1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 53 #include <asm/processor.h> 54 #include <asm/ioctl.h> 55 #include <linux/uaccess.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 #include "kvm_mm.h" 60 #include "vfio.h" 61 62 #include <trace/events/ipi.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 #include <linux/kvm_dirty_ring.h> 68 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 75 MODULE_LICENSE("GPL"); 76 77 /* Architectures should define their poll value according to the halt latency */ 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 79 module_param(halt_poll_ns, uint, 0644); 80 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns); 81 82 /* Default doubles per-vcpu halt_poll_ns. */ 83 unsigned int halt_poll_ns_grow = 2; 84 module_param(halt_poll_ns_grow, uint, 0644); 85 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow); 86 87 /* The start value to grow halt_poll_ns from */ 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 89 module_param(halt_poll_ns_grow_start, uint, 0644); 90 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start); 91 92 /* Default halves per-vcpu halt_poll_ns. */ 93 unsigned int halt_poll_ns_shrink = 2; 94 module_param(halt_poll_ns_shrink, uint, 0644); 95 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink); 96 97 /* 98 * Allow direct access (from KVM or the CPU) without MMU notifier protection 99 * to unpinned pages. 100 */ 101 static bool allow_unsafe_mappings; 102 module_param(allow_unsafe_mappings, bool, 0444); 103 104 /* 105 * Ordering of locks: 106 * 107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 108 */ 109 110 DEFINE_MUTEX(kvm_lock); 111 LIST_HEAD(vm_list); 112 113 static struct kmem_cache *kvm_vcpu_cache; 114 115 static __read_mostly struct preempt_ops kvm_preempt_ops; 116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 117 118 static struct dentry *kvm_debugfs_dir; 119 120 static const struct file_operations stat_fops_per_vm; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 #define KVM_EVENT_CREATE_VM 0 150 #define KVM_EVENT_DESTROY_VM 1 151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 152 static unsigned long long kvm_createvm_count; 153 static unsigned long long kvm_active_vms; 154 155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 156 157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 158 { 159 } 160 161 /* 162 * Switches to specified vcpu, until a matching vcpu_put() 163 */ 164 void vcpu_load(struct kvm_vcpu *vcpu) 165 { 166 int cpu = get_cpu(); 167 168 __this_cpu_write(kvm_running_vcpu, vcpu); 169 preempt_notifier_register(&vcpu->preempt_notifier); 170 kvm_arch_vcpu_load(vcpu, cpu); 171 put_cpu(); 172 } 173 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load); 174 175 void vcpu_put(struct kvm_vcpu *vcpu) 176 { 177 preempt_disable(); 178 kvm_arch_vcpu_put(vcpu); 179 preempt_notifier_unregister(&vcpu->preempt_notifier); 180 __this_cpu_write(kvm_running_vcpu, NULL); 181 preempt_enable(); 182 } 183 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put); 184 185 /* TODO: merge with kvm_arch_vcpu_should_kick */ 186 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 187 { 188 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 189 190 /* 191 * We need to wait for the VCPU to reenable interrupts and get out of 192 * READING_SHADOW_PAGE_TABLES mode. 193 */ 194 if (req & KVM_REQUEST_WAIT) 195 return mode != OUTSIDE_GUEST_MODE; 196 197 /* 198 * Need to kick a running VCPU, but otherwise there is nothing to do. 199 */ 200 return mode == IN_GUEST_MODE; 201 } 202 203 static void ack_kick(void *_completed) 204 { 205 } 206 207 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 208 { 209 if (cpumask_empty(cpus)) 210 return false; 211 212 smp_call_function_many(cpus, ack_kick, NULL, wait); 213 return true; 214 } 215 216 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 217 struct cpumask *tmp, int current_cpu) 218 { 219 int cpu; 220 221 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 222 __kvm_make_request(req, vcpu); 223 224 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 225 return; 226 227 /* 228 * Note, the vCPU could get migrated to a different pCPU at any point 229 * after kvm_request_needs_ipi(), which could result in sending an IPI 230 * to the previous pCPU. But, that's OK because the purpose of the IPI 231 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 232 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 233 * after this point is also OK, as the requirement is only that KVM wait 234 * for vCPUs that were reading SPTEs _before_ any changes were 235 * finalized. See kvm_vcpu_kick() for more details on handling requests. 236 */ 237 if (kvm_request_needs_ipi(vcpu, req)) { 238 cpu = READ_ONCE(vcpu->cpu); 239 if (cpu != -1 && cpu != current_cpu) 240 __cpumask_set_cpu(cpu, tmp); 241 } 242 } 243 244 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 245 unsigned long *vcpu_bitmap) 246 { 247 struct kvm_vcpu *vcpu; 248 struct cpumask *cpus; 249 int i, me; 250 bool called; 251 252 me = get_cpu(); 253 254 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 255 cpumask_clear(cpus); 256 257 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 258 vcpu = kvm_get_vcpu(kvm, i); 259 if (!vcpu) 260 continue; 261 kvm_make_vcpu_request(vcpu, req, cpus, me); 262 } 263 264 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 265 put_cpu(); 266 267 return called; 268 } 269 270 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 271 { 272 struct kvm_vcpu *vcpu; 273 struct cpumask *cpus; 274 unsigned long i; 275 bool called; 276 int me; 277 278 me = get_cpu(); 279 280 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 281 cpumask_clear(cpus); 282 283 kvm_for_each_vcpu(i, vcpu, kvm) 284 kvm_make_vcpu_request(vcpu, req, cpus, me); 285 286 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 287 put_cpu(); 288 289 return called; 290 } 291 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request); 292 293 void kvm_flush_remote_tlbs(struct kvm *kvm) 294 { 295 ++kvm->stat.generic.remote_tlb_flush_requests; 296 297 /* 298 * We want to publish modifications to the page tables before reading 299 * mode. Pairs with a memory barrier in arch-specific code. 300 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 301 * and smp_mb in walk_shadow_page_lockless_begin/end. 302 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 303 * 304 * There is already an smp_mb__after_atomic() before 305 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 306 * barrier here. 307 */ 308 if (!kvm_arch_flush_remote_tlbs(kvm) 309 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 310 ++kvm->stat.generic.remote_tlb_flush; 311 } 312 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs); 313 314 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 315 { 316 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 317 return; 318 319 /* 320 * Fall back to a flushing entire TLBs if the architecture range-based 321 * TLB invalidation is unsupported or can't be performed for whatever 322 * reason. 323 */ 324 kvm_flush_remote_tlbs(kvm); 325 } 326 327 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 328 const struct kvm_memory_slot *memslot) 329 { 330 /* 331 * All current use cases for flushing the TLBs for a specific memslot 332 * are related to dirty logging, and many do the TLB flush out of 333 * mmu_lock. The interaction between the various operations on memslot 334 * must be serialized by slots_lock to ensure the TLB flush from one 335 * operation is observed by any other operation on the same memslot. 336 */ 337 lockdep_assert_held(&kvm->slots_lock); 338 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 339 } 340 341 static void kvm_flush_shadow_all(struct kvm *kvm) 342 { 343 kvm_arch_flush_shadow_all(kvm); 344 kvm_arch_guest_memory_reclaimed(kvm); 345 } 346 347 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 348 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 349 gfp_t gfp_flags) 350 { 351 void *page; 352 353 gfp_flags |= mc->gfp_zero; 354 355 if (mc->kmem_cache) 356 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 357 358 page = (void *)__get_free_page(gfp_flags); 359 if (page && mc->init_value) 360 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 361 return page; 362 } 363 364 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 365 { 366 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 367 void *obj; 368 369 if (mc->nobjs >= min) 370 return 0; 371 372 if (unlikely(!mc->objects)) { 373 if (WARN_ON_ONCE(!capacity)) 374 return -EIO; 375 376 /* 377 * Custom init values can be used only for page allocations, 378 * and obviously conflict with __GFP_ZERO. 379 */ 380 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 381 return -EIO; 382 383 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 384 if (!mc->objects) 385 return -ENOMEM; 386 387 mc->capacity = capacity; 388 } 389 390 /* It is illegal to request a different capacity across topups. */ 391 if (WARN_ON_ONCE(mc->capacity != capacity)) 392 return -EIO; 393 394 while (mc->nobjs < mc->capacity) { 395 obj = mmu_memory_cache_alloc_obj(mc, gfp); 396 if (!obj) 397 return mc->nobjs >= min ? 0 : -ENOMEM; 398 mc->objects[mc->nobjs++] = obj; 399 } 400 return 0; 401 } 402 403 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 404 { 405 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 406 } 407 408 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 409 { 410 return mc->nobjs; 411 } 412 413 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 414 { 415 while (mc->nobjs) { 416 if (mc->kmem_cache) 417 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 418 else 419 free_page((unsigned long)mc->objects[--mc->nobjs]); 420 } 421 422 kvfree(mc->objects); 423 424 mc->objects = NULL; 425 mc->capacity = 0; 426 } 427 428 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 429 { 430 void *p; 431 432 if (WARN_ON(!mc->nobjs)) 433 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 434 else 435 p = mc->objects[--mc->nobjs]; 436 BUG_ON(!p); 437 return p; 438 } 439 #endif 440 441 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 442 { 443 mutex_init(&vcpu->mutex); 444 vcpu->cpu = -1; 445 vcpu->kvm = kvm; 446 vcpu->vcpu_id = id; 447 vcpu->pid = NULL; 448 rwlock_init(&vcpu->pid_lock); 449 #ifndef __KVM_HAVE_ARCH_WQP 450 rcuwait_init(&vcpu->wait); 451 #endif 452 kvm_async_pf_vcpu_init(vcpu); 453 454 kvm_vcpu_set_in_spin_loop(vcpu, false); 455 kvm_vcpu_set_dy_eligible(vcpu, false); 456 vcpu->preempted = false; 457 vcpu->ready = false; 458 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 459 vcpu->last_used_slot = NULL; 460 461 /* Fill the stats id string for the vcpu */ 462 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 463 task_pid_nr(current), id); 464 } 465 466 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 467 { 468 kvm_arch_vcpu_destroy(vcpu); 469 kvm_dirty_ring_free(&vcpu->dirty_ring); 470 471 /* 472 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 473 * the vcpu->pid pointer, and at destruction time all file descriptors 474 * are already gone. 475 */ 476 put_pid(vcpu->pid); 477 478 free_page((unsigned long)vcpu->run); 479 kmem_cache_free(kvm_vcpu_cache, vcpu); 480 } 481 482 void kvm_destroy_vcpus(struct kvm *kvm) 483 { 484 unsigned long i; 485 struct kvm_vcpu *vcpu; 486 487 kvm_for_each_vcpu(i, vcpu, kvm) { 488 kvm_vcpu_destroy(vcpu); 489 xa_erase(&kvm->vcpu_array, i); 490 491 /* 492 * Assert that the vCPU isn't visible in any way, to ensure KVM 493 * doesn't trigger a use-after-free if destroying vCPUs results 494 * in VM-wide request, e.g. to flush remote TLBs when tearing 495 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires. 496 */ 497 WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i)); 498 } 499 500 atomic_set(&kvm->online_vcpus, 0); 501 } 502 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus); 503 504 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 505 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 506 { 507 return container_of(mn, struct kvm, mmu_notifier); 508 } 509 510 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 511 512 typedef void (*on_lock_fn_t)(struct kvm *kvm); 513 514 struct kvm_mmu_notifier_range { 515 /* 516 * 64-bit addresses, as KVM notifiers can operate on host virtual 517 * addresses (unsigned long) and guest physical addresses (64-bit). 518 */ 519 u64 start; 520 u64 end; 521 union kvm_mmu_notifier_arg arg; 522 gfn_handler_t handler; 523 on_lock_fn_t on_lock; 524 bool flush_on_ret; 525 bool may_block; 526 bool lockless; 527 }; 528 529 /* 530 * The inner-most helper returns a tuple containing the return value from the 531 * arch- and action-specific handler, plus a flag indicating whether or not at 532 * least one memslot was found, i.e. if the handler found guest memory. 533 * 534 * Note, most notifiers are averse to booleans, so even though KVM tracks the 535 * return from arch code as a bool, outer helpers will cast it to an int. :-( 536 */ 537 typedef struct kvm_mmu_notifier_return { 538 bool ret; 539 bool found_memslot; 540 } kvm_mn_ret_t; 541 542 /* 543 * Use a dedicated stub instead of NULL to indicate that there is no callback 544 * function/handler. The compiler technically can't guarantee that a real 545 * function will have a non-zero address, and so it will generate code to 546 * check for !NULL, whereas comparing against a stub will be elided at compile 547 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 548 */ 549 static void kvm_null_fn(void) 550 { 551 552 } 553 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 554 555 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 556 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 557 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 558 node; \ 559 node = interval_tree_iter_next(node, start, last)) \ 560 561 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm, 562 const struct kvm_mmu_notifier_range *range) 563 { 564 struct kvm_mmu_notifier_return r = { 565 .ret = false, 566 .found_memslot = false, 567 }; 568 struct kvm_gfn_range gfn_range; 569 struct kvm_memory_slot *slot; 570 struct kvm_memslots *slots; 571 int i, idx; 572 573 if (WARN_ON_ONCE(range->end <= range->start)) 574 return r; 575 576 /* A null handler is allowed if and only if on_lock() is provided. */ 577 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 578 IS_KVM_NULL_FN(range->handler))) 579 return r; 580 581 /* on_lock will never be called for lockless walks */ 582 if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock))) 583 return r; 584 585 idx = srcu_read_lock(&kvm->srcu); 586 587 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 588 struct interval_tree_node *node; 589 590 slots = __kvm_memslots(kvm, i); 591 kvm_for_each_memslot_in_hva_range(node, slots, 592 range->start, range->end - 1) { 593 unsigned long hva_start, hva_end; 594 595 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 596 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 597 hva_end = min_t(unsigned long, range->end, 598 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 599 600 /* 601 * To optimize for the likely case where the address 602 * range is covered by zero or one memslots, don't 603 * bother making these conditional (to avoid writes on 604 * the second or later invocation of the handler). 605 */ 606 gfn_range.arg = range->arg; 607 gfn_range.may_block = range->may_block; 608 /* 609 * HVA-based notifications aren't relevant to private 610 * mappings as they don't have a userspace mapping. 611 */ 612 gfn_range.attr_filter = KVM_FILTER_SHARED; 613 614 /* 615 * {gfn(page) | page intersects with [hva_start, hva_end)} = 616 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 617 */ 618 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 619 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 620 gfn_range.slot = slot; 621 gfn_range.lockless = range->lockless; 622 623 if (!r.found_memslot) { 624 r.found_memslot = true; 625 if (!range->lockless) { 626 KVM_MMU_LOCK(kvm); 627 if (!IS_KVM_NULL_FN(range->on_lock)) 628 range->on_lock(kvm); 629 630 if (IS_KVM_NULL_FN(range->handler)) 631 goto mmu_unlock; 632 } 633 } 634 r.ret |= range->handler(kvm, &gfn_range); 635 } 636 } 637 638 if (range->flush_on_ret && r.ret) 639 kvm_flush_remote_tlbs(kvm); 640 641 mmu_unlock: 642 if (r.found_memslot && !range->lockless) 643 KVM_MMU_UNLOCK(kvm); 644 645 srcu_read_unlock(&kvm->srcu, idx); 646 647 return r; 648 } 649 650 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn, 651 unsigned long start, 652 unsigned long end, 653 gfn_handler_t handler, 654 bool flush_on_ret) 655 { 656 struct kvm *kvm = mmu_notifier_to_kvm(mn); 657 const struct kvm_mmu_notifier_range range = { 658 .start = start, 659 .end = end, 660 .handler = handler, 661 .on_lock = (void *)kvm_null_fn, 662 .flush_on_ret = flush_on_ret, 663 .may_block = false, 664 .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING), 665 }; 666 667 return kvm_handle_hva_range(kvm, &range).ret; 668 } 669 670 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 gfn_handler_t handler) 674 { 675 return kvm_age_hva_range(mn, start, end, handler, false); 676 } 677 678 void kvm_mmu_invalidate_begin(struct kvm *kvm) 679 { 680 lockdep_assert_held_write(&kvm->mmu_lock); 681 /* 682 * The count increase must become visible at unlock time as no 683 * spte can be established without taking the mmu_lock and 684 * count is also read inside the mmu_lock critical section. 685 */ 686 kvm->mmu_invalidate_in_progress++; 687 688 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 689 kvm->mmu_invalidate_range_start = INVALID_GPA; 690 kvm->mmu_invalidate_range_end = INVALID_GPA; 691 } 692 } 693 694 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 695 { 696 lockdep_assert_held_write(&kvm->mmu_lock); 697 698 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 699 700 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 701 kvm->mmu_invalidate_range_start = start; 702 kvm->mmu_invalidate_range_end = end; 703 } else { 704 /* 705 * Fully tracking multiple concurrent ranges has diminishing 706 * returns. Keep things simple and just find the minimal range 707 * which includes the current and new ranges. As there won't be 708 * enough information to subtract a range after its invalidate 709 * completes, any ranges invalidated concurrently will 710 * accumulate and persist until all outstanding invalidates 711 * complete. 712 */ 713 kvm->mmu_invalidate_range_start = 714 min(kvm->mmu_invalidate_range_start, start); 715 kvm->mmu_invalidate_range_end = 716 max(kvm->mmu_invalidate_range_end, end); 717 } 718 } 719 720 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 721 { 722 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 723 return kvm_unmap_gfn_range(kvm, range); 724 } 725 726 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 727 const struct mmu_notifier_range *range) 728 { 729 struct kvm *kvm = mmu_notifier_to_kvm(mn); 730 const struct kvm_mmu_notifier_range hva_range = { 731 .start = range->start, 732 .end = range->end, 733 .handler = kvm_mmu_unmap_gfn_range, 734 .on_lock = kvm_mmu_invalidate_begin, 735 .flush_on_ret = true, 736 .may_block = mmu_notifier_range_blockable(range), 737 }; 738 739 trace_kvm_unmap_hva_range(range->start, range->end); 740 741 /* 742 * Prevent memslot modification between range_start() and range_end() 743 * so that conditionally locking provides the same result in both 744 * functions. Without that guarantee, the mmu_invalidate_in_progress 745 * adjustments will be imbalanced. 746 * 747 * Pairs with the decrement in range_end(). 748 */ 749 spin_lock(&kvm->mn_invalidate_lock); 750 kvm->mn_active_invalidate_count++; 751 spin_unlock(&kvm->mn_invalidate_lock); 752 753 /* 754 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 755 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 756 * each cache's lock. There are relatively few caches in existence at 757 * any given time, and the caches themselves can check for hva overlap, 758 * i.e. don't need to rely on memslot overlap checks for performance. 759 * Because this runs without holding mmu_lock, the pfn caches must use 760 * mn_active_invalidate_count (see above) instead of 761 * mmu_invalidate_in_progress. 762 */ 763 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 764 765 /* 766 * If one or more memslots were found and thus zapped, notify arch code 767 * that guest memory has been reclaimed. This needs to be done *after* 768 * dropping mmu_lock, as x86's reclaim path is slooooow. 769 */ 770 if (kvm_handle_hva_range(kvm, &hva_range).found_memslot) 771 kvm_arch_guest_memory_reclaimed(kvm); 772 773 return 0; 774 } 775 776 void kvm_mmu_invalidate_end(struct kvm *kvm) 777 { 778 lockdep_assert_held_write(&kvm->mmu_lock); 779 780 /* 781 * This sequence increase will notify the kvm page fault that 782 * the page that is going to be mapped in the spte could have 783 * been freed. 784 */ 785 kvm->mmu_invalidate_seq++; 786 smp_wmb(); 787 /* 788 * The above sequence increase must be visible before the 789 * below count decrease, which is ensured by the smp_wmb above 790 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 791 */ 792 kvm->mmu_invalidate_in_progress--; 793 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 794 795 /* 796 * Assert that at least one range was added between start() and end(). 797 * Not adding a range isn't fatal, but it is a KVM bug. 798 */ 799 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 800 } 801 802 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 803 const struct mmu_notifier_range *range) 804 { 805 struct kvm *kvm = mmu_notifier_to_kvm(mn); 806 const struct kvm_mmu_notifier_range hva_range = { 807 .start = range->start, 808 .end = range->end, 809 .handler = (void *)kvm_null_fn, 810 .on_lock = kvm_mmu_invalidate_end, 811 .flush_on_ret = false, 812 .may_block = mmu_notifier_range_blockable(range), 813 }; 814 bool wake; 815 816 kvm_handle_hva_range(kvm, &hva_range); 817 818 /* Pairs with the increment in range_start(). */ 819 spin_lock(&kvm->mn_invalidate_lock); 820 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 821 --kvm->mn_active_invalidate_count; 822 wake = !kvm->mn_active_invalidate_count; 823 spin_unlock(&kvm->mn_invalidate_lock); 824 825 /* 826 * There can only be one waiter, since the wait happens under 827 * slots_lock. 828 */ 829 if (wake) 830 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 831 } 832 833 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 834 struct mm_struct *mm, 835 unsigned long start, 836 unsigned long end) 837 { 838 trace_kvm_age_hva(start, end); 839 840 return kvm_age_hva_range(mn, start, end, kvm_age_gfn, 841 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG)); 842 } 843 844 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 845 struct mm_struct *mm, 846 unsigned long start, 847 unsigned long end) 848 { 849 trace_kvm_age_hva(start, end); 850 851 /* 852 * Even though we do not flush TLB, this will still adversely 853 * affect performance on pre-Haswell Intel EPT, where there is 854 * no EPT Access Bit to clear so that we have to tear down EPT 855 * tables instead. If we find this unacceptable, we can always 856 * add a parameter to kvm_age_hva so that it effectively doesn't 857 * do anything on clear_young. 858 * 859 * Also note that currently we never issue secondary TLB flushes 860 * from clear_young, leaving this job up to the regular system 861 * cadence. If we find this inaccurate, we might come up with a 862 * more sophisticated heuristic later. 863 */ 864 return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn); 865 } 866 867 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 868 struct mm_struct *mm, 869 unsigned long address) 870 { 871 trace_kvm_test_age_hva(address); 872 873 return kvm_age_hva_range_no_flush(mn, address, address + 1, 874 kvm_test_age_gfn); 875 } 876 877 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 878 struct mm_struct *mm) 879 { 880 struct kvm *kvm = mmu_notifier_to_kvm(mn); 881 int idx; 882 883 idx = srcu_read_lock(&kvm->srcu); 884 kvm_flush_shadow_all(kvm); 885 srcu_read_unlock(&kvm->srcu, idx); 886 } 887 888 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 889 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 890 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 891 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 892 .clear_young = kvm_mmu_notifier_clear_young, 893 .test_young = kvm_mmu_notifier_test_young, 894 .release = kvm_mmu_notifier_release, 895 }; 896 897 static int kvm_init_mmu_notifier(struct kvm *kvm) 898 { 899 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 900 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 901 } 902 903 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 904 905 static int kvm_init_mmu_notifier(struct kvm *kvm) 906 { 907 return 0; 908 } 909 910 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 911 912 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 913 static int kvm_pm_notifier_call(struct notifier_block *bl, 914 unsigned long state, 915 void *unused) 916 { 917 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 918 919 return kvm_arch_pm_notifier(kvm, state); 920 } 921 922 static void kvm_init_pm_notifier(struct kvm *kvm) 923 { 924 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 925 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 926 kvm->pm_notifier.priority = INT_MAX; 927 register_pm_notifier(&kvm->pm_notifier); 928 } 929 930 static void kvm_destroy_pm_notifier(struct kvm *kvm) 931 { 932 unregister_pm_notifier(&kvm->pm_notifier); 933 } 934 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 935 static void kvm_init_pm_notifier(struct kvm *kvm) 936 { 937 } 938 939 static void kvm_destroy_pm_notifier(struct kvm *kvm) 940 { 941 } 942 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 943 944 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 945 { 946 if (!memslot->dirty_bitmap) 947 return; 948 949 vfree(memslot->dirty_bitmap); 950 memslot->dirty_bitmap = NULL; 951 } 952 953 /* This does not remove the slot from struct kvm_memslots data structures */ 954 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 955 { 956 if (slot->flags & KVM_MEM_GUEST_MEMFD) 957 kvm_gmem_unbind(slot); 958 959 kvm_destroy_dirty_bitmap(slot); 960 961 kvm_arch_free_memslot(kvm, slot); 962 963 kfree(slot); 964 } 965 966 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 967 { 968 struct hlist_node *idnode; 969 struct kvm_memory_slot *memslot; 970 int bkt; 971 972 /* 973 * The same memslot objects live in both active and inactive sets, 974 * arbitrarily free using index '1' so the second invocation of this 975 * function isn't operating over a structure with dangling pointers 976 * (even though this function isn't actually touching them). 977 */ 978 if (!slots->node_idx) 979 return; 980 981 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 982 kvm_free_memslot(kvm, memslot); 983 } 984 985 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 986 { 987 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 988 case KVM_STATS_TYPE_INSTANT: 989 return 0444; 990 case KVM_STATS_TYPE_CUMULATIVE: 991 case KVM_STATS_TYPE_PEAK: 992 default: 993 return 0644; 994 } 995 } 996 997 998 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 999 { 1000 int i; 1001 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1002 kvm_vcpu_stats_header.num_desc; 1003 1004 if (IS_ERR(kvm->debugfs_dentry)) 1005 return; 1006 1007 debugfs_remove_recursive(kvm->debugfs_dentry); 1008 1009 if (kvm->debugfs_stat_data) { 1010 for (i = 0; i < kvm_debugfs_num_entries; i++) 1011 kfree(kvm->debugfs_stat_data[i]); 1012 kfree(kvm->debugfs_stat_data); 1013 } 1014 } 1015 1016 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1017 { 1018 static DEFINE_MUTEX(kvm_debugfs_lock); 1019 struct dentry *dent; 1020 char dir_name[ITOA_MAX_LEN * 2]; 1021 struct kvm_stat_data *stat_data; 1022 const struct _kvm_stats_desc *pdesc; 1023 int i, ret = -ENOMEM; 1024 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1025 kvm_vcpu_stats_header.num_desc; 1026 1027 if (!debugfs_initialized()) 1028 return 0; 1029 1030 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1031 mutex_lock(&kvm_debugfs_lock); 1032 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1033 if (dent) { 1034 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1035 dput(dent); 1036 mutex_unlock(&kvm_debugfs_lock); 1037 return 0; 1038 } 1039 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1040 mutex_unlock(&kvm_debugfs_lock); 1041 if (IS_ERR(dent)) 1042 return 0; 1043 1044 kvm->debugfs_dentry = dent; 1045 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1046 sizeof(*kvm->debugfs_stat_data), 1047 GFP_KERNEL_ACCOUNT); 1048 if (!kvm->debugfs_stat_data) 1049 goto out_err; 1050 1051 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1052 pdesc = &kvm_vm_stats_desc[i]; 1053 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1054 if (!stat_data) 1055 goto out_err; 1056 1057 stat_data->kvm = kvm; 1058 stat_data->desc = pdesc; 1059 stat_data->kind = KVM_STAT_VM; 1060 kvm->debugfs_stat_data[i] = stat_data; 1061 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1062 kvm->debugfs_dentry, stat_data, 1063 &stat_fops_per_vm); 1064 } 1065 1066 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1067 pdesc = &kvm_vcpu_stats_desc[i]; 1068 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1069 if (!stat_data) 1070 goto out_err; 1071 1072 stat_data->kvm = kvm; 1073 stat_data->desc = pdesc; 1074 stat_data->kind = KVM_STAT_VCPU; 1075 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1076 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1077 kvm->debugfs_dentry, stat_data, 1078 &stat_fops_per_vm); 1079 } 1080 1081 kvm_arch_create_vm_debugfs(kvm); 1082 return 0; 1083 out_err: 1084 kvm_destroy_vm_debugfs(kvm); 1085 return ret; 1086 } 1087 1088 /* 1089 * Called just after removing the VM from the vm_list, but before doing any 1090 * other destruction. 1091 */ 1092 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1093 { 1094 } 1095 1096 /* 1097 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1098 * be setup already, so we can create arch-specific debugfs entries under it. 1099 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1100 * a per-arch destroy interface is not needed. 1101 */ 1102 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1103 { 1104 } 1105 1106 /* Called only on cleanup and destruction paths when there are no users. */ 1107 static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm, 1108 enum kvm_bus idx) 1109 { 1110 return rcu_dereference_protected(kvm->buses[idx], 1111 !refcount_read(&kvm->users_count)); 1112 } 1113 1114 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1115 { 1116 struct kvm *kvm = kvm_arch_alloc_vm(); 1117 struct kvm_memslots *slots; 1118 int r, i, j; 1119 1120 if (!kvm) 1121 return ERR_PTR(-ENOMEM); 1122 1123 KVM_MMU_LOCK_INIT(kvm); 1124 mmgrab(current->mm); 1125 kvm->mm = current->mm; 1126 kvm_eventfd_init(kvm); 1127 mutex_init(&kvm->lock); 1128 mutex_init(&kvm->irq_lock); 1129 mutex_init(&kvm->slots_lock); 1130 mutex_init(&kvm->slots_arch_lock); 1131 spin_lock_init(&kvm->mn_invalidate_lock); 1132 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1133 xa_init(&kvm->vcpu_array); 1134 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1135 xa_init(&kvm->mem_attr_array); 1136 #endif 1137 1138 INIT_LIST_HEAD(&kvm->gpc_list); 1139 spin_lock_init(&kvm->gpc_lock); 1140 1141 INIT_LIST_HEAD(&kvm->devices); 1142 kvm->max_vcpus = KVM_MAX_VCPUS; 1143 1144 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1145 1146 /* 1147 * Force subsequent debugfs file creations to fail if the VM directory 1148 * is not created (by kvm_create_vm_debugfs()). 1149 */ 1150 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1151 1152 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1153 task_pid_nr(current)); 1154 1155 r = -ENOMEM; 1156 if (init_srcu_struct(&kvm->srcu)) 1157 goto out_err_no_srcu; 1158 if (init_srcu_struct(&kvm->irq_srcu)) 1159 goto out_err_no_irq_srcu; 1160 1161 r = kvm_init_irq_routing(kvm); 1162 if (r) 1163 goto out_err_no_irq_routing; 1164 1165 refcount_set(&kvm->users_count, 1); 1166 1167 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1168 for (j = 0; j < 2; j++) { 1169 slots = &kvm->__memslots[i][j]; 1170 1171 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1172 slots->hva_tree = RB_ROOT_CACHED; 1173 slots->gfn_tree = RB_ROOT; 1174 hash_init(slots->id_hash); 1175 slots->node_idx = j; 1176 1177 /* Generations must be different for each address space. */ 1178 slots->generation = i; 1179 } 1180 1181 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1182 } 1183 1184 r = -ENOMEM; 1185 for (i = 0; i < KVM_NR_BUSES; i++) { 1186 rcu_assign_pointer(kvm->buses[i], 1187 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1188 if (!kvm->buses[i]) 1189 goto out_err_no_arch_destroy_vm; 1190 } 1191 1192 r = kvm_arch_init_vm(kvm, type); 1193 if (r) 1194 goto out_err_no_arch_destroy_vm; 1195 1196 r = kvm_enable_virtualization(); 1197 if (r) 1198 goto out_err_no_disable; 1199 1200 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1201 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1202 #endif 1203 1204 r = kvm_init_mmu_notifier(kvm); 1205 if (r) 1206 goto out_err_no_mmu_notifier; 1207 1208 r = kvm_coalesced_mmio_init(kvm); 1209 if (r < 0) 1210 goto out_no_coalesced_mmio; 1211 1212 r = kvm_create_vm_debugfs(kvm, fdname); 1213 if (r) 1214 goto out_err_no_debugfs; 1215 1216 mutex_lock(&kvm_lock); 1217 list_add(&kvm->vm_list, &vm_list); 1218 mutex_unlock(&kvm_lock); 1219 1220 preempt_notifier_inc(); 1221 kvm_init_pm_notifier(kvm); 1222 1223 return kvm; 1224 1225 out_err_no_debugfs: 1226 kvm_coalesced_mmio_free(kvm); 1227 out_no_coalesced_mmio: 1228 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1229 if (kvm->mmu_notifier.ops) 1230 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1231 #endif 1232 out_err_no_mmu_notifier: 1233 kvm_disable_virtualization(); 1234 out_err_no_disable: 1235 kvm_arch_destroy_vm(kvm); 1236 out_err_no_arch_destroy_vm: 1237 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1238 for (i = 0; i < KVM_NR_BUSES; i++) 1239 kfree(kvm_get_bus_for_destruction(kvm, i)); 1240 kvm_free_irq_routing(kvm); 1241 out_err_no_irq_routing: 1242 cleanup_srcu_struct(&kvm->irq_srcu); 1243 out_err_no_irq_srcu: 1244 cleanup_srcu_struct(&kvm->srcu); 1245 out_err_no_srcu: 1246 kvm_arch_free_vm(kvm); 1247 mmdrop(current->mm); 1248 return ERR_PTR(r); 1249 } 1250 1251 static void kvm_destroy_devices(struct kvm *kvm) 1252 { 1253 struct kvm_device *dev, *tmp; 1254 1255 /* 1256 * We do not need to take the kvm->lock here, because nobody else 1257 * has a reference to the struct kvm at this point and therefore 1258 * cannot access the devices list anyhow. 1259 * 1260 * The device list is generally managed as an rculist, but list_del() 1261 * is used intentionally here. If a bug in KVM introduced a reader that 1262 * was not backed by a reference on the kvm struct, the hope is that 1263 * it'd consume the poisoned forward pointer instead of suffering a 1264 * use-after-free, even though this cannot be guaranteed. 1265 */ 1266 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1267 list_del(&dev->vm_node); 1268 dev->ops->destroy(dev); 1269 } 1270 } 1271 1272 static void kvm_destroy_vm(struct kvm *kvm) 1273 { 1274 int i; 1275 struct mm_struct *mm = kvm->mm; 1276 1277 kvm_destroy_pm_notifier(kvm); 1278 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1279 kvm_destroy_vm_debugfs(kvm); 1280 mutex_lock(&kvm_lock); 1281 list_del(&kvm->vm_list); 1282 mutex_unlock(&kvm_lock); 1283 kvm_arch_pre_destroy_vm(kvm); 1284 1285 kvm_free_irq_routing(kvm); 1286 for (i = 0; i < KVM_NR_BUSES; i++) { 1287 struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i); 1288 1289 if (bus) 1290 kvm_io_bus_destroy(bus); 1291 kvm->buses[i] = NULL; 1292 } 1293 kvm_coalesced_mmio_free(kvm); 1294 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1295 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1296 /* 1297 * At this point, pending calls to invalidate_range_start() 1298 * have completed but no more MMU notifiers will run, so 1299 * mn_active_invalidate_count may remain unbalanced. 1300 * No threads can be waiting in kvm_swap_active_memslots() as the 1301 * last reference on KVM has been dropped, but freeing 1302 * memslots would deadlock without this manual intervention. 1303 * 1304 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1305 * notifier between a start() and end(), then there shouldn't be any 1306 * in-progress invalidations. 1307 */ 1308 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1309 if (kvm->mn_active_invalidate_count) 1310 kvm->mn_active_invalidate_count = 0; 1311 else 1312 WARN_ON(kvm->mmu_invalidate_in_progress); 1313 #else 1314 kvm_flush_shadow_all(kvm); 1315 #endif 1316 kvm_arch_destroy_vm(kvm); 1317 kvm_destroy_devices(kvm); 1318 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1319 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1320 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1321 } 1322 cleanup_srcu_struct(&kvm->irq_srcu); 1323 srcu_barrier(&kvm->srcu); 1324 cleanup_srcu_struct(&kvm->srcu); 1325 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1326 xa_destroy(&kvm->mem_attr_array); 1327 #endif 1328 kvm_arch_free_vm(kvm); 1329 preempt_notifier_dec(); 1330 kvm_disable_virtualization(); 1331 mmdrop(mm); 1332 } 1333 1334 void kvm_get_kvm(struct kvm *kvm) 1335 { 1336 refcount_inc(&kvm->users_count); 1337 } 1338 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1339 1340 /* 1341 * Make sure the vm is not during destruction, which is a safe version of 1342 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1343 */ 1344 bool kvm_get_kvm_safe(struct kvm *kvm) 1345 { 1346 return refcount_inc_not_zero(&kvm->users_count); 1347 } 1348 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1349 1350 void kvm_put_kvm(struct kvm *kvm) 1351 { 1352 if (refcount_dec_and_test(&kvm->users_count)) 1353 kvm_destroy_vm(kvm); 1354 } 1355 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1356 1357 /* 1358 * Used to put a reference that was taken on behalf of an object associated 1359 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1360 * of the new file descriptor fails and the reference cannot be transferred to 1361 * its final owner. In such cases, the caller is still actively using @kvm and 1362 * will fail miserably if the refcount unexpectedly hits zero. 1363 */ 1364 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1365 { 1366 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1367 } 1368 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy); 1369 1370 static int kvm_vm_release(struct inode *inode, struct file *filp) 1371 { 1372 struct kvm *kvm = filp->private_data; 1373 1374 kvm_irqfd_release(kvm); 1375 1376 kvm_put_kvm(kvm); 1377 return 0; 1378 } 1379 1380 int kvm_trylock_all_vcpus(struct kvm *kvm) 1381 { 1382 struct kvm_vcpu *vcpu; 1383 unsigned long i, j; 1384 1385 lockdep_assert_held(&kvm->lock); 1386 1387 kvm_for_each_vcpu(i, vcpu, kvm) 1388 if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock)) 1389 goto out_unlock; 1390 return 0; 1391 1392 out_unlock: 1393 kvm_for_each_vcpu(j, vcpu, kvm) { 1394 if (i == j) 1395 break; 1396 mutex_unlock(&vcpu->mutex); 1397 } 1398 return -EINTR; 1399 } 1400 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus); 1401 1402 int kvm_lock_all_vcpus(struct kvm *kvm) 1403 { 1404 struct kvm_vcpu *vcpu; 1405 unsigned long i, j; 1406 int r; 1407 1408 lockdep_assert_held(&kvm->lock); 1409 1410 kvm_for_each_vcpu(i, vcpu, kvm) { 1411 r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock); 1412 if (r) 1413 goto out_unlock; 1414 } 1415 return 0; 1416 1417 out_unlock: 1418 kvm_for_each_vcpu(j, vcpu, kvm) { 1419 if (i == j) 1420 break; 1421 mutex_unlock(&vcpu->mutex); 1422 } 1423 return r; 1424 } 1425 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus); 1426 1427 void kvm_unlock_all_vcpus(struct kvm *kvm) 1428 { 1429 struct kvm_vcpu *vcpu; 1430 unsigned long i; 1431 1432 lockdep_assert_held(&kvm->lock); 1433 1434 kvm_for_each_vcpu(i, vcpu, kvm) 1435 mutex_unlock(&vcpu->mutex); 1436 } 1437 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus); 1438 1439 /* 1440 * Allocation size is twice as large as the actual dirty bitmap size. 1441 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1442 */ 1443 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1444 { 1445 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1446 1447 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1448 if (!memslot->dirty_bitmap) 1449 return -ENOMEM; 1450 1451 return 0; 1452 } 1453 1454 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1455 { 1456 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1457 int node_idx_inactive = active->node_idx ^ 1; 1458 1459 return &kvm->__memslots[as_id][node_idx_inactive]; 1460 } 1461 1462 /* 1463 * Helper to get the address space ID when one of memslot pointers may be NULL. 1464 * This also serves as a sanity that at least one of the pointers is non-NULL, 1465 * and that their address space IDs don't diverge. 1466 */ 1467 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1468 struct kvm_memory_slot *b) 1469 { 1470 if (WARN_ON_ONCE(!a && !b)) 1471 return 0; 1472 1473 if (!a) 1474 return b->as_id; 1475 if (!b) 1476 return a->as_id; 1477 1478 WARN_ON_ONCE(a->as_id != b->as_id); 1479 return a->as_id; 1480 } 1481 1482 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1483 struct kvm_memory_slot *slot) 1484 { 1485 struct rb_root *gfn_tree = &slots->gfn_tree; 1486 struct rb_node **node, *parent; 1487 int idx = slots->node_idx; 1488 1489 parent = NULL; 1490 for (node = &gfn_tree->rb_node; *node; ) { 1491 struct kvm_memory_slot *tmp; 1492 1493 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1494 parent = *node; 1495 if (slot->base_gfn < tmp->base_gfn) 1496 node = &(*node)->rb_left; 1497 else if (slot->base_gfn > tmp->base_gfn) 1498 node = &(*node)->rb_right; 1499 else 1500 BUG(); 1501 } 1502 1503 rb_link_node(&slot->gfn_node[idx], parent, node); 1504 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1505 } 1506 1507 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1508 struct kvm_memory_slot *slot) 1509 { 1510 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1511 } 1512 1513 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1514 struct kvm_memory_slot *old, 1515 struct kvm_memory_slot *new) 1516 { 1517 int idx = slots->node_idx; 1518 1519 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1520 1521 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1522 &slots->gfn_tree); 1523 } 1524 1525 /* 1526 * Replace @old with @new in the inactive memslots. 1527 * 1528 * With NULL @old this simply adds @new. 1529 * With NULL @new this simply removes @old. 1530 * 1531 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1532 * appropriately. 1533 */ 1534 static void kvm_replace_memslot(struct kvm *kvm, 1535 struct kvm_memory_slot *old, 1536 struct kvm_memory_slot *new) 1537 { 1538 int as_id = kvm_memslots_get_as_id(old, new); 1539 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1540 int idx = slots->node_idx; 1541 1542 if (old) { 1543 hash_del(&old->id_node[idx]); 1544 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1545 1546 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1547 atomic_long_set(&slots->last_used_slot, (long)new); 1548 1549 if (!new) { 1550 kvm_erase_gfn_node(slots, old); 1551 return; 1552 } 1553 } 1554 1555 /* 1556 * Initialize @new's hva range. Do this even when replacing an @old 1557 * slot, kvm_copy_memslot() deliberately does not touch node data. 1558 */ 1559 new->hva_node[idx].start = new->userspace_addr; 1560 new->hva_node[idx].last = new->userspace_addr + 1561 (new->npages << PAGE_SHIFT) - 1; 1562 1563 /* 1564 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1565 * hva_node needs to be swapped with remove+insert even though hva can't 1566 * change when replacing an existing slot. 1567 */ 1568 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1569 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1570 1571 /* 1572 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1573 * switch the node in the gfn tree instead of removing the old and 1574 * inserting the new as two separate operations. Replacement is a 1575 * single O(1) operation versus two O(log(n)) operations for 1576 * remove+insert. 1577 */ 1578 if (old && old->base_gfn == new->base_gfn) { 1579 kvm_replace_gfn_node(slots, old, new); 1580 } else { 1581 if (old) 1582 kvm_erase_gfn_node(slots, old); 1583 kvm_insert_gfn_node(slots, new); 1584 } 1585 } 1586 1587 /* 1588 * Flags that do not access any of the extra space of struct 1589 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1590 * only allows these. 1591 */ 1592 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1593 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1594 1595 static int check_memory_region_flags(struct kvm *kvm, 1596 const struct kvm_userspace_memory_region2 *mem) 1597 { 1598 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1599 1600 if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD)) 1601 valid_flags |= KVM_MEM_GUEST_MEMFD; 1602 1603 /* Dirty logging private memory is not currently supported. */ 1604 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1605 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1606 1607 /* 1608 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1609 * read-only memslots have emulated MMIO, not page fault, semantics, 1610 * and KVM doesn't allow emulated MMIO for private memory. 1611 */ 1612 if (kvm_arch_has_readonly_mem(kvm) && 1613 !(mem->flags & KVM_MEM_GUEST_MEMFD)) 1614 valid_flags |= KVM_MEM_READONLY; 1615 1616 if (mem->flags & ~valid_flags) 1617 return -EINVAL; 1618 1619 return 0; 1620 } 1621 1622 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1623 { 1624 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1625 1626 /* Grab the generation from the activate memslots. */ 1627 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1628 1629 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1630 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1631 1632 /* 1633 * Do not store the new memslots while there are invalidations in 1634 * progress, otherwise the locking in invalidate_range_start and 1635 * invalidate_range_end will be unbalanced. 1636 */ 1637 spin_lock(&kvm->mn_invalidate_lock); 1638 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1639 while (kvm->mn_active_invalidate_count) { 1640 set_current_state(TASK_UNINTERRUPTIBLE); 1641 spin_unlock(&kvm->mn_invalidate_lock); 1642 schedule(); 1643 spin_lock(&kvm->mn_invalidate_lock); 1644 } 1645 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1646 rcu_assign_pointer(kvm->memslots[as_id], slots); 1647 spin_unlock(&kvm->mn_invalidate_lock); 1648 1649 /* 1650 * Acquired in kvm_set_memslot. Must be released before synchronize 1651 * SRCU below in order to avoid deadlock with another thread 1652 * acquiring the slots_arch_lock in an srcu critical section. 1653 */ 1654 mutex_unlock(&kvm->slots_arch_lock); 1655 1656 synchronize_srcu_expedited(&kvm->srcu); 1657 1658 /* 1659 * Increment the new memslot generation a second time, dropping the 1660 * update in-progress flag and incrementing the generation based on 1661 * the number of address spaces. This provides a unique and easily 1662 * identifiable generation number while the memslots are in flux. 1663 */ 1664 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1665 1666 /* 1667 * Generations must be unique even across address spaces. We do not need 1668 * a global counter for that, instead the generation space is evenly split 1669 * across address spaces. For example, with two address spaces, address 1670 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1671 * use generations 1, 3, 5, ... 1672 */ 1673 gen += kvm_arch_nr_memslot_as_ids(kvm); 1674 1675 kvm_arch_memslots_updated(kvm, gen); 1676 1677 slots->generation = gen; 1678 } 1679 1680 static int kvm_prepare_memory_region(struct kvm *kvm, 1681 const struct kvm_memory_slot *old, 1682 struct kvm_memory_slot *new, 1683 enum kvm_mr_change change) 1684 { 1685 int r; 1686 1687 /* 1688 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1689 * will be freed on "commit". If logging is enabled in both old and 1690 * new, reuse the existing bitmap. If logging is enabled only in the 1691 * new and KVM isn't using a ring buffer, allocate and initialize a 1692 * new bitmap. 1693 */ 1694 if (change != KVM_MR_DELETE) { 1695 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1696 new->dirty_bitmap = NULL; 1697 else if (old && old->dirty_bitmap) 1698 new->dirty_bitmap = old->dirty_bitmap; 1699 else if (kvm_use_dirty_bitmap(kvm)) { 1700 r = kvm_alloc_dirty_bitmap(new); 1701 if (r) 1702 return r; 1703 1704 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1705 bitmap_set(new->dirty_bitmap, 0, new->npages); 1706 } 1707 } 1708 1709 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1710 1711 /* Free the bitmap on failure if it was allocated above. */ 1712 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1713 kvm_destroy_dirty_bitmap(new); 1714 1715 return r; 1716 } 1717 1718 static void kvm_commit_memory_region(struct kvm *kvm, 1719 struct kvm_memory_slot *old, 1720 const struct kvm_memory_slot *new, 1721 enum kvm_mr_change change) 1722 { 1723 int old_flags = old ? old->flags : 0; 1724 int new_flags = new ? new->flags : 0; 1725 /* 1726 * Update the total number of memslot pages before calling the arch 1727 * hook so that architectures can consume the result directly. 1728 */ 1729 if (change == KVM_MR_DELETE) 1730 kvm->nr_memslot_pages -= old->npages; 1731 else if (change == KVM_MR_CREATE) 1732 kvm->nr_memslot_pages += new->npages; 1733 1734 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1735 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1736 atomic_set(&kvm->nr_memslots_dirty_logging, 1737 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1738 } 1739 1740 kvm_arch_commit_memory_region(kvm, old, new, change); 1741 1742 switch (change) { 1743 case KVM_MR_CREATE: 1744 /* Nothing more to do. */ 1745 break; 1746 case KVM_MR_DELETE: 1747 /* Free the old memslot and all its metadata. */ 1748 kvm_free_memslot(kvm, old); 1749 break; 1750 case KVM_MR_MOVE: 1751 case KVM_MR_FLAGS_ONLY: 1752 /* 1753 * Free the dirty bitmap as needed; the below check encompasses 1754 * both the flags and whether a ring buffer is being used) 1755 */ 1756 if (old->dirty_bitmap && !new->dirty_bitmap) 1757 kvm_destroy_dirty_bitmap(old); 1758 1759 /* 1760 * The final quirk. Free the detached, old slot, but only its 1761 * memory, not any metadata. Metadata, including arch specific 1762 * data, may be reused by @new. 1763 */ 1764 kfree(old); 1765 break; 1766 default: 1767 BUG(); 1768 } 1769 } 1770 1771 /* 1772 * Activate @new, which must be installed in the inactive slots by the caller, 1773 * by swapping the active slots and then propagating @new to @old once @old is 1774 * unreachable and can be safely modified. 1775 * 1776 * With NULL @old this simply adds @new to @active (while swapping the sets). 1777 * With NULL @new this simply removes @old from @active and frees it 1778 * (while also swapping the sets). 1779 */ 1780 static void kvm_activate_memslot(struct kvm *kvm, 1781 struct kvm_memory_slot *old, 1782 struct kvm_memory_slot *new) 1783 { 1784 int as_id = kvm_memslots_get_as_id(old, new); 1785 1786 kvm_swap_active_memslots(kvm, as_id); 1787 1788 /* Propagate the new memslot to the now inactive memslots. */ 1789 kvm_replace_memslot(kvm, old, new); 1790 } 1791 1792 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1793 const struct kvm_memory_slot *src) 1794 { 1795 dest->base_gfn = src->base_gfn; 1796 dest->npages = src->npages; 1797 dest->dirty_bitmap = src->dirty_bitmap; 1798 dest->arch = src->arch; 1799 dest->userspace_addr = src->userspace_addr; 1800 dest->flags = src->flags; 1801 dest->id = src->id; 1802 dest->as_id = src->as_id; 1803 } 1804 1805 static void kvm_invalidate_memslot(struct kvm *kvm, 1806 struct kvm_memory_slot *old, 1807 struct kvm_memory_slot *invalid_slot) 1808 { 1809 /* 1810 * Mark the current slot INVALID. As with all memslot modifications, 1811 * this must be done on an unreachable slot to avoid modifying the 1812 * current slot in the active tree. 1813 */ 1814 kvm_copy_memslot(invalid_slot, old); 1815 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1816 kvm_replace_memslot(kvm, old, invalid_slot); 1817 1818 /* 1819 * Activate the slot that is now marked INVALID, but don't propagate 1820 * the slot to the now inactive slots. The slot is either going to be 1821 * deleted or recreated as a new slot. 1822 */ 1823 kvm_swap_active_memslots(kvm, old->as_id); 1824 1825 /* 1826 * From this point no new shadow pages pointing to a deleted, or moved, 1827 * memslot will be created. Validation of sp->gfn happens in: 1828 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1829 * - kvm_is_visible_gfn (mmu_check_root) 1830 */ 1831 kvm_arch_flush_shadow_memslot(kvm, old); 1832 kvm_arch_guest_memory_reclaimed(kvm); 1833 1834 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1835 mutex_lock(&kvm->slots_arch_lock); 1836 1837 /* 1838 * Copy the arch-specific field of the newly-installed slot back to the 1839 * old slot as the arch data could have changed between releasing 1840 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1841 * above. Writers are required to retrieve memslots *after* acquiring 1842 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1843 */ 1844 old->arch = invalid_slot->arch; 1845 } 1846 1847 static void kvm_create_memslot(struct kvm *kvm, 1848 struct kvm_memory_slot *new) 1849 { 1850 /* Add the new memslot to the inactive set and activate. */ 1851 kvm_replace_memslot(kvm, NULL, new); 1852 kvm_activate_memslot(kvm, NULL, new); 1853 } 1854 1855 static void kvm_delete_memslot(struct kvm *kvm, 1856 struct kvm_memory_slot *old, 1857 struct kvm_memory_slot *invalid_slot) 1858 { 1859 /* 1860 * Remove the old memslot (in the inactive memslots) by passing NULL as 1861 * the "new" slot, and for the invalid version in the active slots. 1862 */ 1863 kvm_replace_memslot(kvm, old, NULL); 1864 kvm_activate_memslot(kvm, invalid_slot, NULL); 1865 } 1866 1867 static void kvm_move_memslot(struct kvm *kvm, 1868 struct kvm_memory_slot *old, 1869 struct kvm_memory_slot *new, 1870 struct kvm_memory_slot *invalid_slot) 1871 { 1872 /* 1873 * Replace the old memslot in the inactive slots, and then swap slots 1874 * and replace the current INVALID with the new as well. 1875 */ 1876 kvm_replace_memslot(kvm, old, new); 1877 kvm_activate_memslot(kvm, invalid_slot, new); 1878 } 1879 1880 static void kvm_update_flags_memslot(struct kvm *kvm, 1881 struct kvm_memory_slot *old, 1882 struct kvm_memory_slot *new) 1883 { 1884 /* 1885 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1886 * an intermediate step. Instead, the old memslot is simply replaced 1887 * with a new, updated copy in both memslot sets. 1888 */ 1889 kvm_replace_memslot(kvm, old, new); 1890 kvm_activate_memslot(kvm, old, new); 1891 } 1892 1893 static int kvm_set_memslot(struct kvm *kvm, 1894 struct kvm_memory_slot *old, 1895 struct kvm_memory_slot *new, 1896 enum kvm_mr_change change) 1897 { 1898 struct kvm_memory_slot *invalid_slot; 1899 int r; 1900 1901 /* 1902 * Released in kvm_swap_active_memslots(). 1903 * 1904 * Must be held from before the current memslots are copied until after 1905 * the new memslots are installed with rcu_assign_pointer, then 1906 * released before the synchronize srcu in kvm_swap_active_memslots(). 1907 * 1908 * When modifying memslots outside of the slots_lock, must be held 1909 * before reading the pointer to the current memslots until after all 1910 * changes to those memslots are complete. 1911 * 1912 * These rules ensure that installing new memslots does not lose 1913 * changes made to the previous memslots. 1914 */ 1915 mutex_lock(&kvm->slots_arch_lock); 1916 1917 /* 1918 * Invalidate the old slot if it's being deleted or moved. This is 1919 * done prior to actually deleting/moving the memslot to allow vCPUs to 1920 * continue running by ensuring there are no mappings or shadow pages 1921 * for the memslot when it is deleted/moved. Without pre-invalidation 1922 * (and without a lock), a window would exist between effecting the 1923 * delete/move and committing the changes in arch code where KVM or a 1924 * guest could access a non-existent memslot. 1925 * 1926 * Modifications are done on a temporary, unreachable slot. The old 1927 * slot needs to be preserved in case a later step fails and the 1928 * invalidation needs to be reverted. 1929 */ 1930 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1931 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1932 if (!invalid_slot) { 1933 mutex_unlock(&kvm->slots_arch_lock); 1934 return -ENOMEM; 1935 } 1936 kvm_invalidate_memslot(kvm, old, invalid_slot); 1937 } 1938 1939 r = kvm_prepare_memory_region(kvm, old, new, change); 1940 if (r) { 1941 /* 1942 * For DELETE/MOVE, revert the above INVALID change. No 1943 * modifications required since the original slot was preserved 1944 * in the inactive slots. Changing the active memslots also 1945 * release slots_arch_lock. 1946 */ 1947 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1948 kvm_activate_memslot(kvm, invalid_slot, old); 1949 kfree(invalid_slot); 1950 } else { 1951 mutex_unlock(&kvm->slots_arch_lock); 1952 } 1953 return r; 1954 } 1955 1956 /* 1957 * For DELETE and MOVE, the working slot is now active as the INVALID 1958 * version of the old slot. MOVE is particularly special as it reuses 1959 * the old slot and returns a copy of the old slot (in working_slot). 1960 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1961 * old slot is detached but otherwise preserved. 1962 */ 1963 if (change == KVM_MR_CREATE) 1964 kvm_create_memslot(kvm, new); 1965 else if (change == KVM_MR_DELETE) 1966 kvm_delete_memslot(kvm, old, invalid_slot); 1967 else if (change == KVM_MR_MOVE) 1968 kvm_move_memslot(kvm, old, new, invalid_slot); 1969 else if (change == KVM_MR_FLAGS_ONLY) 1970 kvm_update_flags_memslot(kvm, old, new); 1971 else 1972 BUG(); 1973 1974 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1975 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1976 kfree(invalid_slot); 1977 1978 /* 1979 * No need to refresh new->arch, changes after dropping slots_arch_lock 1980 * will directly hit the final, active memslot. Architectures are 1981 * responsible for knowing that new->arch may be stale. 1982 */ 1983 kvm_commit_memory_region(kvm, old, new, change); 1984 1985 return 0; 1986 } 1987 1988 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1989 gfn_t start, gfn_t end) 1990 { 1991 struct kvm_memslot_iter iter; 1992 1993 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1994 if (iter.slot->id != id) 1995 return true; 1996 } 1997 1998 return false; 1999 } 2000 2001 static int kvm_set_memory_region(struct kvm *kvm, 2002 const struct kvm_userspace_memory_region2 *mem) 2003 { 2004 struct kvm_memory_slot *old, *new; 2005 struct kvm_memslots *slots; 2006 enum kvm_mr_change change; 2007 unsigned long npages; 2008 gfn_t base_gfn; 2009 int as_id, id; 2010 int r; 2011 2012 lockdep_assert_held(&kvm->slots_lock); 2013 2014 r = check_memory_region_flags(kvm, mem); 2015 if (r) 2016 return r; 2017 2018 as_id = mem->slot >> 16; 2019 id = (u16)mem->slot; 2020 2021 /* General sanity checks */ 2022 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2023 (mem->memory_size != (unsigned long)mem->memory_size)) 2024 return -EINVAL; 2025 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2026 return -EINVAL; 2027 /* We can read the guest memory with __xxx_user() later on. */ 2028 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2029 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2030 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2031 mem->memory_size)) 2032 return -EINVAL; 2033 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2034 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2035 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2036 return -EINVAL; 2037 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2038 return -EINVAL; 2039 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2040 return -EINVAL; 2041 2042 /* 2043 * The size of userspace-defined memory regions is restricted in order 2044 * to play nice with dirty bitmap operations, which are indexed with an 2045 * "unsigned int". KVM's internal memory regions don't support dirty 2046 * logging, and so are exempt. 2047 */ 2048 if (id < KVM_USER_MEM_SLOTS && 2049 (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2050 return -EINVAL; 2051 2052 slots = __kvm_memslots(kvm, as_id); 2053 2054 /* 2055 * Note, the old memslot (and the pointer itself!) may be invalidated 2056 * and/or destroyed by kvm_set_memslot(). 2057 */ 2058 old = id_to_memslot(slots, id); 2059 2060 if (!mem->memory_size) { 2061 if (!old || !old->npages) 2062 return -EINVAL; 2063 2064 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2065 return -EIO; 2066 2067 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2068 } 2069 2070 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2071 npages = (mem->memory_size >> PAGE_SHIFT); 2072 2073 if (!old || !old->npages) { 2074 change = KVM_MR_CREATE; 2075 2076 /* 2077 * To simplify KVM internals, the total number of pages across 2078 * all memslots must fit in an unsigned long. 2079 */ 2080 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2081 return -EINVAL; 2082 } else { /* Modify an existing slot. */ 2083 /* Private memslots are immutable, they can only be deleted. */ 2084 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2085 return -EINVAL; 2086 if ((mem->userspace_addr != old->userspace_addr) || 2087 (npages != old->npages) || 2088 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2089 return -EINVAL; 2090 2091 if (base_gfn != old->base_gfn) 2092 change = KVM_MR_MOVE; 2093 else if (mem->flags != old->flags) 2094 change = KVM_MR_FLAGS_ONLY; 2095 else /* Nothing to change. */ 2096 return 0; 2097 } 2098 2099 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2100 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2101 return -EEXIST; 2102 2103 /* Allocate a slot that will persist in the memslot. */ 2104 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2105 if (!new) 2106 return -ENOMEM; 2107 2108 new->as_id = as_id; 2109 new->id = id; 2110 new->base_gfn = base_gfn; 2111 new->npages = npages; 2112 new->flags = mem->flags; 2113 new->userspace_addr = mem->userspace_addr; 2114 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2115 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2116 if (r) 2117 goto out; 2118 } 2119 2120 r = kvm_set_memslot(kvm, old, new, change); 2121 if (r) 2122 goto out_unbind; 2123 2124 return 0; 2125 2126 out_unbind: 2127 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2128 kvm_gmem_unbind(new); 2129 out: 2130 kfree(new); 2131 return r; 2132 } 2133 2134 int kvm_set_internal_memslot(struct kvm *kvm, 2135 const struct kvm_userspace_memory_region2 *mem) 2136 { 2137 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS)) 2138 return -EINVAL; 2139 2140 if (WARN_ON_ONCE(mem->flags)) 2141 return -EINVAL; 2142 2143 return kvm_set_memory_region(kvm, mem); 2144 } 2145 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot); 2146 2147 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2148 struct kvm_userspace_memory_region2 *mem) 2149 { 2150 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2151 return -EINVAL; 2152 2153 guard(mutex)(&kvm->slots_lock); 2154 return kvm_set_memory_region(kvm, mem); 2155 } 2156 2157 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2158 /** 2159 * kvm_get_dirty_log - get a snapshot of dirty pages 2160 * @kvm: pointer to kvm instance 2161 * @log: slot id and address to which we copy the log 2162 * @is_dirty: set to '1' if any dirty pages were found 2163 * @memslot: set to the associated memslot, always valid on success 2164 */ 2165 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2166 int *is_dirty, struct kvm_memory_slot **memslot) 2167 { 2168 struct kvm_memslots *slots; 2169 int i, as_id, id; 2170 unsigned long n; 2171 unsigned long any = 0; 2172 2173 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2174 if (!kvm_use_dirty_bitmap(kvm)) 2175 return -ENXIO; 2176 2177 *memslot = NULL; 2178 *is_dirty = 0; 2179 2180 as_id = log->slot >> 16; 2181 id = (u16)log->slot; 2182 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2183 return -EINVAL; 2184 2185 slots = __kvm_memslots(kvm, as_id); 2186 *memslot = id_to_memslot(slots, id); 2187 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2188 return -ENOENT; 2189 2190 kvm_arch_sync_dirty_log(kvm, *memslot); 2191 2192 n = kvm_dirty_bitmap_bytes(*memslot); 2193 2194 for (i = 0; !any && i < n/sizeof(long); ++i) 2195 any = (*memslot)->dirty_bitmap[i]; 2196 2197 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2198 return -EFAULT; 2199 2200 if (any) 2201 *is_dirty = 1; 2202 return 0; 2203 } 2204 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log); 2205 2206 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2207 /** 2208 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2209 * and reenable dirty page tracking for the corresponding pages. 2210 * @kvm: pointer to kvm instance 2211 * @log: slot id and address to which we copy the log 2212 * 2213 * We need to keep it in mind that VCPU threads can write to the bitmap 2214 * concurrently. So, to avoid losing track of dirty pages we keep the 2215 * following order: 2216 * 2217 * 1. Take a snapshot of the bit and clear it if needed. 2218 * 2. Write protect the corresponding page. 2219 * 3. Copy the snapshot to the userspace. 2220 * 4. Upon return caller flushes TLB's if needed. 2221 * 2222 * Between 2 and 4, the guest may write to the page using the remaining TLB 2223 * entry. This is not a problem because the page is reported dirty using 2224 * the snapshot taken before and step 4 ensures that writes done after 2225 * exiting to userspace will be logged for the next call. 2226 * 2227 */ 2228 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2229 { 2230 struct kvm_memslots *slots; 2231 struct kvm_memory_slot *memslot; 2232 int i, as_id, id; 2233 unsigned long n; 2234 unsigned long *dirty_bitmap; 2235 unsigned long *dirty_bitmap_buffer; 2236 bool flush; 2237 2238 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2239 if (!kvm_use_dirty_bitmap(kvm)) 2240 return -ENXIO; 2241 2242 as_id = log->slot >> 16; 2243 id = (u16)log->slot; 2244 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2245 return -EINVAL; 2246 2247 slots = __kvm_memslots(kvm, as_id); 2248 memslot = id_to_memslot(slots, id); 2249 if (!memslot || !memslot->dirty_bitmap) 2250 return -ENOENT; 2251 2252 dirty_bitmap = memslot->dirty_bitmap; 2253 2254 kvm_arch_sync_dirty_log(kvm, memslot); 2255 2256 n = kvm_dirty_bitmap_bytes(memslot); 2257 flush = false; 2258 if (kvm->manual_dirty_log_protect) { 2259 /* 2260 * Unlike kvm_get_dirty_log, we always return false in *flush, 2261 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2262 * is some code duplication between this function and 2263 * kvm_get_dirty_log, but hopefully all architecture 2264 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2265 * can be eliminated. 2266 */ 2267 dirty_bitmap_buffer = dirty_bitmap; 2268 } else { 2269 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2270 memset(dirty_bitmap_buffer, 0, n); 2271 2272 KVM_MMU_LOCK(kvm); 2273 for (i = 0; i < n / sizeof(long); i++) { 2274 unsigned long mask; 2275 gfn_t offset; 2276 2277 if (!dirty_bitmap[i]) 2278 continue; 2279 2280 flush = true; 2281 mask = xchg(&dirty_bitmap[i], 0); 2282 dirty_bitmap_buffer[i] = mask; 2283 2284 offset = i * BITS_PER_LONG; 2285 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2286 offset, mask); 2287 } 2288 KVM_MMU_UNLOCK(kvm); 2289 } 2290 2291 if (flush) 2292 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2293 2294 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2295 return -EFAULT; 2296 return 0; 2297 } 2298 2299 2300 /** 2301 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2302 * @kvm: kvm instance 2303 * @log: slot id and address to which we copy the log 2304 * 2305 * Steps 1-4 below provide general overview of dirty page logging. See 2306 * kvm_get_dirty_log_protect() function description for additional details. 2307 * 2308 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2309 * always flush the TLB (step 4) even if previous step failed and the dirty 2310 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2311 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2312 * writes will be marked dirty for next log read. 2313 * 2314 * 1. Take a snapshot of the bit and clear it if needed. 2315 * 2. Write protect the corresponding page. 2316 * 3. Copy the snapshot to the userspace. 2317 * 4. Flush TLB's if needed. 2318 */ 2319 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2320 struct kvm_dirty_log *log) 2321 { 2322 int r; 2323 2324 mutex_lock(&kvm->slots_lock); 2325 2326 r = kvm_get_dirty_log_protect(kvm, log); 2327 2328 mutex_unlock(&kvm->slots_lock); 2329 return r; 2330 } 2331 2332 /** 2333 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2334 * and reenable dirty page tracking for the corresponding pages. 2335 * @kvm: pointer to kvm instance 2336 * @log: slot id and address from which to fetch the bitmap of dirty pages 2337 */ 2338 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2339 struct kvm_clear_dirty_log *log) 2340 { 2341 struct kvm_memslots *slots; 2342 struct kvm_memory_slot *memslot; 2343 int as_id, id; 2344 gfn_t offset; 2345 unsigned long i, n; 2346 unsigned long *dirty_bitmap; 2347 unsigned long *dirty_bitmap_buffer; 2348 bool flush; 2349 2350 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2351 if (!kvm_use_dirty_bitmap(kvm)) 2352 return -ENXIO; 2353 2354 as_id = log->slot >> 16; 2355 id = (u16)log->slot; 2356 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2357 return -EINVAL; 2358 2359 if (log->first_page & 63) 2360 return -EINVAL; 2361 2362 slots = __kvm_memslots(kvm, as_id); 2363 memslot = id_to_memslot(slots, id); 2364 if (!memslot || !memslot->dirty_bitmap) 2365 return -ENOENT; 2366 2367 dirty_bitmap = memslot->dirty_bitmap; 2368 2369 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2370 2371 if (log->first_page > memslot->npages || 2372 log->num_pages > memslot->npages - log->first_page || 2373 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2374 return -EINVAL; 2375 2376 kvm_arch_sync_dirty_log(kvm, memslot); 2377 2378 flush = false; 2379 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2380 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2381 return -EFAULT; 2382 2383 KVM_MMU_LOCK(kvm); 2384 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2385 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2386 i++, offset += BITS_PER_LONG) { 2387 unsigned long mask = *dirty_bitmap_buffer++; 2388 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2389 if (!mask) 2390 continue; 2391 2392 mask &= atomic_long_fetch_andnot(mask, p); 2393 2394 /* 2395 * mask contains the bits that really have been cleared. This 2396 * never includes any bits beyond the length of the memslot (if 2397 * the length is not aligned to 64 pages), therefore it is not 2398 * a problem if userspace sets them in log->dirty_bitmap. 2399 */ 2400 if (mask) { 2401 flush = true; 2402 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2403 offset, mask); 2404 } 2405 } 2406 KVM_MMU_UNLOCK(kvm); 2407 2408 if (flush) 2409 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2410 2411 return 0; 2412 } 2413 2414 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2415 struct kvm_clear_dirty_log *log) 2416 { 2417 int r; 2418 2419 mutex_lock(&kvm->slots_lock); 2420 2421 r = kvm_clear_dirty_log_protect(kvm, log); 2422 2423 mutex_unlock(&kvm->slots_lock); 2424 return r; 2425 } 2426 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2427 2428 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2429 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2430 { 2431 if (!kvm || kvm_arch_has_private_mem(kvm)) 2432 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2433 2434 return 0; 2435 } 2436 2437 /* 2438 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2439 * such that the bits in @mask match @attrs. 2440 */ 2441 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2442 unsigned long mask, unsigned long attrs) 2443 { 2444 XA_STATE(xas, &kvm->mem_attr_array, start); 2445 unsigned long index; 2446 void *entry; 2447 2448 mask &= kvm_supported_mem_attributes(kvm); 2449 if (attrs & ~mask) 2450 return false; 2451 2452 if (end == start + 1) 2453 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2454 2455 guard(rcu)(); 2456 if (!attrs) 2457 return !xas_find(&xas, end - 1); 2458 2459 for (index = start; index < end; index++) { 2460 do { 2461 entry = xas_next(&xas); 2462 } while (xas_retry(&xas, entry)); 2463 2464 if (xas.xa_index != index || 2465 (xa_to_value(entry) & mask) != attrs) 2466 return false; 2467 } 2468 2469 return true; 2470 } 2471 2472 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2473 struct kvm_mmu_notifier_range *range) 2474 { 2475 struct kvm_gfn_range gfn_range; 2476 struct kvm_memory_slot *slot; 2477 struct kvm_memslots *slots; 2478 struct kvm_memslot_iter iter; 2479 bool found_memslot = false; 2480 bool ret = false; 2481 int i; 2482 2483 gfn_range.arg = range->arg; 2484 gfn_range.may_block = range->may_block; 2485 2486 /* 2487 * If/when KVM supports more attributes beyond private .vs shared, this 2488 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target 2489 * range already has the desired private vs. shared state (it's unclear 2490 * if that is a net win). For now, KVM reaches this point if and only 2491 * if the private flag is being toggled, i.e. all mappings are in play. 2492 */ 2493 2494 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2495 slots = __kvm_memslots(kvm, i); 2496 2497 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2498 slot = iter.slot; 2499 gfn_range.slot = slot; 2500 2501 gfn_range.start = max(range->start, slot->base_gfn); 2502 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2503 if (gfn_range.start >= gfn_range.end) 2504 continue; 2505 2506 if (!found_memslot) { 2507 found_memslot = true; 2508 KVM_MMU_LOCK(kvm); 2509 if (!IS_KVM_NULL_FN(range->on_lock)) 2510 range->on_lock(kvm); 2511 } 2512 2513 ret |= range->handler(kvm, &gfn_range); 2514 } 2515 } 2516 2517 if (range->flush_on_ret && ret) 2518 kvm_flush_remote_tlbs(kvm); 2519 2520 if (found_memslot) 2521 KVM_MMU_UNLOCK(kvm); 2522 } 2523 2524 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2525 struct kvm_gfn_range *range) 2526 { 2527 /* 2528 * Unconditionally add the range to the invalidation set, regardless of 2529 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2530 * if KVM supports RWX attributes in the future and the attributes are 2531 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2532 * adding the range allows KVM to require that MMU invalidations add at 2533 * least one range between begin() and end(), e.g. allows KVM to detect 2534 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2535 * but it's not obvious that allowing new mappings while the attributes 2536 * are in flux is desirable or worth the complexity. 2537 */ 2538 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2539 2540 return kvm_arch_pre_set_memory_attributes(kvm, range); 2541 } 2542 2543 /* Set @attributes for the gfn range [@start, @end). */ 2544 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2545 unsigned long attributes) 2546 { 2547 struct kvm_mmu_notifier_range pre_set_range = { 2548 .start = start, 2549 .end = end, 2550 .arg.attributes = attributes, 2551 .handler = kvm_pre_set_memory_attributes, 2552 .on_lock = kvm_mmu_invalidate_begin, 2553 .flush_on_ret = true, 2554 .may_block = true, 2555 }; 2556 struct kvm_mmu_notifier_range post_set_range = { 2557 .start = start, 2558 .end = end, 2559 .arg.attributes = attributes, 2560 .handler = kvm_arch_post_set_memory_attributes, 2561 .on_lock = kvm_mmu_invalidate_end, 2562 .may_block = true, 2563 }; 2564 unsigned long i; 2565 void *entry; 2566 int r = 0; 2567 2568 entry = attributes ? xa_mk_value(attributes) : NULL; 2569 2570 trace_kvm_vm_set_mem_attributes(start, end, attributes); 2571 2572 mutex_lock(&kvm->slots_lock); 2573 2574 /* Nothing to do if the entire range has the desired attributes. */ 2575 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2576 goto out_unlock; 2577 2578 /* 2579 * Reserve memory ahead of time to avoid having to deal with failures 2580 * partway through setting the new attributes. 2581 */ 2582 for (i = start; i < end; i++) { 2583 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2584 if (r) 2585 goto out_unlock; 2586 2587 cond_resched(); 2588 } 2589 2590 kvm_handle_gfn_range(kvm, &pre_set_range); 2591 2592 for (i = start; i < end; i++) { 2593 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2594 GFP_KERNEL_ACCOUNT)); 2595 KVM_BUG_ON(r, kvm); 2596 cond_resched(); 2597 } 2598 2599 kvm_handle_gfn_range(kvm, &post_set_range); 2600 2601 out_unlock: 2602 mutex_unlock(&kvm->slots_lock); 2603 2604 return r; 2605 } 2606 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2607 struct kvm_memory_attributes *attrs) 2608 { 2609 gfn_t start, end; 2610 2611 /* flags is currently not used. */ 2612 if (attrs->flags) 2613 return -EINVAL; 2614 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2615 return -EINVAL; 2616 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2617 return -EINVAL; 2618 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2619 return -EINVAL; 2620 2621 start = attrs->address >> PAGE_SHIFT; 2622 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2623 2624 /* 2625 * xarray tracks data using "unsigned long", and as a result so does 2626 * KVM. For simplicity, supports generic attributes only on 64-bit 2627 * architectures. 2628 */ 2629 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2630 2631 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2632 } 2633 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2634 2635 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2636 { 2637 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2638 } 2639 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot); 2640 2641 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2642 { 2643 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2644 u64 gen = slots->generation; 2645 struct kvm_memory_slot *slot; 2646 2647 /* 2648 * This also protects against using a memslot from a different address space, 2649 * since different address spaces have different generation numbers. 2650 */ 2651 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2652 vcpu->last_used_slot = NULL; 2653 vcpu->last_used_slot_gen = gen; 2654 } 2655 2656 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2657 if (slot) 2658 return slot; 2659 2660 /* 2661 * Fall back to searching all memslots. We purposely use 2662 * search_memslots() instead of __gfn_to_memslot() to avoid 2663 * thrashing the VM-wide last_used_slot in kvm_memslots. 2664 */ 2665 slot = search_memslots(slots, gfn, false); 2666 if (slot) { 2667 vcpu->last_used_slot = slot; 2668 return slot; 2669 } 2670 2671 return NULL; 2672 } 2673 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot); 2674 2675 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2676 { 2677 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2678 2679 return kvm_is_visible_memslot(memslot); 2680 } 2681 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn); 2682 2683 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2684 { 2685 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2686 2687 return kvm_is_visible_memslot(memslot); 2688 } 2689 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn); 2690 2691 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2692 { 2693 struct vm_area_struct *vma; 2694 unsigned long addr, size; 2695 2696 size = PAGE_SIZE; 2697 2698 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2699 if (kvm_is_error_hva(addr)) 2700 return PAGE_SIZE; 2701 2702 mmap_read_lock(current->mm); 2703 vma = find_vma(current->mm, addr); 2704 if (!vma) 2705 goto out; 2706 2707 size = vma_kernel_pagesize(vma); 2708 2709 out: 2710 mmap_read_unlock(current->mm); 2711 2712 return size; 2713 } 2714 2715 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2716 { 2717 return slot->flags & KVM_MEM_READONLY; 2718 } 2719 2720 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2721 gfn_t *nr_pages, bool write) 2722 { 2723 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2724 return KVM_HVA_ERR_BAD; 2725 2726 if (memslot_is_readonly(slot) && write) 2727 return KVM_HVA_ERR_RO_BAD; 2728 2729 if (nr_pages) 2730 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2731 2732 return __gfn_to_hva_memslot(slot, gfn); 2733 } 2734 2735 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2736 gfn_t *nr_pages) 2737 { 2738 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2739 } 2740 2741 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2742 gfn_t gfn) 2743 { 2744 return gfn_to_hva_many(slot, gfn, NULL); 2745 } 2746 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot); 2747 2748 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2749 { 2750 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2751 } 2752 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva); 2753 2754 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2755 { 2756 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2757 } 2758 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva); 2759 2760 /* 2761 * Return the hva of a @gfn and the R/W attribute if possible. 2762 * 2763 * @slot: the kvm_memory_slot which contains @gfn 2764 * @gfn: the gfn to be translated 2765 * @writable: used to return the read/write attribute of the @slot if the hva 2766 * is valid and @writable is not NULL 2767 */ 2768 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2769 gfn_t gfn, bool *writable) 2770 { 2771 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2772 2773 if (!kvm_is_error_hva(hva) && writable) 2774 *writable = !memslot_is_readonly(slot); 2775 2776 return hva; 2777 } 2778 2779 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2780 { 2781 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2782 2783 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2784 } 2785 2786 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2787 { 2788 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2789 2790 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2791 } 2792 2793 static bool kvm_is_ad_tracked_page(struct page *page) 2794 { 2795 /* 2796 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2797 * touched (e.g. set dirty) except by its owner". 2798 */ 2799 return !PageReserved(page); 2800 } 2801 2802 static void kvm_set_page_dirty(struct page *page) 2803 { 2804 if (kvm_is_ad_tracked_page(page)) 2805 SetPageDirty(page); 2806 } 2807 2808 static void kvm_set_page_accessed(struct page *page) 2809 { 2810 if (kvm_is_ad_tracked_page(page)) 2811 mark_page_accessed(page); 2812 } 2813 2814 void kvm_release_page_clean(struct page *page) 2815 { 2816 if (!page) 2817 return; 2818 2819 kvm_set_page_accessed(page); 2820 put_page(page); 2821 } 2822 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean); 2823 2824 void kvm_release_page_dirty(struct page *page) 2825 { 2826 if (!page) 2827 return; 2828 2829 kvm_set_page_dirty(page); 2830 kvm_release_page_clean(page); 2831 } 2832 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty); 2833 2834 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page, 2835 struct follow_pfnmap_args *map, bool writable) 2836 { 2837 kvm_pfn_t pfn; 2838 2839 WARN_ON_ONCE(!!page == !!map); 2840 2841 if (kfp->map_writable) 2842 *kfp->map_writable = writable; 2843 2844 if (map) 2845 pfn = map->pfn; 2846 else 2847 pfn = page_to_pfn(page); 2848 2849 *kfp->refcounted_page = page; 2850 2851 return pfn; 2852 } 2853 2854 /* 2855 * The fast path to get the writable pfn which will be stored in @pfn, 2856 * true indicates success, otherwise false is returned. 2857 */ 2858 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2859 { 2860 struct page *page; 2861 bool r; 2862 2863 /* 2864 * Try the fast-only path when the caller wants to pin/get the page for 2865 * writing. If the caller only wants to read the page, KVM must go 2866 * down the full, slow path in order to avoid racing an operation that 2867 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing 2868 * at the old, read-only page while mm/ points at a new, writable page. 2869 */ 2870 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable)) 2871 return false; 2872 2873 if (kfp->pin) 2874 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1; 2875 else 2876 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page); 2877 2878 if (r) { 2879 *pfn = kvm_resolve_pfn(kfp, page, NULL, true); 2880 return true; 2881 } 2882 2883 return false; 2884 } 2885 2886 /* 2887 * The slow path to get the pfn of the specified host virtual address, 2888 * 1 indicates success, -errno is returned if error is detected. 2889 */ 2890 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2891 { 2892 /* 2893 * When a VCPU accesses a page that is not mapped into the secondary 2894 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2895 * make progress. We always want to honor NUMA hinting faults in that 2896 * case, because GUP usage corresponds to memory accesses from the VCPU. 2897 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2898 * mapped into the secondary MMU and gets accessed by a VCPU. 2899 * 2900 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2901 * implicitly honor NUMA hinting faults and don't need this flag. 2902 */ 2903 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags; 2904 struct page *page, *wpage; 2905 int npages; 2906 2907 if (kfp->pin) 2908 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags); 2909 else 2910 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags); 2911 if (npages != 1) 2912 return npages; 2913 2914 /* 2915 * Pinning is mutually exclusive with opportunistically mapping a read 2916 * fault as writable, as KVM should never pin pages when mapping memory 2917 * into the guest (pinning is only for direct accesses from KVM). 2918 */ 2919 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin)) 2920 goto out; 2921 2922 /* map read fault as writable if possible */ 2923 if (!(flags & FOLL_WRITE) && kfp->map_writable && 2924 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) { 2925 put_page(page); 2926 page = wpage; 2927 flags |= FOLL_WRITE; 2928 } 2929 2930 out: 2931 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE); 2932 return npages; 2933 } 2934 2935 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2936 { 2937 if (unlikely(!(vma->vm_flags & VM_READ))) 2938 return false; 2939 2940 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2941 return false; 2942 2943 return true; 2944 } 2945 2946 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2947 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn) 2948 { 2949 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva }; 2950 bool write_fault = kfp->flags & FOLL_WRITE; 2951 int r; 2952 2953 /* 2954 * Remapped memory cannot be pinned in any meaningful sense. Bail if 2955 * the caller wants to pin the page, i.e. access the page outside of 2956 * MMU notifier protection, and unsafe umappings are disallowed. 2957 */ 2958 if (kfp->pin && !allow_unsafe_mappings) 2959 return -EINVAL; 2960 2961 r = follow_pfnmap_start(&args); 2962 if (r) { 2963 /* 2964 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2965 * not call the fault handler, so do it here. 2966 */ 2967 bool unlocked = false; 2968 r = fixup_user_fault(current->mm, kfp->hva, 2969 (write_fault ? FAULT_FLAG_WRITE : 0), 2970 &unlocked); 2971 if (unlocked) 2972 return -EAGAIN; 2973 if (r) 2974 return r; 2975 2976 r = follow_pfnmap_start(&args); 2977 if (r) 2978 return r; 2979 } 2980 2981 if (write_fault && !args.writable) { 2982 *p_pfn = KVM_PFN_ERR_RO_FAULT; 2983 goto out; 2984 } 2985 2986 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable); 2987 out: 2988 follow_pfnmap_end(&args); 2989 return r; 2990 } 2991 2992 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp) 2993 { 2994 struct vm_area_struct *vma; 2995 kvm_pfn_t pfn; 2996 int npages, r; 2997 2998 might_sleep(); 2999 3000 if (WARN_ON_ONCE(!kfp->refcounted_page)) 3001 return KVM_PFN_ERR_FAULT; 3002 3003 if (hva_to_pfn_fast(kfp, &pfn)) 3004 return pfn; 3005 3006 npages = hva_to_pfn_slow(kfp, &pfn); 3007 if (npages == 1) 3008 return pfn; 3009 if (npages == -EINTR || npages == -EAGAIN) 3010 return KVM_PFN_ERR_SIGPENDING; 3011 if (npages == -EHWPOISON) 3012 return KVM_PFN_ERR_HWPOISON; 3013 3014 mmap_read_lock(current->mm); 3015 retry: 3016 vma = vma_lookup(current->mm, kfp->hva); 3017 3018 if (vma == NULL) 3019 pfn = KVM_PFN_ERR_FAULT; 3020 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3021 r = hva_to_pfn_remapped(vma, kfp, &pfn); 3022 if (r == -EAGAIN) 3023 goto retry; 3024 if (r < 0) 3025 pfn = KVM_PFN_ERR_FAULT; 3026 } else { 3027 if ((kfp->flags & FOLL_NOWAIT) && 3028 vma_is_valid(vma, kfp->flags & FOLL_WRITE)) 3029 pfn = KVM_PFN_ERR_NEEDS_IO; 3030 else 3031 pfn = KVM_PFN_ERR_FAULT; 3032 } 3033 mmap_read_unlock(current->mm); 3034 return pfn; 3035 } 3036 3037 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp) 3038 { 3039 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL, 3040 kfp->flags & FOLL_WRITE); 3041 3042 if (kfp->hva == KVM_HVA_ERR_RO_BAD) 3043 return KVM_PFN_ERR_RO_FAULT; 3044 3045 if (kvm_is_error_hva(kfp->hva)) 3046 return KVM_PFN_NOSLOT; 3047 3048 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) { 3049 *kfp->map_writable = false; 3050 kfp->map_writable = NULL; 3051 } 3052 3053 return hva_to_pfn(kfp); 3054 } 3055 3056 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 3057 unsigned int foll, bool *writable, 3058 struct page **refcounted_page) 3059 { 3060 struct kvm_follow_pfn kfp = { 3061 .slot = slot, 3062 .gfn = gfn, 3063 .flags = foll, 3064 .map_writable = writable, 3065 .refcounted_page = refcounted_page, 3066 }; 3067 3068 if (WARN_ON_ONCE(!writable || !refcounted_page)) 3069 return KVM_PFN_ERR_FAULT; 3070 3071 *writable = false; 3072 *refcounted_page = NULL; 3073 3074 return kvm_follow_pfn(&kfp); 3075 } 3076 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn); 3077 3078 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 3079 struct page **pages, int nr_pages) 3080 { 3081 unsigned long addr; 3082 gfn_t entry = 0; 3083 3084 addr = gfn_to_hva_many(slot, gfn, &entry); 3085 if (kvm_is_error_hva(addr)) 3086 return -1; 3087 3088 if (entry < nr_pages) 3089 return 0; 3090 3091 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3092 } 3093 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages); 3094 3095 /* 3096 * Don't use this API unless you are absolutely, positively certain that KVM 3097 * needs to get a struct page, e.g. to pin the page for firmware DMA. 3098 * 3099 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate 3100 * its refcount. 3101 */ 3102 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write) 3103 { 3104 struct page *refcounted_page = NULL; 3105 struct kvm_follow_pfn kfp = { 3106 .slot = gfn_to_memslot(kvm, gfn), 3107 .gfn = gfn, 3108 .flags = write ? FOLL_WRITE : 0, 3109 .refcounted_page = &refcounted_page, 3110 }; 3111 3112 (void)kvm_follow_pfn(&kfp); 3113 return refcounted_page; 3114 } 3115 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page); 3116 3117 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 3118 bool writable) 3119 { 3120 struct kvm_follow_pfn kfp = { 3121 .slot = gfn_to_memslot(vcpu->kvm, gfn), 3122 .gfn = gfn, 3123 .flags = writable ? FOLL_WRITE : 0, 3124 .refcounted_page = &map->pinned_page, 3125 .pin = true, 3126 }; 3127 3128 map->pinned_page = NULL; 3129 map->page = NULL; 3130 map->hva = NULL; 3131 map->gfn = gfn; 3132 map->writable = writable; 3133 3134 map->pfn = kvm_follow_pfn(&kfp); 3135 if (is_error_noslot_pfn(map->pfn)) 3136 return -EINVAL; 3137 3138 if (pfn_valid(map->pfn)) { 3139 map->page = pfn_to_page(map->pfn); 3140 map->hva = kmap(map->page); 3141 #ifdef CONFIG_HAS_IOMEM 3142 } else { 3143 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB); 3144 #endif 3145 } 3146 3147 return map->hva ? 0 : -EFAULT; 3148 } 3149 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map); 3150 3151 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map) 3152 { 3153 if (!map->hva) 3154 return; 3155 3156 if (map->page) 3157 kunmap(map->page); 3158 #ifdef CONFIG_HAS_IOMEM 3159 else 3160 memunmap(map->hva); 3161 #endif 3162 3163 if (map->writable) 3164 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3165 3166 if (map->pinned_page) { 3167 if (map->writable) 3168 kvm_set_page_dirty(map->pinned_page); 3169 kvm_set_page_accessed(map->pinned_page); 3170 unpin_user_page(map->pinned_page); 3171 } 3172 3173 map->hva = NULL; 3174 map->page = NULL; 3175 map->pinned_page = NULL; 3176 } 3177 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap); 3178 3179 static int next_segment(unsigned long len, int offset) 3180 { 3181 if (len > PAGE_SIZE - offset) 3182 return PAGE_SIZE - offset; 3183 else 3184 return len; 3185 } 3186 3187 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3188 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3189 void *data, int offset, int len) 3190 { 3191 int r; 3192 unsigned long addr; 3193 3194 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3195 return -EFAULT; 3196 3197 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3198 if (kvm_is_error_hva(addr)) 3199 return -EFAULT; 3200 r = __copy_from_user(data, (void __user *)addr + offset, len); 3201 if (r) 3202 return -EFAULT; 3203 return 0; 3204 } 3205 3206 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3207 int len) 3208 { 3209 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3210 3211 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3212 } 3213 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page); 3214 3215 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3216 int offset, int len) 3217 { 3218 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3219 3220 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3221 } 3222 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page); 3223 3224 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3225 { 3226 gfn_t gfn = gpa >> PAGE_SHIFT; 3227 int seg; 3228 int offset = offset_in_page(gpa); 3229 int ret; 3230 3231 while ((seg = next_segment(len, offset)) != 0) { 3232 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3233 if (ret < 0) 3234 return ret; 3235 offset = 0; 3236 len -= seg; 3237 data += seg; 3238 ++gfn; 3239 } 3240 return 0; 3241 } 3242 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest); 3243 3244 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3245 { 3246 gfn_t gfn = gpa >> PAGE_SHIFT; 3247 int seg; 3248 int offset = offset_in_page(gpa); 3249 int ret; 3250 3251 while ((seg = next_segment(len, offset)) != 0) { 3252 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3253 if (ret < 0) 3254 return ret; 3255 offset = 0; 3256 len -= seg; 3257 data += seg; 3258 ++gfn; 3259 } 3260 return 0; 3261 } 3262 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest); 3263 3264 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3265 void *data, int offset, unsigned long len) 3266 { 3267 int r; 3268 unsigned long addr; 3269 3270 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3271 return -EFAULT; 3272 3273 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3274 if (kvm_is_error_hva(addr)) 3275 return -EFAULT; 3276 pagefault_disable(); 3277 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3278 pagefault_enable(); 3279 if (r) 3280 return -EFAULT; 3281 return 0; 3282 } 3283 3284 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3285 void *data, unsigned long len) 3286 { 3287 gfn_t gfn = gpa >> PAGE_SHIFT; 3288 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3289 int offset = offset_in_page(gpa); 3290 3291 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3292 } 3293 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic); 3294 3295 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3296 static int __kvm_write_guest_page(struct kvm *kvm, 3297 struct kvm_memory_slot *memslot, gfn_t gfn, 3298 const void *data, int offset, int len) 3299 { 3300 int r; 3301 unsigned long addr; 3302 3303 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3304 return -EFAULT; 3305 3306 addr = gfn_to_hva_memslot(memslot, gfn); 3307 if (kvm_is_error_hva(addr)) 3308 return -EFAULT; 3309 r = __copy_to_user((void __user *)addr + offset, data, len); 3310 if (r) 3311 return -EFAULT; 3312 mark_page_dirty_in_slot(kvm, memslot, gfn); 3313 return 0; 3314 } 3315 3316 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3317 const void *data, int offset, int len) 3318 { 3319 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3320 3321 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3322 } 3323 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page); 3324 3325 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3326 const void *data, int offset, int len) 3327 { 3328 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3329 3330 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3331 } 3332 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page); 3333 3334 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3335 unsigned long len) 3336 { 3337 gfn_t gfn = gpa >> PAGE_SHIFT; 3338 int seg; 3339 int offset = offset_in_page(gpa); 3340 int ret; 3341 3342 while ((seg = next_segment(len, offset)) != 0) { 3343 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3344 if (ret < 0) 3345 return ret; 3346 offset = 0; 3347 len -= seg; 3348 data += seg; 3349 ++gfn; 3350 } 3351 return 0; 3352 } 3353 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest); 3354 3355 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3356 unsigned long len) 3357 { 3358 gfn_t gfn = gpa >> PAGE_SHIFT; 3359 int seg; 3360 int offset = offset_in_page(gpa); 3361 int ret; 3362 3363 while ((seg = next_segment(len, offset)) != 0) { 3364 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3365 if (ret < 0) 3366 return ret; 3367 offset = 0; 3368 len -= seg; 3369 data += seg; 3370 ++gfn; 3371 } 3372 return 0; 3373 } 3374 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest); 3375 3376 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3377 struct gfn_to_hva_cache *ghc, 3378 gpa_t gpa, unsigned long len) 3379 { 3380 int offset = offset_in_page(gpa); 3381 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3382 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3383 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3384 gfn_t nr_pages_avail; 3385 3386 /* Update ghc->generation before performing any error checks. */ 3387 ghc->generation = slots->generation; 3388 3389 if (start_gfn > end_gfn) { 3390 ghc->hva = KVM_HVA_ERR_BAD; 3391 return -EINVAL; 3392 } 3393 3394 /* 3395 * If the requested region crosses two memslots, we still 3396 * verify that the entire region is valid here. 3397 */ 3398 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3399 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3400 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3401 &nr_pages_avail); 3402 if (kvm_is_error_hva(ghc->hva)) 3403 return -EFAULT; 3404 } 3405 3406 /* Use the slow path for cross page reads and writes. */ 3407 if (nr_pages_needed == 1) 3408 ghc->hva += offset; 3409 else 3410 ghc->memslot = NULL; 3411 3412 ghc->gpa = gpa; 3413 ghc->len = len; 3414 return 0; 3415 } 3416 3417 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3418 gpa_t gpa, unsigned long len) 3419 { 3420 struct kvm_memslots *slots = kvm_memslots(kvm); 3421 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3422 } 3423 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init); 3424 3425 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3426 void *data, unsigned int offset, 3427 unsigned long len) 3428 { 3429 struct kvm_memslots *slots = kvm_memslots(kvm); 3430 int r; 3431 gpa_t gpa = ghc->gpa + offset; 3432 3433 if (WARN_ON_ONCE(len + offset > ghc->len)) 3434 return -EINVAL; 3435 3436 if (slots->generation != ghc->generation) { 3437 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3438 return -EFAULT; 3439 } 3440 3441 if (kvm_is_error_hva(ghc->hva)) 3442 return -EFAULT; 3443 3444 if (unlikely(!ghc->memslot)) 3445 return kvm_write_guest(kvm, gpa, data, len); 3446 3447 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3448 if (r) 3449 return -EFAULT; 3450 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3451 3452 return 0; 3453 } 3454 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached); 3455 3456 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3457 void *data, unsigned long len) 3458 { 3459 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3460 } 3461 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached); 3462 3463 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3464 void *data, unsigned int offset, 3465 unsigned long len) 3466 { 3467 struct kvm_memslots *slots = kvm_memslots(kvm); 3468 int r; 3469 gpa_t gpa = ghc->gpa + offset; 3470 3471 if (WARN_ON_ONCE(len + offset > ghc->len)) 3472 return -EINVAL; 3473 3474 if (slots->generation != ghc->generation) { 3475 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3476 return -EFAULT; 3477 } 3478 3479 if (kvm_is_error_hva(ghc->hva)) 3480 return -EFAULT; 3481 3482 if (unlikely(!ghc->memslot)) 3483 return kvm_read_guest(kvm, gpa, data, len); 3484 3485 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3486 if (r) 3487 return -EFAULT; 3488 3489 return 0; 3490 } 3491 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached); 3492 3493 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3494 void *data, unsigned long len) 3495 { 3496 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3497 } 3498 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached); 3499 3500 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3501 { 3502 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3503 gfn_t gfn = gpa >> PAGE_SHIFT; 3504 int seg; 3505 int offset = offset_in_page(gpa); 3506 int ret; 3507 3508 while ((seg = next_segment(len, offset)) != 0) { 3509 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); 3510 if (ret < 0) 3511 return ret; 3512 offset = 0; 3513 len -= seg; 3514 ++gfn; 3515 } 3516 return 0; 3517 } 3518 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest); 3519 3520 void mark_page_dirty_in_slot(struct kvm *kvm, 3521 const struct kvm_memory_slot *memslot, 3522 gfn_t gfn) 3523 { 3524 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3525 3526 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3527 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3528 return; 3529 3530 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3531 #endif 3532 3533 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3534 unsigned long rel_gfn = gfn - memslot->base_gfn; 3535 u32 slot = (memslot->as_id << 16) | memslot->id; 3536 3537 if (kvm->dirty_ring_size && vcpu) 3538 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3539 else if (memslot->dirty_bitmap) 3540 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3541 } 3542 } 3543 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot); 3544 3545 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3546 { 3547 struct kvm_memory_slot *memslot; 3548 3549 memslot = gfn_to_memslot(kvm, gfn); 3550 mark_page_dirty_in_slot(kvm, memslot, gfn); 3551 } 3552 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty); 3553 3554 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3555 { 3556 struct kvm_memory_slot *memslot; 3557 3558 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3559 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3560 } 3561 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty); 3562 3563 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3564 { 3565 if (!vcpu->sigset_active) 3566 return; 3567 3568 /* 3569 * This does a lockless modification of ->real_blocked, which is fine 3570 * because, only current can change ->real_blocked and all readers of 3571 * ->real_blocked don't care as long ->real_blocked is always a subset 3572 * of ->blocked. 3573 */ 3574 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3575 } 3576 3577 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3578 { 3579 if (!vcpu->sigset_active) 3580 return; 3581 3582 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3583 sigemptyset(¤t->real_blocked); 3584 } 3585 3586 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3587 { 3588 unsigned int old, val, grow, grow_start; 3589 3590 old = val = vcpu->halt_poll_ns; 3591 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3592 grow = READ_ONCE(halt_poll_ns_grow); 3593 if (!grow) 3594 goto out; 3595 3596 val *= grow; 3597 if (val < grow_start) 3598 val = grow_start; 3599 3600 vcpu->halt_poll_ns = val; 3601 out: 3602 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3603 } 3604 3605 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3606 { 3607 unsigned int old, val, shrink, grow_start; 3608 3609 old = val = vcpu->halt_poll_ns; 3610 shrink = READ_ONCE(halt_poll_ns_shrink); 3611 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3612 if (shrink == 0) 3613 val = 0; 3614 else 3615 val /= shrink; 3616 3617 if (val < grow_start) 3618 val = 0; 3619 3620 vcpu->halt_poll_ns = val; 3621 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3622 } 3623 3624 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3625 { 3626 int ret = -EINTR; 3627 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3628 3629 if (kvm_arch_vcpu_runnable(vcpu)) 3630 goto out; 3631 if (kvm_cpu_has_pending_timer(vcpu)) 3632 goto out; 3633 if (signal_pending(current)) 3634 goto out; 3635 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3636 goto out; 3637 3638 ret = 0; 3639 out: 3640 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3641 return ret; 3642 } 3643 3644 /* 3645 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3646 * pending. This is mostly used when halting a vCPU, but may also be used 3647 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3648 */ 3649 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3650 { 3651 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3652 bool waited = false; 3653 3654 vcpu->stat.generic.blocking = 1; 3655 3656 preempt_disable(); 3657 kvm_arch_vcpu_blocking(vcpu); 3658 prepare_to_rcuwait(wait); 3659 preempt_enable(); 3660 3661 for (;;) { 3662 set_current_state(TASK_INTERRUPTIBLE); 3663 3664 if (kvm_vcpu_check_block(vcpu) < 0) 3665 break; 3666 3667 waited = true; 3668 schedule(); 3669 } 3670 3671 preempt_disable(); 3672 finish_rcuwait(wait); 3673 kvm_arch_vcpu_unblocking(vcpu); 3674 preempt_enable(); 3675 3676 vcpu->stat.generic.blocking = 0; 3677 3678 return waited; 3679 } 3680 3681 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3682 ktime_t end, bool success) 3683 { 3684 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3685 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3686 3687 ++vcpu->stat.generic.halt_attempted_poll; 3688 3689 if (success) { 3690 ++vcpu->stat.generic.halt_successful_poll; 3691 3692 if (!vcpu_valid_wakeup(vcpu)) 3693 ++vcpu->stat.generic.halt_poll_invalid; 3694 3695 stats->halt_poll_success_ns += poll_ns; 3696 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3697 } else { 3698 stats->halt_poll_fail_ns += poll_ns; 3699 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3700 } 3701 } 3702 3703 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3704 { 3705 struct kvm *kvm = vcpu->kvm; 3706 3707 if (kvm->override_halt_poll_ns) { 3708 /* 3709 * Ensure kvm->max_halt_poll_ns is not read before 3710 * kvm->override_halt_poll_ns. 3711 * 3712 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3713 */ 3714 smp_rmb(); 3715 return READ_ONCE(kvm->max_halt_poll_ns); 3716 } 3717 3718 return READ_ONCE(halt_poll_ns); 3719 } 3720 3721 /* 3722 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3723 * polling is enabled, busy wait for a short time before blocking to avoid the 3724 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3725 * is halted. 3726 */ 3727 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3728 { 3729 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3730 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3731 ktime_t start, cur, poll_end; 3732 bool waited = false; 3733 bool do_halt_poll; 3734 u64 halt_ns; 3735 3736 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3737 vcpu->halt_poll_ns = max_halt_poll_ns; 3738 3739 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3740 3741 start = cur = poll_end = ktime_get(); 3742 if (do_halt_poll) { 3743 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3744 3745 do { 3746 if (kvm_vcpu_check_block(vcpu) < 0) 3747 goto out; 3748 cpu_relax(); 3749 poll_end = cur = ktime_get(); 3750 } while (kvm_vcpu_can_poll(cur, stop)); 3751 } 3752 3753 waited = kvm_vcpu_block(vcpu); 3754 3755 cur = ktime_get(); 3756 if (waited) { 3757 vcpu->stat.generic.halt_wait_ns += 3758 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3759 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3760 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3761 } 3762 out: 3763 /* The total time the vCPU was "halted", including polling time. */ 3764 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3765 3766 /* 3767 * Note, halt-polling is considered successful so long as the vCPU was 3768 * never actually scheduled out, i.e. even if the wake event arrived 3769 * after of the halt-polling loop itself, but before the full wait. 3770 */ 3771 if (do_halt_poll) 3772 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3773 3774 if (halt_poll_allowed) { 3775 /* Recompute the max halt poll time in case it changed. */ 3776 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3777 3778 if (!vcpu_valid_wakeup(vcpu)) { 3779 shrink_halt_poll_ns(vcpu); 3780 } else if (max_halt_poll_ns) { 3781 if (halt_ns <= vcpu->halt_poll_ns) 3782 ; 3783 /* we had a long block, shrink polling */ 3784 else if (vcpu->halt_poll_ns && 3785 halt_ns > max_halt_poll_ns) 3786 shrink_halt_poll_ns(vcpu); 3787 /* we had a short halt and our poll time is too small */ 3788 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3789 halt_ns < max_halt_poll_ns) 3790 grow_halt_poll_ns(vcpu); 3791 } else { 3792 vcpu->halt_poll_ns = 0; 3793 } 3794 } 3795 3796 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3797 } 3798 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt); 3799 3800 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3801 { 3802 if (__kvm_vcpu_wake_up(vcpu)) { 3803 WRITE_ONCE(vcpu->ready, true); 3804 ++vcpu->stat.generic.halt_wakeup; 3805 return true; 3806 } 3807 3808 return false; 3809 } 3810 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up); 3811 3812 #ifndef CONFIG_S390 3813 /* 3814 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3815 */ 3816 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait) 3817 { 3818 int me, cpu; 3819 3820 if (kvm_vcpu_wake_up(vcpu)) 3821 return; 3822 3823 me = get_cpu(); 3824 /* 3825 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3826 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3827 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3828 * within the vCPU thread itself. 3829 */ 3830 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3831 if (vcpu->mode == IN_GUEST_MODE) 3832 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3833 goto out; 3834 } 3835 3836 /* 3837 * Note, the vCPU could get migrated to a different pCPU at any point 3838 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3839 * IPI to the previous pCPU. But, that's ok because the purpose of the 3840 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3841 * vCPU also requires it to leave IN_GUEST_MODE. 3842 */ 3843 if (kvm_arch_vcpu_should_kick(vcpu)) { 3844 cpu = READ_ONCE(vcpu->cpu); 3845 if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) { 3846 /* 3847 * Use a reschedule IPI to kick the vCPU if the caller 3848 * doesn't need to wait for a response, as KVM allows 3849 * kicking vCPUs while IRQs are disabled, but using the 3850 * SMP function call framework with IRQs disabled can 3851 * deadlock due to taking cross-CPU locks. 3852 */ 3853 if (wait) 3854 smp_call_function_single(cpu, ack_kick, NULL, wait); 3855 else 3856 smp_send_reschedule(cpu); 3857 } 3858 } 3859 out: 3860 put_cpu(); 3861 } 3862 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick); 3863 #endif /* !CONFIG_S390 */ 3864 3865 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3866 { 3867 struct task_struct *task = NULL; 3868 int ret; 3869 3870 if (!read_trylock(&target->pid_lock)) 3871 return 0; 3872 3873 if (target->pid) 3874 task = get_pid_task(target->pid, PIDTYPE_PID); 3875 3876 read_unlock(&target->pid_lock); 3877 3878 if (!task) 3879 return 0; 3880 ret = yield_to(task, 1); 3881 put_task_struct(task); 3882 3883 return ret; 3884 } 3885 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to); 3886 3887 /* 3888 * Helper that checks whether a VCPU is eligible for directed yield. 3889 * Most eligible candidate to yield is decided by following heuristics: 3890 * 3891 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3892 * (preempted lock holder), indicated by @in_spin_loop. 3893 * Set at the beginning and cleared at the end of interception/PLE handler. 3894 * 3895 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3896 * chance last time (mostly it has become eligible now since we have probably 3897 * yielded to lockholder in last iteration. This is done by toggling 3898 * @dy_eligible each time a VCPU checked for eligibility.) 3899 * 3900 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3901 * to preempted lock-holder could result in wrong VCPU selection and CPU 3902 * burning. Giving priority for a potential lock-holder increases lock 3903 * progress. 3904 * 3905 * Since algorithm is based on heuristics, accessing another VCPU data without 3906 * locking does not harm. It may result in trying to yield to same VCPU, fail 3907 * and continue with next VCPU and so on. 3908 */ 3909 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3910 { 3911 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3912 bool eligible; 3913 3914 eligible = !vcpu->spin_loop.in_spin_loop || 3915 vcpu->spin_loop.dy_eligible; 3916 3917 if (vcpu->spin_loop.in_spin_loop) 3918 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3919 3920 return eligible; 3921 #else 3922 return true; 3923 #endif 3924 } 3925 3926 /* 3927 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3928 * a vcpu_load/vcpu_put pair. However, for most architectures 3929 * kvm_arch_vcpu_runnable does not require vcpu_load. 3930 */ 3931 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3932 { 3933 return kvm_arch_vcpu_runnable(vcpu); 3934 } 3935 3936 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3937 { 3938 if (kvm_arch_dy_runnable(vcpu)) 3939 return true; 3940 3941 #ifdef CONFIG_KVM_ASYNC_PF 3942 if (!list_empty_careful(&vcpu->async_pf.done)) 3943 return true; 3944 #endif 3945 3946 return false; 3947 } 3948 3949 /* 3950 * By default, simply query the target vCPU's current mode when checking if a 3951 * vCPU was preempted in kernel mode. All architectures except x86 (or more 3952 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 3953 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 3954 * directly for cross-vCPU checks is functionally correct and accurate. 3955 */ 3956 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 3957 { 3958 return kvm_arch_vcpu_in_kernel(vcpu); 3959 } 3960 3961 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3962 { 3963 return false; 3964 } 3965 3966 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3967 { 3968 int nr_vcpus, start, i, idx, yielded; 3969 struct kvm *kvm = me->kvm; 3970 struct kvm_vcpu *vcpu; 3971 int try = 3; 3972 3973 nr_vcpus = atomic_read(&kvm->online_vcpus); 3974 if (nr_vcpus < 2) 3975 return; 3976 3977 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */ 3978 smp_rmb(); 3979 3980 kvm_vcpu_set_in_spin_loop(me, true); 3981 3982 /* 3983 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely 3984 * waiting for a resource to become available. Attempt to yield to a 3985 * vCPU that is runnable, but not currently running, e.g. because the 3986 * vCPU was preempted by a higher priority task. With luck, the vCPU 3987 * that was preempted is holding a lock or some other resource that the 3988 * current vCPU is waiting to acquire, and yielding to the other vCPU 3989 * will allow it to make forward progress and release the lock (or kick 3990 * the spinning vCPU, etc). 3991 * 3992 * Since KVM has no insight into what exactly the guest is doing, 3993 * approximate a round-robin selection by iterating over all vCPUs, 3994 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu, 3995 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed. 3996 * 3997 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning, 3998 * they may all try to yield to the same vCPU(s). But as above, this 3999 * is all best effort due to KVM's lack of visibility into the guest. 4000 */ 4001 start = READ_ONCE(kvm->last_boosted_vcpu) + 1; 4002 for (i = 0; i < nr_vcpus; i++) { 4003 idx = (start + i) % nr_vcpus; 4004 if (idx == me->vcpu_idx) 4005 continue; 4006 4007 vcpu = xa_load(&kvm->vcpu_array, idx); 4008 if (!READ_ONCE(vcpu->ready)) 4009 continue; 4010 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4011 continue; 4012 4013 /* 4014 * Treat the target vCPU as being in-kernel if it has a pending 4015 * interrupt, as the vCPU trying to yield may be spinning 4016 * waiting on IPI delivery, i.e. the target vCPU is in-kernel 4017 * for the purposes of directed yield. 4018 */ 4019 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4020 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4021 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4022 continue; 4023 4024 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4025 continue; 4026 4027 yielded = kvm_vcpu_yield_to(vcpu); 4028 if (yielded > 0) { 4029 WRITE_ONCE(kvm->last_boosted_vcpu, i); 4030 break; 4031 } else if (yielded < 0 && !--try) { 4032 break; 4033 } 4034 } 4035 kvm_vcpu_set_in_spin_loop(me, false); 4036 4037 /* Ensure vcpu is not eligible during next spinloop */ 4038 kvm_vcpu_set_dy_eligible(me, false); 4039 } 4040 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin); 4041 4042 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4043 { 4044 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4045 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4046 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4047 kvm->dirty_ring_size / PAGE_SIZE); 4048 #else 4049 return false; 4050 #endif 4051 } 4052 4053 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4054 { 4055 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4056 struct page *page; 4057 4058 if (vmf->pgoff == 0) 4059 page = virt_to_page(vcpu->run); 4060 #ifdef CONFIG_X86 4061 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4062 page = virt_to_page(vcpu->arch.pio_data); 4063 #endif 4064 #ifdef CONFIG_KVM_MMIO 4065 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4066 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4067 #endif 4068 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4069 page = kvm_dirty_ring_get_page( 4070 &vcpu->dirty_ring, 4071 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4072 else 4073 return kvm_arch_vcpu_fault(vcpu, vmf); 4074 get_page(page); 4075 vmf->page = page; 4076 return 0; 4077 } 4078 4079 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4080 .fault = kvm_vcpu_fault, 4081 }; 4082 4083 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4084 { 4085 struct kvm_vcpu *vcpu = file->private_data; 4086 unsigned long pages = vma_pages(vma); 4087 4088 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4089 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4090 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4091 return -EINVAL; 4092 4093 vma->vm_ops = &kvm_vcpu_vm_ops; 4094 return 0; 4095 } 4096 4097 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4098 { 4099 struct kvm_vcpu *vcpu = filp->private_data; 4100 4101 kvm_put_kvm(vcpu->kvm); 4102 return 0; 4103 } 4104 4105 static struct file_operations kvm_vcpu_fops = { 4106 .release = kvm_vcpu_release, 4107 .unlocked_ioctl = kvm_vcpu_ioctl, 4108 .mmap = kvm_vcpu_mmap, 4109 .llseek = noop_llseek, 4110 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4111 }; 4112 4113 /* 4114 * Allocates an inode for the vcpu. 4115 */ 4116 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4117 { 4118 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4119 4120 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4121 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4122 } 4123 4124 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4125 static int vcpu_get_pid(void *data, u64 *val) 4126 { 4127 struct kvm_vcpu *vcpu = data; 4128 4129 read_lock(&vcpu->pid_lock); 4130 *val = pid_nr(vcpu->pid); 4131 read_unlock(&vcpu->pid_lock); 4132 return 0; 4133 } 4134 4135 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4136 4137 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4138 { 4139 struct dentry *debugfs_dentry; 4140 char dir_name[ITOA_MAX_LEN * 2]; 4141 4142 if (!debugfs_initialized()) 4143 return; 4144 4145 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4146 debugfs_dentry = debugfs_create_dir(dir_name, 4147 vcpu->kvm->debugfs_dentry); 4148 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4149 &vcpu_get_pid_fops); 4150 4151 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4152 } 4153 #endif 4154 4155 /* 4156 * Creates some virtual cpus. Good luck creating more than one. 4157 */ 4158 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4159 { 4160 int r; 4161 struct kvm_vcpu *vcpu; 4162 struct page *page; 4163 4164 /* 4165 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4166 * too-large values instead of silently truncating. 4167 * 4168 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4169 * changing the storage type (at the very least, IDs should be tracked 4170 * as unsigned ints). 4171 */ 4172 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4173 if (id >= KVM_MAX_VCPU_IDS) 4174 return -EINVAL; 4175 4176 mutex_lock(&kvm->lock); 4177 if (kvm->created_vcpus >= kvm->max_vcpus) { 4178 mutex_unlock(&kvm->lock); 4179 return -EINVAL; 4180 } 4181 4182 r = kvm_arch_vcpu_precreate(kvm, id); 4183 if (r) { 4184 mutex_unlock(&kvm->lock); 4185 return r; 4186 } 4187 4188 kvm->created_vcpus++; 4189 mutex_unlock(&kvm->lock); 4190 4191 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4192 if (!vcpu) { 4193 r = -ENOMEM; 4194 goto vcpu_decrement; 4195 } 4196 4197 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4198 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4199 if (!page) { 4200 r = -ENOMEM; 4201 goto vcpu_free; 4202 } 4203 vcpu->run = page_address(page); 4204 4205 kvm_vcpu_init(vcpu, kvm, id); 4206 4207 r = kvm_arch_vcpu_create(vcpu); 4208 if (r) 4209 goto vcpu_free_run_page; 4210 4211 if (kvm->dirty_ring_size) { 4212 r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring, 4213 id, kvm->dirty_ring_size); 4214 if (r) 4215 goto arch_vcpu_destroy; 4216 } 4217 4218 mutex_lock(&kvm->lock); 4219 4220 if (kvm_get_vcpu_by_id(kvm, id)) { 4221 r = -EEXIST; 4222 goto unlock_vcpu_destroy; 4223 } 4224 4225 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4226 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 4227 WARN_ON_ONCE(r == -EBUSY); 4228 if (r) 4229 goto unlock_vcpu_destroy; 4230 4231 /* 4232 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex 4233 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully 4234 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked 4235 * into a NULL-pointer dereference because KVM thinks the _current_ 4236 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep 4237 * knows it's taken *inside* kvm->lock. 4238 */ 4239 mutex_lock(&vcpu->mutex); 4240 kvm_get_kvm(kvm); 4241 r = create_vcpu_fd(vcpu); 4242 if (r < 0) 4243 goto kvm_put_xa_erase; 4244 4245 /* 4246 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4247 * pointer before kvm->online_vcpu's incremented value. 4248 */ 4249 smp_wmb(); 4250 atomic_inc(&kvm->online_vcpus); 4251 mutex_unlock(&vcpu->mutex); 4252 4253 mutex_unlock(&kvm->lock); 4254 kvm_arch_vcpu_postcreate(vcpu); 4255 kvm_create_vcpu_debugfs(vcpu); 4256 return r; 4257 4258 kvm_put_xa_erase: 4259 mutex_unlock(&vcpu->mutex); 4260 kvm_put_kvm_no_destroy(kvm); 4261 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 4262 unlock_vcpu_destroy: 4263 mutex_unlock(&kvm->lock); 4264 kvm_dirty_ring_free(&vcpu->dirty_ring); 4265 arch_vcpu_destroy: 4266 kvm_arch_vcpu_destroy(vcpu); 4267 vcpu_free_run_page: 4268 free_page((unsigned long)vcpu->run); 4269 vcpu_free: 4270 kmem_cache_free(kvm_vcpu_cache, vcpu); 4271 vcpu_decrement: 4272 mutex_lock(&kvm->lock); 4273 kvm->created_vcpus--; 4274 mutex_unlock(&kvm->lock); 4275 return r; 4276 } 4277 4278 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4279 { 4280 if (sigset) { 4281 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4282 vcpu->sigset_active = 1; 4283 vcpu->sigset = *sigset; 4284 } else 4285 vcpu->sigset_active = 0; 4286 return 0; 4287 } 4288 4289 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4290 size_t size, loff_t *offset) 4291 { 4292 struct kvm_vcpu *vcpu = file->private_data; 4293 4294 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4295 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4296 sizeof(vcpu->stat), user_buffer, size, offset); 4297 } 4298 4299 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4300 { 4301 struct kvm_vcpu *vcpu = file->private_data; 4302 4303 kvm_put_kvm(vcpu->kvm); 4304 return 0; 4305 } 4306 4307 static const struct file_operations kvm_vcpu_stats_fops = { 4308 .owner = THIS_MODULE, 4309 .read = kvm_vcpu_stats_read, 4310 .release = kvm_vcpu_stats_release, 4311 .llseek = noop_llseek, 4312 }; 4313 4314 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4315 { 4316 int fd; 4317 struct file *file; 4318 char name[15 + ITOA_MAX_LEN + 1]; 4319 4320 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4321 4322 fd = get_unused_fd_flags(O_CLOEXEC); 4323 if (fd < 0) 4324 return fd; 4325 4326 file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu, 4327 O_RDONLY, FMODE_PREAD); 4328 if (IS_ERR(file)) { 4329 put_unused_fd(fd); 4330 return PTR_ERR(file); 4331 } 4332 4333 kvm_get_kvm(vcpu->kvm); 4334 fd_install(fd, file); 4335 4336 return fd; 4337 } 4338 4339 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4340 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4341 struct kvm_pre_fault_memory *range) 4342 { 4343 int idx; 4344 long r; 4345 u64 full_size; 4346 4347 if (range->flags) 4348 return -EINVAL; 4349 4350 if (!PAGE_ALIGNED(range->gpa) || 4351 !PAGE_ALIGNED(range->size) || 4352 range->gpa + range->size <= range->gpa) 4353 return -EINVAL; 4354 4355 vcpu_load(vcpu); 4356 idx = srcu_read_lock(&vcpu->kvm->srcu); 4357 4358 full_size = range->size; 4359 do { 4360 if (signal_pending(current)) { 4361 r = -EINTR; 4362 break; 4363 } 4364 4365 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4366 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4367 break; 4368 4369 if (r < 0) 4370 break; 4371 4372 range->size -= r; 4373 range->gpa += r; 4374 cond_resched(); 4375 } while (range->size); 4376 4377 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4378 vcpu_put(vcpu); 4379 4380 /* Return success if at least one page was mapped successfully. */ 4381 return full_size == range->size ? r : 0; 4382 } 4383 #endif 4384 4385 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu) 4386 { 4387 struct kvm *kvm = vcpu->kvm; 4388 4389 /* 4390 * In practice, this happy path will always be taken, as a well-behaved 4391 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns. 4392 */ 4393 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus))) 4394 return 0; 4395 4396 /* 4397 * Acquire and release the vCPU's mutex to wait for vCPU creation to 4398 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU 4399 * is fully online). 4400 */ 4401 if (mutex_lock_killable(&vcpu->mutex)) 4402 return -EINTR; 4403 4404 mutex_unlock(&vcpu->mutex); 4405 4406 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx))) 4407 return -EIO; 4408 4409 return 0; 4410 } 4411 4412 static long kvm_vcpu_ioctl(struct file *filp, 4413 unsigned int ioctl, unsigned long arg) 4414 { 4415 struct kvm_vcpu *vcpu = filp->private_data; 4416 void __user *argp = (void __user *)arg; 4417 int r; 4418 struct kvm_fpu *fpu = NULL; 4419 struct kvm_sregs *kvm_sregs = NULL; 4420 4421 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4422 return -EIO; 4423 4424 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4425 return -EINVAL; 4426 4427 /* 4428 * Wait for the vCPU to be online before handling the ioctl(), as KVM 4429 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference 4430 * a NULL pointer if userspace invokes an ioctl() before KVM is ready. 4431 */ 4432 r = kvm_wait_for_vcpu_online(vcpu); 4433 if (r) 4434 return r; 4435 4436 /* 4437 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4438 * execution; mutex_lock() would break them. 4439 */ 4440 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4441 if (r != -ENOIOCTLCMD) 4442 return r; 4443 4444 if (mutex_lock_killable(&vcpu->mutex)) 4445 return -EINTR; 4446 switch (ioctl) { 4447 case KVM_RUN: { 4448 struct pid *oldpid; 4449 r = -EINVAL; 4450 if (arg) 4451 goto out; 4452 4453 /* 4454 * Note, vcpu->pid is primarily protected by vcpu->mutex. The 4455 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to 4456 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield 4457 * directly to this vCPU 4458 */ 4459 oldpid = vcpu->pid; 4460 if (unlikely(oldpid != task_pid(current))) { 4461 /* The thread running this VCPU changed. */ 4462 struct pid *newpid; 4463 4464 r = kvm_arch_vcpu_run_pid_change(vcpu); 4465 if (r) 4466 break; 4467 4468 newpid = get_task_pid(current, PIDTYPE_PID); 4469 write_lock(&vcpu->pid_lock); 4470 vcpu->pid = newpid; 4471 write_unlock(&vcpu->pid_lock); 4472 4473 put_pid(oldpid); 4474 } 4475 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4476 r = kvm_arch_vcpu_ioctl_run(vcpu); 4477 vcpu->wants_to_run = false; 4478 4479 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4480 break; 4481 } 4482 case KVM_GET_REGS: { 4483 struct kvm_regs *kvm_regs; 4484 4485 r = -ENOMEM; 4486 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4487 if (!kvm_regs) 4488 goto out; 4489 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4490 if (r) 4491 goto out_free1; 4492 r = -EFAULT; 4493 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4494 goto out_free1; 4495 r = 0; 4496 out_free1: 4497 kfree(kvm_regs); 4498 break; 4499 } 4500 case KVM_SET_REGS: { 4501 struct kvm_regs *kvm_regs; 4502 4503 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4504 if (IS_ERR(kvm_regs)) { 4505 r = PTR_ERR(kvm_regs); 4506 goto out; 4507 } 4508 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4509 kfree(kvm_regs); 4510 break; 4511 } 4512 case KVM_GET_SREGS: { 4513 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4514 r = -ENOMEM; 4515 if (!kvm_sregs) 4516 goto out; 4517 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4518 if (r) 4519 goto out; 4520 r = -EFAULT; 4521 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4522 goto out; 4523 r = 0; 4524 break; 4525 } 4526 case KVM_SET_SREGS: { 4527 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4528 if (IS_ERR(kvm_sregs)) { 4529 r = PTR_ERR(kvm_sregs); 4530 kvm_sregs = NULL; 4531 goto out; 4532 } 4533 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4534 break; 4535 } 4536 case KVM_GET_MP_STATE: { 4537 struct kvm_mp_state mp_state; 4538 4539 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4540 if (r) 4541 goto out; 4542 r = -EFAULT; 4543 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4544 goto out; 4545 r = 0; 4546 break; 4547 } 4548 case KVM_SET_MP_STATE: { 4549 struct kvm_mp_state mp_state; 4550 4551 r = -EFAULT; 4552 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4553 goto out; 4554 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4555 break; 4556 } 4557 case KVM_TRANSLATE: { 4558 struct kvm_translation tr; 4559 4560 r = -EFAULT; 4561 if (copy_from_user(&tr, argp, sizeof(tr))) 4562 goto out; 4563 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4564 if (r) 4565 goto out; 4566 r = -EFAULT; 4567 if (copy_to_user(argp, &tr, sizeof(tr))) 4568 goto out; 4569 r = 0; 4570 break; 4571 } 4572 case KVM_SET_GUEST_DEBUG: { 4573 struct kvm_guest_debug dbg; 4574 4575 r = -EFAULT; 4576 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4577 goto out; 4578 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4579 break; 4580 } 4581 case KVM_SET_SIGNAL_MASK: { 4582 struct kvm_signal_mask __user *sigmask_arg = argp; 4583 struct kvm_signal_mask kvm_sigmask; 4584 sigset_t sigset, *p; 4585 4586 p = NULL; 4587 if (argp) { 4588 r = -EFAULT; 4589 if (copy_from_user(&kvm_sigmask, argp, 4590 sizeof(kvm_sigmask))) 4591 goto out; 4592 r = -EINVAL; 4593 if (kvm_sigmask.len != sizeof(sigset)) 4594 goto out; 4595 r = -EFAULT; 4596 if (copy_from_user(&sigset, sigmask_arg->sigset, 4597 sizeof(sigset))) 4598 goto out; 4599 p = &sigset; 4600 } 4601 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4602 break; 4603 } 4604 case KVM_GET_FPU: { 4605 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4606 r = -ENOMEM; 4607 if (!fpu) 4608 goto out; 4609 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4610 if (r) 4611 goto out; 4612 r = -EFAULT; 4613 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4614 goto out; 4615 r = 0; 4616 break; 4617 } 4618 case KVM_SET_FPU: { 4619 fpu = memdup_user(argp, sizeof(*fpu)); 4620 if (IS_ERR(fpu)) { 4621 r = PTR_ERR(fpu); 4622 fpu = NULL; 4623 goto out; 4624 } 4625 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4626 break; 4627 } 4628 case KVM_GET_STATS_FD: { 4629 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4630 break; 4631 } 4632 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4633 case KVM_PRE_FAULT_MEMORY: { 4634 struct kvm_pre_fault_memory range; 4635 4636 r = -EFAULT; 4637 if (copy_from_user(&range, argp, sizeof(range))) 4638 break; 4639 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4640 /* Pass back leftover range. */ 4641 if (copy_to_user(argp, &range, sizeof(range))) 4642 r = -EFAULT; 4643 break; 4644 } 4645 #endif 4646 default: 4647 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4648 } 4649 out: 4650 mutex_unlock(&vcpu->mutex); 4651 kfree(fpu); 4652 kfree(kvm_sregs); 4653 return r; 4654 } 4655 4656 #ifdef CONFIG_KVM_COMPAT 4657 static long kvm_vcpu_compat_ioctl(struct file *filp, 4658 unsigned int ioctl, unsigned long arg) 4659 { 4660 struct kvm_vcpu *vcpu = filp->private_data; 4661 void __user *argp = compat_ptr(arg); 4662 int r; 4663 4664 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4665 return -EIO; 4666 4667 switch (ioctl) { 4668 case KVM_SET_SIGNAL_MASK: { 4669 struct kvm_signal_mask __user *sigmask_arg = argp; 4670 struct kvm_signal_mask kvm_sigmask; 4671 sigset_t sigset; 4672 4673 if (argp) { 4674 r = -EFAULT; 4675 if (copy_from_user(&kvm_sigmask, argp, 4676 sizeof(kvm_sigmask))) 4677 goto out; 4678 r = -EINVAL; 4679 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4680 goto out; 4681 r = -EFAULT; 4682 if (get_compat_sigset(&sigset, 4683 (compat_sigset_t __user *)sigmask_arg->sigset)) 4684 goto out; 4685 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4686 } else 4687 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4688 break; 4689 } 4690 default: 4691 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4692 } 4693 4694 out: 4695 return r; 4696 } 4697 #endif 4698 4699 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4700 { 4701 struct kvm_device *dev = filp->private_data; 4702 4703 if (dev->ops->mmap) 4704 return dev->ops->mmap(dev, vma); 4705 4706 return -ENODEV; 4707 } 4708 4709 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4710 int (*accessor)(struct kvm_device *dev, 4711 struct kvm_device_attr *attr), 4712 unsigned long arg) 4713 { 4714 struct kvm_device_attr attr; 4715 4716 if (!accessor) 4717 return -EPERM; 4718 4719 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4720 return -EFAULT; 4721 4722 return accessor(dev, &attr); 4723 } 4724 4725 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4726 unsigned long arg) 4727 { 4728 struct kvm_device *dev = filp->private_data; 4729 4730 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4731 return -EIO; 4732 4733 switch (ioctl) { 4734 case KVM_SET_DEVICE_ATTR: 4735 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4736 case KVM_GET_DEVICE_ATTR: 4737 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4738 case KVM_HAS_DEVICE_ATTR: 4739 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4740 default: 4741 if (dev->ops->ioctl) 4742 return dev->ops->ioctl(dev, ioctl, arg); 4743 4744 return -ENOTTY; 4745 } 4746 } 4747 4748 static int kvm_device_release(struct inode *inode, struct file *filp) 4749 { 4750 struct kvm_device *dev = filp->private_data; 4751 struct kvm *kvm = dev->kvm; 4752 4753 if (dev->ops->release) { 4754 mutex_lock(&kvm->lock); 4755 list_del_rcu(&dev->vm_node); 4756 synchronize_rcu(); 4757 dev->ops->release(dev); 4758 mutex_unlock(&kvm->lock); 4759 } 4760 4761 kvm_put_kvm(kvm); 4762 return 0; 4763 } 4764 4765 static struct file_operations kvm_device_fops = { 4766 .unlocked_ioctl = kvm_device_ioctl, 4767 .release = kvm_device_release, 4768 KVM_COMPAT(kvm_device_ioctl), 4769 .mmap = kvm_device_mmap, 4770 }; 4771 4772 struct kvm_device *kvm_device_from_filp(struct file *filp) 4773 { 4774 if (filp->f_op != &kvm_device_fops) 4775 return NULL; 4776 4777 return filp->private_data; 4778 } 4779 4780 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4781 #ifdef CONFIG_KVM_MPIC 4782 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4783 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4784 #endif 4785 }; 4786 4787 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4788 { 4789 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4790 return -ENOSPC; 4791 4792 if (kvm_device_ops_table[type] != NULL) 4793 return -EEXIST; 4794 4795 kvm_device_ops_table[type] = ops; 4796 return 0; 4797 } 4798 4799 void kvm_unregister_device_ops(u32 type) 4800 { 4801 if (kvm_device_ops_table[type] != NULL) 4802 kvm_device_ops_table[type] = NULL; 4803 } 4804 4805 static int kvm_ioctl_create_device(struct kvm *kvm, 4806 struct kvm_create_device *cd) 4807 { 4808 const struct kvm_device_ops *ops; 4809 struct kvm_device *dev; 4810 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4811 int type; 4812 int ret; 4813 4814 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4815 return -ENODEV; 4816 4817 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4818 ops = kvm_device_ops_table[type]; 4819 if (ops == NULL) 4820 return -ENODEV; 4821 4822 if (test) 4823 return 0; 4824 4825 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4826 if (!dev) 4827 return -ENOMEM; 4828 4829 dev->ops = ops; 4830 dev->kvm = kvm; 4831 4832 mutex_lock(&kvm->lock); 4833 ret = ops->create(dev, type); 4834 if (ret < 0) { 4835 mutex_unlock(&kvm->lock); 4836 kfree(dev); 4837 return ret; 4838 } 4839 list_add_rcu(&dev->vm_node, &kvm->devices); 4840 mutex_unlock(&kvm->lock); 4841 4842 if (ops->init) 4843 ops->init(dev); 4844 4845 kvm_get_kvm(kvm); 4846 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4847 if (ret < 0) { 4848 kvm_put_kvm_no_destroy(kvm); 4849 mutex_lock(&kvm->lock); 4850 list_del_rcu(&dev->vm_node); 4851 synchronize_rcu(); 4852 if (ops->release) 4853 ops->release(dev); 4854 mutex_unlock(&kvm->lock); 4855 if (ops->destroy) 4856 ops->destroy(dev); 4857 return ret; 4858 } 4859 4860 cd->fd = ret; 4861 return 0; 4862 } 4863 4864 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4865 { 4866 switch (arg) { 4867 case KVM_CAP_USER_MEMORY: 4868 case KVM_CAP_USER_MEMORY2: 4869 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4870 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4871 case KVM_CAP_INTERNAL_ERROR_DATA: 4872 #ifdef CONFIG_HAVE_KVM_MSI 4873 case KVM_CAP_SIGNAL_MSI: 4874 #endif 4875 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4876 case KVM_CAP_IRQFD: 4877 #endif 4878 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4879 case KVM_CAP_CHECK_EXTENSION_VM: 4880 case KVM_CAP_ENABLE_CAP_VM: 4881 case KVM_CAP_HALT_POLL: 4882 return 1; 4883 #ifdef CONFIG_KVM_MMIO 4884 case KVM_CAP_COALESCED_MMIO: 4885 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4886 case KVM_CAP_COALESCED_PIO: 4887 return 1; 4888 #endif 4889 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4890 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4891 return KVM_DIRTY_LOG_MANUAL_CAPS; 4892 #endif 4893 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4894 case KVM_CAP_IRQ_ROUTING: 4895 return KVM_MAX_IRQ_ROUTES; 4896 #endif 4897 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4898 case KVM_CAP_MULTI_ADDRESS_SPACE: 4899 if (kvm) 4900 return kvm_arch_nr_memslot_as_ids(kvm); 4901 return KVM_MAX_NR_ADDRESS_SPACES; 4902 #endif 4903 case KVM_CAP_NR_MEMSLOTS: 4904 return KVM_USER_MEM_SLOTS; 4905 case KVM_CAP_DIRTY_LOG_RING: 4906 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4907 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4908 #else 4909 return 0; 4910 #endif 4911 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4912 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4913 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4914 #else 4915 return 0; 4916 #endif 4917 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4918 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4919 #endif 4920 case KVM_CAP_BINARY_STATS_FD: 4921 case KVM_CAP_SYSTEM_EVENT_DATA: 4922 case KVM_CAP_DEVICE_CTRL: 4923 return 1; 4924 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4925 case KVM_CAP_MEMORY_ATTRIBUTES: 4926 return kvm_supported_mem_attributes(kvm); 4927 #endif 4928 #ifdef CONFIG_KVM_GUEST_MEMFD 4929 case KVM_CAP_GUEST_MEMFD: 4930 return 1; 4931 case KVM_CAP_GUEST_MEMFD_MMAP: 4932 return !kvm || kvm_arch_supports_gmem_mmap(kvm); 4933 #endif 4934 default: 4935 break; 4936 } 4937 return kvm_vm_ioctl_check_extension(kvm, arg); 4938 } 4939 4940 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4941 { 4942 int r; 4943 4944 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4945 return -EINVAL; 4946 4947 /* the size should be power of 2 */ 4948 if (!size || (size & (size - 1))) 4949 return -EINVAL; 4950 4951 /* Should be bigger to keep the reserved entries, or a page */ 4952 if (size < kvm_dirty_ring_get_rsvd_entries(kvm) * 4953 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4954 return -EINVAL; 4955 4956 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4957 sizeof(struct kvm_dirty_gfn)) 4958 return -E2BIG; 4959 4960 /* We only allow it to set once */ 4961 if (kvm->dirty_ring_size) 4962 return -EINVAL; 4963 4964 mutex_lock(&kvm->lock); 4965 4966 if (kvm->created_vcpus) { 4967 /* We don't allow to change this value after vcpu created */ 4968 r = -EINVAL; 4969 } else { 4970 kvm->dirty_ring_size = size; 4971 r = 0; 4972 } 4973 4974 mutex_unlock(&kvm->lock); 4975 return r; 4976 } 4977 4978 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4979 { 4980 unsigned long i; 4981 struct kvm_vcpu *vcpu; 4982 int cleared = 0, r; 4983 4984 if (!kvm->dirty_ring_size) 4985 return -EINVAL; 4986 4987 mutex_lock(&kvm->slots_lock); 4988 4989 kvm_for_each_vcpu(i, vcpu, kvm) { 4990 r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared); 4991 if (r) 4992 break; 4993 } 4994 4995 mutex_unlock(&kvm->slots_lock); 4996 4997 if (cleared) 4998 kvm_flush_remote_tlbs(kvm); 4999 5000 return cleared; 5001 } 5002 5003 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5004 struct kvm_enable_cap *cap) 5005 { 5006 return -EINVAL; 5007 } 5008 5009 bool kvm_are_all_memslots_empty(struct kvm *kvm) 5010 { 5011 int i; 5012 5013 lockdep_assert_held(&kvm->slots_lock); 5014 5015 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 5016 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 5017 return false; 5018 } 5019 5020 return true; 5021 } 5022 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty); 5023 5024 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 5025 struct kvm_enable_cap *cap) 5026 { 5027 switch (cap->cap) { 5028 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5029 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5030 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5031 5032 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5033 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5034 5035 if (cap->flags || (cap->args[0] & ~allowed_options)) 5036 return -EINVAL; 5037 kvm->manual_dirty_log_protect = cap->args[0]; 5038 return 0; 5039 } 5040 #endif 5041 case KVM_CAP_HALT_POLL: { 5042 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5043 return -EINVAL; 5044 5045 kvm->max_halt_poll_ns = cap->args[0]; 5046 5047 /* 5048 * Ensure kvm->override_halt_poll_ns does not become visible 5049 * before kvm->max_halt_poll_ns. 5050 * 5051 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5052 */ 5053 smp_wmb(); 5054 kvm->override_halt_poll_ns = true; 5055 5056 return 0; 5057 } 5058 case KVM_CAP_DIRTY_LOG_RING: 5059 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5060 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5061 return -EINVAL; 5062 5063 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5064 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5065 int r = -EINVAL; 5066 5067 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5068 !kvm->dirty_ring_size || cap->flags) 5069 return r; 5070 5071 mutex_lock(&kvm->slots_lock); 5072 5073 /* 5074 * For simplicity, allow enabling ring+bitmap if and only if 5075 * there are no memslots, e.g. to ensure all memslots allocate 5076 * a bitmap after the capability is enabled. 5077 */ 5078 if (kvm_are_all_memslots_empty(kvm)) { 5079 kvm->dirty_ring_with_bitmap = true; 5080 r = 0; 5081 } 5082 5083 mutex_unlock(&kvm->slots_lock); 5084 5085 return r; 5086 } 5087 default: 5088 return kvm_vm_ioctl_enable_cap(kvm, cap); 5089 } 5090 } 5091 5092 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5093 size_t size, loff_t *offset) 5094 { 5095 struct kvm *kvm = file->private_data; 5096 5097 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5098 &kvm_vm_stats_desc[0], &kvm->stat, 5099 sizeof(kvm->stat), user_buffer, size, offset); 5100 } 5101 5102 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5103 { 5104 struct kvm *kvm = file->private_data; 5105 5106 kvm_put_kvm(kvm); 5107 return 0; 5108 } 5109 5110 static const struct file_operations kvm_vm_stats_fops = { 5111 .owner = THIS_MODULE, 5112 .read = kvm_vm_stats_read, 5113 .release = kvm_vm_stats_release, 5114 .llseek = noop_llseek, 5115 }; 5116 5117 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5118 { 5119 int fd; 5120 struct file *file; 5121 5122 fd = get_unused_fd_flags(O_CLOEXEC); 5123 if (fd < 0) 5124 return fd; 5125 5126 file = anon_inode_getfile_fmode("kvm-vm-stats", 5127 &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD); 5128 if (IS_ERR(file)) { 5129 put_unused_fd(fd); 5130 return PTR_ERR(file); 5131 } 5132 5133 kvm_get_kvm(kvm); 5134 fd_install(fd, file); 5135 5136 return fd; 5137 } 5138 5139 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5140 do { \ 5141 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5142 offsetof(struct kvm_userspace_memory_region2, field)); \ 5143 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5144 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5145 } while (0) 5146 5147 static long kvm_vm_ioctl(struct file *filp, 5148 unsigned int ioctl, unsigned long arg) 5149 { 5150 struct kvm *kvm = filp->private_data; 5151 void __user *argp = (void __user *)arg; 5152 int r; 5153 5154 if (kvm->mm != current->mm || kvm->vm_dead) 5155 return -EIO; 5156 switch (ioctl) { 5157 case KVM_CREATE_VCPU: 5158 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5159 break; 5160 case KVM_ENABLE_CAP: { 5161 struct kvm_enable_cap cap; 5162 5163 r = -EFAULT; 5164 if (copy_from_user(&cap, argp, sizeof(cap))) 5165 goto out; 5166 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5167 break; 5168 } 5169 case KVM_SET_USER_MEMORY_REGION2: 5170 case KVM_SET_USER_MEMORY_REGION: { 5171 struct kvm_userspace_memory_region2 mem; 5172 unsigned long size; 5173 5174 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5175 /* 5176 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5177 * accessed, but avoid leaking kernel memory in case of a bug. 5178 */ 5179 memset(&mem, 0, sizeof(mem)); 5180 size = sizeof(struct kvm_userspace_memory_region); 5181 } else { 5182 size = sizeof(struct kvm_userspace_memory_region2); 5183 } 5184 5185 /* Ensure the common parts of the two structs are identical. */ 5186 SANITY_CHECK_MEM_REGION_FIELD(slot); 5187 SANITY_CHECK_MEM_REGION_FIELD(flags); 5188 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5189 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5190 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5191 5192 r = -EFAULT; 5193 if (copy_from_user(&mem, argp, size)) 5194 goto out; 5195 5196 r = -EINVAL; 5197 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5198 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5199 goto out; 5200 5201 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5202 break; 5203 } 5204 case KVM_GET_DIRTY_LOG: { 5205 struct kvm_dirty_log log; 5206 5207 r = -EFAULT; 5208 if (copy_from_user(&log, argp, sizeof(log))) 5209 goto out; 5210 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5211 break; 5212 } 5213 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5214 case KVM_CLEAR_DIRTY_LOG: { 5215 struct kvm_clear_dirty_log log; 5216 5217 r = -EFAULT; 5218 if (copy_from_user(&log, argp, sizeof(log))) 5219 goto out; 5220 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5221 break; 5222 } 5223 #endif 5224 #ifdef CONFIG_KVM_MMIO 5225 case KVM_REGISTER_COALESCED_MMIO: { 5226 struct kvm_coalesced_mmio_zone zone; 5227 5228 r = -EFAULT; 5229 if (copy_from_user(&zone, argp, sizeof(zone))) 5230 goto out; 5231 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5232 break; 5233 } 5234 case KVM_UNREGISTER_COALESCED_MMIO: { 5235 struct kvm_coalesced_mmio_zone zone; 5236 5237 r = -EFAULT; 5238 if (copy_from_user(&zone, argp, sizeof(zone))) 5239 goto out; 5240 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5241 break; 5242 } 5243 #endif 5244 case KVM_IRQFD: { 5245 struct kvm_irqfd data; 5246 5247 r = -EFAULT; 5248 if (copy_from_user(&data, argp, sizeof(data))) 5249 goto out; 5250 r = kvm_irqfd(kvm, &data); 5251 break; 5252 } 5253 case KVM_IOEVENTFD: { 5254 struct kvm_ioeventfd data; 5255 5256 r = -EFAULT; 5257 if (copy_from_user(&data, argp, sizeof(data))) 5258 goto out; 5259 r = kvm_ioeventfd(kvm, &data); 5260 break; 5261 } 5262 #ifdef CONFIG_HAVE_KVM_MSI 5263 case KVM_SIGNAL_MSI: { 5264 struct kvm_msi msi; 5265 5266 r = -EFAULT; 5267 if (copy_from_user(&msi, argp, sizeof(msi))) 5268 goto out; 5269 r = kvm_send_userspace_msi(kvm, &msi); 5270 break; 5271 } 5272 #endif 5273 #ifdef __KVM_HAVE_IRQ_LINE 5274 case KVM_IRQ_LINE_STATUS: 5275 case KVM_IRQ_LINE: { 5276 struct kvm_irq_level irq_event; 5277 5278 r = -EFAULT; 5279 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5280 goto out; 5281 5282 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5283 ioctl == KVM_IRQ_LINE_STATUS); 5284 if (r) 5285 goto out; 5286 5287 r = -EFAULT; 5288 if (ioctl == KVM_IRQ_LINE_STATUS) { 5289 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5290 goto out; 5291 } 5292 5293 r = 0; 5294 break; 5295 } 5296 #endif 5297 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5298 case KVM_SET_GSI_ROUTING: { 5299 struct kvm_irq_routing routing; 5300 struct kvm_irq_routing __user *urouting; 5301 struct kvm_irq_routing_entry *entries = NULL; 5302 5303 r = -EFAULT; 5304 if (copy_from_user(&routing, argp, sizeof(routing))) 5305 goto out; 5306 r = -EINVAL; 5307 if (!kvm_arch_can_set_irq_routing(kvm)) 5308 goto out; 5309 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5310 goto out; 5311 if (routing.flags) 5312 goto out; 5313 if (routing.nr) { 5314 urouting = argp; 5315 entries = vmemdup_array_user(urouting->entries, 5316 routing.nr, sizeof(*entries)); 5317 if (IS_ERR(entries)) { 5318 r = PTR_ERR(entries); 5319 goto out; 5320 } 5321 } 5322 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5323 routing.flags); 5324 kvfree(entries); 5325 break; 5326 } 5327 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5328 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5329 case KVM_SET_MEMORY_ATTRIBUTES: { 5330 struct kvm_memory_attributes attrs; 5331 5332 r = -EFAULT; 5333 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5334 goto out; 5335 5336 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5337 break; 5338 } 5339 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5340 case KVM_CREATE_DEVICE: { 5341 struct kvm_create_device cd; 5342 5343 r = -EFAULT; 5344 if (copy_from_user(&cd, argp, sizeof(cd))) 5345 goto out; 5346 5347 r = kvm_ioctl_create_device(kvm, &cd); 5348 if (r) 5349 goto out; 5350 5351 r = -EFAULT; 5352 if (copy_to_user(argp, &cd, sizeof(cd))) 5353 goto out; 5354 5355 r = 0; 5356 break; 5357 } 5358 case KVM_CHECK_EXTENSION: 5359 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5360 break; 5361 case KVM_RESET_DIRTY_RINGS: 5362 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5363 break; 5364 case KVM_GET_STATS_FD: 5365 r = kvm_vm_ioctl_get_stats_fd(kvm); 5366 break; 5367 #ifdef CONFIG_KVM_GUEST_MEMFD 5368 case KVM_CREATE_GUEST_MEMFD: { 5369 struct kvm_create_guest_memfd guest_memfd; 5370 5371 r = -EFAULT; 5372 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5373 goto out; 5374 5375 r = kvm_gmem_create(kvm, &guest_memfd); 5376 break; 5377 } 5378 #endif 5379 default: 5380 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5381 } 5382 out: 5383 return r; 5384 } 5385 5386 #ifdef CONFIG_KVM_COMPAT 5387 struct compat_kvm_dirty_log { 5388 __u32 slot; 5389 __u32 padding1; 5390 union { 5391 compat_uptr_t dirty_bitmap; /* one bit per page */ 5392 __u64 padding2; 5393 }; 5394 }; 5395 5396 struct compat_kvm_clear_dirty_log { 5397 __u32 slot; 5398 __u32 num_pages; 5399 __u64 first_page; 5400 union { 5401 compat_uptr_t dirty_bitmap; /* one bit per page */ 5402 __u64 padding2; 5403 }; 5404 }; 5405 5406 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5407 unsigned long arg) 5408 { 5409 return -ENOTTY; 5410 } 5411 5412 static long kvm_vm_compat_ioctl(struct file *filp, 5413 unsigned int ioctl, unsigned long arg) 5414 { 5415 struct kvm *kvm = filp->private_data; 5416 int r; 5417 5418 if (kvm->mm != current->mm || kvm->vm_dead) 5419 return -EIO; 5420 5421 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5422 if (r != -ENOTTY) 5423 return r; 5424 5425 switch (ioctl) { 5426 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5427 case KVM_CLEAR_DIRTY_LOG: { 5428 struct compat_kvm_clear_dirty_log compat_log; 5429 struct kvm_clear_dirty_log log; 5430 5431 if (copy_from_user(&compat_log, (void __user *)arg, 5432 sizeof(compat_log))) 5433 return -EFAULT; 5434 log.slot = compat_log.slot; 5435 log.num_pages = compat_log.num_pages; 5436 log.first_page = compat_log.first_page; 5437 log.padding2 = compat_log.padding2; 5438 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5439 5440 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5441 break; 5442 } 5443 #endif 5444 case KVM_GET_DIRTY_LOG: { 5445 struct compat_kvm_dirty_log compat_log; 5446 struct kvm_dirty_log log; 5447 5448 if (copy_from_user(&compat_log, (void __user *)arg, 5449 sizeof(compat_log))) 5450 return -EFAULT; 5451 log.slot = compat_log.slot; 5452 log.padding1 = compat_log.padding1; 5453 log.padding2 = compat_log.padding2; 5454 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5455 5456 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5457 break; 5458 } 5459 default: 5460 r = kvm_vm_ioctl(filp, ioctl, arg); 5461 } 5462 return r; 5463 } 5464 #endif 5465 5466 static struct file_operations kvm_vm_fops = { 5467 .release = kvm_vm_release, 5468 .unlocked_ioctl = kvm_vm_ioctl, 5469 .llseek = noop_llseek, 5470 KVM_COMPAT(kvm_vm_compat_ioctl), 5471 }; 5472 5473 bool file_is_kvm(struct file *file) 5474 { 5475 return file && file->f_op == &kvm_vm_fops; 5476 } 5477 EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm); 5478 5479 static int kvm_dev_ioctl_create_vm(unsigned long type) 5480 { 5481 char fdname[ITOA_MAX_LEN + 1]; 5482 int r, fd; 5483 struct kvm *kvm; 5484 struct file *file; 5485 5486 fd = get_unused_fd_flags(O_CLOEXEC); 5487 if (fd < 0) 5488 return fd; 5489 5490 snprintf(fdname, sizeof(fdname), "%d", fd); 5491 5492 kvm = kvm_create_vm(type, fdname); 5493 if (IS_ERR(kvm)) { 5494 r = PTR_ERR(kvm); 5495 goto put_fd; 5496 } 5497 5498 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5499 if (IS_ERR(file)) { 5500 r = PTR_ERR(file); 5501 goto put_kvm; 5502 } 5503 5504 /* 5505 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5506 * already set, with ->release() being kvm_vm_release(). In error 5507 * cases it will be called by the final fput(file) and will take 5508 * care of doing kvm_put_kvm(kvm). 5509 */ 5510 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5511 5512 fd_install(fd, file); 5513 return fd; 5514 5515 put_kvm: 5516 kvm_put_kvm(kvm); 5517 put_fd: 5518 put_unused_fd(fd); 5519 return r; 5520 } 5521 5522 static long kvm_dev_ioctl(struct file *filp, 5523 unsigned int ioctl, unsigned long arg) 5524 { 5525 int r = -EINVAL; 5526 5527 switch (ioctl) { 5528 case KVM_GET_API_VERSION: 5529 if (arg) 5530 goto out; 5531 r = KVM_API_VERSION; 5532 break; 5533 case KVM_CREATE_VM: 5534 r = kvm_dev_ioctl_create_vm(arg); 5535 break; 5536 case KVM_CHECK_EXTENSION: 5537 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5538 break; 5539 case KVM_GET_VCPU_MMAP_SIZE: 5540 if (arg) 5541 goto out; 5542 r = PAGE_SIZE; /* struct kvm_run */ 5543 #ifdef CONFIG_X86 5544 r += PAGE_SIZE; /* pio data page */ 5545 #endif 5546 #ifdef CONFIG_KVM_MMIO 5547 r += PAGE_SIZE; /* coalesced mmio ring page */ 5548 #endif 5549 break; 5550 default: 5551 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5552 } 5553 out: 5554 return r; 5555 } 5556 5557 static struct file_operations kvm_chardev_ops = { 5558 .unlocked_ioctl = kvm_dev_ioctl, 5559 .llseek = noop_llseek, 5560 KVM_COMPAT(kvm_dev_ioctl), 5561 }; 5562 5563 static struct miscdevice kvm_dev = { 5564 KVM_MINOR, 5565 "kvm", 5566 &kvm_chardev_ops, 5567 }; 5568 5569 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5570 bool enable_virt_at_load = true; 5571 module_param(enable_virt_at_load, bool, 0444); 5572 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load); 5573 5574 __visible bool kvm_rebooting; 5575 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting); 5576 5577 static DEFINE_PER_CPU(bool, virtualization_enabled); 5578 static DEFINE_MUTEX(kvm_usage_lock); 5579 static int kvm_usage_count; 5580 5581 __weak void kvm_arch_enable_virtualization(void) 5582 { 5583 5584 } 5585 5586 __weak void kvm_arch_disable_virtualization(void) 5587 { 5588 5589 } 5590 5591 static int kvm_enable_virtualization_cpu(void) 5592 { 5593 if (__this_cpu_read(virtualization_enabled)) 5594 return 0; 5595 5596 if (kvm_arch_enable_virtualization_cpu()) { 5597 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5598 raw_smp_processor_id()); 5599 return -EIO; 5600 } 5601 5602 __this_cpu_write(virtualization_enabled, true); 5603 return 0; 5604 } 5605 5606 static int kvm_online_cpu(unsigned int cpu) 5607 { 5608 /* 5609 * Abort the CPU online process if hardware virtualization cannot 5610 * be enabled. Otherwise running VMs would encounter unrecoverable 5611 * errors when scheduled to this CPU. 5612 */ 5613 return kvm_enable_virtualization_cpu(); 5614 } 5615 5616 static void kvm_disable_virtualization_cpu(void *ign) 5617 { 5618 if (!__this_cpu_read(virtualization_enabled)) 5619 return; 5620 5621 kvm_arch_disable_virtualization_cpu(); 5622 5623 __this_cpu_write(virtualization_enabled, false); 5624 } 5625 5626 static int kvm_offline_cpu(unsigned int cpu) 5627 { 5628 kvm_disable_virtualization_cpu(NULL); 5629 return 0; 5630 } 5631 5632 static void kvm_shutdown(void) 5633 { 5634 /* 5635 * Disable hardware virtualization and set kvm_rebooting to indicate 5636 * that KVM has asynchronously disabled hardware virtualization, i.e. 5637 * that relevant errors and exceptions aren't entirely unexpected. 5638 * Some flavors of hardware virtualization need to be disabled before 5639 * transferring control to firmware (to perform shutdown/reboot), e.g. 5640 * on x86, virtualization can block INIT interrupts, which are used by 5641 * firmware to pull APs back under firmware control. Note, this path 5642 * is used for both shutdown and reboot scenarios, i.e. neither name is 5643 * 100% comprehensive. 5644 */ 5645 pr_info("kvm: exiting hardware virtualization\n"); 5646 kvm_rebooting = true; 5647 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); 5648 } 5649 5650 static int kvm_suspend(void) 5651 { 5652 /* 5653 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5654 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage 5655 * count is stable. Assert that kvm_usage_lock is not held to ensure 5656 * the system isn't suspended while KVM is enabling hardware. Hardware 5657 * enabling can be preempted, but the task cannot be frozen until it has 5658 * dropped all locks (userspace tasks are frozen via a fake signal). 5659 */ 5660 lockdep_assert_not_held(&kvm_usage_lock); 5661 lockdep_assert_irqs_disabled(); 5662 5663 kvm_disable_virtualization_cpu(NULL); 5664 return 0; 5665 } 5666 5667 static void kvm_resume(void) 5668 { 5669 lockdep_assert_not_held(&kvm_usage_lock); 5670 lockdep_assert_irqs_disabled(); 5671 5672 WARN_ON_ONCE(kvm_enable_virtualization_cpu()); 5673 } 5674 5675 static struct syscore_ops kvm_syscore_ops = { 5676 .suspend = kvm_suspend, 5677 .resume = kvm_resume, 5678 .shutdown = kvm_shutdown, 5679 }; 5680 5681 int kvm_enable_virtualization(void) 5682 { 5683 int r; 5684 5685 guard(mutex)(&kvm_usage_lock); 5686 5687 if (kvm_usage_count++) 5688 return 0; 5689 5690 kvm_arch_enable_virtualization(); 5691 5692 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5693 kvm_online_cpu, kvm_offline_cpu); 5694 if (r) 5695 goto err_cpuhp; 5696 5697 register_syscore_ops(&kvm_syscore_ops); 5698 5699 /* 5700 * Undo virtualization enabling and bail if the system is going down. 5701 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5702 * possible for an in-flight operation to enable virtualization after 5703 * syscore_shutdown() is called, i.e. without kvm_shutdown() being 5704 * invoked. Note, this relies on system_state being set _before_ 5705 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked 5706 * or this CPU observes the impending shutdown. Which is why KVM uses 5707 * a syscore ops hook instead of registering a dedicated reboot 5708 * notifier (the latter runs before system_state is updated). 5709 */ 5710 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5711 system_state == SYSTEM_RESTART) { 5712 r = -EBUSY; 5713 goto err_rebooting; 5714 } 5715 5716 return 0; 5717 5718 err_rebooting: 5719 unregister_syscore_ops(&kvm_syscore_ops); 5720 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5721 err_cpuhp: 5722 kvm_arch_disable_virtualization(); 5723 --kvm_usage_count; 5724 return r; 5725 } 5726 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization); 5727 5728 void kvm_disable_virtualization(void) 5729 { 5730 guard(mutex)(&kvm_usage_lock); 5731 5732 if (--kvm_usage_count) 5733 return; 5734 5735 unregister_syscore_ops(&kvm_syscore_ops); 5736 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5737 kvm_arch_disable_virtualization(); 5738 } 5739 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization); 5740 5741 static int kvm_init_virtualization(void) 5742 { 5743 if (enable_virt_at_load) 5744 return kvm_enable_virtualization(); 5745 5746 return 0; 5747 } 5748 5749 static void kvm_uninit_virtualization(void) 5750 { 5751 if (enable_virt_at_load) 5752 kvm_disable_virtualization(); 5753 } 5754 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5755 static int kvm_init_virtualization(void) 5756 { 5757 return 0; 5758 } 5759 5760 static void kvm_uninit_virtualization(void) 5761 { 5762 5763 } 5764 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5765 5766 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5767 { 5768 if (dev->ops->destructor) 5769 dev->ops->destructor(dev); 5770 } 5771 5772 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5773 { 5774 int i; 5775 5776 for (i = 0; i < bus->dev_count; i++) { 5777 struct kvm_io_device *pos = bus->range[i].dev; 5778 5779 kvm_iodevice_destructor(pos); 5780 } 5781 kfree(bus); 5782 } 5783 5784 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5785 const struct kvm_io_range *r2) 5786 { 5787 gpa_t addr1 = r1->addr; 5788 gpa_t addr2 = r2->addr; 5789 5790 if (addr1 < addr2) 5791 return -1; 5792 5793 /* If r2->len == 0, match the exact address. If r2->len != 0, 5794 * accept any overlapping write. Any order is acceptable for 5795 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5796 * we process all of them. 5797 */ 5798 if (r2->len) { 5799 addr1 += r1->len; 5800 addr2 += r2->len; 5801 } 5802 5803 if (addr1 > addr2) 5804 return 1; 5805 5806 return 0; 5807 } 5808 5809 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5810 { 5811 return kvm_io_bus_cmp(p1, p2); 5812 } 5813 5814 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5815 gpa_t addr, int len) 5816 { 5817 struct kvm_io_range *range, key; 5818 int off; 5819 5820 key = (struct kvm_io_range) { 5821 .addr = addr, 5822 .len = len, 5823 }; 5824 5825 range = bsearch(&key, bus->range, bus->dev_count, 5826 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5827 if (range == NULL) 5828 return -ENOENT; 5829 5830 off = range - bus->range; 5831 5832 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5833 off--; 5834 5835 return off; 5836 } 5837 5838 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5839 struct kvm_io_range *range, const void *val) 5840 { 5841 int idx; 5842 5843 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5844 if (idx < 0) 5845 return -EOPNOTSUPP; 5846 5847 while (idx < bus->dev_count && 5848 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5849 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5850 range->len, val)) 5851 return idx; 5852 idx++; 5853 } 5854 5855 return -EOPNOTSUPP; 5856 } 5857 5858 static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx) 5859 { 5860 /* 5861 * Ensure that any updates to kvm_buses[] observed by the previous vCPU 5862 * machine instruction are also visible to the vCPU machine instruction 5863 * that triggered this call. 5864 */ 5865 smp_mb__after_srcu_read_lock(); 5866 5867 return srcu_dereference(kvm->buses[idx], &kvm->srcu); 5868 } 5869 5870 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5871 int len, const void *val) 5872 { 5873 struct kvm_io_bus *bus; 5874 struct kvm_io_range range; 5875 int r; 5876 5877 range = (struct kvm_io_range) { 5878 .addr = addr, 5879 .len = len, 5880 }; 5881 5882 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5883 if (!bus) 5884 return -ENOMEM; 5885 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5886 return r < 0 ? r : 0; 5887 } 5888 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write); 5889 5890 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5891 gpa_t addr, int len, const void *val, long cookie) 5892 { 5893 struct kvm_io_bus *bus; 5894 struct kvm_io_range range; 5895 5896 range = (struct kvm_io_range) { 5897 .addr = addr, 5898 .len = len, 5899 }; 5900 5901 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5902 if (!bus) 5903 return -ENOMEM; 5904 5905 /* First try the device referenced by cookie. */ 5906 if ((cookie >= 0) && (cookie < bus->dev_count) && 5907 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5908 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5909 val)) 5910 return cookie; 5911 5912 /* 5913 * cookie contained garbage; fall back to search and return the 5914 * correct cookie value. 5915 */ 5916 return __kvm_io_bus_write(vcpu, bus, &range, val); 5917 } 5918 5919 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5920 struct kvm_io_range *range, void *val) 5921 { 5922 int idx; 5923 5924 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5925 if (idx < 0) 5926 return -EOPNOTSUPP; 5927 5928 while (idx < bus->dev_count && 5929 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5930 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5931 range->len, val)) 5932 return idx; 5933 idx++; 5934 } 5935 5936 return -EOPNOTSUPP; 5937 } 5938 5939 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5940 int len, void *val) 5941 { 5942 struct kvm_io_bus *bus; 5943 struct kvm_io_range range; 5944 int r; 5945 5946 range = (struct kvm_io_range) { 5947 .addr = addr, 5948 .len = len, 5949 }; 5950 5951 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5952 if (!bus) 5953 return -ENOMEM; 5954 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5955 return r < 0 ? r : 0; 5956 } 5957 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read); 5958 5959 static void __free_bus(struct rcu_head *rcu) 5960 { 5961 struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu); 5962 5963 kfree(bus); 5964 } 5965 5966 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5967 int len, struct kvm_io_device *dev) 5968 { 5969 int i; 5970 struct kvm_io_bus *new_bus, *bus; 5971 struct kvm_io_range range; 5972 5973 lockdep_assert_held(&kvm->slots_lock); 5974 5975 bus = kvm_get_bus(kvm, bus_idx); 5976 if (!bus) 5977 return -ENOMEM; 5978 5979 /* exclude ioeventfd which is limited by maximum fd */ 5980 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5981 return -ENOSPC; 5982 5983 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5984 GFP_KERNEL_ACCOUNT); 5985 if (!new_bus) 5986 return -ENOMEM; 5987 5988 range = (struct kvm_io_range) { 5989 .addr = addr, 5990 .len = len, 5991 .dev = dev, 5992 }; 5993 5994 for (i = 0; i < bus->dev_count; i++) 5995 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5996 break; 5997 5998 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5999 new_bus->dev_count++; 6000 new_bus->range[i] = range; 6001 memcpy(new_bus->range + i + 1, bus->range + i, 6002 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 6003 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6004 call_srcu(&kvm->srcu, &bus->rcu, __free_bus); 6005 6006 return 0; 6007 } 6008 6009 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6010 struct kvm_io_device *dev) 6011 { 6012 int i; 6013 struct kvm_io_bus *new_bus, *bus; 6014 6015 lockdep_assert_held(&kvm->slots_lock); 6016 6017 bus = kvm_get_bus(kvm, bus_idx); 6018 if (!bus) 6019 return 0; 6020 6021 for (i = 0; i < bus->dev_count; i++) { 6022 if (bus->range[i].dev == dev) { 6023 break; 6024 } 6025 } 6026 6027 if (i == bus->dev_count) 6028 return 0; 6029 6030 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 6031 GFP_KERNEL_ACCOUNT); 6032 if (new_bus) { 6033 memcpy(new_bus, bus, struct_size(bus, range, i)); 6034 new_bus->dev_count--; 6035 memcpy(new_bus->range + i, bus->range + i + 1, 6036 flex_array_size(new_bus, range, new_bus->dev_count - i)); 6037 } 6038 6039 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6040 synchronize_srcu_expedited(&kvm->srcu); 6041 6042 /* 6043 * If NULL bus is installed, destroy the old bus, including all the 6044 * attached devices. Otherwise, destroy the caller's device only. 6045 */ 6046 if (!new_bus) { 6047 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6048 kvm_io_bus_destroy(bus); 6049 return -ENOMEM; 6050 } 6051 6052 kvm_iodevice_destructor(dev); 6053 kfree(bus); 6054 return 0; 6055 } 6056 6057 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6058 gpa_t addr) 6059 { 6060 struct kvm_io_bus *bus; 6061 int dev_idx, srcu_idx; 6062 struct kvm_io_device *iodev = NULL; 6063 6064 srcu_idx = srcu_read_lock(&kvm->srcu); 6065 6066 bus = kvm_get_bus_srcu(kvm, bus_idx); 6067 if (!bus) 6068 goto out_unlock; 6069 6070 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6071 if (dev_idx < 0) 6072 goto out_unlock; 6073 6074 iodev = bus->range[dev_idx].dev; 6075 6076 out_unlock: 6077 srcu_read_unlock(&kvm->srcu, srcu_idx); 6078 6079 return iodev; 6080 } 6081 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev); 6082 6083 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6084 int (*get)(void *, u64 *), int (*set)(void *, u64), 6085 const char *fmt) 6086 { 6087 int ret; 6088 struct kvm_stat_data *stat_data = inode->i_private; 6089 6090 /* 6091 * The debugfs files are a reference to the kvm struct which 6092 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6093 * avoids the race between open and the removal of the debugfs directory. 6094 */ 6095 if (!kvm_get_kvm_safe(stat_data->kvm)) 6096 return -ENOENT; 6097 6098 ret = simple_attr_open(inode, file, get, 6099 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6100 ? set : NULL, fmt); 6101 if (ret) 6102 kvm_put_kvm(stat_data->kvm); 6103 6104 return ret; 6105 } 6106 6107 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6108 { 6109 struct kvm_stat_data *stat_data = inode->i_private; 6110 6111 simple_attr_release(inode, file); 6112 kvm_put_kvm(stat_data->kvm); 6113 6114 return 0; 6115 } 6116 6117 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6118 { 6119 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6120 6121 return 0; 6122 } 6123 6124 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6125 { 6126 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6127 6128 return 0; 6129 } 6130 6131 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6132 { 6133 unsigned long i; 6134 struct kvm_vcpu *vcpu; 6135 6136 *val = 0; 6137 6138 kvm_for_each_vcpu(i, vcpu, kvm) 6139 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6140 6141 return 0; 6142 } 6143 6144 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6145 { 6146 unsigned long i; 6147 struct kvm_vcpu *vcpu; 6148 6149 kvm_for_each_vcpu(i, vcpu, kvm) 6150 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6151 6152 return 0; 6153 } 6154 6155 static int kvm_stat_data_get(void *data, u64 *val) 6156 { 6157 int r = -EFAULT; 6158 struct kvm_stat_data *stat_data = data; 6159 6160 switch (stat_data->kind) { 6161 case KVM_STAT_VM: 6162 r = kvm_get_stat_per_vm(stat_data->kvm, 6163 stat_data->desc->desc.offset, val); 6164 break; 6165 case KVM_STAT_VCPU: 6166 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6167 stat_data->desc->desc.offset, val); 6168 break; 6169 } 6170 6171 return r; 6172 } 6173 6174 static int kvm_stat_data_clear(void *data, u64 val) 6175 { 6176 int r = -EFAULT; 6177 struct kvm_stat_data *stat_data = data; 6178 6179 if (val) 6180 return -EINVAL; 6181 6182 switch (stat_data->kind) { 6183 case KVM_STAT_VM: 6184 r = kvm_clear_stat_per_vm(stat_data->kvm, 6185 stat_data->desc->desc.offset); 6186 break; 6187 case KVM_STAT_VCPU: 6188 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6189 stat_data->desc->desc.offset); 6190 break; 6191 } 6192 6193 return r; 6194 } 6195 6196 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6197 { 6198 __simple_attr_check_format("%llu\n", 0ull); 6199 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6200 kvm_stat_data_clear, "%llu\n"); 6201 } 6202 6203 static const struct file_operations stat_fops_per_vm = { 6204 .owner = THIS_MODULE, 6205 .open = kvm_stat_data_open, 6206 .release = kvm_debugfs_release, 6207 .read = simple_attr_read, 6208 .write = simple_attr_write, 6209 }; 6210 6211 static int vm_stat_get(void *_offset, u64 *val) 6212 { 6213 unsigned offset = (long)_offset; 6214 struct kvm *kvm; 6215 u64 tmp_val; 6216 6217 *val = 0; 6218 mutex_lock(&kvm_lock); 6219 list_for_each_entry(kvm, &vm_list, vm_list) { 6220 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6221 *val += tmp_val; 6222 } 6223 mutex_unlock(&kvm_lock); 6224 return 0; 6225 } 6226 6227 static int vm_stat_clear(void *_offset, u64 val) 6228 { 6229 unsigned offset = (long)_offset; 6230 struct kvm *kvm; 6231 6232 if (val) 6233 return -EINVAL; 6234 6235 mutex_lock(&kvm_lock); 6236 list_for_each_entry(kvm, &vm_list, vm_list) { 6237 kvm_clear_stat_per_vm(kvm, offset); 6238 } 6239 mutex_unlock(&kvm_lock); 6240 6241 return 0; 6242 } 6243 6244 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6245 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6246 6247 static int vcpu_stat_get(void *_offset, u64 *val) 6248 { 6249 unsigned offset = (long)_offset; 6250 struct kvm *kvm; 6251 u64 tmp_val; 6252 6253 *val = 0; 6254 mutex_lock(&kvm_lock); 6255 list_for_each_entry(kvm, &vm_list, vm_list) { 6256 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6257 *val += tmp_val; 6258 } 6259 mutex_unlock(&kvm_lock); 6260 return 0; 6261 } 6262 6263 static int vcpu_stat_clear(void *_offset, u64 val) 6264 { 6265 unsigned offset = (long)_offset; 6266 struct kvm *kvm; 6267 6268 if (val) 6269 return -EINVAL; 6270 6271 mutex_lock(&kvm_lock); 6272 list_for_each_entry(kvm, &vm_list, vm_list) { 6273 kvm_clear_stat_per_vcpu(kvm, offset); 6274 } 6275 mutex_unlock(&kvm_lock); 6276 6277 return 0; 6278 } 6279 6280 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6281 "%llu\n"); 6282 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6283 6284 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6285 { 6286 struct kobj_uevent_env *env; 6287 unsigned long long created, active; 6288 6289 if (!kvm_dev.this_device || !kvm) 6290 return; 6291 6292 mutex_lock(&kvm_lock); 6293 if (type == KVM_EVENT_CREATE_VM) { 6294 kvm_createvm_count++; 6295 kvm_active_vms++; 6296 } else if (type == KVM_EVENT_DESTROY_VM) { 6297 kvm_active_vms--; 6298 } 6299 created = kvm_createvm_count; 6300 active = kvm_active_vms; 6301 mutex_unlock(&kvm_lock); 6302 6303 env = kzalloc(sizeof(*env), GFP_KERNEL); 6304 if (!env) 6305 return; 6306 6307 add_uevent_var(env, "CREATED=%llu", created); 6308 add_uevent_var(env, "COUNT=%llu", active); 6309 6310 if (type == KVM_EVENT_CREATE_VM) { 6311 add_uevent_var(env, "EVENT=create"); 6312 kvm->userspace_pid = task_pid_nr(current); 6313 } else if (type == KVM_EVENT_DESTROY_VM) { 6314 add_uevent_var(env, "EVENT=destroy"); 6315 } 6316 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6317 6318 if (!IS_ERR(kvm->debugfs_dentry)) { 6319 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6320 6321 if (p) { 6322 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6323 if (!IS_ERR(tmp)) 6324 add_uevent_var(env, "STATS_PATH=%s", tmp); 6325 kfree(p); 6326 } 6327 } 6328 /* no need for checks, since we are adding at most only 5 keys */ 6329 env->envp[env->envp_idx++] = NULL; 6330 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6331 kfree(env); 6332 } 6333 6334 static void kvm_init_debug(void) 6335 { 6336 const struct file_operations *fops; 6337 const struct _kvm_stats_desc *pdesc; 6338 int i; 6339 6340 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6341 6342 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6343 pdesc = &kvm_vm_stats_desc[i]; 6344 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6345 fops = &vm_stat_fops; 6346 else 6347 fops = &vm_stat_readonly_fops; 6348 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6349 kvm_debugfs_dir, 6350 (void *)(long)pdesc->desc.offset, fops); 6351 } 6352 6353 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6354 pdesc = &kvm_vcpu_stats_desc[i]; 6355 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6356 fops = &vcpu_stat_fops; 6357 else 6358 fops = &vcpu_stat_readonly_fops; 6359 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6360 kvm_debugfs_dir, 6361 (void *)(long)pdesc->desc.offset, fops); 6362 } 6363 } 6364 6365 static inline 6366 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6367 { 6368 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6369 } 6370 6371 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6372 { 6373 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6374 6375 WRITE_ONCE(vcpu->preempted, false); 6376 WRITE_ONCE(vcpu->ready, false); 6377 6378 __this_cpu_write(kvm_running_vcpu, vcpu); 6379 kvm_arch_vcpu_load(vcpu, cpu); 6380 6381 WRITE_ONCE(vcpu->scheduled_out, false); 6382 } 6383 6384 static void kvm_sched_out(struct preempt_notifier *pn, 6385 struct task_struct *next) 6386 { 6387 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6388 6389 WRITE_ONCE(vcpu->scheduled_out, true); 6390 6391 if (task_is_runnable(current) && vcpu->wants_to_run) { 6392 WRITE_ONCE(vcpu->preempted, true); 6393 WRITE_ONCE(vcpu->ready, true); 6394 } 6395 kvm_arch_vcpu_put(vcpu); 6396 __this_cpu_write(kvm_running_vcpu, NULL); 6397 } 6398 6399 /** 6400 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6401 * 6402 * We can disable preemption locally around accessing the per-CPU variable, 6403 * and use the resolved vcpu pointer after enabling preemption again, 6404 * because even if the current thread is migrated to another CPU, reading 6405 * the per-CPU value later will give us the same value as we update the 6406 * per-CPU variable in the preempt notifier handlers. 6407 */ 6408 struct kvm_vcpu *kvm_get_running_vcpu(void) 6409 { 6410 struct kvm_vcpu *vcpu; 6411 6412 preempt_disable(); 6413 vcpu = __this_cpu_read(kvm_running_vcpu); 6414 preempt_enable(); 6415 6416 return vcpu; 6417 } 6418 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu); 6419 6420 /** 6421 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6422 */ 6423 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6424 { 6425 return &kvm_running_vcpu; 6426 } 6427 6428 #ifdef CONFIG_GUEST_PERF_EVENTS 6429 static unsigned int kvm_guest_state(void) 6430 { 6431 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6432 unsigned int state; 6433 6434 if (!kvm_arch_pmi_in_guest(vcpu)) 6435 return 0; 6436 6437 state = PERF_GUEST_ACTIVE; 6438 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6439 state |= PERF_GUEST_USER; 6440 6441 return state; 6442 } 6443 6444 static unsigned long kvm_guest_get_ip(void) 6445 { 6446 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6447 6448 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6449 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6450 return 0; 6451 6452 return kvm_arch_vcpu_get_ip(vcpu); 6453 } 6454 6455 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6456 .state = kvm_guest_state, 6457 .get_ip = kvm_guest_get_ip, 6458 .handle_intel_pt_intr = NULL, 6459 }; 6460 6461 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6462 { 6463 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6464 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6465 } 6466 void kvm_unregister_perf_callbacks(void) 6467 { 6468 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6469 } 6470 #endif 6471 6472 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6473 { 6474 int r; 6475 int cpu; 6476 6477 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6478 if (!vcpu_align) 6479 vcpu_align = __alignof__(struct kvm_vcpu); 6480 kvm_vcpu_cache = 6481 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6482 SLAB_ACCOUNT, 6483 offsetof(struct kvm_vcpu, arch), 6484 offsetofend(struct kvm_vcpu, stats_id) 6485 - offsetof(struct kvm_vcpu, arch), 6486 NULL); 6487 if (!kvm_vcpu_cache) 6488 return -ENOMEM; 6489 6490 for_each_possible_cpu(cpu) { 6491 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6492 GFP_KERNEL, cpu_to_node(cpu))) { 6493 r = -ENOMEM; 6494 goto err_cpu_kick_mask; 6495 } 6496 } 6497 6498 r = kvm_irqfd_init(); 6499 if (r) 6500 goto err_irqfd; 6501 6502 r = kvm_async_pf_init(); 6503 if (r) 6504 goto err_async_pf; 6505 6506 kvm_chardev_ops.owner = module; 6507 kvm_vm_fops.owner = module; 6508 kvm_vcpu_fops.owner = module; 6509 kvm_device_fops.owner = module; 6510 6511 kvm_preempt_ops.sched_in = kvm_sched_in; 6512 kvm_preempt_ops.sched_out = kvm_sched_out; 6513 6514 kvm_init_debug(); 6515 6516 r = kvm_vfio_ops_init(); 6517 if (WARN_ON_ONCE(r)) 6518 goto err_vfio; 6519 6520 kvm_gmem_init(module); 6521 6522 r = kvm_init_virtualization(); 6523 if (r) 6524 goto err_virt; 6525 6526 /* 6527 * Registration _must_ be the very last thing done, as this exposes 6528 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6529 */ 6530 r = misc_register(&kvm_dev); 6531 if (r) { 6532 pr_err("kvm: misc device register failed\n"); 6533 goto err_register; 6534 } 6535 6536 return 0; 6537 6538 err_register: 6539 kvm_uninit_virtualization(); 6540 err_virt: 6541 kvm_vfio_ops_exit(); 6542 err_vfio: 6543 kvm_async_pf_deinit(); 6544 err_async_pf: 6545 kvm_irqfd_exit(); 6546 err_irqfd: 6547 err_cpu_kick_mask: 6548 for_each_possible_cpu(cpu) 6549 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6550 kmem_cache_destroy(kvm_vcpu_cache); 6551 return r; 6552 } 6553 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init); 6554 6555 void kvm_exit(void) 6556 { 6557 int cpu; 6558 6559 /* 6560 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6561 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6562 * to KVM while the module is being stopped. 6563 */ 6564 misc_deregister(&kvm_dev); 6565 6566 kvm_uninit_virtualization(); 6567 6568 debugfs_remove_recursive(kvm_debugfs_dir); 6569 for_each_possible_cpu(cpu) 6570 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6571 kmem_cache_destroy(kvm_vcpu_cache); 6572 kvm_vfio_ops_exit(); 6573 kvm_async_pf_deinit(); 6574 kvm_irqfd_exit(); 6575 } 6576 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit); 6577