xref: /linux/virt/kvm/kvm_main.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #include "iodev.h"
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51 
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55 
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61 
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64 
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
67 
68 static cpumask_var_t cpus_hardware_enabled;
69 
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
72 
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
74 
75 struct dentry *kvm_debugfs_dir;
76 
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78 			   unsigned long arg);
79 
80 static bool kvm_rebooting;
81 
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 						      int assigned_dev_id)
85 {
86 	struct list_head *ptr;
87 	struct kvm_assigned_dev_kernel *match;
88 
89 	list_for_each(ptr, head) {
90 		match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91 		if (match->assigned_dev_id == assigned_dev_id)
92 			return match;
93 	}
94 	return NULL;
95 }
96 
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98 				    *assigned_dev, int irq)
99 {
100 	int i, index;
101 	struct msix_entry *host_msix_entries;
102 
103 	host_msix_entries = assigned_dev->host_msix_entries;
104 
105 	index = -1;
106 	for (i = 0; i < assigned_dev->entries_nr; i++)
107 		if (irq == host_msix_entries[i].vector) {
108 			index = i;
109 			break;
110 		}
111 	if (index < 0) {
112 		printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113 		return 0;
114 	}
115 
116 	return index;
117 }
118 
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
120 {
121 	struct kvm_assigned_dev_kernel *assigned_dev;
122 	struct kvm *kvm;
123 	int irq, i;
124 
125 	assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 				    interrupt_work);
127 	kvm = assigned_dev->kvm;
128 
129 	/* This is taken to safely inject irq inside the guest. When
130 	 * the interrupt injection (or the ioapic code) uses a
131 	 * finer-grained lock, update this
132 	 */
133 	mutex_lock(&kvm->lock);
134 	spin_lock_irq(&assigned_dev->assigned_dev_lock);
135 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136 		struct kvm_guest_msix_entry *guest_entries =
137 			assigned_dev->guest_msix_entries;
138 		for (i = 0; i < assigned_dev->entries_nr; i++) {
139 			if (!(guest_entries[i].flags &
140 					KVM_ASSIGNED_MSIX_PENDING))
141 				continue;
142 			guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143 			kvm_set_irq(assigned_dev->kvm,
144 				    assigned_dev->irq_source_id,
145 				    guest_entries[i].vector, 1);
146 			irq = assigned_dev->host_msix_entries[i].vector;
147 			if (irq != 0)
148 				enable_irq(irq);
149 			assigned_dev->host_irq_disabled = false;
150 		}
151 	} else {
152 		kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
153 			    assigned_dev->guest_irq, 1);
154 		if (assigned_dev->irq_requested_type &
155 				KVM_DEV_IRQ_GUEST_MSI) {
156 			enable_irq(assigned_dev->host_irq);
157 			assigned_dev->host_irq_disabled = false;
158 		}
159 	}
160 
161 	spin_unlock_irq(&assigned_dev->assigned_dev_lock);
162 	mutex_unlock(&assigned_dev->kvm->lock);
163 }
164 
165 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
166 {
167 	unsigned long flags;
168 	struct kvm_assigned_dev_kernel *assigned_dev =
169 		(struct kvm_assigned_dev_kernel *) dev_id;
170 
171 	spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
172 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
173 		int index = find_index_from_host_irq(assigned_dev, irq);
174 		if (index < 0)
175 			goto out;
176 		assigned_dev->guest_msix_entries[index].flags |=
177 			KVM_ASSIGNED_MSIX_PENDING;
178 	}
179 
180 	schedule_work(&assigned_dev->interrupt_work);
181 
182 	disable_irq_nosync(irq);
183 	assigned_dev->host_irq_disabled = true;
184 
185 out:
186 	spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
187 	return IRQ_HANDLED;
188 }
189 
190 /* Ack the irq line for an assigned device */
191 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
192 {
193 	struct kvm_assigned_dev_kernel *dev;
194 	unsigned long flags;
195 
196 	if (kian->gsi == -1)
197 		return;
198 
199 	dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 			   ack_notifier);
201 
202 	kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
203 
204 	/* The guest irq may be shared so this ack may be
205 	 * from another device.
206 	 */
207 	spin_lock_irqsave(&dev->assigned_dev_lock, flags);
208 	if (dev->host_irq_disabled) {
209 		enable_irq(dev->host_irq);
210 		dev->host_irq_disabled = false;
211 	}
212 	spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
213 }
214 
215 static void deassign_guest_irq(struct kvm *kvm,
216 			       struct kvm_assigned_dev_kernel *assigned_dev)
217 {
218 	kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
219 	assigned_dev->ack_notifier.gsi = -1;
220 
221 	if (assigned_dev->irq_source_id != -1)
222 		kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
223 	assigned_dev->irq_source_id = -1;
224 	assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
225 }
226 
227 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
228 static void deassign_host_irq(struct kvm *kvm,
229 			      struct kvm_assigned_dev_kernel *assigned_dev)
230 {
231 	/*
232 	 * In kvm_free_device_irq, cancel_work_sync return true if:
233 	 * 1. work is scheduled, and then cancelled.
234 	 * 2. work callback is executed.
235 	 *
236 	 * The first one ensured that the irq is disabled and no more events
237 	 * would happen. But for the second one, the irq may be enabled (e.g.
238 	 * for MSI). So we disable irq here to prevent further events.
239 	 *
240 	 * Notice this maybe result in nested disable if the interrupt type is
241 	 * INTx, but it's OK for we are going to free it.
242 	 *
243 	 * If this function is a part of VM destroy, please ensure that till
244 	 * now, the kvm state is still legal for probably we also have to wait
245 	 * interrupt_work done.
246 	 */
247 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
248 		int i;
249 		for (i = 0; i < assigned_dev->entries_nr; i++)
250 			disable_irq_nosync(assigned_dev->
251 					   host_msix_entries[i].vector);
252 
253 		cancel_work_sync(&assigned_dev->interrupt_work);
254 
255 		for (i = 0; i < assigned_dev->entries_nr; i++)
256 			free_irq(assigned_dev->host_msix_entries[i].vector,
257 				 (void *)assigned_dev);
258 
259 		assigned_dev->entries_nr = 0;
260 		kfree(assigned_dev->host_msix_entries);
261 		kfree(assigned_dev->guest_msix_entries);
262 		pci_disable_msix(assigned_dev->dev);
263 	} else {
264 		/* Deal with MSI and INTx */
265 		disable_irq_nosync(assigned_dev->host_irq);
266 		cancel_work_sync(&assigned_dev->interrupt_work);
267 
268 		free_irq(assigned_dev->host_irq, (void *)assigned_dev);
269 
270 		if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
271 			pci_disable_msi(assigned_dev->dev);
272 	}
273 
274 	assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
275 }
276 
277 static int kvm_deassign_irq(struct kvm *kvm,
278 			    struct kvm_assigned_dev_kernel *assigned_dev,
279 			    unsigned long irq_requested_type)
280 {
281 	unsigned long guest_irq_type, host_irq_type;
282 
283 	if (!irqchip_in_kernel(kvm))
284 		return -EINVAL;
285 	/* no irq assignment to deassign */
286 	if (!assigned_dev->irq_requested_type)
287 		return -ENXIO;
288 
289 	host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
290 	guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
291 
292 	if (host_irq_type)
293 		deassign_host_irq(kvm, assigned_dev);
294 	if (guest_irq_type)
295 		deassign_guest_irq(kvm, assigned_dev);
296 
297 	return 0;
298 }
299 
300 static void kvm_free_assigned_irq(struct kvm *kvm,
301 				  struct kvm_assigned_dev_kernel *assigned_dev)
302 {
303 	kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
304 }
305 
306 static void kvm_free_assigned_device(struct kvm *kvm,
307 				     struct kvm_assigned_dev_kernel
308 				     *assigned_dev)
309 {
310 	kvm_free_assigned_irq(kvm, assigned_dev);
311 
312 	pci_reset_function(assigned_dev->dev);
313 
314 	pci_release_regions(assigned_dev->dev);
315 	pci_disable_device(assigned_dev->dev);
316 	pci_dev_put(assigned_dev->dev);
317 
318 	list_del(&assigned_dev->list);
319 	kfree(assigned_dev);
320 }
321 
322 void kvm_free_all_assigned_devices(struct kvm *kvm)
323 {
324 	struct list_head *ptr, *ptr2;
325 	struct kvm_assigned_dev_kernel *assigned_dev;
326 
327 	list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
328 		assigned_dev = list_entry(ptr,
329 					  struct kvm_assigned_dev_kernel,
330 					  list);
331 
332 		kvm_free_assigned_device(kvm, assigned_dev);
333 	}
334 }
335 
336 static int assigned_device_enable_host_intx(struct kvm *kvm,
337 					    struct kvm_assigned_dev_kernel *dev)
338 {
339 	dev->host_irq = dev->dev->irq;
340 	/* Even though this is PCI, we don't want to use shared
341 	 * interrupts. Sharing host devices with guest-assigned devices
342 	 * on the same interrupt line is not a happy situation: there
343 	 * are going to be long delays in accepting, acking, etc.
344 	 */
345 	if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
346 			0, "kvm_assigned_intx_device", (void *)dev))
347 		return -EIO;
348 	return 0;
349 }
350 
351 #ifdef __KVM_HAVE_MSI
352 static int assigned_device_enable_host_msi(struct kvm *kvm,
353 					   struct kvm_assigned_dev_kernel *dev)
354 {
355 	int r;
356 
357 	if (!dev->dev->msi_enabled) {
358 		r = pci_enable_msi(dev->dev);
359 		if (r)
360 			return r;
361 	}
362 
363 	dev->host_irq = dev->dev->irq;
364 	if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
365 			"kvm_assigned_msi_device", (void *)dev)) {
366 		pci_disable_msi(dev->dev);
367 		return -EIO;
368 	}
369 
370 	return 0;
371 }
372 #endif
373 
374 #ifdef __KVM_HAVE_MSIX
375 static int assigned_device_enable_host_msix(struct kvm *kvm,
376 					    struct kvm_assigned_dev_kernel *dev)
377 {
378 	int i, r = -EINVAL;
379 
380 	/* host_msix_entries and guest_msix_entries should have been
381 	 * initialized */
382 	if (dev->entries_nr == 0)
383 		return r;
384 
385 	r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
386 	if (r)
387 		return r;
388 
389 	for (i = 0; i < dev->entries_nr; i++) {
390 		r = request_irq(dev->host_msix_entries[i].vector,
391 				kvm_assigned_dev_intr, 0,
392 				"kvm_assigned_msix_device",
393 				(void *)dev);
394 		/* FIXME: free requested_irq's on failure */
395 		if (r)
396 			return r;
397 	}
398 
399 	return 0;
400 }
401 
402 #endif
403 
404 static int assigned_device_enable_guest_intx(struct kvm *kvm,
405 				struct kvm_assigned_dev_kernel *dev,
406 				struct kvm_assigned_irq *irq)
407 {
408 	dev->guest_irq = irq->guest_irq;
409 	dev->ack_notifier.gsi = irq->guest_irq;
410 	return 0;
411 }
412 
413 #ifdef __KVM_HAVE_MSI
414 static int assigned_device_enable_guest_msi(struct kvm *kvm,
415 			struct kvm_assigned_dev_kernel *dev,
416 			struct kvm_assigned_irq *irq)
417 {
418 	dev->guest_irq = irq->guest_irq;
419 	dev->ack_notifier.gsi = -1;
420 	return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 			struct kvm_assigned_dev_kernel *dev,
426 			struct kvm_assigned_irq *irq)
427 {
428 	dev->guest_irq = irq->guest_irq;
429 	dev->ack_notifier.gsi = -1;
430 	return 0;
431 }
432 #endif
433 
434 static int assign_host_irq(struct kvm *kvm,
435 			   struct kvm_assigned_dev_kernel *dev,
436 			   __u32 host_irq_type)
437 {
438 	int r = -EEXIST;
439 
440 	if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
441 		return r;
442 
443 	switch (host_irq_type) {
444 	case KVM_DEV_IRQ_HOST_INTX:
445 		r = assigned_device_enable_host_intx(kvm, dev);
446 		break;
447 #ifdef __KVM_HAVE_MSI
448 	case KVM_DEV_IRQ_HOST_MSI:
449 		r = assigned_device_enable_host_msi(kvm, dev);
450 		break;
451 #endif
452 #ifdef __KVM_HAVE_MSIX
453 	case KVM_DEV_IRQ_HOST_MSIX:
454 		r = assigned_device_enable_host_msix(kvm, dev);
455 		break;
456 #endif
457 	default:
458 		r = -EINVAL;
459 	}
460 
461 	if (!r)
462 		dev->irq_requested_type |= host_irq_type;
463 
464 	return r;
465 }
466 
467 static int assign_guest_irq(struct kvm *kvm,
468 			    struct kvm_assigned_dev_kernel *dev,
469 			    struct kvm_assigned_irq *irq,
470 			    unsigned long guest_irq_type)
471 {
472 	int id;
473 	int r = -EEXIST;
474 
475 	if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
476 		return r;
477 
478 	id = kvm_request_irq_source_id(kvm);
479 	if (id < 0)
480 		return id;
481 
482 	dev->irq_source_id = id;
483 
484 	switch (guest_irq_type) {
485 	case KVM_DEV_IRQ_GUEST_INTX:
486 		r = assigned_device_enable_guest_intx(kvm, dev, irq);
487 		break;
488 #ifdef __KVM_HAVE_MSI
489 	case KVM_DEV_IRQ_GUEST_MSI:
490 		r = assigned_device_enable_guest_msi(kvm, dev, irq);
491 		break;
492 #endif
493 #ifdef __KVM_HAVE_MSIX
494 	case KVM_DEV_IRQ_GUEST_MSIX:
495 		r = assigned_device_enable_guest_msix(kvm, dev, irq);
496 		break;
497 #endif
498 	default:
499 		r = -EINVAL;
500 	}
501 
502 	if (!r) {
503 		dev->irq_requested_type |= guest_irq_type;
504 		kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
505 	} else
506 		kvm_free_irq_source_id(kvm, dev->irq_source_id);
507 
508 	return r;
509 }
510 
511 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
512 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
513 				   struct kvm_assigned_irq *assigned_irq)
514 {
515 	int r = -EINVAL;
516 	struct kvm_assigned_dev_kernel *match;
517 	unsigned long host_irq_type, guest_irq_type;
518 
519 	if (!capable(CAP_SYS_RAWIO))
520 		return -EPERM;
521 
522 	if (!irqchip_in_kernel(kvm))
523 		return r;
524 
525 	mutex_lock(&kvm->lock);
526 	r = -ENODEV;
527 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
528 				      assigned_irq->assigned_dev_id);
529 	if (!match)
530 		goto out;
531 
532 	host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
533 	guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
534 
535 	r = -EINVAL;
536 	/* can only assign one type at a time */
537 	if (hweight_long(host_irq_type) > 1)
538 		goto out;
539 	if (hweight_long(guest_irq_type) > 1)
540 		goto out;
541 	if (host_irq_type == 0 && guest_irq_type == 0)
542 		goto out;
543 
544 	r = 0;
545 	if (host_irq_type)
546 		r = assign_host_irq(kvm, match, host_irq_type);
547 	if (r)
548 		goto out;
549 
550 	if (guest_irq_type)
551 		r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
552 out:
553 	mutex_unlock(&kvm->lock);
554 	return r;
555 }
556 
557 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
558 					 struct kvm_assigned_irq
559 					 *assigned_irq)
560 {
561 	int r = -ENODEV;
562 	struct kvm_assigned_dev_kernel *match;
563 
564 	mutex_lock(&kvm->lock);
565 
566 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
567 				      assigned_irq->assigned_dev_id);
568 	if (!match)
569 		goto out;
570 
571 	r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
572 out:
573 	mutex_unlock(&kvm->lock);
574 	return r;
575 }
576 
577 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
578 				      struct kvm_assigned_pci_dev *assigned_dev)
579 {
580 	int r = 0;
581 	struct kvm_assigned_dev_kernel *match;
582 	struct pci_dev *dev;
583 
584 	down_read(&kvm->slots_lock);
585 	mutex_lock(&kvm->lock);
586 
587 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
588 				      assigned_dev->assigned_dev_id);
589 	if (match) {
590 		/* device already assigned */
591 		r = -EEXIST;
592 		goto out;
593 	}
594 
595 	match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
596 	if (match == NULL) {
597 		printk(KERN_INFO "%s: Couldn't allocate memory\n",
598 		       __func__);
599 		r = -ENOMEM;
600 		goto out;
601 	}
602 	dev = pci_get_bus_and_slot(assigned_dev->busnr,
603 				   assigned_dev->devfn);
604 	if (!dev) {
605 		printk(KERN_INFO "%s: host device not found\n", __func__);
606 		r = -EINVAL;
607 		goto out_free;
608 	}
609 	if (pci_enable_device(dev)) {
610 		printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
611 		r = -EBUSY;
612 		goto out_put;
613 	}
614 	r = pci_request_regions(dev, "kvm_assigned_device");
615 	if (r) {
616 		printk(KERN_INFO "%s: Could not get access to device regions\n",
617 		       __func__);
618 		goto out_disable;
619 	}
620 
621 	pci_reset_function(dev);
622 
623 	match->assigned_dev_id = assigned_dev->assigned_dev_id;
624 	match->host_busnr = assigned_dev->busnr;
625 	match->host_devfn = assigned_dev->devfn;
626 	match->flags = assigned_dev->flags;
627 	match->dev = dev;
628 	spin_lock_init(&match->assigned_dev_lock);
629 	match->irq_source_id = -1;
630 	match->kvm = kvm;
631 	match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
632 	INIT_WORK(&match->interrupt_work,
633 		  kvm_assigned_dev_interrupt_work_handler);
634 
635 	list_add(&match->list, &kvm->arch.assigned_dev_head);
636 
637 	if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
638 		if (!kvm->arch.iommu_domain) {
639 			r = kvm_iommu_map_guest(kvm);
640 			if (r)
641 				goto out_list_del;
642 		}
643 		r = kvm_assign_device(kvm, match);
644 		if (r)
645 			goto out_list_del;
646 	}
647 
648 out:
649 	mutex_unlock(&kvm->lock);
650 	up_read(&kvm->slots_lock);
651 	return r;
652 out_list_del:
653 	list_del(&match->list);
654 	pci_release_regions(dev);
655 out_disable:
656 	pci_disable_device(dev);
657 out_put:
658 	pci_dev_put(dev);
659 out_free:
660 	kfree(match);
661 	mutex_unlock(&kvm->lock);
662 	up_read(&kvm->slots_lock);
663 	return r;
664 }
665 #endif
666 
667 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
668 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
669 		struct kvm_assigned_pci_dev *assigned_dev)
670 {
671 	int r = 0;
672 	struct kvm_assigned_dev_kernel *match;
673 
674 	mutex_lock(&kvm->lock);
675 
676 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
677 				      assigned_dev->assigned_dev_id);
678 	if (!match) {
679 		printk(KERN_INFO "%s: device hasn't been assigned before, "
680 		  "so cannot be deassigned\n", __func__);
681 		r = -EINVAL;
682 		goto out;
683 	}
684 
685 	if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
686 		kvm_deassign_device(kvm, match);
687 
688 	kvm_free_assigned_device(kvm, match);
689 
690 out:
691 	mutex_unlock(&kvm->lock);
692 	return r;
693 }
694 #endif
695 
696 static inline int valid_vcpu(int n)
697 {
698 	return likely(n >= 0 && n < KVM_MAX_VCPUS);
699 }
700 
701 inline int kvm_is_mmio_pfn(pfn_t pfn)
702 {
703 	if (pfn_valid(pfn)) {
704 		struct page *page = compound_head(pfn_to_page(pfn));
705 		return PageReserved(page);
706 	}
707 
708 	return true;
709 }
710 
711 /*
712  * Switches to specified vcpu, until a matching vcpu_put()
713  */
714 void vcpu_load(struct kvm_vcpu *vcpu)
715 {
716 	int cpu;
717 
718 	mutex_lock(&vcpu->mutex);
719 	cpu = get_cpu();
720 	preempt_notifier_register(&vcpu->preempt_notifier);
721 	kvm_arch_vcpu_load(vcpu, cpu);
722 	put_cpu();
723 }
724 
725 void vcpu_put(struct kvm_vcpu *vcpu)
726 {
727 	preempt_disable();
728 	kvm_arch_vcpu_put(vcpu);
729 	preempt_notifier_unregister(&vcpu->preempt_notifier);
730 	preempt_enable();
731 	mutex_unlock(&vcpu->mutex);
732 }
733 
734 static void ack_flush(void *_completed)
735 {
736 }
737 
738 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
739 {
740 	int i, cpu, me;
741 	cpumask_var_t cpus;
742 	bool called = true;
743 	struct kvm_vcpu *vcpu;
744 
745 	if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
746 		cpumask_clear(cpus);
747 
748 	me = get_cpu();
749 	spin_lock(&kvm->requests_lock);
750 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
751 		vcpu = kvm->vcpus[i];
752 		if (!vcpu)
753 			continue;
754 		if (test_and_set_bit(req, &vcpu->requests))
755 			continue;
756 		cpu = vcpu->cpu;
757 		if (cpus != NULL && cpu != -1 && cpu != me)
758 			cpumask_set_cpu(cpu, cpus);
759 	}
760 	if (unlikely(cpus == NULL))
761 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
762 	else if (!cpumask_empty(cpus))
763 		smp_call_function_many(cpus, ack_flush, NULL, 1);
764 	else
765 		called = false;
766 	spin_unlock(&kvm->requests_lock);
767 	put_cpu();
768 	free_cpumask_var(cpus);
769 	return called;
770 }
771 
772 void kvm_flush_remote_tlbs(struct kvm *kvm)
773 {
774 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
775 		++kvm->stat.remote_tlb_flush;
776 }
777 
778 void kvm_reload_remote_mmus(struct kvm *kvm)
779 {
780 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
781 }
782 
783 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
784 {
785 	struct page *page;
786 	int r;
787 
788 	mutex_init(&vcpu->mutex);
789 	vcpu->cpu = -1;
790 	vcpu->kvm = kvm;
791 	vcpu->vcpu_id = id;
792 	init_waitqueue_head(&vcpu->wq);
793 
794 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
795 	if (!page) {
796 		r = -ENOMEM;
797 		goto fail;
798 	}
799 	vcpu->run = page_address(page);
800 
801 	r = kvm_arch_vcpu_init(vcpu);
802 	if (r < 0)
803 		goto fail_free_run;
804 	return 0;
805 
806 fail_free_run:
807 	free_page((unsigned long)vcpu->run);
808 fail:
809 	return r;
810 }
811 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
812 
813 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
814 {
815 	kvm_arch_vcpu_uninit(vcpu);
816 	free_page((unsigned long)vcpu->run);
817 }
818 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
819 
820 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
821 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
822 {
823 	return container_of(mn, struct kvm, mmu_notifier);
824 }
825 
826 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
827 					     struct mm_struct *mm,
828 					     unsigned long address)
829 {
830 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
831 	int need_tlb_flush;
832 
833 	/*
834 	 * When ->invalidate_page runs, the linux pte has been zapped
835 	 * already but the page is still allocated until
836 	 * ->invalidate_page returns. So if we increase the sequence
837 	 * here the kvm page fault will notice if the spte can't be
838 	 * established because the page is going to be freed. If
839 	 * instead the kvm page fault establishes the spte before
840 	 * ->invalidate_page runs, kvm_unmap_hva will release it
841 	 * before returning.
842 	 *
843 	 * The sequence increase only need to be seen at spin_unlock
844 	 * time, and not at spin_lock time.
845 	 *
846 	 * Increasing the sequence after the spin_unlock would be
847 	 * unsafe because the kvm page fault could then establish the
848 	 * pte after kvm_unmap_hva returned, without noticing the page
849 	 * is going to be freed.
850 	 */
851 	spin_lock(&kvm->mmu_lock);
852 	kvm->mmu_notifier_seq++;
853 	need_tlb_flush = kvm_unmap_hva(kvm, address);
854 	spin_unlock(&kvm->mmu_lock);
855 
856 	/* we've to flush the tlb before the pages can be freed */
857 	if (need_tlb_flush)
858 		kvm_flush_remote_tlbs(kvm);
859 
860 }
861 
862 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
863 						    struct mm_struct *mm,
864 						    unsigned long start,
865 						    unsigned long end)
866 {
867 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
868 	int need_tlb_flush = 0;
869 
870 	spin_lock(&kvm->mmu_lock);
871 	/*
872 	 * The count increase must become visible at unlock time as no
873 	 * spte can be established without taking the mmu_lock and
874 	 * count is also read inside the mmu_lock critical section.
875 	 */
876 	kvm->mmu_notifier_count++;
877 	for (; start < end; start += PAGE_SIZE)
878 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
879 	spin_unlock(&kvm->mmu_lock);
880 
881 	/* we've to flush the tlb before the pages can be freed */
882 	if (need_tlb_flush)
883 		kvm_flush_remote_tlbs(kvm);
884 }
885 
886 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
887 						  struct mm_struct *mm,
888 						  unsigned long start,
889 						  unsigned long end)
890 {
891 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
892 
893 	spin_lock(&kvm->mmu_lock);
894 	/*
895 	 * This sequence increase will notify the kvm page fault that
896 	 * the page that is going to be mapped in the spte could have
897 	 * been freed.
898 	 */
899 	kvm->mmu_notifier_seq++;
900 	/*
901 	 * The above sequence increase must be visible before the
902 	 * below count decrease but both values are read by the kvm
903 	 * page fault under mmu_lock spinlock so we don't need to add
904 	 * a smb_wmb() here in between the two.
905 	 */
906 	kvm->mmu_notifier_count--;
907 	spin_unlock(&kvm->mmu_lock);
908 
909 	BUG_ON(kvm->mmu_notifier_count < 0);
910 }
911 
912 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
913 					      struct mm_struct *mm,
914 					      unsigned long address)
915 {
916 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
917 	int young;
918 
919 	spin_lock(&kvm->mmu_lock);
920 	young = kvm_age_hva(kvm, address);
921 	spin_unlock(&kvm->mmu_lock);
922 
923 	if (young)
924 		kvm_flush_remote_tlbs(kvm);
925 
926 	return young;
927 }
928 
929 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
930 				     struct mm_struct *mm)
931 {
932 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
933 	kvm_arch_flush_shadow(kvm);
934 }
935 
936 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
937 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
938 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
939 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
940 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
941 	.release		= kvm_mmu_notifier_release,
942 };
943 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
944 
945 static struct kvm *kvm_create_vm(void)
946 {
947 	struct kvm *kvm = kvm_arch_create_vm();
948 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
949 	struct page *page;
950 #endif
951 
952 	if (IS_ERR(kvm))
953 		goto out;
954 #ifdef CONFIG_HAVE_KVM_IRQCHIP
955 	INIT_LIST_HEAD(&kvm->irq_routing);
956 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
957 #endif
958 
959 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
960 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
961 	if (!page) {
962 		kfree(kvm);
963 		return ERR_PTR(-ENOMEM);
964 	}
965 	kvm->coalesced_mmio_ring =
966 			(struct kvm_coalesced_mmio_ring *)page_address(page);
967 #endif
968 
969 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
970 	{
971 		int err;
972 		kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973 		err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
974 		if (err) {
975 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
976 			put_page(page);
977 #endif
978 			kfree(kvm);
979 			return ERR_PTR(err);
980 		}
981 	}
982 #endif
983 
984 	kvm->mm = current->mm;
985 	atomic_inc(&kvm->mm->mm_count);
986 	spin_lock_init(&kvm->mmu_lock);
987 	spin_lock_init(&kvm->requests_lock);
988 	kvm_io_bus_init(&kvm->pio_bus);
989 	mutex_init(&kvm->lock);
990 	kvm_io_bus_init(&kvm->mmio_bus);
991 	init_rwsem(&kvm->slots_lock);
992 	atomic_set(&kvm->users_count, 1);
993 	spin_lock(&kvm_lock);
994 	list_add(&kvm->vm_list, &vm_list);
995 	spin_unlock(&kvm_lock);
996 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
997 	kvm_coalesced_mmio_init(kvm);
998 #endif
999 out:
1000 	return kvm;
1001 }
1002 
1003 /*
1004  * Free any memory in @free but not in @dont.
1005  */
1006 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1007 				  struct kvm_memory_slot *dont)
1008 {
1009 	if (!dont || free->rmap != dont->rmap)
1010 		vfree(free->rmap);
1011 
1012 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1013 		vfree(free->dirty_bitmap);
1014 
1015 	if (!dont || free->lpage_info != dont->lpage_info)
1016 		vfree(free->lpage_info);
1017 
1018 	free->npages = 0;
1019 	free->dirty_bitmap = NULL;
1020 	free->rmap = NULL;
1021 	free->lpage_info = NULL;
1022 }
1023 
1024 void kvm_free_physmem(struct kvm *kvm)
1025 {
1026 	int i;
1027 
1028 	for (i = 0; i < kvm->nmemslots; ++i)
1029 		kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1030 }
1031 
1032 static void kvm_destroy_vm(struct kvm *kvm)
1033 {
1034 	struct mm_struct *mm = kvm->mm;
1035 
1036 	kvm_arch_sync_events(kvm);
1037 	spin_lock(&kvm_lock);
1038 	list_del(&kvm->vm_list);
1039 	spin_unlock(&kvm_lock);
1040 	kvm_free_irq_routing(kvm);
1041 	kvm_io_bus_destroy(&kvm->pio_bus);
1042 	kvm_io_bus_destroy(&kvm->mmio_bus);
1043 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1044 	if (kvm->coalesced_mmio_ring != NULL)
1045 		free_page((unsigned long)kvm->coalesced_mmio_ring);
1046 #endif
1047 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1048 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1049 #else
1050 	kvm_arch_flush_shadow(kvm);
1051 #endif
1052 	kvm_arch_destroy_vm(kvm);
1053 	mmdrop(mm);
1054 }
1055 
1056 void kvm_get_kvm(struct kvm *kvm)
1057 {
1058 	atomic_inc(&kvm->users_count);
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1061 
1062 void kvm_put_kvm(struct kvm *kvm)
1063 {
1064 	if (atomic_dec_and_test(&kvm->users_count))
1065 		kvm_destroy_vm(kvm);
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1068 
1069 
1070 static int kvm_vm_release(struct inode *inode, struct file *filp)
1071 {
1072 	struct kvm *kvm = filp->private_data;
1073 
1074 	kvm_put_kvm(kvm);
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Allocate some memory and give it an address in the guest physical address
1080  * space.
1081  *
1082  * Discontiguous memory is allowed, mostly for framebuffers.
1083  *
1084  * Must be called holding mmap_sem for write.
1085  */
1086 int __kvm_set_memory_region(struct kvm *kvm,
1087 			    struct kvm_userspace_memory_region *mem,
1088 			    int user_alloc)
1089 {
1090 	int r;
1091 	gfn_t base_gfn;
1092 	unsigned long npages, ugfn;
1093 	unsigned long largepages, i;
1094 	struct kvm_memory_slot *memslot;
1095 	struct kvm_memory_slot old, new;
1096 
1097 	r = -EINVAL;
1098 	/* General sanity checks */
1099 	if (mem->memory_size & (PAGE_SIZE - 1))
1100 		goto out;
1101 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1102 		goto out;
1103 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1104 		goto out;
1105 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1106 		goto out;
1107 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1108 		goto out;
1109 
1110 	memslot = &kvm->memslots[mem->slot];
1111 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1112 	npages = mem->memory_size >> PAGE_SHIFT;
1113 
1114 	if (!npages)
1115 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1116 
1117 	new = old = *memslot;
1118 
1119 	new.base_gfn = base_gfn;
1120 	new.npages = npages;
1121 	new.flags = mem->flags;
1122 
1123 	/* Disallow changing a memory slot's size. */
1124 	r = -EINVAL;
1125 	if (npages && old.npages && npages != old.npages)
1126 		goto out_free;
1127 
1128 	/* Check for overlaps */
1129 	r = -EEXIST;
1130 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1131 		struct kvm_memory_slot *s = &kvm->memslots[i];
1132 
1133 		if (s == memslot || !s->npages)
1134 			continue;
1135 		if (!((base_gfn + npages <= s->base_gfn) ||
1136 		      (base_gfn >= s->base_gfn + s->npages)))
1137 			goto out_free;
1138 	}
1139 
1140 	/* Free page dirty bitmap if unneeded */
1141 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1142 		new.dirty_bitmap = NULL;
1143 
1144 	r = -ENOMEM;
1145 
1146 	/* Allocate if a slot is being created */
1147 #ifndef CONFIG_S390
1148 	if (npages && !new.rmap) {
1149 		new.rmap = vmalloc(npages * sizeof(struct page *));
1150 
1151 		if (!new.rmap)
1152 			goto out_free;
1153 
1154 		memset(new.rmap, 0, npages * sizeof(*new.rmap));
1155 
1156 		new.user_alloc = user_alloc;
1157 		/*
1158 		 * hva_to_rmmap() serialzies with the mmu_lock and to be
1159 		 * safe it has to ignore memslots with !user_alloc &&
1160 		 * !userspace_addr.
1161 		 */
1162 		if (user_alloc)
1163 			new.userspace_addr = mem->userspace_addr;
1164 		else
1165 			new.userspace_addr = 0;
1166 	}
1167 	if (npages && !new.lpage_info) {
1168 		largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1169 		largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1170 
1171 		new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1172 
1173 		if (!new.lpage_info)
1174 			goto out_free;
1175 
1176 		memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1177 
1178 		if (base_gfn % KVM_PAGES_PER_HPAGE)
1179 			new.lpage_info[0].write_count = 1;
1180 		if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1181 			new.lpage_info[largepages-1].write_count = 1;
1182 		ugfn = new.userspace_addr >> PAGE_SHIFT;
1183 		/*
1184 		 * If the gfn and userspace address are not aligned wrt each
1185 		 * other, disable large page support for this slot
1186 		 */
1187 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1188 			for (i = 0; i < largepages; ++i)
1189 				new.lpage_info[i].write_count = 1;
1190 	}
1191 
1192 	/* Allocate page dirty bitmap if needed */
1193 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1194 		unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1195 
1196 		new.dirty_bitmap = vmalloc(dirty_bytes);
1197 		if (!new.dirty_bitmap)
1198 			goto out_free;
1199 		memset(new.dirty_bitmap, 0, dirty_bytes);
1200 		if (old.npages)
1201 			kvm_arch_flush_shadow(kvm);
1202 	}
1203 #endif /* not defined CONFIG_S390 */
1204 
1205 	if (!npages)
1206 		kvm_arch_flush_shadow(kvm);
1207 
1208 	spin_lock(&kvm->mmu_lock);
1209 	if (mem->slot >= kvm->nmemslots)
1210 		kvm->nmemslots = mem->slot + 1;
1211 
1212 	*memslot = new;
1213 	spin_unlock(&kvm->mmu_lock);
1214 
1215 	r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1216 	if (r) {
1217 		spin_lock(&kvm->mmu_lock);
1218 		*memslot = old;
1219 		spin_unlock(&kvm->mmu_lock);
1220 		goto out_free;
1221 	}
1222 
1223 	kvm_free_physmem_slot(&old, npages ? &new : NULL);
1224 	/* Slot deletion case: we have to update the current slot */
1225 	spin_lock(&kvm->mmu_lock);
1226 	if (!npages)
1227 		*memslot = old;
1228 	spin_unlock(&kvm->mmu_lock);
1229 #ifdef CONFIG_DMAR
1230 	/* map the pages in iommu page table */
1231 	r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1232 	if (r)
1233 		goto out;
1234 #endif
1235 	return 0;
1236 
1237 out_free:
1238 	kvm_free_physmem_slot(&new, &old);
1239 out:
1240 	return r;
1241 
1242 }
1243 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1244 
1245 int kvm_set_memory_region(struct kvm *kvm,
1246 			  struct kvm_userspace_memory_region *mem,
1247 			  int user_alloc)
1248 {
1249 	int r;
1250 
1251 	down_write(&kvm->slots_lock);
1252 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
1253 	up_write(&kvm->slots_lock);
1254 	return r;
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1257 
1258 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1259 				   struct
1260 				   kvm_userspace_memory_region *mem,
1261 				   int user_alloc)
1262 {
1263 	if (mem->slot >= KVM_MEMORY_SLOTS)
1264 		return -EINVAL;
1265 	return kvm_set_memory_region(kvm, mem, user_alloc);
1266 }
1267 
1268 int kvm_get_dirty_log(struct kvm *kvm,
1269 			struct kvm_dirty_log *log, int *is_dirty)
1270 {
1271 	struct kvm_memory_slot *memslot;
1272 	int r, i;
1273 	int n;
1274 	unsigned long any = 0;
1275 
1276 	r = -EINVAL;
1277 	if (log->slot >= KVM_MEMORY_SLOTS)
1278 		goto out;
1279 
1280 	memslot = &kvm->memslots[log->slot];
1281 	r = -ENOENT;
1282 	if (!memslot->dirty_bitmap)
1283 		goto out;
1284 
1285 	n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1286 
1287 	for (i = 0; !any && i < n/sizeof(long); ++i)
1288 		any = memslot->dirty_bitmap[i];
1289 
1290 	r = -EFAULT;
1291 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1292 		goto out;
1293 
1294 	if (any)
1295 		*is_dirty = 1;
1296 
1297 	r = 0;
1298 out:
1299 	return r;
1300 }
1301 
1302 int is_error_page(struct page *page)
1303 {
1304 	return page == bad_page;
1305 }
1306 EXPORT_SYMBOL_GPL(is_error_page);
1307 
1308 int is_error_pfn(pfn_t pfn)
1309 {
1310 	return pfn == bad_pfn;
1311 }
1312 EXPORT_SYMBOL_GPL(is_error_pfn);
1313 
1314 static inline unsigned long bad_hva(void)
1315 {
1316 	return PAGE_OFFSET;
1317 }
1318 
1319 int kvm_is_error_hva(unsigned long addr)
1320 {
1321 	return addr == bad_hva();
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1324 
1325 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1326 {
1327 	int i;
1328 
1329 	for (i = 0; i < kvm->nmemslots; ++i) {
1330 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1331 
1332 		if (gfn >= memslot->base_gfn
1333 		    && gfn < memslot->base_gfn + memslot->npages)
1334 			return memslot;
1335 	}
1336 	return NULL;
1337 }
1338 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1339 
1340 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1341 {
1342 	gfn = unalias_gfn(kvm, gfn);
1343 	return gfn_to_memslot_unaliased(kvm, gfn);
1344 }
1345 
1346 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1347 {
1348 	int i;
1349 
1350 	gfn = unalias_gfn(kvm, gfn);
1351 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1352 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1353 
1354 		if (gfn >= memslot->base_gfn
1355 		    && gfn < memslot->base_gfn + memslot->npages)
1356 			return 1;
1357 	}
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1361 
1362 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1363 {
1364 	struct kvm_memory_slot *slot;
1365 
1366 	gfn = unalias_gfn(kvm, gfn);
1367 	slot = gfn_to_memslot_unaliased(kvm, gfn);
1368 	if (!slot)
1369 		return bad_hva();
1370 	return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1371 }
1372 EXPORT_SYMBOL_GPL(gfn_to_hva);
1373 
1374 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1375 {
1376 	struct page *page[1];
1377 	unsigned long addr;
1378 	int npages;
1379 	pfn_t pfn;
1380 
1381 	might_sleep();
1382 
1383 	addr = gfn_to_hva(kvm, gfn);
1384 	if (kvm_is_error_hva(addr)) {
1385 		get_page(bad_page);
1386 		return page_to_pfn(bad_page);
1387 	}
1388 
1389 	npages = get_user_pages_fast(addr, 1, 1, page);
1390 
1391 	if (unlikely(npages != 1)) {
1392 		struct vm_area_struct *vma;
1393 
1394 		down_read(&current->mm->mmap_sem);
1395 		vma = find_vma(current->mm, addr);
1396 
1397 		if (vma == NULL || addr < vma->vm_start ||
1398 		    !(vma->vm_flags & VM_PFNMAP)) {
1399 			up_read(&current->mm->mmap_sem);
1400 			get_page(bad_page);
1401 			return page_to_pfn(bad_page);
1402 		}
1403 
1404 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1405 		up_read(&current->mm->mmap_sem);
1406 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1407 	} else
1408 		pfn = page_to_pfn(page[0]);
1409 
1410 	return pfn;
1411 }
1412 
1413 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1414 
1415 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1416 {
1417 	pfn_t pfn;
1418 
1419 	pfn = gfn_to_pfn(kvm, gfn);
1420 	if (!kvm_is_mmio_pfn(pfn))
1421 		return pfn_to_page(pfn);
1422 
1423 	WARN_ON(kvm_is_mmio_pfn(pfn));
1424 
1425 	get_page(bad_page);
1426 	return bad_page;
1427 }
1428 
1429 EXPORT_SYMBOL_GPL(gfn_to_page);
1430 
1431 void kvm_release_page_clean(struct page *page)
1432 {
1433 	kvm_release_pfn_clean(page_to_pfn(page));
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1436 
1437 void kvm_release_pfn_clean(pfn_t pfn)
1438 {
1439 	if (!kvm_is_mmio_pfn(pfn))
1440 		put_page(pfn_to_page(pfn));
1441 }
1442 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1443 
1444 void kvm_release_page_dirty(struct page *page)
1445 {
1446 	kvm_release_pfn_dirty(page_to_pfn(page));
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1449 
1450 void kvm_release_pfn_dirty(pfn_t pfn)
1451 {
1452 	kvm_set_pfn_dirty(pfn);
1453 	kvm_release_pfn_clean(pfn);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1456 
1457 void kvm_set_page_dirty(struct page *page)
1458 {
1459 	kvm_set_pfn_dirty(page_to_pfn(page));
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1462 
1463 void kvm_set_pfn_dirty(pfn_t pfn)
1464 {
1465 	if (!kvm_is_mmio_pfn(pfn)) {
1466 		struct page *page = pfn_to_page(pfn);
1467 		if (!PageReserved(page))
1468 			SetPageDirty(page);
1469 	}
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1472 
1473 void kvm_set_pfn_accessed(pfn_t pfn)
1474 {
1475 	if (!kvm_is_mmio_pfn(pfn))
1476 		mark_page_accessed(pfn_to_page(pfn));
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1479 
1480 void kvm_get_pfn(pfn_t pfn)
1481 {
1482 	if (!kvm_is_mmio_pfn(pfn))
1483 		get_page(pfn_to_page(pfn));
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1486 
1487 static int next_segment(unsigned long len, int offset)
1488 {
1489 	if (len > PAGE_SIZE - offset)
1490 		return PAGE_SIZE - offset;
1491 	else
1492 		return len;
1493 }
1494 
1495 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1496 			int len)
1497 {
1498 	int r;
1499 	unsigned long addr;
1500 
1501 	addr = gfn_to_hva(kvm, gfn);
1502 	if (kvm_is_error_hva(addr))
1503 		return -EFAULT;
1504 	r = copy_from_user(data, (void __user *)addr + offset, len);
1505 	if (r)
1506 		return -EFAULT;
1507 	return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1510 
1511 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1512 {
1513 	gfn_t gfn = gpa >> PAGE_SHIFT;
1514 	int seg;
1515 	int offset = offset_in_page(gpa);
1516 	int ret;
1517 
1518 	while ((seg = next_segment(len, offset)) != 0) {
1519 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1520 		if (ret < 0)
1521 			return ret;
1522 		offset = 0;
1523 		len -= seg;
1524 		data += seg;
1525 		++gfn;
1526 	}
1527 	return 0;
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_read_guest);
1530 
1531 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1532 			  unsigned long len)
1533 {
1534 	int r;
1535 	unsigned long addr;
1536 	gfn_t gfn = gpa >> PAGE_SHIFT;
1537 	int offset = offset_in_page(gpa);
1538 
1539 	addr = gfn_to_hva(kvm, gfn);
1540 	if (kvm_is_error_hva(addr))
1541 		return -EFAULT;
1542 	pagefault_disable();
1543 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1544 	pagefault_enable();
1545 	if (r)
1546 		return -EFAULT;
1547 	return 0;
1548 }
1549 EXPORT_SYMBOL(kvm_read_guest_atomic);
1550 
1551 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1552 			 int offset, int len)
1553 {
1554 	int r;
1555 	unsigned long addr;
1556 
1557 	addr = gfn_to_hva(kvm, gfn);
1558 	if (kvm_is_error_hva(addr))
1559 		return -EFAULT;
1560 	r = copy_to_user((void __user *)addr + offset, data, len);
1561 	if (r)
1562 		return -EFAULT;
1563 	mark_page_dirty(kvm, gfn);
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1567 
1568 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1569 		    unsigned long len)
1570 {
1571 	gfn_t gfn = gpa >> PAGE_SHIFT;
1572 	int seg;
1573 	int offset = offset_in_page(gpa);
1574 	int ret;
1575 
1576 	while ((seg = next_segment(len, offset)) != 0) {
1577 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1578 		if (ret < 0)
1579 			return ret;
1580 		offset = 0;
1581 		len -= seg;
1582 		data += seg;
1583 		++gfn;
1584 	}
1585 	return 0;
1586 }
1587 
1588 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1589 {
1590 	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1593 
1594 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1595 {
1596 	gfn_t gfn = gpa >> PAGE_SHIFT;
1597 	int seg;
1598 	int offset = offset_in_page(gpa);
1599 	int ret;
1600 
1601         while ((seg = next_segment(len, offset)) != 0) {
1602 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1603 		if (ret < 0)
1604 			return ret;
1605 		offset = 0;
1606 		len -= seg;
1607 		++gfn;
1608 	}
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1612 
1613 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1614 {
1615 	struct kvm_memory_slot *memslot;
1616 
1617 	gfn = unalias_gfn(kvm, gfn);
1618 	memslot = gfn_to_memslot_unaliased(kvm, gfn);
1619 	if (memslot && memslot->dirty_bitmap) {
1620 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1621 
1622 		/* avoid RMW */
1623 		if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1624 			set_bit(rel_gfn, memslot->dirty_bitmap);
1625 	}
1626 }
1627 
1628 /*
1629  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1630  */
1631 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1632 {
1633 	DEFINE_WAIT(wait);
1634 
1635 	for (;;) {
1636 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1637 
1638 		if ((kvm_arch_interrupt_allowed(vcpu) &&
1639 					kvm_cpu_has_interrupt(vcpu)) ||
1640 				kvm_arch_vcpu_runnable(vcpu)) {
1641 			set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1642 			break;
1643 		}
1644 		if (kvm_cpu_has_pending_timer(vcpu))
1645 			break;
1646 		if (signal_pending(current))
1647 			break;
1648 
1649 		vcpu_put(vcpu);
1650 		schedule();
1651 		vcpu_load(vcpu);
1652 	}
1653 
1654 	finish_wait(&vcpu->wq, &wait);
1655 }
1656 
1657 void kvm_resched(struct kvm_vcpu *vcpu)
1658 {
1659 	if (!need_resched())
1660 		return;
1661 	cond_resched();
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_resched);
1664 
1665 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1666 {
1667 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1668 	struct page *page;
1669 
1670 	if (vmf->pgoff == 0)
1671 		page = virt_to_page(vcpu->run);
1672 #ifdef CONFIG_X86
1673 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1674 		page = virt_to_page(vcpu->arch.pio_data);
1675 #endif
1676 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1677 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1678 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1679 #endif
1680 	else
1681 		return VM_FAULT_SIGBUS;
1682 	get_page(page);
1683 	vmf->page = page;
1684 	return 0;
1685 }
1686 
1687 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1688 	.fault = kvm_vcpu_fault,
1689 };
1690 
1691 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1692 {
1693 	vma->vm_ops = &kvm_vcpu_vm_ops;
1694 	return 0;
1695 }
1696 
1697 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1698 {
1699 	struct kvm_vcpu *vcpu = filp->private_data;
1700 
1701 	kvm_put_kvm(vcpu->kvm);
1702 	return 0;
1703 }
1704 
1705 static struct file_operations kvm_vcpu_fops = {
1706 	.release        = kvm_vcpu_release,
1707 	.unlocked_ioctl = kvm_vcpu_ioctl,
1708 	.compat_ioctl   = kvm_vcpu_ioctl,
1709 	.mmap           = kvm_vcpu_mmap,
1710 };
1711 
1712 /*
1713  * Allocates an inode for the vcpu.
1714  */
1715 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1716 {
1717 	int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1718 	if (fd < 0)
1719 		kvm_put_kvm(vcpu->kvm);
1720 	return fd;
1721 }
1722 
1723 /*
1724  * Creates some virtual cpus.  Good luck creating more than one.
1725  */
1726 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1727 {
1728 	int r;
1729 	struct kvm_vcpu *vcpu;
1730 
1731 	if (!valid_vcpu(n))
1732 		return -EINVAL;
1733 
1734 	vcpu = kvm_arch_vcpu_create(kvm, n);
1735 	if (IS_ERR(vcpu))
1736 		return PTR_ERR(vcpu);
1737 
1738 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1739 
1740 	r = kvm_arch_vcpu_setup(vcpu);
1741 	if (r)
1742 		return r;
1743 
1744 	mutex_lock(&kvm->lock);
1745 	if (kvm->vcpus[n]) {
1746 		r = -EEXIST;
1747 		goto vcpu_destroy;
1748 	}
1749 	kvm->vcpus[n] = vcpu;
1750 	mutex_unlock(&kvm->lock);
1751 
1752 	/* Now it's all set up, let userspace reach it */
1753 	kvm_get_kvm(kvm);
1754 	r = create_vcpu_fd(vcpu);
1755 	if (r < 0)
1756 		goto unlink;
1757 	return r;
1758 
1759 unlink:
1760 	mutex_lock(&kvm->lock);
1761 	kvm->vcpus[n] = NULL;
1762 vcpu_destroy:
1763 	mutex_unlock(&kvm->lock);
1764 	kvm_arch_vcpu_destroy(vcpu);
1765 	return r;
1766 }
1767 
1768 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1769 {
1770 	if (sigset) {
1771 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1772 		vcpu->sigset_active = 1;
1773 		vcpu->sigset = *sigset;
1774 	} else
1775 		vcpu->sigset_active = 0;
1776 	return 0;
1777 }
1778 
1779 #ifdef __KVM_HAVE_MSIX
1780 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1781 				    struct kvm_assigned_msix_nr *entry_nr)
1782 {
1783 	int r = 0;
1784 	struct kvm_assigned_dev_kernel *adev;
1785 
1786 	mutex_lock(&kvm->lock);
1787 
1788 	adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1789 				      entry_nr->assigned_dev_id);
1790 	if (!adev) {
1791 		r = -EINVAL;
1792 		goto msix_nr_out;
1793 	}
1794 
1795 	if (adev->entries_nr == 0) {
1796 		adev->entries_nr = entry_nr->entry_nr;
1797 		if (adev->entries_nr == 0 ||
1798 		    adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1799 			r = -EINVAL;
1800 			goto msix_nr_out;
1801 		}
1802 
1803 		adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1804 						entry_nr->entry_nr,
1805 						GFP_KERNEL);
1806 		if (!adev->host_msix_entries) {
1807 			r = -ENOMEM;
1808 			goto msix_nr_out;
1809 		}
1810 		adev->guest_msix_entries = kzalloc(
1811 				sizeof(struct kvm_guest_msix_entry) *
1812 				entry_nr->entry_nr, GFP_KERNEL);
1813 		if (!adev->guest_msix_entries) {
1814 			kfree(adev->host_msix_entries);
1815 			r = -ENOMEM;
1816 			goto msix_nr_out;
1817 		}
1818 	} else /* Not allowed set MSI-X number twice */
1819 		r = -EINVAL;
1820 msix_nr_out:
1821 	mutex_unlock(&kvm->lock);
1822 	return r;
1823 }
1824 
1825 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1826 				       struct kvm_assigned_msix_entry *entry)
1827 {
1828 	int r = 0, i;
1829 	struct kvm_assigned_dev_kernel *adev;
1830 
1831 	mutex_lock(&kvm->lock);
1832 
1833 	adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1834 				      entry->assigned_dev_id);
1835 
1836 	if (!adev) {
1837 		r = -EINVAL;
1838 		goto msix_entry_out;
1839 	}
1840 
1841 	for (i = 0; i < adev->entries_nr; i++)
1842 		if (adev->guest_msix_entries[i].vector == 0 ||
1843 		    adev->guest_msix_entries[i].entry == entry->entry) {
1844 			adev->guest_msix_entries[i].entry = entry->entry;
1845 			adev->guest_msix_entries[i].vector = entry->gsi;
1846 			adev->host_msix_entries[i].entry = entry->entry;
1847 			break;
1848 		}
1849 	if (i == adev->entries_nr) {
1850 		r = -ENOSPC;
1851 		goto msix_entry_out;
1852 	}
1853 
1854 msix_entry_out:
1855 	mutex_unlock(&kvm->lock);
1856 
1857 	return r;
1858 }
1859 #endif
1860 
1861 static long kvm_vcpu_ioctl(struct file *filp,
1862 			   unsigned int ioctl, unsigned long arg)
1863 {
1864 	struct kvm_vcpu *vcpu = filp->private_data;
1865 	void __user *argp = (void __user *)arg;
1866 	int r;
1867 	struct kvm_fpu *fpu = NULL;
1868 	struct kvm_sregs *kvm_sregs = NULL;
1869 
1870 	if (vcpu->kvm->mm != current->mm)
1871 		return -EIO;
1872 	switch (ioctl) {
1873 	case KVM_RUN:
1874 		r = -EINVAL;
1875 		if (arg)
1876 			goto out;
1877 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1878 		break;
1879 	case KVM_GET_REGS: {
1880 		struct kvm_regs *kvm_regs;
1881 
1882 		r = -ENOMEM;
1883 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1884 		if (!kvm_regs)
1885 			goto out;
1886 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1887 		if (r)
1888 			goto out_free1;
1889 		r = -EFAULT;
1890 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1891 			goto out_free1;
1892 		r = 0;
1893 out_free1:
1894 		kfree(kvm_regs);
1895 		break;
1896 	}
1897 	case KVM_SET_REGS: {
1898 		struct kvm_regs *kvm_regs;
1899 
1900 		r = -ENOMEM;
1901 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1902 		if (!kvm_regs)
1903 			goto out;
1904 		r = -EFAULT;
1905 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1906 			goto out_free2;
1907 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1908 		if (r)
1909 			goto out_free2;
1910 		r = 0;
1911 out_free2:
1912 		kfree(kvm_regs);
1913 		break;
1914 	}
1915 	case KVM_GET_SREGS: {
1916 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1917 		r = -ENOMEM;
1918 		if (!kvm_sregs)
1919 			goto out;
1920 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1921 		if (r)
1922 			goto out;
1923 		r = -EFAULT;
1924 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1925 			goto out;
1926 		r = 0;
1927 		break;
1928 	}
1929 	case KVM_SET_SREGS: {
1930 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1931 		r = -ENOMEM;
1932 		if (!kvm_sregs)
1933 			goto out;
1934 		r = -EFAULT;
1935 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1936 			goto out;
1937 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1938 		if (r)
1939 			goto out;
1940 		r = 0;
1941 		break;
1942 	}
1943 	case KVM_GET_MP_STATE: {
1944 		struct kvm_mp_state mp_state;
1945 
1946 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1947 		if (r)
1948 			goto out;
1949 		r = -EFAULT;
1950 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1951 			goto out;
1952 		r = 0;
1953 		break;
1954 	}
1955 	case KVM_SET_MP_STATE: {
1956 		struct kvm_mp_state mp_state;
1957 
1958 		r = -EFAULT;
1959 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1960 			goto out;
1961 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1962 		if (r)
1963 			goto out;
1964 		r = 0;
1965 		break;
1966 	}
1967 	case KVM_TRANSLATE: {
1968 		struct kvm_translation tr;
1969 
1970 		r = -EFAULT;
1971 		if (copy_from_user(&tr, argp, sizeof tr))
1972 			goto out;
1973 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1974 		if (r)
1975 			goto out;
1976 		r = -EFAULT;
1977 		if (copy_to_user(argp, &tr, sizeof tr))
1978 			goto out;
1979 		r = 0;
1980 		break;
1981 	}
1982 	case KVM_SET_GUEST_DEBUG: {
1983 		struct kvm_guest_debug dbg;
1984 
1985 		r = -EFAULT;
1986 		if (copy_from_user(&dbg, argp, sizeof dbg))
1987 			goto out;
1988 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1989 		if (r)
1990 			goto out;
1991 		r = 0;
1992 		break;
1993 	}
1994 	case KVM_SET_SIGNAL_MASK: {
1995 		struct kvm_signal_mask __user *sigmask_arg = argp;
1996 		struct kvm_signal_mask kvm_sigmask;
1997 		sigset_t sigset, *p;
1998 
1999 		p = NULL;
2000 		if (argp) {
2001 			r = -EFAULT;
2002 			if (copy_from_user(&kvm_sigmask, argp,
2003 					   sizeof kvm_sigmask))
2004 				goto out;
2005 			r = -EINVAL;
2006 			if (kvm_sigmask.len != sizeof sigset)
2007 				goto out;
2008 			r = -EFAULT;
2009 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2010 					   sizeof sigset))
2011 				goto out;
2012 			p = &sigset;
2013 		}
2014 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2015 		break;
2016 	}
2017 	case KVM_GET_FPU: {
2018 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2019 		r = -ENOMEM;
2020 		if (!fpu)
2021 			goto out;
2022 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2023 		if (r)
2024 			goto out;
2025 		r = -EFAULT;
2026 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2027 			goto out;
2028 		r = 0;
2029 		break;
2030 	}
2031 	case KVM_SET_FPU: {
2032 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2033 		r = -ENOMEM;
2034 		if (!fpu)
2035 			goto out;
2036 		r = -EFAULT;
2037 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2038 			goto out;
2039 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2040 		if (r)
2041 			goto out;
2042 		r = 0;
2043 		break;
2044 	}
2045 	default:
2046 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2047 	}
2048 out:
2049 	kfree(fpu);
2050 	kfree(kvm_sregs);
2051 	return r;
2052 }
2053 
2054 static long kvm_vm_ioctl(struct file *filp,
2055 			   unsigned int ioctl, unsigned long arg)
2056 {
2057 	struct kvm *kvm = filp->private_data;
2058 	void __user *argp = (void __user *)arg;
2059 	int r;
2060 
2061 	if (kvm->mm != current->mm)
2062 		return -EIO;
2063 	switch (ioctl) {
2064 	case KVM_CREATE_VCPU:
2065 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2066 		if (r < 0)
2067 			goto out;
2068 		break;
2069 	case KVM_SET_USER_MEMORY_REGION: {
2070 		struct kvm_userspace_memory_region kvm_userspace_mem;
2071 
2072 		r = -EFAULT;
2073 		if (copy_from_user(&kvm_userspace_mem, argp,
2074 						sizeof kvm_userspace_mem))
2075 			goto out;
2076 
2077 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2078 		if (r)
2079 			goto out;
2080 		break;
2081 	}
2082 	case KVM_GET_DIRTY_LOG: {
2083 		struct kvm_dirty_log log;
2084 
2085 		r = -EFAULT;
2086 		if (copy_from_user(&log, argp, sizeof log))
2087 			goto out;
2088 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2089 		if (r)
2090 			goto out;
2091 		break;
2092 	}
2093 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2094 	case KVM_REGISTER_COALESCED_MMIO: {
2095 		struct kvm_coalesced_mmio_zone zone;
2096 		r = -EFAULT;
2097 		if (copy_from_user(&zone, argp, sizeof zone))
2098 			goto out;
2099 		r = -ENXIO;
2100 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2101 		if (r)
2102 			goto out;
2103 		r = 0;
2104 		break;
2105 	}
2106 	case KVM_UNREGISTER_COALESCED_MMIO: {
2107 		struct kvm_coalesced_mmio_zone zone;
2108 		r = -EFAULT;
2109 		if (copy_from_user(&zone, argp, sizeof zone))
2110 			goto out;
2111 		r = -ENXIO;
2112 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2113 		if (r)
2114 			goto out;
2115 		r = 0;
2116 		break;
2117 	}
2118 #endif
2119 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2120 	case KVM_ASSIGN_PCI_DEVICE: {
2121 		struct kvm_assigned_pci_dev assigned_dev;
2122 
2123 		r = -EFAULT;
2124 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2125 			goto out;
2126 		r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2127 		if (r)
2128 			goto out;
2129 		break;
2130 	}
2131 	case KVM_ASSIGN_IRQ: {
2132 		r = -EOPNOTSUPP;
2133 		break;
2134 	}
2135 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2136 	case KVM_ASSIGN_DEV_IRQ: {
2137 		struct kvm_assigned_irq assigned_irq;
2138 
2139 		r = -EFAULT;
2140 		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2141 			goto out;
2142 		r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2143 		if (r)
2144 			goto out;
2145 		break;
2146 	}
2147 	case KVM_DEASSIGN_DEV_IRQ: {
2148 		struct kvm_assigned_irq assigned_irq;
2149 
2150 		r = -EFAULT;
2151 		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2152 			goto out;
2153 		r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2154 		if (r)
2155 			goto out;
2156 		break;
2157 	}
2158 #endif
2159 #endif
2160 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2161 	case KVM_DEASSIGN_PCI_DEVICE: {
2162 		struct kvm_assigned_pci_dev assigned_dev;
2163 
2164 		r = -EFAULT;
2165 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2166 			goto out;
2167 		r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2168 		if (r)
2169 			goto out;
2170 		break;
2171 	}
2172 #endif
2173 #ifdef KVM_CAP_IRQ_ROUTING
2174 	case KVM_SET_GSI_ROUTING: {
2175 		struct kvm_irq_routing routing;
2176 		struct kvm_irq_routing __user *urouting;
2177 		struct kvm_irq_routing_entry *entries;
2178 
2179 		r = -EFAULT;
2180 		if (copy_from_user(&routing, argp, sizeof(routing)))
2181 			goto out;
2182 		r = -EINVAL;
2183 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2184 			goto out;
2185 		if (routing.flags)
2186 			goto out;
2187 		r = -ENOMEM;
2188 		entries = vmalloc(routing.nr * sizeof(*entries));
2189 		if (!entries)
2190 			goto out;
2191 		r = -EFAULT;
2192 		urouting = argp;
2193 		if (copy_from_user(entries, urouting->entries,
2194 				   routing.nr * sizeof(*entries)))
2195 			goto out_free_irq_routing;
2196 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2197 					routing.flags);
2198 	out_free_irq_routing:
2199 		vfree(entries);
2200 		break;
2201 	}
2202 #ifdef __KVM_HAVE_MSIX
2203 	case KVM_ASSIGN_SET_MSIX_NR: {
2204 		struct kvm_assigned_msix_nr entry_nr;
2205 		r = -EFAULT;
2206 		if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2207 			goto out;
2208 		r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2209 		if (r)
2210 			goto out;
2211 		break;
2212 	}
2213 	case KVM_ASSIGN_SET_MSIX_ENTRY: {
2214 		struct kvm_assigned_msix_entry entry;
2215 		r = -EFAULT;
2216 		if (copy_from_user(&entry, argp, sizeof entry))
2217 			goto out;
2218 		r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2219 		if (r)
2220 			goto out;
2221 		break;
2222 	}
2223 #endif
2224 #endif /* KVM_CAP_IRQ_ROUTING */
2225 	default:
2226 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2227 	}
2228 out:
2229 	return r;
2230 }
2231 
2232 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2233 {
2234 	struct page *page[1];
2235 	unsigned long addr;
2236 	int npages;
2237 	gfn_t gfn = vmf->pgoff;
2238 	struct kvm *kvm = vma->vm_file->private_data;
2239 
2240 	addr = gfn_to_hva(kvm, gfn);
2241 	if (kvm_is_error_hva(addr))
2242 		return VM_FAULT_SIGBUS;
2243 
2244 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2245 				NULL);
2246 	if (unlikely(npages != 1))
2247 		return VM_FAULT_SIGBUS;
2248 
2249 	vmf->page = page[0];
2250 	return 0;
2251 }
2252 
2253 static struct vm_operations_struct kvm_vm_vm_ops = {
2254 	.fault = kvm_vm_fault,
2255 };
2256 
2257 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2258 {
2259 	vma->vm_ops = &kvm_vm_vm_ops;
2260 	return 0;
2261 }
2262 
2263 static struct file_operations kvm_vm_fops = {
2264 	.release        = kvm_vm_release,
2265 	.unlocked_ioctl = kvm_vm_ioctl,
2266 	.compat_ioctl   = kvm_vm_ioctl,
2267 	.mmap           = kvm_vm_mmap,
2268 };
2269 
2270 static int kvm_dev_ioctl_create_vm(void)
2271 {
2272 	int fd;
2273 	struct kvm *kvm;
2274 
2275 	kvm = kvm_create_vm();
2276 	if (IS_ERR(kvm))
2277 		return PTR_ERR(kvm);
2278 	fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2279 	if (fd < 0)
2280 		kvm_put_kvm(kvm);
2281 
2282 	return fd;
2283 }
2284 
2285 static long kvm_dev_ioctl_check_extension_generic(long arg)
2286 {
2287 	switch (arg) {
2288 	case KVM_CAP_USER_MEMORY:
2289 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2290 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2291 		return 1;
2292 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2293 	case KVM_CAP_IRQ_ROUTING:
2294 		return KVM_MAX_IRQ_ROUTES;
2295 #endif
2296 	default:
2297 		break;
2298 	}
2299 	return kvm_dev_ioctl_check_extension(arg);
2300 }
2301 
2302 static long kvm_dev_ioctl(struct file *filp,
2303 			  unsigned int ioctl, unsigned long arg)
2304 {
2305 	long r = -EINVAL;
2306 
2307 	switch (ioctl) {
2308 	case KVM_GET_API_VERSION:
2309 		r = -EINVAL;
2310 		if (arg)
2311 			goto out;
2312 		r = KVM_API_VERSION;
2313 		break;
2314 	case KVM_CREATE_VM:
2315 		r = -EINVAL;
2316 		if (arg)
2317 			goto out;
2318 		r = kvm_dev_ioctl_create_vm();
2319 		break;
2320 	case KVM_CHECK_EXTENSION:
2321 		r = kvm_dev_ioctl_check_extension_generic(arg);
2322 		break;
2323 	case KVM_GET_VCPU_MMAP_SIZE:
2324 		r = -EINVAL;
2325 		if (arg)
2326 			goto out;
2327 		r = PAGE_SIZE;     /* struct kvm_run */
2328 #ifdef CONFIG_X86
2329 		r += PAGE_SIZE;    /* pio data page */
2330 #endif
2331 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2332 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2333 #endif
2334 		break;
2335 	case KVM_TRACE_ENABLE:
2336 	case KVM_TRACE_PAUSE:
2337 	case KVM_TRACE_DISABLE:
2338 		r = kvm_trace_ioctl(ioctl, arg);
2339 		break;
2340 	default:
2341 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2342 	}
2343 out:
2344 	return r;
2345 }
2346 
2347 static struct file_operations kvm_chardev_ops = {
2348 	.unlocked_ioctl = kvm_dev_ioctl,
2349 	.compat_ioctl   = kvm_dev_ioctl,
2350 };
2351 
2352 static struct miscdevice kvm_dev = {
2353 	KVM_MINOR,
2354 	"kvm",
2355 	&kvm_chardev_ops,
2356 };
2357 
2358 static void hardware_enable(void *junk)
2359 {
2360 	int cpu = raw_smp_processor_id();
2361 
2362 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2363 		return;
2364 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2365 	kvm_arch_hardware_enable(NULL);
2366 }
2367 
2368 static void hardware_disable(void *junk)
2369 {
2370 	int cpu = raw_smp_processor_id();
2371 
2372 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2373 		return;
2374 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2375 	kvm_arch_hardware_disable(NULL);
2376 }
2377 
2378 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2379 			   void *v)
2380 {
2381 	int cpu = (long)v;
2382 
2383 	val &= ~CPU_TASKS_FROZEN;
2384 	switch (val) {
2385 	case CPU_DYING:
2386 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2387 		       cpu);
2388 		hardware_disable(NULL);
2389 		break;
2390 	case CPU_UP_CANCELED:
2391 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2392 		       cpu);
2393 		smp_call_function_single(cpu, hardware_disable, NULL, 1);
2394 		break;
2395 	case CPU_ONLINE:
2396 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2397 		       cpu);
2398 		smp_call_function_single(cpu, hardware_enable, NULL, 1);
2399 		break;
2400 	}
2401 	return NOTIFY_OK;
2402 }
2403 
2404 
2405 asmlinkage void kvm_handle_fault_on_reboot(void)
2406 {
2407 	if (kvm_rebooting)
2408 		/* spin while reset goes on */
2409 		while (true)
2410 			;
2411 	/* Fault while not rebooting.  We want the trace. */
2412 	BUG();
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2415 
2416 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2417 		      void *v)
2418 {
2419 	/*
2420 	 * Some (well, at least mine) BIOSes hang on reboot if
2421 	 * in vmx root mode.
2422 	 *
2423 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2424 	 */
2425 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2426 	kvm_rebooting = true;
2427 	on_each_cpu(hardware_disable, NULL, 1);
2428 	return NOTIFY_OK;
2429 }
2430 
2431 static struct notifier_block kvm_reboot_notifier = {
2432 	.notifier_call = kvm_reboot,
2433 	.priority = 0,
2434 };
2435 
2436 void kvm_io_bus_init(struct kvm_io_bus *bus)
2437 {
2438 	memset(bus, 0, sizeof(*bus));
2439 }
2440 
2441 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2442 {
2443 	int i;
2444 
2445 	for (i = 0; i < bus->dev_count; i++) {
2446 		struct kvm_io_device *pos = bus->devs[i];
2447 
2448 		kvm_iodevice_destructor(pos);
2449 	}
2450 }
2451 
2452 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2453 					  gpa_t addr, int len, int is_write)
2454 {
2455 	int i;
2456 
2457 	for (i = 0; i < bus->dev_count; i++) {
2458 		struct kvm_io_device *pos = bus->devs[i];
2459 
2460 		if (pos->in_range(pos, addr, len, is_write))
2461 			return pos;
2462 	}
2463 
2464 	return NULL;
2465 }
2466 
2467 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2468 {
2469 	BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2470 
2471 	bus->devs[bus->dev_count++] = dev;
2472 }
2473 
2474 static struct notifier_block kvm_cpu_notifier = {
2475 	.notifier_call = kvm_cpu_hotplug,
2476 	.priority = 20, /* must be > scheduler priority */
2477 };
2478 
2479 static int vm_stat_get(void *_offset, u64 *val)
2480 {
2481 	unsigned offset = (long)_offset;
2482 	struct kvm *kvm;
2483 
2484 	*val = 0;
2485 	spin_lock(&kvm_lock);
2486 	list_for_each_entry(kvm, &vm_list, vm_list)
2487 		*val += *(u32 *)((void *)kvm + offset);
2488 	spin_unlock(&kvm_lock);
2489 	return 0;
2490 }
2491 
2492 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2493 
2494 static int vcpu_stat_get(void *_offset, u64 *val)
2495 {
2496 	unsigned offset = (long)_offset;
2497 	struct kvm *kvm;
2498 	struct kvm_vcpu *vcpu;
2499 	int i;
2500 
2501 	*val = 0;
2502 	spin_lock(&kvm_lock);
2503 	list_for_each_entry(kvm, &vm_list, vm_list)
2504 		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2505 			vcpu = kvm->vcpus[i];
2506 			if (vcpu)
2507 				*val += *(u32 *)((void *)vcpu + offset);
2508 		}
2509 	spin_unlock(&kvm_lock);
2510 	return 0;
2511 }
2512 
2513 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2514 
2515 static struct file_operations *stat_fops[] = {
2516 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2517 	[KVM_STAT_VM]   = &vm_stat_fops,
2518 };
2519 
2520 static void kvm_init_debug(void)
2521 {
2522 	struct kvm_stats_debugfs_item *p;
2523 
2524 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2525 	for (p = debugfs_entries; p->name; ++p)
2526 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2527 						(void *)(long)p->offset,
2528 						stat_fops[p->kind]);
2529 }
2530 
2531 static void kvm_exit_debug(void)
2532 {
2533 	struct kvm_stats_debugfs_item *p;
2534 
2535 	for (p = debugfs_entries; p->name; ++p)
2536 		debugfs_remove(p->dentry);
2537 	debugfs_remove(kvm_debugfs_dir);
2538 }
2539 
2540 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2541 {
2542 	hardware_disable(NULL);
2543 	return 0;
2544 }
2545 
2546 static int kvm_resume(struct sys_device *dev)
2547 {
2548 	hardware_enable(NULL);
2549 	return 0;
2550 }
2551 
2552 static struct sysdev_class kvm_sysdev_class = {
2553 	.name = "kvm",
2554 	.suspend = kvm_suspend,
2555 	.resume = kvm_resume,
2556 };
2557 
2558 static struct sys_device kvm_sysdev = {
2559 	.id = 0,
2560 	.cls = &kvm_sysdev_class,
2561 };
2562 
2563 struct page *bad_page;
2564 pfn_t bad_pfn;
2565 
2566 static inline
2567 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2568 {
2569 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2570 }
2571 
2572 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2573 {
2574 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2575 
2576 	kvm_arch_vcpu_load(vcpu, cpu);
2577 }
2578 
2579 static void kvm_sched_out(struct preempt_notifier *pn,
2580 			  struct task_struct *next)
2581 {
2582 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2583 
2584 	kvm_arch_vcpu_put(vcpu);
2585 }
2586 
2587 int kvm_init(void *opaque, unsigned int vcpu_size,
2588 		  struct module *module)
2589 {
2590 	int r;
2591 	int cpu;
2592 
2593 	kvm_init_debug();
2594 
2595 	r = kvm_arch_init(opaque);
2596 	if (r)
2597 		goto out_fail;
2598 
2599 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2600 
2601 	if (bad_page == NULL) {
2602 		r = -ENOMEM;
2603 		goto out;
2604 	}
2605 
2606 	bad_pfn = page_to_pfn(bad_page);
2607 
2608 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2609 		r = -ENOMEM;
2610 		goto out_free_0;
2611 	}
2612 
2613 	r = kvm_arch_hardware_setup();
2614 	if (r < 0)
2615 		goto out_free_0a;
2616 
2617 	for_each_online_cpu(cpu) {
2618 		smp_call_function_single(cpu,
2619 				kvm_arch_check_processor_compat,
2620 				&r, 1);
2621 		if (r < 0)
2622 			goto out_free_1;
2623 	}
2624 
2625 	on_each_cpu(hardware_enable, NULL, 1);
2626 	r = register_cpu_notifier(&kvm_cpu_notifier);
2627 	if (r)
2628 		goto out_free_2;
2629 	register_reboot_notifier(&kvm_reboot_notifier);
2630 
2631 	r = sysdev_class_register(&kvm_sysdev_class);
2632 	if (r)
2633 		goto out_free_3;
2634 
2635 	r = sysdev_register(&kvm_sysdev);
2636 	if (r)
2637 		goto out_free_4;
2638 
2639 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2640 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2641 					   __alignof__(struct kvm_vcpu),
2642 					   0, NULL);
2643 	if (!kvm_vcpu_cache) {
2644 		r = -ENOMEM;
2645 		goto out_free_5;
2646 	}
2647 
2648 	kvm_chardev_ops.owner = module;
2649 	kvm_vm_fops.owner = module;
2650 	kvm_vcpu_fops.owner = module;
2651 
2652 	r = misc_register(&kvm_dev);
2653 	if (r) {
2654 		printk(KERN_ERR "kvm: misc device register failed\n");
2655 		goto out_free;
2656 	}
2657 
2658 	kvm_preempt_ops.sched_in = kvm_sched_in;
2659 	kvm_preempt_ops.sched_out = kvm_sched_out;
2660 
2661 	return 0;
2662 
2663 out_free:
2664 	kmem_cache_destroy(kvm_vcpu_cache);
2665 out_free_5:
2666 	sysdev_unregister(&kvm_sysdev);
2667 out_free_4:
2668 	sysdev_class_unregister(&kvm_sysdev_class);
2669 out_free_3:
2670 	unregister_reboot_notifier(&kvm_reboot_notifier);
2671 	unregister_cpu_notifier(&kvm_cpu_notifier);
2672 out_free_2:
2673 	on_each_cpu(hardware_disable, NULL, 1);
2674 out_free_1:
2675 	kvm_arch_hardware_unsetup();
2676 out_free_0a:
2677 	free_cpumask_var(cpus_hardware_enabled);
2678 out_free_0:
2679 	__free_page(bad_page);
2680 out:
2681 	kvm_arch_exit();
2682 	kvm_exit_debug();
2683 out_fail:
2684 	return r;
2685 }
2686 EXPORT_SYMBOL_GPL(kvm_init);
2687 
2688 void kvm_exit(void)
2689 {
2690 	kvm_trace_cleanup();
2691 	misc_deregister(&kvm_dev);
2692 	kmem_cache_destroy(kvm_vcpu_cache);
2693 	sysdev_unregister(&kvm_sysdev);
2694 	sysdev_class_unregister(&kvm_sysdev_class);
2695 	unregister_reboot_notifier(&kvm_reboot_notifier);
2696 	unregister_cpu_notifier(&kvm_cpu_notifier);
2697 	on_each_cpu(hardware_disable, NULL, 1);
2698 	kvm_arch_hardware_unsetup();
2699 	kvm_arch_exit();
2700 	kvm_exit_debug();
2701 	free_cpumask_var(cpus_hardware_enabled);
2702 	__free_page(bad_page);
2703 }
2704 EXPORT_SYMBOL_GPL(kvm_exit);
2705