xref: /linux/virt/kvm/kvm_main.c (revision 693270471d96a63897bd132df15e00da826fa84b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 				      struct kvm_vcpu *except)
316 {
317 	struct kvm_vcpu *vcpu;
318 	struct cpumask *cpus;
319 	unsigned long i;
320 	bool called;
321 	int me;
322 
323 	me = get_cpu();
324 
325 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 	cpumask_clear(cpus);
327 
328 	kvm_for_each_vcpu(i, vcpu, kvm) {
329 		if (vcpu == except)
330 			continue;
331 		kvm_make_vcpu_request(vcpu, req, cpus, me);
332 	}
333 
334 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 	put_cpu();
336 
337 	return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 	++kvm->stat.generic.remote_tlb_flush_requests;
349 
350 	/*
351 	 * We want to publish modifications to the page tables before reading
352 	 * mode. Pairs with a memory barrier in arch-specific code.
353 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 	 *
357 	 * There is already an smp_mb__after_atomic() before
358 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 	 * barrier here.
360 	 */
361 	if (!kvm_arch_flush_remote_tlbs(kvm)
362 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 		++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 		return;
371 
372 	/*
373 	 * Fall back to a flushing entire TLBs if the architecture range-based
374 	 * TLB invalidation is unsupported or can't be performed for whatever
375 	 * reason.
376 	 */
377 	kvm_flush_remote_tlbs(kvm);
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 				   const struct kvm_memory_slot *memslot)
382 {
383 	/*
384 	 * All current use cases for flushing the TLBs for a specific memslot
385 	 * are related to dirty logging, and many do the TLB flush out of
386 	 * mmu_lock. The interaction between the various operations on memslot
387 	 * must be serialized by slots_locks to ensure the TLB flush from one
388 	 * operation is observed by any other operation on the same memslot.
389 	 */
390 	lockdep_assert_held(&kvm->slots_lock);
391 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 	kvm_arch_flush_shadow_all(kvm);
397 	kvm_arch_guest_memory_reclaimed(kvm);
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 					       gfp_t gfp_flags)
403 {
404 	gfp_flags |= mc->gfp_zero;
405 
406 	if (mc->kmem_cache)
407 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 	else
409 		return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 	void *obj;
416 
417 	if (mc->nobjs >= min)
418 		return 0;
419 
420 	if (unlikely(!mc->objects)) {
421 		if (WARN_ON_ONCE(!capacity))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587 
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
590 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 	     node;							     \
592 	     node = interval_tree_iter_next(node, start, last))	     \
593 
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 							   const struct kvm_mmu_notifier_range *range)
596 {
597 	struct kvm_mmu_notifier_return r = {
598 		.ret = false,
599 		.found_memslot = false,
600 	};
601 	struct kvm_gfn_range gfn_range;
602 	struct kvm_memory_slot *slot;
603 	struct kvm_memslots *slots;
604 	int i, idx;
605 
606 	if (WARN_ON_ONCE(range->end <= range->start))
607 		return r;
608 
609 	/* A null handler is allowed if and only if on_lock() is provided. */
610 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 			 IS_KVM_NULL_FN(range->handler)))
612 		return r;
613 
614 	idx = srcu_read_lock(&kvm->srcu);
615 
616 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 		struct interval_tree_node *node;
618 
619 		slots = __kvm_memslots(kvm, i);
620 		kvm_for_each_memslot_in_hva_range(node, slots,
621 						  range->start, range->end - 1) {
622 			unsigned long hva_start, hva_end;
623 
624 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 			hva_end = min_t(unsigned long, range->end,
627 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628 
629 			/*
630 			 * To optimize for the likely case where the address
631 			 * range is covered by zero or one memslots, don't
632 			 * bother making these conditional (to avoid writes on
633 			 * the second or later invocation of the handler).
634 			 */
635 			gfn_range.arg = range->arg;
636 			gfn_range.may_block = range->may_block;
637 
638 			/*
639 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 			 */
642 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 			gfn_range.slot = slot;
645 
646 			if (!r.found_memslot) {
647 				r.found_memslot = true;
648 				KVM_MMU_LOCK(kvm);
649 				if (!IS_KVM_NULL_FN(range->on_lock))
650 					range->on_lock(kvm);
651 
652 				if (IS_KVM_NULL_FN(range->handler))
653 					break;
654 			}
655 			r.ret |= range->handler(kvm, &gfn_range);
656 		}
657 	}
658 
659 	if (range->flush_on_ret && r.ret)
660 		kvm_flush_remote_tlbs(kvm);
661 
662 	if (r.found_memslot)
663 		KVM_MMU_UNLOCK(kvm);
664 
665 	srcu_read_unlock(&kvm->srcu, idx);
666 
667 	return r;
668 }
669 
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 						unsigned long start,
672 						unsigned long end,
673 						union kvm_mmu_notifier_arg arg,
674 						gfn_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_mmu_notifier_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.arg		= arg,
681 		.handler	= handler,
682 		.on_lock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= true,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689 
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 							 unsigned long start,
692 							 unsigned long end,
693 							 gfn_handler_t handler)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 	const struct kvm_mmu_notifier_range range = {
697 		.start		= start,
698 		.end		= end,
699 		.handler	= handler,
700 		.on_lock	= (void *)kvm_null_fn,
701 		.flush_on_ret	= false,
702 		.may_block	= false,
703 	};
704 
705 	return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707 
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710 	/*
711 	 * Skipping invalid memslots is correct if and only change_pte() is
712 	 * surrounded by invalidate_range_{start,end}(), which is currently
713 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 	 * doesn't hold references to the old PFN.
716 	 */
717 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718 
719 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 		return false;
721 
722 	return kvm_set_spte_gfn(kvm, range);
723 }
724 
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 					struct mm_struct *mm,
727 					unsigned long address,
728 					pte_t pte)
729 {
730 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 	const union kvm_mmu_notifier_arg arg = { .pte = pte };
732 
733 	trace_kvm_set_spte_hva(address);
734 
735 	/*
736 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 	 * If mmu_invalidate_in_progress is zero, then no in-progress
738 	 * invalidations, including this one, found a relevant memslot at
739 	 * start(); rechecking memslots here is unnecessary.  Note, a false
740 	 * positive (count elevated by a different invalidation) is sub-optimal
741 	 * but functionally ok.
742 	 */
743 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 		return;
746 
747 	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749 
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752 	lockdep_assert_held_write(&kvm->mmu_lock);
753 	/*
754 	 * The count increase must become visible at unlock time as no
755 	 * spte can be established without taking the mmu_lock and
756 	 * count is also read inside the mmu_lock critical section.
757 	 */
758 	kvm->mmu_invalidate_in_progress++;
759 
760 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 		kvm->mmu_invalidate_range_start = INVALID_GPA;
762 		kvm->mmu_invalidate_range_end = INVALID_GPA;
763 	}
764 }
765 
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768 	lockdep_assert_held_write(&kvm->mmu_lock);
769 
770 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771 
772 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 		kvm->mmu_invalidate_range_start = start;
774 		kvm->mmu_invalidate_range_end = end;
775 	} else {
776 		/*
777 		 * Fully tracking multiple concurrent ranges has diminishing
778 		 * returns. Keep things simple and just find the minimal range
779 		 * which includes the current and new ranges. As there won't be
780 		 * enough information to subtract a range after its invalidate
781 		 * completes, any ranges invalidated concurrently will
782 		 * accumulate and persist until all outstanding invalidates
783 		 * complete.
784 		 */
785 		kvm->mmu_invalidate_range_start =
786 			min(kvm->mmu_invalidate_range_start, start);
787 		kvm->mmu_invalidate_range_end =
788 			max(kvm->mmu_invalidate_range_end, end);
789 	}
790 }
791 
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 	return kvm_unmap_gfn_range(kvm, range);
796 }
797 
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 					const struct mmu_notifier_range *range)
800 {
801 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 	const struct kvm_mmu_notifier_range hva_range = {
803 		.start		= range->start,
804 		.end		= range->end,
805 		.handler	= kvm_mmu_unmap_gfn_range,
806 		.on_lock	= kvm_mmu_invalidate_begin,
807 		.flush_on_ret	= true,
808 		.may_block	= mmu_notifier_range_blockable(range),
809 	};
810 
811 	trace_kvm_unmap_hva_range(range->start, range->end);
812 
813 	/*
814 	 * Prevent memslot modification between range_start() and range_end()
815 	 * so that conditionally locking provides the same result in both
816 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
817 	 * adjustments will be imbalanced.
818 	 *
819 	 * Pairs with the decrement in range_end().
820 	 */
821 	spin_lock(&kvm->mn_invalidate_lock);
822 	kvm->mn_active_invalidate_count++;
823 	spin_unlock(&kvm->mn_invalidate_lock);
824 
825 	/*
826 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 	 * each cache's lock.  There are relatively few caches in existence at
829 	 * any given time, and the caches themselves can check for hva overlap,
830 	 * i.e. don't need to rely on memslot overlap checks for performance.
831 	 * Because this runs without holding mmu_lock, the pfn caches must use
832 	 * mn_active_invalidate_count (see above) instead of
833 	 * mmu_invalidate_in_progress.
834 	 */
835 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836 					  hva_range.may_block);
837 
838 	/*
839 	 * If one or more memslots were found and thus zapped, notify arch code
840 	 * that guest memory has been reclaimed.  This needs to be done *after*
841 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
842 	 */
843 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844 		kvm_arch_guest_memory_reclaimed(kvm);
845 
846 	return 0;
847 }
848 
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851 	lockdep_assert_held_write(&kvm->mmu_lock);
852 
853 	/*
854 	 * This sequence increase will notify the kvm page fault that
855 	 * the page that is going to be mapped in the spte could have
856 	 * been freed.
857 	 */
858 	kvm->mmu_invalidate_seq++;
859 	smp_wmb();
860 	/*
861 	 * The above sequence increase must be visible before the
862 	 * below count decrease, which is ensured by the smp_wmb above
863 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
864 	 */
865 	kvm->mmu_invalidate_in_progress--;
866 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867 
868 	/*
869 	 * Assert that at least one range was added between start() and end().
870 	 * Not adding a range isn't fatal, but it is a KVM bug.
871 	 */
872 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874 
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876 					const struct mmu_notifier_range *range)
877 {
878 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
879 	const struct kvm_mmu_notifier_range hva_range = {
880 		.start		= range->start,
881 		.end		= range->end,
882 		.handler	= (void *)kvm_null_fn,
883 		.on_lock	= kvm_mmu_invalidate_end,
884 		.flush_on_ret	= false,
885 		.may_block	= mmu_notifier_range_blockable(range),
886 	};
887 	bool wake;
888 
889 	__kvm_handle_hva_range(kvm, &hva_range);
890 
891 	/* Pairs with the increment in range_start(). */
892 	spin_lock(&kvm->mn_invalidate_lock);
893 	wake = (--kvm->mn_active_invalidate_count == 0);
894 	spin_unlock(&kvm->mn_invalidate_lock);
895 
896 	/*
897 	 * There can only be one waiter, since the wait happens under
898 	 * slots_lock.
899 	 */
900 	if (wake)
901 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
902 }
903 
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905 					      struct mm_struct *mm,
906 					      unsigned long start,
907 					      unsigned long end)
908 {
909 	trace_kvm_age_hva(start, end);
910 
911 	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
912 				    kvm_age_gfn);
913 }
914 
915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
916 					struct mm_struct *mm,
917 					unsigned long start,
918 					unsigned long end)
919 {
920 	trace_kvm_age_hva(start, end);
921 
922 	/*
923 	 * Even though we do not flush TLB, this will still adversely
924 	 * affect performance on pre-Haswell Intel EPT, where there is
925 	 * no EPT Access Bit to clear so that we have to tear down EPT
926 	 * tables instead. If we find this unacceptable, we can always
927 	 * add a parameter to kvm_age_hva so that it effectively doesn't
928 	 * do anything on clear_young.
929 	 *
930 	 * Also note that currently we never issue secondary TLB flushes
931 	 * from clear_young, leaving this job up to the regular system
932 	 * cadence. If we find this inaccurate, we might come up with a
933 	 * more sophisticated heuristic later.
934 	 */
935 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
936 }
937 
938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
939 				       struct mm_struct *mm,
940 				       unsigned long address)
941 {
942 	trace_kvm_test_age_hva(address);
943 
944 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
945 					     kvm_test_age_gfn);
946 }
947 
948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
949 				     struct mm_struct *mm)
950 {
951 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
952 	int idx;
953 
954 	idx = srcu_read_lock(&kvm->srcu);
955 	kvm_flush_shadow_all(kvm);
956 	srcu_read_unlock(&kvm->srcu, idx);
957 }
958 
959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
960 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
961 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
962 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
963 	.clear_young		= kvm_mmu_notifier_clear_young,
964 	.test_young		= kvm_mmu_notifier_test_young,
965 	.change_pte		= kvm_mmu_notifier_change_pte,
966 	.release		= kvm_mmu_notifier_release,
967 };
968 
969 static int kvm_init_mmu_notifier(struct kvm *kvm)
970 {
971 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
972 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
973 }
974 
975 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
976 
977 static int kvm_init_mmu_notifier(struct kvm *kvm)
978 {
979 	return 0;
980 }
981 
982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
983 
984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
985 static int kvm_pm_notifier_call(struct notifier_block *bl,
986 				unsigned long state,
987 				void *unused)
988 {
989 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
990 
991 	return kvm_arch_pm_notifier(kvm, state);
992 }
993 
994 static void kvm_init_pm_notifier(struct kvm *kvm)
995 {
996 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
997 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
998 	kvm->pm_notifier.priority = INT_MAX;
999 	register_pm_notifier(&kvm->pm_notifier);
1000 }
1001 
1002 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1003 {
1004 	unregister_pm_notifier(&kvm->pm_notifier);
1005 }
1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1007 static void kvm_init_pm_notifier(struct kvm *kvm)
1008 {
1009 }
1010 
1011 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1012 {
1013 }
1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1015 
1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1017 {
1018 	if (!memslot->dirty_bitmap)
1019 		return;
1020 
1021 	kvfree(memslot->dirty_bitmap);
1022 	memslot->dirty_bitmap = NULL;
1023 }
1024 
1025 /* This does not remove the slot from struct kvm_memslots data structures */
1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1027 {
1028 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
1029 		kvm_gmem_unbind(slot);
1030 
1031 	kvm_destroy_dirty_bitmap(slot);
1032 
1033 	kvm_arch_free_memslot(kvm, slot);
1034 
1035 	kfree(slot);
1036 }
1037 
1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1039 {
1040 	struct hlist_node *idnode;
1041 	struct kvm_memory_slot *memslot;
1042 	int bkt;
1043 
1044 	/*
1045 	 * The same memslot objects live in both active and inactive sets,
1046 	 * arbitrarily free using index '1' so the second invocation of this
1047 	 * function isn't operating over a structure with dangling pointers
1048 	 * (even though this function isn't actually touching them).
1049 	 */
1050 	if (!slots->node_idx)
1051 		return;
1052 
1053 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1054 		kvm_free_memslot(kvm, memslot);
1055 }
1056 
1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1058 {
1059 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1060 	case KVM_STATS_TYPE_INSTANT:
1061 		return 0444;
1062 	case KVM_STATS_TYPE_CUMULATIVE:
1063 	case KVM_STATS_TYPE_PEAK:
1064 	default:
1065 		return 0644;
1066 	}
1067 }
1068 
1069 
1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1071 {
1072 	int i;
1073 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1074 				      kvm_vcpu_stats_header.num_desc;
1075 
1076 	if (IS_ERR(kvm->debugfs_dentry))
1077 		return;
1078 
1079 	debugfs_remove_recursive(kvm->debugfs_dentry);
1080 
1081 	if (kvm->debugfs_stat_data) {
1082 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1083 			kfree(kvm->debugfs_stat_data[i]);
1084 		kfree(kvm->debugfs_stat_data);
1085 	}
1086 }
1087 
1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1089 {
1090 	static DEFINE_MUTEX(kvm_debugfs_lock);
1091 	struct dentry *dent;
1092 	char dir_name[ITOA_MAX_LEN * 2];
1093 	struct kvm_stat_data *stat_data;
1094 	const struct _kvm_stats_desc *pdesc;
1095 	int i, ret = -ENOMEM;
1096 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1097 				      kvm_vcpu_stats_header.num_desc;
1098 
1099 	if (!debugfs_initialized())
1100 		return 0;
1101 
1102 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1103 	mutex_lock(&kvm_debugfs_lock);
1104 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1105 	if (dent) {
1106 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1107 		dput(dent);
1108 		mutex_unlock(&kvm_debugfs_lock);
1109 		return 0;
1110 	}
1111 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1112 	mutex_unlock(&kvm_debugfs_lock);
1113 	if (IS_ERR(dent))
1114 		return 0;
1115 
1116 	kvm->debugfs_dentry = dent;
1117 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1118 					 sizeof(*kvm->debugfs_stat_data),
1119 					 GFP_KERNEL_ACCOUNT);
1120 	if (!kvm->debugfs_stat_data)
1121 		goto out_err;
1122 
1123 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1124 		pdesc = &kvm_vm_stats_desc[i];
1125 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1126 		if (!stat_data)
1127 			goto out_err;
1128 
1129 		stat_data->kvm = kvm;
1130 		stat_data->desc = pdesc;
1131 		stat_data->kind = KVM_STAT_VM;
1132 		kvm->debugfs_stat_data[i] = stat_data;
1133 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1134 				    kvm->debugfs_dentry, stat_data,
1135 				    &stat_fops_per_vm);
1136 	}
1137 
1138 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1139 		pdesc = &kvm_vcpu_stats_desc[i];
1140 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1141 		if (!stat_data)
1142 			goto out_err;
1143 
1144 		stat_data->kvm = kvm;
1145 		stat_data->desc = pdesc;
1146 		stat_data->kind = KVM_STAT_VCPU;
1147 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1148 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1149 				    kvm->debugfs_dentry, stat_data,
1150 				    &stat_fops_per_vm);
1151 	}
1152 
1153 	ret = kvm_arch_create_vm_debugfs(kvm);
1154 	if (ret)
1155 		goto out_err;
1156 
1157 	return 0;
1158 out_err:
1159 	kvm_destroy_vm_debugfs(kvm);
1160 	return ret;
1161 }
1162 
1163 /*
1164  * Called after the VM is otherwise initialized, but just before adding it to
1165  * the vm_list.
1166  */
1167 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1168 {
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Called just after removing the VM from the vm_list, but before doing any
1174  * other destruction.
1175  */
1176 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1177 {
1178 }
1179 
1180 /*
1181  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1182  * be setup already, so we can create arch-specific debugfs entries under it.
1183  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1184  * a per-arch destroy interface is not needed.
1185  */
1186 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1187 {
1188 	return 0;
1189 }
1190 
1191 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1192 {
1193 	struct kvm *kvm = kvm_arch_alloc_vm();
1194 	struct kvm_memslots *slots;
1195 	int r = -ENOMEM;
1196 	int i, j;
1197 
1198 	if (!kvm)
1199 		return ERR_PTR(-ENOMEM);
1200 
1201 	KVM_MMU_LOCK_INIT(kvm);
1202 	mmgrab(current->mm);
1203 	kvm->mm = current->mm;
1204 	kvm_eventfd_init(kvm);
1205 	mutex_init(&kvm->lock);
1206 	mutex_init(&kvm->irq_lock);
1207 	mutex_init(&kvm->slots_lock);
1208 	mutex_init(&kvm->slots_arch_lock);
1209 	spin_lock_init(&kvm->mn_invalidate_lock);
1210 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1211 	xa_init(&kvm->vcpu_array);
1212 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1213 	xa_init(&kvm->mem_attr_array);
1214 #endif
1215 
1216 	INIT_LIST_HEAD(&kvm->gpc_list);
1217 	spin_lock_init(&kvm->gpc_lock);
1218 
1219 	INIT_LIST_HEAD(&kvm->devices);
1220 	kvm->max_vcpus = KVM_MAX_VCPUS;
1221 
1222 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1223 
1224 	/*
1225 	 * Force subsequent debugfs file creations to fail if the VM directory
1226 	 * is not created (by kvm_create_vm_debugfs()).
1227 	 */
1228 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1229 
1230 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1231 		 task_pid_nr(current));
1232 
1233 	if (init_srcu_struct(&kvm->srcu))
1234 		goto out_err_no_srcu;
1235 	if (init_srcu_struct(&kvm->irq_srcu))
1236 		goto out_err_no_irq_srcu;
1237 
1238 	refcount_set(&kvm->users_count, 1);
1239 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1240 		for (j = 0; j < 2; j++) {
1241 			slots = &kvm->__memslots[i][j];
1242 
1243 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1244 			slots->hva_tree = RB_ROOT_CACHED;
1245 			slots->gfn_tree = RB_ROOT;
1246 			hash_init(slots->id_hash);
1247 			slots->node_idx = j;
1248 
1249 			/* Generations must be different for each address space. */
1250 			slots->generation = i;
1251 		}
1252 
1253 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1254 	}
1255 
1256 	for (i = 0; i < KVM_NR_BUSES; i++) {
1257 		rcu_assign_pointer(kvm->buses[i],
1258 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1259 		if (!kvm->buses[i])
1260 			goto out_err_no_arch_destroy_vm;
1261 	}
1262 
1263 	r = kvm_arch_init_vm(kvm, type);
1264 	if (r)
1265 		goto out_err_no_arch_destroy_vm;
1266 
1267 	r = hardware_enable_all();
1268 	if (r)
1269 		goto out_err_no_disable;
1270 
1271 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1272 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1273 #endif
1274 
1275 	r = kvm_init_mmu_notifier(kvm);
1276 	if (r)
1277 		goto out_err_no_mmu_notifier;
1278 
1279 	r = kvm_coalesced_mmio_init(kvm);
1280 	if (r < 0)
1281 		goto out_no_coalesced_mmio;
1282 
1283 	r = kvm_create_vm_debugfs(kvm, fdname);
1284 	if (r)
1285 		goto out_err_no_debugfs;
1286 
1287 	r = kvm_arch_post_init_vm(kvm);
1288 	if (r)
1289 		goto out_err;
1290 
1291 	mutex_lock(&kvm_lock);
1292 	list_add(&kvm->vm_list, &vm_list);
1293 	mutex_unlock(&kvm_lock);
1294 
1295 	preempt_notifier_inc();
1296 	kvm_init_pm_notifier(kvm);
1297 
1298 	return kvm;
1299 
1300 out_err:
1301 	kvm_destroy_vm_debugfs(kvm);
1302 out_err_no_debugfs:
1303 	kvm_coalesced_mmio_free(kvm);
1304 out_no_coalesced_mmio:
1305 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1306 	if (kvm->mmu_notifier.ops)
1307 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1308 #endif
1309 out_err_no_mmu_notifier:
1310 	hardware_disable_all();
1311 out_err_no_disable:
1312 	kvm_arch_destroy_vm(kvm);
1313 out_err_no_arch_destroy_vm:
1314 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1315 	for (i = 0; i < KVM_NR_BUSES; i++)
1316 		kfree(kvm_get_bus(kvm, i));
1317 	cleanup_srcu_struct(&kvm->irq_srcu);
1318 out_err_no_irq_srcu:
1319 	cleanup_srcu_struct(&kvm->srcu);
1320 out_err_no_srcu:
1321 	kvm_arch_free_vm(kvm);
1322 	mmdrop(current->mm);
1323 	return ERR_PTR(r);
1324 }
1325 
1326 static void kvm_destroy_devices(struct kvm *kvm)
1327 {
1328 	struct kvm_device *dev, *tmp;
1329 
1330 	/*
1331 	 * We do not need to take the kvm->lock here, because nobody else
1332 	 * has a reference to the struct kvm at this point and therefore
1333 	 * cannot access the devices list anyhow.
1334 	 */
1335 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1336 		list_del(&dev->vm_node);
1337 		dev->ops->destroy(dev);
1338 	}
1339 }
1340 
1341 static void kvm_destroy_vm(struct kvm *kvm)
1342 {
1343 	int i;
1344 	struct mm_struct *mm = kvm->mm;
1345 
1346 	kvm_destroy_pm_notifier(kvm);
1347 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1348 	kvm_destroy_vm_debugfs(kvm);
1349 	kvm_arch_sync_events(kvm);
1350 	mutex_lock(&kvm_lock);
1351 	list_del(&kvm->vm_list);
1352 	mutex_unlock(&kvm_lock);
1353 	kvm_arch_pre_destroy_vm(kvm);
1354 
1355 	kvm_free_irq_routing(kvm);
1356 	for (i = 0; i < KVM_NR_BUSES; i++) {
1357 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1358 
1359 		if (bus)
1360 			kvm_io_bus_destroy(bus);
1361 		kvm->buses[i] = NULL;
1362 	}
1363 	kvm_coalesced_mmio_free(kvm);
1364 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1365 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1366 	/*
1367 	 * At this point, pending calls to invalidate_range_start()
1368 	 * have completed but no more MMU notifiers will run, so
1369 	 * mn_active_invalidate_count may remain unbalanced.
1370 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1371 	 * last reference on KVM has been dropped, but freeing
1372 	 * memslots would deadlock without this manual intervention.
1373 	 *
1374 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1375 	 * notifier between a start() and end(), then there shouldn't be any
1376 	 * in-progress invalidations.
1377 	 */
1378 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1379 	if (kvm->mn_active_invalidate_count)
1380 		kvm->mn_active_invalidate_count = 0;
1381 	else
1382 		WARN_ON(kvm->mmu_invalidate_in_progress);
1383 #else
1384 	kvm_flush_shadow_all(kvm);
1385 #endif
1386 	kvm_arch_destroy_vm(kvm);
1387 	kvm_destroy_devices(kvm);
1388 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1389 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1390 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1391 	}
1392 	cleanup_srcu_struct(&kvm->irq_srcu);
1393 	cleanup_srcu_struct(&kvm->srcu);
1394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1395 	xa_destroy(&kvm->mem_attr_array);
1396 #endif
1397 	kvm_arch_free_vm(kvm);
1398 	preempt_notifier_dec();
1399 	hardware_disable_all();
1400 	mmdrop(mm);
1401 }
1402 
1403 void kvm_get_kvm(struct kvm *kvm)
1404 {
1405 	refcount_inc(&kvm->users_count);
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1408 
1409 /*
1410  * Make sure the vm is not during destruction, which is a safe version of
1411  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1412  */
1413 bool kvm_get_kvm_safe(struct kvm *kvm)
1414 {
1415 	return refcount_inc_not_zero(&kvm->users_count);
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1418 
1419 void kvm_put_kvm(struct kvm *kvm)
1420 {
1421 	if (refcount_dec_and_test(&kvm->users_count))
1422 		kvm_destroy_vm(kvm);
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1425 
1426 /*
1427  * Used to put a reference that was taken on behalf of an object associated
1428  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1429  * of the new file descriptor fails and the reference cannot be transferred to
1430  * its final owner.  In such cases, the caller is still actively using @kvm and
1431  * will fail miserably if the refcount unexpectedly hits zero.
1432  */
1433 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1434 {
1435 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1436 }
1437 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1438 
1439 static int kvm_vm_release(struct inode *inode, struct file *filp)
1440 {
1441 	struct kvm *kvm = filp->private_data;
1442 
1443 	kvm_irqfd_release(kvm);
1444 
1445 	kvm_put_kvm(kvm);
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Allocation size is twice as large as the actual dirty bitmap size.
1451  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1452  */
1453 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1454 {
1455 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1456 
1457 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1458 	if (!memslot->dirty_bitmap)
1459 		return -ENOMEM;
1460 
1461 	return 0;
1462 }
1463 
1464 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1465 {
1466 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1467 	int node_idx_inactive = active->node_idx ^ 1;
1468 
1469 	return &kvm->__memslots[as_id][node_idx_inactive];
1470 }
1471 
1472 /*
1473  * Helper to get the address space ID when one of memslot pointers may be NULL.
1474  * This also serves as a sanity that at least one of the pointers is non-NULL,
1475  * and that their address space IDs don't diverge.
1476  */
1477 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1478 				  struct kvm_memory_slot *b)
1479 {
1480 	if (WARN_ON_ONCE(!a && !b))
1481 		return 0;
1482 
1483 	if (!a)
1484 		return b->as_id;
1485 	if (!b)
1486 		return a->as_id;
1487 
1488 	WARN_ON_ONCE(a->as_id != b->as_id);
1489 	return a->as_id;
1490 }
1491 
1492 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1493 				struct kvm_memory_slot *slot)
1494 {
1495 	struct rb_root *gfn_tree = &slots->gfn_tree;
1496 	struct rb_node **node, *parent;
1497 	int idx = slots->node_idx;
1498 
1499 	parent = NULL;
1500 	for (node = &gfn_tree->rb_node; *node; ) {
1501 		struct kvm_memory_slot *tmp;
1502 
1503 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1504 		parent = *node;
1505 		if (slot->base_gfn < tmp->base_gfn)
1506 			node = &(*node)->rb_left;
1507 		else if (slot->base_gfn > tmp->base_gfn)
1508 			node = &(*node)->rb_right;
1509 		else
1510 			BUG();
1511 	}
1512 
1513 	rb_link_node(&slot->gfn_node[idx], parent, node);
1514 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1515 }
1516 
1517 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1518 			       struct kvm_memory_slot *slot)
1519 {
1520 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1521 }
1522 
1523 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1524 				 struct kvm_memory_slot *old,
1525 				 struct kvm_memory_slot *new)
1526 {
1527 	int idx = slots->node_idx;
1528 
1529 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1530 
1531 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1532 			&slots->gfn_tree);
1533 }
1534 
1535 /*
1536  * Replace @old with @new in the inactive memslots.
1537  *
1538  * With NULL @old this simply adds @new.
1539  * With NULL @new this simply removes @old.
1540  *
1541  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1542  * appropriately.
1543  */
1544 static void kvm_replace_memslot(struct kvm *kvm,
1545 				struct kvm_memory_slot *old,
1546 				struct kvm_memory_slot *new)
1547 {
1548 	int as_id = kvm_memslots_get_as_id(old, new);
1549 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1550 	int idx = slots->node_idx;
1551 
1552 	if (old) {
1553 		hash_del(&old->id_node[idx]);
1554 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1555 
1556 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1557 			atomic_long_set(&slots->last_used_slot, (long)new);
1558 
1559 		if (!new) {
1560 			kvm_erase_gfn_node(slots, old);
1561 			return;
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * Initialize @new's hva range.  Do this even when replacing an @old
1567 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1568 	 */
1569 	new->hva_node[idx].start = new->userspace_addr;
1570 	new->hva_node[idx].last = new->userspace_addr +
1571 				  (new->npages << PAGE_SHIFT) - 1;
1572 
1573 	/*
1574 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1575 	 * hva_node needs to be swapped with remove+insert even though hva can't
1576 	 * change when replacing an existing slot.
1577 	 */
1578 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1579 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1580 
1581 	/*
1582 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1583 	 * switch the node in the gfn tree instead of removing the old and
1584 	 * inserting the new as two separate operations. Replacement is a
1585 	 * single O(1) operation versus two O(log(n)) operations for
1586 	 * remove+insert.
1587 	 */
1588 	if (old && old->base_gfn == new->base_gfn) {
1589 		kvm_replace_gfn_node(slots, old, new);
1590 	} else {
1591 		if (old)
1592 			kvm_erase_gfn_node(slots, old);
1593 		kvm_insert_gfn_node(slots, new);
1594 	}
1595 }
1596 
1597 /*
1598  * Flags that do not access any of the extra space of struct
1599  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1600  * only allows these.
1601  */
1602 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1603 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1604 
1605 static int check_memory_region_flags(struct kvm *kvm,
1606 				     const struct kvm_userspace_memory_region2 *mem)
1607 {
1608 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1609 
1610 	if (kvm_arch_has_private_mem(kvm))
1611 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1612 
1613 	/* Dirty logging private memory is not currently supported. */
1614 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1615 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1616 
1617 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1618 	valid_flags |= KVM_MEM_READONLY;
1619 #endif
1620 
1621 	if (mem->flags & ~valid_flags)
1622 		return -EINVAL;
1623 
1624 	return 0;
1625 }
1626 
1627 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1628 {
1629 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1630 
1631 	/* Grab the generation from the activate memslots. */
1632 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1633 
1634 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1635 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1636 
1637 	/*
1638 	 * Do not store the new memslots while there are invalidations in
1639 	 * progress, otherwise the locking in invalidate_range_start and
1640 	 * invalidate_range_end will be unbalanced.
1641 	 */
1642 	spin_lock(&kvm->mn_invalidate_lock);
1643 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1644 	while (kvm->mn_active_invalidate_count) {
1645 		set_current_state(TASK_UNINTERRUPTIBLE);
1646 		spin_unlock(&kvm->mn_invalidate_lock);
1647 		schedule();
1648 		spin_lock(&kvm->mn_invalidate_lock);
1649 	}
1650 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1651 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1652 	spin_unlock(&kvm->mn_invalidate_lock);
1653 
1654 	/*
1655 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1656 	 * SRCU below in order to avoid deadlock with another thread
1657 	 * acquiring the slots_arch_lock in an srcu critical section.
1658 	 */
1659 	mutex_unlock(&kvm->slots_arch_lock);
1660 
1661 	synchronize_srcu_expedited(&kvm->srcu);
1662 
1663 	/*
1664 	 * Increment the new memslot generation a second time, dropping the
1665 	 * update in-progress flag and incrementing the generation based on
1666 	 * the number of address spaces.  This provides a unique and easily
1667 	 * identifiable generation number while the memslots are in flux.
1668 	 */
1669 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1670 
1671 	/*
1672 	 * Generations must be unique even across address spaces.  We do not need
1673 	 * a global counter for that, instead the generation space is evenly split
1674 	 * across address spaces.  For example, with two address spaces, address
1675 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1676 	 * use generations 1, 3, 5, ...
1677 	 */
1678 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1679 
1680 	kvm_arch_memslots_updated(kvm, gen);
1681 
1682 	slots->generation = gen;
1683 }
1684 
1685 static int kvm_prepare_memory_region(struct kvm *kvm,
1686 				     const struct kvm_memory_slot *old,
1687 				     struct kvm_memory_slot *new,
1688 				     enum kvm_mr_change change)
1689 {
1690 	int r;
1691 
1692 	/*
1693 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1694 	 * will be freed on "commit".  If logging is enabled in both old and
1695 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1696 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1697 	 * new bitmap.
1698 	 */
1699 	if (change != KVM_MR_DELETE) {
1700 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1701 			new->dirty_bitmap = NULL;
1702 		else if (old && old->dirty_bitmap)
1703 			new->dirty_bitmap = old->dirty_bitmap;
1704 		else if (kvm_use_dirty_bitmap(kvm)) {
1705 			r = kvm_alloc_dirty_bitmap(new);
1706 			if (r)
1707 				return r;
1708 
1709 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1710 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1711 		}
1712 	}
1713 
1714 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1715 
1716 	/* Free the bitmap on failure if it was allocated above. */
1717 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1718 		kvm_destroy_dirty_bitmap(new);
1719 
1720 	return r;
1721 }
1722 
1723 static void kvm_commit_memory_region(struct kvm *kvm,
1724 				     struct kvm_memory_slot *old,
1725 				     const struct kvm_memory_slot *new,
1726 				     enum kvm_mr_change change)
1727 {
1728 	int old_flags = old ? old->flags : 0;
1729 	int new_flags = new ? new->flags : 0;
1730 	/*
1731 	 * Update the total number of memslot pages before calling the arch
1732 	 * hook so that architectures can consume the result directly.
1733 	 */
1734 	if (change == KVM_MR_DELETE)
1735 		kvm->nr_memslot_pages -= old->npages;
1736 	else if (change == KVM_MR_CREATE)
1737 		kvm->nr_memslot_pages += new->npages;
1738 
1739 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1740 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1741 		atomic_set(&kvm->nr_memslots_dirty_logging,
1742 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1743 	}
1744 
1745 	kvm_arch_commit_memory_region(kvm, old, new, change);
1746 
1747 	switch (change) {
1748 	case KVM_MR_CREATE:
1749 		/* Nothing more to do. */
1750 		break;
1751 	case KVM_MR_DELETE:
1752 		/* Free the old memslot and all its metadata. */
1753 		kvm_free_memslot(kvm, old);
1754 		break;
1755 	case KVM_MR_MOVE:
1756 	case KVM_MR_FLAGS_ONLY:
1757 		/*
1758 		 * Free the dirty bitmap as needed; the below check encompasses
1759 		 * both the flags and whether a ring buffer is being used)
1760 		 */
1761 		if (old->dirty_bitmap && !new->dirty_bitmap)
1762 			kvm_destroy_dirty_bitmap(old);
1763 
1764 		/*
1765 		 * The final quirk.  Free the detached, old slot, but only its
1766 		 * memory, not any metadata.  Metadata, including arch specific
1767 		 * data, may be reused by @new.
1768 		 */
1769 		kfree(old);
1770 		break;
1771 	default:
1772 		BUG();
1773 	}
1774 }
1775 
1776 /*
1777  * Activate @new, which must be installed in the inactive slots by the caller,
1778  * by swapping the active slots and then propagating @new to @old once @old is
1779  * unreachable and can be safely modified.
1780  *
1781  * With NULL @old this simply adds @new to @active (while swapping the sets).
1782  * With NULL @new this simply removes @old from @active and frees it
1783  * (while also swapping the sets).
1784  */
1785 static void kvm_activate_memslot(struct kvm *kvm,
1786 				 struct kvm_memory_slot *old,
1787 				 struct kvm_memory_slot *new)
1788 {
1789 	int as_id = kvm_memslots_get_as_id(old, new);
1790 
1791 	kvm_swap_active_memslots(kvm, as_id);
1792 
1793 	/* Propagate the new memslot to the now inactive memslots. */
1794 	kvm_replace_memslot(kvm, old, new);
1795 }
1796 
1797 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1798 			     const struct kvm_memory_slot *src)
1799 {
1800 	dest->base_gfn = src->base_gfn;
1801 	dest->npages = src->npages;
1802 	dest->dirty_bitmap = src->dirty_bitmap;
1803 	dest->arch = src->arch;
1804 	dest->userspace_addr = src->userspace_addr;
1805 	dest->flags = src->flags;
1806 	dest->id = src->id;
1807 	dest->as_id = src->as_id;
1808 }
1809 
1810 static void kvm_invalidate_memslot(struct kvm *kvm,
1811 				   struct kvm_memory_slot *old,
1812 				   struct kvm_memory_slot *invalid_slot)
1813 {
1814 	/*
1815 	 * Mark the current slot INVALID.  As with all memslot modifications,
1816 	 * this must be done on an unreachable slot to avoid modifying the
1817 	 * current slot in the active tree.
1818 	 */
1819 	kvm_copy_memslot(invalid_slot, old);
1820 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1821 	kvm_replace_memslot(kvm, old, invalid_slot);
1822 
1823 	/*
1824 	 * Activate the slot that is now marked INVALID, but don't propagate
1825 	 * the slot to the now inactive slots. The slot is either going to be
1826 	 * deleted or recreated as a new slot.
1827 	 */
1828 	kvm_swap_active_memslots(kvm, old->as_id);
1829 
1830 	/*
1831 	 * From this point no new shadow pages pointing to a deleted, or moved,
1832 	 * memslot will be created.  Validation of sp->gfn happens in:
1833 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1834 	 *	- kvm_is_visible_gfn (mmu_check_root)
1835 	 */
1836 	kvm_arch_flush_shadow_memslot(kvm, old);
1837 	kvm_arch_guest_memory_reclaimed(kvm);
1838 
1839 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1840 	mutex_lock(&kvm->slots_arch_lock);
1841 
1842 	/*
1843 	 * Copy the arch-specific field of the newly-installed slot back to the
1844 	 * old slot as the arch data could have changed between releasing
1845 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1846 	 * above.  Writers are required to retrieve memslots *after* acquiring
1847 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1848 	 */
1849 	old->arch = invalid_slot->arch;
1850 }
1851 
1852 static void kvm_create_memslot(struct kvm *kvm,
1853 			       struct kvm_memory_slot *new)
1854 {
1855 	/* Add the new memslot to the inactive set and activate. */
1856 	kvm_replace_memslot(kvm, NULL, new);
1857 	kvm_activate_memslot(kvm, NULL, new);
1858 }
1859 
1860 static void kvm_delete_memslot(struct kvm *kvm,
1861 			       struct kvm_memory_slot *old,
1862 			       struct kvm_memory_slot *invalid_slot)
1863 {
1864 	/*
1865 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1866 	 * the "new" slot, and for the invalid version in the active slots.
1867 	 */
1868 	kvm_replace_memslot(kvm, old, NULL);
1869 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1870 }
1871 
1872 static void kvm_move_memslot(struct kvm *kvm,
1873 			     struct kvm_memory_slot *old,
1874 			     struct kvm_memory_slot *new,
1875 			     struct kvm_memory_slot *invalid_slot)
1876 {
1877 	/*
1878 	 * Replace the old memslot in the inactive slots, and then swap slots
1879 	 * and replace the current INVALID with the new as well.
1880 	 */
1881 	kvm_replace_memslot(kvm, old, new);
1882 	kvm_activate_memslot(kvm, invalid_slot, new);
1883 }
1884 
1885 static void kvm_update_flags_memslot(struct kvm *kvm,
1886 				     struct kvm_memory_slot *old,
1887 				     struct kvm_memory_slot *new)
1888 {
1889 	/*
1890 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1891 	 * an intermediate step. Instead, the old memslot is simply replaced
1892 	 * with a new, updated copy in both memslot sets.
1893 	 */
1894 	kvm_replace_memslot(kvm, old, new);
1895 	kvm_activate_memslot(kvm, old, new);
1896 }
1897 
1898 static int kvm_set_memslot(struct kvm *kvm,
1899 			   struct kvm_memory_slot *old,
1900 			   struct kvm_memory_slot *new,
1901 			   enum kvm_mr_change change)
1902 {
1903 	struct kvm_memory_slot *invalid_slot;
1904 	int r;
1905 
1906 	/*
1907 	 * Released in kvm_swap_active_memslots().
1908 	 *
1909 	 * Must be held from before the current memslots are copied until after
1910 	 * the new memslots are installed with rcu_assign_pointer, then
1911 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1912 	 *
1913 	 * When modifying memslots outside of the slots_lock, must be held
1914 	 * before reading the pointer to the current memslots until after all
1915 	 * changes to those memslots are complete.
1916 	 *
1917 	 * These rules ensure that installing new memslots does not lose
1918 	 * changes made to the previous memslots.
1919 	 */
1920 	mutex_lock(&kvm->slots_arch_lock);
1921 
1922 	/*
1923 	 * Invalidate the old slot if it's being deleted or moved.  This is
1924 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1925 	 * continue running by ensuring there are no mappings or shadow pages
1926 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1927 	 * (and without a lock), a window would exist between effecting the
1928 	 * delete/move and committing the changes in arch code where KVM or a
1929 	 * guest could access a non-existent memslot.
1930 	 *
1931 	 * Modifications are done on a temporary, unreachable slot.  The old
1932 	 * slot needs to be preserved in case a later step fails and the
1933 	 * invalidation needs to be reverted.
1934 	 */
1935 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1936 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1937 		if (!invalid_slot) {
1938 			mutex_unlock(&kvm->slots_arch_lock);
1939 			return -ENOMEM;
1940 		}
1941 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1942 	}
1943 
1944 	r = kvm_prepare_memory_region(kvm, old, new, change);
1945 	if (r) {
1946 		/*
1947 		 * For DELETE/MOVE, revert the above INVALID change.  No
1948 		 * modifications required since the original slot was preserved
1949 		 * in the inactive slots.  Changing the active memslots also
1950 		 * release slots_arch_lock.
1951 		 */
1952 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1953 			kvm_activate_memslot(kvm, invalid_slot, old);
1954 			kfree(invalid_slot);
1955 		} else {
1956 			mutex_unlock(&kvm->slots_arch_lock);
1957 		}
1958 		return r;
1959 	}
1960 
1961 	/*
1962 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1963 	 * version of the old slot.  MOVE is particularly special as it reuses
1964 	 * the old slot and returns a copy of the old slot (in working_slot).
1965 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1966 	 * old slot is detached but otherwise preserved.
1967 	 */
1968 	if (change == KVM_MR_CREATE)
1969 		kvm_create_memslot(kvm, new);
1970 	else if (change == KVM_MR_DELETE)
1971 		kvm_delete_memslot(kvm, old, invalid_slot);
1972 	else if (change == KVM_MR_MOVE)
1973 		kvm_move_memslot(kvm, old, new, invalid_slot);
1974 	else if (change == KVM_MR_FLAGS_ONLY)
1975 		kvm_update_flags_memslot(kvm, old, new);
1976 	else
1977 		BUG();
1978 
1979 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1980 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1981 		kfree(invalid_slot);
1982 
1983 	/*
1984 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1985 	 * will directly hit the final, active memslot.  Architectures are
1986 	 * responsible for knowing that new->arch may be stale.
1987 	 */
1988 	kvm_commit_memory_region(kvm, old, new, change);
1989 
1990 	return 0;
1991 }
1992 
1993 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1994 				      gfn_t start, gfn_t end)
1995 {
1996 	struct kvm_memslot_iter iter;
1997 
1998 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1999 		if (iter.slot->id != id)
2000 			return true;
2001 	}
2002 
2003 	return false;
2004 }
2005 
2006 /*
2007  * Allocate some memory and give it an address in the guest physical address
2008  * space.
2009  *
2010  * Discontiguous memory is allowed, mostly for framebuffers.
2011  *
2012  * Must be called holding kvm->slots_lock for write.
2013  */
2014 int __kvm_set_memory_region(struct kvm *kvm,
2015 			    const struct kvm_userspace_memory_region2 *mem)
2016 {
2017 	struct kvm_memory_slot *old, *new;
2018 	struct kvm_memslots *slots;
2019 	enum kvm_mr_change change;
2020 	unsigned long npages;
2021 	gfn_t base_gfn;
2022 	int as_id, id;
2023 	int r;
2024 
2025 	r = check_memory_region_flags(kvm, mem);
2026 	if (r)
2027 		return r;
2028 
2029 	as_id = mem->slot >> 16;
2030 	id = (u16)mem->slot;
2031 
2032 	/* General sanity checks */
2033 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2034 	    (mem->memory_size != (unsigned long)mem->memory_size))
2035 		return -EINVAL;
2036 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2037 		return -EINVAL;
2038 	/* We can read the guest memory with __xxx_user() later on. */
2039 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2040 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2041 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2042 			mem->memory_size))
2043 		return -EINVAL;
2044 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2045 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2046 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2047 		return -EINVAL;
2048 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2049 		return -EINVAL;
2050 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2051 		return -EINVAL;
2052 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2053 		return -EINVAL;
2054 
2055 	slots = __kvm_memslots(kvm, as_id);
2056 
2057 	/*
2058 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2059 	 * and/or destroyed by kvm_set_memslot().
2060 	 */
2061 	old = id_to_memslot(slots, id);
2062 
2063 	if (!mem->memory_size) {
2064 		if (!old || !old->npages)
2065 			return -EINVAL;
2066 
2067 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2068 			return -EIO;
2069 
2070 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2071 	}
2072 
2073 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2074 	npages = (mem->memory_size >> PAGE_SHIFT);
2075 
2076 	if (!old || !old->npages) {
2077 		change = KVM_MR_CREATE;
2078 
2079 		/*
2080 		 * To simplify KVM internals, the total number of pages across
2081 		 * all memslots must fit in an unsigned long.
2082 		 */
2083 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2084 			return -EINVAL;
2085 	} else { /* Modify an existing slot. */
2086 		/* Private memslots are immutable, they can only be deleted. */
2087 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2088 			return -EINVAL;
2089 		if ((mem->userspace_addr != old->userspace_addr) ||
2090 		    (npages != old->npages) ||
2091 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2092 			return -EINVAL;
2093 
2094 		if (base_gfn != old->base_gfn)
2095 			change = KVM_MR_MOVE;
2096 		else if (mem->flags != old->flags)
2097 			change = KVM_MR_FLAGS_ONLY;
2098 		else /* Nothing to change. */
2099 			return 0;
2100 	}
2101 
2102 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2103 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2104 		return -EEXIST;
2105 
2106 	/* Allocate a slot that will persist in the memslot. */
2107 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2108 	if (!new)
2109 		return -ENOMEM;
2110 
2111 	new->as_id = as_id;
2112 	new->id = id;
2113 	new->base_gfn = base_gfn;
2114 	new->npages = npages;
2115 	new->flags = mem->flags;
2116 	new->userspace_addr = mem->userspace_addr;
2117 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2118 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2119 		if (r)
2120 			goto out;
2121 	}
2122 
2123 	r = kvm_set_memslot(kvm, old, new, change);
2124 	if (r)
2125 		goto out_unbind;
2126 
2127 	return 0;
2128 
2129 out_unbind:
2130 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2131 		kvm_gmem_unbind(new);
2132 out:
2133 	kfree(new);
2134 	return r;
2135 }
2136 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2137 
2138 int kvm_set_memory_region(struct kvm *kvm,
2139 			  const struct kvm_userspace_memory_region2 *mem)
2140 {
2141 	int r;
2142 
2143 	mutex_lock(&kvm->slots_lock);
2144 	r = __kvm_set_memory_region(kvm, mem);
2145 	mutex_unlock(&kvm->slots_lock);
2146 	return r;
2147 }
2148 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2149 
2150 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2151 					  struct kvm_userspace_memory_region2 *mem)
2152 {
2153 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2154 		return -EINVAL;
2155 
2156 	return kvm_set_memory_region(kvm, mem);
2157 }
2158 
2159 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2160 /**
2161  * kvm_get_dirty_log - get a snapshot of dirty pages
2162  * @kvm:	pointer to kvm instance
2163  * @log:	slot id and address to which we copy the log
2164  * @is_dirty:	set to '1' if any dirty pages were found
2165  * @memslot:	set to the associated memslot, always valid on success
2166  */
2167 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2168 		      int *is_dirty, struct kvm_memory_slot **memslot)
2169 {
2170 	struct kvm_memslots *slots;
2171 	int i, as_id, id;
2172 	unsigned long n;
2173 	unsigned long any = 0;
2174 
2175 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2176 	if (!kvm_use_dirty_bitmap(kvm))
2177 		return -ENXIO;
2178 
2179 	*memslot = NULL;
2180 	*is_dirty = 0;
2181 
2182 	as_id = log->slot >> 16;
2183 	id = (u16)log->slot;
2184 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2185 		return -EINVAL;
2186 
2187 	slots = __kvm_memslots(kvm, as_id);
2188 	*memslot = id_to_memslot(slots, id);
2189 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2190 		return -ENOENT;
2191 
2192 	kvm_arch_sync_dirty_log(kvm, *memslot);
2193 
2194 	n = kvm_dirty_bitmap_bytes(*memslot);
2195 
2196 	for (i = 0; !any && i < n/sizeof(long); ++i)
2197 		any = (*memslot)->dirty_bitmap[i];
2198 
2199 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2200 		return -EFAULT;
2201 
2202 	if (any)
2203 		*is_dirty = 1;
2204 	return 0;
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2207 
2208 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2209 /**
2210  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2211  *	and reenable dirty page tracking for the corresponding pages.
2212  * @kvm:	pointer to kvm instance
2213  * @log:	slot id and address to which we copy the log
2214  *
2215  * We need to keep it in mind that VCPU threads can write to the bitmap
2216  * concurrently. So, to avoid losing track of dirty pages we keep the
2217  * following order:
2218  *
2219  *    1. Take a snapshot of the bit and clear it if needed.
2220  *    2. Write protect the corresponding page.
2221  *    3. Copy the snapshot to the userspace.
2222  *    4. Upon return caller flushes TLB's if needed.
2223  *
2224  * Between 2 and 4, the guest may write to the page using the remaining TLB
2225  * entry.  This is not a problem because the page is reported dirty using
2226  * the snapshot taken before and step 4 ensures that writes done after
2227  * exiting to userspace will be logged for the next call.
2228  *
2229  */
2230 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2231 {
2232 	struct kvm_memslots *slots;
2233 	struct kvm_memory_slot *memslot;
2234 	int i, as_id, id;
2235 	unsigned long n;
2236 	unsigned long *dirty_bitmap;
2237 	unsigned long *dirty_bitmap_buffer;
2238 	bool flush;
2239 
2240 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2241 	if (!kvm_use_dirty_bitmap(kvm))
2242 		return -ENXIO;
2243 
2244 	as_id = log->slot >> 16;
2245 	id = (u16)log->slot;
2246 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2247 		return -EINVAL;
2248 
2249 	slots = __kvm_memslots(kvm, as_id);
2250 	memslot = id_to_memslot(slots, id);
2251 	if (!memslot || !memslot->dirty_bitmap)
2252 		return -ENOENT;
2253 
2254 	dirty_bitmap = memslot->dirty_bitmap;
2255 
2256 	kvm_arch_sync_dirty_log(kvm, memslot);
2257 
2258 	n = kvm_dirty_bitmap_bytes(memslot);
2259 	flush = false;
2260 	if (kvm->manual_dirty_log_protect) {
2261 		/*
2262 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2263 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2264 		 * is some code duplication between this function and
2265 		 * kvm_get_dirty_log, but hopefully all architecture
2266 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2267 		 * can be eliminated.
2268 		 */
2269 		dirty_bitmap_buffer = dirty_bitmap;
2270 	} else {
2271 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2272 		memset(dirty_bitmap_buffer, 0, n);
2273 
2274 		KVM_MMU_LOCK(kvm);
2275 		for (i = 0; i < n / sizeof(long); i++) {
2276 			unsigned long mask;
2277 			gfn_t offset;
2278 
2279 			if (!dirty_bitmap[i])
2280 				continue;
2281 
2282 			flush = true;
2283 			mask = xchg(&dirty_bitmap[i], 0);
2284 			dirty_bitmap_buffer[i] = mask;
2285 
2286 			offset = i * BITS_PER_LONG;
2287 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2288 								offset, mask);
2289 		}
2290 		KVM_MMU_UNLOCK(kvm);
2291 	}
2292 
2293 	if (flush)
2294 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2295 
2296 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2297 		return -EFAULT;
2298 	return 0;
2299 }
2300 
2301 
2302 /**
2303  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2304  * @kvm: kvm instance
2305  * @log: slot id and address to which we copy the log
2306  *
2307  * Steps 1-4 below provide general overview of dirty page logging. See
2308  * kvm_get_dirty_log_protect() function description for additional details.
2309  *
2310  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2311  * always flush the TLB (step 4) even if previous step failed  and the dirty
2312  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2313  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2314  * writes will be marked dirty for next log read.
2315  *
2316  *   1. Take a snapshot of the bit and clear it if needed.
2317  *   2. Write protect the corresponding page.
2318  *   3. Copy the snapshot to the userspace.
2319  *   4. Flush TLB's if needed.
2320  */
2321 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2322 				      struct kvm_dirty_log *log)
2323 {
2324 	int r;
2325 
2326 	mutex_lock(&kvm->slots_lock);
2327 
2328 	r = kvm_get_dirty_log_protect(kvm, log);
2329 
2330 	mutex_unlock(&kvm->slots_lock);
2331 	return r;
2332 }
2333 
2334 /**
2335  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2336  *	and reenable dirty page tracking for the corresponding pages.
2337  * @kvm:	pointer to kvm instance
2338  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2339  */
2340 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2341 				       struct kvm_clear_dirty_log *log)
2342 {
2343 	struct kvm_memslots *slots;
2344 	struct kvm_memory_slot *memslot;
2345 	int as_id, id;
2346 	gfn_t offset;
2347 	unsigned long i, n;
2348 	unsigned long *dirty_bitmap;
2349 	unsigned long *dirty_bitmap_buffer;
2350 	bool flush;
2351 
2352 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2353 	if (!kvm_use_dirty_bitmap(kvm))
2354 		return -ENXIO;
2355 
2356 	as_id = log->slot >> 16;
2357 	id = (u16)log->slot;
2358 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2359 		return -EINVAL;
2360 
2361 	if (log->first_page & 63)
2362 		return -EINVAL;
2363 
2364 	slots = __kvm_memslots(kvm, as_id);
2365 	memslot = id_to_memslot(slots, id);
2366 	if (!memslot || !memslot->dirty_bitmap)
2367 		return -ENOENT;
2368 
2369 	dirty_bitmap = memslot->dirty_bitmap;
2370 
2371 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2372 
2373 	if (log->first_page > memslot->npages ||
2374 	    log->num_pages > memslot->npages - log->first_page ||
2375 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2376 	    return -EINVAL;
2377 
2378 	kvm_arch_sync_dirty_log(kvm, memslot);
2379 
2380 	flush = false;
2381 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2382 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2383 		return -EFAULT;
2384 
2385 	KVM_MMU_LOCK(kvm);
2386 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2387 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2388 	     i++, offset += BITS_PER_LONG) {
2389 		unsigned long mask = *dirty_bitmap_buffer++;
2390 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2391 		if (!mask)
2392 			continue;
2393 
2394 		mask &= atomic_long_fetch_andnot(mask, p);
2395 
2396 		/*
2397 		 * mask contains the bits that really have been cleared.  This
2398 		 * never includes any bits beyond the length of the memslot (if
2399 		 * the length is not aligned to 64 pages), therefore it is not
2400 		 * a problem if userspace sets them in log->dirty_bitmap.
2401 		*/
2402 		if (mask) {
2403 			flush = true;
2404 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2405 								offset, mask);
2406 		}
2407 	}
2408 	KVM_MMU_UNLOCK(kvm);
2409 
2410 	if (flush)
2411 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2412 
2413 	return 0;
2414 }
2415 
2416 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2417 					struct kvm_clear_dirty_log *log)
2418 {
2419 	int r;
2420 
2421 	mutex_lock(&kvm->slots_lock);
2422 
2423 	r = kvm_clear_dirty_log_protect(kvm, log);
2424 
2425 	mutex_unlock(&kvm->slots_lock);
2426 	return r;
2427 }
2428 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2429 
2430 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2431 /*
2432  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2433  * matching @attrs.
2434  */
2435 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2436 				     unsigned long attrs)
2437 {
2438 	XA_STATE(xas, &kvm->mem_attr_array, start);
2439 	unsigned long index;
2440 	bool has_attrs;
2441 	void *entry;
2442 
2443 	rcu_read_lock();
2444 
2445 	if (!attrs) {
2446 		has_attrs = !xas_find(&xas, end - 1);
2447 		goto out;
2448 	}
2449 
2450 	has_attrs = true;
2451 	for (index = start; index < end; index++) {
2452 		do {
2453 			entry = xas_next(&xas);
2454 		} while (xas_retry(&xas, entry));
2455 
2456 		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2457 			has_attrs = false;
2458 			break;
2459 		}
2460 	}
2461 
2462 out:
2463 	rcu_read_unlock();
2464 	return has_attrs;
2465 }
2466 
2467 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2468 {
2469 	if (!kvm || kvm_arch_has_private_mem(kvm))
2470 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2471 
2472 	return 0;
2473 }
2474 
2475 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2476 						 struct kvm_mmu_notifier_range *range)
2477 {
2478 	struct kvm_gfn_range gfn_range;
2479 	struct kvm_memory_slot *slot;
2480 	struct kvm_memslots *slots;
2481 	struct kvm_memslot_iter iter;
2482 	bool found_memslot = false;
2483 	bool ret = false;
2484 	int i;
2485 
2486 	gfn_range.arg = range->arg;
2487 	gfn_range.may_block = range->may_block;
2488 
2489 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2490 		slots = __kvm_memslots(kvm, i);
2491 
2492 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2493 			slot = iter.slot;
2494 			gfn_range.slot = slot;
2495 
2496 			gfn_range.start = max(range->start, slot->base_gfn);
2497 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2498 			if (gfn_range.start >= gfn_range.end)
2499 				continue;
2500 
2501 			if (!found_memslot) {
2502 				found_memslot = true;
2503 				KVM_MMU_LOCK(kvm);
2504 				if (!IS_KVM_NULL_FN(range->on_lock))
2505 					range->on_lock(kvm);
2506 			}
2507 
2508 			ret |= range->handler(kvm, &gfn_range);
2509 		}
2510 	}
2511 
2512 	if (range->flush_on_ret && ret)
2513 		kvm_flush_remote_tlbs(kvm);
2514 
2515 	if (found_memslot)
2516 		KVM_MMU_UNLOCK(kvm);
2517 }
2518 
2519 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2520 					  struct kvm_gfn_range *range)
2521 {
2522 	/*
2523 	 * Unconditionally add the range to the invalidation set, regardless of
2524 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2525 	 * if KVM supports RWX attributes in the future and the attributes are
2526 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2527 	 * adding the range allows KVM to require that MMU invalidations add at
2528 	 * least one range between begin() and end(), e.g. allows KVM to detect
2529 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2530 	 * but it's not obvious that allowing new mappings while the attributes
2531 	 * are in flux is desirable or worth the complexity.
2532 	 */
2533 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2534 
2535 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2536 }
2537 
2538 /* Set @attributes for the gfn range [@start, @end). */
2539 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2540 				     unsigned long attributes)
2541 {
2542 	struct kvm_mmu_notifier_range pre_set_range = {
2543 		.start = start,
2544 		.end = end,
2545 		.handler = kvm_pre_set_memory_attributes,
2546 		.on_lock = kvm_mmu_invalidate_begin,
2547 		.flush_on_ret = true,
2548 		.may_block = true,
2549 	};
2550 	struct kvm_mmu_notifier_range post_set_range = {
2551 		.start = start,
2552 		.end = end,
2553 		.arg.attributes = attributes,
2554 		.handler = kvm_arch_post_set_memory_attributes,
2555 		.on_lock = kvm_mmu_invalidate_end,
2556 		.may_block = true,
2557 	};
2558 	unsigned long i;
2559 	void *entry;
2560 	int r = 0;
2561 
2562 	entry = attributes ? xa_mk_value(attributes) : NULL;
2563 
2564 	mutex_lock(&kvm->slots_lock);
2565 
2566 	/* Nothing to do if the entire range as the desired attributes. */
2567 	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2568 		goto out_unlock;
2569 
2570 	/*
2571 	 * Reserve memory ahead of time to avoid having to deal with failures
2572 	 * partway through setting the new attributes.
2573 	 */
2574 	for (i = start; i < end; i++) {
2575 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2576 		if (r)
2577 			goto out_unlock;
2578 	}
2579 
2580 	kvm_handle_gfn_range(kvm, &pre_set_range);
2581 
2582 	for (i = start; i < end; i++) {
2583 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2584 				    GFP_KERNEL_ACCOUNT));
2585 		KVM_BUG_ON(r, kvm);
2586 	}
2587 
2588 	kvm_handle_gfn_range(kvm, &post_set_range);
2589 
2590 out_unlock:
2591 	mutex_unlock(&kvm->slots_lock);
2592 
2593 	return r;
2594 }
2595 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2596 					   struct kvm_memory_attributes *attrs)
2597 {
2598 	gfn_t start, end;
2599 
2600 	/* flags is currently not used. */
2601 	if (attrs->flags)
2602 		return -EINVAL;
2603 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2604 		return -EINVAL;
2605 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2606 		return -EINVAL;
2607 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2608 		return -EINVAL;
2609 
2610 	start = attrs->address >> PAGE_SHIFT;
2611 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2612 
2613 	/*
2614 	 * xarray tracks data using "unsigned long", and as a result so does
2615 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2616 	 * architectures.
2617 	 */
2618 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2619 
2620 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2621 }
2622 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2623 
2624 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2625 {
2626 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2627 }
2628 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2629 
2630 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2631 {
2632 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2633 	u64 gen = slots->generation;
2634 	struct kvm_memory_slot *slot;
2635 
2636 	/*
2637 	 * This also protects against using a memslot from a different address space,
2638 	 * since different address spaces have different generation numbers.
2639 	 */
2640 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2641 		vcpu->last_used_slot = NULL;
2642 		vcpu->last_used_slot_gen = gen;
2643 	}
2644 
2645 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2646 	if (slot)
2647 		return slot;
2648 
2649 	/*
2650 	 * Fall back to searching all memslots. We purposely use
2651 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2652 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2653 	 */
2654 	slot = search_memslots(slots, gfn, false);
2655 	if (slot) {
2656 		vcpu->last_used_slot = slot;
2657 		return slot;
2658 	}
2659 
2660 	return NULL;
2661 }
2662 
2663 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2664 {
2665 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2666 
2667 	return kvm_is_visible_memslot(memslot);
2668 }
2669 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2670 
2671 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2672 {
2673 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2674 
2675 	return kvm_is_visible_memslot(memslot);
2676 }
2677 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2678 
2679 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2680 {
2681 	struct vm_area_struct *vma;
2682 	unsigned long addr, size;
2683 
2684 	size = PAGE_SIZE;
2685 
2686 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2687 	if (kvm_is_error_hva(addr))
2688 		return PAGE_SIZE;
2689 
2690 	mmap_read_lock(current->mm);
2691 	vma = find_vma(current->mm, addr);
2692 	if (!vma)
2693 		goto out;
2694 
2695 	size = vma_kernel_pagesize(vma);
2696 
2697 out:
2698 	mmap_read_unlock(current->mm);
2699 
2700 	return size;
2701 }
2702 
2703 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2704 {
2705 	return slot->flags & KVM_MEM_READONLY;
2706 }
2707 
2708 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2709 				       gfn_t *nr_pages, bool write)
2710 {
2711 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2712 		return KVM_HVA_ERR_BAD;
2713 
2714 	if (memslot_is_readonly(slot) && write)
2715 		return KVM_HVA_ERR_RO_BAD;
2716 
2717 	if (nr_pages)
2718 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2719 
2720 	return __gfn_to_hva_memslot(slot, gfn);
2721 }
2722 
2723 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2724 				     gfn_t *nr_pages)
2725 {
2726 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2727 }
2728 
2729 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2730 					gfn_t gfn)
2731 {
2732 	return gfn_to_hva_many(slot, gfn, NULL);
2733 }
2734 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2735 
2736 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2737 {
2738 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2739 }
2740 EXPORT_SYMBOL_GPL(gfn_to_hva);
2741 
2742 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2743 {
2744 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2747 
2748 /*
2749  * Return the hva of a @gfn and the R/W attribute if possible.
2750  *
2751  * @slot: the kvm_memory_slot which contains @gfn
2752  * @gfn: the gfn to be translated
2753  * @writable: used to return the read/write attribute of the @slot if the hva
2754  * is valid and @writable is not NULL
2755  */
2756 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2757 				      gfn_t gfn, bool *writable)
2758 {
2759 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2760 
2761 	if (!kvm_is_error_hva(hva) && writable)
2762 		*writable = !memslot_is_readonly(slot);
2763 
2764 	return hva;
2765 }
2766 
2767 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2768 {
2769 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2770 
2771 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2772 }
2773 
2774 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2775 {
2776 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2777 
2778 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2779 }
2780 
2781 static inline int check_user_page_hwpoison(unsigned long addr)
2782 {
2783 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2784 
2785 	rc = get_user_pages(addr, 1, flags, NULL);
2786 	return rc == -EHWPOISON;
2787 }
2788 
2789 /*
2790  * The fast path to get the writable pfn which will be stored in @pfn,
2791  * true indicates success, otherwise false is returned.  It's also the
2792  * only part that runs if we can in atomic context.
2793  */
2794 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2795 			    bool *writable, kvm_pfn_t *pfn)
2796 {
2797 	struct page *page[1];
2798 
2799 	/*
2800 	 * Fast pin a writable pfn only if it is a write fault request
2801 	 * or the caller allows to map a writable pfn for a read fault
2802 	 * request.
2803 	 */
2804 	if (!(write_fault || writable))
2805 		return false;
2806 
2807 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2808 		*pfn = page_to_pfn(page[0]);
2809 
2810 		if (writable)
2811 			*writable = true;
2812 		return true;
2813 	}
2814 
2815 	return false;
2816 }
2817 
2818 /*
2819  * The slow path to get the pfn of the specified host virtual address,
2820  * 1 indicates success, -errno is returned if error is detected.
2821  */
2822 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2823 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2824 {
2825 	/*
2826 	 * When a VCPU accesses a page that is not mapped into the secondary
2827 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2828 	 * make progress. We always want to honor NUMA hinting faults in that
2829 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2830 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2831 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2832 	 *
2833 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2834 	 * implicitly honor NUMA hinting faults and don't need this flag.
2835 	 */
2836 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2837 	struct page *page;
2838 	int npages;
2839 
2840 	might_sleep();
2841 
2842 	if (writable)
2843 		*writable = write_fault;
2844 
2845 	if (write_fault)
2846 		flags |= FOLL_WRITE;
2847 	if (async)
2848 		flags |= FOLL_NOWAIT;
2849 	if (interruptible)
2850 		flags |= FOLL_INTERRUPTIBLE;
2851 
2852 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2853 	if (npages != 1)
2854 		return npages;
2855 
2856 	/* map read fault as writable if possible */
2857 	if (unlikely(!write_fault) && writable) {
2858 		struct page *wpage;
2859 
2860 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2861 			*writable = true;
2862 			put_page(page);
2863 			page = wpage;
2864 		}
2865 	}
2866 	*pfn = page_to_pfn(page);
2867 	return npages;
2868 }
2869 
2870 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2871 {
2872 	if (unlikely(!(vma->vm_flags & VM_READ)))
2873 		return false;
2874 
2875 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2876 		return false;
2877 
2878 	return true;
2879 }
2880 
2881 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2882 {
2883 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2884 
2885 	if (!page)
2886 		return 1;
2887 
2888 	return get_page_unless_zero(page);
2889 }
2890 
2891 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2892 			       unsigned long addr, bool write_fault,
2893 			       bool *writable, kvm_pfn_t *p_pfn)
2894 {
2895 	kvm_pfn_t pfn;
2896 	pte_t *ptep;
2897 	pte_t pte;
2898 	spinlock_t *ptl;
2899 	int r;
2900 
2901 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2902 	if (r) {
2903 		/*
2904 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2905 		 * not call the fault handler, so do it here.
2906 		 */
2907 		bool unlocked = false;
2908 		r = fixup_user_fault(current->mm, addr,
2909 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2910 				     &unlocked);
2911 		if (unlocked)
2912 			return -EAGAIN;
2913 		if (r)
2914 			return r;
2915 
2916 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2917 		if (r)
2918 			return r;
2919 	}
2920 
2921 	pte = ptep_get(ptep);
2922 
2923 	if (write_fault && !pte_write(pte)) {
2924 		pfn = KVM_PFN_ERR_RO_FAULT;
2925 		goto out;
2926 	}
2927 
2928 	if (writable)
2929 		*writable = pte_write(pte);
2930 	pfn = pte_pfn(pte);
2931 
2932 	/*
2933 	 * Get a reference here because callers of *hva_to_pfn* and
2934 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2935 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2936 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2937 	 * simply do nothing for reserved pfns.
2938 	 *
2939 	 * Whoever called remap_pfn_range is also going to call e.g.
2940 	 * unmap_mapping_range before the underlying pages are freed,
2941 	 * causing a call to our MMU notifier.
2942 	 *
2943 	 * Certain IO or PFNMAP mappings can be backed with valid
2944 	 * struct pages, but be allocated without refcounting e.g.,
2945 	 * tail pages of non-compound higher order allocations, which
2946 	 * would then underflow the refcount when the caller does the
2947 	 * required put_page. Don't allow those pages here.
2948 	 */
2949 	if (!kvm_try_get_pfn(pfn))
2950 		r = -EFAULT;
2951 
2952 out:
2953 	pte_unmap_unlock(ptep, ptl);
2954 	*p_pfn = pfn;
2955 
2956 	return r;
2957 }
2958 
2959 /*
2960  * Pin guest page in memory and return its pfn.
2961  * @addr: host virtual address which maps memory to the guest
2962  * @atomic: whether this function can sleep
2963  * @interruptible: whether the process can be interrupted by non-fatal signals
2964  * @async: whether this function need to wait IO complete if the
2965  *         host page is not in the memory
2966  * @write_fault: whether we should get a writable host page
2967  * @writable: whether it allows to map a writable host page for !@write_fault
2968  *
2969  * The function will map a writable host page for these two cases:
2970  * 1): @write_fault = true
2971  * 2): @write_fault = false && @writable, @writable will tell the caller
2972  *     whether the mapping is writable.
2973  */
2974 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2975 		     bool *async, bool write_fault, bool *writable)
2976 {
2977 	struct vm_area_struct *vma;
2978 	kvm_pfn_t pfn;
2979 	int npages, r;
2980 
2981 	/* we can do it either atomically or asynchronously, not both */
2982 	BUG_ON(atomic && async);
2983 
2984 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2985 		return pfn;
2986 
2987 	if (atomic)
2988 		return KVM_PFN_ERR_FAULT;
2989 
2990 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2991 				 writable, &pfn);
2992 	if (npages == 1)
2993 		return pfn;
2994 	if (npages == -EINTR)
2995 		return KVM_PFN_ERR_SIGPENDING;
2996 
2997 	mmap_read_lock(current->mm);
2998 	if (npages == -EHWPOISON ||
2999 	      (!async && check_user_page_hwpoison(addr))) {
3000 		pfn = KVM_PFN_ERR_HWPOISON;
3001 		goto exit;
3002 	}
3003 
3004 retry:
3005 	vma = vma_lookup(current->mm, addr);
3006 
3007 	if (vma == NULL)
3008 		pfn = KVM_PFN_ERR_FAULT;
3009 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3010 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3011 		if (r == -EAGAIN)
3012 			goto retry;
3013 		if (r < 0)
3014 			pfn = KVM_PFN_ERR_FAULT;
3015 	} else {
3016 		if (async && vma_is_valid(vma, write_fault))
3017 			*async = true;
3018 		pfn = KVM_PFN_ERR_FAULT;
3019 	}
3020 exit:
3021 	mmap_read_unlock(current->mm);
3022 	return pfn;
3023 }
3024 
3025 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3026 			       bool atomic, bool interruptible, bool *async,
3027 			       bool write_fault, bool *writable, hva_t *hva)
3028 {
3029 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3030 
3031 	if (hva)
3032 		*hva = addr;
3033 
3034 	if (addr == KVM_HVA_ERR_RO_BAD) {
3035 		if (writable)
3036 			*writable = false;
3037 		return KVM_PFN_ERR_RO_FAULT;
3038 	}
3039 
3040 	if (kvm_is_error_hva(addr)) {
3041 		if (writable)
3042 			*writable = false;
3043 		return KVM_PFN_NOSLOT;
3044 	}
3045 
3046 	/* Do not map writable pfn in the readonly memslot. */
3047 	if (writable && memslot_is_readonly(slot)) {
3048 		*writable = false;
3049 		writable = NULL;
3050 	}
3051 
3052 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3053 			  writable);
3054 }
3055 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3056 
3057 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3058 		      bool *writable)
3059 {
3060 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3061 				    NULL, write_fault, writable, NULL);
3062 }
3063 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3064 
3065 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3066 {
3067 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3068 				    NULL, NULL);
3069 }
3070 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3071 
3072 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3073 {
3074 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3075 				    NULL, NULL);
3076 }
3077 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3078 
3079 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3080 {
3081 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3082 }
3083 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3084 
3085 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3086 {
3087 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3088 }
3089 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3090 
3091 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3092 {
3093 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3094 }
3095 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3096 
3097 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3098 			    struct page **pages, int nr_pages)
3099 {
3100 	unsigned long addr;
3101 	gfn_t entry = 0;
3102 
3103 	addr = gfn_to_hva_many(slot, gfn, &entry);
3104 	if (kvm_is_error_hva(addr))
3105 		return -1;
3106 
3107 	if (entry < nr_pages)
3108 		return 0;
3109 
3110 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3111 }
3112 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3113 
3114 /*
3115  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3116  * backed by 'struct page'.  A valid example is if the backing memslot is
3117  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3118  * been elevated by gfn_to_pfn().
3119  */
3120 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3121 {
3122 	struct page *page;
3123 	kvm_pfn_t pfn;
3124 
3125 	pfn = gfn_to_pfn(kvm, gfn);
3126 
3127 	if (is_error_noslot_pfn(pfn))
3128 		return KVM_ERR_PTR_BAD_PAGE;
3129 
3130 	page = kvm_pfn_to_refcounted_page(pfn);
3131 	if (!page)
3132 		return KVM_ERR_PTR_BAD_PAGE;
3133 
3134 	return page;
3135 }
3136 EXPORT_SYMBOL_GPL(gfn_to_page);
3137 
3138 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3139 {
3140 	if (dirty)
3141 		kvm_release_pfn_dirty(pfn);
3142 	else
3143 		kvm_release_pfn_clean(pfn);
3144 }
3145 
3146 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3147 {
3148 	kvm_pfn_t pfn;
3149 	void *hva = NULL;
3150 	struct page *page = KVM_UNMAPPED_PAGE;
3151 
3152 	if (!map)
3153 		return -EINVAL;
3154 
3155 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3156 	if (is_error_noslot_pfn(pfn))
3157 		return -EINVAL;
3158 
3159 	if (pfn_valid(pfn)) {
3160 		page = pfn_to_page(pfn);
3161 		hva = kmap(page);
3162 #ifdef CONFIG_HAS_IOMEM
3163 	} else {
3164 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3165 #endif
3166 	}
3167 
3168 	if (!hva)
3169 		return -EFAULT;
3170 
3171 	map->page = page;
3172 	map->hva = hva;
3173 	map->pfn = pfn;
3174 	map->gfn = gfn;
3175 
3176 	return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3179 
3180 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3181 {
3182 	if (!map)
3183 		return;
3184 
3185 	if (!map->hva)
3186 		return;
3187 
3188 	if (map->page != KVM_UNMAPPED_PAGE)
3189 		kunmap(map->page);
3190 #ifdef CONFIG_HAS_IOMEM
3191 	else
3192 		memunmap(map->hva);
3193 #endif
3194 
3195 	if (dirty)
3196 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3197 
3198 	kvm_release_pfn(map->pfn, dirty);
3199 
3200 	map->hva = NULL;
3201 	map->page = NULL;
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3204 
3205 static bool kvm_is_ad_tracked_page(struct page *page)
3206 {
3207 	/*
3208 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3209 	 * touched (e.g. set dirty) except by its owner".
3210 	 */
3211 	return !PageReserved(page);
3212 }
3213 
3214 static void kvm_set_page_dirty(struct page *page)
3215 {
3216 	if (kvm_is_ad_tracked_page(page))
3217 		SetPageDirty(page);
3218 }
3219 
3220 static void kvm_set_page_accessed(struct page *page)
3221 {
3222 	if (kvm_is_ad_tracked_page(page))
3223 		mark_page_accessed(page);
3224 }
3225 
3226 void kvm_release_page_clean(struct page *page)
3227 {
3228 	WARN_ON(is_error_page(page));
3229 
3230 	kvm_set_page_accessed(page);
3231 	put_page(page);
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3234 
3235 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3236 {
3237 	struct page *page;
3238 
3239 	if (is_error_noslot_pfn(pfn))
3240 		return;
3241 
3242 	page = kvm_pfn_to_refcounted_page(pfn);
3243 	if (!page)
3244 		return;
3245 
3246 	kvm_release_page_clean(page);
3247 }
3248 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3249 
3250 void kvm_release_page_dirty(struct page *page)
3251 {
3252 	WARN_ON(is_error_page(page));
3253 
3254 	kvm_set_page_dirty(page);
3255 	kvm_release_page_clean(page);
3256 }
3257 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3258 
3259 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3260 {
3261 	struct page *page;
3262 
3263 	if (is_error_noslot_pfn(pfn))
3264 		return;
3265 
3266 	page = kvm_pfn_to_refcounted_page(pfn);
3267 	if (!page)
3268 		return;
3269 
3270 	kvm_release_page_dirty(page);
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3273 
3274 /*
3275  * Note, checking for an error/noslot pfn is the caller's responsibility when
3276  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3277  * "set" helpers are not to be used when the pfn might point at garbage.
3278  */
3279 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3280 {
3281 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3282 		return;
3283 
3284 	if (pfn_valid(pfn))
3285 		kvm_set_page_dirty(pfn_to_page(pfn));
3286 }
3287 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3288 
3289 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3290 {
3291 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3292 		return;
3293 
3294 	if (pfn_valid(pfn))
3295 		kvm_set_page_accessed(pfn_to_page(pfn));
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3298 
3299 static int next_segment(unsigned long len, int offset)
3300 {
3301 	if (len > PAGE_SIZE - offset)
3302 		return PAGE_SIZE - offset;
3303 	else
3304 		return len;
3305 }
3306 
3307 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3308 				 void *data, int offset, int len)
3309 {
3310 	int r;
3311 	unsigned long addr;
3312 
3313 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3314 	if (kvm_is_error_hva(addr))
3315 		return -EFAULT;
3316 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3317 	if (r)
3318 		return -EFAULT;
3319 	return 0;
3320 }
3321 
3322 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3323 			int len)
3324 {
3325 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3326 
3327 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3328 }
3329 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3330 
3331 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3332 			     int offset, int len)
3333 {
3334 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3335 
3336 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3337 }
3338 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3339 
3340 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3341 {
3342 	gfn_t gfn = gpa >> PAGE_SHIFT;
3343 	int seg;
3344 	int offset = offset_in_page(gpa);
3345 	int ret;
3346 
3347 	while ((seg = next_segment(len, offset)) != 0) {
3348 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3349 		if (ret < 0)
3350 			return ret;
3351 		offset = 0;
3352 		len -= seg;
3353 		data += seg;
3354 		++gfn;
3355 	}
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL_GPL(kvm_read_guest);
3359 
3360 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3361 {
3362 	gfn_t gfn = gpa >> PAGE_SHIFT;
3363 	int seg;
3364 	int offset = offset_in_page(gpa);
3365 	int ret;
3366 
3367 	while ((seg = next_segment(len, offset)) != 0) {
3368 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3369 		if (ret < 0)
3370 			return ret;
3371 		offset = 0;
3372 		len -= seg;
3373 		data += seg;
3374 		++gfn;
3375 	}
3376 	return 0;
3377 }
3378 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3379 
3380 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3381 			           void *data, int offset, unsigned long len)
3382 {
3383 	int r;
3384 	unsigned long addr;
3385 
3386 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3387 	if (kvm_is_error_hva(addr))
3388 		return -EFAULT;
3389 	pagefault_disable();
3390 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3391 	pagefault_enable();
3392 	if (r)
3393 		return -EFAULT;
3394 	return 0;
3395 }
3396 
3397 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3398 			       void *data, unsigned long len)
3399 {
3400 	gfn_t gfn = gpa >> PAGE_SHIFT;
3401 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3402 	int offset = offset_in_page(gpa);
3403 
3404 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3405 }
3406 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3407 
3408 static int __kvm_write_guest_page(struct kvm *kvm,
3409 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3410 			          const void *data, int offset, int len)
3411 {
3412 	int r;
3413 	unsigned long addr;
3414 
3415 	addr = gfn_to_hva_memslot(memslot, gfn);
3416 	if (kvm_is_error_hva(addr))
3417 		return -EFAULT;
3418 	r = __copy_to_user((void __user *)addr + offset, data, len);
3419 	if (r)
3420 		return -EFAULT;
3421 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3422 	return 0;
3423 }
3424 
3425 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3426 			 const void *data, int offset, int len)
3427 {
3428 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3429 
3430 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3431 }
3432 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3433 
3434 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3435 			      const void *data, int offset, int len)
3436 {
3437 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3438 
3439 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3440 }
3441 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3442 
3443 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3444 		    unsigned long len)
3445 {
3446 	gfn_t gfn = gpa >> PAGE_SHIFT;
3447 	int seg;
3448 	int offset = offset_in_page(gpa);
3449 	int ret;
3450 
3451 	while ((seg = next_segment(len, offset)) != 0) {
3452 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3453 		if (ret < 0)
3454 			return ret;
3455 		offset = 0;
3456 		len -= seg;
3457 		data += seg;
3458 		++gfn;
3459 	}
3460 	return 0;
3461 }
3462 EXPORT_SYMBOL_GPL(kvm_write_guest);
3463 
3464 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3465 		         unsigned long len)
3466 {
3467 	gfn_t gfn = gpa >> PAGE_SHIFT;
3468 	int seg;
3469 	int offset = offset_in_page(gpa);
3470 	int ret;
3471 
3472 	while ((seg = next_segment(len, offset)) != 0) {
3473 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3474 		if (ret < 0)
3475 			return ret;
3476 		offset = 0;
3477 		len -= seg;
3478 		data += seg;
3479 		++gfn;
3480 	}
3481 	return 0;
3482 }
3483 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3484 
3485 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3486 				       struct gfn_to_hva_cache *ghc,
3487 				       gpa_t gpa, unsigned long len)
3488 {
3489 	int offset = offset_in_page(gpa);
3490 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3491 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3492 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3493 	gfn_t nr_pages_avail;
3494 
3495 	/* Update ghc->generation before performing any error checks. */
3496 	ghc->generation = slots->generation;
3497 
3498 	if (start_gfn > end_gfn) {
3499 		ghc->hva = KVM_HVA_ERR_BAD;
3500 		return -EINVAL;
3501 	}
3502 
3503 	/*
3504 	 * If the requested region crosses two memslots, we still
3505 	 * verify that the entire region is valid here.
3506 	 */
3507 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3508 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3509 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3510 					   &nr_pages_avail);
3511 		if (kvm_is_error_hva(ghc->hva))
3512 			return -EFAULT;
3513 	}
3514 
3515 	/* Use the slow path for cross page reads and writes. */
3516 	if (nr_pages_needed == 1)
3517 		ghc->hva += offset;
3518 	else
3519 		ghc->memslot = NULL;
3520 
3521 	ghc->gpa = gpa;
3522 	ghc->len = len;
3523 	return 0;
3524 }
3525 
3526 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3527 			      gpa_t gpa, unsigned long len)
3528 {
3529 	struct kvm_memslots *slots = kvm_memslots(kvm);
3530 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3533 
3534 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3535 				  void *data, unsigned int offset,
3536 				  unsigned long len)
3537 {
3538 	struct kvm_memslots *slots = kvm_memslots(kvm);
3539 	int r;
3540 	gpa_t gpa = ghc->gpa + offset;
3541 
3542 	if (WARN_ON_ONCE(len + offset > ghc->len))
3543 		return -EINVAL;
3544 
3545 	if (slots->generation != ghc->generation) {
3546 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3547 			return -EFAULT;
3548 	}
3549 
3550 	if (kvm_is_error_hva(ghc->hva))
3551 		return -EFAULT;
3552 
3553 	if (unlikely(!ghc->memslot))
3554 		return kvm_write_guest(kvm, gpa, data, len);
3555 
3556 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3557 	if (r)
3558 		return -EFAULT;
3559 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3560 
3561 	return 0;
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3564 
3565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3566 			   void *data, unsigned long len)
3567 {
3568 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3569 }
3570 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3571 
3572 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3573 				 void *data, unsigned int offset,
3574 				 unsigned long len)
3575 {
3576 	struct kvm_memslots *slots = kvm_memslots(kvm);
3577 	int r;
3578 	gpa_t gpa = ghc->gpa + offset;
3579 
3580 	if (WARN_ON_ONCE(len + offset > ghc->len))
3581 		return -EINVAL;
3582 
3583 	if (slots->generation != ghc->generation) {
3584 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3585 			return -EFAULT;
3586 	}
3587 
3588 	if (kvm_is_error_hva(ghc->hva))
3589 		return -EFAULT;
3590 
3591 	if (unlikely(!ghc->memslot))
3592 		return kvm_read_guest(kvm, gpa, data, len);
3593 
3594 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3595 	if (r)
3596 		return -EFAULT;
3597 
3598 	return 0;
3599 }
3600 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3601 
3602 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3603 			  void *data, unsigned long len)
3604 {
3605 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3608 
3609 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3610 {
3611 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3612 	gfn_t gfn = gpa >> PAGE_SHIFT;
3613 	int seg;
3614 	int offset = offset_in_page(gpa);
3615 	int ret;
3616 
3617 	while ((seg = next_segment(len, offset)) != 0) {
3618 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3619 		if (ret < 0)
3620 			return ret;
3621 		offset = 0;
3622 		len -= seg;
3623 		++gfn;
3624 	}
3625 	return 0;
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3628 
3629 void mark_page_dirty_in_slot(struct kvm *kvm,
3630 			     const struct kvm_memory_slot *memslot,
3631 		 	     gfn_t gfn)
3632 {
3633 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3634 
3635 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3636 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3637 		return;
3638 
3639 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3640 #endif
3641 
3642 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3643 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3644 		u32 slot = (memslot->as_id << 16) | memslot->id;
3645 
3646 		if (kvm->dirty_ring_size && vcpu)
3647 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3648 		else if (memslot->dirty_bitmap)
3649 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3650 	}
3651 }
3652 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3653 
3654 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3655 {
3656 	struct kvm_memory_slot *memslot;
3657 
3658 	memslot = gfn_to_memslot(kvm, gfn);
3659 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3660 }
3661 EXPORT_SYMBOL_GPL(mark_page_dirty);
3662 
3663 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3664 {
3665 	struct kvm_memory_slot *memslot;
3666 
3667 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3668 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3669 }
3670 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3671 
3672 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3673 {
3674 	if (!vcpu->sigset_active)
3675 		return;
3676 
3677 	/*
3678 	 * This does a lockless modification of ->real_blocked, which is fine
3679 	 * because, only current can change ->real_blocked and all readers of
3680 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3681 	 * of ->blocked.
3682 	 */
3683 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3684 }
3685 
3686 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3687 {
3688 	if (!vcpu->sigset_active)
3689 		return;
3690 
3691 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3692 	sigemptyset(&current->real_blocked);
3693 }
3694 
3695 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3696 {
3697 	unsigned int old, val, grow, grow_start;
3698 
3699 	old = val = vcpu->halt_poll_ns;
3700 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3701 	grow = READ_ONCE(halt_poll_ns_grow);
3702 	if (!grow)
3703 		goto out;
3704 
3705 	val *= grow;
3706 	if (val < grow_start)
3707 		val = grow_start;
3708 
3709 	vcpu->halt_poll_ns = val;
3710 out:
3711 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3712 }
3713 
3714 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3715 {
3716 	unsigned int old, val, shrink, grow_start;
3717 
3718 	old = val = vcpu->halt_poll_ns;
3719 	shrink = READ_ONCE(halt_poll_ns_shrink);
3720 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3721 	if (shrink == 0)
3722 		val = 0;
3723 	else
3724 		val /= shrink;
3725 
3726 	if (val < grow_start)
3727 		val = 0;
3728 
3729 	vcpu->halt_poll_ns = val;
3730 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3731 }
3732 
3733 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3734 {
3735 	int ret = -EINTR;
3736 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3737 
3738 	if (kvm_arch_vcpu_runnable(vcpu))
3739 		goto out;
3740 	if (kvm_cpu_has_pending_timer(vcpu))
3741 		goto out;
3742 	if (signal_pending(current))
3743 		goto out;
3744 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3745 		goto out;
3746 
3747 	ret = 0;
3748 out:
3749 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3750 	return ret;
3751 }
3752 
3753 /*
3754  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3755  * pending.  This is mostly used when halting a vCPU, but may also be used
3756  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3757  */
3758 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3759 {
3760 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3761 	bool waited = false;
3762 
3763 	vcpu->stat.generic.blocking = 1;
3764 
3765 	preempt_disable();
3766 	kvm_arch_vcpu_blocking(vcpu);
3767 	prepare_to_rcuwait(wait);
3768 	preempt_enable();
3769 
3770 	for (;;) {
3771 		set_current_state(TASK_INTERRUPTIBLE);
3772 
3773 		if (kvm_vcpu_check_block(vcpu) < 0)
3774 			break;
3775 
3776 		waited = true;
3777 		schedule();
3778 	}
3779 
3780 	preempt_disable();
3781 	finish_rcuwait(wait);
3782 	kvm_arch_vcpu_unblocking(vcpu);
3783 	preempt_enable();
3784 
3785 	vcpu->stat.generic.blocking = 0;
3786 
3787 	return waited;
3788 }
3789 
3790 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3791 					  ktime_t end, bool success)
3792 {
3793 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3794 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3795 
3796 	++vcpu->stat.generic.halt_attempted_poll;
3797 
3798 	if (success) {
3799 		++vcpu->stat.generic.halt_successful_poll;
3800 
3801 		if (!vcpu_valid_wakeup(vcpu))
3802 			++vcpu->stat.generic.halt_poll_invalid;
3803 
3804 		stats->halt_poll_success_ns += poll_ns;
3805 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3806 	} else {
3807 		stats->halt_poll_fail_ns += poll_ns;
3808 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3809 	}
3810 }
3811 
3812 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3813 {
3814 	struct kvm *kvm = vcpu->kvm;
3815 
3816 	if (kvm->override_halt_poll_ns) {
3817 		/*
3818 		 * Ensure kvm->max_halt_poll_ns is not read before
3819 		 * kvm->override_halt_poll_ns.
3820 		 *
3821 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3822 		 */
3823 		smp_rmb();
3824 		return READ_ONCE(kvm->max_halt_poll_ns);
3825 	}
3826 
3827 	return READ_ONCE(halt_poll_ns);
3828 }
3829 
3830 /*
3831  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3832  * polling is enabled, busy wait for a short time before blocking to avoid the
3833  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3834  * is halted.
3835  */
3836 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3837 {
3838 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3839 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3840 	ktime_t start, cur, poll_end;
3841 	bool waited = false;
3842 	bool do_halt_poll;
3843 	u64 halt_ns;
3844 
3845 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3846 		vcpu->halt_poll_ns = max_halt_poll_ns;
3847 
3848 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3849 
3850 	start = cur = poll_end = ktime_get();
3851 	if (do_halt_poll) {
3852 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3853 
3854 		do {
3855 			if (kvm_vcpu_check_block(vcpu) < 0)
3856 				goto out;
3857 			cpu_relax();
3858 			poll_end = cur = ktime_get();
3859 		} while (kvm_vcpu_can_poll(cur, stop));
3860 	}
3861 
3862 	waited = kvm_vcpu_block(vcpu);
3863 
3864 	cur = ktime_get();
3865 	if (waited) {
3866 		vcpu->stat.generic.halt_wait_ns +=
3867 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3868 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3869 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3870 	}
3871 out:
3872 	/* The total time the vCPU was "halted", including polling time. */
3873 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3874 
3875 	/*
3876 	 * Note, halt-polling is considered successful so long as the vCPU was
3877 	 * never actually scheduled out, i.e. even if the wake event arrived
3878 	 * after of the halt-polling loop itself, but before the full wait.
3879 	 */
3880 	if (do_halt_poll)
3881 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3882 
3883 	if (halt_poll_allowed) {
3884 		/* Recompute the max halt poll time in case it changed. */
3885 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3886 
3887 		if (!vcpu_valid_wakeup(vcpu)) {
3888 			shrink_halt_poll_ns(vcpu);
3889 		} else if (max_halt_poll_ns) {
3890 			if (halt_ns <= vcpu->halt_poll_ns)
3891 				;
3892 			/* we had a long block, shrink polling */
3893 			else if (vcpu->halt_poll_ns &&
3894 				 halt_ns > max_halt_poll_ns)
3895 				shrink_halt_poll_ns(vcpu);
3896 			/* we had a short halt and our poll time is too small */
3897 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3898 				 halt_ns < max_halt_poll_ns)
3899 				grow_halt_poll_ns(vcpu);
3900 		} else {
3901 			vcpu->halt_poll_ns = 0;
3902 		}
3903 	}
3904 
3905 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3906 }
3907 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3908 
3909 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3910 {
3911 	if (__kvm_vcpu_wake_up(vcpu)) {
3912 		WRITE_ONCE(vcpu->ready, true);
3913 		++vcpu->stat.generic.halt_wakeup;
3914 		return true;
3915 	}
3916 
3917 	return false;
3918 }
3919 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3920 
3921 #ifndef CONFIG_S390
3922 /*
3923  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3924  */
3925 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3926 {
3927 	int me, cpu;
3928 
3929 	if (kvm_vcpu_wake_up(vcpu))
3930 		return;
3931 
3932 	me = get_cpu();
3933 	/*
3934 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3935 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3936 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3937 	 * within the vCPU thread itself.
3938 	 */
3939 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3940 		if (vcpu->mode == IN_GUEST_MODE)
3941 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3942 		goto out;
3943 	}
3944 
3945 	/*
3946 	 * Note, the vCPU could get migrated to a different pCPU at any point
3947 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3948 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3949 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3950 	 * vCPU also requires it to leave IN_GUEST_MODE.
3951 	 */
3952 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3953 		cpu = READ_ONCE(vcpu->cpu);
3954 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3955 			smp_send_reschedule(cpu);
3956 	}
3957 out:
3958 	put_cpu();
3959 }
3960 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3961 #endif /* !CONFIG_S390 */
3962 
3963 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3964 {
3965 	struct pid *pid;
3966 	struct task_struct *task = NULL;
3967 	int ret = 0;
3968 
3969 	rcu_read_lock();
3970 	pid = rcu_dereference(target->pid);
3971 	if (pid)
3972 		task = get_pid_task(pid, PIDTYPE_PID);
3973 	rcu_read_unlock();
3974 	if (!task)
3975 		return ret;
3976 	ret = yield_to(task, 1);
3977 	put_task_struct(task);
3978 
3979 	return ret;
3980 }
3981 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3982 
3983 /*
3984  * Helper that checks whether a VCPU is eligible for directed yield.
3985  * Most eligible candidate to yield is decided by following heuristics:
3986  *
3987  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3988  *  (preempted lock holder), indicated by @in_spin_loop.
3989  *  Set at the beginning and cleared at the end of interception/PLE handler.
3990  *
3991  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3992  *  chance last time (mostly it has become eligible now since we have probably
3993  *  yielded to lockholder in last iteration. This is done by toggling
3994  *  @dy_eligible each time a VCPU checked for eligibility.)
3995  *
3996  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3997  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3998  *  burning. Giving priority for a potential lock-holder increases lock
3999  *  progress.
4000  *
4001  *  Since algorithm is based on heuristics, accessing another VCPU data without
4002  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4003  *  and continue with next VCPU and so on.
4004  */
4005 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4006 {
4007 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4008 	bool eligible;
4009 
4010 	eligible = !vcpu->spin_loop.in_spin_loop ||
4011 		    vcpu->spin_loop.dy_eligible;
4012 
4013 	if (vcpu->spin_loop.in_spin_loop)
4014 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4015 
4016 	return eligible;
4017 #else
4018 	return true;
4019 #endif
4020 }
4021 
4022 /*
4023  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4024  * a vcpu_load/vcpu_put pair.  However, for most architectures
4025  * kvm_arch_vcpu_runnable does not require vcpu_load.
4026  */
4027 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4028 {
4029 	return kvm_arch_vcpu_runnable(vcpu);
4030 }
4031 
4032 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4033 {
4034 	if (kvm_arch_dy_runnable(vcpu))
4035 		return true;
4036 
4037 #ifdef CONFIG_KVM_ASYNC_PF
4038 	if (!list_empty_careful(&vcpu->async_pf.done))
4039 		return true;
4040 #endif
4041 
4042 	return false;
4043 }
4044 
4045 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4046 {
4047 	return false;
4048 }
4049 
4050 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4051 {
4052 	struct kvm *kvm = me->kvm;
4053 	struct kvm_vcpu *vcpu;
4054 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4055 	unsigned long i;
4056 	int yielded = 0;
4057 	int try = 3;
4058 	int pass;
4059 
4060 	kvm_vcpu_set_in_spin_loop(me, true);
4061 	/*
4062 	 * We boost the priority of a VCPU that is runnable but not
4063 	 * currently running, because it got preempted by something
4064 	 * else and called schedule in __vcpu_run.  Hopefully that
4065 	 * VCPU is holding the lock that we need and will release it.
4066 	 * We approximate round-robin by starting at the last boosted VCPU.
4067 	 */
4068 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4069 		kvm_for_each_vcpu(i, vcpu, kvm) {
4070 			if (!pass && i <= last_boosted_vcpu) {
4071 				i = last_boosted_vcpu;
4072 				continue;
4073 			} else if (pass && i > last_boosted_vcpu)
4074 				break;
4075 			if (!READ_ONCE(vcpu->ready))
4076 				continue;
4077 			if (vcpu == me)
4078 				continue;
4079 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4080 				continue;
4081 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4082 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4083 			    !kvm_arch_vcpu_in_kernel(vcpu))
4084 				continue;
4085 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4086 				continue;
4087 
4088 			yielded = kvm_vcpu_yield_to(vcpu);
4089 			if (yielded > 0) {
4090 				kvm->last_boosted_vcpu = i;
4091 				break;
4092 			} else if (yielded < 0) {
4093 				try--;
4094 				if (!try)
4095 					break;
4096 			}
4097 		}
4098 	}
4099 	kvm_vcpu_set_in_spin_loop(me, false);
4100 
4101 	/* Ensure vcpu is not eligible during next spinloop */
4102 	kvm_vcpu_set_dy_eligible(me, false);
4103 }
4104 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4105 
4106 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4107 {
4108 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4109 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4110 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4111 	     kvm->dirty_ring_size / PAGE_SIZE);
4112 #else
4113 	return false;
4114 #endif
4115 }
4116 
4117 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4118 {
4119 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4120 	struct page *page;
4121 
4122 	if (vmf->pgoff == 0)
4123 		page = virt_to_page(vcpu->run);
4124 #ifdef CONFIG_X86
4125 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4126 		page = virt_to_page(vcpu->arch.pio_data);
4127 #endif
4128 #ifdef CONFIG_KVM_MMIO
4129 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4130 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4131 #endif
4132 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4133 		page = kvm_dirty_ring_get_page(
4134 		    &vcpu->dirty_ring,
4135 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4136 	else
4137 		return kvm_arch_vcpu_fault(vcpu, vmf);
4138 	get_page(page);
4139 	vmf->page = page;
4140 	return 0;
4141 }
4142 
4143 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4144 	.fault = kvm_vcpu_fault,
4145 };
4146 
4147 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4148 {
4149 	struct kvm_vcpu *vcpu = file->private_data;
4150 	unsigned long pages = vma_pages(vma);
4151 
4152 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4153 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4154 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4155 		return -EINVAL;
4156 
4157 	vma->vm_ops = &kvm_vcpu_vm_ops;
4158 	return 0;
4159 }
4160 
4161 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4162 {
4163 	struct kvm_vcpu *vcpu = filp->private_data;
4164 
4165 	kvm_put_kvm(vcpu->kvm);
4166 	return 0;
4167 }
4168 
4169 static struct file_operations kvm_vcpu_fops = {
4170 	.release        = kvm_vcpu_release,
4171 	.unlocked_ioctl = kvm_vcpu_ioctl,
4172 	.mmap           = kvm_vcpu_mmap,
4173 	.llseek		= noop_llseek,
4174 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4175 };
4176 
4177 /*
4178  * Allocates an inode for the vcpu.
4179  */
4180 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4181 {
4182 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4183 
4184 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4185 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4186 }
4187 
4188 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4189 static int vcpu_get_pid(void *data, u64 *val)
4190 {
4191 	struct kvm_vcpu *vcpu = data;
4192 
4193 	rcu_read_lock();
4194 	*val = pid_nr(rcu_dereference(vcpu->pid));
4195 	rcu_read_unlock();
4196 	return 0;
4197 }
4198 
4199 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4200 
4201 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4202 {
4203 	struct dentry *debugfs_dentry;
4204 	char dir_name[ITOA_MAX_LEN * 2];
4205 
4206 	if (!debugfs_initialized())
4207 		return;
4208 
4209 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4210 	debugfs_dentry = debugfs_create_dir(dir_name,
4211 					    vcpu->kvm->debugfs_dentry);
4212 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4213 			    &vcpu_get_pid_fops);
4214 
4215 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4216 }
4217 #endif
4218 
4219 /*
4220  * Creates some virtual cpus.  Good luck creating more than one.
4221  */
4222 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4223 {
4224 	int r;
4225 	struct kvm_vcpu *vcpu;
4226 	struct page *page;
4227 
4228 	if (id >= KVM_MAX_VCPU_IDS)
4229 		return -EINVAL;
4230 
4231 	mutex_lock(&kvm->lock);
4232 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4233 		mutex_unlock(&kvm->lock);
4234 		return -EINVAL;
4235 	}
4236 
4237 	r = kvm_arch_vcpu_precreate(kvm, id);
4238 	if (r) {
4239 		mutex_unlock(&kvm->lock);
4240 		return r;
4241 	}
4242 
4243 	kvm->created_vcpus++;
4244 	mutex_unlock(&kvm->lock);
4245 
4246 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4247 	if (!vcpu) {
4248 		r = -ENOMEM;
4249 		goto vcpu_decrement;
4250 	}
4251 
4252 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4253 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4254 	if (!page) {
4255 		r = -ENOMEM;
4256 		goto vcpu_free;
4257 	}
4258 	vcpu->run = page_address(page);
4259 
4260 	kvm_vcpu_init(vcpu, kvm, id);
4261 
4262 	r = kvm_arch_vcpu_create(vcpu);
4263 	if (r)
4264 		goto vcpu_free_run_page;
4265 
4266 	if (kvm->dirty_ring_size) {
4267 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4268 					 id, kvm->dirty_ring_size);
4269 		if (r)
4270 			goto arch_vcpu_destroy;
4271 	}
4272 
4273 	mutex_lock(&kvm->lock);
4274 
4275 #ifdef CONFIG_LOCKDEP
4276 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4277 	mutex_lock(&vcpu->mutex);
4278 	mutex_unlock(&vcpu->mutex);
4279 #endif
4280 
4281 	if (kvm_get_vcpu_by_id(kvm, id)) {
4282 		r = -EEXIST;
4283 		goto unlock_vcpu_destroy;
4284 	}
4285 
4286 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4287 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4288 	if (r)
4289 		goto unlock_vcpu_destroy;
4290 
4291 	/* Now it's all set up, let userspace reach it */
4292 	kvm_get_kvm(kvm);
4293 	r = create_vcpu_fd(vcpu);
4294 	if (r < 0)
4295 		goto kvm_put_xa_release;
4296 
4297 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4298 		r = -EINVAL;
4299 		goto kvm_put_xa_release;
4300 	}
4301 
4302 	/*
4303 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4304 	 * pointer before kvm->online_vcpu's incremented value.
4305 	 */
4306 	smp_wmb();
4307 	atomic_inc(&kvm->online_vcpus);
4308 
4309 	mutex_unlock(&kvm->lock);
4310 	kvm_arch_vcpu_postcreate(vcpu);
4311 	kvm_create_vcpu_debugfs(vcpu);
4312 	return r;
4313 
4314 kvm_put_xa_release:
4315 	kvm_put_kvm_no_destroy(kvm);
4316 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4317 unlock_vcpu_destroy:
4318 	mutex_unlock(&kvm->lock);
4319 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4320 arch_vcpu_destroy:
4321 	kvm_arch_vcpu_destroy(vcpu);
4322 vcpu_free_run_page:
4323 	free_page((unsigned long)vcpu->run);
4324 vcpu_free:
4325 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4326 vcpu_decrement:
4327 	mutex_lock(&kvm->lock);
4328 	kvm->created_vcpus--;
4329 	mutex_unlock(&kvm->lock);
4330 	return r;
4331 }
4332 
4333 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4334 {
4335 	if (sigset) {
4336 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4337 		vcpu->sigset_active = 1;
4338 		vcpu->sigset = *sigset;
4339 	} else
4340 		vcpu->sigset_active = 0;
4341 	return 0;
4342 }
4343 
4344 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4345 			      size_t size, loff_t *offset)
4346 {
4347 	struct kvm_vcpu *vcpu = file->private_data;
4348 
4349 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4350 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4351 			sizeof(vcpu->stat), user_buffer, size, offset);
4352 }
4353 
4354 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4355 {
4356 	struct kvm_vcpu *vcpu = file->private_data;
4357 
4358 	kvm_put_kvm(vcpu->kvm);
4359 	return 0;
4360 }
4361 
4362 static const struct file_operations kvm_vcpu_stats_fops = {
4363 	.owner = THIS_MODULE,
4364 	.read = kvm_vcpu_stats_read,
4365 	.release = kvm_vcpu_stats_release,
4366 	.llseek = noop_llseek,
4367 };
4368 
4369 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4370 {
4371 	int fd;
4372 	struct file *file;
4373 	char name[15 + ITOA_MAX_LEN + 1];
4374 
4375 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4376 
4377 	fd = get_unused_fd_flags(O_CLOEXEC);
4378 	if (fd < 0)
4379 		return fd;
4380 
4381 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4382 	if (IS_ERR(file)) {
4383 		put_unused_fd(fd);
4384 		return PTR_ERR(file);
4385 	}
4386 
4387 	kvm_get_kvm(vcpu->kvm);
4388 
4389 	file->f_mode |= FMODE_PREAD;
4390 	fd_install(fd, file);
4391 
4392 	return fd;
4393 }
4394 
4395 static long kvm_vcpu_ioctl(struct file *filp,
4396 			   unsigned int ioctl, unsigned long arg)
4397 {
4398 	struct kvm_vcpu *vcpu = filp->private_data;
4399 	void __user *argp = (void __user *)arg;
4400 	int r;
4401 	struct kvm_fpu *fpu = NULL;
4402 	struct kvm_sregs *kvm_sregs = NULL;
4403 
4404 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4405 		return -EIO;
4406 
4407 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4408 		return -EINVAL;
4409 
4410 	/*
4411 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4412 	 * execution; mutex_lock() would break them.
4413 	 */
4414 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4415 	if (r != -ENOIOCTLCMD)
4416 		return r;
4417 
4418 	if (mutex_lock_killable(&vcpu->mutex))
4419 		return -EINTR;
4420 	switch (ioctl) {
4421 	case KVM_RUN: {
4422 		struct pid *oldpid;
4423 		r = -EINVAL;
4424 		if (arg)
4425 			goto out;
4426 		oldpid = rcu_access_pointer(vcpu->pid);
4427 		if (unlikely(oldpid != task_pid(current))) {
4428 			/* The thread running this VCPU changed. */
4429 			struct pid *newpid;
4430 
4431 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4432 			if (r)
4433 				break;
4434 
4435 			newpid = get_task_pid(current, PIDTYPE_PID);
4436 			rcu_assign_pointer(vcpu->pid, newpid);
4437 			if (oldpid)
4438 				synchronize_rcu();
4439 			put_pid(oldpid);
4440 		}
4441 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4442 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4443 		break;
4444 	}
4445 	case KVM_GET_REGS: {
4446 		struct kvm_regs *kvm_regs;
4447 
4448 		r = -ENOMEM;
4449 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4450 		if (!kvm_regs)
4451 			goto out;
4452 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4453 		if (r)
4454 			goto out_free1;
4455 		r = -EFAULT;
4456 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4457 			goto out_free1;
4458 		r = 0;
4459 out_free1:
4460 		kfree(kvm_regs);
4461 		break;
4462 	}
4463 	case KVM_SET_REGS: {
4464 		struct kvm_regs *kvm_regs;
4465 
4466 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4467 		if (IS_ERR(kvm_regs)) {
4468 			r = PTR_ERR(kvm_regs);
4469 			goto out;
4470 		}
4471 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4472 		kfree(kvm_regs);
4473 		break;
4474 	}
4475 	case KVM_GET_SREGS: {
4476 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4477 				    GFP_KERNEL_ACCOUNT);
4478 		r = -ENOMEM;
4479 		if (!kvm_sregs)
4480 			goto out;
4481 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4482 		if (r)
4483 			goto out;
4484 		r = -EFAULT;
4485 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4486 			goto out;
4487 		r = 0;
4488 		break;
4489 	}
4490 	case KVM_SET_SREGS: {
4491 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4492 		if (IS_ERR(kvm_sregs)) {
4493 			r = PTR_ERR(kvm_sregs);
4494 			kvm_sregs = NULL;
4495 			goto out;
4496 		}
4497 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4498 		break;
4499 	}
4500 	case KVM_GET_MP_STATE: {
4501 		struct kvm_mp_state mp_state;
4502 
4503 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4504 		if (r)
4505 			goto out;
4506 		r = -EFAULT;
4507 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4508 			goto out;
4509 		r = 0;
4510 		break;
4511 	}
4512 	case KVM_SET_MP_STATE: {
4513 		struct kvm_mp_state mp_state;
4514 
4515 		r = -EFAULT;
4516 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4517 			goto out;
4518 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4519 		break;
4520 	}
4521 	case KVM_TRANSLATE: {
4522 		struct kvm_translation tr;
4523 
4524 		r = -EFAULT;
4525 		if (copy_from_user(&tr, argp, sizeof(tr)))
4526 			goto out;
4527 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4528 		if (r)
4529 			goto out;
4530 		r = -EFAULT;
4531 		if (copy_to_user(argp, &tr, sizeof(tr)))
4532 			goto out;
4533 		r = 0;
4534 		break;
4535 	}
4536 	case KVM_SET_GUEST_DEBUG: {
4537 		struct kvm_guest_debug dbg;
4538 
4539 		r = -EFAULT;
4540 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4541 			goto out;
4542 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4543 		break;
4544 	}
4545 	case KVM_SET_SIGNAL_MASK: {
4546 		struct kvm_signal_mask __user *sigmask_arg = argp;
4547 		struct kvm_signal_mask kvm_sigmask;
4548 		sigset_t sigset, *p;
4549 
4550 		p = NULL;
4551 		if (argp) {
4552 			r = -EFAULT;
4553 			if (copy_from_user(&kvm_sigmask, argp,
4554 					   sizeof(kvm_sigmask)))
4555 				goto out;
4556 			r = -EINVAL;
4557 			if (kvm_sigmask.len != sizeof(sigset))
4558 				goto out;
4559 			r = -EFAULT;
4560 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4561 					   sizeof(sigset)))
4562 				goto out;
4563 			p = &sigset;
4564 		}
4565 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4566 		break;
4567 	}
4568 	case KVM_GET_FPU: {
4569 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4570 		r = -ENOMEM;
4571 		if (!fpu)
4572 			goto out;
4573 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4574 		if (r)
4575 			goto out;
4576 		r = -EFAULT;
4577 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4578 			goto out;
4579 		r = 0;
4580 		break;
4581 	}
4582 	case KVM_SET_FPU: {
4583 		fpu = memdup_user(argp, sizeof(*fpu));
4584 		if (IS_ERR(fpu)) {
4585 			r = PTR_ERR(fpu);
4586 			fpu = NULL;
4587 			goto out;
4588 		}
4589 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4590 		break;
4591 	}
4592 	case KVM_GET_STATS_FD: {
4593 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4594 		break;
4595 	}
4596 	default:
4597 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4598 	}
4599 out:
4600 	mutex_unlock(&vcpu->mutex);
4601 	kfree(fpu);
4602 	kfree(kvm_sregs);
4603 	return r;
4604 }
4605 
4606 #ifdef CONFIG_KVM_COMPAT
4607 static long kvm_vcpu_compat_ioctl(struct file *filp,
4608 				  unsigned int ioctl, unsigned long arg)
4609 {
4610 	struct kvm_vcpu *vcpu = filp->private_data;
4611 	void __user *argp = compat_ptr(arg);
4612 	int r;
4613 
4614 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4615 		return -EIO;
4616 
4617 	switch (ioctl) {
4618 	case KVM_SET_SIGNAL_MASK: {
4619 		struct kvm_signal_mask __user *sigmask_arg = argp;
4620 		struct kvm_signal_mask kvm_sigmask;
4621 		sigset_t sigset;
4622 
4623 		if (argp) {
4624 			r = -EFAULT;
4625 			if (copy_from_user(&kvm_sigmask, argp,
4626 					   sizeof(kvm_sigmask)))
4627 				goto out;
4628 			r = -EINVAL;
4629 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4630 				goto out;
4631 			r = -EFAULT;
4632 			if (get_compat_sigset(&sigset,
4633 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4634 				goto out;
4635 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4636 		} else
4637 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4638 		break;
4639 	}
4640 	default:
4641 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4642 	}
4643 
4644 out:
4645 	return r;
4646 }
4647 #endif
4648 
4649 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4650 {
4651 	struct kvm_device *dev = filp->private_data;
4652 
4653 	if (dev->ops->mmap)
4654 		return dev->ops->mmap(dev, vma);
4655 
4656 	return -ENODEV;
4657 }
4658 
4659 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4660 				 int (*accessor)(struct kvm_device *dev,
4661 						 struct kvm_device_attr *attr),
4662 				 unsigned long arg)
4663 {
4664 	struct kvm_device_attr attr;
4665 
4666 	if (!accessor)
4667 		return -EPERM;
4668 
4669 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4670 		return -EFAULT;
4671 
4672 	return accessor(dev, &attr);
4673 }
4674 
4675 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4676 			     unsigned long arg)
4677 {
4678 	struct kvm_device *dev = filp->private_data;
4679 
4680 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4681 		return -EIO;
4682 
4683 	switch (ioctl) {
4684 	case KVM_SET_DEVICE_ATTR:
4685 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4686 	case KVM_GET_DEVICE_ATTR:
4687 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4688 	case KVM_HAS_DEVICE_ATTR:
4689 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4690 	default:
4691 		if (dev->ops->ioctl)
4692 			return dev->ops->ioctl(dev, ioctl, arg);
4693 
4694 		return -ENOTTY;
4695 	}
4696 }
4697 
4698 static int kvm_device_release(struct inode *inode, struct file *filp)
4699 {
4700 	struct kvm_device *dev = filp->private_data;
4701 	struct kvm *kvm = dev->kvm;
4702 
4703 	if (dev->ops->release) {
4704 		mutex_lock(&kvm->lock);
4705 		list_del(&dev->vm_node);
4706 		dev->ops->release(dev);
4707 		mutex_unlock(&kvm->lock);
4708 	}
4709 
4710 	kvm_put_kvm(kvm);
4711 	return 0;
4712 }
4713 
4714 static struct file_operations kvm_device_fops = {
4715 	.unlocked_ioctl = kvm_device_ioctl,
4716 	.release = kvm_device_release,
4717 	KVM_COMPAT(kvm_device_ioctl),
4718 	.mmap = kvm_device_mmap,
4719 };
4720 
4721 struct kvm_device *kvm_device_from_filp(struct file *filp)
4722 {
4723 	if (filp->f_op != &kvm_device_fops)
4724 		return NULL;
4725 
4726 	return filp->private_data;
4727 }
4728 
4729 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4730 #ifdef CONFIG_KVM_MPIC
4731 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4732 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4733 #endif
4734 };
4735 
4736 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4737 {
4738 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4739 		return -ENOSPC;
4740 
4741 	if (kvm_device_ops_table[type] != NULL)
4742 		return -EEXIST;
4743 
4744 	kvm_device_ops_table[type] = ops;
4745 	return 0;
4746 }
4747 
4748 void kvm_unregister_device_ops(u32 type)
4749 {
4750 	if (kvm_device_ops_table[type] != NULL)
4751 		kvm_device_ops_table[type] = NULL;
4752 }
4753 
4754 static int kvm_ioctl_create_device(struct kvm *kvm,
4755 				   struct kvm_create_device *cd)
4756 {
4757 	const struct kvm_device_ops *ops;
4758 	struct kvm_device *dev;
4759 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4760 	int type;
4761 	int ret;
4762 
4763 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4764 		return -ENODEV;
4765 
4766 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4767 	ops = kvm_device_ops_table[type];
4768 	if (ops == NULL)
4769 		return -ENODEV;
4770 
4771 	if (test)
4772 		return 0;
4773 
4774 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4775 	if (!dev)
4776 		return -ENOMEM;
4777 
4778 	dev->ops = ops;
4779 	dev->kvm = kvm;
4780 
4781 	mutex_lock(&kvm->lock);
4782 	ret = ops->create(dev, type);
4783 	if (ret < 0) {
4784 		mutex_unlock(&kvm->lock);
4785 		kfree(dev);
4786 		return ret;
4787 	}
4788 	list_add(&dev->vm_node, &kvm->devices);
4789 	mutex_unlock(&kvm->lock);
4790 
4791 	if (ops->init)
4792 		ops->init(dev);
4793 
4794 	kvm_get_kvm(kvm);
4795 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4796 	if (ret < 0) {
4797 		kvm_put_kvm_no_destroy(kvm);
4798 		mutex_lock(&kvm->lock);
4799 		list_del(&dev->vm_node);
4800 		if (ops->release)
4801 			ops->release(dev);
4802 		mutex_unlock(&kvm->lock);
4803 		if (ops->destroy)
4804 			ops->destroy(dev);
4805 		return ret;
4806 	}
4807 
4808 	cd->fd = ret;
4809 	return 0;
4810 }
4811 
4812 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4813 {
4814 	switch (arg) {
4815 	case KVM_CAP_USER_MEMORY:
4816 	case KVM_CAP_USER_MEMORY2:
4817 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4818 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4819 	case KVM_CAP_INTERNAL_ERROR_DATA:
4820 #ifdef CONFIG_HAVE_KVM_MSI
4821 	case KVM_CAP_SIGNAL_MSI:
4822 #endif
4823 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4824 	case KVM_CAP_IRQFD:
4825 #endif
4826 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4827 	case KVM_CAP_CHECK_EXTENSION_VM:
4828 	case KVM_CAP_ENABLE_CAP_VM:
4829 	case KVM_CAP_HALT_POLL:
4830 		return 1;
4831 #ifdef CONFIG_KVM_MMIO
4832 	case KVM_CAP_COALESCED_MMIO:
4833 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4834 	case KVM_CAP_COALESCED_PIO:
4835 		return 1;
4836 #endif
4837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4838 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4839 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4840 #endif
4841 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4842 	case KVM_CAP_IRQ_ROUTING:
4843 		return KVM_MAX_IRQ_ROUTES;
4844 #endif
4845 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4846 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4847 		if (kvm)
4848 			return kvm_arch_nr_memslot_as_ids(kvm);
4849 		return KVM_MAX_NR_ADDRESS_SPACES;
4850 #endif
4851 	case KVM_CAP_NR_MEMSLOTS:
4852 		return KVM_USER_MEM_SLOTS;
4853 	case KVM_CAP_DIRTY_LOG_RING:
4854 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4855 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4856 #else
4857 		return 0;
4858 #endif
4859 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4861 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862 #else
4863 		return 0;
4864 #endif
4865 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4866 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4867 #endif
4868 	case KVM_CAP_BINARY_STATS_FD:
4869 	case KVM_CAP_SYSTEM_EVENT_DATA:
4870 	case KVM_CAP_DEVICE_CTRL:
4871 		return 1;
4872 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4873 	case KVM_CAP_MEMORY_ATTRIBUTES:
4874 		return kvm_supported_mem_attributes(kvm);
4875 #endif
4876 #ifdef CONFIG_KVM_PRIVATE_MEM
4877 	case KVM_CAP_GUEST_MEMFD:
4878 		return !kvm || kvm_arch_has_private_mem(kvm);
4879 #endif
4880 	default:
4881 		break;
4882 	}
4883 	return kvm_vm_ioctl_check_extension(kvm, arg);
4884 }
4885 
4886 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4887 {
4888 	int r;
4889 
4890 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4891 		return -EINVAL;
4892 
4893 	/* the size should be power of 2 */
4894 	if (!size || (size & (size - 1)))
4895 		return -EINVAL;
4896 
4897 	/* Should be bigger to keep the reserved entries, or a page */
4898 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4899 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4900 		return -EINVAL;
4901 
4902 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4903 	    sizeof(struct kvm_dirty_gfn))
4904 		return -E2BIG;
4905 
4906 	/* We only allow it to set once */
4907 	if (kvm->dirty_ring_size)
4908 		return -EINVAL;
4909 
4910 	mutex_lock(&kvm->lock);
4911 
4912 	if (kvm->created_vcpus) {
4913 		/* We don't allow to change this value after vcpu created */
4914 		r = -EINVAL;
4915 	} else {
4916 		kvm->dirty_ring_size = size;
4917 		r = 0;
4918 	}
4919 
4920 	mutex_unlock(&kvm->lock);
4921 	return r;
4922 }
4923 
4924 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4925 {
4926 	unsigned long i;
4927 	struct kvm_vcpu *vcpu;
4928 	int cleared = 0;
4929 
4930 	if (!kvm->dirty_ring_size)
4931 		return -EINVAL;
4932 
4933 	mutex_lock(&kvm->slots_lock);
4934 
4935 	kvm_for_each_vcpu(i, vcpu, kvm)
4936 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4937 
4938 	mutex_unlock(&kvm->slots_lock);
4939 
4940 	if (cleared)
4941 		kvm_flush_remote_tlbs(kvm);
4942 
4943 	return cleared;
4944 }
4945 
4946 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4947 						  struct kvm_enable_cap *cap)
4948 {
4949 	return -EINVAL;
4950 }
4951 
4952 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4953 {
4954 	int i;
4955 
4956 	lockdep_assert_held(&kvm->slots_lock);
4957 
4958 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4959 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4960 			return false;
4961 	}
4962 
4963 	return true;
4964 }
4965 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4966 
4967 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4968 					   struct kvm_enable_cap *cap)
4969 {
4970 	switch (cap->cap) {
4971 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4972 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4973 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4974 
4975 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4976 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4977 
4978 		if (cap->flags || (cap->args[0] & ~allowed_options))
4979 			return -EINVAL;
4980 		kvm->manual_dirty_log_protect = cap->args[0];
4981 		return 0;
4982 	}
4983 #endif
4984 	case KVM_CAP_HALT_POLL: {
4985 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4986 			return -EINVAL;
4987 
4988 		kvm->max_halt_poll_ns = cap->args[0];
4989 
4990 		/*
4991 		 * Ensure kvm->override_halt_poll_ns does not become visible
4992 		 * before kvm->max_halt_poll_ns.
4993 		 *
4994 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4995 		 */
4996 		smp_wmb();
4997 		kvm->override_halt_poll_ns = true;
4998 
4999 		return 0;
5000 	}
5001 	case KVM_CAP_DIRTY_LOG_RING:
5002 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5003 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5004 			return -EINVAL;
5005 
5006 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5007 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5008 		int r = -EINVAL;
5009 
5010 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5011 		    !kvm->dirty_ring_size || cap->flags)
5012 			return r;
5013 
5014 		mutex_lock(&kvm->slots_lock);
5015 
5016 		/*
5017 		 * For simplicity, allow enabling ring+bitmap if and only if
5018 		 * there are no memslots, e.g. to ensure all memslots allocate
5019 		 * a bitmap after the capability is enabled.
5020 		 */
5021 		if (kvm_are_all_memslots_empty(kvm)) {
5022 			kvm->dirty_ring_with_bitmap = true;
5023 			r = 0;
5024 		}
5025 
5026 		mutex_unlock(&kvm->slots_lock);
5027 
5028 		return r;
5029 	}
5030 	default:
5031 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5032 	}
5033 }
5034 
5035 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5036 			      size_t size, loff_t *offset)
5037 {
5038 	struct kvm *kvm = file->private_data;
5039 
5040 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5041 				&kvm_vm_stats_desc[0], &kvm->stat,
5042 				sizeof(kvm->stat), user_buffer, size, offset);
5043 }
5044 
5045 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5046 {
5047 	struct kvm *kvm = file->private_data;
5048 
5049 	kvm_put_kvm(kvm);
5050 	return 0;
5051 }
5052 
5053 static const struct file_operations kvm_vm_stats_fops = {
5054 	.owner = THIS_MODULE,
5055 	.read = kvm_vm_stats_read,
5056 	.release = kvm_vm_stats_release,
5057 	.llseek = noop_llseek,
5058 };
5059 
5060 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5061 {
5062 	int fd;
5063 	struct file *file;
5064 
5065 	fd = get_unused_fd_flags(O_CLOEXEC);
5066 	if (fd < 0)
5067 		return fd;
5068 
5069 	file = anon_inode_getfile("kvm-vm-stats",
5070 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5071 	if (IS_ERR(file)) {
5072 		put_unused_fd(fd);
5073 		return PTR_ERR(file);
5074 	}
5075 
5076 	kvm_get_kvm(kvm);
5077 
5078 	file->f_mode |= FMODE_PREAD;
5079 	fd_install(fd, file);
5080 
5081 	return fd;
5082 }
5083 
5084 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5085 do {										\
5086 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5087 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5088 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5089 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5090 } while (0)
5091 
5092 static long kvm_vm_ioctl(struct file *filp,
5093 			   unsigned int ioctl, unsigned long arg)
5094 {
5095 	struct kvm *kvm = filp->private_data;
5096 	void __user *argp = (void __user *)arg;
5097 	int r;
5098 
5099 	if (kvm->mm != current->mm || kvm->vm_dead)
5100 		return -EIO;
5101 	switch (ioctl) {
5102 	case KVM_CREATE_VCPU:
5103 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5104 		break;
5105 	case KVM_ENABLE_CAP: {
5106 		struct kvm_enable_cap cap;
5107 
5108 		r = -EFAULT;
5109 		if (copy_from_user(&cap, argp, sizeof(cap)))
5110 			goto out;
5111 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5112 		break;
5113 	}
5114 	case KVM_SET_USER_MEMORY_REGION2:
5115 	case KVM_SET_USER_MEMORY_REGION: {
5116 		struct kvm_userspace_memory_region2 mem;
5117 		unsigned long size;
5118 
5119 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5120 			/*
5121 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5122 			 * accessed, but avoid leaking kernel memory in case of a bug.
5123 			 */
5124 			memset(&mem, 0, sizeof(mem));
5125 			size = sizeof(struct kvm_userspace_memory_region);
5126 		} else {
5127 			size = sizeof(struct kvm_userspace_memory_region2);
5128 		}
5129 
5130 		/* Ensure the common parts of the two structs are identical. */
5131 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5132 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5133 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5134 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5135 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5136 
5137 		r = -EFAULT;
5138 		if (copy_from_user(&mem, argp, size))
5139 			goto out;
5140 
5141 		r = -EINVAL;
5142 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5143 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5144 			goto out;
5145 
5146 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5147 		break;
5148 	}
5149 	case KVM_GET_DIRTY_LOG: {
5150 		struct kvm_dirty_log log;
5151 
5152 		r = -EFAULT;
5153 		if (copy_from_user(&log, argp, sizeof(log)))
5154 			goto out;
5155 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5156 		break;
5157 	}
5158 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5159 	case KVM_CLEAR_DIRTY_LOG: {
5160 		struct kvm_clear_dirty_log log;
5161 
5162 		r = -EFAULT;
5163 		if (copy_from_user(&log, argp, sizeof(log)))
5164 			goto out;
5165 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5166 		break;
5167 	}
5168 #endif
5169 #ifdef CONFIG_KVM_MMIO
5170 	case KVM_REGISTER_COALESCED_MMIO: {
5171 		struct kvm_coalesced_mmio_zone zone;
5172 
5173 		r = -EFAULT;
5174 		if (copy_from_user(&zone, argp, sizeof(zone)))
5175 			goto out;
5176 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5177 		break;
5178 	}
5179 	case KVM_UNREGISTER_COALESCED_MMIO: {
5180 		struct kvm_coalesced_mmio_zone zone;
5181 
5182 		r = -EFAULT;
5183 		if (copy_from_user(&zone, argp, sizeof(zone)))
5184 			goto out;
5185 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5186 		break;
5187 	}
5188 #endif
5189 	case KVM_IRQFD: {
5190 		struct kvm_irqfd data;
5191 
5192 		r = -EFAULT;
5193 		if (copy_from_user(&data, argp, sizeof(data)))
5194 			goto out;
5195 		r = kvm_irqfd(kvm, &data);
5196 		break;
5197 	}
5198 	case KVM_IOEVENTFD: {
5199 		struct kvm_ioeventfd data;
5200 
5201 		r = -EFAULT;
5202 		if (copy_from_user(&data, argp, sizeof(data)))
5203 			goto out;
5204 		r = kvm_ioeventfd(kvm, &data);
5205 		break;
5206 	}
5207 #ifdef CONFIG_HAVE_KVM_MSI
5208 	case KVM_SIGNAL_MSI: {
5209 		struct kvm_msi msi;
5210 
5211 		r = -EFAULT;
5212 		if (copy_from_user(&msi, argp, sizeof(msi)))
5213 			goto out;
5214 		r = kvm_send_userspace_msi(kvm, &msi);
5215 		break;
5216 	}
5217 #endif
5218 #ifdef __KVM_HAVE_IRQ_LINE
5219 	case KVM_IRQ_LINE_STATUS:
5220 	case KVM_IRQ_LINE: {
5221 		struct kvm_irq_level irq_event;
5222 
5223 		r = -EFAULT;
5224 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5225 			goto out;
5226 
5227 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5228 					ioctl == KVM_IRQ_LINE_STATUS);
5229 		if (r)
5230 			goto out;
5231 
5232 		r = -EFAULT;
5233 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5234 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5235 				goto out;
5236 		}
5237 
5238 		r = 0;
5239 		break;
5240 	}
5241 #endif
5242 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5243 	case KVM_SET_GSI_ROUTING: {
5244 		struct kvm_irq_routing routing;
5245 		struct kvm_irq_routing __user *urouting;
5246 		struct kvm_irq_routing_entry *entries = NULL;
5247 
5248 		r = -EFAULT;
5249 		if (copy_from_user(&routing, argp, sizeof(routing)))
5250 			goto out;
5251 		r = -EINVAL;
5252 		if (!kvm_arch_can_set_irq_routing(kvm))
5253 			goto out;
5254 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5255 			goto out;
5256 		if (routing.flags)
5257 			goto out;
5258 		if (routing.nr) {
5259 			urouting = argp;
5260 			entries = vmemdup_array_user(urouting->entries,
5261 						     routing.nr, sizeof(*entries));
5262 			if (IS_ERR(entries)) {
5263 				r = PTR_ERR(entries);
5264 				goto out;
5265 			}
5266 		}
5267 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5268 					routing.flags);
5269 		kvfree(entries);
5270 		break;
5271 	}
5272 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5273 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5274 	case KVM_SET_MEMORY_ATTRIBUTES: {
5275 		struct kvm_memory_attributes attrs;
5276 
5277 		r = -EFAULT;
5278 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5279 			goto out;
5280 
5281 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5282 		break;
5283 	}
5284 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5285 	case KVM_CREATE_DEVICE: {
5286 		struct kvm_create_device cd;
5287 
5288 		r = -EFAULT;
5289 		if (copy_from_user(&cd, argp, sizeof(cd)))
5290 			goto out;
5291 
5292 		r = kvm_ioctl_create_device(kvm, &cd);
5293 		if (r)
5294 			goto out;
5295 
5296 		r = -EFAULT;
5297 		if (copy_to_user(argp, &cd, sizeof(cd)))
5298 			goto out;
5299 
5300 		r = 0;
5301 		break;
5302 	}
5303 	case KVM_CHECK_EXTENSION:
5304 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5305 		break;
5306 	case KVM_RESET_DIRTY_RINGS:
5307 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5308 		break;
5309 	case KVM_GET_STATS_FD:
5310 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5311 		break;
5312 #ifdef CONFIG_KVM_PRIVATE_MEM
5313 	case KVM_CREATE_GUEST_MEMFD: {
5314 		struct kvm_create_guest_memfd guest_memfd;
5315 
5316 		r = -EFAULT;
5317 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5318 			goto out;
5319 
5320 		r = kvm_gmem_create(kvm, &guest_memfd);
5321 		break;
5322 	}
5323 #endif
5324 	default:
5325 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5326 	}
5327 out:
5328 	return r;
5329 }
5330 
5331 #ifdef CONFIG_KVM_COMPAT
5332 struct compat_kvm_dirty_log {
5333 	__u32 slot;
5334 	__u32 padding1;
5335 	union {
5336 		compat_uptr_t dirty_bitmap; /* one bit per page */
5337 		__u64 padding2;
5338 	};
5339 };
5340 
5341 struct compat_kvm_clear_dirty_log {
5342 	__u32 slot;
5343 	__u32 num_pages;
5344 	__u64 first_page;
5345 	union {
5346 		compat_uptr_t dirty_bitmap; /* one bit per page */
5347 		__u64 padding2;
5348 	};
5349 };
5350 
5351 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5352 				     unsigned long arg)
5353 {
5354 	return -ENOTTY;
5355 }
5356 
5357 static long kvm_vm_compat_ioctl(struct file *filp,
5358 			   unsigned int ioctl, unsigned long arg)
5359 {
5360 	struct kvm *kvm = filp->private_data;
5361 	int r;
5362 
5363 	if (kvm->mm != current->mm || kvm->vm_dead)
5364 		return -EIO;
5365 
5366 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5367 	if (r != -ENOTTY)
5368 		return r;
5369 
5370 	switch (ioctl) {
5371 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5372 	case KVM_CLEAR_DIRTY_LOG: {
5373 		struct compat_kvm_clear_dirty_log compat_log;
5374 		struct kvm_clear_dirty_log log;
5375 
5376 		if (copy_from_user(&compat_log, (void __user *)arg,
5377 				   sizeof(compat_log)))
5378 			return -EFAULT;
5379 		log.slot	 = compat_log.slot;
5380 		log.num_pages	 = compat_log.num_pages;
5381 		log.first_page	 = compat_log.first_page;
5382 		log.padding2	 = compat_log.padding2;
5383 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5384 
5385 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5386 		break;
5387 	}
5388 #endif
5389 	case KVM_GET_DIRTY_LOG: {
5390 		struct compat_kvm_dirty_log compat_log;
5391 		struct kvm_dirty_log log;
5392 
5393 		if (copy_from_user(&compat_log, (void __user *)arg,
5394 				   sizeof(compat_log)))
5395 			return -EFAULT;
5396 		log.slot	 = compat_log.slot;
5397 		log.padding1	 = compat_log.padding1;
5398 		log.padding2	 = compat_log.padding2;
5399 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5400 
5401 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5402 		break;
5403 	}
5404 	default:
5405 		r = kvm_vm_ioctl(filp, ioctl, arg);
5406 	}
5407 	return r;
5408 }
5409 #endif
5410 
5411 static struct file_operations kvm_vm_fops = {
5412 	.release        = kvm_vm_release,
5413 	.unlocked_ioctl = kvm_vm_ioctl,
5414 	.llseek		= noop_llseek,
5415 	KVM_COMPAT(kvm_vm_compat_ioctl),
5416 };
5417 
5418 bool file_is_kvm(struct file *file)
5419 {
5420 	return file && file->f_op == &kvm_vm_fops;
5421 }
5422 EXPORT_SYMBOL_GPL(file_is_kvm);
5423 
5424 static int kvm_dev_ioctl_create_vm(unsigned long type)
5425 {
5426 	char fdname[ITOA_MAX_LEN + 1];
5427 	int r, fd;
5428 	struct kvm *kvm;
5429 	struct file *file;
5430 
5431 	fd = get_unused_fd_flags(O_CLOEXEC);
5432 	if (fd < 0)
5433 		return fd;
5434 
5435 	snprintf(fdname, sizeof(fdname), "%d", fd);
5436 
5437 	kvm = kvm_create_vm(type, fdname);
5438 	if (IS_ERR(kvm)) {
5439 		r = PTR_ERR(kvm);
5440 		goto put_fd;
5441 	}
5442 
5443 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5444 	if (IS_ERR(file)) {
5445 		r = PTR_ERR(file);
5446 		goto put_kvm;
5447 	}
5448 
5449 	/*
5450 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5451 	 * already set, with ->release() being kvm_vm_release().  In error
5452 	 * cases it will be called by the final fput(file) and will take
5453 	 * care of doing kvm_put_kvm(kvm).
5454 	 */
5455 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5456 
5457 	fd_install(fd, file);
5458 	return fd;
5459 
5460 put_kvm:
5461 	kvm_put_kvm(kvm);
5462 put_fd:
5463 	put_unused_fd(fd);
5464 	return r;
5465 }
5466 
5467 static long kvm_dev_ioctl(struct file *filp,
5468 			  unsigned int ioctl, unsigned long arg)
5469 {
5470 	int r = -EINVAL;
5471 
5472 	switch (ioctl) {
5473 	case KVM_GET_API_VERSION:
5474 		if (arg)
5475 			goto out;
5476 		r = KVM_API_VERSION;
5477 		break;
5478 	case KVM_CREATE_VM:
5479 		r = kvm_dev_ioctl_create_vm(arg);
5480 		break;
5481 	case KVM_CHECK_EXTENSION:
5482 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5483 		break;
5484 	case KVM_GET_VCPU_MMAP_SIZE:
5485 		if (arg)
5486 			goto out;
5487 		r = PAGE_SIZE;     /* struct kvm_run */
5488 #ifdef CONFIG_X86
5489 		r += PAGE_SIZE;    /* pio data page */
5490 #endif
5491 #ifdef CONFIG_KVM_MMIO
5492 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5493 #endif
5494 		break;
5495 	default:
5496 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5497 	}
5498 out:
5499 	return r;
5500 }
5501 
5502 static struct file_operations kvm_chardev_ops = {
5503 	.unlocked_ioctl = kvm_dev_ioctl,
5504 	.llseek		= noop_llseek,
5505 	KVM_COMPAT(kvm_dev_ioctl),
5506 };
5507 
5508 static struct miscdevice kvm_dev = {
5509 	KVM_MINOR,
5510 	"kvm",
5511 	&kvm_chardev_ops,
5512 };
5513 
5514 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5515 __visible bool kvm_rebooting;
5516 EXPORT_SYMBOL_GPL(kvm_rebooting);
5517 
5518 static DEFINE_PER_CPU(bool, hardware_enabled);
5519 static int kvm_usage_count;
5520 
5521 static int __hardware_enable_nolock(void)
5522 {
5523 	if (__this_cpu_read(hardware_enabled))
5524 		return 0;
5525 
5526 	if (kvm_arch_hardware_enable()) {
5527 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5528 			raw_smp_processor_id());
5529 		return -EIO;
5530 	}
5531 
5532 	__this_cpu_write(hardware_enabled, true);
5533 	return 0;
5534 }
5535 
5536 static void hardware_enable_nolock(void *failed)
5537 {
5538 	if (__hardware_enable_nolock())
5539 		atomic_inc(failed);
5540 }
5541 
5542 static int kvm_online_cpu(unsigned int cpu)
5543 {
5544 	int ret = 0;
5545 
5546 	/*
5547 	 * Abort the CPU online process if hardware virtualization cannot
5548 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5549 	 * errors when scheduled to this CPU.
5550 	 */
5551 	mutex_lock(&kvm_lock);
5552 	if (kvm_usage_count)
5553 		ret = __hardware_enable_nolock();
5554 	mutex_unlock(&kvm_lock);
5555 	return ret;
5556 }
5557 
5558 static void hardware_disable_nolock(void *junk)
5559 {
5560 	/*
5561 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5562 	 * hardware, not just CPUs that successfully enabled hardware!
5563 	 */
5564 	if (!__this_cpu_read(hardware_enabled))
5565 		return;
5566 
5567 	kvm_arch_hardware_disable();
5568 
5569 	__this_cpu_write(hardware_enabled, false);
5570 }
5571 
5572 static int kvm_offline_cpu(unsigned int cpu)
5573 {
5574 	mutex_lock(&kvm_lock);
5575 	if (kvm_usage_count)
5576 		hardware_disable_nolock(NULL);
5577 	mutex_unlock(&kvm_lock);
5578 	return 0;
5579 }
5580 
5581 static void hardware_disable_all_nolock(void)
5582 {
5583 	BUG_ON(!kvm_usage_count);
5584 
5585 	kvm_usage_count--;
5586 	if (!kvm_usage_count)
5587 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5588 }
5589 
5590 static void hardware_disable_all(void)
5591 {
5592 	cpus_read_lock();
5593 	mutex_lock(&kvm_lock);
5594 	hardware_disable_all_nolock();
5595 	mutex_unlock(&kvm_lock);
5596 	cpus_read_unlock();
5597 }
5598 
5599 static int hardware_enable_all(void)
5600 {
5601 	atomic_t failed = ATOMIC_INIT(0);
5602 	int r;
5603 
5604 	/*
5605 	 * Do not enable hardware virtualization if the system is going down.
5606 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5607 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5608 	 * after kvm_reboot() is called.  Note, this relies on system_state
5609 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5610 	 * hook instead of registering a dedicated reboot notifier (the latter
5611 	 * runs before system_state is updated).
5612 	 */
5613 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5614 	    system_state == SYSTEM_RESTART)
5615 		return -EBUSY;
5616 
5617 	/*
5618 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5619 	 * is called, and so on_each_cpu() between them includes the CPU that
5620 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5621 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5622 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5623 	 * enable hardware multiple times.
5624 	 */
5625 	cpus_read_lock();
5626 	mutex_lock(&kvm_lock);
5627 
5628 	r = 0;
5629 
5630 	kvm_usage_count++;
5631 	if (kvm_usage_count == 1) {
5632 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5633 
5634 		if (atomic_read(&failed)) {
5635 			hardware_disable_all_nolock();
5636 			r = -EBUSY;
5637 		}
5638 	}
5639 
5640 	mutex_unlock(&kvm_lock);
5641 	cpus_read_unlock();
5642 
5643 	return r;
5644 }
5645 
5646 static void kvm_shutdown(void)
5647 {
5648 	/*
5649 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5650 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5651 	 * that relevant errors and exceptions aren't entirely unexpected.
5652 	 * Some flavors of hardware virtualization need to be disabled before
5653 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5654 	 * on x86, virtualization can block INIT interrupts, which are used by
5655 	 * firmware to pull APs back under firmware control.  Note, this path
5656 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5657 	 * 100% comprehensive.
5658 	 */
5659 	pr_info("kvm: exiting hardware virtualization\n");
5660 	kvm_rebooting = true;
5661 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5662 }
5663 
5664 static int kvm_suspend(void)
5665 {
5666 	/*
5667 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5668 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5669 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5670 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5671 	 * can be preempted, but the task cannot be frozen until it has dropped
5672 	 * all locks (userspace tasks are frozen via a fake signal).
5673 	 */
5674 	lockdep_assert_not_held(&kvm_lock);
5675 	lockdep_assert_irqs_disabled();
5676 
5677 	if (kvm_usage_count)
5678 		hardware_disable_nolock(NULL);
5679 	return 0;
5680 }
5681 
5682 static void kvm_resume(void)
5683 {
5684 	lockdep_assert_not_held(&kvm_lock);
5685 	lockdep_assert_irqs_disabled();
5686 
5687 	if (kvm_usage_count)
5688 		WARN_ON_ONCE(__hardware_enable_nolock());
5689 }
5690 
5691 static struct syscore_ops kvm_syscore_ops = {
5692 	.suspend = kvm_suspend,
5693 	.resume = kvm_resume,
5694 	.shutdown = kvm_shutdown,
5695 };
5696 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5697 static int hardware_enable_all(void)
5698 {
5699 	return 0;
5700 }
5701 
5702 static void hardware_disable_all(void)
5703 {
5704 
5705 }
5706 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5707 
5708 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5709 {
5710 	if (dev->ops->destructor)
5711 		dev->ops->destructor(dev);
5712 }
5713 
5714 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5715 {
5716 	int i;
5717 
5718 	for (i = 0; i < bus->dev_count; i++) {
5719 		struct kvm_io_device *pos = bus->range[i].dev;
5720 
5721 		kvm_iodevice_destructor(pos);
5722 	}
5723 	kfree(bus);
5724 }
5725 
5726 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5727 				 const struct kvm_io_range *r2)
5728 {
5729 	gpa_t addr1 = r1->addr;
5730 	gpa_t addr2 = r2->addr;
5731 
5732 	if (addr1 < addr2)
5733 		return -1;
5734 
5735 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5736 	 * accept any overlapping write.  Any order is acceptable for
5737 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5738 	 * we process all of them.
5739 	 */
5740 	if (r2->len) {
5741 		addr1 += r1->len;
5742 		addr2 += r2->len;
5743 	}
5744 
5745 	if (addr1 > addr2)
5746 		return 1;
5747 
5748 	return 0;
5749 }
5750 
5751 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5752 {
5753 	return kvm_io_bus_cmp(p1, p2);
5754 }
5755 
5756 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5757 			     gpa_t addr, int len)
5758 {
5759 	struct kvm_io_range *range, key;
5760 	int off;
5761 
5762 	key = (struct kvm_io_range) {
5763 		.addr = addr,
5764 		.len = len,
5765 	};
5766 
5767 	range = bsearch(&key, bus->range, bus->dev_count,
5768 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5769 	if (range == NULL)
5770 		return -ENOENT;
5771 
5772 	off = range - bus->range;
5773 
5774 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5775 		off--;
5776 
5777 	return off;
5778 }
5779 
5780 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5781 			      struct kvm_io_range *range, const void *val)
5782 {
5783 	int idx;
5784 
5785 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5786 	if (idx < 0)
5787 		return -EOPNOTSUPP;
5788 
5789 	while (idx < bus->dev_count &&
5790 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5791 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5792 					range->len, val))
5793 			return idx;
5794 		idx++;
5795 	}
5796 
5797 	return -EOPNOTSUPP;
5798 }
5799 
5800 /* kvm_io_bus_write - called under kvm->slots_lock */
5801 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5802 		     int len, const void *val)
5803 {
5804 	struct kvm_io_bus *bus;
5805 	struct kvm_io_range range;
5806 	int r;
5807 
5808 	range = (struct kvm_io_range) {
5809 		.addr = addr,
5810 		.len = len,
5811 	};
5812 
5813 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5814 	if (!bus)
5815 		return -ENOMEM;
5816 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5817 	return r < 0 ? r : 0;
5818 }
5819 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5820 
5821 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5822 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5823 			    gpa_t addr, int len, const void *val, long cookie)
5824 {
5825 	struct kvm_io_bus *bus;
5826 	struct kvm_io_range range;
5827 
5828 	range = (struct kvm_io_range) {
5829 		.addr = addr,
5830 		.len = len,
5831 	};
5832 
5833 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5834 	if (!bus)
5835 		return -ENOMEM;
5836 
5837 	/* First try the device referenced by cookie. */
5838 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5839 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5840 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5841 					val))
5842 			return cookie;
5843 
5844 	/*
5845 	 * cookie contained garbage; fall back to search and return the
5846 	 * correct cookie value.
5847 	 */
5848 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5849 }
5850 
5851 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5852 			     struct kvm_io_range *range, void *val)
5853 {
5854 	int idx;
5855 
5856 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5857 	if (idx < 0)
5858 		return -EOPNOTSUPP;
5859 
5860 	while (idx < bus->dev_count &&
5861 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5862 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5863 				       range->len, val))
5864 			return idx;
5865 		idx++;
5866 	}
5867 
5868 	return -EOPNOTSUPP;
5869 }
5870 
5871 /* kvm_io_bus_read - called under kvm->slots_lock */
5872 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5873 		    int len, void *val)
5874 {
5875 	struct kvm_io_bus *bus;
5876 	struct kvm_io_range range;
5877 	int r;
5878 
5879 	range = (struct kvm_io_range) {
5880 		.addr = addr,
5881 		.len = len,
5882 	};
5883 
5884 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5885 	if (!bus)
5886 		return -ENOMEM;
5887 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5888 	return r < 0 ? r : 0;
5889 }
5890 
5891 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5892 			    int len, struct kvm_io_device *dev)
5893 {
5894 	int i;
5895 	struct kvm_io_bus *new_bus, *bus;
5896 	struct kvm_io_range range;
5897 
5898 	lockdep_assert_held(&kvm->slots_lock);
5899 
5900 	bus = kvm_get_bus(kvm, bus_idx);
5901 	if (!bus)
5902 		return -ENOMEM;
5903 
5904 	/* exclude ioeventfd which is limited by maximum fd */
5905 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5906 		return -ENOSPC;
5907 
5908 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5909 			  GFP_KERNEL_ACCOUNT);
5910 	if (!new_bus)
5911 		return -ENOMEM;
5912 
5913 	range = (struct kvm_io_range) {
5914 		.addr = addr,
5915 		.len = len,
5916 		.dev = dev,
5917 	};
5918 
5919 	for (i = 0; i < bus->dev_count; i++)
5920 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5921 			break;
5922 
5923 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5924 	new_bus->dev_count++;
5925 	new_bus->range[i] = range;
5926 	memcpy(new_bus->range + i + 1, bus->range + i,
5927 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5928 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5929 	synchronize_srcu_expedited(&kvm->srcu);
5930 	kfree(bus);
5931 
5932 	return 0;
5933 }
5934 
5935 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5936 			      struct kvm_io_device *dev)
5937 {
5938 	int i;
5939 	struct kvm_io_bus *new_bus, *bus;
5940 
5941 	lockdep_assert_held(&kvm->slots_lock);
5942 
5943 	bus = kvm_get_bus(kvm, bus_idx);
5944 	if (!bus)
5945 		return 0;
5946 
5947 	for (i = 0; i < bus->dev_count; i++) {
5948 		if (bus->range[i].dev == dev) {
5949 			break;
5950 		}
5951 	}
5952 
5953 	if (i == bus->dev_count)
5954 		return 0;
5955 
5956 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5957 			  GFP_KERNEL_ACCOUNT);
5958 	if (new_bus) {
5959 		memcpy(new_bus, bus, struct_size(bus, range, i));
5960 		new_bus->dev_count--;
5961 		memcpy(new_bus->range + i, bus->range + i + 1,
5962 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5963 	}
5964 
5965 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5966 	synchronize_srcu_expedited(&kvm->srcu);
5967 
5968 	/*
5969 	 * If NULL bus is installed, destroy the old bus, including all the
5970 	 * attached devices. Otherwise, destroy the caller's device only.
5971 	 */
5972 	if (!new_bus) {
5973 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5974 		kvm_io_bus_destroy(bus);
5975 		return -ENOMEM;
5976 	}
5977 
5978 	kvm_iodevice_destructor(dev);
5979 	kfree(bus);
5980 	return 0;
5981 }
5982 
5983 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5984 					 gpa_t addr)
5985 {
5986 	struct kvm_io_bus *bus;
5987 	int dev_idx, srcu_idx;
5988 	struct kvm_io_device *iodev = NULL;
5989 
5990 	srcu_idx = srcu_read_lock(&kvm->srcu);
5991 
5992 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5993 	if (!bus)
5994 		goto out_unlock;
5995 
5996 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5997 	if (dev_idx < 0)
5998 		goto out_unlock;
5999 
6000 	iodev = bus->range[dev_idx].dev;
6001 
6002 out_unlock:
6003 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6004 
6005 	return iodev;
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6008 
6009 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6010 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6011 			   const char *fmt)
6012 {
6013 	int ret;
6014 	struct kvm_stat_data *stat_data = inode->i_private;
6015 
6016 	/*
6017 	 * The debugfs files are a reference to the kvm struct which
6018         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6019         * avoids the race between open and the removal of the debugfs directory.
6020 	 */
6021 	if (!kvm_get_kvm_safe(stat_data->kvm))
6022 		return -ENOENT;
6023 
6024 	ret = simple_attr_open(inode, file, get,
6025 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6026 			       ? set : NULL, fmt);
6027 	if (ret)
6028 		kvm_put_kvm(stat_data->kvm);
6029 
6030 	return ret;
6031 }
6032 
6033 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6034 {
6035 	struct kvm_stat_data *stat_data = inode->i_private;
6036 
6037 	simple_attr_release(inode, file);
6038 	kvm_put_kvm(stat_data->kvm);
6039 
6040 	return 0;
6041 }
6042 
6043 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6044 {
6045 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6046 
6047 	return 0;
6048 }
6049 
6050 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6051 {
6052 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6053 
6054 	return 0;
6055 }
6056 
6057 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6058 {
6059 	unsigned long i;
6060 	struct kvm_vcpu *vcpu;
6061 
6062 	*val = 0;
6063 
6064 	kvm_for_each_vcpu(i, vcpu, kvm)
6065 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6066 
6067 	return 0;
6068 }
6069 
6070 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6071 {
6072 	unsigned long i;
6073 	struct kvm_vcpu *vcpu;
6074 
6075 	kvm_for_each_vcpu(i, vcpu, kvm)
6076 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6077 
6078 	return 0;
6079 }
6080 
6081 static int kvm_stat_data_get(void *data, u64 *val)
6082 {
6083 	int r = -EFAULT;
6084 	struct kvm_stat_data *stat_data = data;
6085 
6086 	switch (stat_data->kind) {
6087 	case KVM_STAT_VM:
6088 		r = kvm_get_stat_per_vm(stat_data->kvm,
6089 					stat_data->desc->desc.offset, val);
6090 		break;
6091 	case KVM_STAT_VCPU:
6092 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6093 					  stat_data->desc->desc.offset, val);
6094 		break;
6095 	}
6096 
6097 	return r;
6098 }
6099 
6100 static int kvm_stat_data_clear(void *data, u64 val)
6101 {
6102 	int r = -EFAULT;
6103 	struct kvm_stat_data *stat_data = data;
6104 
6105 	if (val)
6106 		return -EINVAL;
6107 
6108 	switch (stat_data->kind) {
6109 	case KVM_STAT_VM:
6110 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6111 					  stat_data->desc->desc.offset);
6112 		break;
6113 	case KVM_STAT_VCPU:
6114 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6115 					    stat_data->desc->desc.offset);
6116 		break;
6117 	}
6118 
6119 	return r;
6120 }
6121 
6122 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6123 {
6124 	__simple_attr_check_format("%llu\n", 0ull);
6125 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6126 				kvm_stat_data_clear, "%llu\n");
6127 }
6128 
6129 static const struct file_operations stat_fops_per_vm = {
6130 	.owner = THIS_MODULE,
6131 	.open = kvm_stat_data_open,
6132 	.release = kvm_debugfs_release,
6133 	.read = simple_attr_read,
6134 	.write = simple_attr_write,
6135 	.llseek = no_llseek,
6136 };
6137 
6138 static int vm_stat_get(void *_offset, u64 *val)
6139 {
6140 	unsigned offset = (long)_offset;
6141 	struct kvm *kvm;
6142 	u64 tmp_val;
6143 
6144 	*val = 0;
6145 	mutex_lock(&kvm_lock);
6146 	list_for_each_entry(kvm, &vm_list, vm_list) {
6147 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6148 		*val += tmp_val;
6149 	}
6150 	mutex_unlock(&kvm_lock);
6151 	return 0;
6152 }
6153 
6154 static int vm_stat_clear(void *_offset, u64 val)
6155 {
6156 	unsigned offset = (long)_offset;
6157 	struct kvm *kvm;
6158 
6159 	if (val)
6160 		return -EINVAL;
6161 
6162 	mutex_lock(&kvm_lock);
6163 	list_for_each_entry(kvm, &vm_list, vm_list) {
6164 		kvm_clear_stat_per_vm(kvm, offset);
6165 	}
6166 	mutex_unlock(&kvm_lock);
6167 
6168 	return 0;
6169 }
6170 
6171 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6172 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6173 
6174 static int vcpu_stat_get(void *_offset, u64 *val)
6175 {
6176 	unsigned offset = (long)_offset;
6177 	struct kvm *kvm;
6178 	u64 tmp_val;
6179 
6180 	*val = 0;
6181 	mutex_lock(&kvm_lock);
6182 	list_for_each_entry(kvm, &vm_list, vm_list) {
6183 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6184 		*val += tmp_val;
6185 	}
6186 	mutex_unlock(&kvm_lock);
6187 	return 0;
6188 }
6189 
6190 static int vcpu_stat_clear(void *_offset, u64 val)
6191 {
6192 	unsigned offset = (long)_offset;
6193 	struct kvm *kvm;
6194 
6195 	if (val)
6196 		return -EINVAL;
6197 
6198 	mutex_lock(&kvm_lock);
6199 	list_for_each_entry(kvm, &vm_list, vm_list) {
6200 		kvm_clear_stat_per_vcpu(kvm, offset);
6201 	}
6202 	mutex_unlock(&kvm_lock);
6203 
6204 	return 0;
6205 }
6206 
6207 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6208 			"%llu\n");
6209 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6210 
6211 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6212 {
6213 	struct kobj_uevent_env *env;
6214 	unsigned long long created, active;
6215 
6216 	if (!kvm_dev.this_device || !kvm)
6217 		return;
6218 
6219 	mutex_lock(&kvm_lock);
6220 	if (type == KVM_EVENT_CREATE_VM) {
6221 		kvm_createvm_count++;
6222 		kvm_active_vms++;
6223 	} else if (type == KVM_EVENT_DESTROY_VM) {
6224 		kvm_active_vms--;
6225 	}
6226 	created = kvm_createvm_count;
6227 	active = kvm_active_vms;
6228 	mutex_unlock(&kvm_lock);
6229 
6230 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6231 	if (!env)
6232 		return;
6233 
6234 	add_uevent_var(env, "CREATED=%llu", created);
6235 	add_uevent_var(env, "COUNT=%llu", active);
6236 
6237 	if (type == KVM_EVENT_CREATE_VM) {
6238 		add_uevent_var(env, "EVENT=create");
6239 		kvm->userspace_pid = task_pid_nr(current);
6240 	} else if (type == KVM_EVENT_DESTROY_VM) {
6241 		add_uevent_var(env, "EVENT=destroy");
6242 	}
6243 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6244 
6245 	if (!IS_ERR(kvm->debugfs_dentry)) {
6246 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6247 
6248 		if (p) {
6249 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6250 			if (!IS_ERR(tmp))
6251 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6252 			kfree(p);
6253 		}
6254 	}
6255 	/* no need for checks, since we are adding at most only 5 keys */
6256 	env->envp[env->envp_idx++] = NULL;
6257 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6258 	kfree(env);
6259 }
6260 
6261 static void kvm_init_debug(void)
6262 {
6263 	const struct file_operations *fops;
6264 	const struct _kvm_stats_desc *pdesc;
6265 	int i;
6266 
6267 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6268 
6269 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6270 		pdesc = &kvm_vm_stats_desc[i];
6271 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6272 			fops = &vm_stat_fops;
6273 		else
6274 			fops = &vm_stat_readonly_fops;
6275 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6276 				kvm_debugfs_dir,
6277 				(void *)(long)pdesc->desc.offset, fops);
6278 	}
6279 
6280 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6281 		pdesc = &kvm_vcpu_stats_desc[i];
6282 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6283 			fops = &vcpu_stat_fops;
6284 		else
6285 			fops = &vcpu_stat_readonly_fops;
6286 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6287 				kvm_debugfs_dir,
6288 				(void *)(long)pdesc->desc.offset, fops);
6289 	}
6290 }
6291 
6292 static inline
6293 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6294 {
6295 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6296 }
6297 
6298 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6299 {
6300 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6301 
6302 	WRITE_ONCE(vcpu->preempted, false);
6303 	WRITE_ONCE(vcpu->ready, false);
6304 
6305 	__this_cpu_write(kvm_running_vcpu, vcpu);
6306 	kvm_arch_sched_in(vcpu, cpu);
6307 	kvm_arch_vcpu_load(vcpu, cpu);
6308 }
6309 
6310 static void kvm_sched_out(struct preempt_notifier *pn,
6311 			  struct task_struct *next)
6312 {
6313 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6314 
6315 	if (current->on_rq) {
6316 		WRITE_ONCE(vcpu->preempted, true);
6317 		WRITE_ONCE(vcpu->ready, true);
6318 	}
6319 	kvm_arch_vcpu_put(vcpu);
6320 	__this_cpu_write(kvm_running_vcpu, NULL);
6321 }
6322 
6323 /**
6324  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6325  *
6326  * We can disable preemption locally around accessing the per-CPU variable,
6327  * and use the resolved vcpu pointer after enabling preemption again,
6328  * because even if the current thread is migrated to another CPU, reading
6329  * the per-CPU value later will give us the same value as we update the
6330  * per-CPU variable in the preempt notifier handlers.
6331  */
6332 struct kvm_vcpu *kvm_get_running_vcpu(void)
6333 {
6334 	struct kvm_vcpu *vcpu;
6335 
6336 	preempt_disable();
6337 	vcpu = __this_cpu_read(kvm_running_vcpu);
6338 	preempt_enable();
6339 
6340 	return vcpu;
6341 }
6342 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6343 
6344 /**
6345  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6346  */
6347 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6348 {
6349         return &kvm_running_vcpu;
6350 }
6351 
6352 #ifdef CONFIG_GUEST_PERF_EVENTS
6353 static unsigned int kvm_guest_state(void)
6354 {
6355 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6356 	unsigned int state;
6357 
6358 	if (!kvm_arch_pmi_in_guest(vcpu))
6359 		return 0;
6360 
6361 	state = PERF_GUEST_ACTIVE;
6362 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6363 		state |= PERF_GUEST_USER;
6364 
6365 	return state;
6366 }
6367 
6368 static unsigned long kvm_guest_get_ip(void)
6369 {
6370 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6371 
6372 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6373 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6374 		return 0;
6375 
6376 	return kvm_arch_vcpu_get_ip(vcpu);
6377 }
6378 
6379 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6380 	.state			= kvm_guest_state,
6381 	.get_ip			= kvm_guest_get_ip,
6382 	.handle_intel_pt_intr	= NULL,
6383 };
6384 
6385 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6386 {
6387 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6388 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6389 }
6390 void kvm_unregister_perf_callbacks(void)
6391 {
6392 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6393 }
6394 #endif
6395 
6396 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6397 {
6398 	int r;
6399 	int cpu;
6400 
6401 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6402 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6403 				      kvm_online_cpu, kvm_offline_cpu);
6404 	if (r)
6405 		return r;
6406 
6407 	register_syscore_ops(&kvm_syscore_ops);
6408 #endif
6409 
6410 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6411 	if (!vcpu_align)
6412 		vcpu_align = __alignof__(struct kvm_vcpu);
6413 	kvm_vcpu_cache =
6414 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6415 					   SLAB_ACCOUNT,
6416 					   offsetof(struct kvm_vcpu, arch),
6417 					   offsetofend(struct kvm_vcpu, stats_id)
6418 					   - offsetof(struct kvm_vcpu, arch),
6419 					   NULL);
6420 	if (!kvm_vcpu_cache) {
6421 		r = -ENOMEM;
6422 		goto err_vcpu_cache;
6423 	}
6424 
6425 	for_each_possible_cpu(cpu) {
6426 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6427 					    GFP_KERNEL, cpu_to_node(cpu))) {
6428 			r = -ENOMEM;
6429 			goto err_cpu_kick_mask;
6430 		}
6431 	}
6432 
6433 	r = kvm_irqfd_init();
6434 	if (r)
6435 		goto err_irqfd;
6436 
6437 	r = kvm_async_pf_init();
6438 	if (r)
6439 		goto err_async_pf;
6440 
6441 	kvm_chardev_ops.owner = module;
6442 	kvm_vm_fops.owner = module;
6443 	kvm_vcpu_fops.owner = module;
6444 	kvm_device_fops.owner = module;
6445 
6446 	kvm_preempt_ops.sched_in = kvm_sched_in;
6447 	kvm_preempt_ops.sched_out = kvm_sched_out;
6448 
6449 	kvm_init_debug();
6450 
6451 	r = kvm_vfio_ops_init();
6452 	if (WARN_ON_ONCE(r))
6453 		goto err_vfio;
6454 
6455 	kvm_gmem_init(module);
6456 
6457 	/*
6458 	 * Registration _must_ be the very last thing done, as this exposes
6459 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6460 	 */
6461 	r = misc_register(&kvm_dev);
6462 	if (r) {
6463 		pr_err("kvm: misc device register failed\n");
6464 		goto err_register;
6465 	}
6466 
6467 	return 0;
6468 
6469 err_register:
6470 	kvm_vfio_ops_exit();
6471 err_vfio:
6472 	kvm_async_pf_deinit();
6473 err_async_pf:
6474 	kvm_irqfd_exit();
6475 err_irqfd:
6476 err_cpu_kick_mask:
6477 	for_each_possible_cpu(cpu)
6478 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6479 	kmem_cache_destroy(kvm_vcpu_cache);
6480 err_vcpu_cache:
6481 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6482 	unregister_syscore_ops(&kvm_syscore_ops);
6483 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6484 #endif
6485 	return r;
6486 }
6487 EXPORT_SYMBOL_GPL(kvm_init);
6488 
6489 void kvm_exit(void)
6490 {
6491 	int cpu;
6492 
6493 	/*
6494 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6495 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6496 	 * to KVM while the module is being stopped.
6497 	 */
6498 	misc_deregister(&kvm_dev);
6499 
6500 	debugfs_remove_recursive(kvm_debugfs_dir);
6501 	for_each_possible_cpu(cpu)
6502 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6503 	kmem_cache_destroy(kvm_vcpu_cache);
6504 	kvm_vfio_ops_exit();
6505 	kvm_async_pf_deinit();
6506 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6507 	unregister_syscore_ops(&kvm_syscore_ops);
6508 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6509 #endif
6510 	kvm_irqfd_exit();
6511 }
6512 EXPORT_SYMBOL_GPL(kvm_exit);
6513 
6514 struct kvm_vm_worker_thread_context {
6515 	struct kvm *kvm;
6516 	struct task_struct *parent;
6517 	struct completion init_done;
6518 	kvm_vm_thread_fn_t thread_fn;
6519 	uintptr_t data;
6520 	int err;
6521 };
6522 
6523 static int kvm_vm_worker_thread(void *context)
6524 {
6525 	/*
6526 	 * The init_context is allocated on the stack of the parent thread, so
6527 	 * we have to locally copy anything that is needed beyond initialization
6528 	 */
6529 	struct kvm_vm_worker_thread_context *init_context = context;
6530 	struct task_struct *parent;
6531 	struct kvm *kvm = init_context->kvm;
6532 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6533 	uintptr_t data = init_context->data;
6534 	int err;
6535 
6536 	err = kthread_park(current);
6537 	/* kthread_park(current) is never supposed to return an error */
6538 	WARN_ON(err != 0);
6539 	if (err)
6540 		goto init_complete;
6541 
6542 	err = cgroup_attach_task_all(init_context->parent, current);
6543 	if (err) {
6544 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6545 			__func__, err);
6546 		goto init_complete;
6547 	}
6548 
6549 	set_user_nice(current, task_nice(init_context->parent));
6550 
6551 init_complete:
6552 	init_context->err = err;
6553 	complete(&init_context->init_done);
6554 	init_context = NULL;
6555 
6556 	if (err)
6557 		goto out;
6558 
6559 	/* Wait to be woken up by the spawner before proceeding. */
6560 	kthread_parkme();
6561 
6562 	if (!kthread_should_stop())
6563 		err = thread_fn(kvm, data);
6564 
6565 out:
6566 	/*
6567 	 * Move kthread back to its original cgroup to prevent it lingering in
6568 	 * the cgroup of the VM process, after the latter finishes its
6569 	 * execution.
6570 	 *
6571 	 * kthread_stop() waits on the 'exited' completion condition which is
6572 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6573 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6574 	 * called after the exit_mm(). This causes the kthread_stop() to return
6575 	 * before the kthread actually quits the cgroup.
6576 	 */
6577 	rcu_read_lock();
6578 	parent = rcu_dereference(current->real_parent);
6579 	get_task_struct(parent);
6580 	rcu_read_unlock();
6581 	cgroup_attach_task_all(parent, current);
6582 	put_task_struct(parent);
6583 
6584 	return err;
6585 }
6586 
6587 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6588 				uintptr_t data, const char *name,
6589 				struct task_struct **thread_ptr)
6590 {
6591 	struct kvm_vm_worker_thread_context init_context = {};
6592 	struct task_struct *thread;
6593 
6594 	*thread_ptr = NULL;
6595 	init_context.kvm = kvm;
6596 	init_context.parent = current;
6597 	init_context.thread_fn = thread_fn;
6598 	init_context.data = data;
6599 	init_completion(&init_context.init_done);
6600 
6601 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6602 			     "%s-%d", name, task_pid_nr(current));
6603 	if (IS_ERR(thread))
6604 		return PTR_ERR(thread);
6605 
6606 	/* kthread_run is never supposed to return NULL */
6607 	WARN_ON(thread == NULL);
6608 
6609 	wait_for_completion(&init_context.init_done);
6610 
6611 	if (!init_context.err)
6612 		*thread_ptr = thread;
6613 
6614 	return init_context.err;
6615 }
6616