITS_PER_LONG; 2287 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2288 offset, mask); 2289 } 2290 KVM_MMU_UNLOCK(kvm); 2291 } 2292 2293 if (flush) 2294 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2295 2296 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2297 return -EFAULT; 2298 return 0; 2299 } 2300 2301 2302 /** 2303 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2304 * @kvm: kvm instance 2305 * @log: slot id and address to which we copy the log 2306 * 2307 * Steps 1-4 below provide general overview of dirty page logging. See 2308 * kvm_get_dirty_log_protect() function description for additional details. 2309 * 2310 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2311 * always flush the TLB (step 4) even if previous step failed and the dirty 2312 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2313 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2314 * writes will be marked dirty for next log read. 2315 * 2316 * 1. Take a snapshot of the bit and clear it if needed. 2317 * 2. Write protect the corresponding page. 2318 * 3. Copy the snapshot to the userspace. 2319 * 4. Flush TLB's if needed. 2320 */ 2321 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2322 struct kvm_dirty_log *log) 2323 { 2324 int r; 2325 2326 mutex_lock(&kvm->slots_lock); 2327 2328 r = kvm_get_dirty_log_protect(kvm, log); 2329 2330 mutex_unlock(&kvm->slots_lock); 2331 return r; 2332 } 2333 2334 /** 2335 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2336 * and reenable dirty page tracking for the corresponding pages. 2337 * @kvm: pointer to kvm instance 2338 * @log: slot id and address from which to fetch the bitmap of dirty pages 2339 */ 2340 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2341 struct kvm_clear_dirty_log *log) 2342 { 2343 struct kvm_memslots *slots; 2344 struct kvm_memory_slot *memslot; 2345 int as_id, id; 2346 gfn_t offset; 2347 unsigned long i, n; 2348 unsigned long *dirty_bitmap; 2349 unsigned long *dirty_bitmap_buffer; 2350 bool flush; 2351 2352 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2353 if (!kvm_use_dirty_bitmap(kvm)) 2354 return -ENXIO; 2355 2356 as_id = log->slot >> 16; 2357 id = (u16)log->slot; 2358 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2359 return -EINVAL; 2360 2361 if (log->first_page & 63) 2362 return -EINVAL; 2363 2364 slots = __kvm_memslots(kvm, as_id); 2365 memslot = id_to_memslot(slots, id); 2366 if (!memslot || !memslot->dirty_bitmap) 2367 return -ENOENT; 2368 2369 dirty_bitmap = memslot->dirty_bitmap; 2370 2371 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2372 2373 if (log->first_page > memslot->npages || 2374 log->num_pages > memslot->npages - log->first_page || 2375 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2376 return -EINVAL; 2377 2378 kvm_arch_sync_dirty_log(kvm, memslot); 2379 2380 flush = false; 2381 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2382 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2383 return -EFAULT; 2384 2385 KVM_MMU_LOCK(kvm); 2386 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2387 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2388 i++, offset += BITS_PER_LONG) { 2389 unsigned long mask = *dirty_bitmap_buffer++; 2390 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2391 if (!mask) 2392 continue; 2393 2394 mask &= atomic_long_fetch_andnot(mask, p); 2395 2396 /* 2397 * mask contains the bits that really have been cleared. This 2398 * never includes any bits beyond the length of the memslot (if 2399 * the length is not aligned to 64 pages), therefore it is not 2400 * a problem if userspace sets them in log->dirty_bitmap. 2401 */ 2402 if (mask) { 2403 flush = true; 2404 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2405 offset, mask); 2406 } 2407 } 2408 KVM_MMU_UNLOCK(kvm); 2409 2410 if (flush) 2411 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2412 2413 return 0; 2414 } 2415 2416 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2417 struct kvm_clear_dirty_log *log) 2418 { 2419 int r; 2420 2421 mutex_lock(&kvm->slots_lock); 2422 2423 r = kvm_clear_dirty_log_protect(kvm, log); 2424 2425 mutex_unlock(&kvm->slots_lock); 2426 return r; 2427 } 2428 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2429 2430 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2431 /* 2432 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2433 * matching @attrs. 2434 */ 2435 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2436 unsigned long attrs) 2437 { 2438 XA_STATE(xas, &kvm->mem_attr_array, start); 2439 unsigned long index; 2440 bool has_attrs; 2441 void *entry; 2442 2443 rcu_read_lock(); 2444 2445 if (!attrs) { 2446 has_attrs = !xas_find(&xas, end - 1); 2447 goto out; 2448 } 2449 2450 has_attrs = true; 2451 for (index = start; index < end; index++) { 2452 do { 2453 entry = xas_next(&xas); 2454 } while (xas_retry(&xas, entry)); 2455 2456 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2457 has_attrs = false; 2458 break; 2459 } 2460 } 2461 2462 out: 2463 rcu_read_unlock(); 2464 return has_attrs; 2465 } 2466 2467 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2468 { 2469 if (!kvm || kvm_arch_has_private_mem(kvm)) 2470 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2471 2472 return 0; 2473 } 2474 2475 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2476 struct kvm_mmu_notifier_range *range) 2477 { 2478 struct kvm_gfn_range gfn_range; 2479 struct kvm_memory_slot *slot; 2480 struct kvm_memslots *slots; 2481 struct kvm_memslot_iter iter; 2482 bool found_memslot = false; 2483 bool ret = false; 2484 int i; 2485 2486 gfn_range.arg = range->arg; 2487 gfn_range.may_block = range->may_block; 2488 2489 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2490 slots = __kvm_memslots(kvm, i); 2491 2492 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2493 slot = iter.slot; 2494 gfn_range.slot = slot; 2495 2496 gfn_range.start = max(range->start, slot->base_gfn); 2497 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2498 if (gfn_range.start >= gfn_range.end) 2499 continue; 2500 2501 if (!found_memslot) { 2502 found_memslot = true; 2503 KVM_MMU_LOCK(kvm); 2504 if (!IS_KVM_NULL_FN(range->on_lock)) 2505 range->on_lock(kvm); 2506 } 2507 2508 ret |= range->handler(kvm, &gfn_range); 2509 } 2510 } 2511 2512 if (range->flush_on_ret && ret) 2513 kvm_flush_remote_tlbs(kvm); 2514 2515 if (found_memslot) 2516 KVM_MMU_UNLOCK(kvm); 2517 } 2518 2519 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2520 struct kvm_gfn_range *range) 2521 { 2522 /* 2523 * Unconditionally add the range to the invalidation set, regardless of 2524 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2525 * if KVM supports RWX attributes in the future and the attributes are 2526 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2527 * adding the range allows KVM to require that MMU invalidations add at 2528 * least one range between begin() and end(), e.g. allows KVM to detect 2529 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2530 * but it's not obvious that allowing new mappings while the attributes 2531 * are in flux is desirable or worth the complexity. 2532 */ 2533 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2534 2535 return kvm_arch_pre_set_memory_attributes(kvm, range); 2536 } 2537 2538 /* Set @attributes for the gfn range [@start, @end). */ 2539 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2540 unsigned long attributes) 2541 { 2542 struct kvm_mmu_notifier_range pre_set_range = { 2543 .start = start, 2544 .end = end, 2545 .handler = kvm_pre_set_memory_attributes, 2546 .on_lock = kvm_mmu_invalidate_begin, 2547 .flush_on_ret = true, 2548 .may_block = true, 2549 }; 2550 struct kvm_mmu_notifier_range post_set_range = { 2551 .start = start, 2552 .end = end, 2553 .arg.attributes = attributes, 2554 .handler = kvm_arch_post_set_memory_attributes, 2555 .on_lock = kvm_mmu_invalidate_end, 2556 .may_block = true, 2557 }; 2558 unsigned long i; 2559 void *entry; 2560 int r = 0; 2561 2562 entry = attributes ? xa_mk_value(attributes) : NULL; 2563 2564 mutex_lock(&kvm->slots_lock); 2565 2566 /* Nothing to do if the entire range as the desired attributes. */ 2567 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2568 goto out_unlock; 2569 2570 /* 2571 * Reserve memory ahead of time to avoid having to deal with failures 2572 * partway through setting the new attributes. 2573 */ 2574 for (i = start; i < end; i++) { 2575 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2576 if (r) 2577 goto out_unlock; 2578 } 2579 2580 kvm_handle_gfn_range(kvm, &pre_set_range); 2581 2582 for (i = start; i < end; i++) { 2583 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2584 GFP_KERNEL_ACCOUNT)); 2585 KVM_BUG_ON(r, kvm); 2586 } 2587 2588 kvm_handle_gfn_range(kvm, &post_set_range); 2589 2590 out_unlock: 2591 mutex_unlock(&kvm->slots_lock); 2592 2593 return r; 2594 } 2595 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2596 struct kvm_memory_attributes *attrs) 2597 { 2598 gfn_t start, end; 2599 2600 /* flags is currently not used. */ 2601 if (attrs->flags) 2602 return -EINVAL; 2603 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2604 return -EINVAL; 2605 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2606 return -EINVAL; 2607 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2608 return -EINVAL; 2609 2610 start = attrs->address >> PAGE_SHIFT; 2611 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2612 2613 /* 2614 * xarray tracks data using "unsigned long", and as a result so does 2615 * KVM. For simplicity, supports generic attributes only on 64-bit 2616 * architectures. 2617 */ 2618 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2619 2620 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2621 } 2622 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2623 2624 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2625 { 2626 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2627 } 2628 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2629 2630 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2631 { 2632 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2633 u64 gen = slots->generation; 2634 struct kvm_memory_slot *slot; 2635 2636 /* 2637 * This also protects against using a memslot from a different address space, 2638 * since different address spaces have different generation numbers. 2639 */ 2640 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2641 vcpu->last_used_slot = NULL; 2642 vcpu->last_used_slot_gen = gen; 2643 } 2644 2645 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2646 if (slot) 2647 return slot; 2648 2649 /* 2650 * Fall back to searching all memslots. We purposely use 2651 * search_memslots() instead of __gfn_to_memslot() to avoid 2652 * thrashing the VM-wide last_used_slot in kvm_memslots. 2653 */ 2654 slot = search_memslots(slots, gfn, false); 2655 if (slot) { 2656 vcpu->last_used_slot = slot; 2657 return slot; 2658 } 2659 2660 return NULL; 2661 } 2662 2663 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2664 { 2665 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2666 2667 return kvm_is_visible_memslot(memslot); 2668 } 2669 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2670 2671 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2672 { 2673 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2674 2675 return kvm_is_visible_memslot(memslot); 2676 } 2677 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2678 2679 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2680 { 2681 struct vm_area_struct *vma; 2682 unsigned long addr, size; 2683 2684 size = PAGE_SIZE; 2685 2686 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2687 if (kvm_is_error_hva(addr)) 2688 return PAGE_SIZE; 2689 2690 mmap_read_lock(current->mm); 2691 vma = find_vma(current->mm, addr); 2692 if (!vma) 2693 goto out; 2694 2695 size = vma_kernel_pagesize(vma); 2696 2697 out: 2698 mmap_read_unlock(current->mm); 2699 2700 return size; 2701 } 2702 2703 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2704 { 2705 return slot->flags & KVM_MEM_READONLY; 2706 } 2707 2708 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2709 gfn_t *nr_pages, bool write) 2710 { 2711 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2712 return KVM_HVA_ERR_BAD; 2713 2714 if (memslot_is_readonly(slot) && write) 2715 return KVM_HVA_ERR_RO_BAD; 2716 2717 if (nr_pages) 2718 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2719 2720 return __gfn_to_hva_memslot(slot, gfn); 2721 } 2722 2723 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2724 gfn_t *nr_pages) 2725 { 2726 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2727 } 2728 2729 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2730 gfn_t gfn) 2731 { 2732 return gfn_to_hva_many(slot, gfn, NULL); 2733 } 2734 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2735 2736 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2737 { 2738 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2739 } 2740 EXPORT_SYMBOL_GPL(gfn_to_hva); 2741 2742 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2743 { 2744 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2745 } 2746 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2747 2748 /* 2749 * Return the hva of a @gfn and the R/W attribute if possible. 2750 * 2751 * @slot: the kvm_memory_slot which contains @gfn 2752 * @gfn: the gfn to be translated 2753 * @writable: used to return the read/write attribute of the @slot if the hva 2754 * is valid and @writable is not NULL 2755 */ 2756 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2757 gfn_t gfn, bool *writable) 2758 { 2759 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2760 2761 if (!kvm_is_error_hva(hva) && writable) 2762 *writable = !memslot_is_readonly(slot); 2763 2764 return hva; 2765 } 2766 2767 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2768 { 2769 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2770 2771 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2772 } 2773 2774 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2775 { 2776 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2777 2778 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2779 } 2780 2781 static inline int check_user_page_hwpoison(unsigned long addr) 2782 { 2783 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2784 2785 rc = get_user_pages(addr, 1, flags, NULL); 2786 return rc == -EHWPOISON; 2787 } 2788 2789 /* 2790 * The fast path to get the writable pfn which will be stored in @pfn, 2791 * true indicates success, otherwise false is returned. It's also the 2792 * only part that runs if we can in atomic context. 2793 */ 2794 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2795 bool *writable, kvm_pfn_t *pfn) 2796 { 2797 struct page *page[1]; 2798 2799 /* 2800 * Fast pin a writable pfn only if it is a write fault request 2801 * or the caller allows to map a writable pfn for a read fault 2802 * request. 2803 */ 2804 if (!(write_fault || writable)) 2805 return false; 2806 2807 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2808 *pfn = page_to_pfn(page[0]); 2809 2810 if (writable) 2811 *writable = true; 2812 return true; 2813 } 2814 2815 return false; 2816 } 2817 2818 /* 2819 * The slow path to get the pfn of the specified host virtual address, 2820 * 1 indicates success, -errno is returned if error is detected. 2821 */ 2822 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2823 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2824 { 2825 /* 2826 * When a VCPU accesses a page that is not mapped into the secondary 2827 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2828 * make progress. We always want to honor NUMA hinting faults in that 2829 * case, because GUP usage corresponds to memory accesses from the VCPU. 2830 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2831 * mapped into the secondary MMU and gets accessed by a VCPU. 2832 * 2833 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2834 * implicitly honor NUMA hinting faults and don't need this flag. 2835 */ 2836 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2837 struct page *page; 2838 int npages; 2839 2840 might_sleep(); 2841 2842 if (writable) 2843 *writable = write_fault; 2844 2845 if (write_fault) 2846 flags |= FOLL_WRITE; 2847 if (async) 2848 flags |= FOLL_NOWAIT; 2849 if (interruptible) 2850 flags |= FOLL_INTERRUPTIBLE; 2851 2852 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2853 if (npages != 1) 2854 return npages; 2855 2856 /* map read fault as writable if possible */ 2857 if (unlikely(!write_fault) && writable) { 2858 struct page *wpage; 2859 2860 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2861 *writable = true; 2862 put_page(page); 2863 page = wpage; 2864 } 2865 } 2866 *pfn = page_to_pfn(page); 2867 return npages; 2868 } 2869 2870 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2871 { 2872 if (unlikely(!(vma->vm_flags & VM_READ))) 2873 return false; 2874 2875 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2876 return false; 2877 2878 return true; 2879 } 2880 2881 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2882 { 2883 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2884 2885 if (!page) 2886 return 1; 2887 2888 return get_page_unless_zero(page); 2889 } 2890 2891 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2892 unsigned long addr, bool write_fault, 2893 bool *writable, kvm_pfn_t *p_pfn) 2894 { 2895 kvm_pfn_t pfn; 2896 pte_t *ptep; 2897 pte_t pte; 2898 spinlock_t *ptl; 2899 int r; 2900 2901 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2902 if (r) { 2903 /* 2904 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2905 * not call the fault handler, so do it here. 2906 */ 2907 bool unlocked = false; 2908 r = fixup_user_fault(current->mm, addr, 2909 (write_fault ? FAULT_FLAG_WRITE : 0), 2910 &unlocked); 2911 if (unlocked) 2912 return -EAGAIN; 2913 if (r) 2914 return r; 2915 2916 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2917 if (r) 2918 return r; 2919 } 2920 2921 pte = ptep_get(ptep); 2922 2923 if (write_fault && !pte_write(pte)) { 2924 pfn = KVM_PFN_ERR_RO_FAULT; 2925 goto out; 2926 } 2927 2928 if (writable) 2929 *writable = pte_write(pte); 2930 pfn = pte_pfn(pte); 2931 2932 /* 2933 * Get a reference here because callers of *hva_to_pfn* and 2934 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2935 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2936 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2937 * simply do nothing for reserved pfns. 2938 * 2939 * Whoever called remap_pfn_range is also going to call e.g. 2940 * unmap_mapping_range before the underlying pages are freed, 2941 * causing a call to our MMU notifier. 2942 * 2943 * Certain IO or PFNMAP mappings can be backed with valid 2944 * struct pages, but be allocated without refcounting e.g., 2945 * tail pages of non-compound higher order allocations, which 2946 * would then underflow the refcount when the caller does the 2947 * required put_page. Don't allow those pages here. 2948 */ 2949 if (!kvm_try_get_pfn(pfn)) 2950 r = -EFAULT; 2951 2952 out: 2953 pte_unmap_unlock(ptep, ptl); 2954 *p_pfn = pfn; 2955 2956 return r; 2957 } 2958 2959 /* 2960 * Pin guest page in memory and return its pfn. 2961 * @addr: host virtual address which maps memory to the guest 2962 * @atomic: whether this function can sleep 2963 * @interruptible: whether the process can be interrupted by non-fatal signals 2964 * @async: whether this function need to wait IO complete if the 2965 * host page is not in the memory 2966 * @write_fault: whether we should get a writable host page 2967 * @writable: whether it allows to map a writable host page for !@write_fault 2968 * 2969 * The function will map a writable host page for these two cases: 2970 * 1): @write_fault = true 2971 * 2): @write_fault = false && @writable, @writable will tell the caller 2972 * whether the mapping is writable. 2973 */ 2974 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2975 bool *async, bool write_fault, bool *writable) 2976 { 2977 struct vm_area_struct *vma; 2978 kvm_pfn_t pfn; 2979 int npages, r; 2980 2981 /* we can do it either atomically or asynchronously, not both */ 2982 BUG_ON(atomic && async); 2983 2984 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2985 return pfn; 2986 2987 if (atomic) 2988 return KVM_PFN_ERR_FAULT; 2989 2990 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2991 writable, &pfn); 2992 if (npages == 1) 2993 return pfn; 2994 if (npages == -EINTR) 2995 return KVM_PFN_ERR_SIGPENDING; 2996 2997 mmap_read_lock(current->mm); 2998 if (npages == -EHWPOISON || 2999 (!async && check_user_page_hwpoison(addr))) { 3000 pfn = KVM_PFN_ERR_HWPOISON; 3001 goto exit; 3002 } 3003 3004 retry: 3005 vma = vma_lookup(current->mm, addr); 3006 3007 if (vma == NULL) 3008 pfn = KVM_PFN_ERR_FAULT; 3009 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3010 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 3011 if (r == -EAGAIN) 3012 goto retry; 3013 if (r < 0) 3014 pfn = KVM_PFN_ERR_FAULT; 3015 } else { 3016 if (async && vma_is_valid(vma, write_fault)) 3017 *async = true; 3018 pfn = KVM_PFN_ERR_FAULT; 3019 } 3020 exit: 3021 mmap_read_unlock(current->mm); 3022 return pfn; 3023 } 3024 3025 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 3026 bool atomic, bool interruptible, bool *async, 3027 bool write_fault, bool *writable, hva_t *hva) 3028 { 3029 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 3030 3031 if (hva) 3032 *hva = addr; 3033 3034 if (addr == KVM_HVA_ERR_RO_BAD) { 3035 if (writable) 3036 *writable = false; 3037 return KVM_PFN_ERR_RO_FAULT; 3038 } 3039 3040 if (kvm_is_error_hva(addr)) { 3041 if (writable) 3042 *writable = false; 3043 return KVM_PFN_NOSLOT; 3044 } 3045 3046 /* Do not map writable pfn in the readonly memslot. */ 3047 if (writable && memslot_is_readonly(slot)) { 3048 *writable = false; 3049 writable = NULL; 3050 } 3051 3052 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3053 writable); 3054 } 3055 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3056 3057 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3058 bool *writable) 3059 { 3060 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3061 NULL, write_fault, writable, NULL); 3062 } 3063 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3064 3065 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3066 { 3067 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3068 NULL, NULL); 3069 } 3070 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3071 3072 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3073 { 3074 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3075 NULL, NULL); 3076 } 3077 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3078 3079 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3080 { 3081 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3082 } 3083 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3084 3085 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3086 { 3087 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3088 } 3089 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3090 3091 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3092 { 3093 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3094 } 3095 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3096 3097 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3098 struct page **pages, int nr_pages) 3099 { 3100 unsigned long addr; 3101 gfn_t entry = 0; 3102 3103 addr = gfn_to_hva_many(slot, gfn, &entry); 3104 if (kvm_is_error_hva(addr)) 3105 return -1; 3106 3107 if (entry < nr_pages) 3108 return 0; 3109 3110 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3111 } 3112 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3113 3114 /* 3115 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3116 * backed by 'struct page'. A valid example is if the backing memslot is 3117 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3118 * been elevated by gfn_to_pfn(). 3119 */ 3120 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3121 { 3122 struct page *page; 3123 kvm_pfn_t pfn; 3124 3125 pfn = gfn_to_pfn(kvm, gfn); 3126 3127 if (is_error_noslot_pfn(pfn)) 3128 return KVM_ERR_PTR_BAD_PAGE; 3129 3130 page = kvm_pfn_to_refcounted_page(pfn); 3131 if (!page) 3132 return KVM_ERR_PTR_BAD_PAGE; 3133 3134 return page; 3135 } 3136 EXPORT_SYMBOL_GPL(gfn_to_page); 3137 3138 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3139 { 3140 if (dirty) 3141 kvm_release_pfn_dirty(pfn); 3142 else 3143 kvm_release_pfn_clean(pfn); 3144 } 3145 3146 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3147 { 3148 kvm_pfn_t pfn; 3149 void *hva = NULL; 3150 struct page *page = KVM_UNMAPPED_PAGE; 3151 3152 if (!map) 3153 return -EINVAL; 3154 3155 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3156 if (is_error_noslot_pfn(pfn)) 3157 return -EINVAL; 3158 3159 if (pfn_valid(pfn)) { 3160 page = pfn_to_page(pfn); 3161 hva = kmap(page); 3162 #ifdef CONFIG_HAS_IOMEM 3163 } else { 3164 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3165 #endif 3166 } 3167 3168 if (!hva) 3169 return -EFAULT; 3170 3171 map->page = page; 3172 map->hva = hva; 3173 map->pfn = pfn; 3174 map->gfn = gfn; 3175 3176 return 0; 3177 } 3178 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3179 3180 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3181 { 3182 if (!map) 3183 return; 3184 3185 if (!map->hva) 3186 return; 3187 3188 if (map->page != KVM_UNMAPPED_PAGE) 3189 kunmap(map->page); 3190 #ifdef CONFIG_HAS_IOMEM 3191 else 3192 memunmap(map->hva); 3193 #endif 3194 3195 if (dirty) 3196 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3197 3198 kvm_release_pfn(map->pfn, dirty); 3199 3200 map->hva = NULL; 3201 map->page = NULL; 3202 } 3203 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3204 3205 static bool kvm_is_ad_tracked_page(struct page *page) 3206 { 3207 /* 3208 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3209 * touched (e.g. set dirty) except by its owner". 3210 */ 3211 return !PageReserved(page); 3212 } 3213 3214 static void kvm_set_page_dirty(struct page *page) 3215 { 3216 if (kvm_is_ad_tracked_page(page)) 3217 SetPageDirty(page); 3218 } 3219 3220 static void kvm_set_page_accessed(struct page *page) 3221 { 3222 if (kvm_is_ad_tracked_page(page)) 3223 mark_page_accessed(page); 3224 } 3225 3226 void kvm_release_page_clean(struct page *page) 3227 { 3228 WARN_ON(is_error_page(page)); 3229 3230 kvm_set_page_accessed(page); 3231 put_page(page); 3232 } 3233 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3234 3235 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3236 { 3237 struct page *page; 3238 3239 if (is_error_noslot_pfn(pfn)) 3240 return; 3241 3242 page = kvm_pfn_to_refcounted_page(pfn); 3243 if (!page) 3244 return; 3245 3246 kvm_release_page_clean(page); 3247 } 3248 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3249 3250 void kvm_release_page_dirty(struct page *page) 3251 { 3252 WARN_ON(is_error_page(page)); 3253 3254 kvm_set_page_dirty(page); 3255 kvm_release_page_clean(page); 3256 } 3257 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3258 3259 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3260 { 3261 struct page *page; 3262 3263 if (is_error_noslot_pfn(pfn)) 3264 return; 3265 3266 page = kvm_pfn_to_refcounted_page(pfn); 3267 if (!page) 3268 return; 3269 3270 kvm_release_page_dirty(page); 3271 } 3272 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3273 3274 /* 3275 * Note, checking for an error/noslot pfn is the caller's responsibility when 3276 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3277 * "set" helpers are not to be used when the pfn might point at garbage. 3278 */ 3279 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3280 { 3281 if (WARN_ON(is_error_noslot_pfn(pfn))) 3282 return; 3283 3284 if (pfn_valid(pfn)) 3285 kvm_set_page_dirty(pfn_to_page(pfn)); 3286 } 3287 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3288 3289 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3290 { 3291 if (WARN_ON(is_error_noslot_pfn(pfn))) 3292 return; 3293 3294 if (pfn_valid(pfn)) 3295 kvm_set_page_accessed(pfn_to_page(pfn)); 3296 } 3297 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3298 3299 static int next_segment(unsigned long len, int offset) 3300 { 3301 if (len > PAGE_SIZE - offset) 3302 return PAGE_SIZE - offset; 3303 else 3304 return len; 3305 } 3306 3307 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3308 void *data, int offset, int len) 3309 { 3310 int r; 3311 unsigned long addr; 3312 3313 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3314 if (kvm_is_error_hva(addr)) 3315 return -EFAULT; 3316 r = __copy_from_user(data, (void __user *)addr + offset, len); 3317 if (r) 3318 return -EFAULT; 3319 return 0; 3320 } 3321 3322 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3323 int len) 3324 { 3325 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3326 3327 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3328 } 3329 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3330 3331 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3332 int offset, int len) 3333 { 3334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3335 3336 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3337 } 3338 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3339 3340 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3341 { 3342 gfn_t gfn = gpa >> PAGE_SHIFT; 3343 int seg; 3344 int offset = offset_in_page(gpa); 3345 int ret; 3346 3347 while ((seg = next_segment(len, offset)) != 0) { 3348 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3349 if (ret < 0) 3350 return ret; 3351 offset = 0; 3352 len -= seg; 3353 data += seg; 3354 ++gfn; 3355 } 3356 return 0; 3357 } 3358 EXPORT_SYMBOL_GPL(kvm_read_guest); 3359 3360 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3361 { 3362 gfn_t gfn = gpa >> PAGE_SHIFT; 3363 int seg; 3364 int offset = offset_in_page(gpa); 3365 int ret; 3366 3367 while ((seg = next_segment(len, offset)) != 0) { 3368 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3369 if (ret < 0) 3370 return ret; 3371 offset = 0; 3372 len -= seg; 3373 data += seg; 3374 ++gfn; 3375 } 3376 return 0; 3377 } 3378 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3379 3380 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3381 void *data, int offset, unsigned long len) 3382 { 3383 int r; 3384 unsigned long addr; 3385 3386 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3387 if (kvm_is_error_hva(addr)) 3388 return -EFAULT; 3389 pagefault_disable(); 3390 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3391 pagefault_enable(); 3392 if (r) 3393 return -EFAULT; 3394 return 0; 3395 } 3396 3397 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3398 void *data, unsigned long len) 3399 { 3400 gfn_t gfn = gpa >> PAGE_SHIFT; 3401 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3402 int offset = offset_in_page(gpa); 3403 3404 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3405 } 3406 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3407 3408 static int __kvm_write_guest_page(struct kvm *kvm, 3409 struct kvm_memory_slot *memslot, gfn_t gfn, 3410 const void *data, int offset, int len) 3411 { 3412 int r; 3413 unsigned long addr; 3414 3415 addr = gfn_to_hva_memslot(memslot, gfn); 3416 if (kvm_is_error_hva(addr)) 3417 return -EFAULT; 3418 r = __copy_to_user((void __user *)addr + offset, data, len); 3419 if (r) 3420 return -EFAULT; 3421 mark_page_dirty_in_slot(kvm, memslot, gfn); 3422 return 0; 3423 } 3424 3425 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3426 const void *data, int offset, int len) 3427 { 3428 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3429 3430 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3431 } 3432 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3433 3434 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3435 const void *data, int offset, int len) 3436 { 3437 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3438 3439 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3440 } 3441 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3442 3443 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3444 unsigned long len) 3445 { 3446 gfn_t gfn = gpa >> PAGE_SHIFT; 3447 int seg; 3448 int offset = offset_in_page(gpa); 3449 int ret; 3450 3451 while ((seg = next_segment(len, offset)) != 0) { 3452 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3453 if (ret < 0) 3454 return ret; 3455 offset = 0; 3456 len -= seg; 3457 data += seg; 3458 ++gfn; 3459 } 3460 return 0; 3461 } 3462 EXPORT_SYMBOL_GPL(kvm_write_guest); 3463 3464 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3465 unsigned long len) 3466 { 3467 gfn_t gfn = gpa >> PAGE_SHIFT; 3468 int seg; 3469 int offset = offset_in_page(gpa); 3470 int ret; 3471 3472 while ((seg = next_segment(len, offset)) != 0) { 3473 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3474 if (ret < 0) 3475 return ret; 3476 offset = 0; 3477 len -= seg; 3478 data += seg; 3479 ++gfn; 3480 } 3481 return 0; 3482 } 3483 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3484 3485 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3486 struct gfn_to_hva_cache *ghc, 3487 gpa_t gpa, unsigned long len) 3488 { 3489 int offset = offset_in_page(gpa); 3490 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3491 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3492 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3493 gfn_t nr_pages_avail; 3494 3495 /* Update ghc->generation before performing any error checks. */ 3496 ghc->generation = slots->generation; 3497 3498 if (start_gfn > end_gfn) { 3499 ghc->hva = KVM_HVA_ERR_BAD; 3500 return -EINVAL; 3501 } 3502 3503 /* 3504 * If the requested region crosses two memslots, we still 3505 * verify that the entire region is valid here. 3506 */ 3507 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3508 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3509 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3510 &nr_pages_avail); 3511 if (kvm_is_error_hva(ghc->hva)) 3512 return -EFAULT; 3513 } 3514 3515 /* Use the slow path for cross page reads and writes. */ 3516 if (nr_pages_needed == 1) 3517 ghc->hva += offset; 3518 else 3519 ghc->memslot = NULL; 3520 3521 ghc->gpa = gpa; 3522 ghc->len = len; 3523 return 0; 3524 } 3525 3526 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3527 gpa_t gpa, unsigned long len) 3528 { 3529 struct kvm_memslots *slots = kvm_memslots(kvm); 3530 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3531 } 3532 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3533 3534 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3535 void *data, unsigned int offset, 3536 unsigned long len) 3537 { 3538 struct kvm_memslots *slots = kvm_memslots(kvm); 3539 int r; 3540 gpa_t gpa = ghc->gpa + offset; 3541 3542 if (WARN_ON_ONCE(len + offset > ghc->len)) 3543 return -EINVAL; 3544 3545 if (slots->generation != ghc->generation) { 3546 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3547 return -EFAULT; 3548 } 3549 3550 if (kvm_is_error_hva(ghc->hva)) 3551 return -EFAULT; 3552 3553 if (unlikely(!ghc->memslot)) 3554 return kvm_write_guest(kvm, gpa, data, len); 3555 3556 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3557 if (r) 3558 return -EFAULT; 3559 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3560 3561 return 0; 3562 } 3563 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3564 3565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3566 void *data, unsigned long len) 3567 { 3568 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3569 } 3570 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3571 3572 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3573 void *data, unsigned int offset, 3574 unsigned long len) 3575 { 3576 struct kvm_memslots *slots = kvm_memslots(kvm); 3577 int r; 3578 gpa_t gpa = ghc->gpa + offset; 3579 3580 if (WARN_ON_ONCE(len + offset > ghc->len)) 3581 return -EINVAL; 3582 3583 if (slots->generation != ghc->generation) { 3584 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3585 return -EFAULT; 3586 } 3587 3588 if (kvm_is_error_hva(ghc->hva)) 3589 return -EFAULT; 3590 3591 if (unlikely(!ghc->memslot)) 3592 return kvm_read_guest(kvm, gpa, data, len); 3593 3594 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3595 if (r) 3596 return -EFAULT; 3597 3598 return 0; 3599 } 3600 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3601 3602 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3603 void *data, unsigned long len) 3604 { 3605 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3606 } 3607 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3608 3609 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3610 { 3611 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3612 gfn_t gfn = gpa >> PAGE_SHIFT; 3613 int seg; 3614 int offset = offset_in_page(gpa); 3615 int ret; 3616 3617 while ((seg = next_segment(len, offset)) != 0) { 3618 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3619 if (ret < 0) 3620 return ret; 3621 offset = 0; 3622 len -= seg; 3623 ++gfn; 3624 } 3625 return 0; 3626 } 3627 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3628 3629 void mark_page_dirty_in_slot(struct kvm *kvm, 3630 const struct kvm_memory_slot *memslot, 3631 gfn_t gfn) 3632 { 3633 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3634 3635 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3636 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3637 return; 3638 3639 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3640 #endif 3641 3642 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3643 unsigned long rel_gfn = gfn - memslot->base_gfn; 3644 u32 slot = (memslot->as_id << 16) | memslot->id; 3645 3646 if (kvm->dirty_ring_size && vcpu) 3647 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3648 else if (memslot->dirty_bitmap) 3649 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3650 } 3651 } 3652 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3653 3654 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3655 { 3656 struct kvm_memory_slot *memslot; 3657 3658 memslot = gfn_to_memslot(kvm, gfn); 3659 mark_page_dirty_in_slot(kvm, memslot, gfn); 3660 } 3661 EXPORT_SYMBOL_GPL(mark_page_dirty); 3662 3663 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3664 { 3665 struct kvm_memory_slot *memslot; 3666 3667 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3668 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3669 } 3670 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3671 3672 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3673 { 3674 if (!vcpu->sigset_active) 3675 return; 3676 3677 /* 3678 * This does a lockless modification of ->real_blocked, which is fine 3679 * because, only current can change ->real_blocked and all readers of 3680 * ->real_blocked don't care as long ->real_blocked is always a subset 3681 * of ->blocked. 3682 */ 3683 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3684 } 3685 3686 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3687 { 3688 if (!vcpu->sigset_active) 3689 return; 3690 3691 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3692 sigemptyset(¤t->real_blocked); 3693 } 3694 3695 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3696 { 3697 unsigned int old, val, grow, grow_start; 3698 3699 old = val = vcpu->halt_poll_ns; 3700 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3701 grow = READ_ONCE(halt_poll_ns_grow); 3702 if (!grow) 3703 goto out; 3704 3705 val *= grow; 3706 if (val < grow_start) 3707 val = grow_start; 3708 3709 vcpu->halt_poll_ns = val; 3710 out: 3711 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3712 } 3713 3714 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3715 { 3716 unsigned int old, val, shrink, grow_start; 3717 3718 old = val = vcpu->halt_poll_ns; 3719 shrink = READ_ONCE(halt_poll_ns_shrink); 3720 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3721 if (shrink == 0) 3722 val = 0; 3723 else 3724 val /= shrink; 3725 3726 if (val < grow_start) 3727 val = 0; 3728 3729 vcpu->halt_poll_ns = val; 3730 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3731 } 3732 3733 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3734 { 3735 int ret = -EINTR; 3736 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3737 3738 if (kvm_arch_vcpu_runnable(vcpu)) 3739 goto out; 3740 if (kvm_cpu_has_pending_timer(vcpu)) 3741 goto out; 3742 if (signal_pending(current)) 3743 goto out; 3744 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3745 goto out; 3746 3747 ret = 0; 3748 out: 3749 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3750 return ret; 3751 } 3752 3753 /* 3754 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3755 * pending. This is mostly used when halting a vCPU, but may also be used 3756 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3757 */ 3758 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3759 { 3760 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3761 bool waited = false; 3762 3763 vcpu->stat.generic.blocking = 1; 3764 3765 preempt_disable(); 3766 kvm_arch_vcpu_blocking(vcpu); 3767 prepare_to_rcuwait(wait); 3768 preempt_enable(); 3769 3770 for (;;) { 3771 set_current_state(TASK_INTERRUPTIBLE); 3772 3773 if (kvm_vcpu_check_block(vcpu) < 0) 3774 break; 3775 3776 waited = true; 3777 schedule(); 3778 } 3779 3780 preempt_disable(); 3781 finish_rcuwait(wait); 3782 kvm_arch_vcpu_unblocking(vcpu); 3783 preempt_enable(); 3784 3785 vcpu->stat.generic.blocking = 0; 3786 3787 return waited; 3788 } 3789 3790 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3791 ktime_t end, bool success) 3792 { 3793 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3794 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3795 3796 ++vcpu->stat.generic.halt_attempted_poll; 3797 3798 if (success) { 3799 ++vcpu->stat.generic.halt_successful_poll; 3800 3801 if (!vcpu_valid_wakeup(vcpu)) 3802 ++vcpu->stat.generic.halt_poll_invalid; 3803 3804 stats->halt_poll_success_ns += poll_ns; 3805 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3806 } else { 3807 stats->halt_poll_fail_ns += poll_ns; 3808 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3809 } 3810 } 3811 3812 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3813 { 3814 struct kvm *kvm = vcpu->kvm; 3815 3816 if (kvm->override_halt_poll_ns) { 3817 /* 3818 * Ensure kvm->max_halt_poll_ns is not read before 3819 * kvm->override_halt_poll_ns. 3820 * 3821 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3822 */ 3823 smp_rmb(); 3824 return READ_ONCE(kvm->max_halt_poll_ns); 3825 } 3826 3827 return READ_ONCE(halt_poll_ns); 3828 } 3829 3830 /* 3831 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3832 * polling is enabled, busy wait for a short time before blocking to avoid the 3833 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3834 * is halted. 3835 */ 3836 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3837 { 3838 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3839 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3840 ktime_t start, cur, poll_end; 3841 bool waited = false; 3842 bool do_halt_poll; 3843 u64 halt_ns; 3844 3845 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3846 vcpu->halt_poll_ns = max_halt_poll_ns; 3847 3848 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3849 3850 start = cur = poll_end = ktime_get(); 3851 if (do_halt_poll) { 3852 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3853 3854 do { 3855 if (kvm_vcpu_check_block(vcpu) < 0) 3856 goto out; 3857 cpu_relax(); 3858 poll_end = cur = ktime_get(); 3859 } while (kvm_vcpu_can_poll(cur, stop)); 3860 } 3861 3862 waited = kvm_vcpu_block(vcpu); 3863 3864 cur = ktime_get(); 3865 if (waited) { 3866 vcpu->stat.generic.halt_wait_ns += 3867 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3868 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3869 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3870 } 3871 out: 3872 /* The total time the vCPU was "halted", including polling time. */ 3873 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3874 3875 /* 3876 * Note, halt-polling is considered successful so long as the vCPU was 3877 * never actually scheduled out, i.e. even if the wake event arrived 3878 * after of the halt-polling loop itself, but before the full wait. 3879 */ 3880 if (do_halt_poll) 3881 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3882 3883 if (halt_poll_allowed) { 3884 /* Recompute the max halt poll time in case it changed. */ 3885 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3886 3887 if (!vcpu_valid_wakeup(vcpu)) { 3888 shrink_halt_poll_ns(vcpu); 3889 } else if (max_halt_poll_ns) { 3890 if (halt_ns <= vcpu->halt_poll_ns) 3891 ; 3892 /* we had a long block, shrink polling */ 3893 else if (vcpu->halt_poll_ns && 3894 halt_ns > max_halt_poll_ns) 3895 shrink_halt_poll_ns(vcpu); 3896 /* we had a short halt and our poll time is too small */ 3897 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3898 halt_ns < max_halt_poll_ns) 3899 grow_halt_poll_ns(vcpu); 3900 } else { 3901 vcpu->halt_poll_ns = 0; 3902 } 3903 } 3904 3905 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3906 } 3907 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3908 3909 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3910 { 3911 if (__kvm_vcpu_wake_up(vcpu)) { 3912 WRITE_ONCE(vcpu->ready, true); 3913 ++vcpu->stat.generic.halt_wakeup; 3914 return true; 3915 } 3916 3917 return false; 3918 } 3919 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3920 3921 #ifndef CONFIG_S390 3922 /* 3923 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3924 */ 3925 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3926 { 3927 int me, cpu; 3928 3929 if (kvm_vcpu_wake_up(vcpu)) 3930 return; 3931 3932 me = get_cpu(); 3933 /* 3934 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3935 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3936 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3937 * within the vCPU thread itself. 3938 */ 3939 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3940 if (vcpu->mode == IN_GUEST_MODE) 3941 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3942 goto out; 3943 } 3944 3945 /* 3946 * Note, the vCPU could get migrated to a different pCPU at any point 3947 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3948 * IPI to the previous pCPU. But, that's ok because the purpose of the 3949 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3950 * vCPU also requires it to leave IN_GUEST_MODE. 3951 */ 3952 if (kvm_arch_vcpu_should_kick(vcpu)) { 3953 cpu = READ_ONCE(vcpu->cpu); 3954 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3955 smp_send_reschedule(cpu); 3956 } 3957 out: 3958 put_cpu(); 3959 } 3960 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3961 #endif /* !CONFIG_S390 */ 3962 3963 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3964 { 3965 struct pid *pid; 3966 struct task_struct *task = NULL; 3967 int ret = 0; 3968 3969 rcu_read_lock(); 3970 pid = rcu_dereference(target->pid); 3971 if (pid) 3972 task = get_pid_task(pid, PIDTYPE_PID); 3973 rcu_read_unlock(); 3974 if (!task) 3975 return ret; 3976 ret = yield_to(task, 1); 3977 put_task_struct(task); 3978 3979 return ret; 3980 } 3981 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3982 3983 /* 3984 * Helper that checks whether a VCPU is eligible for directed yield. 3985 * Most eligible candidate to yield is decided by following heuristics: 3986 * 3987 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3988 * (preempted lock holder), indicated by @in_spin_loop. 3989 * Set at the beginning and cleared at the end of interception/PLE handler. 3990 * 3991 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3992 * chance last time (mostly it has become eligible now since we have probably 3993 * yielded to lockholder in last iteration. This is done by toggling 3994 * @dy_eligible each time a VCPU checked for eligibility.) 3995 * 3996 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3997 * to preempted lock-holder could result in wrong VCPU selection and CPU 3998 * burning. Giving priority for a potential lock-holder increases lock 3999 * progress. 4000 * 4001 * Since algorithm is based on heuristics, accessing another VCPU data without 4002 * locking does not harm. It may result in trying to yield to same VCPU, fail 4003 * and continue with next VCPU and so on. 4004 */ 4005 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 4006 { 4007 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 4008 bool eligible; 4009 4010 eligible = !vcpu->spin_loop.in_spin_loop || 4011 vcpu->spin_loop.dy_eligible; 4012 4013 if (vcpu->spin_loop.in_spin_loop) 4014 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 4015 4016 return eligible; 4017 #else 4018 return true; 4019 #endif 4020 } 4021 4022 /* 4023 * Unlike kvm_arch_vcpu_runnable, this function is called outside 4024 * a vcpu_load/vcpu_put pair. However, for most architectures 4025 * kvm_arch_vcpu_runnable does not require vcpu_load. 4026 */ 4027 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 4028 { 4029 return kvm_arch_vcpu_runnable(vcpu); 4030 } 4031 4032 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4033 { 4034 if (kvm_arch_dy_runnable(vcpu)) 4035 return true; 4036 4037 #ifdef CONFIG_KVM_ASYNC_PF 4038 if (!list_empty_careful(&vcpu->async_pf.done)) 4039 return true; 4040 #endif 4041 4042 return false; 4043 } 4044 4045 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4046 { 4047 return false; 4048 } 4049 4050 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4051 { 4052 struct kvm *kvm = me->kvm; 4053 struct kvm_vcpu *vcpu; 4054 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4055 unsigned long i; 4056 int yielded = 0; 4057 int try = 3; 4058 int pass; 4059 4060 kvm_vcpu_set_in_spin_loop(me, true); 4061 /* 4062 * We boost the priority of a VCPU that is runnable but not 4063 * currently running, because it got preempted by something 4064 * else and called schedule in __vcpu_run. Hopefully that 4065 * VCPU is holding the lock that we need and will release it. 4066 * We approximate round-robin by starting at the last boosted VCPU. 4067 */ 4068 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4069 kvm_for_each_vcpu(i, vcpu, kvm) { 4070 if (!pass && i <= last_boosted_vcpu) { 4071 i = last_boosted_vcpu; 4072 continue; 4073 } else if (pass && i > last_boosted_vcpu) 4074 break; 4075 if (!READ_ONCE(vcpu->ready)) 4076 continue; 4077 if (vcpu == me) 4078 continue; 4079 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4080 continue; 4081 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4082 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4083 !kvm_arch_vcpu_in_kernel(vcpu)) 4084 continue; 4085 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4086 continue; 4087 4088 yielded = kvm_vcpu_yield_to(vcpu); 4089 if (yielded > 0) { 4090 kvm->last_boosted_vcpu = i; 4091 break; 4092 } else if (yielded < 0) { 4093 try--; 4094 if (!try) 4095 break; 4096 } 4097 } 4098 } 4099 kvm_vcpu_set_in_spin_loop(me, false); 4100 4101 /* Ensure vcpu is not eligible during next spinloop */ 4102 kvm_vcpu_set_dy_eligible(me, false); 4103 } 4104 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4105 4106 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4107 { 4108 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4109 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4110 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4111 kvm->dirty_ring_size / PAGE_SIZE); 4112 #else 4113 return false; 4114 #endif 4115 } 4116 4117 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4118 { 4119 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4120 struct page *page; 4121 4122 if (vmf->pgoff == 0) 4123 page = virt_to_page(vcpu->run); 4124 #ifdef CONFIG_X86 4125 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4126 page = virt_to_page(vcpu->arch.pio_data); 4127 #endif 4128 #ifdef CONFIG_KVM_MMIO 4129 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4130 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4131 #endif 4132 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4133 page = kvm_dirty_ring_get_page( 4134 &vcpu->dirty_ring, 4135 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4136 else 4137 return kvm_arch_vcpu_fault(vcpu, vmf); 4138 get_page(page); 4139 vmf->page = page; 4140 return 0; 4141 } 4142 4143 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4144 .fault = kvm_vcpu_fault, 4145 }; 4146 4147 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4148 { 4149 struct kvm_vcpu *vcpu = file->private_data; 4150 unsigned long pages = vma_pages(vma); 4151 4152 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4153 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4154 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4155 return -EINVAL; 4156 4157 vma->vm_ops = &kvm_vcpu_vm_ops; 4158 return 0; 4159 } 4160 4161 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4162 { 4163 struct kvm_vcpu *vcpu = filp->private_data; 4164 4165 kvm_put_kvm(vcpu->kvm); 4166 return 0; 4167 } 4168 4169 static struct file_operations kvm_vcpu_fops = { 4170 .release = kvm_vcpu_release, 4171 .unlocked_ioctl = kvm_vcpu_ioctl, 4172 .mmap = kvm_vcpu_mmap, 4173 .llseek = noop_llseek, 4174 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4175 }; 4176 4177 /* 4178 * Allocates an inode for the vcpu. 4179 */ 4180 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4181 { 4182 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4183 4184 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4185 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4186 } 4187 4188 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4189 static int vcpu_get_pid(void *data, u64 *val) 4190 { 4191 struct kvm_vcpu *vcpu = data; 4192 4193 rcu_read_lock(); 4194 *val = pid_nr(rcu_dereference(vcpu->pid)); 4195 rcu_read_unlock(); 4196 return 0; 4197 } 4198 4199 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4200 4201 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4202 { 4203 struct dentry *debugfs_dentry; 4204 char dir_name[ITOA_MAX_LEN * 2]; 4205 4206 if (!debugfs_initialized()) 4207 return; 4208 4209 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4210 debugfs_dentry = debugfs_create_dir(dir_name, 4211 vcpu->kvm->debugfs_dentry); 4212 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4213 &vcpu_get_pid_fops); 4214 4215 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4216 } 4217 #endif 4218 4219 /* 4220 * Creates some virtual cpus. Good luck creating more than one. 4221 */ 4222 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4223 { 4224 int r; 4225 struct kvm_vcpu *vcpu; 4226 struct page *page; 4227 4228 if (id >= KVM_MAX_VCPU_IDS) 4229 return -EINVAL; 4230 4231 mutex_lock(&kvm->lock); 4232 if (kvm->created_vcpus >= kvm->max_vcpus) { 4233 mutex_unlock(&kvm->lock); 4234 return -EINVAL; 4235 } 4236 4237 r = kvm_arch_vcpu_precreate(kvm, id); 4238 if (r) { 4239 mutex_unlock(&kvm->lock); 4240 return r; 4241 } 4242 4243 kvm->created_vcpus++; 4244 mutex_unlock(&kvm->lock); 4245 4246 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4247 if (!vcpu) { 4248 r = -ENOMEM; 4249 goto vcpu_decrement; 4250 } 4251 4252 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4253 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4254 if (!page) { 4255 r = -ENOMEM; 4256 goto vcpu_free; 4257 } 4258 vcpu->run = page_address(page); 4259 4260 kvm_vcpu_init(vcpu, kvm, id); 4261 4262 r = kvm_arch_vcpu_create(vcpu); 4263 if (r) 4264 goto vcpu_free_run_page; 4265 4266 if (kvm->dirty_ring_size) { 4267 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4268 id, kvm->dirty_ring_size); 4269 if (r) 4270 goto arch_vcpu_destroy; 4271 } 4272 4273 mutex_lock(&kvm->lock); 4274 4275 #ifdef CONFIG_LOCKDEP 4276 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4277 mutex_lock(&vcpu->mutex); 4278 mutex_unlock(&vcpu->mutex); 4279 #endif 4280 4281 if (kvm_get_vcpu_by_id(kvm, id)) { 4282 r = -EEXIST; 4283 goto unlock_vcpu_destroy; 4284 } 4285 4286 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4287 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4288 if (r) 4289 goto unlock_vcpu_destroy; 4290 4291 /* Now it's all set up, let userspace reach it */ 4292 kvm_get_kvm(kvm); 4293 r = create_vcpu_fd(vcpu); 4294 if (r < 0) 4295 goto kvm_put_xa_release; 4296 4297 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4298 r = -EINVAL; 4299 goto kvm_put_xa_release; 4300 } 4301 4302 /* 4303 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4304 * pointer before kvm->online_vcpu's incremented value. 4305 */ 4306 smp_wmb(); 4307 atomic_inc(&kvm->online_vcpus); 4308 4309 mutex_unlock(&kvm->lock); 4310 kvm_arch_vcpu_postcreate(vcpu); 4311 kvm_create_vcpu_debugfs(vcpu); 4312 return r; 4313 4314 kvm_put_xa_release: 4315 kvm_put_kvm_no_destroy(kvm); 4316 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4317 unlock_vcpu_destroy: 4318 mutex_unlock(&kvm->lock); 4319 kvm_dirty_ring_free(&vcpu->dirty_ring); 4320 arch_vcpu_destroy: 4321 kvm_arch_vcpu_destroy(vcpu); 4322 vcpu_free_run_page: 4323 free_page((unsigned long)vcpu->run); 4324 vcpu_free: 4325 kmem_cache_free(kvm_vcpu_cache, vcpu); 4326 vcpu_decrement: 4327 mutex_lock(&kvm->lock); 4328 kvm->created_vcpus--; 4329 mutex_unlock(&kvm->lock); 4330 return r; 4331 } 4332 4333 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4334 { 4335 if (sigset) { 4336 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4337 vcpu->sigset_active = 1; 4338 vcpu->sigset = *sigset; 4339 } else 4340 vcpu->sigset_active = 0; 4341 return 0; 4342 } 4343 4344 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4345 size_t size, loff_t *offset) 4346 { 4347 struct kvm_vcpu *vcpu = file->private_data; 4348 4349 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4350 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4351 sizeof(vcpu->stat), user_buffer, size, offset); 4352 } 4353 4354 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4355 { 4356 struct kvm_vcpu *vcpu = file->private_data; 4357 4358 kvm_put_kvm(vcpu->kvm); 4359 return 0; 4360 } 4361 4362 static const struct file_operations kvm_vcpu_stats_fops = { 4363 .owner = THIS_MODULE, 4364 .read = kvm_vcpu_stats_read, 4365 .release = kvm_vcpu_stats_release, 4366 .llseek = noop_llseek, 4367 }; 4368 4369 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4370 { 4371 int fd; 4372 struct file *file; 4373 char name[15 + ITOA_MAX_LEN + 1]; 4374 4375 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4376 4377 fd = get_unused_fd_flags(O_CLOEXEC); 4378 if (fd < 0) 4379 return fd; 4380 4381 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4382 if (IS_ERR(file)) { 4383 put_unused_fd(fd); 4384 return PTR_ERR(file); 4385 } 4386 4387 kvm_get_kvm(vcpu->kvm); 4388 4389 file->f_mode |= FMODE_PREAD; 4390 fd_install(fd, file); 4391 4392 return fd; 4393 } 4394 4395 static long kvm_vcpu_ioctl(struct file *filp, 4396 unsigned int ioctl, unsigned long arg) 4397 { 4398 struct kvm_vcpu *vcpu = filp->private_data; 4399 void __user *argp = (void __user *)arg; 4400 int r; 4401 struct kvm_fpu *fpu = NULL; 4402 struct kvm_sregs *kvm_sregs = NULL; 4403 4404 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4405 return -EIO; 4406 4407 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4408 return -EINVAL; 4409 4410 /* 4411 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4412 * execution; mutex_lock() would break them. 4413 */ 4414 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4415 if (r != -ENOIOCTLCMD) 4416 return r; 4417 4418 if (mutex_lock_killable(&vcpu->mutex)) 4419 return -EINTR; 4420 switch (ioctl) { 4421 case KVM_RUN: { 4422 struct pid *oldpid; 4423 r = -EINVAL; 4424 if (arg) 4425 goto out; 4426 oldpid = rcu_access_pointer(vcpu->pid); 4427 if (unlikely(oldpid != task_pid(current))) { 4428 /* The thread running this VCPU changed. */ 4429 struct pid *newpid; 4430 4431 r = kvm_arch_vcpu_run_pid_change(vcpu); 4432 if (r) 4433 break; 4434 4435 newpid = get_task_pid(current, PIDTYPE_PID); 4436 rcu_assign_pointer(vcpu->pid, newpid); 4437 if (oldpid) 4438 synchronize_rcu(); 4439 put_pid(oldpid); 4440 } 4441 r = kvm_arch_vcpu_ioctl_run(vcpu); 4442 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4443 break; 4444 } 4445 case KVM_GET_REGS: { 4446 struct kvm_regs *kvm_regs; 4447 4448 r = -ENOMEM; 4449 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4450 if (!kvm_regs) 4451 goto out; 4452 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4453 if (r) 4454 goto out_free1; 4455 r = -EFAULT; 4456 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4457 goto out_free1; 4458 r = 0; 4459 out_free1: 4460 kfree(kvm_regs); 4461 break; 4462 } 4463 case KVM_SET_REGS: { 4464 struct kvm_regs *kvm_regs; 4465 4466 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4467 if (IS_ERR(kvm_regs)) { 4468 r = PTR_ERR(kvm_regs); 4469 goto out; 4470 } 4471 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4472 kfree(kvm_regs); 4473 break; 4474 } 4475 case KVM_GET_SREGS: { 4476 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4477 GFP_KERNEL_ACCOUNT); 4478 r = -ENOMEM; 4479 if (!kvm_sregs) 4480 goto out; 4481 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4482 if (r) 4483 goto out; 4484 r = -EFAULT; 4485 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4486 goto out; 4487 r = 0; 4488 break; 4489 } 4490 case KVM_SET_SREGS: { 4491 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4492 if (IS_ERR(kvm_sregs)) { 4493 r = PTR_ERR(kvm_sregs); 4494 kvm_sregs = NULL; 4495 goto out; 4496 } 4497 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4498 break; 4499 } 4500 case KVM_GET_MP_STATE: { 4501 struct kvm_mp_state mp_state; 4502 4503 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4504 if (r) 4505 goto out; 4506 r = -EFAULT; 4507 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4508 goto out; 4509 r = 0; 4510 break; 4511 } 4512 case KVM_SET_MP_STATE: { 4513 struct kvm_mp_state mp_state; 4514 4515 r = -EFAULT; 4516 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4517 goto out; 4518 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4519 break; 4520 } 4521 case KVM_TRANSLATE: { 4522 struct kvm_translation tr; 4523 4524 r = -EFAULT; 4525 if (copy_from_user(&tr, argp, sizeof(tr))) 4526 goto out; 4527 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4528 if (r) 4529 goto out; 4530 r = -EFAULT; 4531 if (copy_to_user(argp, &tr, sizeof(tr))) 4532 goto out; 4533 r = 0; 4534 break; 4535 } 4536 case KVM_SET_GUEST_DEBUG: { 4537 struct kvm_guest_debug dbg; 4538 4539 r = -EFAULT; 4540 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4541 goto out; 4542 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4543 break; 4544 } 4545 case KVM_SET_SIGNAL_MASK: { 4546 struct kvm_signal_mask __user *sigmask_arg = argp; 4547 struct kvm_signal_mask kvm_sigmask; 4548 sigset_t sigset, *p; 4549 4550 p = NULL; 4551 if (argp) { 4552 r = -EFAULT; 4553 if (copy_from_user(&kvm_sigmask, argp, 4554 sizeof(kvm_sigmask))) 4555 goto out; 4556 r = -EINVAL; 4557 if (kvm_sigmask.len != sizeof(sigset)) 4558 goto out; 4559 r = -EFAULT; 4560 if (copy_from_user(&sigset, sigmask_arg->sigset, 4561 sizeof(sigset))) 4562 goto out; 4563 p = &sigset; 4564 } 4565 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4566 break; 4567 } 4568 case KVM_GET_FPU: { 4569 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4570 r = -ENOMEM; 4571 if (!fpu) 4572 goto out; 4573 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4574 if (r) 4575 goto out; 4576 r = -EFAULT; 4577 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4578 goto out; 4579 r = 0; 4580 break; 4581 } 4582 case KVM_SET_FPU: { 4583 fpu = memdup_user(argp, sizeof(*fpu)); 4584 if (IS_ERR(fpu)) { 4585 r = PTR_ERR(fpu); 4586 fpu = NULL; 4587 goto out; 4588 } 4589 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4590 break; 4591 } 4592 case KVM_GET_STATS_FD: { 4593 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4594 break; 4595 } 4596 default: 4597 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4598 } 4599 out: 4600 mutex_unlock(&vcpu->mutex); 4601 kfree(fpu); 4602 kfree(kvm_sregs); 4603 return r; 4604 } 4605 4606 #ifdef CONFIG_KVM_COMPAT 4607 static long kvm_vcpu_compat_ioctl(struct file *filp, 4608 unsigned int ioctl, unsigned long arg) 4609 { 4610 struct kvm_vcpu *vcpu = filp->private_data; 4611 void __user *argp = compat_ptr(arg); 4612 int r; 4613 4614 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4615 return -EIO; 4616 4617 switch (ioctl) { 4618 case KVM_SET_SIGNAL_MASK: { 4619 struct kvm_signal_mask __user *sigmask_arg = argp; 4620 struct kvm_signal_mask kvm_sigmask; 4621 sigset_t sigset; 4622 4623 if (argp) { 4624 r = -EFAULT; 4625 if (copy_from_user(&kvm_sigmask, argp, 4626 sizeof(kvm_sigmask))) 4627 goto out; 4628 r = -EINVAL; 4629 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4630 goto out; 4631 r = -EFAULT; 4632 if (get_compat_sigset(&sigset, 4633 (compat_sigset_t __user *)sigmask_arg->sigset)) 4634 goto out; 4635 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4636 } else 4637 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4638 break; 4639 } 4640 default: 4641 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4642 } 4643 4644 out: 4645 return r; 4646 } 4647 #endif 4648 4649 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4650 { 4651 struct kvm_device *dev = filp->private_data; 4652 4653 if (dev->ops->mmap) 4654 return dev->ops->mmap(dev, vma); 4655 4656 return -ENODEV; 4657 } 4658 4659 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4660 int (*accessor)(struct kvm_device *dev, 4661 struct kvm_device_attr *attr), 4662 unsigned long arg) 4663 { 4664 struct kvm_device_attr attr; 4665 4666 if (!accessor) 4667 return -EPERM; 4668 4669 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4670 return -EFAULT; 4671 4672 return accessor(dev, &attr); 4673 } 4674 4675 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4676 unsigned long arg) 4677 { 4678 struct kvm_device *dev = filp->private_data; 4679 4680 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4681 return -EIO; 4682 4683 switch (ioctl) { 4684 case KVM_SET_DEVICE_ATTR: 4685 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4686 case KVM_GET_DEVICE_ATTR: 4687 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4688 case KVM_HAS_DEVICE_ATTR: 4689 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4690 default: 4691 if (dev->ops->ioctl) 4692 return dev->ops->ioctl(dev, ioctl, arg); 4693 4694 return -ENOTTY; 4695 } 4696 } 4697 4698 static int kvm_device_release(struct inode *inode, struct file *filp) 4699 { 4700 struct kvm_device *dev = filp->private_data; 4701 struct kvm *kvm = dev->kvm; 4702 4703 if (dev->ops->release) { 4704 mutex_lock(&kvm->lock); 4705 list_del(&dev->vm_node); 4706 dev->ops->release(dev); 4707 mutex_unlock(&kvm->lock); 4708 } 4709 4710 kvm_put_kvm(kvm); 4711 return 0; 4712 } 4713 4714 static struct file_operations kvm_device_fops = { 4715 .unlocked_ioctl = kvm_device_ioctl, 4716 .release = kvm_device_release, 4717 KVM_COMPAT(kvm_device_ioctl), 4718 .mmap = kvm_device_mmap, 4719 }; 4720 4721 struct kvm_device *kvm_device_from_filp(struct file *filp) 4722 { 4723 if (filp->f_op != &kvm_device_fops) 4724 return NULL; 4725 4726 return filp->private_data; 4727 } 4728 4729 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4730 #ifdef CONFIG_KVM_MPIC 4731 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4732 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4733 #endif 4734 }; 4735 4736 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4737 { 4738 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4739 return -ENOSPC; 4740 4741 if (kvm_device_ops_table[type] != NULL) 4742 return -EEXIST; 4743 4744 kvm_device_ops_table[type] = ops; 4745 return 0; 4746 } 4747 4748 void kvm_unregister_device_ops(u32 type) 4749 { 4750 if (kvm_device_ops_table[type] != NULL) 4751 kvm_device_ops_table[type] = NULL; 4752 } 4753 4754 static int kvm_ioctl_create_device(struct kvm *kvm, 4755 struct kvm_create_device *cd) 4756 { 4757 const struct kvm_device_ops *ops; 4758 struct kvm_device *dev; 4759 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4760 int type; 4761 int ret; 4762 4763 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4764 return -ENODEV; 4765 4766 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4767 ops = kvm_device_ops_table[type]; 4768 if (ops == NULL) 4769 return -ENODEV; 4770 4771 if (test) 4772 return 0; 4773 4774 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4775 if (!dev) 4776 return -ENOMEM; 4777 4778 dev->ops = ops; 4779 dev->kvm = kvm; 4780 4781 mutex_lock(&kvm->lock); 4782 ret = ops->create(dev, type); 4783 if (ret < 0) { 4784 mutex_unlock(&kvm->lock); 4785 kfree(dev); 4786 return ret; 4787 } 4788 list_add(&dev->vm_node, &kvm->devices); 4789 mutex_unlock(&kvm->lock); 4790 4791 if (ops->init) 4792 ops->init(dev); 4793 4794 kvm_get_kvm(kvm); 4795 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4796 if (ret < 0) { 4797 kvm_put_kvm_no_destroy(kvm); 4798 mutex_lock(&kvm->lock); 4799 list_del(&dev->vm_node); 4800 if (ops->release) 4801 ops->release(dev); 4802 mutex_unlock(&kvm->lock); 4803 if (ops->destroy) 4804 ops->destroy(dev); 4805 return ret; 4806 } 4807 4808 cd->fd = ret; 4809 return 0; 4810 } 4811 4812 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4813 { 4814 switch (arg) { 4815 case KVM_CAP_USER_MEMORY: 4816 case KVM_CAP_USER_MEMORY2: 4817 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4818 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4819 case KVM_CAP_INTERNAL_ERROR_DATA: 4820 #ifdef CONFIG_HAVE_KVM_MSI 4821 case KVM_CAP_SIGNAL_MSI: 4822 #endif 4823 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4824 case KVM_CAP_IRQFD: 4825 #endif 4826 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4827 case KVM_CAP_CHECK_EXTENSION_VM: 4828 case KVM_CAP_ENABLE_CAP_VM: 4829 case KVM_CAP_HALT_POLL: 4830 return 1; 4831 #ifdef CONFIG_KVM_MMIO 4832 case KVM_CAP_COALESCED_MMIO: 4833 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4834 case KVM_CAP_COALESCED_PIO: 4835 return 1; 4836 #endif 4837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4838 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4839 return KVM_DIRTY_LOG_MANUAL_CAPS; 4840 #endif 4841 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4842 case KVM_CAP_IRQ_ROUTING: 4843 return KVM_MAX_IRQ_ROUTES; 4844 #endif 4845 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4846 case KVM_CAP_MULTI_ADDRESS_SPACE: 4847 if (kvm) 4848 return kvm_arch_nr_memslot_as_ids(kvm); 4849 return KVM_MAX_NR_ADDRESS_SPACES; 4850 #endif 4851 case KVM_CAP_NR_MEMSLOTS: 4852 return KVM_USER_MEM_SLOTS; 4853 case KVM_CAP_DIRTY_LOG_RING: 4854 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4855 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4856 #else 4857 return 0; 4858 #endif 4859 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4861 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4862 #else 4863 return 0; 4864 #endif 4865 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4866 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4867 #endif 4868 case KVM_CAP_BINARY_STATS_FD: 4869 case KVM_CAP_SYSTEM_EVENT_DATA: 4870 case KVM_CAP_DEVICE_CTRL: 4871 return 1; 4872 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4873 case KVM_CAP_MEMORY_ATTRIBUTES: 4874 return kvm_supported_mem_attributes(kvm); 4875 #endif 4876 #ifdef CONFIG_KVM_PRIVATE_MEM 4877 case KVM_CAP_GUEST_MEMFD: 4878 return !kvm || kvm_arch_has_private_mem(kvm); 4879 #endif 4880 default: 4881 break; 4882 } 4883 return kvm_vm_ioctl_check_extension(kvm, arg); 4884 } 4885 4886 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4887 { 4888 int r; 4889 4890 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4891 return -EINVAL; 4892 4893 /* the size should be power of 2 */ 4894 if (!size || (size & (size - 1))) 4895 return -EINVAL; 4896 4897 /* Should be bigger to keep the reserved entries, or a page */ 4898 if (size < kvm_dirty_ring_get_rsvd_entries() * 4899 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4900 return -EINVAL; 4901 4902 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4903 sizeof(struct kvm_dirty_gfn)) 4904 return -E2BIG; 4905 4906 /* We only allow it to set once */ 4907 if (kvm->dirty_ring_size) 4908 return -EINVAL; 4909 4910 mutex_lock(&kvm->lock); 4911 4912 if (kvm->created_vcpus) { 4913 /* We don't allow to change this value after vcpu created */ 4914 r = -EINVAL; 4915 } else { 4916 kvm->dirty_ring_size = size; 4917 r = 0; 4918 } 4919 4920 mutex_unlock(&kvm->lock); 4921 return r; 4922 } 4923 4924 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4925 { 4926 unsigned long i; 4927 struct kvm_vcpu *vcpu; 4928 int cleared = 0; 4929 4930 if (!kvm->dirty_ring_size) 4931 return -EINVAL; 4932 4933 mutex_lock(&kvm->slots_lock); 4934 4935 kvm_for_each_vcpu(i, vcpu, kvm) 4936 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4937 4938 mutex_unlock(&kvm->slots_lock); 4939 4940 if (cleared) 4941 kvm_flush_remote_tlbs(kvm); 4942 4943 return cleared; 4944 } 4945 4946 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4947 struct kvm_enable_cap *cap) 4948 { 4949 return -EINVAL; 4950 } 4951 4952 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4953 { 4954 int i; 4955 4956 lockdep_assert_held(&kvm->slots_lock); 4957 4958 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4959 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4960 return false; 4961 } 4962 4963 return true; 4964 } 4965 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4966 4967 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4968 struct kvm_enable_cap *cap) 4969 { 4970 switch (cap->cap) { 4971 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4972 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4973 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4974 4975 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4976 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4977 4978 if (cap->flags || (cap->args[0] & ~allowed_options)) 4979 return -EINVAL; 4980 kvm->manual_dirty_log_protect = cap->args[0]; 4981 return 0; 4982 } 4983 #endif 4984 case KVM_CAP_HALT_POLL: { 4985 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4986 return -EINVAL; 4987 4988 kvm->max_halt_poll_ns = cap->args[0]; 4989 4990 /* 4991 * Ensure kvm->override_halt_poll_ns does not become visible 4992 * before kvm->max_halt_poll_ns. 4993 * 4994 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4995 */ 4996 smp_wmb(); 4997 kvm->override_halt_poll_ns = true; 4998 4999 return 0; 5000 } 5001 case KVM_CAP_DIRTY_LOG_RING: 5002 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5003 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5004 return -EINVAL; 5005 5006 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5007 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5008 int r = -EINVAL; 5009 5010 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5011 !kvm->dirty_ring_size || cap->flags) 5012 return r; 5013 5014 mutex_lock(&kvm->slots_lock); 5015 5016 /* 5017 * For simplicity, allow enabling ring+bitmap if and only if 5018 * there are no memslots, e.g. to ensure all memslots allocate 5019 * a bitmap after the capability is enabled. 5020 */ 5021 if (kvm_are_all_memslots_empty(kvm)) { 5022 kvm->dirty_ring_with_bitmap = true; 5023 r = 0; 5024 } 5025 5026 mutex_unlock(&kvm->slots_lock); 5027 5028 return r; 5029 } 5030 default: 5031 return kvm_vm_ioctl_enable_cap(kvm, cap); 5032 } 5033 } 5034 5035 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5036 size_t size, loff_t *offset) 5037 { 5038 struct kvm *kvm = file->private_data; 5039 5040 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5041 &kvm_vm_stats_desc[0], &kvm->stat, 5042 sizeof(kvm->stat), user_buffer, size, offset); 5043 } 5044 5045 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5046 { 5047 struct kvm *kvm = file->private_data; 5048 5049 kvm_put_kvm(kvm); 5050 return 0; 5051 } 5052 5053 static const struct file_operations kvm_vm_stats_fops = { 5054 .owner = THIS_MODULE, 5055 .read = kvm_vm_stats_read, 5056 .release = kvm_vm_stats_release, 5057 .llseek = noop_llseek, 5058 }; 5059 5060 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5061 { 5062 int fd; 5063 struct file *file; 5064 5065 fd = get_unused_fd_flags(O_CLOEXEC); 5066 if (fd < 0) 5067 return fd; 5068 5069 file = anon_inode_getfile("kvm-vm-stats", 5070 &kvm_vm_stats_fops, kvm, O_RDONLY); 5071 if (IS_ERR(file)) { 5072 put_unused_fd(fd); 5073 return PTR_ERR(file); 5074 } 5075 5076 kvm_get_kvm(kvm); 5077 5078 file->f_mode |= FMODE_PREAD; 5079 fd_install(fd, file); 5080 5081 return fd; 5082 } 5083 5084 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5085 do { \ 5086 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5087 offsetof(struct kvm_userspace_memory_region2, field)); \ 5088 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5089 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5090 } while (0) 5091 5092 static long kvm_vm_ioctl(struct file *filp, 5093 unsigned int ioctl, unsigned long arg) 5094 { 5095 struct kvm *kvm = filp->private_data; 5096 void __user *argp = (void __user *)arg; 5097 int r; 5098 5099 if (kvm->mm != current->mm || kvm->vm_dead) 5100 return -EIO; 5101 switch (ioctl) { 5102 case KVM_CREATE_VCPU: 5103 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5104 break; 5105 case KVM_ENABLE_CAP: { 5106 struct kvm_enable_cap cap; 5107 5108 r = -EFAULT; 5109 if (copy_from_user(&cap, argp, sizeof(cap))) 5110 goto out; 5111 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5112 break; 5113 } 5114 case KVM_SET_USER_MEMORY_REGION2: 5115 case KVM_SET_USER_MEMORY_REGION: { 5116 struct kvm_userspace_memory_region2 mem; 5117 unsigned long size; 5118 5119 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5120 /* 5121 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5122 * accessed, but avoid leaking kernel memory in case of a bug. 5123 */ 5124 memset(&mem, 0, sizeof(mem)); 5125 size = sizeof(struct kvm_userspace_memory_region); 5126 } else { 5127 size = sizeof(struct kvm_userspace_memory_region2); 5128 } 5129 5130 /* Ensure the common parts of the two structs are identical. */ 5131 SANITY_CHECK_MEM_REGION_FIELD(slot); 5132 SANITY_CHECK_MEM_REGION_FIELD(flags); 5133 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5134 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5135 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5136 5137 r = -EFAULT; 5138 if (copy_from_user(&mem, argp, size)) 5139 goto out; 5140 5141 r = -EINVAL; 5142 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5143 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5144 goto out; 5145 5146 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5147 break; 5148 } 5149 case KVM_GET_DIRTY_LOG: { 5150 struct kvm_dirty_log log; 5151 5152 r = -EFAULT; 5153 if (copy_from_user(&log, argp, sizeof(log))) 5154 goto out; 5155 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5156 break; 5157 } 5158 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5159 case KVM_CLEAR_DIRTY_LOG: { 5160 struct kvm_clear_dirty_log log; 5161 5162 r = -EFAULT; 5163 if (copy_from_user(&log, argp, sizeof(log))) 5164 goto out; 5165 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5166 break; 5167 } 5168 #endif 5169 #ifdef CONFIG_KVM_MMIO 5170 case KVM_REGISTER_COALESCED_MMIO: { 5171 struct kvm_coalesced_mmio_zone zone; 5172 5173 r = -EFAULT; 5174 if (copy_from_user(&zone, argp, sizeof(zone))) 5175 goto out; 5176 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5177 break; 5178 } 5179 case KVM_UNREGISTER_COALESCED_MMIO: { 5180 struct kvm_coalesced_mmio_zone zone; 5181 5182 r = -EFAULT; 5183 if (copy_from_user(&zone, argp, sizeof(zone))) 5184 goto out; 5185 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5186 break; 5187 } 5188 #endif 5189 case KVM_IRQFD: { 5190 struct kvm_irqfd data; 5191 5192 r = -EFAULT; 5193 if (copy_from_user(&data, argp, sizeof(data))) 5194 goto out; 5195 r = kvm_irqfd(kvm, &data); 5196 break; 5197 } 5198 case KVM_IOEVENTFD: { 5199 struct kvm_ioeventfd data; 5200 5201 r = -EFAULT; 5202 if (copy_from_user(&data, argp, sizeof(data))) 5203 goto out; 5204 r = kvm_ioeventfd(kvm, &data); 5205 break; 5206 } 5207 #ifdef CONFIG_HAVE_KVM_MSI 5208 case KVM_SIGNAL_MSI: { 5209 struct kvm_msi msi; 5210 5211 r = -EFAULT; 5212 if (copy_from_user(&msi, argp, sizeof(msi))) 5213 goto out; 5214 r = kvm_send_userspace_msi(kvm, &msi); 5215 break; 5216 } 5217 #endif 5218 #ifdef __KVM_HAVE_IRQ_LINE 5219 case KVM_IRQ_LINE_STATUS: 5220 case KVM_IRQ_LINE: { 5221 struct kvm_irq_level irq_event; 5222 5223 r = -EFAULT; 5224 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5225 goto out; 5226 5227 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5228 ioctl == KVM_IRQ_LINE_STATUS); 5229 if (r) 5230 goto out; 5231 5232 r = -EFAULT; 5233 if (ioctl == KVM_IRQ_LINE_STATUS) { 5234 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5235 goto out; 5236 } 5237 5238 r = 0; 5239 break; 5240 } 5241 #endif 5242 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5243 case KVM_SET_GSI_ROUTING: { 5244 struct kvm_irq_routing routing; 5245 struct kvm_irq_routing __user *urouting; 5246 struct kvm_irq_routing_entry *entries = NULL; 5247 5248 r = -EFAULT; 5249 if (copy_from_user(&routing, argp, sizeof(routing))) 5250 goto out; 5251 r = -EINVAL; 5252 if (!kvm_arch_can_set_irq_routing(kvm)) 5253 goto out; 5254 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5255 goto out; 5256 if (routing.flags) 5257 goto out; 5258 if (routing.nr) { 5259 urouting = argp; 5260 entries = vmemdup_array_user(urouting->entries, 5261 routing.nr, sizeof(*entries)); 5262 if (IS_ERR(entries)) { 5263 r = PTR_ERR(entries); 5264 goto out; 5265 } 5266 } 5267 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5268 routing.flags); 5269 kvfree(entries); 5270 break; 5271 } 5272 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5273 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5274 case KVM_SET_MEMORY_ATTRIBUTES: { 5275 struct kvm_memory_attributes attrs; 5276 5277 r = -EFAULT; 5278 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5279 goto out; 5280 5281 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5282 break; 5283 } 5284 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5285 case KVM_CREATE_DEVICE: { 5286 struct kvm_create_device cd; 5287 5288 r = -EFAULT; 5289 if (copy_from_user(&cd, argp, sizeof(cd))) 5290 goto out; 5291 5292 r = kvm_ioctl_create_device(kvm, &cd); 5293 if (r) 5294 goto out; 5295 5296 r = -EFAULT; 5297 if (copy_to_user(argp, &cd, sizeof(cd))) 5298 goto out; 5299 5300 r = 0; 5301 break; 5302 } 5303 case KVM_CHECK_EXTENSION: 5304 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5305 break; 5306 case KVM_RESET_DIRTY_RINGS: 5307 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5308 break; 5309 case KVM_GET_STATS_FD: 5310 r = kvm_vm_ioctl_get_stats_fd(kvm); 5311 break; 5312 #ifdef CONFIG_KVM_PRIVATE_MEM 5313 case KVM_CREATE_GUEST_MEMFD: { 5314 struct kvm_create_guest_memfd guest_memfd; 5315 5316 r = -EFAULT; 5317 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5318 goto out; 5319 5320 r = kvm_gmem_create(kvm, &guest_memfd); 5321 break; 5322 } 5323 #endif 5324 default: 5325 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5326 } 5327 out: 5328 return r; 5329 } 5330 5331 #ifdef CONFIG_KVM_COMPAT 5332 struct compat_kvm_dirty_log { 5333 __u32 slot; 5334 __u32 padding1; 5335 union { 5336 compat_uptr_t dirty_bitmap; /* one bit per page */ 5337 __u64 padding2; 5338 }; 5339 }; 5340 5341 struct compat_kvm_clear_dirty_log { 5342 __u32 slot; 5343 __u32 num_pages; 5344 __u64 first_page; 5345 union { 5346 compat_uptr_t dirty_bitmap; /* one bit per page */ 5347 __u64 padding2; 5348 }; 5349 }; 5350 5351 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5352 unsigned long arg) 5353 { 5354 return -ENOTTY; 5355 } 5356 5357 static long kvm_vm_compat_ioctl(struct file *filp, 5358 unsigned int ioctl, unsigned long arg) 5359 { 5360 struct kvm *kvm = filp->private_data; 5361 int r; 5362 5363 if (kvm->mm != current->mm || kvm->vm_dead) 5364 return -EIO; 5365 5366 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5367 if (r != -ENOTTY) 5368 return r; 5369 5370 switch (ioctl) { 5371 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5372 case KVM_CLEAR_DIRTY_LOG: { 5373 struct compat_kvm_clear_dirty_log compat_log; 5374 struct kvm_clear_dirty_log log; 5375 5376 if (copy_from_user(&compat_log, (void __user *)arg, 5377 sizeof(compat_log))) 5378 return -EFAULT; 5379 log.slot = compat_log.slot; 5380 log.num_pages = compat_log.num_pages; 5381 log.first_page = compat_log.first_page; 5382 log.padding2 = compat_log.padding2; 5383 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5384 5385 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5386 break; 5387 } 5388 #endif 5389 case KVM_GET_DIRTY_LOG: { 5390 struct compat_kvm_dirty_log compat_log; 5391 struct kvm_dirty_log log; 5392 5393 if (copy_from_user(&compat_log, (void __user *)arg, 5394 sizeof(compat_log))) 5395 return -EFAULT; 5396 log.slot = compat_log.slot; 5397 log.padding1 = compat_log.padding1; 5398 log.padding2 = compat_log.padding2; 5399 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5400 5401 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5402 break; 5403 } 5404 default: 5405 r = kvm_vm_ioctl(filp, ioctl, arg); 5406 } 5407 return r; 5408 } 5409 #endif 5410 5411 static struct file_operations kvm_vm_fops = { 5412 .release = kvm_vm_release, 5413 .unlocked_ioctl = kvm_vm_ioctl, 5414 .llseek = noop_llseek, 5415 KVM_COMPAT(kvm_vm_compat_ioctl), 5416 }; 5417 5418 bool file_is_kvm(struct file *file) 5419 { 5420 return file && file->f_op == &kvm_vm_fops; 5421 } 5422 EXPORT_SYMBOL_GPL(file_is_kvm); 5423 5424 static int kvm_dev_ioctl_create_vm(unsigned long type) 5425 { 5426 char fdname[ITOA_MAX_LEN + 1]; 5427 int r, fd; 5428 struct kvm *kvm; 5429 struct file *file; 5430 5431 fd = get_unused_fd_flags(O_CLOEXEC); 5432 if (fd < 0) 5433 return fd; 5434 5435 snprintf(fdname, sizeof(fdname), "%d", fd); 5436 5437 kvm = kvm_create_vm(type, fdname); 5438 if (IS_ERR(kvm)) { 5439 r = PTR_ERR(kvm); 5440 goto put_fd; 5441 } 5442 5443 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5444 if (IS_ERR(file)) { 5445 r = PTR_ERR(file); 5446 goto put_kvm; 5447 } 5448 5449 /* 5450 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5451 * already set, with ->release() being kvm_vm_release(). In error 5452 * cases it will be called by the final fput(file) and will take 5453 * care of doing kvm_put_kvm(kvm). 5454 */ 5455 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5456 5457 fd_install(fd, file); 5458 return fd; 5459 5460 put_kvm: 5461 kvm_put_kvm(kvm); 5462 put_fd: 5463 put_unused_fd(fd); 5464 return r; 5465 } 5466 5467 static long kvm_dev_ioctl(struct file *filp, 5468 unsigned int ioctl, unsigned long arg) 5469 { 5470 int r = -EINVAL; 5471 5472 switch (ioctl) { 5473 case KVM_GET_API_VERSION: 5474 if (arg) 5475 goto out; 5476 r = KVM_API_VERSION; 5477 break; 5478 case KVM_CREATE_VM: 5479 r = kvm_dev_ioctl_create_vm(arg); 5480 break; 5481 case KVM_CHECK_EXTENSION: 5482 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5483 break; 5484 case KVM_GET_VCPU_MMAP_SIZE: 5485 if (arg) 5486 goto out; 5487 r = PAGE_SIZE; /* struct kvm_run */ 5488 #ifdef CONFIG_X86 5489 r += PAGE_SIZE; /* pio data page */ 5490 #endif 5491 #ifdef CONFIG_KVM_MMIO 5492 r += PAGE_SIZE; /* coalesced mmio ring page */ 5493 #endif 5494 break; 5495 default: 5496 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5497 } 5498 out: 5499 return r; 5500 } 5501 5502 static struct file_operations kvm_chardev_ops = { 5503 .unlocked_ioctl = kvm_dev_ioctl, 5504 .llseek = noop_llseek, 5505 KVM_COMPAT(kvm_dev_ioctl), 5506 }; 5507 5508 static struct miscdevice kvm_dev = { 5509 KVM_MINOR, 5510 "kvm", 5511 &kvm_chardev_ops, 5512 }; 5513 5514 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5515 __visible bool kvm_rebooting; 5516 EXPORT_SYMBOL_GPL(kvm_rebooting); 5517 5518 static DEFINE_PER_CPU(bool, hardware_enabled); 5519 static int kvm_usage_count; 5520 5521 static int __hardware_enable_nolock(void) 5522 { 5523 if (__this_cpu_read(hardware_enabled)) 5524 return 0; 5525 5526 if (kvm_arch_hardware_enable()) { 5527 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5528 raw_smp_processor_id()); 5529 return -EIO; 5530 } 5531 5532 __this_cpu_write(hardware_enabled, true); 5533 return 0; 5534 } 5535 5536 static void hardware_enable_nolock(void *failed) 5537 { 5538 if (__hardware_enable_nolock()) 5539 atomic_inc(failed); 5540 } 5541 5542 static int kvm_online_cpu(unsigned int cpu) 5543 { 5544 int ret = 0; 5545 5546 /* 5547 * Abort the CPU online process if hardware virtualization cannot 5548 * be enabled. Otherwise running VMs would encounter unrecoverable 5549 * errors when scheduled to this CPU. 5550 */ 5551 mutex_lock(&kvm_lock); 5552 if (kvm_usage_count) 5553 ret = __hardware_enable_nolock(); 5554 mutex_unlock(&kvm_lock); 5555 return ret; 5556 } 5557 5558 static void hardware_disable_nolock(void *junk) 5559 { 5560 /* 5561 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5562 * hardware, not just CPUs that successfully enabled hardware! 5563 */ 5564 if (!__this_cpu_read(hardware_enabled)) 5565 return; 5566 5567 kvm_arch_hardware_disable(); 5568 5569 __this_cpu_write(hardware_enabled, false); 5570 } 5571 5572 static int kvm_offline_cpu(unsigned int cpu) 5573 { 5574 mutex_lock(&kvm_lock); 5575 if (kvm_usage_count) 5576 hardware_disable_nolock(NULL); 5577 mutex_unlock(&kvm_lock); 5578 return 0; 5579 } 5580 5581 static void hardware_disable_all_nolock(void) 5582 { 5583 BUG_ON(!kvm_usage_count); 5584 5585 kvm_usage_count--; 5586 if (!kvm_usage_count) 5587 on_each_cpu(hardware_disable_nolock, NULL, 1); 5588 } 5589 5590 static void hardware_disable_all(void) 5591 { 5592 cpus_read_lock(); 5593 mutex_lock(&kvm_lock); 5594 hardware_disable_all_nolock(); 5595 mutex_unlock(&kvm_lock); 5596 cpus_read_unlock(); 5597 } 5598 5599 static int hardware_enable_all(void) 5600 { 5601 atomic_t failed = ATOMIC_INIT(0); 5602 int r; 5603 5604 /* 5605 * Do not enable hardware virtualization if the system is going down. 5606 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5607 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5608 * after kvm_reboot() is called. Note, this relies on system_state 5609 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5610 * hook instead of registering a dedicated reboot notifier (the latter 5611 * runs before system_state is updated). 5612 */ 5613 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5614 system_state == SYSTEM_RESTART) 5615 return -EBUSY; 5616 5617 /* 5618 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5619 * is called, and so on_each_cpu() between them includes the CPU that 5620 * is being onlined. As a result, hardware_enable_nolock() may get 5621 * invoked before kvm_online_cpu(), which also enables hardware if the 5622 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5623 * enable hardware multiple times. 5624 */ 5625 cpus_read_lock(); 5626 mutex_lock(&kvm_lock); 5627 5628 r = 0; 5629 5630 kvm_usage_count++; 5631 if (kvm_usage_count == 1) { 5632 on_each_cpu(hardware_enable_nolock, &failed, 1); 5633 5634 if (atomic_read(&failed)) { 5635 hardware_disable_all_nolock(); 5636 r = -EBUSY; 5637 } 5638 } 5639 5640 mutex_unlock(&kvm_lock); 5641 cpus_read_unlock(); 5642 5643 return r; 5644 } 5645 5646 static void kvm_shutdown(void) 5647 { 5648 /* 5649 * Disable hardware virtualization and set kvm_rebooting to indicate 5650 * that KVM has asynchronously disabled hardware virtualization, i.e. 5651 * that relevant errors and exceptions aren't entirely unexpected. 5652 * Some flavors of hardware virtualization need to be disabled before 5653 * transferring control to firmware (to perform shutdown/reboot), e.g. 5654 * on x86, virtualization can block INIT interrupts, which are used by 5655 * firmware to pull APs back under firmware control. Note, this path 5656 * is used for both shutdown and reboot scenarios, i.e. neither name is 5657 * 100% comprehensive. 5658 */ 5659 pr_info("kvm: exiting hardware virtualization\n"); 5660 kvm_rebooting = true; 5661 on_each_cpu(hardware_disable_nolock, NULL, 1); 5662 } 5663 5664 static int kvm_suspend(void) 5665 { 5666 /* 5667 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5668 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5669 * is stable. Assert that kvm_lock is not held to ensure the system 5670 * isn't suspended while KVM is enabling hardware. Hardware enabling 5671 * can be preempted, but the task cannot be frozen until it has dropped 5672 * all locks (userspace tasks are frozen via a fake signal). 5673 */ 5674 lockdep_assert_not_held(&kvm_lock); 5675 lockdep_assert_irqs_disabled(); 5676 5677 if (kvm_usage_count) 5678 hardware_disable_nolock(NULL); 5679 return 0; 5680 } 5681 5682 static void kvm_resume(void) 5683 { 5684 lockdep_assert_not_held(&kvm_lock); 5685 lockdep_assert_irqs_disabled(); 5686 5687 if (kvm_usage_count) 5688 WARN_ON_ONCE(__hardware_enable_nolock()); 5689 } 5690 5691 static struct syscore_ops kvm_syscore_ops = { 5692 .suspend = kvm_suspend, 5693 .resume = kvm_resume, 5694 .shutdown = kvm_shutdown, 5695 }; 5696 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5697 static int hardware_enable_all(void) 5698 { 5699 return 0; 5700 } 5701 5702 static void hardware_disable_all(void) 5703 { 5704 5705 } 5706 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5707 5708 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5709 { 5710 if (dev->ops->destructor) 5711 dev->ops->destructor(dev); 5712 } 5713 5714 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5715 { 5716 int i; 5717 5718 for (i = 0; i < bus->dev_count; i++) { 5719 struct kvm_io_device *pos = bus->range[i].dev; 5720 5721 kvm_iodevice_destructor(pos); 5722 } 5723 kfree(bus); 5724 } 5725 5726 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5727 const struct kvm_io_range *r2) 5728 { 5729 gpa_t addr1 = r1->addr; 5730 gpa_t addr2 = r2->addr; 5731 5732 if (addr1 < addr2) 5733 return -1; 5734 5735 /* If r2->len == 0, match the exact address. If r2->len != 0, 5736 * accept any overlapping write. Any order is acceptable for 5737 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5738 * we process all of them. 5739 */ 5740 if (r2->len) { 5741 addr1 += r1->len; 5742 addr2 += r2->len; 5743 } 5744 5745 if (addr1 > addr2) 5746 return 1; 5747 5748 return 0; 5749 } 5750 5751 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5752 { 5753 return kvm_io_bus_cmp(p1, p2); 5754 } 5755 5756 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5757 gpa_t addr, int len) 5758 { 5759 struct kvm_io_range *range, key; 5760 int off; 5761 5762 key = (struct kvm_io_range) { 5763 .addr = addr, 5764 .len = len, 5765 }; 5766 5767 range = bsearch(&key, bus->range, bus->dev_count, 5768 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5769 if (range == NULL) 5770 return -ENOENT; 5771 5772 off = range - bus->range; 5773 5774 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5775 off--; 5776 5777 return off; 5778 } 5779 5780 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5781 struct kvm_io_range *range, const void *val) 5782 { 5783 int idx; 5784 5785 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5786 if (idx < 0) 5787 return -EOPNOTSUPP; 5788 5789 while (idx < bus->dev_count && 5790 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5791 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5792 range->len, val)) 5793 return idx; 5794 idx++; 5795 } 5796 5797 return -EOPNOTSUPP; 5798 } 5799 5800 /* kvm_io_bus_write - called under kvm->slots_lock */ 5801 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5802 int len, const void *val) 5803 { 5804 struct kvm_io_bus *bus; 5805 struct kvm_io_range range; 5806 int r; 5807 5808 range = (struct kvm_io_range) { 5809 .addr = addr, 5810 .len = len, 5811 }; 5812 5813 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5814 if (!bus) 5815 return -ENOMEM; 5816 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5817 return r < 0 ? r : 0; 5818 } 5819 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5820 5821 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5822 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5823 gpa_t addr, int len, const void *val, long cookie) 5824 { 5825 struct kvm_io_bus *bus; 5826 struct kvm_io_range range; 5827 5828 range = (struct kvm_io_range) { 5829 .addr = addr, 5830 .len = len, 5831 }; 5832 5833 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5834 if (!bus) 5835 return -ENOMEM; 5836 5837 /* First try the device referenced by cookie. */ 5838 if ((cookie >= 0) && (cookie < bus->dev_count) && 5839 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5840 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5841 val)) 5842 return cookie; 5843 5844 /* 5845 * cookie contained garbage; fall back to search and return the 5846 * correct cookie value. 5847 */ 5848 return __kvm_io_bus_write(vcpu, bus, &range, val); 5849 } 5850 5851 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5852 struct kvm_io_range *range, void *val) 5853 { 5854 int idx; 5855 5856 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5857 if (idx < 0) 5858 return -EOPNOTSUPP; 5859 5860 while (idx < bus->dev_count && 5861 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5862 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5863 range->len, val)) 5864 return idx; 5865 idx++; 5866 } 5867 5868 return -EOPNOTSUPP; 5869 } 5870 5871 /* kvm_io_bus_read - called under kvm->slots_lock */ 5872 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5873 int len, void *val) 5874 { 5875 struct kvm_io_bus *bus; 5876 struct kvm_io_range range; 5877 int r; 5878 5879 range = (struct kvm_io_range) { 5880 .addr = addr, 5881 .len = len, 5882 }; 5883 5884 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5885 if (!bus) 5886 return -ENOMEM; 5887 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5888 return r < 0 ? r : 0; 5889 } 5890 5891 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5892 int len, struct kvm_io_device *dev) 5893 { 5894 int i; 5895 struct kvm_io_bus *new_bus, *bus; 5896 struct kvm_io_range range; 5897 5898 lockdep_assert_held(&kvm->slots_lock); 5899 5900 bus = kvm_get_bus(kvm, bus_idx); 5901 if (!bus) 5902 return -ENOMEM; 5903 5904 /* exclude ioeventfd which is limited by maximum fd */ 5905 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5906 return -ENOSPC; 5907 5908 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5909 GFP_KERNEL_ACCOUNT); 5910 if (!new_bus) 5911 return -ENOMEM; 5912 5913 range = (struct kvm_io_range) { 5914 .addr = addr, 5915 .len = len, 5916 .dev = dev, 5917 }; 5918 5919 for (i = 0; i < bus->dev_count; i++) 5920 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5921 break; 5922 5923 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5924 new_bus->dev_count++; 5925 new_bus->range[i] = range; 5926 memcpy(new_bus->range + i + 1, bus->range + i, 5927 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5928 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5929 synchronize_srcu_expedited(&kvm->srcu); 5930 kfree(bus); 5931 5932 return 0; 5933 } 5934 5935 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5936 struct kvm_io_device *dev) 5937 { 5938 int i; 5939 struct kvm_io_bus *new_bus, *bus; 5940 5941 lockdep_assert_held(&kvm->slots_lock); 5942 5943 bus = kvm_get_bus(kvm, bus_idx); 5944 if (!bus) 5945 return 0; 5946 5947 for (i = 0; i < bus->dev_count; i++) { 5948 if (bus->range[i].dev == dev) { 5949 break; 5950 } 5951 } 5952 5953 if (i == bus->dev_count) 5954 return 0; 5955 5956 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5957 GFP_KERNEL_ACCOUNT); 5958 if (new_bus) { 5959 memcpy(new_bus, bus, struct_size(bus, range, i)); 5960 new_bus->dev_count--; 5961 memcpy(new_bus->range + i, bus->range + i + 1, 5962 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5963 } 5964 5965 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5966 synchronize_srcu_expedited(&kvm->srcu); 5967 5968 /* 5969 * If NULL bus is installed, destroy the old bus, including all the 5970 * attached devices. Otherwise, destroy the caller's device only. 5971 */ 5972 if (!new_bus) { 5973 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5974 kvm_io_bus_destroy(bus); 5975 return -ENOMEM; 5976 } 5977 5978 kvm_iodevice_destructor(dev); 5979 kfree(bus); 5980 return 0; 5981 } 5982 5983 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5984 gpa_t addr) 5985 { 5986 struct kvm_io_bus *bus; 5987 int dev_idx, srcu_idx; 5988 struct kvm_io_device *iodev = NULL; 5989 5990 srcu_idx = srcu_read_lock(&kvm->srcu); 5991 5992 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5993 if (!bus) 5994 goto out_unlock; 5995 5996 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5997 if (dev_idx < 0) 5998 goto out_unlock; 5999 6000 iodev = bus->range[dev_idx].dev; 6001 6002 out_unlock: 6003 srcu_read_unlock(&kvm->srcu, srcu_idx); 6004 6005 return iodev; 6006 } 6007 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6008 6009 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6010 int (*get)(void *, u64 *), int (*set)(void *, u64), 6011 const char *fmt) 6012 { 6013 int ret; 6014 struct kvm_stat_data *stat_data = inode->i_private; 6015 6016 /* 6017 * The debugfs files are a reference to the kvm struct which 6018 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6019 * avoids the race between open and the removal of the debugfs directory. 6020 */ 6021 if (!kvm_get_kvm_safe(stat_data->kvm)) 6022 return -ENOENT; 6023 6024 ret = simple_attr_open(inode, file, get, 6025 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6026 ? set : NULL, fmt); 6027 if (ret) 6028 kvm_put_kvm(stat_data->kvm); 6029 6030 return ret; 6031 } 6032 6033 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6034 { 6035 struct kvm_stat_data *stat_data = inode->i_private; 6036 6037 simple_attr_release(inode, file); 6038 kvm_put_kvm(stat_data->kvm); 6039 6040 return 0; 6041 } 6042 6043 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6044 { 6045 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6046 6047 return 0; 6048 } 6049 6050 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6051 { 6052 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6053 6054 return 0; 6055 } 6056 6057 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6058 { 6059 unsigned long i; 6060 struct kvm_vcpu *vcpu; 6061 6062 *val = 0; 6063 6064 kvm_for_each_vcpu(i, vcpu, kvm) 6065 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6066 6067 return 0; 6068 } 6069 6070 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6071 { 6072 unsigned long i; 6073 struct kvm_vcpu *vcpu; 6074 6075 kvm_for_each_vcpu(i, vcpu, kvm) 6076 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6077 6078 return 0; 6079 } 6080 6081 static int kvm_stat_data_get(void *data, u64 *val) 6082 { 6083 int r = -EFAULT; 6084 struct kvm_stat_data *stat_data = data; 6085 6086 switch (stat_data->kind) { 6087 case KVM_STAT_VM: 6088 r = kvm_get_stat_per_vm(stat_data->kvm, 6089 stat_data->desc->desc.offset, val); 6090 break; 6091 case KVM_STAT_VCPU: 6092 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6093 stat_data->desc->desc.offset, val); 6094 break; 6095 } 6096 6097 return r; 6098 } 6099 6100 static int kvm_stat_data_clear(void *data, u64 val) 6101 { 6102 int r = -EFAULT; 6103 struct kvm_stat_data *stat_data = data; 6104 6105 if (val) 6106 return -EINVAL; 6107 6108 switch (stat_data->kind) { 6109 case KVM_STAT_VM: 6110 r = kvm_clear_stat_per_vm(stat_data->kvm, 6111 stat_data->desc->desc.offset); 6112 break; 6113 case KVM_STAT_VCPU: 6114 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6115 stat_data->desc->desc.offset); 6116 break; 6117 } 6118 6119 return r; 6120 } 6121 6122 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6123 { 6124 __simple_attr_check_format("%llu\n", 0ull); 6125 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6126 kvm_stat_data_clear, "%llu\n"); 6127 } 6128 6129 static const struct file_operations stat_fops_per_vm = { 6130 .owner = THIS_MODULE, 6131 .open = kvm_stat_data_open, 6132 .release = kvm_debugfs_release, 6133 .read = simple_attr_read, 6134 .write = simple_attr_write, 6135 .llseek = no_llseek, 6136 }; 6137 6138 static int vm_stat_get(void *_offset, u64 *val) 6139 { 6140 unsigned offset = (long)_offset; 6141 struct kvm *kvm; 6142 u64 tmp_val; 6143 6144 *val = 0; 6145 mutex_lock(&kvm_lock); 6146 list_for_each_entry(kvm, &vm_list, vm_list) { 6147 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6148 *val += tmp_val; 6149 } 6150 mutex_unlock(&kvm_lock); 6151 return 0; 6152 } 6153 6154 static int vm_stat_clear(void *_offset, u64 val) 6155 { 6156 unsigned offset = (long)_offset; 6157 struct kvm *kvm; 6158 6159 if (val) 6160 return -EINVAL; 6161 6162 mutex_lock(&kvm_lock); 6163 list_for_each_entry(kvm, &vm_list, vm_list) { 6164 kvm_clear_stat_per_vm(kvm, offset); 6165 } 6166 mutex_unlock(&kvm_lock); 6167 6168 return 0; 6169 } 6170 6171 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6172 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6173 6174 static int vcpu_stat_get(void *_offset, u64 *val) 6175 { 6176 unsigned offset = (long)_offset; 6177 struct kvm *kvm; 6178 u64 tmp_val; 6179 6180 *val = 0; 6181 mutex_lock(&kvm_lock); 6182 list_for_each_entry(kvm, &vm_list, vm_list) { 6183 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6184 *val += tmp_val; 6185 } 6186 mutex_unlock(&kvm_lock); 6187 return 0; 6188 } 6189 6190 static int vcpu_stat_clear(void *_offset, u64 val) 6191 { 6192 unsigned offset = (long)_offset; 6193 struct kvm *kvm; 6194 6195 if (val) 6196 return -EINVAL; 6197 6198 mutex_lock(&kvm_lock); 6199 list_for_each_entry(kvm, &vm_list, vm_list) { 6200 kvm_clear_stat_per_vcpu(kvm, offset); 6201 } 6202 mutex_unlock(&kvm_lock); 6203 6204 return 0; 6205 } 6206 6207 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6208 "%llu\n"); 6209 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6210 6211 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6212 { 6213 struct kobj_uevent_env *env; 6214 unsigned long long created, active; 6215 6216 if (!kvm_dev.this_device || !kvm) 6217 return; 6218 6219 mutex_lock(&kvm_lock); 6220 if (type == KVM_EVENT_CREATE_VM) { 6221 kvm_createvm_count++; 6222 kvm_active_vms++; 6223 } else if (type == KVM_EVENT_DESTROY_VM) { 6224 kvm_active_vms--; 6225 } 6226 created = kvm_createvm_count; 6227 active = kvm_active_vms; 6228 mutex_unlock(&kvm_lock); 6229 6230 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6231 if (!env) 6232 return; 6233 6234 add_uevent_var(env, "CREATED=%llu", created); 6235 add_uevent_var(env, "COUNT=%llu", active); 6236 6237 if (type == KVM_EVENT_CREATE_VM) { 6238 add_uevent_var(env, "EVENT=create"); 6239 kvm->userspace_pid = task_pid_nr(current); 6240 } else if (type == KVM_EVENT_DESTROY_VM) { 6241 add_uevent_var(env, "EVENT=destroy"); 6242 } 6243 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6244 6245 if (!IS_ERR(kvm->debugfs_dentry)) { 6246 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6247 6248 if (p) { 6249 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6250 if (!IS_ERR(tmp)) 6251 add_uevent_var(env, "STATS_PATH=%s", tmp); 6252 kfree(p); 6253 } 6254 } 6255 /* no need for checks, since we are adding at most only 5 keys */ 6256 env->envp[env->envp_idx++] = NULL; 6257 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6258 kfree(env); 6259 } 6260 6261 static void kvm_init_debug(void) 6262 { 6263 const struct file_operations *fops; 6264 const struct _kvm_stats_desc *pdesc; 6265 int i; 6266 6267 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6268 6269 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6270 pdesc = &kvm_vm_stats_desc[i]; 6271 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6272 fops = &vm_stat_fops; 6273 else 6274 fops = &vm_stat_readonly_fops; 6275 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6276 kvm_debugfs_dir, 6277 (void *)(long)pdesc->desc.offset, fops); 6278 } 6279 6280 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6281 pdesc = &kvm_vcpu_stats_desc[i]; 6282 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6283 fops = &vcpu_stat_fops; 6284 else 6285 fops = &vcpu_stat_readonly_fops; 6286 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6287 kvm_debugfs_dir, 6288 (void *)(long)pdesc->desc.offset, fops); 6289 } 6290 } 6291 6292 static inline 6293 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6294 { 6295 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6296 } 6297 6298 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6299 { 6300 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6301 6302 WRITE_ONCE(vcpu->preempted, false); 6303 WRITE_ONCE(vcpu->ready, false); 6304 6305 __this_cpu_write(kvm_running_vcpu, vcpu); 6306 kvm_arch_sched_in(vcpu, cpu); 6307 kvm_arch_vcpu_load(vcpu, cpu); 6308 } 6309 6310 static void kvm_sched_out(struct preempt_notifier *pn, 6311 struct task_struct *next) 6312 { 6313 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6314 6315 if (current->on_rq) { 6316 WRITE_ONCE(vcpu->preempted, true); 6317 WRITE_ONCE(vcpu->ready, true); 6318 } 6319 kvm_arch_vcpu_put(vcpu); 6320 __this_cpu_write(kvm_running_vcpu, NULL); 6321 } 6322 6323 /** 6324 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6325 * 6326 * We can disable preemption locally around accessing the per-CPU variable, 6327 * and use the resolved vcpu pointer after enabling preemption again, 6328 * because even if the current thread is migrated to another CPU, reading 6329 * the per-CPU value later will give us the same value as we update the 6330 * per-CPU variable in the preempt notifier handlers. 6331 */ 6332 struct kvm_vcpu *kvm_get_running_vcpu(void) 6333 { 6334 struct kvm_vcpu *vcpu; 6335 6336 preempt_disable(); 6337 vcpu = __this_cpu_read(kvm_running_vcpu); 6338 preempt_enable(); 6339 6340 return vcpu; 6341 } 6342 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6343 6344 /** 6345 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6346 */ 6347 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6348 { 6349 return &kvm_running_vcpu; 6350 } 6351 6352 #ifdef CONFIG_GUEST_PERF_EVENTS 6353 static unsigned int kvm_guest_state(void) 6354 { 6355 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6356 unsigned int state; 6357 6358 if (!kvm_arch_pmi_in_guest(vcpu)) 6359 return 0; 6360 6361 state = PERF_GUEST_ACTIVE; 6362 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6363 state |= PERF_GUEST_USER; 6364 6365 return state; 6366 } 6367 6368 static unsigned long kvm_guest_get_ip(void) 6369 { 6370 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6371 6372 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6373 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6374 return 0; 6375 6376 return kvm_arch_vcpu_get_ip(vcpu); 6377 } 6378 6379 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6380 .state = kvm_guest_state, 6381 .get_ip = kvm_guest_get_ip, 6382 .handle_intel_pt_intr = NULL, 6383 }; 6384 6385 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6386 { 6387 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6388 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6389 } 6390 void kvm_unregister_perf_callbacks(void) 6391 { 6392 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6393 } 6394 #endif 6395 6396 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6397 { 6398 int r; 6399 int cpu; 6400 6401 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6402 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6403 kvm_online_cpu, kvm_offline_cpu); 6404 if (r) 6405 return r; 6406 6407 register_syscore_ops(&kvm_syscore_ops); 6408 #endif 6409 6410 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6411 if (!vcpu_align) 6412 vcpu_align = __alignof__(struct kvm_vcpu); 6413 kvm_vcpu_cache = 6414 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6415 SLAB_ACCOUNT, 6416 offsetof(struct kvm_vcpu, arch), 6417 offsetofend(struct kvm_vcpu, stats_id) 6418 - offsetof(struct kvm_vcpu, arch), 6419 NULL); 6420 if (!kvm_vcpu_cache) { 6421 r = -ENOMEM; 6422 goto err_vcpu_cache; 6423 } 6424 6425 for_each_possible_cpu(cpu) { 6426 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6427 GFP_KERNEL, cpu_to_node(cpu))) { 6428 r = -ENOMEM; 6429 goto err_cpu_kick_mask; 6430 } 6431 } 6432 6433 r = kvm_irqfd_init(); 6434 if (r) 6435 goto err_irqfd; 6436 6437 r = kvm_async_pf_init(); 6438 if (r) 6439 goto err_async_pf; 6440 6441 kvm_chardev_ops.owner = module; 6442 kvm_vm_fops.owner = module; 6443 kvm_vcpu_fops.owner = module; 6444 kvm_device_fops.owner = module; 6445 6446 kvm_preempt_ops.sched_in = kvm_sched_in; 6447 kvm_preempt_ops.sched_out = kvm_sched_out; 6448 6449 kvm_init_debug(); 6450 6451 r = kvm_vfio_ops_init(); 6452 if (WARN_ON_ONCE(r)) 6453 goto err_vfio; 6454 6455 kvm_gmem_init(module); 6456 6457 /* 6458 * Registration _must_ be the very last thing done, as this exposes 6459 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6460 */ 6461 r = misc_register(&kvm_dev); 6462 if (r) { 6463 pr_err("kvm: misc device register failed\n"); 6464 goto err_register; 6465 } 6466 6467 return 0; 6468 6469 err_register: 6470 kvm_vfio_ops_exit(); 6471 err_vfio: 6472 kvm_async_pf_deinit(); 6473 err_async_pf: 6474 kvm_irqfd_exit(); 6475 err_irqfd: 6476 err_cpu_kick_mask: 6477 for_each_possible_cpu(cpu) 6478 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6479 kmem_cache_destroy(kvm_vcpu_cache); 6480 err_vcpu_cache: 6481 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6482 unregister_syscore_ops(&kvm_syscore_ops); 6483 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6484 #endif 6485 return r; 6486 } 6487 EXPORT_SYMBOL_GPL(kvm_init); 6488 6489 void kvm_exit(void) 6490 { 6491 int cpu; 6492 6493 /* 6494 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6495 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6496 * to KVM while the module is being stopped. 6497 */ 6498 misc_deregister(&kvm_dev); 6499 6500 debugfs_remove_recursive(kvm_debugfs_dir); 6501 for_each_possible_cpu(cpu) 6502 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6503 kmem_cache_destroy(kvm_vcpu_cache); 6504 kvm_vfio_ops_exit(); 6505 kvm_async_pf_deinit(); 6506 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6507 unregister_syscore_ops(&kvm_syscore_ops); 6508 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6509 #endif 6510 kvm_irqfd_exit(); 6511 } 6512 EXPORT_SYMBOL_GPL(kvm_exit); 6513 6514 struct kvm_vm_worker_thread_context { 6515 struct kvm *kvm; 6516 struct task_struct *parent; 6517 struct completion init_done; 6518 kvm_vm_thread_fn_t thread_fn; 6519 uintptr_t data; 6520 int err; 6521 }; 6522 6523 static int kvm_vm_worker_thread(void *context) 6524 { 6525 /* 6526 * The init_context is allocated on the stack of the parent thread, so 6527 * we have to locally copy anything that is needed beyond initialization 6528 */ 6529 struct kvm_vm_worker_thread_context *init_context = context; 6530 struct task_struct *parent; 6531 struct kvm *kvm = init_context->kvm; 6532 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6533 uintptr_t data = init_context->data; 6534 int err; 6535 6536 err = kthread_park(current); 6537 /* kthread_park(current) is never supposed to return an error */ 6538 WARN_ON(err != 0); 6539 if (err) 6540 goto init_complete; 6541 6542 err = cgroup_attach_task_all(init_context->parent, current); 6543 if (err) { 6544 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6545 __func__, err); 6546 goto init_complete; 6547 } 6548 6549 set_user_nice(current, task_nice(init_context->parent)); 6550 6551 init_complete: 6552 init_context->err = err; 6553 complete(&init_context->init_done); 6554 init_context = NULL; 6555 6556 if (err) 6557 goto out; 6558 6559 /* Wait to be woken up by the spawner before proceeding. */ 6560 kthread_parkme(); 6561 6562 if (!kthread_should_stop()) 6563 err = thread_fn(kvm, data); 6564 6565 out: 6566 /* 6567 * Move kthread back to its original cgroup to prevent it lingering in 6568 * the cgroup of the VM process, after the latter finishes its 6569 * execution. 6570 * 6571 * kthread_stop() waits on the 'exited' completion condition which is 6572 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6573 * kthread is removed from the cgroup in the cgroup_exit() which is 6574 * called after the exit_mm(). This causes the kthread_stop() to return 6575 * before the kthread actually quits the cgroup. 6576 */ 6577 rcu_read_lock(); 6578 parent = rcu_dereference(current->real_parent); 6579 get_task_struct(parent); 6580 rcu_read_unlock(); 6581 cgroup_attach_task_all(parent, current); 6582 put_task_struct(parent); 6583 6584 return err; 6585 } 6586 6587 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6588 uintptr_t data, const char *name, 6589 struct task_struct **thread_ptr) 6590 { 6591 struct kvm_vm_worker_thread_context init_context = {}; 6592 struct task_struct *thread; 6593 6594 *thread_ptr = NULL; 6595 init_context.kvm = kvm; 6596 init_context.parent = current; 6597 init_context.thread_fn = thread_fn; 6598 init_context.data = data; 6599 init_completion(&init_context.init_done); 6600 6601 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6602 "%s-%d", name, task_pid_nr(current)); 6603 if (IS_ERR(thread)) 6604 return PTR_ERR(thread); 6605 6606 /* kthread_run is never supposed to return NULL */ 6607 WARN_ON(thread == NULL); 6608 6609 wait_for_completion(&init_context.init_done); 6610 6611 if (!init_context.err) 6612 *thread_ptr = thread; 6613 6614 return init_context.err; 6615 } 6616