1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 static struct page *hwpoison_page; 104 static pfn_t hwpoison_pfn; 105 106 struct page *fault_page; 107 pfn_t fault_pfn; 108 109 inline int kvm_is_mmio_pfn(pfn_t pfn) 110 { 111 if (pfn_valid(pfn)) { 112 int reserved; 113 struct page *tail = pfn_to_page(pfn); 114 struct page *head = compound_trans_head(tail); 115 reserved = PageReserved(head); 116 if (head != tail) { 117 /* 118 * "head" is not a dangling pointer 119 * (compound_trans_head takes care of that) 120 * but the hugepage may have been splitted 121 * from under us (and we may not hold a 122 * reference count on the head page so it can 123 * be reused before we run PageReferenced), so 124 * we've to check PageTail before returning 125 * what we just read. 126 */ 127 smp_rmb(); 128 if (PageTail(tail)) 129 return reserved; 130 } 131 return PageReserved(tail); 132 } 133 134 return true; 135 } 136 137 /* 138 * Switches to specified vcpu, until a matching vcpu_put() 139 */ 140 void vcpu_load(struct kvm_vcpu *vcpu) 141 { 142 int cpu; 143 144 mutex_lock(&vcpu->mutex); 145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 146 /* The thread running this VCPU changed. */ 147 struct pid *oldpid = vcpu->pid; 148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 149 rcu_assign_pointer(vcpu->pid, newpid); 150 synchronize_rcu(); 151 put_pid(oldpid); 152 } 153 cpu = get_cpu(); 154 preempt_notifier_register(&vcpu->preempt_notifier); 155 kvm_arch_vcpu_load(vcpu, cpu); 156 put_cpu(); 157 } 158 159 void vcpu_put(struct kvm_vcpu *vcpu) 160 { 161 preempt_disable(); 162 kvm_arch_vcpu_put(vcpu); 163 preempt_notifier_unregister(&vcpu->preempt_notifier); 164 preempt_enable(); 165 mutex_unlock(&vcpu->mutex); 166 } 167 168 static void ack_flush(void *_completed) 169 { 170 } 171 172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 173 { 174 int i, cpu, me; 175 cpumask_var_t cpus; 176 bool called = true; 177 struct kvm_vcpu *vcpu; 178 179 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 180 181 me = get_cpu(); 182 kvm_for_each_vcpu(i, vcpu, kvm) { 183 kvm_make_request(req, vcpu); 184 cpu = vcpu->cpu; 185 186 /* Set ->requests bit before we read ->mode */ 187 smp_mb(); 188 189 if (cpus != NULL && cpu != -1 && cpu != me && 190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 191 cpumask_set_cpu(cpu, cpus); 192 } 193 if (unlikely(cpus == NULL)) 194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 195 else if (!cpumask_empty(cpus)) 196 smp_call_function_many(cpus, ack_flush, NULL, 1); 197 else 198 called = false; 199 put_cpu(); 200 free_cpumask_var(cpus); 201 return called; 202 } 203 204 void kvm_flush_remote_tlbs(struct kvm *kvm) 205 { 206 int dirty_count = kvm->tlbs_dirty; 207 208 smp_mb(); 209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 210 ++kvm->stat.remote_tlb_flush; 211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 212 } 213 214 void kvm_reload_remote_mmus(struct kvm *kvm) 215 { 216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 217 } 218 219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 220 { 221 struct page *page; 222 int r; 223 224 mutex_init(&vcpu->mutex); 225 vcpu->cpu = -1; 226 vcpu->kvm = kvm; 227 vcpu->vcpu_id = id; 228 vcpu->pid = NULL; 229 init_waitqueue_head(&vcpu->wq); 230 kvm_async_pf_vcpu_init(vcpu); 231 232 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 233 if (!page) { 234 r = -ENOMEM; 235 goto fail; 236 } 237 vcpu->run = page_address(page); 238 239 r = kvm_arch_vcpu_init(vcpu); 240 if (r < 0) 241 goto fail_free_run; 242 return 0; 243 244 fail_free_run: 245 free_page((unsigned long)vcpu->run); 246 fail: 247 return r; 248 } 249 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 250 251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 252 { 253 put_pid(vcpu->pid); 254 kvm_arch_vcpu_uninit(vcpu); 255 free_page((unsigned long)vcpu->run); 256 } 257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 258 259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 261 { 262 return container_of(mn, struct kvm, mmu_notifier); 263 } 264 265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 266 struct mm_struct *mm, 267 unsigned long address) 268 { 269 struct kvm *kvm = mmu_notifier_to_kvm(mn); 270 int need_tlb_flush, idx; 271 272 /* 273 * When ->invalidate_page runs, the linux pte has been zapped 274 * already but the page is still allocated until 275 * ->invalidate_page returns. So if we increase the sequence 276 * here the kvm page fault will notice if the spte can't be 277 * established because the page is going to be freed. If 278 * instead the kvm page fault establishes the spte before 279 * ->invalidate_page runs, kvm_unmap_hva will release it 280 * before returning. 281 * 282 * The sequence increase only need to be seen at spin_unlock 283 * time, and not at spin_lock time. 284 * 285 * Increasing the sequence after the spin_unlock would be 286 * unsafe because the kvm page fault could then establish the 287 * pte after kvm_unmap_hva returned, without noticing the page 288 * is going to be freed. 289 */ 290 idx = srcu_read_lock(&kvm->srcu); 291 spin_lock(&kvm->mmu_lock); 292 kvm->mmu_notifier_seq++; 293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 294 spin_unlock(&kvm->mmu_lock); 295 srcu_read_unlock(&kvm->srcu, idx); 296 297 /* we've to flush the tlb before the pages can be freed */ 298 if (need_tlb_flush) 299 kvm_flush_remote_tlbs(kvm); 300 301 } 302 303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 304 struct mm_struct *mm, 305 unsigned long address, 306 pte_t pte) 307 { 308 struct kvm *kvm = mmu_notifier_to_kvm(mn); 309 int idx; 310 311 idx = srcu_read_lock(&kvm->srcu); 312 spin_lock(&kvm->mmu_lock); 313 kvm->mmu_notifier_seq++; 314 kvm_set_spte_hva(kvm, address, pte); 315 spin_unlock(&kvm->mmu_lock); 316 srcu_read_unlock(&kvm->srcu, idx); 317 } 318 319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 320 struct mm_struct *mm, 321 unsigned long start, 322 unsigned long end) 323 { 324 struct kvm *kvm = mmu_notifier_to_kvm(mn); 325 int need_tlb_flush = 0, idx; 326 327 idx = srcu_read_lock(&kvm->srcu); 328 spin_lock(&kvm->mmu_lock); 329 /* 330 * The count increase must become visible at unlock time as no 331 * spte can be established without taking the mmu_lock and 332 * count is also read inside the mmu_lock critical section. 333 */ 334 kvm->mmu_notifier_count++; 335 for (; start < end; start += PAGE_SIZE) 336 need_tlb_flush |= kvm_unmap_hva(kvm, start); 337 need_tlb_flush |= kvm->tlbs_dirty; 338 spin_unlock(&kvm->mmu_lock); 339 srcu_read_unlock(&kvm->srcu, idx); 340 341 /* we've to flush the tlb before the pages can be freed */ 342 if (need_tlb_flush) 343 kvm_flush_remote_tlbs(kvm); 344 } 345 346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long start, 349 unsigned long end) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 353 spin_lock(&kvm->mmu_lock); 354 /* 355 * This sequence increase will notify the kvm page fault that 356 * the page that is going to be mapped in the spte could have 357 * been freed. 358 */ 359 kvm->mmu_notifier_seq++; 360 /* 361 * The above sequence increase must be visible before the 362 * below count decrease but both values are read by the kvm 363 * page fault under mmu_lock spinlock so we don't need to add 364 * a smb_wmb() here in between the two. 365 */ 366 kvm->mmu_notifier_count--; 367 spin_unlock(&kvm->mmu_lock); 368 369 BUG_ON(kvm->mmu_notifier_count < 0); 370 } 371 372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 373 struct mm_struct *mm, 374 unsigned long address) 375 { 376 struct kvm *kvm = mmu_notifier_to_kvm(mn); 377 int young, idx; 378 379 idx = srcu_read_lock(&kvm->srcu); 380 spin_lock(&kvm->mmu_lock); 381 young = kvm_age_hva(kvm, address); 382 spin_unlock(&kvm->mmu_lock); 383 srcu_read_unlock(&kvm->srcu, idx); 384 385 if (young) 386 kvm_flush_remote_tlbs(kvm); 387 388 return young; 389 } 390 391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 392 struct mm_struct *mm, 393 unsigned long address) 394 { 395 struct kvm *kvm = mmu_notifier_to_kvm(mn); 396 int young, idx; 397 398 idx = srcu_read_lock(&kvm->srcu); 399 spin_lock(&kvm->mmu_lock); 400 young = kvm_test_age_hva(kvm, address); 401 spin_unlock(&kvm->mmu_lock); 402 srcu_read_unlock(&kvm->srcu, idx); 403 404 return young; 405 } 406 407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 408 struct mm_struct *mm) 409 { 410 struct kvm *kvm = mmu_notifier_to_kvm(mn); 411 int idx; 412 413 idx = srcu_read_lock(&kvm->srcu); 414 kvm_arch_flush_shadow(kvm); 415 srcu_read_unlock(&kvm->srcu, idx); 416 } 417 418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 419 .invalidate_page = kvm_mmu_notifier_invalidate_page, 420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 423 .test_young = kvm_mmu_notifier_test_young, 424 .change_pte = kvm_mmu_notifier_change_pte, 425 .release = kvm_mmu_notifier_release, 426 }; 427 428 static int kvm_init_mmu_notifier(struct kvm *kvm) 429 { 430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 432 } 433 434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 435 436 static int kvm_init_mmu_notifier(struct kvm *kvm) 437 { 438 return 0; 439 } 440 441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 442 443 static void kvm_init_memslots_id(struct kvm *kvm) 444 { 445 int i; 446 struct kvm_memslots *slots = kvm->memslots; 447 448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 449 slots->id_to_index[i] = slots->memslots[i].id = i; 450 } 451 452 static struct kvm *kvm_create_vm(void) 453 { 454 int r, i; 455 struct kvm *kvm = kvm_arch_alloc_vm(); 456 457 if (!kvm) 458 return ERR_PTR(-ENOMEM); 459 460 r = kvm_arch_init_vm(kvm); 461 if (r) 462 goto out_err_nodisable; 463 464 r = hardware_enable_all(); 465 if (r) 466 goto out_err_nodisable; 467 468 #ifdef CONFIG_HAVE_KVM_IRQCHIP 469 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 470 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 471 #endif 472 473 r = -ENOMEM; 474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 475 if (!kvm->memslots) 476 goto out_err_nosrcu; 477 kvm_init_memslots_id(kvm); 478 if (init_srcu_struct(&kvm->srcu)) 479 goto out_err_nosrcu; 480 for (i = 0; i < KVM_NR_BUSES; i++) { 481 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 482 GFP_KERNEL); 483 if (!kvm->buses[i]) 484 goto out_err; 485 } 486 487 spin_lock_init(&kvm->mmu_lock); 488 kvm->mm = current->mm; 489 atomic_inc(&kvm->mm->mm_count); 490 kvm_eventfd_init(kvm); 491 mutex_init(&kvm->lock); 492 mutex_init(&kvm->irq_lock); 493 mutex_init(&kvm->slots_lock); 494 atomic_set(&kvm->users_count, 1); 495 496 r = kvm_init_mmu_notifier(kvm); 497 if (r) 498 goto out_err; 499 500 raw_spin_lock(&kvm_lock); 501 list_add(&kvm->vm_list, &vm_list); 502 raw_spin_unlock(&kvm_lock); 503 504 return kvm; 505 506 out_err: 507 cleanup_srcu_struct(&kvm->srcu); 508 out_err_nosrcu: 509 hardware_disable_all(); 510 out_err_nodisable: 511 for (i = 0; i < KVM_NR_BUSES; i++) 512 kfree(kvm->buses[i]); 513 kfree(kvm->memslots); 514 kvm_arch_free_vm(kvm); 515 return ERR_PTR(r); 516 } 517 518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 519 { 520 if (!memslot->dirty_bitmap) 521 return; 522 523 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE) 524 vfree(memslot->dirty_bitmap_head); 525 else 526 kfree(memslot->dirty_bitmap_head); 527 528 memslot->dirty_bitmap = NULL; 529 memslot->dirty_bitmap_head = NULL; 530 } 531 532 /* 533 * Free any memory in @free but not in @dont. 534 */ 535 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 536 struct kvm_memory_slot *dont) 537 { 538 int i; 539 540 if (!dont || free->rmap != dont->rmap) 541 vfree(free->rmap); 542 543 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 544 kvm_destroy_dirty_bitmap(free); 545 546 547 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 548 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) { 549 vfree(free->lpage_info[i]); 550 free->lpage_info[i] = NULL; 551 } 552 } 553 554 free->npages = 0; 555 free->rmap = NULL; 556 } 557 558 void kvm_free_physmem(struct kvm *kvm) 559 { 560 struct kvm_memslots *slots = kvm->memslots; 561 struct kvm_memory_slot *memslot; 562 563 kvm_for_each_memslot(memslot, slots) 564 kvm_free_physmem_slot(memslot, NULL); 565 566 kfree(kvm->memslots); 567 } 568 569 static void kvm_destroy_vm(struct kvm *kvm) 570 { 571 int i; 572 struct mm_struct *mm = kvm->mm; 573 574 kvm_arch_sync_events(kvm); 575 raw_spin_lock(&kvm_lock); 576 list_del(&kvm->vm_list); 577 raw_spin_unlock(&kvm_lock); 578 kvm_free_irq_routing(kvm); 579 for (i = 0; i < KVM_NR_BUSES; i++) 580 kvm_io_bus_destroy(kvm->buses[i]); 581 kvm_coalesced_mmio_free(kvm); 582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 583 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 584 #else 585 kvm_arch_flush_shadow(kvm); 586 #endif 587 kvm_arch_destroy_vm(kvm); 588 kvm_free_physmem(kvm); 589 cleanup_srcu_struct(&kvm->srcu); 590 kvm_arch_free_vm(kvm); 591 hardware_disable_all(); 592 mmdrop(mm); 593 } 594 595 void kvm_get_kvm(struct kvm *kvm) 596 { 597 atomic_inc(&kvm->users_count); 598 } 599 EXPORT_SYMBOL_GPL(kvm_get_kvm); 600 601 void kvm_put_kvm(struct kvm *kvm) 602 { 603 if (atomic_dec_and_test(&kvm->users_count)) 604 kvm_destroy_vm(kvm); 605 } 606 EXPORT_SYMBOL_GPL(kvm_put_kvm); 607 608 609 static int kvm_vm_release(struct inode *inode, struct file *filp) 610 { 611 struct kvm *kvm = filp->private_data; 612 613 kvm_irqfd_release(kvm); 614 615 kvm_put_kvm(kvm); 616 return 0; 617 } 618 619 #ifndef CONFIG_S390 620 /* 621 * Allocation size is twice as large as the actual dirty bitmap size. 622 * This makes it possible to do double buffering: see x86's 623 * kvm_vm_ioctl_get_dirty_log(). 624 */ 625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 626 { 627 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 628 629 if (dirty_bytes > PAGE_SIZE) 630 memslot->dirty_bitmap = vzalloc(dirty_bytes); 631 else 632 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL); 633 634 if (!memslot->dirty_bitmap) 635 return -ENOMEM; 636 637 memslot->dirty_bitmap_head = memslot->dirty_bitmap; 638 memslot->nr_dirty_pages = 0; 639 return 0; 640 } 641 #endif /* !CONFIG_S390 */ 642 643 static struct kvm_memory_slot * 644 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 645 { 646 struct kvm_memory_slot *memslot; 647 648 kvm_for_each_memslot(memslot, slots) 649 if (gfn >= memslot->base_gfn && 650 gfn < memslot->base_gfn + memslot->npages) 651 return memslot; 652 653 return NULL; 654 } 655 656 static int cmp_memslot(const void *slot1, const void *slot2) 657 { 658 struct kvm_memory_slot *s1, *s2; 659 660 s1 = (struct kvm_memory_slot *)slot1; 661 s2 = (struct kvm_memory_slot *)slot2; 662 663 if (s1->npages < s2->npages) 664 return 1; 665 if (s1->npages > s2->npages) 666 return -1; 667 668 return 0; 669 } 670 671 /* 672 * Sort the memslots base on its size, so the larger slots 673 * will get better fit. 674 */ 675 static void sort_memslots(struct kvm_memslots *slots) 676 { 677 int i; 678 679 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 680 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 681 682 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 683 slots->id_to_index[slots->memslots[i].id] = i; 684 } 685 686 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new) 687 { 688 if (new) { 689 int id = new->id; 690 struct kvm_memory_slot *old = id_to_memslot(slots, id); 691 unsigned long npages = old->npages; 692 693 *old = *new; 694 if (new->npages != npages) 695 sort_memslots(slots); 696 } 697 698 slots->generation++; 699 } 700 701 /* 702 * Allocate some memory and give it an address in the guest physical address 703 * space. 704 * 705 * Discontiguous memory is allowed, mostly for framebuffers. 706 * 707 * Must be called holding mmap_sem for write. 708 */ 709 int __kvm_set_memory_region(struct kvm *kvm, 710 struct kvm_userspace_memory_region *mem, 711 int user_alloc) 712 { 713 int r; 714 gfn_t base_gfn; 715 unsigned long npages; 716 unsigned long i; 717 struct kvm_memory_slot *memslot; 718 struct kvm_memory_slot old, new; 719 struct kvm_memslots *slots, *old_memslots; 720 721 r = -EINVAL; 722 /* General sanity checks */ 723 if (mem->memory_size & (PAGE_SIZE - 1)) 724 goto out; 725 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 726 goto out; 727 /* We can read the guest memory with __xxx_user() later on. */ 728 if (user_alloc && 729 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 730 !access_ok(VERIFY_WRITE, 731 (void __user *)(unsigned long)mem->userspace_addr, 732 mem->memory_size))) 733 goto out; 734 if (mem->slot >= KVM_MEM_SLOTS_NUM) 735 goto out; 736 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 737 goto out; 738 739 memslot = id_to_memslot(kvm->memslots, mem->slot); 740 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 741 npages = mem->memory_size >> PAGE_SHIFT; 742 743 r = -EINVAL; 744 if (npages > KVM_MEM_MAX_NR_PAGES) 745 goto out; 746 747 if (!npages) 748 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 749 750 new = old = *memslot; 751 752 new.id = mem->slot; 753 new.base_gfn = base_gfn; 754 new.npages = npages; 755 new.flags = mem->flags; 756 757 /* Disallow changing a memory slot's size. */ 758 r = -EINVAL; 759 if (npages && old.npages && npages != old.npages) 760 goto out_free; 761 762 /* Check for overlaps */ 763 r = -EEXIST; 764 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 765 struct kvm_memory_slot *s = &kvm->memslots->memslots[i]; 766 767 if (s == memslot || !s->npages) 768 continue; 769 if (!((base_gfn + npages <= s->base_gfn) || 770 (base_gfn >= s->base_gfn + s->npages))) 771 goto out_free; 772 } 773 774 /* Free page dirty bitmap if unneeded */ 775 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 776 new.dirty_bitmap = NULL; 777 778 r = -ENOMEM; 779 780 /* Allocate if a slot is being created */ 781 #ifndef CONFIG_S390 782 if (npages && !new.rmap) { 783 new.rmap = vzalloc(npages * sizeof(*new.rmap)); 784 785 if (!new.rmap) 786 goto out_free; 787 788 new.user_alloc = user_alloc; 789 new.userspace_addr = mem->userspace_addr; 790 } 791 if (!npages) 792 goto skip_lpage; 793 794 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 795 unsigned long ugfn; 796 unsigned long j; 797 int lpages; 798 int level = i + 2; 799 800 /* Avoid unused variable warning if no large pages */ 801 (void)level; 802 803 if (new.lpage_info[i]) 804 continue; 805 806 lpages = 1 + ((base_gfn + npages - 1) 807 >> KVM_HPAGE_GFN_SHIFT(level)); 808 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level); 809 810 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i])); 811 812 if (!new.lpage_info[i]) 813 goto out_free; 814 815 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 816 new.lpage_info[i][0].write_count = 1; 817 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 818 new.lpage_info[i][lpages - 1].write_count = 1; 819 ugfn = new.userspace_addr >> PAGE_SHIFT; 820 /* 821 * If the gfn and userspace address are not aligned wrt each 822 * other, or if explicitly asked to, disable large page 823 * support for this slot 824 */ 825 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 826 !largepages_enabled) 827 for (j = 0; j < lpages; ++j) 828 new.lpage_info[i][j].write_count = 1; 829 } 830 831 skip_lpage: 832 833 /* Allocate page dirty bitmap if needed */ 834 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 835 if (kvm_create_dirty_bitmap(&new) < 0) 836 goto out_free; 837 /* destroy any largepage mappings for dirty tracking */ 838 } 839 #else /* not defined CONFIG_S390 */ 840 new.user_alloc = user_alloc; 841 if (user_alloc) 842 new.userspace_addr = mem->userspace_addr; 843 #endif /* not defined CONFIG_S390 */ 844 845 if (!npages) { 846 struct kvm_memory_slot *slot; 847 848 r = -ENOMEM; 849 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 850 GFP_KERNEL); 851 if (!slots) 852 goto out_free; 853 slot = id_to_memslot(slots, mem->slot); 854 slot->flags |= KVM_MEMSLOT_INVALID; 855 856 update_memslots(slots, NULL); 857 858 old_memslots = kvm->memslots; 859 rcu_assign_pointer(kvm->memslots, slots); 860 synchronize_srcu_expedited(&kvm->srcu); 861 /* From this point no new shadow pages pointing to a deleted 862 * memslot will be created. 863 * 864 * validation of sp->gfn happens in: 865 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 866 * - kvm_is_visible_gfn (mmu_check_roots) 867 */ 868 kvm_arch_flush_shadow(kvm); 869 kfree(old_memslots); 870 } 871 872 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); 873 if (r) 874 goto out_free; 875 876 /* map the pages in iommu page table */ 877 if (npages) { 878 r = kvm_iommu_map_pages(kvm, &new); 879 if (r) 880 goto out_free; 881 } 882 883 r = -ENOMEM; 884 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 885 GFP_KERNEL); 886 if (!slots) 887 goto out_free; 888 889 /* actual memory is freed via old in kvm_free_physmem_slot below */ 890 if (!npages) { 891 new.rmap = NULL; 892 new.dirty_bitmap = NULL; 893 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) 894 new.lpage_info[i] = NULL; 895 } 896 897 update_memslots(slots, &new); 898 old_memslots = kvm->memslots; 899 rcu_assign_pointer(kvm->memslots, slots); 900 synchronize_srcu_expedited(&kvm->srcu); 901 902 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); 903 904 /* 905 * If the new memory slot is created, we need to clear all 906 * mmio sptes. 907 */ 908 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) 909 kvm_arch_flush_shadow(kvm); 910 911 kvm_free_physmem_slot(&old, &new); 912 kfree(old_memslots); 913 914 return 0; 915 916 out_free: 917 kvm_free_physmem_slot(&new, &old); 918 out: 919 return r; 920 921 } 922 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 923 924 int kvm_set_memory_region(struct kvm *kvm, 925 struct kvm_userspace_memory_region *mem, 926 int user_alloc) 927 { 928 int r; 929 930 mutex_lock(&kvm->slots_lock); 931 r = __kvm_set_memory_region(kvm, mem, user_alloc); 932 mutex_unlock(&kvm->slots_lock); 933 return r; 934 } 935 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 936 937 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 938 struct 939 kvm_userspace_memory_region *mem, 940 int user_alloc) 941 { 942 if (mem->slot >= KVM_MEMORY_SLOTS) 943 return -EINVAL; 944 return kvm_set_memory_region(kvm, mem, user_alloc); 945 } 946 947 int kvm_get_dirty_log(struct kvm *kvm, 948 struct kvm_dirty_log *log, int *is_dirty) 949 { 950 struct kvm_memory_slot *memslot; 951 int r, i; 952 unsigned long n; 953 unsigned long any = 0; 954 955 r = -EINVAL; 956 if (log->slot >= KVM_MEMORY_SLOTS) 957 goto out; 958 959 memslot = id_to_memslot(kvm->memslots, log->slot); 960 r = -ENOENT; 961 if (!memslot->dirty_bitmap) 962 goto out; 963 964 n = kvm_dirty_bitmap_bytes(memslot); 965 966 for (i = 0; !any && i < n/sizeof(long); ++i) 967 any = memslot->dirty_bitmap[i]; 968 969 r = -EFAULT; 970 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 971 goto out; 972 973 if (any) 974 *is_dirty = 1; 975 976 r = 0; 977 out: 978 return r; 979 } 980 981 void kvm_disable_largepages(void) 982 { 983 largepages_enabled = false; 984 } 985 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 986 987 int is_error_page(struct page *page) 988 { 989 return page == bad_page || page == hwpoison_page || page == fault_page; 990 } 991 EXPORT_SYMBOL_GPL(is_error_page); 992 993 int is_error_pfn(pfn_t pfn) 994 { 995 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn; 996 } 997 EXPORT_SYMBOL_GPL(is_error_pfn); 998 999 int is_hwpoison_pfn(pfn_t pfn) 1000 { 1001 return pfn == hwpoison_pfn; 1002 } 1003 EXPORT_SYMBOL_GPL(is_hwpoison_pfn); 1004 1005 int is_fault_pfn(pfn_t pfn) 1006 { 1007 return pfn == fault_pfn; 1008 } 1009 EXPORT_SYMBOL_GPL(is_fault_pfn); 1010 1011 int is_noslot_pfn(pfn_t pfn) 1012 { 1013 return pfn == bad_pfn; 1014 } 1015 EXPORT_SYMBOL_GPL(is_noslot_pfn); 1016 1017 int is_invalid_pfn(pfn_t pfn) 1018 { 1019 return pfn == hwpoison_pfn || pfn == fault_pfn; 1020 } 1021 EXPORT_SYMBOL_GPL(is_invalid_pfn); 1022 1023 static inline unsigned long bad_hva(void) 1024 { 1025 return PAGE_OFFSET; 1026 } 1027 1028 int kvm_is_error_hva(unsigned long addr) 1029 { 1030 return addr == bad_hva(); 1031 } 1032 EXPORT_SYMBOL_GPL(kvm_is_error_hva); 1033 1034 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots, 1035 gfn_t gfn) 1036 { 1037 return search_memslots(slots, gfn); 1038 } 1039 1040 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1041 { 1042 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1043 } 1044 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1045 1046 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1047 { 1048 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1049 1050 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS || 1051 memslot->flags & KVM_MEMSLOT_INVALID) 1052 return 0; 1053 1054 return 1; 1055 } 1056 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1057 1058 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1059 { 1060 struct vm_area_struct *vma; 1061 unsigned long addr, size; 1062 1063 size = PAGE_SIZE; 1064 1065 addr = gfn_to_hva(kvm, gfn); 1066 if (kvm_is_error_hva(addr)) 1067 return PAGE_SIZE; 1068 1069 down_read(¤t->mm->mmap_sem); 1070 vma = find_vma(current->mm, addr); 1071 if (!vma) 1072 goto out; 1073 1074 size = vma_kernel_pagesize(vma); 1075 1076 out: 1077 up_read(¤t->mm->mmap_sem); 1078 1079 return size; 1080 } 1081 1082 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1083 gfn_t *nr_pages) 1084 { 1085 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1086 return bad_hva(); 1087 1088 if (nr_pages) 1089 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1090 1091 return gfn_to_hva_memslot(slot, gfn); 1092 } 1093 1094 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1095 { 1096 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1097 } 1098 EXPORT_SYMBOL_GPL(gfn_to_hva); 1099 1100 static pfn_t get_fault_pfn(void) 1101 { 1102 get_page(fault_page); 1103 return fault_pfn; 1104 } 1105 1106 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1107 unsigned long start, int write, struct page **page) 1108 { 1109 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1110 1111 if (write) 1112 flags |= FOLL_WRITE; 1113 1114 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1115 } 1116 1117 static inline int check_user_page_hwpoison(unsigned long addr) 1118 { 1119 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1120 1121 rc = __get_user_pages(current, current->mm, addr, 1, 1122 flags, NULL, NULL, NULL); 1123 return rc == -EHWPOISON; 1124 } 1125 1126 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic, 1127 bool *async, bool write_fault, bool *writable) 1128 { 1129 struct page *page[1]; 1130 int npages = 0; 1131 pfn_t pfn; 1132 1133 /* we can do it either atomically or asynchronously, not both */ 1134 BUG_ON(atomic && async); 1135 1136 BUG_ON(!write_fault && !writable); 1137 1138 if (writable) 1139 *writable = true; 1140 1141 if (atomic || async) 1142 npages = __get_user_pages_fast(addr, 1, 1, page); 1143 1144 if (unlikely(npages != 1) && !atomic) { 1145 might_sleep(); 1146 1147 if (writable) 1148 *writable = write_fault; 1149 1150 if (async) { 1151 down_read(¤t->mm->mmap_sem); 1152 npages = get_user_page_nowait(current, current->mm, 1153 addr, write_fault, page); 1154 up_read(¤t->mm->mmap_sem); 1155 } else 1156 npages = get_user_pages_fast(addr, 1, write_fault, 1157 page); 1158 1159 /* map read fault as writable if possible */ 1160 if (unlikely(!write_fault) && npages == 1) { 1161 struct page *wpage[1]; 1162 1163 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1164 if (npages == 1) { 1165 *writable = true; 1166 put_page(page[0]); 1167 page[0] = wpage[0]; 1168 } 1169 npages = 1; 1170 } 1171 } 1172 1173 if (unlikely(npages != 1)) { 1174 struct vm_area_struct *vma; 1175 1176 if (atomic) 1177 return get_fault_pfn(); 1178 1179 down_read(¤t->mm->mmap_sem); 1180 if (npages == -EHWPOISON || 1181 (!async && check_user_page_hwpoison(addr))) { 1182 up_read(¤t->mm->mmap_sem); 1183 get_page(hwpoison_page); 1184 return page_to_pfn(hwpoison_page); 1185 } 1186 1187 vma = find_vma_intersection(current->mm, addr, addr+1); 1188 1189 if (vma == NULL) 1190 pfn = get_fault_pfn(); 1191 else if ((vma->vm_flags & VM_PFNMAP)) { 1192 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1193 vma->vm_pgoff; 1194 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1195 } else { 1196 if (async && (vma->vm_flags & VM_WRITE)) 1197 *async = true; 1198 pfn = get_fault_pfn(); 1199 } 1200 up_read(¤t->mm->mmap_sem); 1201 } else 1202 pfn = page_to_pfn(page[0]); 1203 1204 return pfn; 1205 } 1206 1207 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr) 1208 { 1209 return hva_to_pfn(kvm, addr, true, NULL, true, NULL); 1210 } 1211 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic); 1212 1213 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1214 bool write_fault, bool *writable) 1215 { 1216 unsigned long addr; 1217 1218 if (async) 1219 *async = false; 1220 1221 addr = gfn_to_hva(kvm, gfn); 1222 if (kvm_is_error_hva(addr)) { 1223 get_page(bad_page); 1224 return page_to_pfn(bad_page); 1225 } 1226 1227 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable); 1228 } 1229 1230 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1231 { 1232 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1233 } 1234 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1235 1236 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1237 bool write_fault, bool *writable) 1238 { 1239 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1240 } 1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1242 1243 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1244 { 1245 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1246 } 1247 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1248 1249 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1250 bool *writable) 1251 { 1252 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1253 } 1254 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1255 1256 pfn_t gfn_to_pfn_memslot(struct kvm *kvm, 1257 struct kvm_memory_slot *slot, gfn_t gfn) 1258 { 1259 unsigned long addr = gfn_to_hva_memslot(slot, gfn); 1260 return hva_to_pfn(kvm, addr, false, NULL, true, NULL); 1261 } 1262 1263 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1264 int nr_pages) 1265 { 1266 unsigned long addr; 1267 gfn_t entry; 1268 1269 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1270 if (kvm_is_error_hva(addr)) 1271 return -1; 1272 1273 if (entry < nr_pages) 1274 return 0; 1275 1276 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1277 } 1278 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1279 1280 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1281 { 1282 pfn_t pfn; 1283 1284 pfn = gfn_to_pfn(kvm, gfn); 1285 if (!kvm_is_mmio_pfn(pfn)) 1286 return pfn_to_page(pfn); 1287 1288 WARN_ON(kvm_is_mmio_pfn(pfn)); 1289 1290 get_page(bad_page); 1291 return bad_page; 1292 } 1293 1294 EXPORT_SYMBOL_GPL(gfn_to_page); 1295 1296 void kvm_release_page_clean(struct page *page) 1297 { 1298 kvm_release_pfn_clean(page_to_pfn(page)); 1299 } 1300 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1301 1302 void kvm_release_pfn_clean(pfn_t pfn) 1303 { 1304 if (!kvm_is_mmio_pfn(pfn)) 1305 put_page(pfn_to_page(pfn)); 1306 } 1307 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1308 1309 void kvm_release_page_dirty(struct page *page) 1310 { 1311 kvm_release_pfn_dirty(page_to_pfn(page)); 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1314 1315 void kvm_release_pfn_dirty(pfn_t pfn) 1316 { 1317 kvm_set_pfn_dirty(pfn); 1318 kvm_release_pfn_clean(pfn); 1319 } 1320 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1321 1322 void kvm_set_page_dirty(struct page *page) 1323 { 1324 kvm_set_pfn_dirty(page_to_pfn(page)); 1325 } 1326 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1327 1328 void kvm_set_pfn_dirty(pfn_t pfn) 1329 { 1330 if (!kvm_is_mmio_pfn(pfn)) { 1331 struct page *page = pfn_to_page(pfn); 1332 if (!PageReserved(page)) 1333 SetPageDirty(page); 1334 } 1335 } 1336 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1337 1338 void kvm_set_pfn_accessed(pfn_t pfn) 1339 { 1340 if (!kvm_is_mmio_pfn(pfn)) 1341 mark_page_accessed(pfn_to_page(pfn)); 1342 } 1343 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1344 1345 void kvm_get_pfn(pfn_t pfn) 1346 { 1347 if (!kvm_is_mmio_pfn(pfn)) 1348 get_page(pfn_to_page(pfn)); 1349 } 1350 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1351 1352 static int next_segment(unsigned long len, int offset) 1353 { 1354 if (len > PAGE_SIZE - offset) 1355 return PAGE_SIZE - offset; 1356 else 1357 return len; 1358 } 1359 1360 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1361 int len) 1362 { 1363 int r; 1364 unsigned long addr; 1365 1366 addr = gfn_to_hva(kvm, gfn); 1367 if (kvm_is_error_hva(addr)) 1368 return -EFAULT; 1369 r = __copy_from_user(data, (void __user *)addr + offset, len); 1370 if (r) 1371 return -EFAULT; 1372 return 0; 1373 } 1374 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1375 1376 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1377 { 1378 gfn_t gfn = gpa >> PAGE_SHIFT; 1379 int seg; 1380 int offset = offset_in_page(gpa); 1381 int ret; 1382 1383 while ((seg = next_segment(len, offset)) != 0) { 1384 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1385 if (ret < 0) 1386 return ret; 1387 offset = 0; 1388 len -= seg; 1389 data += seg; 1390 ++gfn; 1391 } 1392 return 0; 1393 } 1394 EXPORT_SYMBOL_GPL(kvm_read_guest); 1395 1396 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1397 unsigned long len) 1398 { 1399 int r; 1400 unsigned long addr; 1401 gfn_t gfn = gpa >> PAGE_SHIFT; 1402 int offset = offset_in_page(gpa); 1403 1404 addr = gfn_to_hva(kvm, gfn); 1405 if (kvm_is_error_hva(addr)) 1406 return -EFAULT; 1407 pagefault_disable(); 1408 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1409 pagefault_enable(); 1410 if (r) 1411 return -EFAULT; 1412 return 0; 1413 } 1414 EXPORT_SYMBOL(kvm_read_guest_atomic); 1415 1416 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1417 int offset, int len) 1418 { 1419 int r; 1420 unsigned long addr; 1421 1422 addr = gfn_to_hva(kvm, gfn); 1423 if (kvm_is_error_hva(addr)) 1424 return -EFAULT; 1425 r = __copy_to_user((void __user *)addr + offset, data, len); 1426 if (r) 1427 return -EFAULT; 1428 mark_page_dirty(kvm, gfn); 1429 return 0; 1430 } 1431 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1432 1433 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1434 unsigned long len) 1435 { 1436 gfn_t gfn = gpa >> PAGE_SHIFT; 1437 int seg; 1438 int offset = offset_in_page(gpa); 1439 int ret; 1440 1441 while ((seg = next_segment(len, offset)) != 0) { 1442 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1443 if (ret < 0) 1444 return ret; 1445 offset = 0; 1446 len -= seg; 1447 data += seg; 1448 ++gfn; 1449 } 1450 return 0; 1451 } 1452 1453 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1454 gpa_t gpa) 1455 { 1456 struct kvm_memslots *slots = kvm_memslots(kvm); 1457 int offset = offset_in_page(gpa); 1458 gfn_t gfn = gpa >> PAGE_SHIFT; 1459 1460 ghc->gpa = gpa; 1461 ghc->generation = slots->generation; 1462 ghc->memslot = __gfn_to_memslot(slots, gfn); 1463 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL); 1464 if (!kvm_is_error_hva(ghc->hva)) 1465 ghc->hva += offset; 1466 else 1467 return -EFAULT; 1468 1469 return 0; 1470 } 1471 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1472 1473 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1474 void *data, unsigned long len) 1475 { 1476 struct kvm_memslots *slots = kvm_memslots(kvm); 1477 int r; 1478 1479 if (slots->generation != ghc->generation) 1480 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1481 1482 if (kvm_is_error_hva(ghc->hva)) 1483 return -EFAULT; 1484 1485 r = __copy_to_user((void __user *)ghc->hva, data, len); 1486 if (r) 1487 return -EFAULT; 1488 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1489 1490 return 0; 1491 } 1492 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1493 1494 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1495 void *data, unsigned long len) 1496 { 1497 struct kvm_memslots *slots = kvm_memslots(kvm); 1498 int r; 1499 1500 if (slots->generation != ghc->generation) 1501 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1502 1503 if (kvm_is_error_hva(ghc->hva)) 1504 return -EFAULT; 1505 1506 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1507 if (r) 1508 return -EFAULT; 1509 1510 return 0; 1511 } 1512 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1513 1514 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1515 { 1516 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1517 offset, len); 1518 } 1519 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1520 1521 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1522 { 1523 gfn_t gfn = gpa >> PAGE_SHIFT; 1524 int seg; 1525 int offset = offset_in_page(gpa); 1526 int ret; 1527 1528 while ((seg = next_segment(len, offset)) != 0) { 1529 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1530 if (ret < 0) 1531 return ret; 1532 offset = 0; 1533 len -= seg; 1534 ++gfn; 1535 } 1536 return 0; 1537 } 1538 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1539 1540 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1541 gfn_t gfn) 1542 { 1543 if (memslot && memslot->dirty_bitmap) { 1544 unsigned long rel_gfn = gfn - memslot->base_gfn; 1545 1546 if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap)) 1547 memslot->nr_dirty_pages++; 1548 } 1549 } 1550 1551 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1552 { 1553 struct kvm_memory_slot *memslot; 1554 1555 memslot = gfn_to_memslot(kvm, gfn); 1556 mark_page_dirty_in_slot(kvm, memslot, gfn); 1557 } 1558 1559 /* 1560 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1561 */ 1562 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1563 { 1564 DEFINE_WAIT(wait); 1565 1566 for (;;) { 1567 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1568 1569 if (kvm_arch_vcpu_runnable(vcpu)) { 1570 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1571 break; 1572 } 1573 if (kvm_cpu_has_pending_timer(vcpu)) 1574 break; 1575 if (signal_pending(current)) 1576 break; 1577 1578 schedule(); 1579 } 1580 1581 finish_wait(&vcpu->wq, &wait); 1582 } 1583 1584 void kvm_resched(struct kvm_vcpu *vcpu) 1585 { 1586 if (!need_resched()) 1587 return; 1588 cond_resched(); 1589 } 1590 EXPORT_SYMBOL_GPL(kvm_resched); 1591 1592 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1593 { 1594 struct kvm *kvm = me->kvm; 1595 struct kvm_vcpu *vcpu; 1596 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1597 int yielded = 0; 1598 int pass; 1599 int i; 1600 1601 /* 1602 * We boost the priority of a VCPU that is runnable but not 1603 * currently running, because it got preempted by something 1604 * else and called schedule in __vcpu_run. Hopefully that 1605 * VCPU is holding the lock that we need and will release it. 1606 * We approximate round-robin by starting at the last boosted VCPU. 1607 */ 1608 for (pass = 0; pass < 2 && !yielded; pass++) { 1609 kvm_for_each_vcpu(i, vcpu, kvm) { 1610 struct task_struct *task = NULL; 1611 struct pid *pid; 1612 if (!pass && i < last_boosted_vcpu) { 1613 i = last_boosted_vcpu; 1614 continue; 1615 } else if (pass && i > last_boosted_vcpu) 1616 break; 1617 if (vcpu == me) 1618 continue; 1619 if (waitqueue_active(&vcpu->wq)) 1620 continue; 1621 rcu_read_lock(); 1622 pid = rcu_dereference(vcpu->pid); 1623 if (pid) 1624 task = get_pid_task(vcpu->pid, PIDTYPE_PID); 1625 rcu_read_unlock(); 1626 if (!task) 1627 continue; 1628 if (task->flags & PF_VCPU) { 1629 put_task_struct(task); 1630 continue; 1631 } 1632 if (yield_to(task, 1)) { 1633 put_task_struct(task); 1634 kvm->last_boosted_vcpu = i; 1635 yielded = 1; 1636 break; 1637 } 1638 put_task_struct(task); 1639 } 1640 } 1641 } 1642 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1643 1644 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1645 { 1646 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1647 struct page *page; 1648 1649 if (vmf->pgoff == 0) 1650 page = virt_to_page(vcpu->run); 1651 #ifdef CONFIG_X86 1652 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1653 page = virt_to_page(vcpu->arch.pio_data); 1654 #endif 1655 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1656 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1657 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1658 #endif 1659 else 1660 return VM_FAULT_SIGBUS; 1661 get_page(page); 1662 vmf->page = page; 1663 return 0; 1664 } 1665 1666 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1667 .fault = kvm_vcpu_fault, 1668 }; 1669 1670 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1671 { 1672 vma->vm_ops = &kvm_vcpu_vm_ops; 1673 return 0; 1674 } 1675 1676 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1677 { 1678 struct kvm_vcpu *vcpu = filp->private_data; 1679 1680 kvm_put_kvm(vcpu->kvm); 1681 return 0; 1682 } 1683 1684 static struct file_operations kvm_vcpu_fops = { 1685 .release = kvm_vcpu_release, 1686 .unlocked_ioctl = kvm_vcpu_ioctl, 1687 #ifdef CONFIG_COMPAT 1688 .compat_ioctl = kvm_vcpu_compat_ioctl, 1689 #endif 1690 .mmap = kvm_vcpu_mmap, 1691 .llseek = noop_llseek, 1692 }; 1693 1694 /* 1695 * Allocates an inode for the vcpu. 1696 */ 1697 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1698 { 1699 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); 1700 } 1701 1702 /* 1703 * Creates some virtual cpus. Good luck creating more than one. 1704 */ 1705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1706 { 1707 int r; 1708 struct kvm_vcpu *vcpu, *v; 1709 1710 vcpu = kvm_arch_vcpu_create(kvm, id); 1711 if (IS_ERR(vcpu)) 1712 return PTR_ERR(vcpu); 1713 1714 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1715 1716 r = kvm_arch_vcpu_setup(vcpu); 1717 if (r) 1718 goto vcpu_destroy; 1719 1720 mutex_lock(&kvm->lock); 1721 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1722 r = -EINVAL; 1723 goto unlock_vcpu_destroy; 1724 } 1725 1726 kvm_for_each_vcpu(r, v, kvm) 1727 if (v->vcpu_id == id) { 1728 r = -EEXIST; 1729 goto unlock_vcpu_destroy; 1730 } 1731 1732 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1733 1734 /* Now it's all set up, let userspace reach it */ 1735 kvm_get_kvm(kvm); 1736 r = create_vcpu_fd(vcpu); 1737 if (r < 0) { 1738 kvm_put_kvm(kvm); 1739 goto unlock_vcpu_destroy; 1740 } 1741 1742 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1743 smp_wmb(); 1744 atomic_inc(&kvm->online_vcpus); 1745 1746 mutex_unlock(&kvm->lock); 1747 return r; 1748 1749 unlock_vcpu_destroy: 1750 mutex_unlock(&kvm->lock); 1751 vcpu_destroy: 1752 kvm_arch_vcpu_destroy(vcpu); 1753 return r; 1754 } 1755 1756 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1757 { 1758 if (sigset) { 1759 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1760 vcpu->sigset_active = 1; 1761 vcpu->sigset = *sigset; 1762 } else 1763 vcpu->sigset_active = 0; 1764 return 0; 1765 } 1766 1767 static long kvm_vcpu_ioctl(struct file *filp, 1768 unsigned int ioctl, unsigned long arg) 1769 { 1770 struct kvm_vcpu *vcpu = filp->private_data; 1771 void __user *argp = (void __user *)arg; 1772 int r; 1773 struct kvm_fpu *fpu = NULL; 1774 struct kvm_sregs *kvm_sregs = NULL; 1775 1776 if (vcpu->kvm->mm != current->mm) 1777 return -EIO; 1778 1779 #if defined(CONFIG_S390) || defined(CONFIG_PPC) 1780 /* 1781 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1782 * so vcpu_load() would break it. 1783 */ 1784 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1785 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1786 #endif 1787 1788 1789 vcpu_load(vcpu); 1790 switch (ioctl) { 1791 case KVM_RUN: 1792 r = -EINVAL; 1793 if (arg) 1794 goto out; 1795 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1796 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1797 break; 1798 case KVM_GET_REGS: { 1799 struct kvm_regs *kvm_regs; 1800 1801 r = -ENOMEM; 1802 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1803 if (!kvm_regs) 1804 goto out; 1805 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1806 if (r) 1807 goto out_free1; 1808 r = -EFAULT; 1809 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 1810 goto out_free1; 1811 r = 0; 1812 out_free1: 1813 kfree(kvm_regs); 1814 break; 1815 } 1816 case KVM_SET_REGS: { 1817 struct kvm_regs *kvm_regs; 1818 1819 r = -ENOMEM; 1820 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 1821 if (IS_ERR(kvm_regs)) { 1822 r = PTR_ERR(kvm_regs); 1823 goto out; 1824 } 1825 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 1826 if (r) 1827 goto out_free2; 1828 r = 0; 1829 out_free2: 1830 kfree(kvm_regs); 1831 break; 1832 } 1833 case KVM_GET_SREGS: { 1834 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1835 r = -ENOMEM; 1836 if (!kvm_sregs) 1837 goto out; 1838 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 1839 if (r) 1840 goto out; 1841 r = -EFAULT; 1842 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 1843 goto out; 1844 r = 0; 1845 break; 1846 } 1847 case KVM_SET_SREGS: { 1848 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 1849 if (IS_ERR(kvm_sregs)) { 1850 r = PTR_ERR(kvm_sregs); 1851 goto out; 1852 } 1853 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 1854 if (r) 1855 goto out; 1856 r = 0; 1857 break; 1858 } 1859 case KVM_GET_MP_STATE: { 1860 struct kvm_mp_state mp_state; 1861 1862 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 1863 if (r) 1864 goto out; 1865 r = -EFAULT; 1866 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 1867 goto out; 1868 r = 0; 1869 break; 1870 } 1871 case KVM_SET_MP_STATE: { 1872 struct kvm_mp_state mp_state; 1873 1874 r = -EFAULT; 1875 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 1876 goto out; 1877 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 1878 if (r) 1879 goto out; 1880 r = 0; 1881 break; 1882 } 1883 case KVM_TRANSLATE: { 1884 struct kvm_translation tr; 1885 1886 r = -EFAULT; 1887 if (copy_from_user(&tr, argp, sizeof tr)) 1888 goto out; 1889 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 1890 if (r) 1891 goto out; 1892 r = -EFAULT; 1893 if (copy_to_user(argp, &tr, sizeof tr)) 1894 goto out; 1895 r = 0; 1896 break; 1897 } 1898 case KVM_SET_GUEST_DEBUG: { 1899 struct kvm_guest_debug dbg; 1900 1901 r = -EFAULT; 1902 if (copy_from_user(&dbg, argp, sizeof dbg)) 1903 goto out; 1904 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 1905 if (r) 1906 goto out; 1907 r = 0; 1908 break; 1909 } 1910 case KVM_SET_SIGNAL_MASK: { 1911 struct kvm_signal_mask __user *sigmask_arg = argp; 1912 struct kvm_signal_mask kvm_sigmask; 1913 sigset_t sigset, *p; 1914 1915 p = NULL; 1916 if (argp) { 1917 r = -EFAULT; 1918 if (copy_from_user(&kvm_sigmask, argp, 1919 sizeof kvm_sigmask)) 1920 goto out; 1921 r = -EINVAL; 1922 if (kvm_sigmask.len != sizeof sigset) 1923 goto out; 1924 r = -EFAULT; 1925 if (copy_from_user(&sigset, sigmask_arg->sigset, 1926 sizeof sigset)) 1927 goto out; 1928 p = &sigset; 1929 } 1930 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 1931 break; 1932 } 1933 case KVM_GET_FPU: { 1934 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 1935 r = -ENOMEM; 1936 if (!fpu) 1937 goto out; 1938 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 1939 if (r) 1940 goto out; 1941 r = -EFAULT; 1942 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 1943 goto out; 1944 r = 0; 1945 break; 1946 } 1947 case KVM_SET_FPU: { 1948 fpu = memdup_user(argp, sizeof(*fpu)); 1949 if (IS_ERR(fpu)) { 1950 r = PTR_ERR(fpu); 1951 goto out; 1952 } 1953 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 1954 if (r) 1955 goto out; 1956 r = 0; 1957 break; 1958 } 1959 default: 1960 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1961 } 1962 out: 1963 vcpu_put(vcpu); 1964 kfree(fpu); 1965 kfree(kvm_sregs); 1966 return r; 1967 } 1968 1969 #ifdef CONFIG_COMPAT 1970 static long kvm_vcpu_compat_ioctl(struct file *filp, 1971 unsigned int ioctl, unsigned long arg) 1972 { 1973 struct kvm_vcpu *vcpu = filp->private_data; 1974 void __user *argp = compat_ptr(arg); 1975 int r; 1976 1977 if (vcpu->kvm->mm != current->mm) 1978 return -EIO; 1979 1980 switch (ioctl) { 1981 case KVM_SET_SIGNAL_MASK: { 1982 struct kvm_signal_mask __user *sigmask_arg = argp; 1983 struct kvm_signal_mask kvm_sigmask; 1984 compat_sigset_t csigset; 1985 sigset_t sigset; 1986 1987 if (argp) { 1988 r = -EFAULT; 1989 if (copy_from_user(&kvm_sigmask, argp, 1990 sizeof kvm_sigmask)) 1991 goto out; 1992 r = -EINVAL; 1993 if (kvm_sigmask.len != sizeof csigset) 1994 goto out; 1995 r = -EFAULT; 1996 if (copy_from_user(&csigset, sigmask_arg->sigset, 1997 sizeof csigset)) 1998 goto out; 1999 } 2000 sigset_from_compat(&sigset, &csigset); 2001 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2002 break; 2003 } 2004 default: 2005 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2006 } 2007 2008 out: 2009 return r; 2010 } 2011 #endif 2012 2013 static long kvm_vm_ioctl(struct file *filp, 2014 unsigned int ioctl, unsigned long arg) 2015 { 2016 struct kvm *kvm = filp->private_data; 2017 void __user *argp = (void __user *)arg; 2018 int r; 2019 2020 if (kvm->mm != current->mm) 2021 return -EIO; 2022 switch (ioctl) { 2023 case KVM_CREATE_VCPU: 2024 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2025 if (r < 0) 2026 goto out; 2027 break; 2028 case KVM_SET_USER_MEMORY_REGION: { 2029 struct kvm_userspace_memory_region kvm_userspace_mem; 2030 2031 r = -EFAULT; 2032 if (copy_from_user(&kvm_userspace_mem, argp, 2033 sizeof kvm_userspace_mem)) 2034 goto out; 2035 2036 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); 2037 if (r) 2038 goto out; 2039 break; 2040 } 2041 case KVM_GET_DIRTY_LOG: { 2042 struct kvm_dirty_log log; 2043 2044 r = -EFAULT; 2045 if (copy_from_user(&log, argp, sizeof log)) 2046 goto out; 2047 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2048 if (r) 2049 goto out; 2050 break; 2051 } 2052 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2053 case KVM_REGISTER_COALESCED_MMIO: { 2054 struct kvm_coalesced_mmio_zone zone; 2055 r = -EFAULT; 2056 if (copy_from_user(&zone, argp, sizeof zone)) 2057 goto out; 2058 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2059 if (r) 2060 goto out; 2061 r = 0; 2062 break; 2063 } 2064 case KVM_UNREGISTER_COALESCED_MMIO: { 2065 struct kvm_coalesced_mmio_zone zone; 2066 r = -EFAULT; 2067 if (copy_from_user(&zone, argp, sizeof zone)) 2068 goto out; 2069 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2070 if (r) 2071 goto out; 2072 r = 0; 2073 break; 2074 } 2075 #endif 2076 case KVM_IRQFD: { 2077 struct kvm_irqfd data; 2078 2079 r = -EFAULT; 2080 if (copy_from_user(&data, argp, sizeof data)) 2081 goto out; 2082 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags); 2083 break; 2084 } 2085 case KVM_IOEVENTFD: { 2086 struct kvm_ioeventfd data; 2087 2088 r = -EFAULT; 2089 if (copy_from_user(&data, argp, sizeof data)) 2090 goto out; 2091 r = kvm_ioeventfd(kvm, &data); 2092 break; 2093 } 2094 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2095 case KVM_SET_BOOT_CPU_ID: 2096 r = 0; 2097 mutex_lock(&kvm->lock); 2098 if (atomic_read(&kvm->online_vcpus) != 0) 2099 r = -EBUSY; 2100 else 2101 kvm->bsp_vcpu_id = arg; 2102 mutex_unlock(&kvm->lock); 2103 break; 2104 #endif 2105 default: 2106 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2107 if (r == -ENOTTY) 2108 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2109 } 2110 out: 2111 return r; 2112 } 2113 2114 #ifdef CONFIG_COMPAT 2115 struct compat_kvm_dirty_log { 2116 __u32 slot; 2117 __u32 padding1; 2118 union { 2119 compat_uptr_t dirty_bitmap; /* one bit per page */ 2120 __u64 padding2; 2121 }; 2122 }; 2123 2124 static long kvm_vm_compat_ioctl(struct file *filp, 2125 unsigned int ioctl, unsigned long arg) 2126 { 2127 struct kvm *kvm = filp->private_data; 2128 int r; 2129 2130 if (kvm->mm != current->mm) 2131 return -EIO; 2132 switch (ioctl) { 2133 case KVM_GET_DIRTY_LOG: { 2134 struct compat_kvm_dirty_log compat_log; 2135 struct kvm_dirty_log log; 2136 2137 r = -EFAULT; 2138 if (copy_from_user(&compat_log, (void __user *)arg, 2139 sizeof(compat_log))) 2140 goto out; 2141 log.slot = compat_log.slot; 2142 log.padding1 = compat_log.padding1; 2143 log.padding2 = compat_log.padding2; 2144 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2145 2146 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2147 if (r) 2148 goto out; 2149 break; 2150 } 2151 default: 2152 r = kvm_vm_ioctl(filp, ioctl, arg); 2153 } 2154 2155 out: 2156 return r; 2157 } 2158 #endif 2159 2160 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2161 { 2162 struct page *page[1]; 2163 unsigned long addr; 2164 int npages; 2165 gfn_t gfn = vmf->pgoff; 2166 struct kvm *kvm = vma->vm_file->private_data; 2167 2168 addr = gfn_to_hva(kvm, gfn); 2169 if (kvm_is_error_hva(addr)) 2170 return VM_FAULT_SIGBUS; 2171 2172 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2173 NULL); 2174 if (unlikely(npages != 1)) 2175 return VM_FAULT_SIGBUS; 2176 2177 vmf->page = page[0]; 2178 return 0; 2179 } 2180 2181 static const struct vm_operations_struct kvm_vm_vm_ops = { 2182 .fault = kvm_vm_fault, 2183 }; 2184 2185 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2186 { 2187 vma->vm_ops = &kvm_vm_vm_ops; 2188 return 0; 2189 } 2190 2191 static struct file_operations kvm_vm_fops = { 2192 .release = kvm_vm_release, 2193 .unlocked_ioctl = kvm_vm_ioctl, 2194 #ifdef CONFIG_COMPAT 2195 .compat_ioctl = kvm_vm_compat_ioctl, 2196 #endif 2197 .mmap = kvm_vm_mmap, 2198 .llseek = noop_llseek, 2199 }; 2200 2201 static int kvm_dev_ioctl_create_vm(void) 2202 { 2203 int r; 2204 struct kvm *kvm; 2205 2206 kvm = kvm_create_vm(); 2207 if (IS_ERR(kvm)) 2208 return PTR_ERR(kvm); 2209 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2210 r = kvm_coalesced_mmio_init(kvm); 2211 if (r < 0) { 2212 kvm_put_kvm(kvm); 2213 return r; 2214 } 2215 #endif 2216 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 2217 if (r < 0) 2218 kvm_put_kvm(kvm); 2219 2220 return r; 2221 } 2222 2223 static long kvm_dev_ioctl_check_extension_generic(long arg) 2224 { 2225 switch (arg) { 2226 case KVM_CAP_USER_MEMORY: 2227 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2228 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2229 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2230 case KVM_CAP_SET_BOOT_CPU_ID: 2231 #endif 2232 case KVM_CAP_INTERNAL_ERROR_DATA: 2233 return 1; 2234 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2235 case KVM_CAP_IRQ_ROUTING: 2236 return KVM_MAX_IRQ_ROUTES; 2237 #endif 2238 default: 2239 break; 2240 } 2241 return kvm_dev_ioctl_check_extension(arg); 2242 } 2243 2244 static long kvm_dev_ioctl(struct file *filp, 2245 unsigned int ioctl, unsigned long arg) 2246 { 2247 long r = -EINVAL; 2248 2249 switch (ioctl) { 2250 case KVM_GET_API_VERSION: 2251 r = -EINVAL; 2252 if (arg) 2253 goto out; 2254 r = KVM_API_VERSION; 2255 break; 2256 case KVM_CREATE_VM: 2257 r = -EINVAL; 2258 if (arg) 2259 goto out; 2260 r = kvm_dev_ioctl_create_vm(); 2261 break; 2262 case KVM_CHECK_EXTENSION: 2263 r = kvm_dev_ioctl_check_extension_generic(arg); 2264 break; 2265 case KVM_GET_VCPU_MMAP_SIZE: 2266 r = -EINVAL; 2267 if (arg) 2268 goto out; 2269 r = PAGE_SIZE; /* struct kvm_run */ 2270 #ifdef CONFIG_X86 2271 r += PAGE_SIZE; /* pio data page */ 2272 #endif 2273 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2274 r += PAGE_SIZE; /* coalesced mmio ring page */ 2275 #endif 2276 break; 2277 case KVM_TRACE_ENABLE: 2278 case KVM_TRACE_PAUSE: 2279 case KVM_TRACE_DISABLE: 2280 r = -EOPNOTSUPP; 2281 break; 2282 default: 2283 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2284 } 2285 out: 2286 return r; 2287 } 2288 2289 static struct file_operations kvm_chardev_ops = { 2290 .unlocked_ioctl = kvm_dev_ioctl, 2291 .compat_ioctl = kvm_dev_ioctl, 2292 .llseek = noop_llseek, 2293 }; 2294 2295 static struct miscdevice kvm_dev = { 2296 KVM_MINOR, 2297 "kvm", 2298 &kvm_chardev_ops, 2299 }; 2300 2301 static void hardware_enable_nolock(void *junk) 2302 { 2303 int cpu = raw_smp_processor_id(); 2304 int r; 2305 2306 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2307 return; 2308 2309 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2310 2311 r = kvm_arch_hardware_enable(NULL); 2312 2313 if (r) { 2314 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2315 atomic_inc(&hardware_enable_failed); 2316 printk(KERN_INFO "kvm: enabling virtualization on " 2317 "CPU%d failed\n", cpu); 2318 } 2319 } 2320 2321 static void hardware_enable(void *junk) 2322 { 2323 raw_spin_lock(&kvm_lock); 2324 hardware_enable_nolock(junk); 2325 raw_spin_unlock(&kvm_lock); 2326 } 2327 2328 static void hardware_disable_nolock(void *junk) 2329 { 2330 int cpu = raw_smp_processor_id(); 2331 2332 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2333 return; 2334 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2335 kvm_arch_hardware_disable(NULL); 2336 } 2337 2338 static void hardware_disable(void *junk) 2339 { 2340 raw_spin_lock(&kvm_lock); 2341 hardware_disable_nolock(junk); 2342 raw_spin_unlock(&kvm_lock); 2343 } 2344 2345 static void hardware_disable_all_nolock(void) 2346 { 2347 BUG_ON(!kvm_usage_count); 2348 2349 kvm_usage_count--; 2350 if (!kvm_usage_count) 2351 on_each_cpu(hardware_disable_nolock, NULL, 1); 2352 } 2353 2354 static void hardware_disable_all(void) 2355 { 2356 raw_spin_lock(&kvm_lock); 2357 hardware_disable_all_nolock(); 2358 raw_spin_unlock(&kvm_lock); 2359 } 2360 2361 static int hardware_enable_all(void) 2362 { 2363 int r = 0; 2364 2365 raw_spin_lock(&kvm_lock); 2366 2367 kvm_usage_count++; 2368 if (kvm_usage_count == 1) { 2369 atomic_set(&hardware_enable_failed, 0); 2370 on_each_cpu(hardware_enable_nolock, NULL, 1); 2371 2372 if (atomic_read(&hardware_enable_failed)) { 2373 hardware_disable_all_nolock(); 2374 r = -EBUSY; 2375 } 2376 } 2377 2378 raw_spin_unlock(&kvm_lock); 2379 2380 return r; 2381 } 2382 2383 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2384 void *v) 2385 { 2386 int cpu = (long)v; 2387 2388 if (!kvm_usage_count) 2389 return NOTIFY_OK; 2390 2391 val &= ~CPU_TASKS_FROZEN; 2392 switch (val) { 2393 case CPU_DYING: 2394 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2395 cpu); 2396 hardware_disable(NULL); 2397 break; 2398 case CPU_STARTING: 2399 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2400 cpu); 2401 hardware_enable(NULL); 2402 break; 2403 } 2404 return NOTIFY_OK; 2405 } 2406 2407 2408 asmlinkage void kvm_spurious_fault(void) 2409 { 2410 /* Fault while not rebooting. We want the trace. */ 2411 BUG(); 2412 } 2413 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 2414 2415 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2416 void *v) 2417 { 2418 /* 2419 * Some (well, at least mine) BIOSes hang on reboot if 2420 * in vmx root mode. 2421 * 2422 * And Intel TXT required VMX off for all cpu when system shutdown. 2423 */ 2424 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2425 kvm_rebooting = true; 2426 on_each_cpu(hardware_disable_nolock, NULL, 1); 2427 return NOTIFY_OK; 2428 } 2429 2430 static struct notifier_block kvm_reboot_notifier = { 2431 .notifier_call = kvm_reboot, 2432 .priority = 0, 2433 }; 2434 2435 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2436 { 2437 int i; 2438 2439 for (i = 0; i < bus->dev_count; i++) { 2440 struct kvm_io_device *pos = bus->range[i].dev; 2441 2442 kvm_iodevice_destructor(pos); 2443 } 2444 kfree(bus); 2445 } 2446 2447 int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2448 { 2449 const struct kvm_io_range *r1 = p1; 2450 const struct kvm_io_range *r2 = p2; 2451 2452 if (r1->addr < r2->addr) 2453 return -1; 2454 if (r1->addr + r1->len > r2->addr + r2->len) 2455 return 1; 2456 return 0; 2457 } 2458 2459 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2460 gpa_t addr, int len) 2461 { 2462 if (bus->dev_count == NR_IOBUS_DEVS) 2463 return -ENOSPC; 2464 2465 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2466 .addr = addr, 2467 .len = len, 2468 .dev = dev, 2469 }; 2470 2471 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2472 kvm_io_bus_sort_cmp, NULL); 2473 2474 return 0; 2475 } 2476 2477 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2478 gpa_t addr, int len) 2479 { 2480 struct kvm_io_range *range, key; 2481 int off; 2482 2483 key = (struct kvm_io_range) { 2484 .addr = addr, 2485 .len = len, 2486 }; 2487 2488 range = bsearch(&key, bus->range, bus->dev_count, 2489 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2490 if (range == NULL) 2491 return -ENOENT; 2492 2493 off = range - bus->range; 2494 2495 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) 2496 off--; 2497 2498 return off; 2499 } 2500 2501 /* kvm_io_bus_write - called under kvm->slots_lock */ 2502 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2503 int len, const void *val) 2504 { 2505 int idx; 2506 struct kvm_io_bus *bus; 2507 struct kvm_io_range range; 2508 2509 range = (struct kvm_io_range) { 2510 .addr = addr, 2511 .len = len, 2512 }; 2513 2514 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2515 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2516 if (idx < 0) 2517 return -EOPNOTSUPP; 2518 2519 while (idx < bus->dev_count && 2520 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2521 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) 2522 return 0; 2523 idx++; 2524 } 2525 2526 return -EOPNOTSUPP; 2527 } 2528 2529 /* kvm_io_bus_read - called under kvm->slots_lock */ 2530 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2531 int len, void *val) 2532 { 2533 int idx; 2534 struct kvm_io_bus *bus; 2535 struct kvm_io_range range; 2536 2537 range = (struct kvm_io_range) { 2538 .addr = addr, 2539 .len = len, 2540 }; 2541 2542 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2543 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2544 if (idx < 0) 2545 return -EOPNOTSUPP; 2546 2547 while (idx < bus->dev_count && 2548 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2549 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) 2550 return 0; 2551 idx++; 2552 } 2553 2554 return -EOPNOTSUPP; 2555 } 2556 2557 /* Caller must hold slots_lock. */ 2558 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2559 int len, struct kvm_io_device *dev) 2560 { 2561 struct kvm_io_bus *new_bus, *bus; 2562 2563 bus = kvm->buses[bus_idx]; 2564 if (bus->dev_count > NR_IOBUS_DEVS-1) 2565 return -ENOSPC; 2566 2567 new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL); 2568 if (!new_bus) 2569 return -ENOMEM; 2570 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2571 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2572 synchronize_srcu_expedited(&kvm->srcu); 2573 kfree(bus); 2574 2575 return 0; 2576 } 2577 2578 /* Caller must hold slots_lock. */ 2579 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2580 struct kvm_io_device *dev) 2581 { 2582 int i, r; 2583 struct kvm_io_bus *new_bus, *bus; 2584 2585 bus = kvm->buses[bus_idx]; 2586 2587 new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL); 2588 if (!new_bus) 2589 return -ENOMEM; 2590 2591 r = -ENOENT; 2592 for (i = 0; i < new_bus->dev_count; i++) 2593 if (new_bus->range[i].dev == dev) { 2594 r = 0; 2595 new_bus->dev_count--; 2596 new_bus->range[i] = new_bus->range[new_bus->dev_count]; 2597 sort(new_bus->range, new_bus->dev_count, 2598 sizeof(struct kvm_io_range), 2599 kvm_io_bus_sort_cmp, NULL); 2600 break; 2601 } 2602 2603 if (r) { 2604 kfree(new_bus); 2605 return r; 2606 } 2607 2608 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2609 synchronize_srcu_expedited(&kvm->srcu); 2610 kfree(bus); 2611 return r; 2612 } 2613 2614 static struct notifier_block kvm_cpu_notifier = { 2615 .notifier_call = kvm_cpu_hotplug, 2616 }; 2617 2618 static int vm_stat_get(void *_offset, u64 *val) 2619 { 2620 unsigned offset = (long)_offset; 2621 struct kvm *kvm; 2622 2623 *val = 0; 2624 raw_spin_lock(&kvm_lock); 2625 list_for_each_entry(kvm, &vm_list, vm_list) 2626 *val += *(u32 *)((void *)kvm + offset); 2627 raw_spin_unlock(&kvm_lock); 2628 return 0; 2629 } 2630 2631 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 2632 2633 static int vcpu_stat_get(void *_offset, u64 *val) 2634 { 2635 unsigned offset = (long)_offset; 2636 struct kvm *kvm; 2637 struct kvm_vcpu *vcpu; 2638 int i; 2639 2640 *val = 0; 2641 raw_spin_lock(&kvm_lock); 2642 list_for_each_entry(kvm, &vm_list, vm_list) 2643 kvm_for_each_vcpu(i, vcpu, kvm) 2644 *val += *(u32 *)((void *)vcpu + offset); 2645 2646 raw_spin_unlock(&kvm_lock); 2647 return 0; 2648 } 2649 2650 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 2651 2652 static const struct file_operations *stat_fops[] = { 2653 [KVM_STAT_VCPU] = &vcpu_stat_fops, 2654 [KVM_STAT_VM] = &vm_stat_fops, 2655 }; 2656 2657 static int kvm_init_debug(void) 2658 { 2659 int r = -EFAULT; 2660 struct kvm_stats_debugfs_item *p; 2661 2662 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 2663 if (kvm_debugfs_dir == NULL) 2664 goto out; 2665 2666 for (p = debugfs_entries; p->name; ++p) { 2667 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 2668 (void *)(long)p->offset, 2669 stat_fops[p->kind]); 2670 if (p->dentry == NULL) 2671 goto out_dir; 2672 } 2673 2674 return 0; 2675 2676 out_dir: 2677 debugfs_remove_recursive(kvm_debugfs_dir); 2678 out: 2679 return r; 2680 } 2681 2682 static void kvm_exit_debug(void) 2683 { 2684 struct kvm_stats_debugfs_item *p; 2685 2686 for (p = debugfs_entries; p->name; ++p) 2687 debugfs_remove(p->dentry); 2688 debugfs_remove(kvm_debugfs_dir); 2689 } 2690 2691 static int kvm_suspend(void) 2692 { 2693 if (kvm_usage_count) 2694 hardware_disable_nolock(NULL); 2695 return 0; 2696 } 2697 2698 static void kvm_resume(void) 2699 { 2700 if (kvm_usage_count) { 2701 WARN_ON(raw_spin_is_locked(&kvm_lock)); 2702 hardware_enable_nolock(NULL); 2703 } 2704 } 2705 2706 static struct syscore_ops kvm_syscore_ops = { 2707 .suspend = kvm_suspend, 2708 .resume = kvm_resume, 2709 }; 2710 2711 struct page *bad_page; 2712 pfn_t bad_pfn; 2713 2714 static inline 2715 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 2716 { 2717 return container_of(pn, struct kvm_vcpu, preempt_notifier); 2718 } 2719 2720 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 2721 { 2722 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2723 2724 kvm_arch_vcpu_load(vcpu, cpu); 2725 } 2726 2727 static void kvm_sched_out(struct preempt_notifier *pn, 2728 struct task_struct *next) 2729 { 2730 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2731 2732 kvm_arch_vcpu_put(vcpu); 2733 } 2734 2735 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 2736 struct module *module) 2737 { 2738 int r; 2739 int cpu; 2740 2741 r = kvm_arch_init(opaque); 2742 if (r) 2743 goto out_fail; 2744 2745 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2746 2747 if (bad_page == NULL) { 2748 r = -ENOMEM; 2749 goto out; 2750 } 2751 2752 bad_pfn = page_to_pfn(bad_page); 2753 2754 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2755 2756 if (hwpoison_page == NULL) { 2757 r = -ENOMEM; 2758 goto out_free_0; 2759 } 2760 2761 hwpoison_pfn = page_to_pfn(hwpoison_page); 2762 2763 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2764 2765 if (fault_page == NULL) { 2766 r = -ENOMEM; 2767 goto out_free_0; 2768 } 2769 2770 fault_pfn = page_to_pfn(fault_page); 2771 2772 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 2773 r = -ENOMEM; 2774 goto out_free_0; 2775 } 2776 2777 r = kvm_arch_hardware_setup(); 2778 if (r < 0) 2779 goto out_free_0a; 2780 2781 for_each_online_cpu(cpu) { 2782 smp_call_function_single(cpu, 2783 kvm_arch_check_processor_compat, 2784 &r, 1); 2785 if (r < 0) 2786 goto out_free_1; 2787 } 2788 2789 r = register_cpu_notifier(&kvm_cpu_notifier); 2790 if (r) 2791 goto out_free_2; 2792 register_reboot_notifier(&kvm_reboot_notifier); 2793 2794 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 2795 if (!vcpu_align) 2796 vcpu_align = __alignof__(struct kvm_vcpu); 2797 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 2798 0, NULL); 2799 if (!kvm_vcpu_cache) { 2800 r = -ENOMEM; 2801 goto out_free_3; 2802 } 2803 2804 r = kvm_async_pf_init(); 2805 if (r) 2806 goto out_free; 2807 2808 kvm_chardev_ops.owner = module; 2809 kvm_vm_fops.owner = module; 2810 kvm_vcpu_fops.owner = module; 2811 2812 r = misc_register(&kvm_dev); 2813 if (r) { 2814 printk(KERN_ERR "kvm: misc device register failed\n"); 2815 goto out_unreg; 2816 } 2817 2818 register_syscore_ops(&kvm_syscore_ops); 2819 2820 kvm_preempt_ops.sched_in = kvm_sched_in; 2821 kvm_preempt_ops.sched_out = kvm_sched_out; 2822 2823 r = kvm_init_debug(); 2824 if (r) { 2825 printk(KERN_ERR "kvm: create debugfs files failed\n"); 2826 goto out_undebugfs; 2827 } 2828 2829 return 0; 2830 2831 out_undebugfs: 2832 unregister_syscore_ops(&kvm_syscore_ops); 2833 out_unreg: 2834 kvm_async_pf_deinit(); 2835 out_free: 2836 kmem_cache_destroy(kvm_vcpu_cache); 2837 out_free_3: 2838 unregister_reboot_notifier(&kvm_reboot_notifier); 2839 unregister_cpu_notifier(&kvm_cpu_notifier); 2840 out_free_2: 2841 out_free_1: 2842 kvm_arch_hardware_unsetup(); 2843 out_free_0a: 2844 free_cpumask_var(cpus_hardware_enabled); 2845 out_free_0: 2846 if (fault_page) 2847 __free_page(fault_page); 2848 if (hwpoison_page) 2849 __free_page(hwpoison_page); 2850 __free_page(bad_page); 2851 out: 2852 kvm_arch_exit(); 2853 out_fail: 2854 return r; 2855 } 2856 EXPORT_SYMBOL_GPL(kvm_init); 2857 2858 void kvm_exit(void) 2859 { 2860 kvm_exit_debug(); 2861 misc_deregister(&kvm_dev); 2862 kmem_cache_destroy(kvm_vcpu_cache); 2863 kvm_async_pf_deinit(); 2864 unregister_syscore_ops(&kvm_syscore_ops); 2865 unregister_reboot_notifier(&kvm_reboot_notifier); 2866 unregister_cpu_notifier(&kvm_cpu_notifier); 2867 on_each_cpu(hardware_disable_nolock, NULL, 1); 2868 kvm_arch_hardware_unsetup(); 2869 kvm_arch_exit(); 2870 free_cpumask_var(cpus_hardware_enabled); 2871 __free_page(hwpoison_page); 2872 __free_page(bad_page); 2873 } 2874 EXPORT_SYMBOL_GPL(kvm_exit); 2875