xref: /linux/virt/kvm/kvm_main.c (revision 58154dbda4345299bff30eb78cbce6bc6dafcf84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
315 {
316 	struct kvm_vcpu *vcpu;
317 	struct cpumask *cpus;
318 	unsigned long i;
319 	bool called;
320 	int me;
321 
322 	me = get_cpu();
323 
324 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
325 	cpumask_clear(cpus);
326 
327 	kvm_for_each_vcpu(i, vcpu, kvm)
328 		kvm_make_vcpu_request(vcpu, req, cpus, me);
329 
330 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
331 	put_cpu();
332 
333 	return called;
334 }
335 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
336 
337 void kvm_flush_remote_tlbs(struct kvm *kvm)
338 {
339 	++kvm->stat.generic.remote_tlb_flush_requests;
340 
341 	/*
342 	 * We want to publish modifications to the page tables before reading
343 	 * mode. Pairs with a memory barrier in arch-specific code.
344 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
345 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
346 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
347 	 *
348 	 * There is already an smp_mb__after_atomic() before
349 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
350 	 * barrier here.
351 	 */
352 	if (!kvm_arch_flush_remote_tlbs(kvm)
353 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
354 		++kvm->stat.generic.remote_tlb_flush;
355 }
356 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
357 
358 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
359 {
360 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
361 		return;
362 
363 	/*
364 	 * Fall back to a flushing entire TLBs if the architecture range-based
365 	 * TLB invalidation is unsupported or can't be performed for whatever
366 	 * reason.
367 	 */
368 	kvm_flush_remote_tlbs(kvm);
369 }
370 
371 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
372 				   const struct kvm_memory_slot *memslot)
373 {
374 	/*
375 	 * All current use cases for flushing the TLBs for a specific memslot
376 	 * are related to dirty logging, and many do the TLB flush out of
377 	 * mmu_lock. The interaction between the various operations on memslot
378 	 * must be serialized by slots_locks to ensure the TLB flush from one
379 	 * operation is observed by any other operation on the same memslot.
380 	 */
381 	lockdep_assert_held(&kvm->slots_lock);
382 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
383 }
384 
385 static void kvm_flush_shadow_all(struct kvm *kvm)
386 {
387 	kvm_arch_flush_shadow_all(kvm);
388 	kvm_arch_guest_memory_reclaimed(kvm);
389 }
390 
391 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
392 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
393 					       gfp_t gfp_flags)
394 {
395 	void *page;
396 
397 	gfp_flags |= mc->gfp_zero;
398 
399 	if (mc->kmem_cache)
400 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
401 
402 	page = (void *)__get_free_page(gfp_flags);
403 	if (page && mc->init_value)
404 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
405 	return page;
406 }
407 
408 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
409 {
410 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
411 	void *obj;
412 
413 	if (mc->nobjs >= min)
414 		return 0;
415 
416 	if (unlikely(!mc->objects)) {
417 		if (WARN_ON_ONCE(!capacity))
418 			return -EIO;
419 
420 		/*
421 		 * Custom init values can be used only for page allocations,
422 		 * and obviously conflict with __GFP_ZERO.
423 		 */
424 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
425 			return -EIO;
426 
427 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
428 		if (!mc->objects)
429 			return -ENOMEM;
430 
431 		mc->capacity = capacity;
432 	}
433 
434 	/* It is illegal to request a different capacity across topups. */
435 	if (WARN_ON_ONCE(mc->capacity != capacity))
436 		return -EIO;
437 
438 	while (mc->nobjs < mc->capacity) {
439 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
440 		if (!obj)
441 			return mc->nobjs >= min ? 0 : -ENOMEM;
442 		mc->objects[mc->nobjs++] = obj;
443 	}
444 	return 0;
445 }
446 
447 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
448 {
449 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
450 }
451 
452 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
453 {
454 	return mc->nobjs;
455 }
456 
457 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
458 {
459 	while (mc->nobjs) {
460 		if (mc->kmem_cache)
461 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
462 		else
463 			free_page((unsigned long)mc->objects[--mc->nobjs]);
464 	}
465 
466 	kvfree(mc->objects);
467 
468 	mc->objects = NULL;
469 	mc->capacity = 0;
470 }
471 
472 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
473 {
474 	void *p;
475 
476 	if (WARN_ON(!mc->nobjs))
477 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
478 	else
479 		p = mc->objects[--mc->nobjs];
480 	BUG_ON(!p);
481 	return p;
482 }
483 #endif
484 
485 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
486 {
487 	mutex_init(&vcpu->mutex);
488 	vcpu->cpu = -1;
489 	vcpu->kvm = kvm;
490 	vcpu->vcpu_id = id;
491 	vcpu->pid = NULL;
492 #ifndef __KVM_HAVE_ARCH_WQP
493 	rcuwait_init(&vcpu->wait);
494 #endif
495 	kvm_async_pf_vcpu_init(vcpu);
496 
497 	kvm_vcpu_set_in_spin_loop(vcpu, false);
498 	kvm_vcpu_set_dy_eligible(vcpu, false);
499 	vcpu->preempted = false;
500 	vcpu->ready = false;
501 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
502 	vcpu->last_used_slot = NULL;
503 
504 	/* Fill the stats id string for the vcpu */
505 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
506 		 task_pid_nr(current), id);
507 }
508 
509 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
510 {
511 	kvm_arch_vcpu_destroy(vcpu);
512 	kvm_dirty_ring_free(&vcpu->dirty_ring);
513 
514 	/*
515 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
516 	 * the vcpu->pid pointer, and at destruction time all file descriptors
517 	 * are already gone.
518 	 */
519 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
520 
521 	free_page((unsigned long)vcpu->run);
522 	kmem_cache_free(kvm_vcpu_cache, vcpu);
523 }
524 
525 void kvm_destroy_vcpus(struct kvm *kvm)
526 {
527 	unsigned long i;
528 	struct kvm_vcpu *vcpu;
529 
530 	kvm_for_each_vcpu(i, vcpu, kvm) {
531 		kvm_vcpu_destroy(vcpu);
532 		xa_erase(&kvm->vcpu_array, i);
533 	}
534 
535 	atomic_set(&kvm->online_vcpus, 0);
536 }
537 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
538 
539 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
540 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
541 {
542 	return container_of(mn, struct kvm, mmu_notifier);
543 }
544 
545 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
546 
547 typedef void (*on_lock_fn_t)(struct kvm *kvm);
548 
549 struct kvm_mmu_notifier_range {
550 	/*
551 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
552 	 * addresses (unsigned long) and guest physical addresses (64-bit).
553 	 */
554 	u64 start;
555 	u64 end;
556 	union kvm_mmu_notifier_arg arg;
557 	gfn_handler_t handler;
558 	on_lock_fn_t on_lock;
559 	bool flush_on_ret;
560 	bool may_block;
561 };
562 
563 /*
564  * The inner-most helper returns a tuple containing the return value from the
565  * arch- and action-specific handler, plus a flag indicating whether or not at
566  * least one memslot was found, i.e. if the handler found guest memory.
567  *
568  * Note, most notifiers are averse to booleans, so even though KVM tracks the
569  * return from arch code as a bool, outer helpers will cast it to an int. :-(
570  */
571 typedef struct kvm_mmu_notifier_return {
572 	bool ret;
573 	bool found_memslot;
574 } kvm_mn_ret_t;
575 
576 /*
577  * Use a dedicated stub instead of NULL to indicate that there is no callback
578  * function/handler.  The compiler technically can't guarantee that a real
579  * function will have a non-zero address, and so it will generate code to
580  * check for !NULL, whereas comparing against a stub will be elided at compile
581  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
582  */
583 static void kvm_null_fn(void)
584 {
585 
586 }
587 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
588 
589 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
590 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
591 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
592 	     node;							     \
593 	     node = interval_tree_iter_next(node, start, last))	     \
594 
595 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
596 							   const struct kvm_mmu_notifier_range *range)
597 {
598 	struct kvm_mmu_notifier_return r = {
599 		.ret = false,
600 		.found_memslot = false,
601 	};
602 	struct kvm_gfn_range gfn_range;
603 	struct kvm_memory_slot *slot;
604 	struct kvm_memslots *slots;
605 	int i, idx;
606 
607 	if (WARN_ON_ONCE(range->end <= range->start))
608 		return r;
609 
610 	/* A null handler is allowed if and only if on_lock() is provided. */
611 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
612 			 IS_KVM_NULL_FN(range->handler)))
613 		return r;
614 
615 	idx = srcu_read_lock(&kvm->srcu);
616 
617 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
618 		struct interval_tree_node *node;
619 
620 		slots = __kvm_memslots(kvm, i);
621 		kvm_for_each_memslot_in_hva_range(node, slots,
622 						  range->start, range->end - 1) {
623 			unsigned long hva_start, hva_end;
624 
625 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
626 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
627 			hva_end = min_t(unsigned long, range->end,
628 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
629 
630 			/*
631 			 * To optimize for the likely case where the address
632 			 * range is covered by zero or one memslots, don't
633 			 * bother making these conditional (to avoid writes on
634 			 * the second or later invocation of the handler).
635 			 */
636 			gfn_range.arg = range->arg;
637 			gfn_range.may_block = range->may_block;
638 
639 			/*
640 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
641 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
642 			 */
643 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
644 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
645 			gfn_range.slot = slot;
646 
647 			if (!r.found_memslot) {
648 				r.found_memslot = true;
649 				KVM_MMU_LOCK(kvm);
650 				if (!IS_KVM_NULL_FN(range->on_lock))
651 					range->on_lock(kvm);
652 
653 				if (IS_KVM_NULL_FN(range->handler))
654 					break;
655 			}
656 			r.ret |= range->handler(kvm, &gfn_range);
657 		}
658 	}
659 
660 	if (range->flush_on_ret && r.ret)
661 		kvm_flush_remote_tlbs(kvm);
662 
663 	if (r.found_memslot)
664 		KVM_MMU_UNLOCK(kvm);
665 
666 	srcu_read_unlock(&kvm->srcu, idx);
667 
668 	return r;
669 }
670 
671 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
672 						unsigned long start,
673 						unsigned long end,
674 						gfn_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_mmu_notifier_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.handler	= handler,
681 		.on_lock	= (void *)kvm_null_fn,
682 		.flush_on_ret	= true,
683 		.may_block	= false,
684 	};
685 
686 	return __kvm_handle_hva_range(kvm, &range).ret;
687 }
688 
689 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
690 							 unsigned long start,
691 							 unsigned long end,
692 							 gfn_handler_t handler)
693 {
694 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
695 	const struct kvm_mmu_notifier_range range = {
696 		.start		= start,
697 		.end		= end,
698 		.handler	= handler,
699 		.on_lock	= (void *)kvm_null_fn,
700 		.flush_on_ret	= false,
701 		.may_block	= false,
702 	};
703 
704 	return __kvm_handle_hva_range(kvm, &range).ret;
705 }
706 
707 void kvm_mmu_invalidate_begin(struct kvm *kvm)
708 {
709 	lockdep_assert_held_write(&kvm->mmu_lock);
710 	/*
711 	 * The count increase must become visible at unlock time as no
712 	 * spte can be established without taking the mmu_lock and
713 	 * count is also read inside the mmu_lock critical section.
714 	 */
715 	kvm->mmu_invalidate_in_progress++;
716 
717 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
718 		kvm->mmu_invalidate_range_start = INVALID_GPA;
719 		kvm->mmu_invalidate_range_end = INVALID_GPA;
720 	}
721 }
722 
723 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
724 {
725 	lockdep_assert_held_write(&kvm->mmu_lock);
726 
727 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
728 
729 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
730 		kvm->mmu_invalidate_range_start = start;
731 		kvm->mmu_invalidate_range_end = end;
732 	} else {
733 		/*
734 		 * Fully tracking multiple concurrent ranges has diminishing
735 		 * returns. Keep things simple and just find the minimal range
736 		 * which includes the current and new ranges. As there won't be
737 		 * enough information to subtract a range after its invalidate
738 		 * completes, any ranges invalidated concurrently will
739 		 * accumulate and persist until all outstanding invalidates
740 		 * complete.
741 		 */
742 		kvm->mmu_invalidate_range_start =
743 			min(kvm->mmu_invalidate_range_start, start);
744 		kvm->mmu_invalidate_range_end =
745 			max(kvm->mmu_invalidate_range_end, end);
746 	}
747 }
748 
749 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
750 {
751 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
752 	return kvm_unmap_gfn_range(kvm, range);
753 }
754 
755 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
756 					const struct mmu_notifier_range *range)
757 {
758 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
759 	const struct kvm_mmu_notifier_range hva_range = {
760 		.start		= range->start,
761 		.end		= range->end,
762 		.handler	= kvm_mmu_unmap_gfn_range,
763 		.on_lock	= kvm_mmu_invalidate_begin,
764 		.flush_on_ret	= true,
765 		.may_block	= mmu_notifier_range_blockable(range),
766 	};
767 
768 	trace_kvm_unmap_hva_range(range->start, range->end);
769 
770 	/*
771 	 * Prevent memslot modification between range_start() and range_end()
772 	 * so that conditionally locking provides the same result in both
773 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
774 	 * adjustments will be imbalanced.
775 	 *
776 	 * Pairs with the decrement in range_end().
777 	 */
778 	spin_lock(&kvm->mn_invalidate_lock);
779 	kvm->mn_active_invalidate_count++;
780 	spin_unlock(&kvm->mn_invalidate_lock);
781 
782 	/*
783 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
784 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
785 	 * each cache's lock.  There are relatively few caches in existence at
786 	 * any given time, and the caches themselves can check for hva overlap,
787 	 * i.e. don't need to rely on memslot overlap checks for performance.
788 	 * Because this runs without holding mmu_lock, the pfn caches must use
789 	 * mn_active_invalidate_count (see above) instead of
790 	 * mmu_invalidate_in_progress.
791 	 */
792 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
793 
794 	/*
795 	 * If one or more memslots were found and thus zapped, notify arch code
796 	 * that guest memory has been reclaimed.  This needs to be done *after*
797 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
798 	 */
799 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
800 		kvm_arch_guest_memory_reclaimed(kvm);
801 
802 	return 0;
803 }
804 
805 void kvm_mmu_invalidate_end(struct kvm *kvm)
806 {
807 	lockdep_assert_held_write(&kvm->mmu_lock);
808 
809 	/*
810 	 * This sequence increase will notify the kvm page fault that
811 	 * the page that is going to be mapped in the spte could have
812 	 * been freed.
813 	 */
814 	kvm->mmu_invalidate_seq++;
815 	smp_wmb();
816 	/*
817 	 * The above sequence increase must be visible before the
818 	 * below count decrease, which is ensured by the smp_wmb above
819 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
820 	 */
821 	kvm->mmu_invalidate_in_progress--;
822 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
823 
824 	/*
825 	 * Assert that at least one range was added between start() and end().
826 	 * Not adding a range isn't fatal, but it is a KVM bug.
827 	 */
828 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
829 }
830 
831 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
832 					const struct mmu_notifier_range *range)
833 {
834 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
835 	const struct kvm_mmu_notifier_range hva_range = {
836 		.start		= range->start,
837 		.end		= range->end,
838 		.handler	= (void *)kvm_null_fn,
839 		.on_lock	= kvm_mmu_invalidate_end,
840 		.flush_on_ret	= false,
841 		.may_block	= mmu_notifier_range_blockable(range),
842 	};
843 	bool wake;
844 
845 	__kvm_handle_hva_range(kvm, &hva_range);
846 
847 	/* Pairs with the increment in range_start(). */
848 	spin_lock(&kvm->mn_invalidate_lock);
849 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
850 		--kvm->mn_active_invalidate_count;
851 	wake = !kvm->mn_active_invalidate_count;
852 	spin_unlock(&kvm->mn_invalidate_lock);
853 
854 	/*
855 	 * There can only be one waiter, since the wait happens under
856 	 * slots_lock.
857 	 */
858 	if (wake)
859 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
860 }
861 
862 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
863 					      struct mm_struct *mm,
864 					      unsigned long start,
865 					      unsigned long end)
866 {
867 	trace_kvm_age_hva(start, end);
868 
869 	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
870 }
871 
872 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
873 					struct mm_struct *mm,
874 					unsigned long start,
875 					unsigned long end)
876 {
877 	trace_kvm_age_hva(start, end);
878 
879 	/*
880 	 * Even though we do not flush TLB, this will still adversely
881 	 * affect performance on pre-Haswell Intel EPT, where there is
882 	 * no EPT Access Bit to clear so that we have to tear down EPT
883 	 * tables instead. If we find this unacceptable, we can always
884 	 * add a parameter to kvm_age_hva so that it effectively doesn't
885 	 * do anything on clear_young.
886 	 *
887 	 * Also note that currently we never issue secondary TLB flushes
888 	 * from clear_young, leaving this job up to the regular system
889 	 * cadence. If we find this inaccurate, we might come up with a
890 	 * more sophisticated heuristic later.
891 	 */
892 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
893 }
894 
895 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
896 				       struct mm_struct *mm,
897 				       unsigned long address)
898 {
899 	trace_kvm_test_age_hva(address);
900 
901 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
902 					     kvm_test_age_gfn);
903 }
904 
905 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
906 				     struct mm_struct *mm)
907 {
908 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
909 	int idx;
910 
911 	idx = srcu_read_lock(&kvm->srcu);
912 	kvm_flush_shadow_all(kvm);
913 	srcu_read_unlock(&kvm->srcu, idx);
914 }
915 
916 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
917 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
918 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
919 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
920 	.clear_young		= kvm_mmu_notifier_clear_young,
921 	.test_young		= kvm_mmu_notifier_test_young,
922 	.release		= kvm_mmu_notifier_release,
923 };
924 
925 static int kvm_init_mmu_notifier(struct kvm *kvm)
926 {
927 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
928 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
929 }
930 
931 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
932 
933 static int kvm_init_mmu_notifier(struct kvm *kvm)
934 {
935 	return 0;
936 }
937 
938 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
939 
940 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
941 static int kvm_pm_notifier_call(struct notifier_block *bl,
942 				unsigned long state,
943 				void *unused)
944 {
945 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
946 
947 	return kvm_arch_pm_notifier(kvm, state);
948 }
949 
950 static void kvm_init_pm_notifier(struct kvm *kvm)
951 {
952 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
953 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
954 	kvm->pm_notifier.priority = INT_MAX;
955 	register_pm_notifier(&kvm->pm_notifier);
956 }
957 
958 static void kvm_destroy_pm_notifier(struct kvm *kvm)
959 {
960 	unregister_pm_notifier(&kvm->pm_notifier);
961 }
962 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
963 static void kvm_init_pm_notifier(struct kvm *kvm)
964 {
965 }
966 
967 static void kvm_destroy_pm_notifier(struct kvm *kvm)
968 {
969 }
970 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
971 
972 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
973 {
974 	if (!memslot->dirty_bitmap)
975 		return;
976 
977 	vfree(memslot->dirty_bitmap);
978 	memslot->dirty_bitmap = NULL;
979 }
980 
981 /* This does not remove the slot from struct kvm_memslots data structures */
982 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
983 {
984 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
985 		kvm_gmem_unbind(slot);
986 
987 	kvm_destroy_dirty_bitmap(slot);
988 
989 	kvm_arch_free_memslot(kvm, slot);
990 
991 	kfree(slot);
992 }
993 
994 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
995 {
996 	struct hlist_node *idnode;
997 	struct kvm_memory_slot *memslot;
998 	int bkt;
999 
1000 	/*
1001 	 * The same memslot objects live in both active and inactive sets,
1002 	 * arbitrarily free using index '1' so the second invocation of this
1003 	 * function isn't operating over a structure with dangling pointers
1004 	 * (even though this function isn't actually touching them).
1005 	 */
1006 	if (!slots->node_idx)
1007 		return;
1008 
1009 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1010 		kvm_free_memslot(kvm, memslot);
1011 }
1012 
1013 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1014 {
1015 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1016 	case KVM_STATS_TYPE_INSTANT:
1017 		return 0444;
1018 	case KVM_STATS_TYPE_CUMULATIVE:
1019 	case KVM_STATS_TYPE_PEAK:
1020 	default:
1021 		return 0644;
1022 	}
1023 }
1024 
1025 
1026 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1027 {
1028 	int i;
1029 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030 				      kvm_vcpu_stats_header.num_desc;
1031 
1032 	if (IS_ERR(kvm->debugfs_dentry))
1033 		return;
1034 
1035 	debugfs_remove_recursive(kvm->debugfs_dentry);
1036 
1037 	if (kvm->debugfs_stat_data) {
1038 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1039 			kfree(kvm->debugfs_stat_data[i]);
1040 		kfree(kvm->debugfs_stat_data);
1041 	}
1042 }
1043 
1044 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1045 {
1046 	static DEFINE_MUTEX(kvm_debugfs_lock);
1047 	struct dentry *dent;
1048 	char dir_name[ITOA_MAX_LEN * 2];
1049 	struct kvm_stat_data *stat_data;
1050 	const struct _kvm_stats_desc *pdesc;
1051 	int i, ret = -ENOMEM;
1052 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1053 				      kvm_vcpu_stats_header.num_desc;
1054 
1055 	if (!debugfs_initialized())
1056 		return 0;
1057 
1058 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1059 	mutex_lock(&kvm_debugfs_lock);
1060 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1061 	if (dent) {
1062 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1063 		dput(dent);
1064 		mutex_unlock(&kvm_debugfs_lock);
1065 		return 0;
1066 	}
1067 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1068 	mutex_unlock(&kvm_debugfs_lock);
1069 	if (IS_ERR(dent))
1070 		return 0;
1071 
1072 	kvm->debugfs_dentry = dent;
1073 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1074 					 sizeof(*kvm->debugfs_stat_data),
1075 					 GFP_KERNEL_ACCOUNT);
1076 	if (!kvm->debugfs_stat_data)
1077 		goto out_err;
1078 
1079 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1080 		pdesc = &kvm_vm_stats_desc[i];
1081 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1082 		if (!stat_data)
1083 			goto out_err;
1084 
1085 		stat_data->kvm = kvm;
1086 		stat_data->desc = pdesc;
1087 		stat_data->kind = KVM_STAT_VM;
1088 		kvm->debugfs_stat_data[i] = stat_data;
1089 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1090 				    kvm->debugfs_dentry, stat_data,
1091 				    &stat_fops_per_vm);
1092 	}
1093 
1094 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1095 		pdesc = &kvm_vcpu_stats_desc[i];
1096 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1097 		if (!stat_data)
1098 			goto out_err;
1099 
1100 		stat_data->kvm = kvm;
1101 		stat_data->desc = pdesc;
1102 		stat_data->kind = KVM_STAT_VCPU;
1103 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1104 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1105 				    kvm->debugfs_dentry, stat_data,
1106 				    &stat_fops_per_vm);
1107 	}
1108 
1109 	kvm_arch_create_vm_debugfs(kvm);
1110 	return 0;
1111 out_err:
1112 	kvm_destroy_vm_debugfs(kvm);
1113 	return ret;
1114 }
1115 
1116 /*
1117  * Called after the VM is otherwise initialized, but just before adding it to
1118  * the vm_list.
1119  */
1120 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1121 {
1122 	return 0;
1123 }
1124 
1125 /*
1126  * Called just after removing the VM from the vm_list, but before doing any
1127  * other destruction.
1128  */
1129 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1130 {
1131 }
1132 
1133 /*
1134  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1135  * be setup already, so we can create arch-specific debugfs entries under it.
1136  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1137  * a per-arch destroy interface is not needed.
1138  */
1139 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1140 {
1141 }
1142 
1143 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1144 {
1145 	struct kvm *kvm = kvm_arch_alloc_vm();
1146 	struct kvm_memslots *slots;
1147 	int r = -ENOMEM;
1148 	int i, j;
1149 
1150 	if (!kvm)
1151 		return ERR_PTR(-ENOMEM);
1152 
1153 	KVM_MMU_LOCK_INIT(kvm);
1154 	mmgrab(current->mm);
1155 	kvm->mm = current->mm;
1156 	kvm_eventfd_init(kvm);
1157 	mutex_init(&kvm->lock);
1158 	mutex_init(&kvm->irq_lock);
1159 	mutex_init(&kvm->slots_lock);
1160 	mutex_init(&kvm->slots_arch_lock);
1161 	spin_lock_init(&kvm->mn_invalidate_lock);
1162 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1163 	xa_init(&kvm->vcpu_array);
1164 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1165 	xa_init(&kvm->mem_attr_array);
1166 #endif
1167 
1168 	INIT_LIST_HEAD(&kvm->gpc_list);
1169 	spin_lock_init(&kvm->gpc_lock);
1170 
1171 	INIT_LIST_HEAD(&kvm->devices);
1172 	kvm->max_vcpus = KVM_MAX_VCPUS;
1173 
1174 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1175 
1176 	/*
1177 	 * Force subsequent debugfs file creations to fail if the VM directory
1178 	 * is not created (by kvm_create_vm_debugfs()).
1179 	 */
1180 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1181 
1182 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1183 		 task_pid_nr(current));
1184 
1185 	if (init_srcu_struct(&kvm->srcu))
1186 		goto out_err_no_srcu;
1187 	if (init_srcu_struct(&kvm->irq_srcu))
1188 		goto out_err_no_irq_srcu;
1189 
1190 	refcount_set(&kvm->users_count, 1);
1191 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1192 		for (j = 0; j < 2; j++) {
1193 			slots = &kvm->__memslots[i][j];
1194 
1195 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1196 			slots->hva_tree = RB_ROOT_CACHED;
1197 			slots->gfn_tree = RB_ROOT;
1198 			hash_init(slots->id_hash);
1199 			slots->node_idx = j;
1200 
1201 			/* Generations must be different for each address space. */
1202 			slots->generation = i;
1203 		}
1204 
1205 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1206 	}
1207 
1208 	for (i = 0; i < KVM_NR_BUSES; i++) {
1209 		rcu_assign_pointer(kvm->buses[i],
1210 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1211 		if (!kvm->buses[i])
1212 			goto out_err_no_arch_destroy_vm;
1213 	}
1214 
1215 	r = kvm_arch_init_vm(kvm, type);
1216 	if (r)
1217 		goto out_err_no_arch_destroy_vm;
1218 
1219 	r = hardware_enable_all();
1220 	if (r)
1221 		goto out_err_no_disable;
1222 
1223 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1224 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1225 #endif
1226 
1227 	r = kvm_init_mmu_notifier(kvm);
1228 	if (r)
1229 		goto out_err_no_mmu_notifier;
1230 
1231 	r = kvm_coalesced_mmio_init(kvm);
1232 	if (r < 0)
1233 		goto out_no_coalesced_mmio;
1234 
1235 	r = kvm_create_vm_debugfs(kvm, fdname);
1236 	if (r)
1237 		goto out_err_no_debugfs;
1238 
1239 	r = kvm_arch_post_init_vm(kvm);
1240 	if (r)
1241 		goto out_err;
1242 
1243 	mutex_lock(&kvm_lock);
1244 	list_add(&kvm->vm_list, &vm_list);
1245 	mutex_unlock(&kvm_lock);
1246 
1247 	preempt_notifier_inc();
1248 	kvm_init_pm_notifier(kvm);
1249 
1250 	return kvm;
1251 
1252 out_err:
1253 	kvm_destroy_vm_debugfs(kvm);
1254 out_err_no_debugfs:
1255 	kvm_coalesced_mmio_free(kvm);
1256 out_no_coalesced_mmio:
1257 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1258 	if (kvm->mmu_notifier.ops)
1259 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1260 #endif
1261 out_err_no_mmu_notifier:
1262 	hardware_disable_all();
1263 out_err_no_disable:
1264 	kvm_arch_destroy_vm(kvm);
1265 out_err_no_arch_destroy_vm:
1266 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1267 	for (i = 0; i < KVM_NR_BUSES; i++)
1268 		kfree(kvm_get_bus(kvm, i));
1269 	cleanup_srcu_struct(&kvm->irq_srcu);
1270 out_err_no_irq_srcu:
1271 	cleanup_srcu_struct(&kvm->srcu);
1272 out_err_no_srcu:
1273 	kvm_arch_free_vm(kvm);
1274 	mmdrop(current->mm);
1275 	return ERR_PTR(r);
1276 }
1277 
1278 static void kvm_destroy_devices(struct kvm *kvm)
1279 {
1280 	struct kvm_device *dev, *tmp;
1281 
1282 	/*
1283 	 * We do not need to take the kvm->lock here, because nobody else
1284 	 * has a reference to the struct kvm at this point and therefore
1285 	 * cannot access the devices list anyhow.
1286 	 *
1287 	 * The device list is generally managed as an rculist, but list_del()
1288 	 * is used intentionally here. If a bug in KVM introduced a reader that
1289 	 * was not backed by a reference on the kvm struct, the hope is that
1290 	 * it'd consume the poisoned forward pointer instead of suffering a
1291 	 * use-after-free, even though this cannot be guaranteed.
1292 	 */
1293 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1294 		list_del(&dev->vm_node);
1295 		dev->ops->destroy(dev);
1296 	}
1297 }
1298 
1299 static void kvm_destroy_vm(struct kvm *kvm)
1300 {
1301 	int i;
1302 	struct mm_struct *mm = kvm->mm;
1303 
1304 	kvm_destroy_pm_notifier(kvm);
1305 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1306 	kvm_destroy_vm_debugfs(kvm);
1307 	kvm_arch_sync_events(kvm);
1308 	mutex_lock(&kvm_lock);
1309 	list_del(&kvm->vm_list);
1310 	mutex_unlock(&kvm_lock);
1311 	kvm_arch_pre_destroy_vm(kvm);
1312 
1313 	kvm_free_irq_routing(kvm);
1314 	for (i = 0; i < KVM_NR_BUSES; i++) {
1315 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1316 
1317 		if (bus)
1318 			kvm_io_bus_destroy(bus);
1319 		kvm->buses[i] = NULL;
1320 	}
1321 	kvm_coalesced_mmio_free(kvm);
1322 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1323 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1324 	/*
1325 	 * At this point, pending calls to invalidate_range_start()
1326 	 * have completed but no more MMU notifiers will run, so
1327 	 * mn_active_invalidate_count may remain unbalanced.
1328 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1329 	 * last reference on KVM has been dropped, but freeing
1330 	 * memslots would deadlock without this manual intervention.
1331 	 *
1332 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1333 	 * notifier between a start() and end(), then there shouldn't be any
1334 	 * in-progress invalidations.
1335 	 */
1336 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1337 	if (kvm->mn_active_invalidate_count)
1338 		kvm->mn_active_invalidate_count = 0;
1339 	else
1340 		WARN_ON(kvm->mmu_invalidate_in_progress);
1341 #else
1342 	kvm_flush_shadow_all(kvm);
1343 #endif
1344 	kvm_arch_destroy_vm(kvm);
1345 	kvm_destroy_devices(kvm);
1346 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1347 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1348 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1349 	}
1350 	cleanup_srcu_struct(&kvm->irq_srcu);
1351 	cleanup_srcu_struct(&kvm->srcu);
1352 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1353 	xa_destroy(&kvm->mem_attr_array);
1354 #endif
1355 	kvm_arch_free_vm(kvm);
1356 	preempt_notifier_dec();
1357 	hardware_disable_all();
1358 	mmdrop(mm);
1359 }
1360 
1361 void kvm_get_kvm(struct kvm *kvm)
1362 {
1363 	refcount_inc(&kvm->users_count);
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1366 
1367 /*
1368  * Make sure the vm is not during destruction, which is a safe version of
1369  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1370  */
1371 bool kvm_get_kvm_safe(struct kvm *kvm)
1372 {
1373 	return refcount_inc_not_zero(&kvm->users_count);
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1376 
1377 void kvm_put_kvm(struct kvm *kvm)
1378 {
1379 	if (refcount_dec_and_test(&kvm->users_count))
1380 		kvm_destroy_vm(kvm);
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1383 
1384 /*
1385  * Used to put a reference that was taken on behalf of an object associated
1386  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1387  * of the new file descriptor fails and the reference cannot be transferred to
1388  * its final owner.  In such cases, the caller is still actively using @kvm and
1389  * will fail miserably if the refcount unexpectedly hits zero.
1390  */
1391 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1392 {
1393 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1396 
1397 static int kvm_vm_release(struct inode *inode, struct file *filp)
1398 {
1399 	struct kvm *kvm = filp->private_data;
1400 
1401 	kvm_irqfd_release(kvm);
1402 
1403 	kvm_put_kvm(kvm);
1404 	return 0;
1405 }
1406 
1407 /*
1408  * Allocation size is twice as large as the actual dirty bitmap size.
1409  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1410  */
1411 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1412 {
1413 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1414 
1415 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1416 	if (!memslot->dirty_bitmap)
1417 		return -ENOMEM;
1418 
1419 	return 0;
1420 }
1421 
1422 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1423 {
1424 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1425 	int node_idx_inactive = active->node_idx ^ 1;
1426 
1427 	return &kvm->__memslots[as_id][node_idx_inactive];
1428 }
1429 
1430 /*
1431  * Helper to get the address space ID when one of memslot pointers may be NULL.
1432  * This also serves as a sanity that at least one of the pointers is non-NULL,
1433  * and that their address space IDs don't diverge.
1434  */
1435 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1436 				  struct kvm_memory_slot *b)
1437 {
1438 	if (WARN_ON_ONCE(!a && !b))
1439 		return 0;
1440 
1441 	if (!a)
1442 		return b->as_id;
1443 	if (!b)
1444 		return a->as_id;
1445 
1446 	WARN_ON_ONCE(a->as_id != b->as_id);
1447 	return a->as_id;
1448 }
1449 
1450 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1451 				struct kvm_memory_slot *slot)
1452 {
1453 	struct rb_root *gfn_tree = &slots->gfn_tree;
1454 	struct rb_node **node, *parent;
1455 	int idx = slots->node_idx;
1456 
1457 	parent = NULL;
1458 	for (node = &gfn_tree->rb_node; *node; ) {
1459 		struct kvm_memory_slot *tmp;
1460 
1461 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1462 		parent = *node;
1463 		if (slot->base_gfn < tmp->base_gfn)
1464 			node = &(*node)->rb_left;
1465 		else if (slot->base_gfn > tmp->base_gfn)
1466 			node = &(*node)->rb_right;
1467 		else
1468 			BUG();
1469 	}
1470 
1471 	rb_link_node(&slot->gfn_node[idx], parent, node);
1472 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1473 }
1474 
1475 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1476 			       struct kvm_memory_slot *slot)
1477 {
1478 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1479 }
1480 
1481 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1482 				 struct kvm_memory_slot *old,
1483 				 struct kvm_memory_slot *new)
1484 {
1485 	int idx = slots->node_idx;
1486 
1487 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1488 
1489 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1490 			&slots->gfn_tree);
1491 }
1492 
1493 /*
1494  * Replace @old with @new in the inactive memslots.
1495  *
1496  * With NULL @old this simply adds @new.
1497  * With NULL @new this simply removes @old.
1498  *
1499  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1500  * appropriately.
1501  */
1502 static void kvm_replace_memslot(struct kvm *kvm,
1503 				struct kvm_memory_slot *old,
1504 				struct kvm_memory_slot *new)
1505 {
1506 	int as_id = kvm_memslots_get_as_id(old, new);
1507 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1508 	int idx = slots->node_idx;
1509 
1510 	if (old) {
1511 		hash_del(&old->id_node[idx]);
1512 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1513 
1514 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1515 			atomic_long_set(&slots->last_used_slot, (long)new);
1516 
1517 		if (!new) {
1518 			kvm_erase_gfn_node(slots, old);
1519 			return;
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * Initialize @new's hva range.  Do this even when replacing an @old
1525 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1526 	 */
1527 	new->hva_node[idx].start = new->userspace_addr;
1528 	new->hva_node[idx].last = new->userspace_addr +
1529 				  (new->npages << PAGE_SHIFT) - 1;
1530 
1531 	/*
1532 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1533 	 * hva_node needs to be swapped with remove+insert even though hva can't
1534 	 * change when replacing an existing slot.
1535 	 */
1536 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1537 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1538 
1539 	/*
1540 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1541 	 * switch the node in the gfn tree instead of removing the old and
1542 	 * inserting the new as two separate operations. Replacement is a
1543 	 * single O(1) operation versus two O(log(n)) operations for
1544 	 * remove+insert.
1545 	 */
1546 	if (old && old->base_gfn == new->base_gfn) {
1547 		kvm_replace_gfn_node(slots, old, new);
1548 	} else {
1549 		if (old)
1550 			kvm_erase_gfn_node(slots, old);
1551 		kvm_insert_gfn_node(slots, new);
1552 	}
1553 }
1554 
1555 /*
1556  * Flags that do not access any of the extra space of struct
1557  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1558  * only allows these.
1559  */
1560 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1561 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1562 
1563 static int check_memory_region_flags(struct kvm *kvm,
1564 				     const struct kvm_userspace_memory_region2 *mem)
1565 {
1566 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1567 
1568 	if (kvm_arch_has_private_mem(kvm))
1569 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1570 
1571 	/* Dirty logging private memory is not currently supported. */
1572 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1573 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1574 
1575 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1576 	/*
1577 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1578 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1579 	 * and KVM doesn't allow emulated MMIO for private memory.
1580 	 */
1581 	if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1582 		valid_flags |= KVM_MEM_READONLY;
1583 #endif
1584 
1585 	if (mem->flags & ~valid_flags)
1586 		return -EINVAL;
1587 
1588 	return 0;
1589 }
1590 
1591 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1592 {
1593 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1594 
1595 	/* Grab the generation from the activate memslots. */
1596 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1597 
1598 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1599 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1600 
1601 	/*
1602 	 * Do not store the new memslots while there are invalidations in
1603 	 * progress, otherwise the locking in invalidate_range_start and
1604 	 * invalidate_range_end will be unbalanced.
1605 	 */
1606 	spin_lock(&kvm->mn_invalidate_lock);
1607 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1608 	while (kvm->mn_active_invalidate_count) {
1609 		set_current_state(TASK_UNINTERRUPTIBLE);
1610 		spin_unlock(&kvm->mn_invalidate_lock);
1611 		schedule();
1612 		spin_lock(&kvm->mn_invalidate_lock);
1613 	}
1614 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1615 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1616 	spin_unlock(&kvm->mn_invalidate_lock);
1617 
1618 	/*
1619 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1620 	 * SRCU below in order to avoid deadlock with another thread
1621 	 * acquiring the slots_arch_lock in an srcu critical section.
1622 	 */
1623 	mutex_unlock(&kvm->slots_arch_lock);
1624 
1625 	synchronize_srcu_expedited(&kvm->srcu);
1626 
1627 	/*
1628 	 * Increment the new memslot generation a second time, dropping the
1629 	 * update in-progress flag and incrementing the generation based on
1630 	 * the number of address spaces.  This provides a unique and easily
1631 	 * identifiable generation number while the memslots are in flux.
1632 	 */
1633 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1634 
1635 	/*
1636 	 * Generations must be unique even across address spaces.  We do not need
1637 	 * a global counter for that, instead the generation space is evenly split
1638 	 * across address spaces.  For example, with two address spaces, address
1639 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1640 	 * use generations 1, 3, 5, ...
1641 	 */
1642 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1643 
1644 	kvm_arch_memslots_updated(kvm, gen);
1645 
1646 	slots->generation = gen;
1647 }
1648 
1649 static int kvm_prepare_memory_region(struct kvm *kvm,
1650 				     const struct kvm_memory_slot *old,
1651 				     struct kvm_memory_slot *new,
1652 				     enum kvm_mr_change change)
1653 {
1654 	int r;
1655 
1656 	/*
1657 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1658 	 * will be freed on "commit".  If logging is enabled in both old and
1659 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1660 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1661 	 * new bitmap.
1662 	 */
1663 	if (change != KVM_MR_DELETE) {
1664 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1665 			new->dirty_bitmap = NULL;
1666 		else if (old && old->dirty_bitmap)
1667 			new->dirty_bitmap = old->dirty_bitmap;
1668 		else if (kvm_use_dirty_bitmap(kvm)) {
1669 			r = kvm_alloc_dirty_bitmap(new);
1670 			if (r)
1671 				return r;
1672 
1673 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1674 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1675 		}
1676 	}
1677 
1678 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1679 
1680 	/* Free the bitmap on failure if it was allocated above. */
1681 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1682 		kvm_destroy_dirty_bitmap(new);
1683 
1684 	return r;
1685 }
1686 
1687 static void kvm_commit_memory_region(struct kvm *kvm,
1688 				     struct kvm_memory_slot *old,
1689 				     const struct kvm_memory_slot *new,
1690 				     enum kvm_mr_change change)
1691 {
1692 	int old_flags = old ? old->flags : 0;
1693 	int new_flags = new ? new->flags : 0;
1694 	/*
1695 	 * Update the total number of memslot pages before calling the arch
1696 	 * hook so that architectures can consume the result directly.
1697 	 */
1698 	if (change == KVM_MR_DELETE)
1699 		kvm->nr_memslot_pages -= old->npages;
1700 	else if (change == KVM_MR_CREATE)
1701 		kvm->nr_memslot_pages += new->npages;
1702 
1703 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1704 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1705 		atomic_set(&kvm->nr_memslots_dirty_logging,
1706 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1707 	}
1708 
1709 	kvm_arch_commit_memory_region(kvm, old, new, change);
1710 
1711 	switch (change) {
1712 	case KVM_MR_CREATE:
1713 		/* Nothing more to do. */
1714 		break;
1715 	case KVM_MR_DELETE:
1716 		/* Free the old memslot and all its metadata. */
1717 		kvm_free_memslot(kvm, old);
1718 		break;
1719 	case KVM_MR_MOVE:
1720 	case KVM_MR_FLAGS_ONLY:
1721 		/*
1722 		 * Free the dirty bitmap as needed; the below check encompasses
1723 		 * both the flags and whether a ring buffer is being used)
1724 		 */
1725 		if (old->dirty_bitmap && !new->dirty_bitmap)
1726 			kvm_destroy_dirty_bitmap(old);
1727 
1728 		/*
1729 		 * The final quirk.  Free the detached, old slot, but only its
1730 		 * memory, not any metadata.  Metadata, including arch specific
1731 		 * data, may be reused by @new.
1732 		 */
1733 		kfree(old);
1734 		break;
1735 	default:
1736 		BUG();
1737 	}
1738 }
1739 
1740 /*
1741  * Activate @new, which must be installed in the inactive slots by the caller,
1742  * by swapping the active slots and then propagating @new to @old once @old is
1743  * unreachable and can be safely modified.
1744  *
1745  * With NULL @old this simply adds @new to @active (while swapping the sets).
1746  * With NULL @new this simply removes @old from @active and frees it
1747  * (while also swapping the sets).
1748  */
1749 static void kvm_activate_memslot(struct kvm *kvm,
1750 				 struct kvm_memory_slot *old,
1751 				 struct kvm_memory_slot *new)
1752 {
1753 	int as_id = kvm_memslots_get_as_id(old, new);
1754 
1755 	kvm_swap_active_memslots(kvm, as_id);
1756 
1757 	/* Propagate the new memslot to the now inactive memslots. */
1758 	kvm_replace_memslot(kvm, old, new);
1759 }
1760 
1761 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1762 			     const struct kvm_memory_slot *src)
1763 {
1764 	dest->base_gfn = src->base_gfn;
1765 	dest->npages = src->npages;
1766 	dest->dirty_bitmap = src->dirty_bitmap;
1767 	dest->arch = src->arch;
1768 	dest->userspace_addr = src->userspace_addr;
1769 	dest->flags = src->flags;
1770 	dest->id = src->id;
1771 	dest->as_id = src->as_id;
1772 }
1773 
1774 static void kvm_invalidate_memslot(struct kvm *kvm,
1775 				   struct kvm_memory_slot *old,
1776 				   struct kvm_memory_slot *invalid_slot)
1777 {
1778 	/*
1779 	 * Mark the current slot INVALID.  As with all memslot modifications,
1780 	 * this must be done on an unreachable slot to avoid modifying the
1781 	 * current slot in the active tree.
1782 	 */
1783 	kvm_copy_memslot(invalid_slot, old);
1784 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1785 	kvm_replace_memslot(kvm, old, invalid_slot);
1786 
1787 	/*
1788 	 * Activate the slot that is now marked INVALID, but don't propagate
1789 	 * the slot to the now inactive slots. The slot is either going to be
1790 	 * deleted or recreated as a new slot.
1791 	 */
1792 	kvm_swap_active_memslots(kvm, old->as_id);
1793 
1794 	/*
1795 	 * From this point no new shadow pages pointing to a deleted, or moved,
1796 	 * memslot will be created.  Validation of sp->gfn happens in:
1797 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1798 	 *	- kvm_is_visible_gfn (mmu_check_root)
1799 	 */
1800 	kvm_arch_flush_shadow_memslot(kvm, old);
1801 	kvm_arch_guest_memory_reclaimed(kvm);
1802 
1803 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1804 	mutex_lock(&kvm->slots_arch_lock);
1805 
1806 	/*
1807 	 * Copy the arch-specific field of the newly-installed slot back to the
1808 	 * old slot as the arch data could have changed between releasing
1809 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1810 	 * above.  Writers are required to retrieve memslots *after* acquiring
1811 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1812 	 */
1813 	old->arch = invalid_slot->arch;
1814 }
1815 
1816 static void kvm_create_memslot(struct kvm *kvm,
1817 			       struct kvm_memory_slot *new)
1818 {
1819 	/* Add the new memslot to the inactive set and activate. */
1820 	kvm_replace_memslot(kvm, NULL, new);
1821 	kvm_activate_memslot(kvm, NULL, new);
1822 }
1823 
1824 static void kvm_delete_memslot(struct kvm *kvm,
1825 			       struct kvm_memory_slot *old,
1826 			       struct kvm_memory_slot *invalid_slot)
1827 {
1828 	/*
1829 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1830 	 * the "new" slot, and for the invalid version in the active slots.
1831 	 */
1832 	kvm_replace_memslot(kvm, old, NULL);
1833 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1834 }
1835 
1836 static void kvm_move_memslot(struct kvm *kvm,
1837 			     struct kvm_memory_slot *old,
1838 			     struct kvm_memory_slot *new,
1839 			     struct kvm_memory_slot *invalid_slot)
1840 {
1841 	/*
1842 	 * Replace the old memslot in the inactive slots, and then swap slots
1843 	 * and replace the current INVALID with the new as well.
1844 	 */
1845 	kvm_replace_memslot(kvm, old, new);
1846 	kvm_activate_memslot(kvm, invalid_slot, new);
1847 }
1848 
1849 static void kvm_update_flags_memslot(struct kvm *kvm,
1850 				     struct kvm_memory_slot *old,
1851 				     struct kvm_memory_slot *new)
1852 {
1853 	/*
1854 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1855 	 * an intermediate step. Instead, the old memslot is simply replaced
1856 	 * with a new, updated copy in both memslot sets.
1857 	 */
1858 	kvm_replace_memslot(kvm, old, new);
1859 	kvm_activate_memslot(kvm, old, new);
1860 }
1861 
1862 static int kvm_set_memslot(struct kvm *kvm,
1863 			   struct kvm_memory_slot *old,
1864 			   struct kvm_memory_slot *new,
1865 			   enum kvm_mr_change change)
1866 {
1867 	struct kvm_memory_slot *invalid_slot;
1868 	int r;
1869 
1870 	/*
1871 	 * Released in kvm_swap_active_memslots().
1872 	 *
1873 	 * Must be held from before the current memslots are copied until after
1874 	 * the new memslots are installed with rcu_assign_pointer, then
1875 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1876 	 *
1877 	 * When modifying memslots outside of the slots_lock, must be held
1878 	 * before reading the pointer to the current memslots until after all
1879 	 * changes to those memslots are complete.
1880 	 *
1881 	 * These rules ensure that installing new memslots does not lose
1882 	 * changes made to the previous memslots.
1883 	 */
1884 	mutex_lock(&kvm->slots_arch_lock);
1885 
1886 	/*
1887 	 * Invalidate the old slot if it's being deleted or moved.  This is
1888 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1889 	 * continue running by ensuring there are no mappings or shadow pages
1890 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1891 	 * (and without a lock), a window would exist between effecting the
1892 	 * delete/move and committing the changes in arch code where KVM or a
1893 	 * guest could access a non-existent memslot.
1894 	 *
1895 	 * Modifications are done on a temporary, unreachable slot.  The old
1896 	 * slot needs to be preserved in case a later step fails and the
1897 	 * invalidation needs to be reverted.
1898 	 */
1899 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1900 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1901 		if (!invalid_slot) {
1902 			mutex_unlock(&kvm->slots_arch_lock);
1903 			return -ENOMEM;
1904 		}
1905 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1906 	}
1907 
1908 	r = kvm_prepare_memory_region(kvm, old, new, change);
1909 	if (r) {
1910 		/*
1911 		 * For DELETE/MOVE, revert the above INVALID change.  No
1912 		 * modifications required since the original slot was preserved
1913 		 * in the inactive slots.  Changing the active memslots also
1914 		 * release slots_arch_lock.
1915 		 */
1916 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1917 			kvm_activate_memslot(kvm, invalid_slot, old);
1918 			kfree(invalid_slot);
1919 		} else {
1920 			mutex_unlock(&kvm->slots_arch_lock);
1921 		}
1922 		return r;
1923 	}
1924 
1925 	/*
1926 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1927 	 * version of the old slot.  MOVE is particularly special as it reuses
1928 	 * the old slot and returns a copy of the old slot (in working_slot).
1929 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1930 	 * old slot is detached but otherwise preserved.
1931 	 */
1932 	if (change == KVM_MR_CREATE)
1933 		kvm_create_memslot(kvm, new);
1934 	else if (change == KVM_MR_DELETE)
1935 		kvm_delete_memslot(kvm, old, invalid_slot);
1936 	else if (change == KVM_MR_MOVE)
1937 		kvm_move_memslot(kvm, old, new, invalid_slot);
1938 	else if (change == KVM_MR_FLAGS_ONLY)
1939 		kvm_update_flags_memslot(kvm, old, new);
1940 	else
1941 		BUG();
1942 
1943 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1944 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1945 		kfree(invalid_slot);
1946 
1947 	/*
1948 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1949 	 * will directly hit the final, active memslot.  Architectures are
1950 	 * responsible for knowing that new->arch may be stale.
1951 	 */
1952 	kvm_commit_memory_region(kvm, old, new, change);
1953 
1954 	return 0;
1955 }
1956 
1957 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1958 				      gfn_t start, gfn_t end)
1959 {
1960 	struct kvm_memslot_iter iter;
1961 
1962 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1963 		if (iter.slot->id != id)
1964 			return true;
1965 	}
1966 
1967 	return false;
1968 }
1969 
1970 /*
1971  * Allocate some memory and give it an address in the guest physical address
1972  * space.
1973  *
1974  * Discontiguous memory is allowed, mostly for framebuffers.
1975  *
1976  * Must be called holding kvm->slots_lock for write.
1977  */
1978 int __kvm_set_memory_region(struct kvm *kvm,
1979 			    const struct kvm_userspace_memory_region2 *mem)
1980 {
1981 	struct kvm_memory_slot *old, *new;
1982 	struct kvm_memslots *slots;
1983 	enum kvm_mr_change change;
1984 	unsigned long npages;
1985 	gfn_t base_gfn;
1986 	int as_id, id;
1987 	int r;
1988 
1989 	r = check_memory_region_flags(kvm, mem);
1990 	if (r)
1991 		return r;
1992 
1993 	as_id = mem->slot >> 16;
1994 	id = (u16)mem->slot;
1995 
1996 	/* General sanity checks */
1997 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1998 	    (mem->memory_size != (unsigned long)mem->memory_size))
1999 		return -EINVAL;
2000 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2001 		return -EINVAL;
2002 	/* We can read the guest memory with __xxx_user() later on. */
2003 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2004 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2005 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2006 			mem->memory_size))
2007 		return -EINVAL;
2008 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2009 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2010 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2011 		return -EINVAL;
2012 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2013 		return -EINVAL;
2014 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2015 		return -EINVAL;
2016 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2017 		return -EINVAL;
2018 
2019 	slots = __kvm_memslots(kvm, as_id);
2020 
2021 	/*
2022 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2023 	 * and/or destroyed by kvm_set_memslot().
2024 	 */
2025 	old = id_to_memslot(slots, id);
2026 
2027 	if (!mem->memory_size) {
2028 		if (!old || !old->npages)
2029 			return -EINVAL;
2030 
2031 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2032 			return -EIO;
2033 
2034 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2035 	}
2036 
2037 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2038 	npages = (mem->memory_size >> PAGE_SHIFT);
2039 
2040 	if (!old || !old->npages) {
2041 		change = KVM_MR_CREATE;
2042 
2043 		/*
2044 		 * To simplify KVM internals, the total number of pages across
2045 		 * all memslots must fit in an unsigned long.
2046 		 */
2047 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2048 			return -EINVAL;
2049 	} else { /* Modify an existing slot. */
2050 		/* Private memslots are immutable, they can only be deleted. */
2051 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2052 			return -EINVAL;
2053 		if ((mem->userspace_addr != old->userspace_addr) ||
2054 		    (npages != old->npages) ||
2055 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2056 			return -EINVAL;
2057 
2058 		if (base_gfn != old->base_gfn)
2059 			change = KVM_MR_MOVE;
2060 		else if (mem->flags != old->flags)
2061 			change = KVM_MR_FLAGS_ONLY;
2062 		else /* Nothing to change. */
2063 			return 0;
2064 	}
2065 
2066 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2067 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2068 		return -EEXIST;
2069 
2070 	/* Allocate a slot that will persist in the memslot. */
2071 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2072 	if (!new)
2073 		return -ENOMEM;
2074 
2075 	new->as_id = as_id;
2076 	new->id = id;
2077 	new->base_gfn = base_gfn;
2078 	new->npages = npages;
2079 	new->flags = mem->flags;
2080 	new->userspace_addr = mem->userspace_addr;
2081 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2082 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2083 		if (r)
2084 			goto out;
2085 	}
2086 
2087 	r = kvm_set_memslot(kvm, old, new, change);
2088 	if (r)
2089 		goto out_unbind;
2090 
2091 	return 0;
2092 
2093 out_unbind:
2094 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2095 		kvm_gmem_unbind(new);
2096 out:
2097 	kfree(new);
2098 	return r;
2099 }
2100 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2101 
2102 int kvm_set_memory_region(struct kvm *kvm,
2103 			  const struct kvm_userspace_memory_region2 *mem)
2104 {
2105 	int r;
2106 
2107 	mutex_lock(&kvm->slots_lock);
2108 	r = __kvm_set_memory_region(kvm, mem);
2109 	mutex_unlock(&kvm->slots_lock);
2110 	return r;
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2113 
2114 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2115 					  struct kvm_userspace_memory_region2 *mem)
2116 {
2117 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2118 		return -EINVAL;
2119 
2120 	return kvm_set_memory_region(kvm, mem);
2121 }
2122 
2123 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2124 /**
2125  * kvm_get_dirty_log - get a snapshot of dirty pages
2126  * @kvm:	pointer to kvm instance
2127  * @log:	slot id and address to which we copy the log
2128  * @is_dirty:	set to '1' if any dirty pages were found
2129  * @memslot:	set to the associated memslot, always valid on success
2130  */
2131 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2132 		      int *is_dirty, struct kvm_memory_slot **memslot)
2133 {
2134 	struct kvm_memslots *slots;
2135 	int i, as_id, id;
2136 	unsigned long n;
2137 	unsigned long any = 0;
2138 
2139 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2140 	if (!kvm_use_dirty_bitmap(kvm))
2141 		return -ENXIO;
2142 
2143 	*memslot = NULL;
2144 	*is_dirty = 0;
2145 
2146 	as_id = log->slot >> 16;
2147 	id = (u16)log->slot;
2148 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2149 		return -EINVAL;
2150 
2151 	slots = __kvm_memslots(kvm, as_id);
2152 	*memslot = id_to_memslot(slots, id);
2153 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2154 		return -ENOENT;
2155 
2156 	kvm_arch_sync_dirty_log(kvm, *memslot);
2157 
2158 	n = kvm_dirty_bitmap_bytes(*memslot);
2159 
2160 	for (i = 0; !any && i < n/sizeof(long); ++i)
2161 		any = (*memslot)->dirty_bitmap[i];
2162 
2163 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2164 		return -EFAULT;
2165 
2166 	if (any)
2167 		*is_dirty = 1;
2168 	return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2171 
2172 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2173 /**
2174  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2175  *	and reenable dirty page tracking for the corresponding pages.
2176  * @kvm:	pointer to kvm instance
2177  * @log:	slot id and address to which we copy the log
2178  *
2179  * We need to keep it in mind that VCPU threads can write to the bitmap
2180  * concurrently. So, to avoid losing track of dirty pages we keep the
2181  * following order:
2182  *
2183  *    1. Take a snapshot of the bit and clear it if needed.
2184  *    2. Write protect the corresponding page.
2185  *    3. Copy the snapshot to the userspace.
2186  *    4. Upon return caller flushes TLB's if needed.
2187  *
2188  * Between 2 and 4, the guest may write to the page using the remaining TLB
2189  * entry.  This is not a problem because the page is reported dirty using
2190  * the snapshot taken before and step 4 ensures that writes done after
2191  * exiting to userspace will be logged for the next call.
2192  *
2193  */
2194 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2195 {
2196 	struct kvm_memslots *slots;
2197 	struct kvm_memory_slot *memslot;
2198 	int i, as_id, id;
2199 	unsigned long n;
2200 	unsigned long *dirty_bitmap;
2201 	unsigned long *dirty_bitmap_buffer;
2202 	bool flush;
2203 
2204 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2205 	if (!kvm_use_dirty_bitmap(kvm))
2206 		return -ENXIO;
2207 
2208 	as_id = log->slot >> 16;
2209 	id = (u16)log->slot;
2210 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2211 		return -EINVAL;
2212 
2213 	slots = __kvm_memslots(kvm, as_id);
2214 	memslot = id_to_memslot(slots, id);
2215 	if (!memslot || !memslot->dirty_bitmap)
2216 		return -ENOENT;
2217 
2218 	dirty_bitmap = memslot->dirty_bitmap;
2219 
2220 	kvm_arch_sync_dirty_log(kvm, memslot);
2221 
2222 	n = kvm_dirty_bitmap_bytes(memslot);
2223 	flush = false;
2224 	if (kvm->manual_dirty_log_protect) {
2225 		/*
2226 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2227 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2228 		 * is some code duplication between this function and
2229 		 * kvm_get_dirty_log, but hopefully all architecture
2230 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2231 		 * can be eliminated.
2232 		 */
2233 		dirty_bitmap_buffer = dirty_bitmap;
2234 	} else {
2235 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2236 		memset(dirty_bitmap_buffer, 0, n);
2237 
2238 		KVM_MMU_LOCK(kvm);
2239 		for (i = 0; i < n / sizeof(long); i++) {
2240 			unsigned long mask;
2241 			gfn_t offset;
2242 
2243 			if (!dirty_bitmap[i])
2244 				continue;
2245 
2246 			flush = true;
2247 			mask = xchg(&dirty_bitmap[i], 0);
2248 			dirty_bitmap_buffer[i] = mask;
2249 
2250 			offset = i * BITS_PER_LONG;
2251 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2252 								offset, mask);
2253 		}
2254 		KVM_MMU_UNLOCK(kvm);
2255 	}
2256 
2257 	if (flush)
2258 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2259 
2260 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2261 		return -EFAULT;
2262 	return 0;
2263 }
2264 
2265 
2266 /**
2267  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2268  * @kvm: kvm instance
2269  * @log: slot id and address to which we copy the log
2270  *
2271  * Steps 1-4 below provide general overview of dirty page logging. See
2272  * kvm_get_dirty_log_protect() function description for additional details.
2273  *
2274  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2275  * always flush the TLB (step 4) even if previous step failed  and the dirty
2276  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2277  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2278  * writes will be marked dirty for next log read.
2279  *
2280  *   1. Take a snapshot of the bit and clear it if needed.
2281  *   2. Write protect the corresponding page.
2282  *   3. Copy the snapshot to the userspace.
2283  *   4. Flush TLB's if needed.
2284  */
2285 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2286 				      struct kvm_dirty_log *log)
2287 {
2288 	int r;
2289 
2290 	mutex_lock(&kvm->slots_lock);
2291 
2292 	r = kvm_get_dirty_log_protect(kvm, log);
2293 
2294 	mutex_unlock(&kvm->slots_lock);
2295 	return r;
2296 }
2297 
2298 /**
2299  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2300  *	and reenable dirty page tracking for the corresponding pages.
2301  * @kvm:	pointer to kvm instance
2302  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2303  */
2304 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2305 				       struct kvm_clear_dirty_log *log)
2306 {
2307 	struct kvm_memslots *slots;
2308 	struct kvm_memory_slot *memslot;
2309 	int as_id, id;
2310 	gfn_t offset;
2311 	unsigned long i, n;
2312 	unsigned long *dirty_bitmap;
2313 	unsigned long *dirty_bitmap_buffer;
2314 	bool flush;
2315 
2316 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2317 	if (!kvm_use_dirty_bitmap(kvm))
2318 		return -ENXIO;
2319 
2320 	as_id = log->slot >> 16;
2321 	id = (u16)log->slot;
2322 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2323 		return -EINVAL;
2324 
2325 	if (log->first_page & 63)
2326 		return -EINVAL;
2327 
2328 	slots = __kvm_memslots(kvm, as_id);
2329 	memslot = id_to_memslot(slots, id);
2330 	if (!memslot || !memslot->dirty_bitmap)
2331 		return -ENOENT;
2332 
2333 	dirty_bitmap = memslot->dirty_bitmap;
2334 
2335 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2336 
2337 	if (log->first_page > memslot->npages ||
2338 	    log->num_pages > memslot->npages - log->first_page ||
2339 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2340 	    return -EINVAL;
2341 
2342 	kvm_arch_sync_dirty_log(kvm, memslot);
2343 
2344 	flush = false;
2345 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2346 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2347 		return -EFAULT;
2348 
2349 	KVM_MMU_LOCK(kvm);
2350 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2351 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2352 	     i++, offset += BITS_PER_LONG) {
2353 		unsigned long mask = *dirty_bitmap_buffer++;
2354 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2355 		if (!mask)
2356 			continue;
2357 
2358 		mask &= atomic_long_fetch_andnot(mask, p);
2359 
2360 		/*
2361 		 * mask contains the bits that really have been cleared.  This
2362 		 * never includes any bits beyond the length of the memslot (if
2363 		 * the length is not aligned to 64 pages), therefore it is not
2364 		 * a problem if userspace sets them in log->dirty_bitmap.
2365 		*/
2366 		if (mask) {
2367 			flush = true;
2368 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2369 								offset, mask);
2370 		}
2371 	}
2372 	KVM_MMU_UNLOCK(kvm);
2373 
2374 	if (flush)
2375 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2376 
2377 	return 0;
2378 }
2379 
2380 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2381 					struct kvm_clear_dirty_log *log)
2382 {
2383 	int r;
2384 
2385 	mutex_lock(&kvm->slots_lock);
2386 
2387 	r = kvm_clear_dirty_log_protect(kvm, log);
2388 
2389 	mutex_unlock(&kvm->slots_lock);
2390 	return r;
2391 }
2392 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2393 
2394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2395 /*
2396  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2397  * matching @attrs.
2398  */
2399 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2400 				     unsigned long attrs)
2401 {
2402 	XA_STATE(xas, &kvm->mem_attr_array, start);
2403 	unsigned long index;
2404 	bool has_attrs;
2405 	void *entry;
2406 
2407 	rcu_read_lock();
2408 
2409 	if (!attrs) {
2410 		has_attrs = !xas_find(&xas, end - 1);
2411 		goto out;
2412 	}
2413 
2414 	has_attrs = true;
2415 	for (index = start; index < end; index++) {
2416 		do {
2417 			entry = xas_next(&xas);
2418 		} while (xas_retry(&xas, entry));
2419 
2420 		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2421 			has_attrs = false;
2422 			break;
2423 		}
2424 	}
2425 
2426 out:
2427 	rcu_read_unlock();
2428 	return has_attrs;
2429 }
2430 
2431 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2432 {
2433 	if (!kvm || kvm_arch_has_private_mem(kvm))
2434 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2435 
2436 	return 0;
2437 }
2438 
2439 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2440 						 struct kvm_mmu_notifier_range *range)
2441 {
2442 	struct kvm_gfn_range gfn_range;
2443 	struct kvm_memory_slot *slot;
2444 	struct kvm_memslots *slots;
2445 	struct kvm_memslot_iter iter;
2446 	bool found_memslot = false;
2447 	bool ret = false;
2448 	int i;
2449 
2450 	gfn_range.arg = range->arg;
2451 	gfn_range.may_block = range->may_block;
2452 
2453 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2454 		slots = __kvm_memslots(kvm, i);
2455 
2456 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2457 			slot = iter.slot;
2458 			gfn_range.slot = slot;
2459 
2460 			gfn_range.start = max(range->start, slot->base_gfn);
2461 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2462 			if (gfn_range.start >= gfn_range.end)
2463 				continue;
2464 
2465 			if (!found_memslot) {
2466 				found_memslot = true;
2467 				KVM_MMU_LOCK(kvm);
2468 				if (!IS_KVM_NULL_FN(range->on_lock))
2469 					range->on_lock(kvm);
2470 			}
2471 
2472 			ret |= range->handler(kvm, &gfn_range);
2473 		}
2474 	}
2475 
2476 	if (range->flush_on_ret && ret)
2477 		kvm_flush_remote_tlbs(kvm);
2478 
2479 	if (found_memslot)
2480 		KVM_MMU_UNLOCK(kvm);
2481 }
2482 
2483 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2484 					  struct kvm_gfn_range *range)
2485 {
2486 	/*
2487 	 * Unconditionally add the range to the invalidation set, regardless of
2488 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2489 	 * if KVM supports RWX attributes in the future and the attributes are
2490 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2491 	 * adding the range allows KVM to require that MMU invalidations add at
2492 	 * least one range between begin() and end(), e.g. allows KVM to detect
2493 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2494 	 * but it's not obvious that allowing new mappings while the attributes
2495 	 * are in flux is desirable or worth the complexity.
2496 	 */
2497 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2498 
2499 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2500 }
2501 
2502 /* Set @attributes for the gfn range [@start, @end). */
2503 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2504 				     unsigned long attributes)
2505 {
2506 	struct kvm_mmu_notifier_range pre_set_range = {
2507 		.start = start,
2508 		.end = end,
2509 		.handler = kvm_pre_set_memory_attributes,
2510 		.on_lock = kvm_mmu_invalidate_begin,
2511 		.flush_on_ret = true,
2512 		.may_block = true,
2513 	};
2514 	struct kvm_mmu_notifier_range post_set_range = {
2515 		.start = start,
2516 		.end = end,
2517 		.arg.attributes = attributes,
2518 		.handler = kvm_arch_post_set_memory_attributes,
2519 		.on_lock = kvm_mmu_invalidate_end,
2520 		.may_block = true,
2521 	};
2522 	unsigned long i;
2523 	void *entry;
2524 	int r = 0;
2525 
2526 	entry = attributes ? xa_mk_value(attributes) : NULL;
2527 
2528 	mutex_lock(&kvm->slots_lock);
2529 
2530 	/* Nothing to do if the entire range as the desired attributes. */
2531 	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2532 		goto out_unlock;
2533 
2534 	/*
2535 	 * Reserve memory ahead of time to avoid having to deal with failures
2536 	 * partway through setting the new attributes.
2537 	 */
2538 	for (i = start; i < end; i++) {
2539 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2540 		if (r)
2541 			goto out_unlock;
2542 	}
2543 
2544 	kvm_handle_gfn_range(kvm, &pre_set_range);
2545 
2546 	for (i = start; i < end; i++) {
2547 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2548 				    GFP_KERNEL_ACCOUNT));
2549 		KVM_BUG_ON(r, kvm);
2550 	}
2551 
2552 	kvm_handle_gfn_range(kvm, &post_set_range);
2553 
2554 out_unlock:
2555 	mutex_unlock(&kvm->slots_lock);
2556 
2557 	return r;
2558 }
2559 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2560 					   struct kvm_memory_attributes *attrs)
2561 {
2562 	gfn_t start, end;
2563 
2564 	/* flags is currently not used. */
2565 	if (attrs->flags)
2566 		return -EINVAL;
2567 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2568 		return -EINVAL;
2569 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2570 		return -EINVAL;
2571 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2572 		return -EINVAL;
2573 
2574 	start = attrs->address >> PAGE_SHIFT;
2575 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2576 
2577 	/*
2578 	 * xarray tracks data using "unsigned long", and as a result so does
2579 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2580 	 * architectures.
2581 	 */
2582 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2583 
2584 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2585 }
2586 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2587 
2588 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2589 {
2590 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2591 }
2592 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2593 
2594 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2595 {
2596 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2597 	u64 gen = slots->generation;
2598 	struct kvm_memory_slot *slot;
2599 
2600 	/*
2601 	 * This also protects against using a memslot from a different address space,
2602 	 * since different address spaces have different generation numbers.
2603 	 */
2604 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2605 		vcpu->last_used_slot = NULL;
2606 		vcpu->last_used_slot_gen = gen;
2607 	}
2608 
2609 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2610 	if (slot)
2611 		return slot;
2612 
2613 	/*
2614 	 * Fall back to searching all memslots. We purposely use
2615 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2616 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2617 	 */
2618 	slot = search_memslots(slots, gfn, false);
2619 	if (slot) {
2620 		vcpu->last_used_slot = slot;
2621 		return slot;
2622 	}
2623 
2624 	return NULL;
2625 }
2626 
2627 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2628 {
2629 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2630 
2631 	return kvm_is_visible_memslot(memslot);
2632 }
2633 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2634 
2635 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2636 {
2637 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2638 
2639 	return kvm_is_visible_memslot(memslot);
2640 }
2641 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2642 
2643 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2644 {
2645 	struct vm_area_struct *vma;
2646 	unsigned long addr, size;
2647 
2648 	size = PAGE_SIZE;
2649 
2650 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2651 	if (kvm_is_error_hva(addr))
2652 		return PAGE_SIZE;
2653 
2654 	mmap_read_lock(current->mm);
2655 	vma = find_vma(current->mm, addr);
2656 	if (!vma)
2657 		goto out;
2658 
2659 	size = vma_kernel_pagesize(vma);
2660 
2661 out:
2662 	mmap_read_unlock(current->mm);
2663 
2664 	return size;
2665 }
2666 
2667 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2668 {
2669 	return slot->flags & KVM_MEM_READONLY;
2670 }
2671 
2672 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2673 				       gfn_t *nr_pages, bool write)
2674 {
2675 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2676 		return KVM_HVA_ERR_BAD;
2677 
2678 	if (memslot_is_readonly(slot) && write)
2679 		return KVM_HVA_ERR_RO_BAD;
2680 
2681 	if (nr_pages)
2682 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2683 
2684 	return __gfn_to_hva_memslot(slot, gfn);
2685 }
2686 
2687 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2688 				     gfn_t *nr_pages)
2689 {
2690 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2691 }
2692 
2693 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2694 					gfn_t gfn)
2695 {
2696 	return gfn_to_hva_many(slot, gfn, NULL);
2697 }
2698 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2699 
2700 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2701 {
2702 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2703 }
2704 EXPORT_SYMBOL_GPL(gfn_to_hva);
2705 
2706 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2707 {
2708 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2709 }
2710 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2711 
2712 /*
2713  * Return the hva of a @gfn and the R/W attribute if possible.
2714  *
2715  * @slot: the kvm_memory_slot which contains @gfn
2716  * @gfn: the gfn to be translated
2717  * @writable: used to return the read/write attribute of the @slot if the hva
2718  * is valid and @writable is not NULL
2719  */
2720 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2721 				      gfn_t gfn, bool *writable)
2722 {
2723 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2724 
2725 	if (!kvm_is_error_hva(hva) && writable)
2726 		*writable = !memslot_is_readonly(slot);
2727 
2728 	return hva;
2729 }
2730 
2731 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2732 {
2733 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2734 
2735 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2736 }
2737 
2738 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2739 {
2740 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2741 
2742 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2743 }
2744 
2745 static inline int check_user_page_hwpoison(unsigned long addr)
2746 {
2747 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2748 
2749 	rc = get_user_pages(addr, 1, flags, NULL);
2750 	return rc == -EHWPOISON;
2751 }
2752 
2753 /*
2754  * The fast path to get the writable pfn which will be stored in @pfn,
2755  * true indicates success, otherwise false is returned.  It's also the
2756  * only part that runs if we can in atomic context.
2757  */
2758 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2759 			    bool *writable, kvm_pfn_t *pfn)
2760 {
2761 	struct page *page[1];
2762 
2763 	/*
2764 	 * Fast pin a writable pfn only if it is a write fault request
2765 	 * or the caller allows to map a writable pfn for a read fault
2766 	 * request.
2767 	 */
2768 	if (!(write_fault || writable))
2769 		return false;
2770 
2771 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2772 		*pfn = page_to_pfn(page[0]);
2773 
2774 		if (writable)
2775 			*writable = true;
2776 		return true;
2777 	}
2778 
2779 	return false;
2780 }
2781 
2782 /*
2783  * The slow path to get the pfn of the specified host virtual address,
2784  * 1 indicates success, -errno is returned if error is detected.
2785  */
2786 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2787 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2788 {
2789 	/*
2790 	 * When a VCPU accesses a page that is not mapped into the secondary
2791 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2792 	 * make progress. We always want to honor NUMA hinting faults in that
2793 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2794 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2795 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2796 	 *
2797 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2798 	 * implicitly honor NUMA hinting faults and don't need this flag.
2799 	 */
2800 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2801 	struct page *page;
2802 	int npages;
2803 
2804 	might_sleep();
2805 
2806 	if (writable)
2807 		*writable = write_fault;
2808 
2809 	if (write_fault)
2810 		flags |= FOLL_WRITE;
2811 	if (async)
2812 		flags |= FOLL_NOWAIT;
2813 	if (interruptible)
2814 		flags |= FOLL_INTERRUPTIBLE;
2815 
2816 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2817 	if (npages != 1)
2818 		return npages;
2819 
2820 	/* map read fault as writable if possible */
2821 	if (unlikely(!write_fault) && writable) {
2822 		struct page *wpage;
2823 
2824 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2825 			*writable = true;
2826 			put_page(page);
2827 			page = wpage;
2828 		}
2829 	}
2830 	*pfn = page_to_pfn(page);
2831 	return npages;
2832 }
2833 
2834 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2835 {
2836 	if (unlikely(!(vma->vm_flags & VM_READ)))
2837 		return false;
2838 
2839 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2840 		return false;
2841 
2842 	return true;
2843 }
2844 
2845 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2846 {
2847 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2848 
2849 	if (!page)
2850 		return 1;
2851 
2852 	return get_page_unless_zero(page);
2853 }
2854 
2855 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2856 			       unsigned long addr, bool write_fault,
2857 			       bool *writable, kvm_pfn_t *p_pfn)
2858 {
2859 	kvm_pfn_t pfn;
2860 	pte_t *ptep;
2861 	pte_t pte;
2862 	spinlock_t *ptl;
2863 	int r;
2864 
2865 	r = follow_pte(vma, addr, &ptep, &ptl);
2866 	if (r) {
2867 		/*
2868 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2869 		 * not call the fault handler, so do it here.
2870 		 */
2871 		bool unlocked = false;
2872 		r = fixup_user_fault(current->mm, addr,
2873 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2874 				     &unlocked);
2875 		if (unlocked)
2876 			return -EAGAIN;
2877 		if (r)
2878 			return r;
2879 
2880 		r = follow_pte(vma, addr, &ptep, &ptl);
2881 		if (r)
2882 			return r;
2883 	}
2884 
2885 	pte = ptep_get(ptep);
2886 
2887 	if (write_fault && !pte_write(pte)) {
2888 		pfn = KVM_PFN_ERR_RO_FAULT;
2889 		goto out;
2890 	}
2891 
2892 	if (writable)
2893 		*writable = pte_write(pte);
2894 	pfn = pte_pfn(pte);
2895 
2896 	/*
2897 	 * Get a reference here because callers of *hva_to_pfn* and
2898 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2899 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2900 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2901 	 * simply do nothing for reserved pfns.
2902 	 *
2903 	 * Whoever called remap_pfn_range is also going to call e.g.
2904 	 * unmap_mapping_range before the underlying pages are freed,
2905 	 * causing a call to our MMU notifier.
2906 	 *
2907 	 * Certain IO or PFNMAP mappings can be backed with valid
2908 	 * struct pages, but be allocated without refcounting e.g.,
2909 	 * tail pages of non-compound higher order allocations, which
2910 	 * would then underflow the refcount when the caller does the
2911 	 * required put_page. Don't allow those pages here.
2912 	 */
2913 	if (!kvm_try_get_pfn(pfn))
2914 		r = -EFAULT;
2915 
2916 out:
2917 	pte_unmap_unlock(ptep, ptl);
2918 	*p_pfn = pfn;
2919 
2920 	return r;
2921 }
2922 
2923 /*
2924  * Pin guest page in memory and return its pfn.
2925  * @addr: host virtual address which maps memory to the guest
2926  * @atomic: whether this function is forbidden from sleeping
2927  * @interruptible: whether the process can be interrupted by non-fatal signals
2928  * @async: whether this function need to wait IO complete if the
2929  *         host page is not in the memory
2930  * @write_fault: whether we should get a writable host page
2931  * @writable: whether it allows to map a writable host page for !@write_fault
2932  *
2933  * The function will map a writable host page for these two cases:
2934  * 1): @write_fault = true
2935  * 2): @write_fault = false && @writable, @writable will tell the caller
2936  *     whether the mapping is writable.
2937  */
2938 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2939 		     bool *async, bool write_fault, bool *writable)
2940 {
2941 	struct vm_area_struct *vma;
2942 	kvm_pfn_t pfn;
2943 	int npages, r;
2944 
2945 	/* we can do it either atomically or asynchronously, not both */
2946 	BUG_ON(atomic && async);
2947 
2948 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2949 		return pfn;
2950 
2951 	if (atomic)
2952 		return KVM_PFN_ERR_FAULT;
2953 
2954 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2955 				 writable, &pfn);
2956 	if (npages == 1)
2957 		return pfn;
2958 	if (npages == -EINTR)
2959 		return KVM_PFN_ERR_SIGPENDING;
2960 
2961 	mmap_read_lock(current->mm);
2962 	if (npages == -EHWPOISON ||
2963 	      (!async && check_user_page_hwpoison(addr))) {
2964 		pfn = KVM_PFN_ERR_HWPOISON;
2965 		goto exit;
2966 	}
2967 
2968 retry:
2969 	vma = vma_lookup(current->mm, addr);
2970 
2971 	if (vma == NULL)
2972 		pfn = KVM_PFN_ERR_FAULT;
2973 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2974 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2975 		if (r == -EAGAIN)
2976 			goto retry;
2977 		if (r < 0)
2978 			pfn = KVM_PFN_ERR_FAULT;
2979 	} else {
2980 		if (async && vma_is_valid(vma, write_fault))
2981 			*async = true;
2982 		pfn = KVM_PFN_ERR_FAULT;
2983 	}
2984 exit:
2985 	mmap_read_unlock(current->mm);
2986 	return pfn;
2987 }
2988 
2989 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2990 			       bool atomic, bool interruptible, bool *async,
2991 			       bool write_fault, bool *writable, hva_t *hva)
2992 {
2993 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2994 
2995 	if (hva)
2996 		*hva = addr;
2997 
2998 	if (kvm_is_error_hva(addr)) {
2999 		if (writable)
3000 			*writable = false;
3001 
3002 		return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
3003 						    KVM_PFN_NOSLOT;
3004 	}
3005 
3006 	/* Do not map writable pfn in the readonly memslot. */
3007 	if (writable && memslot_is_readonly(slot)) {
3008 		*writable = false;
3009 		writable = NULL;
3010 	}
3011 
3012 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3013 			  writable);
3014 }
3015 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3016 
3017 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3018 		      bool *writable)
3019 {
3020 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3021 				    NULL, write_fault, writable, NULL);
3022 }
3023 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3024 
3025 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3026 {
3027 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3028 				    NULL, NULL);
3029 }
3030 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3031 
3032 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3033 {
3034 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3035 				    NULL, NULL);
3036 }
3037 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3038 
3039 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3040 {
3041 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3042 }
3043 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3044 
3045 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3046 {
3047 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3048 }
3049 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3050 
3051 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3052 {
3053 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3054 }
3055 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3056 
3057 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3058 			    struct page **pages, int nr_pages)
3059 {
3060 	unsigned long addr;
3061 	gfn_t entry = 0;
3062 
3063 	addr = gfn_to_hva_many(slot, gfn, &entry);
3064 	if (kvm_is_error_hva(addr))
3065 		return -1;
3066 
3067 	if (entry < nr_pages)
3068 		return 0;
3069 
3070 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3071 }
3072 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3073 
3074 /*
3075  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3076  * backed by 'struct page'.  A valid example is if the backing memslot is
3077  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3078  * been elevated by gfn_to_pfn().
3079  */
3080 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3081 {
3082 	struct page *page;
3083 	kvm_pfn_t pfn;
3084 
3085 	pfn = gfn_to_pfn(kvm, gfn);
3086 
3087 	if (is_error_noslot_pfn(pfn))
3088 		return KVM_ERR_PTR_BAD_PAGE;
3089 
3090 	page = kvm_pfn_to_refcounted_page(pfn);
3091 	if (!page)
3092 		return KVM_ERR_PTR_BAD_PAGE;
3093 
3094 	return page;
3095 }
3096 EXPORT_SYMBOL_GPL(gfn_to_page);
3097 
3098 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3099 {
3100 	if (dirty)
3101 		kvm_release_pfn_dirty(pfn);
3102 	else
3103 		kvm_release_pfn_clean(pfn);
3104 }
3105 
3106 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3107 {
3108 	kvm_pfn_t pfn;
3109 	void *hva = NULL;
3110 	struct page *page = KVM_UNMAPPED_PAGE;
3111 
3112 	if (!map)
3113 		return -EINVAL;
3114 
3115 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3116 	if (is_error_noslot_pfn(pfn))
3117 		return -EINVAL;
3118 
3119 	if (pfn_valid(pfn)) {
3120 		page = pfn_to_page(pfn);
3121 		hva = kmap(page);
3122 #ifdef CONFIG_HAS_IOMEM
3123 	} else {
3124 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3125 #endif
3126 	}
3127 
3128 	if (!hva)
3129 		return -EFAULT;
3130 
3131 	map->page = page;
3132 	map->hva = hva;
3133 	map->pfn = pfn;
3134 	map->gfn = gfn;
3135 
3136 	return 0;
3137 }
3138 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3139 
3140 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3141 {
3142 	if (!map)
3143 		return;
3144 
3145 	if (!map->hva)
3146 		return;
3147 
3148 	if (map->page != KVM_UNMAPPED_PAGE)
3149 		kunmap(map->page);
3150 #ifdef CONFIG_HAS_IOMEM
3151 	else
3152 		memunmap(map->hva);
3153 #endif
3154 
3155 	if (dirty)
3156 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3157 
3158 	kvm_release_pfn(map->pfn, dirty);
3159 
3160 	map->hva = NULL;
3161 	map->page = NULL;
3162 }
3163 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3164 
3165 static bool kvm_is_ad_tracked_page(struct page *page)
3166 {
3167 	/*
3168 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3169 	 * touched (e.g. set dirty) except by its owner".
3170 	 */
3171 	return !PageReserved(page);
3172 }
3173 
3174 static void kvm_set_page_dirty(struct page *page)
3175 {
3176 	if (kvm_is_ad_tracked_page(page))
3177 		SetPageDirty(page);
3178 }
3179 
3180 static void kvm_set_page_accessed(struct page *page)
3181 {
3182 	if (kvm_is_ad_tracked_page(page))
3183 		mark_page_accessed(page);
3184 }
3185 
3186 void kvm_release_page_clean(struct page *page)
3187 {
3188 	WARN_ON(is_error_page(page));
3189 
3190 	kvm_set_page_accessed(page);
3191 	put_page(page);
3192 }
3193 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3194 
3195 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3196 {
3197 	struct page *page;
3198 
3199 	if (is_error_noslot_pfn(pfn))
3200 		return;
3201 
3202 	page = kvm_pfn_to_refcounted_page(pfn);
3203 	if (!page)
3204 		return;
3205 
3206 	kvm_release_page_clean(page);
3207 }
3208 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3209 
3210 void kvm_release_page_dirty(struct page *page)
3211 {
3212 	WARN_ON(is_error_page(page));
3213 
3214 	kvm_set_page_dirty(page);
3215 	kvm_release_page_clean(page);
3216 }
3217 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3218 
3219 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3220 {
3221 	struct page *page;
3222 
3223 	if (is_error_noslot_pfn(pfn))
3224 		return;
3225 
3226 	page = kvm_pfn_to_refcounted_page(pfn);
3227 	if (!page)
3228 		return;
3229 
3230 	kvm_release_page_dirty(page);
3231 }
3232 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3233 
3234 /*
3235  * Note, checking for an error/noslot pfn is the caller's responsibility when
3236  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3237  * "set" helpers are not to be used when the pfn might point at garbage.
3238  */
3239 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3240 {
3241 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3242 		return;
3243 
3244 	if (pfn_valid(pfn))
3245 		kvm_set_page_dirty(pfn_to_page(pfn));
3246 }
3247 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3248 
3249 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3250 {
3251 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3252 		return;
3253 
3254 	if (pfn_valid(pfn))
3255 		kvm_set_page_accessed(pfn_to_page(pfn));
3256 }
3257 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3258 
3259 static int next_segment(unsigned long len, int offset)
3260 {
3261 	if (len > PAGE_SIZE - offset)
3262 		return PAGE_SIZE - offset;
3263 	else
3264 		return len;
3265 }
3266 
3267 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3268 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3269 				 void *data, int offset, int len)
3270 {
3271 	int r;
3272 	unsigned long addr;
3273 
3274 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3275 	if (kvm_is_error_hva(addr))
3276 		return -EFAULT;
3277 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3278 	if (r)
3279 		return -EFAULT;
3280 	return 0;
3281 }
3282 
3283 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3284 			int len)
3285 {
3286 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3287 
3288 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3291 
3292 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3293 			     int offset, int len)
3294 {
3295 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3296 
3297 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3300 
3301 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3302 {
3303 	gfn_t gfn = gpa >> PAGE_SHIFT;
3304 	int seg;
3305 	int offset = offset_in_page(gpa);
3306 	int ret;
3307 
3308 	while ((seg = next_segment(len, offset)) != 0) {
3309 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3310 		if (ret < 0)
3311 			return ret;
3312 		offset = 0;
3313 		len -= seg;
3314 		data += seg;
3315 		++gfn;
3316 	}
3317 	return 0;
3318 }
3319 EXPORT_SYMBOL_GPL(kvm_read_guest);
3320 
3321 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3322 {
3323 	gfn_t gfn = gpa >> PAGE_SHIFT;
3324 	int seg;
3325 	int offset = offset_in_page(gpa);
3326 	int ret;
3327 
3328 	while ((seg = next_segment(len, offset)) != 0) {
3329 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3330 		if (ret < 0)
3331 			return ret;
3332 		offset = 0;
3333 		len -= seg;
3334 		data += seg;
3335 		++gfn;
3336 	}
3337 	return 0;
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3340 
3341 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3342 			           void *data, int offset, unsigned long len)
3343 {
3344 	int r;
3345 	unsigned long addr;
3346 
3347 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3348 	if (kvm_is_error_hva(addr))
3349 		return -EFAULT;
3350 	pagefault_disable();
3351 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3352 	pagefault_enable();
3353 	if (r)
3354 		return -EFAULT;
3355 	return 0;
3356 }
3357 
3358 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3359 			       void *data, unsigned long len)
3360 {
3361 	gfn_t gfn = gpa >> PAGE_SHIFT;
3362 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3363 	int offset = offset_in_page(gpa);
3364 
3365 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3366 }
3367 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3368 
3369 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3370 static int __kvm_write_guest_page(struct kvm *kvm,
3371 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3372 			          const void *data, int offset, int len)
3373 {
3374 	int r;
3375 	unsigned long addr;
3376 
3377 	addr = gfn_to_hva_memslot(memslot, gfn);
3378 	if (kvm_is_error_hva(addr))
3379 		return -EFAULT;
3380 	r = __copy_to_user((void __user *)addr + offset, data, len);
3381 	if (r)
3382 		return -EFAULT;
3383 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3384 	return 0;
3385 }
3386 
3387 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3388 			 const void *data, int offset, int len)
3389 {
3390 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3391 
3392 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3393 }
3394 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3395 
3396 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3397 			      const void *data, int offset, int len)
3398 {
3399 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3400 
3401 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3402 }
3403 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3404 
3405 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3406 		    unsigned long len)
3407 {
3408 	gfn_t gfn = gpa >> PAGE_SHIFT;
3409 	int seg;
3410 	int offset = offset_in_page(gpa);
3411 	int ret;
3412 
3413 	while ((seg = next_segment(len, offset)) != 0) {
3414 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3415 		if (ret < 0)
3416 			return ret;
3417 		offset = 0;
3418 		len -= seg;
3419 		data += seg;
3420 		++gfn;
3421 	}
3422 	return 0;
3423 }
3424 EXPORT_SYMBOL_GPL(kvm_write_guest);
3425 
3426 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3427 		         unsigned long len)
3428 {
3429 	gfn_t gfn = gpa >> PAGE_SHIFT;
3430 	int seg;
3431 	int offset = offset_in_page(gpa);
3432 	int ret;
3433 
3434 	while ((seg = next_segment(len, offset)) != 0) {
3435 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3436 		if (ret < 0)
3437 			return ret;
3438 		offset = 0;
3439 		len -= seg;
3440 		data += seg;
3441 		++gfn;
3442 	}
3443 	return 0;
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3446 
3447 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3448 				       struct gfn_to_hva_cache *ghc,
3449 				       gpa_t gpa, unsigned long len)
3450 {
3451 	int offset = offset_in_page(gpa);
3452 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3453 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3454 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3455 	gfn_t nr_pages_avail;
3456 
3457 	/* Update ghc->generation before performing any error checks. */
3458 	ghc->generation = slots->generation;
3459 
3460 	if (start_gfn > end_gfn) {
3461 		ghc->hva = KVM_HVA_ERR_BAD;
3462 		return -EINVAL;
3463 	}
3464 
3465 	/*
3466 	 * If the requested region crosses two memslots, we still
3467 	 * verify that the entire region is valid here.
3468 	 */
3469 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3470 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3471 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3472 					   &nr_pages_avail);
3473 		if (kvm_is_error_hva(ghc->hva))
3474 			return -EFAULT;
3475 	}
3476 
3477 	/* Use the slow path for cross page reads and writes. */
3478 	if (nr_pages_needed == 1)
3479 		ghc->hva += offset;
3480 	else
3481 		ghc->memslot = NULL;
3482 
3483 	ghc->gpa = gpa;
3484 	ghc->len = len;
3485 	return 0;
3486 }
3487 
3488 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3489 			      gpa_t gpa, unsigned long len)
3490 {
3491 	struct kvm_memslots *slots = kvm_memslots(kvm);
3492 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3493 }
3494 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3495 
3496 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3497 				  void *data, unsigned int offset,
3498 				  unsigned long len)
3499 {
3500 	struct kvm_memslots *slots = kvm_memslots(kvm);
3501 	int r;
3502 	gpa_t gpa = ghc->gpa + offset;
3503 
3504 	if (WARN_ON_ONCE(len + offset > ghc->len))
3505 		return -EINVAL;
3506 
3507 	if (slots->generation != ghc->generation) {
3508 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3509 			return -EFAULT;
3510 	}
3511 
3512 	if (kvm_is_error_hva(ghc->hva))
3513 		return -EFAULT;
3514 
3515 	if (unlikely(!ghc->memslot))
3516 		return kvm_write_guest(kvm, gpa, data, len);
3517 
3518 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3519 	if (r)
3520 		return -EFAULT;
3521 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3522 
3523 	return 0;
3524 }
3525 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3526 
3527 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3528 			   void *data, unsigned long len)
3529 {
3530 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3533 
3534 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3535 				 void *data, unsigned int offset,
3536 				 unsigned long len)
3537 {
3538 	struct kvm_memslots *slots = kvm_memslots(kvm);
3539 	int r;
3540 	gpa_t gpa = ghc->gpa + offset;
3541 
3542 	if (WARN_ON_ONCE(len + offset > ghc->len))
3543 		return -EINVAL;
3544 
3545 	if (slots->generation != ghc->generation) {
3546 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3547 			return -EFAULT;
3548 	}
3549 
3550 	if (kvm_is_error_hva(ghc->hva))
3551 		return -EFAULT;
3552 
3553 	if (unlikely(!ghc->memslot))
3554 		return kvm_read_guest(kvm, gpa, data, len);
3555 
3556 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3557 	if (r)
3558 		return -EFAULT;
3559 
3560 	return 0;
3561 }
3562 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3563 
3564 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3565 			  void *data, unsigned long len)
3566 {
3567 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3568 }
3569 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3570 
3571 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3572 {
3573 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3574 	gfn_t gfn = gpa >> PAGE_SHIFT;
3575 	int seg;
3576 	int offset = offset_in_page(gpa);
3577 	int ret;
3578 
3579 	while ((seg = next_segment(len, offset)) != 0) {
3580 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3581 		if (ret < 0)
3582 			return ret;
3583 		offset = 0;
3584 		len -= seg;
3585 		++gfn;
3586 	}
3587 	return 0;
3588 }
3589 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3590 
3591 void mark_page_dirty_in_slot(struct kvm *kvm,
3592 			     const struct kvm_memory_slot *memslot,
3593 		 	     gfn_t gfn)
3594 {
3595 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3596 
3597 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3598 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3599 		return;
3600 
3601 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3602 #endif
3603 
3604 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3605 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3606 		u32 slot = (memslot->as_id << 16) | memslot->id;
3607 
3608 		if (kvm->dirty_ring_size && vcpu)
3609 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3610 		else if (memslot->dirty_bitmap)
3611 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3612 	}
3613 }
3614 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3615 
3616 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3617 {
3618 	struct kvm_memory_slot *memslot;
3619 
3620 	memslot = gfn_to_memslot(kvm, gfn);
3621 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3622 }
3623 EXPORT_SYMBOL_GPL(mark_page_dirty);
3624 
3625 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3626 {
3627 	struct kvm_memory_slot *memslot;
3628 
3629 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3630 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3631 }
3632 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3633 
3634 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3635 {
3636 	if (!vcpu->sigset_active)
3637 		return;
3638 
3639 	/*
3640 	 * This does a lockless modification of ->real_blocked, which is fine
3641 	 * because, only current can change ->real_blocked and all readers of
3642 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3643 	 * of ->blocked.
3644 	 */
3645 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3646 }
3647 
3648 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3649 {
3650 	if (!vcpu->sigset_active)
3651 		return;
3652 
3653 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3654 	sigemptyset(&current->real_blocked);
3655 }
3656 
3657 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3658 {
3659 	unsigned int old, val, grow, grow_start;
3660 
3661 	old = val = vcpu->halt_poll_ns;
3662 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3663 	grow = READ_ONCE(halt_poll_ns_grow);
3664 	if (!grow)
3665 		goto out;
3666 
3667 	val *= grow;
3668 	if (val < grow_start)
3669 		val = grow_start;
3670 
3671 	vcpu->halt_poll_ns = val;
3672 out:
3673 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3674 }
3675 
3676 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3677 {
3678 	unsigned int old, val, shrink, grow_start;
3679 
3680 	old = val = vcpu->halt_poll_ns;
3681 	shrink = READ_ONCE(halt_poll_ns_shrink);
3682 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3683 	if (shrink == 0)
3684 		val = 0;
3685 	else
3686 		val /= shrink;
3687 
3688 	if (val < grow_start)
3689 		val = 0;
3690 
3691 	vcpu->halt_poll_ns = val;
3692 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3693 }
3694 
3695 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3696 {
3697 	int ret = -EINTR;
3698 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3699 
3700 	if (kvm_arch_vcpu_runnable(vcpu))
3701 		goto out;
3702 	if (kvm_cpu_has_pending_timer(vcpu))
3703 		goto out;
3704 	if (signal_pending(current))
3705 		goto out;
3706 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3707 		goto out;
3708 
3709 	ret = 0;
3710 out:
3711 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3712 	return ret;
3713 }
3714 
3715 /*
3716  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3717  * pending.  This is mostly used when halting a vCPU, but may also be used
3718  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3719  */
3720 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3721 {
3722 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3723 	bool waited = false;
3724 
3725 	vcpu->stat.generic.blocking = 1;
3726 
3727 	preempt_disable();
3728 	kvm_arch_vcpu_blocking(vcpu);
3729 	prepare_to_rcuwait(wait);
3730 	preempt_enable();
3731 
3732 	for (;;) {
3733 		set_current_state(TASK_INTERRUPTIBLE);
3734 
3735 		if (kvm_vcpu_check_block(vcpu) < 0)
3736 			break;
3737 
3738 		waited = true;
3739 		schedule();
3740 	}
3741 
3742 	preempt_disable();
3743 	finish_rcuwait(wait);
3744 	kvm_arch_vcpu_unblocking(vcpu);
3745 	preempt_enable();
3746 
3747 	vcpu->stat.generic.blocking = 0;
3748 
3749 	return waited;
3750 }
3751 
3752 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3753 					  ktime_t end, bool success)
3754 {
3755 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3756 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3757 
3758 	++vcpu->stat.generic.halt_attempted_poll;
3759 
3760 	if (success) {
3761 		++vcpu->stat.generic.halt_successful_poll;
3762 
3763 		if (!vcpu_valid_wakeup(vcpu))
3764 			++vcpu->stat.generic.halt_poll_invalid;
3765 
3766 		stats->halt_poll_success_ns += poll_ns;
3767 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3768 	} else {
3769 		stats->halt_poll_fail_ns += poll_ns;
3770 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3771 	}
3772 }
3773 
3774 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3775 {
3776 	struct kvm *kvm = vcpu->kvm;
3777 
3778 	if (kvm->override_halt_poll_ns) {
3779 		/*
3780 		 * Ensure kvm->max_halt_poll_ns is not read before
3781 		 * kvm->override_halt_poll_ns.
3782 		 *
3783 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3784 		 */
3785 		smp_rmb();
3786 		return READ_ONCE(kvm->max_halt_poll_ns);
3787 	}
3788 
3789 	return READ_ONCE(halt_poll_ns);
3790 }
3791 
3792 /*
3793  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3794  * polling is enabled, busy wait for a short time before blocking to avoid the
3795  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3796  * is halted.
3797  */
3798 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3799 {
3800 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3801 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3802 	ktime_t start, cur, poll_end;
3803 	bool waited = false;
3804 	bool do_halt_poll;
3805 	u64 halt_ns;
3806 
3807 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3808 		vcpu->halt_poll_ns = max_halt_poll_ns;
3809 
3810 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3811 
3812 	start = cur = poll_end = ktime_get();
3813 	if (do_halt_poll) {
3814 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3815 
3816 		do {
3817 			if (kvm_vcpu_check_block(vcpu) < 0)
3818 				goto out;
3819 			cpu_relax();
3820 			poll_end = cur = ktime_get();
3821 		} while (kvm_vcpu_can_poll(cur, stop));
3822 	}
3823 
3824 	waited = kvm_vcpu_block(vcpu);
3825 
3826 	cur = ktime_get();
3827 	if (waited) {
3828 		vcpu->stat.generic.halt_wait_ns +=
3829 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3830 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3831 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3832 	}
3833 out:
3834 	/* The total time the vCPU was "halted", including polling time. */
3835 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3836 
3837 	/*
3838 	 * Note, halt-polling is considered successful so long as the vCPU was
3839 	 * never actually scheduled out, i.e. even if the wake event arrived
3840 	 * after of the halt-polling loop itself, but before the full wait.
3841 	 */
3842 	if (do_halt_poll)
3843 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3844 
3845 	if (halt_poll_allowed) {
3846 		/* Recompute the max halt poll time in case it changed. */
3847 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3848 
3849 		if (!vcpu_valid_wakeup(vcpu)) {
3850 			shrink_halt_poll_ns(vcpu);
3851 		} else if (max_halt_poll_ns) {
3852 			if (halt_ns <= vcpu->halt_poll_ns)
3853 				;
3854 			/* we had a long block, shrink polling */
3855 			else if (vcpu->halt_poll_ns &&
3856 				 halt_ns > max_halt_poll_ns)
3857 				shrink_halt_poll_ns(vcpu);
3858 			/* we had a short halt and our poll time is too small */
3859 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3860 				 halt_ns < max_halt_poll_ns)
3861 				grow_halt_poll_ns(vcpu);
3862 		} else {
3863 			vcpu->halt_poll_ns = 0;
3864 		}
3865 	}
3866 
3867 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3868 }
3869 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3870 
3871 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3872 {
3873 	if (__kvm_vcpu_wake_up(vcpu)) {
3874 		WRITE_ONCE(vcpu->ready, true);
3875 		++vcpu->stat.generic.halt_wakeup;
3876 		return true;
3877 	}
3878 
3879 	return false;
3880 }
3881 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3882 
3883 #ifndef CONFIG_S390
3884 /*
3885  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3886  */
3887 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3888 {
3889 	int me, cpu;
3890 
3891 	if (kvm_vcpu_wake_up(vcpu))
3892 		return;
3893 
3894 	me = get_cpu();
3895 	/*
3896 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3897 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3898 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3899 	 * within the vCPU thread itself.
3900 	 */
3901 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3902 		if (vcpu->mode == IN_GUEST_MODE)
3903 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3904 		goto out;
3905 	}
3906 
3907 	/*
3908 	 * Note, the vCPU could get migrated to a different pCPU at any point
3909 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3910 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3911 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3912 	 * vCPU also requires it to leave IN_GUEST_MODE.
3913 	 */
3914 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3915 		cpu = READ_ONCE(vcpu->cpu);
3916 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3917 			smp_send_reschedule(cpu);
3918 	}
3919 out:
3920 	put_cpu();
3921 }
3922 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3923 #endif /* !CONFIG_S390 */
3924 
3925 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3926 {
3927 	struct pid *pid;
3928 	struct task_struct *task = NULL;
3929 	int ret = 0;
3930 
3931 	rcu_read_lock();
3932 	pid = rcu_dereference(target->pid);
3933 	if (pid)
3934 		task = get_pid_task(pid, PIDTYPE_PID);
3935 	rcu_read_unlock();
3936 	if (!task)
3937 		return ret;
3938 	ret = yield_to(task, 1);
3939 	put_task_struct(task);
3940 
3941 	return ret;
3942 }
3943 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3944 
3945 /*
3946  * Helper that checks whether a VCPU is eligible for directed yield.
3947  * Most eligible candidate to yield is decided by following heuristics:
3948  *
3949  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3950  *  (preempted lock holder), indicated by @in_spin_loop.
3951  *  Set at the beginning and cleared at the end of interception/PLE handler.
3952  *
3953  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3954  *  chance last time (mostly it has become eligible now since we have probably
3955  *  yielded to lockholder in last iteration. This is done by toggling
3956  *  @dy_eligible each time a VCPU checked for eligibility.)
3957  *
3958  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3959  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3960  *  burning. Giving priority for a potential lock-holder increases lock
3961  *  progress.
3962  *
3963  *  Since algorithm is based on heuristics, accessing another VCPU data without
3964  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3965  *  and continue with next VCPU and so on.
3966  */
3967 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3968 {
3969 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3970 	bool eligible;
3971 
3972 	eligible = !vcpu->spin_loop.in_spin_loop ||
3973 		    vcpu->spin_loop.dy_eligible;
3974 
3975 	if (vcpu->spin_loop.in_spin_loop)
3976 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3977 
3978 	return eligible;
3979 #else
3980 	return true;
3981 #endif
3982 }
3983 
3984 /*
3985  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3986  * a vcpu_load/vcpu_put pair.  However, for most architectures
3987  * kvm_arch_vcpu_runnable does not require vcpu_load.
3988  */
3989 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3990 {
3991 	return kvm_arch_vcpu_runnable(vcpu);
3992 }
3993 
3994 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3995 {
3996 	if (kvm_arch_dy_runnable(vcpu))
3997 		return true;
3998 
3999 #ifdef CONFIG_KVM_ASYNC_PF
4000 	if (!list_empty_careful(&vcpu->async_pf.done))
4001 		return true;
4002 #endif
4003 
4004 	return false;
4005 }
4006 
4007 /*
4008  * By default, simply query the target vCPU's current mode when checking if a
4009  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4010  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4011  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4012  * directly for cross-vCPU checks is functionally correct and accurate.
4013  */
4014 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4015 {
4016 	return kvm_arch_vcpu_in_kernel(vcpu);
4017 }
4018 
4019 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4020 {
4021 	return false;
4022 }
4023 
4024 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4025 {
4026 	struct kvm *kvm = me->kvm;
4027 	struct kvm_vcpu *vcpu;
4028 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4029 	unsigned long i;
4030 	int yielded = 0;
4031 	int try = 3;
4032 	int pass;
4033 
4034 	kvm_vcpu_set_in_spin_loop(me, true);
4035 	/*
4036 	 * We boost the priority of a VCPU that is runnable but not
4037 	 * currently running, because it got preempted by something
4038 	 * else and called schedule in __vcpu_run.  Hopefully that
4039 	 * VCPU is holding the lock that we need and will release it.
4040 	 * We approximate round-robin by starting at the last boosted VCPU.
4041 	 */
4042 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4043 		kvm_for_each_vcpu(i, vcpu, kvm) {
4044 			if (!pass && i <= last_boosted_vcpu) {
4045 				i = last_boosted_vcpu;
4046 				continue;
4047 			} else if (pass && i > last_boosted_vcpu)
4048 				break;
4049 			if (!READ_ONCE(vcpu->ready))
4050 				continue;
4051 			if (vcpu == me)
4052 				continue;
4053 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4054 				continue;
4055 
4056 			/*
4057 			 * Treat the target vCPU as being in-kernel if it has a
4058 			 * pending interrupt, as the vCPU trying to yield may
4059 			 * be spinning waiting on IPI delivery, i.e. the target
4060 			 * vCPU is in-kernel for the purposes of directed yield.
4061 			 */
4062 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4063 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4064 			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4065 				continue;
4066 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4067 				continue;
4068 
4069 			yielded = kvm_vcpu_yield_to(vcpu);
4070 			if (yielded > 0) {
4071 				kvm->last_boosted_vcpu = i;
4072 				break;
4073 			} else if (yielded < 0) {
4074 				try--;
4075 				if (!try)
4076 					break;
4077 			}
4078 		}
4079 	}
4080 	kvm_vcpu_set_in_spin_loop(me, false);
4081 
4082 	/* Ensure vcpu is not eligible during next spinloop */
4083 	kvm_vcpu_set_dy_eligible(me, false);
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4086 
4087 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4088 {
4089 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4090 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4091 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4092 	     kvm->dirty_ring_size / PAGE_SIZE);
4093 #else
4094 	return false;
4095 #endif
4096 }
4097 
4098 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4099 {
4100 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4101 	struct page *page;
4102 
4103 	if (vmf->pgoff == 0)
4104 		page = virt_to_page(vcpu->run);
4105 #ifdef CONFIG_X86
4106 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4107 		page = virt_to_page(vcpu->arch.pio_data);
4108 #endif
4109 #ifdef CONFIG_KVM_MMIO
4110 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4111 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4112 #endif
4113 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4114 		page = kvm_dirty_ring_get_page(
4115 		    &vcpu->dirty_ring,
4116 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4117 	else
4118 		return kvm_arch_vcpu_fault(vcpu, vmf);
4119 	get_page(page);
4120 	vmf->page = page;
4121 	return 0;
4122 }
4123 
4124 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4125 	.fault = kvm_vcpu_fault,
4126 };
4127 
4128 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4129 {
4130 	struct kvm_vcpu *vcpu = file->private_data;
4131 	unsigned long pages = vma_pages(vma);
4132 
4133 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4134 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4135 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4136 		return -EINVAL;
4137 
4138 	vma->vm_ops = &kvm_vcpu_vm_ops;
4139 	return 0;
4140 }
4141 
4142 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4143 {
4144 	struct kvm_vcpu *vcpu = filp->private_data;
4145 
4146 	kvm_put_kvm(vcpu->kvm);
4147 	return 0;
4148 }
4149 
4150 static struct file_operations kvm_vcpu_fops = {
4151 	.release        = kvm_vcpu_release,
4152 	.unlocked_ioctl = kvm_vcpu_ioctl,
4153 	.mmap           = kvm_vcpu_mmap,
4154 	.llseek		= noop_llseek,
4155 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4156 };
4157 
4158 /*
4159  * Allocates an inode for the vcpu.
4160  */
4161 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4162 {
4163 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4164 
4165 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4166 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4167 }
4168 
4169 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4170 static int vcpu_get_pid(void *data, u64 *val)
4171 {
4172 	struct kvm_vcpu *vcpu = data;
4173 
4174 	rcu_read_lock();
4175 	*val = pid_nr(rcu_dereference(vcpu->pid));
4176 	rcu_read_unlock();
4177 	return 0;
4178 }
4179 
4180 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4181 
4182 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4183 {
4184 	struct dentry *debugfs_dentry;
4185 	char dir_name[ITOA_MAX_LEN * 2];
4186 
4187 	if (!debugfs_initialized())
4188 		return;
4189 
4190 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4191 	debugfs_dentry = debugfs_create_dir(dir_name,
4192 					    vcpu->kvm->debugfs_dentry);
4193 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4194 			    &vcpu_get_pid_fops);
4195 
4196 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4197 }
4198 #endif
4199 
4200 /*
4201  * Creates some virtual cpus.  Good luck creating more than one.
4202  */
4203 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4204 {
4205 	int r;
4206 	struct kvm_vcpu *vcpu;
4207 	struct page *page;
4208 
4209 	if (id >= KVM_MAX_VCPU_IDS)
4210 		return -EINVAL;
4211 
4212 	mutex_lock(&kvm->lock);
4213 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4214 		mutex_unlock(&kvm->lock);
4215 		return -EINVAL;
4216 	}
4217 
4218 	r = kvm_arch_vcpu_precreate(kvm, id);
4219 	if (r) {
4220 		mutex_unlock(&kvm->lock);
4221 		return r;
4222 	}
4223 
4224 	kvm->created_vcpus++;
4225 	mutex_unlock(&kvm->lock);
4226 
4227 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4228 	if (!vcpu) {
4229 		r = -ENOMEM;
4230 		goto vcpu_decrement;
4231 	}
4232 
4233 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4234 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4235 	if (!page) {
4236 		r = -ENOMEM;
4237 		goto vcpu_free;
4238 	}
4239 	vcpu->run = page_address(page);
4240 
4241 	kvm_vcpu_init(vcpu, kvm, id);
4242 
4243 	r = kvm_arch_vcpu_create(vcpu);
4244 	if (r)
4245 		goto vcpu_free_run_page;
4246 
4247 	if (kvm->dirty_ring_size) {
4248 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4249 					 id, kvm->dirty_ring_size);
4250 		if (r)
4251 			goto arch_vcpu_destroy;
4252 	}
4253 
4254 	mutex_lock(&kvm->lock);
4255 
4256 #ifdef CONFIG_LOCKDEP
4257 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4258 	mutex_lock(&vcpu->mutex);
4259 	mutex_unlock(&vcpu->mutex);
4260 #endif
4261 
4262 	if (kvm_get_vcpu_by_id(kvm, id)) {
4263 		r = -EEXIST;
4264 		goto unlock_vcpu_destroy;
4265 	}
4266 
4267 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4268 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4269 	if (r)
4270 		goto unlock_vcpu_destroy;
4271 
4272 	/* Now it's all set up, let userspace reach it */
4273 	kvm_get_kvm(kvm);
4274 	r = create_vcpu_fd(vcpu);
4275 	if (r < 0)
4276 		goto kvm_put_xa_release;
4277 
4278 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4279 		r = -EINVAL;
4280 		goto kvm_put_xa_release;
4281 	}
4282 
4283 	/*
4284 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4285 	 * pointer before kvm->online_vcpu's incremented value.
4286 	 */
4287 	smp_wmb();
4288 	atomic_inc(&kvm->online_vcpus);
4289 
4290 	mutex_unlock(&kvm->lock);
4291 	kvm_arch_vcpu_postcreate(vcpu);
4292 	kvm_create_vcpu_debugfs(vcpu);
4293 	return r;
4294 
4295 kvm_put_xa_release:
4296 	kvm_put_kvm_no_destroy(kvm);
4297 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4298 unlock_vcpu_destroy:
4299 	mutex_unlock(&kvm->lock);
4300 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4301 arch_vcpu_destroy:
4302 	kvm_arch_vcpu_destroy(vcpu);
4303 vcpu_free_run_page:
4304 	free_page((unsigned long)vcpu->run);
4305 vcpu_free:
4306 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4307 vcpu_decrement:
4308 	mutex_lock(&kvm->lock);
4309 	kvm->created_vcpus--;
4310 	mutex_unlock(&kvm->lock);
4311 	return r;
4312 }
4313 
4314 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4315 {
4316 	if (sigset) {
4317 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4318 		vcpu->sigset_active = 1;
4319 		vcpu->sigset = *sigset;
4320 	} else
4321 		vcpu->sigset_active = 0;
4322 	return 0;
4323 }
4324 
4325 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4326 			      size_t size, loff_t *offset)
4327 {
4328 	struct kvm_vcpu *vcpu = file->private_data;
4329 
4330 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4331 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4332 			sizeof(vcpu->stat), user_buffer, size, offset);
4333 }
4334 
4335 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4336 {
4337 	struct kvm_vcpu *vcpu = file->private_data;
4338 
4339 	kvm_put_kvm(vcpu->kvm);
4340 	return 0;
4341 }
4342 
4343 static const struct file_operations kvm_vcpu_stats_fops = {
4344 	.owner = THIS_MODULE,
4345 	.read = kvm_vcpu_stats_read,
4346 	.release = kvm_vcpu_stats_release,
4347 	.llseek = noop_llseek,
4348 };
4349 
4350 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4351 {
4352 	int fd;
4353 	struct file *file;
4354 	char name[15 + ITOA_MAX_LEN + 1];
4355 
4356 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4357 
4358 	fd = get_unused_fd_flags(O_CLOEXEC);
4359 	if (fd < 0)
4360 		return fd;
4361 
4362 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4363 	if (IS_ERR(file)) {
4364 		put_unused_fd(fd);
4365 		return PTR_ERR(file);
4366 	}
4367 
4368 	kvm_get_kvm(vcpu->kvm);
4369 
4370 	file->f_mode |= FMODE_PREAD;
4371 	fd_install(fd, file);
4372 
4373 	return fd;
4374 }
4375 
4376 static long kvm_vcpu_ioctl(struct file *filp,
4377 			   unsigned int ioctl, unsigned long arg)
4378 {
4379 	struct kvm_vcpu *vcpu = filp->private_data;
4380 	void __user *argp = (void __user *)arg;
4381 	int r;
4382 	struct kvm_fpu *fpu = NULL;
4383 	struct kvm_sregs *kvm_sregs = NULL;
4384 
4385 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4386 		return -EIO;
4387 
4388 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4389 		return -EINVAL;
4390 
4391 	/*
4392 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4393 	 * execution; mutex_lock() would break them.
4394 	 */
4395 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4396 	if (r != -ENOIOCTLCMD)
4397 		return r;
4398 
4399 	if (mutex_lock_killable(&vcpu->mutex))
4400 		return -EINTR;
4401 	switch (ioctl) {
4402 	case KVM_RUN: {
4403 		struct pid *oldpid;
4404 		r = -EINVAL;
4405 		if (arg)
4406 			goto out;
4407 		oldpid = rcu_access_pointer(vcpu->pid);
4408 		if (unlikely(oldpid != task_pid(current))) {
4409 			/* The thread running this VCPU changed. */
4410 			struct pid *newpid;
4411 
4412 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4413 			if (r)
4414 				break;
4415 
4416 			newpid = get_task_pid(current, PIDTYPE_PID);
4417 			rcu_assign_pointer(vcpu->pid, newpid);
4418 			if (oldpid)
4419 				synchronize_rcu();
4420 			put_pid(oldpid);
4421 		}
4422 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4423 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4424 		break;
4425 	}
4426 	case KVM_GET_REGS: {
4427 		struct kvm_regs *kvm_regs;
4428 
4429 		r = -ENOMEM;
4430 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4431 		if (!kvm_regs)
4432 			goto out;
4433 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4434 		if (r)
4435 			goto out_free1;
4436 		r = -EFAULT;
4437 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4438 			goto out_free1;
4439 		r = 0;
4440 out_free1:
4441 		kfree(kvm_regs);
4442 		break;
4443 	}
4444 	case KVM_SET_REGS: {
4445 		struct kvm_regs *kvm_regs;
4446 
4447 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4448 		if (IS_ERR(kvm_regs)) {
4449 			r = PTR_ERR(kvm_regs);
4450 			goto out;
4451 		}
4452 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4453 		kfree(kvm_regs);
4454 		break;
4455 	}
4456 	case KVM_GET_SREGS: {
4457 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4458 				    GFP_KERNEL_ACCOUNT);
4459 		r = -ENOMEM;
4460 		if (!kvm_sregs)
4461 			goto out;
4462 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4463 		if (r)
4464 			goto out;
4465 		r = -EFAULT;
4466 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4467 			goto out;
4468 		r = 0;
4469 		break;
4470 	}
4471 	case KVM_SET_SREGS: {
4472 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4473 		if (IS_ERR(kvm_sregs)) {
4474 			r = PTR_ERR(kvm_sregs);
4475 			kvm_sregs = NULL;
4476 			goto out;
4477 		}
4478 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4479 		break;
4480 	}
4481 	case KVM_GET_MP_STATE: {
4482 		struct kvm_mp_state mp_state;
4483 
4484 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4485 		if (r)
4486 			goto out;
4487 		r = -EFAULT;
4488 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4489 			goto out;
4490 		r = 0;
4491 		break;
4492 	}
4493 	case KVM_SET_MP_STATE: {
4494 		struct kvm_mp_state mp_state;
4495 
4496 		r = -EFAULT;
4497 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4498 			goto out;
4499 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4500 		break;
4501 	}
4502 	case KVM_TRANSLATE: {
4503 		struct kvm_translation tr;
4504 
4505 		r = -EFAULT;
4506 		if (copy_from_user(&tr, argp, sizeof(tr)))
4507 			goto out;
4508 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4509 		if (r)
4510 			goto out;
4511 		r = -EFAULT;
4512 		if (copy_to_user(argp, &tr, sizeof(tr)))
4513 			goto out;
4514 		r = 0;
4515 		break;
4516 	}
4517 	case KVM_SET_GUEST_DEBUG: {
4518 		struct kvm_guest_debug dbg;
4519 
4520 		r = -EFAULT;
4521 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4522 			goto out;
4523 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4524 		break;
4525 	}
4526 	case KVM_SET_SIGNAL_MASK: {
4527 		struct kvm_signal_mask __user *sigmask_arg = argp;
4528 		struct kvm_signal_mask kvm_sigmask;
4529 		sigset_t sigset, *p;
4530 
4531 		p = NULL;
4532 		if (argp) {
4533 			r = -EFAULT;
4534 			if (copy_from_user(&kvm_sigmask, argp,
4535 					   sizeof(kvm_sigmask)))
4536 				goto out;
4537 			r = -EINVAL;
4538 			if (kvm_sigmask.len != sizeof(sigset))
4539 				goto out;
4540 			r = -EFAULT;
4541 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4542 					   sizeof(sigset)))
4543 				goto out;
4544 			p = &sigset;
4545 		}
4546 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4547 		break;
4548 	}
4549 	case KVM_GET_FPU: {
4550 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4551 		r = -ENOMEM;
4552 		if (!fpu)
4553 			goto out;
4554 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4555 		if (r)
4556 			goto out;
4557 		r = -EFAULT;
4558 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4559 			goto out;
4560 		r = 0;
4561 		break;
4562 	}
4563 	case KVM_SET_FPU: {
4564 		fpu = memdup_user(argp, sizeof(*fpu));
4565 		if (IS_ERR(fpu)) {
4566 			r = PTR_ERR(fpu);
4567 			fpu = NULL;
4568 			goto out;
4569 		}
4570 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4571 		break;
4572 	}
4573 	case KVM_GET_STATS_FD: {
4574 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4575 		break;
4576 	}
4577 	default:
4578 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4579 	}
4580 out:
4581 	mutex_unlock(&vcpu->mutex);
4582 	kfree(fpu);
4583 	kfree(kvm_sregs);
4584 	return r;
4585 }
4586 
4587 #ifdef CONFIG_KVM_COMPAT
4588 static long kvm_vcpu_compat_ioctl(struct file *filp,
4589 				  unsigned int ioctl, unsigned long arg)
4590 {
4591 	struct kvm_vcpu *vcpu = filp->private_data;
4592 	void __user *argp = compat_ptr(arg);
4593 	int r;
4594 
4595 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4596 		return -EIO;
4597 
4598 	switch (ioctl) {
4599 	case KVM_SET_SIGNAL_MASK: {
4600 		struct kvm_signal_mask __user *sigmask_arg = argp;
4601 		struct kvm_signal_mask kvm_sigmask;
4602 		sigset_t sigset;
4603 
4604 		if (argp) {
4605 			r = -EFAULT;
4606 			if (copy_from_user(&kvm_sigmask, argp,
4607 					   sizeof(kvm_sigmask)))
4608 				goto out;
4609 			r = -EINVAL;
4610 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4611 				goto out;
4612 			r = -EFAULT;
4613 			if (get_compat_sigset(&sigset,
4614 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4615 				goto out;
4616 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4617 		} else
4618 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4619 		break;
4620 	}
4621 	default:
4622 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4623 	}
4624 
4625 out:
4626 	return r;
4627 }
4628 #endif
4629 
4630 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4631 {
4632 	struct kvm_device *dev = filp->private_data;
4633 
4634 	if (dev->ops->mmap)
4635 		return dev->ops->mmap(dev, vma);
4636 
4637 	return -ENODEV;
4638 }
4639 
4640 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4641 				 int (*accessor)(struct kvm_device *dev,
4642 						 struct kvm_device_attr *attr),
4643 				 unsigned long arg)
4644 {
4645 	struct kvm_device_attr attr;
4646 
4647 	if (!accessor)
4648 		return -EPERM;
4649 
4650 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4651 		return -EFAULT;
4652 
4653 	return accessor(dev, &attr);
4654 }
4655 
4656 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4657 			     unsigned long arg)
4658 {
4659 	struct kvm_device *dev = filp->private_data;
4660 
4661 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4662 		return -EIO;
4663 
4664 	switch (ioctl) {
4665 	case KVM_SET_DEVICE_ATTR:
4666 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4667 	case KVM_GET_DEVICE_ATTR:
4668 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4669 	case KVM_HAS_DEVICE_ATTR:
4670 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4671 	default:
4672 		if (dev->ops->ioctl)
4673 			return dev->ops->ioctl(dev, ioctl, arg);
4674 
4675 		return -ENOTTY;
4676 	}
4677 }
4678 
4679 static int kvm_device_release(struct inode *inode, struct file *filp)
4680 {
4681 	struct kvm_device *dev = filp->private_data;
4682 	struct kvm *kvm = dev->kvm;
4683 
4684 	if (dev->ops->release) {
4685 		mutex_lock(&kvm->lock);
4686 		list_del_rcu(&dev->vm_node);
4687 		synchronize_rcu();
4688 		dev->ops->release(dev);
4689 		mutex_unlock(&kvm->lock);
4690 	}
4691 
4692 	kvm_put_kvm(kvm);
4693 	return 0;
4694 }
4695 
4696 static struct file_operations kvm_device_fops = {
4697 	.unlocked_ioctl = kvm_device_ioctl,
4698 	.release = kvm_device_release,
4699 	KVM_COMPAT(kvm_device_ioctl),
4700 	.mmap = kvm_device_mmap,
4701 };
4702 
4703 struct kvm_device *kvm_device_from_filp(struct file *filp)
4704 {
4705 	if (filp->f_op != &kvm_device_fops)
4706 		return NULL;
4707 
4708 	return filp->private_data;
4709 }
4710 
4711 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4712 #ifdef CONFIG_KVM_MPIC
4713 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4714 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4715 #endif
4716 };
4717 
4718 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4719 {
4720 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4721 		return -ENOSPC;
4722 
4723 	if (kvm_device_ops_table[type] != NULL)
4724 		return -EEXIST;
4725 
4726 	kvm_device_ops_table[type] = ops;
4727 	return 0;
4728 }
4729 
4730 void kvm_unregister_device_ops(u32 type)
4731 {
4732 	if (kvm_device_ops_table[type] != NULL)
4733 		kvm_device_ops_table[type] = NULL;
4734 }
4735 
4736 static int kvm_ioctl_create_device(struct kvm *kvm,
4737 				   struct kvm_create_device *cd)
4738 {
4739 	const struct kvm_device_ops *ops;
4740 	struct kvm_device *dev;
4741 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4742 	int type;
4743 	int ret;
4744 
4745 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4746 		return -ENODEV;
4747 
4748 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4749 	ops = kvm_device_ops_table[type];
4750 	if (ops == NULL)
4751 		return -ENODEV;
4752 
4753 	if (test)
4754 		return 0;
4755 
4756 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4757 	if (!dev)
4758 		return -ENOMEM;
4759 
4760 	dev->ops = ops;
4761 	dev->kvm = kvm;
4762 
4763 	mutex_lock(&kvm->lock);
4764 	ret = ops->create(dev, type);
4765 	if (ret < 0) {
4766 		mutex_unlock(&kvm->lock);
4767 		kfree(dev);
4768 		return ret;
4769 	}
4770 	list_add_rcu(&dev->vm_node, &kvm->devices);
4771 	mutex_unlock(&kvm->lock);
4772 
4773 	if (ops->init)
4774 		ops->init(dev);
4775 
4776 	kvm_get_kvm(kvm);
4777 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4778 	if (ret < 0) {
4779 		kvm_put_kvm_no_destroy(kvm);
4780 		mutex_lock(&kvm->lock);
4781 		list_del_rcu(&dev->vm_node);
4782 		synchronize_rcu();
4783 		if (ops->release)
4784 			ops->release(dev);
4785 		mutex_unlock(&kvm->lock);
4786 		if (ops->destroy)
4787 			ops->destroy(dev);
4788 		return ret;
4789 	}
4790 
4791 	cd->fd = ret;
4792 	return 0;
4793 }
4794 
4795 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4796 {
4797 	switch (arg) {
4798 	case KVM_CAP_USER_MEMORY:
4799 	case KVM_CAP_USER_MEMORY2:
4800 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4801 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4802 	case KVM_CAP_INTERNAL_ERROR_DATA:
4803 #ifdef CONFIG_HAVE_KVM_MSI
4804 	case KVM_CAP_SIGNAL_MSI:
4805 #endif
4806 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4807 	case KVM_CAP_IRQFD:
4808 #endif
4809 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4810 	case KVM_CAP_CHECK_EXTENSION_VM:
4811 	case KVM_CAP_ENABLE_CAP_VM:
4812 	case KVM_CAP_HALT_POLL:
4813 		return 1;
4814 #ifdef CONFIG_KVM_MMIO
4815 	case KVM_CAP_COALESCED_MMIO:
4816 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4817 	case KVM_CAP_COALESCED_PIO:
4818 		return 1;
4819 #endif
4820 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4821 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4822 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4823 #endif
4824 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4825 	case KVM_CAP_IRQ_ROUTING:
4826 		return KVM_MAX_IRQ_ROUTES;
4827 #endif
4828 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4829 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4830 		if (kvm)
4831 			return kvm_arch_nr_memslot_as_ids(kvm);
4832 		return KVM_MAX_NR_ADDRESS_SPACES;
4833 #endif
4834 	case KVM_CAP_NR_MEMSLOTS:
4835 		return KVM_USER_MEM_SLOTS;
4836 	case KVM_CAP_DIRTY_LOG_RING:
4837 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4838 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4839 #else
4840 		return 0;
4841 #endif
4842 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4843 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4844 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4845 #else
4846 		return 0;
4847 #endif
4848 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4849 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4850 #endif
4851 	case KVM_CAP_BINARY_STATS_FD:
4852 	case KVM_CAP_SYSTEM_EVENT_DATA:
4853 	case KVM_CAP_DEVICE_CTRL:
4854 		return 1;
4855 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4856 	case KVM_CAP_MEMORY_ATTRIBUTES:
4857 		return kvm_supported_mem_attributes(kvm);
4858 #endif
4859 #ifdef CONFIG_KVM_PRIVATE_MEM
4860 	case KVM_CAP_GUEST_MEMFD:
4861 		return !kvm || kvm_arch_has_private_mem(kvm);
4862 #endif
4863 	default:
4864 		break;
4865 	}
4866 	return kvm_vm_ioctl_check_extension(kvm, arg);
4867 }
4868 
4869 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4870 {
4871 	int r;
4872 
4873 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4874 		return -EINVAL;
4875 
4876 	/* the size should be power of 2 */
4877 	if (!size || (size & (size - 1)))
4878 		return -EINVAL;
4879 
4880 	/* Should be bigger to keep the reserved entries, or a page */
4881 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4882 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4883 		return -EINVAL;
4884 
4885 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4886 	    sizeof(struct kvm_dirty_gfn))
4887 		return -E2BIG;
4888 
4889 	/* We only allow it to set once */
4890 	if (kvm->dirty_ring_size)
4891 		return -EINVAL;
4892 
4893 	mutex_lock(&kvm->lock);
4894 
4895 	if (kvm->created_vcpus) {
4896 		/* We don't allow to change this value after vcpu created */
4897 		r = -EINVAL;
4898 	} else {
4899 		kvm->dirty_ring_size = size;
4900 		r = 0;
4901 	}
4902 
4903 	mutex_unlock(&kvm->lock);
4904 	return r;
4905 }
4906 
4907 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4908 {
4909 	unsigned long i;
4910 	struct kvm_vcpu *vcpu;
4911 	int cleared = 0;
4912 
4913 	if (!kvm->dirty_ring_size)
4914 		return -EINVAL;
4915 
4916 	mutex_lock(&kvm->slots_lock);
4917 
4918 	kvm_for_each_vcpu(i, vcpu, kvm)
4919 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4920 
4921 	mutex_unlock(&kvm->slots_lock);
4922 
4923 	if (cleared)
4924 		kvm_flush_remote_tlbs(kvm);
4925 
4926 	return cleared;
4927 }
4928 
4929 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4930 						  struct kvm_enable_cap *cap)
4931 {
4932 	return -EINVAL;
4933 }
4934 
4935 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4936 {
4937 	int i;
4938 
4939 	lockdep_assert_held(&kvm->slots_lock);
4940 
4941 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4942 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4943 			return false;
4944 	}
4945 
4946 	return true;
4947 }
4948 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4949 
4950 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4951 					   struct kvm_enable_cap *cap)
4952 {
4953 	switch (cap->cap) {
4954 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4955 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4956 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4957 
4958 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4959 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4960 
4961 		if (cap->flags || (cap->args[0] & ~allowed_options))
4962 			return -EINVAL;
4963 		kvm->manual_dirty_log_protect = cap->args[0];
4964 		return 0;
4965 	}
4966 #endif
4967 	case KVM_CAP_HALT_POLL: {
4968 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4969 			return -EINVAL;
4970 
4971 		kvm->max_halt_poll_ns = cap->args[0];
4972 
4973 		/*
4974 		 * Ensure kvm->override_halt_poll_ns does not become visible
4975 		 * before kvm->max_halt_poll_ns.
4976 		 *
4977 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4978 		 */
4979 		smp_wmb();
4980 		kvm->override_halt_poll_ns = true;
4981 
4982 		return 0;
4983 	}
4984 	case KVM_CAP_DIRTY_LOG_RING:
4985 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4986 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4987 			return -EINVAL;
4988 
4989 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4990 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4991 		int r = -EINVAL;
4992 
4993 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4994 		    !kvm->dirty_ring_size || cap->flags)
4995 			return r;
4996 
4997 		mutex_lock(&kvm->slots_lock);
4998 
4999 		/*
5000 		 * For simplicity, allow enabling ring+bitmap if and only if
5001 		 * there are no memslots, e.g. to ensure all memslots allocate
5002 		 * a bitmap after the capability is enabled.
5003 		 */
5004 		if (kvm_are_all_memslots_empty(kvm)) {
5005 			kvm->dirty_ring_with_bitmap = true;
5006 			r = 0;
5007 		}
5008 
5009 		mutex_unlock(&kvm->slots_lock);
5010 
5011 		return r;
5012 	}
5013 	default:
5014 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5015 	}
5016 }
5017 
5018 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5019 			      size_t size, loff_t *offset)
5020 {
5021 	struct kvm *kvm = file->private_data;
5022 
5023 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5024 				&kvm_vm_stats_desc[0], &kvm->stat,
5025 				sizeof(kvm->stat), user_buffer, size, offset);
5026 }
5027 
5028 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5029 {
5030 	struct kvm *kvm = file->private_data;
5031 
5032 	kvm_put_kvm(kvm);
5033 	return 0;
5034 }
5035 
5036 static const struct file_operations kvm_vm_stats_fops = {
5037 	.owner = THIS_MODULE,
5038 	.read = kvm_vm_stats_read,
5039 	.release = kvm_vm_stats_release,
5040 	.llseek = noop_llseek,
5041 };
5042 
5043 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5044 {
5045 	int fd;
5046 	struct file *file;
5047 
5048 	fd = get_unused_fd_flags(O_CLOEXEC);
5049 	if (fd < 0)
5050 		return fd;
5051 
5052 	file = anon_inode_getfile("kvm-vm-stats",
5053 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5054 	if (IS_ERR(file)) {
5055 		put_unused_fd(fd);
5056 		return PTR_ERR(file);
5057 	}
5058 
5059 	kvm_get_kvm(kvm);
5060 
5061 	file->f_mode |= FMODE_PREAD;
5062 	fd_install(fd, file);
5063 
5064 	return fd;
5065 }
5066 
5067 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5068 do {										\
5069 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5070 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5071 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5072 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5073 } while (0)
5074 
5075 static long kvm_vm_ioctl(struct file *filp,
5076 			   unsigned int ioctl, unsigned long arg)
5077 {
5078 	struct kvm *kvm = filp->private_data;
5079 	void __user *argp = (void __user *)arg;
5080 	int r;
5081 
5082 	if (kvm->mm != current->mm || kvm->vm_dead)
5083 		return -EIO;
5084 	switch (ioctl) {
5085 	case KVM_CREATE_VCPU:
5086 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5087 		break;
5088 	case KVM_ENABLE_CAP: {
5089 		struct kvm_enable_cap cap;
5090 
5091 		r = -EFAULT;
5092 		if (copy_from_user(&cap, argp, sizeof(cap)))
5093 			goto out;
5094 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5095 		break;
5096 	}
5097 	case KVM_SET_USER_MEMORY_REGION2:
5098 	case KVM_SET_USER_MEMORY_REGION: {
5099 		struct kvm_userspace_memory_region2 mem;
5100 		unsigned long size;
5101 
5102 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5103 			/*
5104 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5105 			 * accessed, but avoid leaking kernel memory in case of a bug.
5106 			 */
5107 			memset(&mem, 0, sizeof(mem));
5108 			size = sizeof(struct kvm_userspace_memory_region);
5109 		} else {
5110 			size = sizeof(struct kvm_userspace_memory_region2);
5111 		}
5112 
5113 		/* Ensure the common parts of the two structs are identical. */
5114 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5115 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5116 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5117 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5118 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5119 
5120 		r = -EFAULT;
5121 		if (copy_from_user(&mem, argp, size))
5122 			goto out;
5123 
5124 		r = -EINVAL;
5125 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5126 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5127 			goto out;
5128 
5129 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5130 		break;
5131 	}
5132 	case KVM_GET_DIRTY_LOG: {
5133 		struct kvm_dirty_log log;
5134 
5135 		r = -EFAULT;
5136 		if (copy_from_user(&log, argp, sizeof(log)))
5137 			goto out;
5138 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5139 		break;
5140 	}
5141 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5142 	case KVM_CLEAR_DIRTY_LOG: {
5143 		struct kvm_clear_dirty_log log;
5144 
5145 		r = -EFAULT;
5146 		if (copy_from_user(&log, argp, sizeof(log)))
5147 			goto out;
5148 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5149 		break;
5150 	}
5151 #endif
5152 #ifdef CONFIG_KVM_MMIO
5153 	case KVM_REGISTER_COALESCED_MMIO: {
5154 		struct kvm_coalesced_mmio_zone zone;
5155 
5156 		r = -EFAULT;
5157 		if (copy_from_user(&zone, argp, sizeof(zone)))
5158 			goto out;
5159 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5160 		break;
5161 	}
5162 	case KVM_UNREGISTER_COALESCED_MMIO: {
5163 		struct kvm_coalesced_mmio_zone zone;
5164 
5165 		r = -EFAULT;
5166 		if (copy_from_user(&zone, argp, sizeof(zone)))
5167 			goto out;
5168 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5169 		break;
5170 	}
5171 #endif
5172 	case KVM_IRQFD: {
5173 		struct kvm_irqfd data;
5174 
5175 		r = -EFAULT;
5176 		if (copy_from_user(&data, argp, sizeof(data)))
5177 			goto out;
5178 		r = kvm_irqfd(kvm, &data);
5179 		break;
5180 	}
5181 	case KVM_IOEVENTFD: {
5182 		struct kvm_ioeventfd data;
5183 
5184 		r = -EFAULT;
5185 		if (copy_from_user(&data, argp, sizeof(data)))
5186 			goto out;
5187 		r = kvm_ioeventfd(kvm, &data);
5188 		break;
5189 	}
5190 #ifdef CONFIG_HAVE_KVM_MSI
5191 	case KVM_SIGNAL_MSI: {
5192 		struct kvm_msi msi;
5193 
5194 		r = -EFAULT;
5195 		if (copy_from_user(&msi, argp, sizeof(msi)))
5196 			goto out;
5197 		r = kvm_send_userspace_msi(kvm, &msi);
5198 		break;
5199 	}
5200 #endif
5201 #ifdef __KVM_HAVE_IRQ_LINE
5202 	case KVM_IRQ_LINE_STATUS:
5203 	case KVM_IRQ_LINE: {
5204 		struct kvm_irq_level irq_event;
5205 
5206 		r = -EFAULT;
5207 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5208 			goto out;
5209 
5210 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5211 					ioctl == KVM_IRQ_LINE_STATUS);
5212 		if (r)
5213 			goto out;
5214 
5215 		r = -EFAULT;
5216 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5217 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5218 				goto out;
5219 		}
5220 
5221 		r = 0;
5222 		break;
5223 	}
5224 #endif
5225 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5226 	case KVM_SET_GSI_ROUTING: {
5227 		struct kvm_irq_routing routing;
5228 		struct kvm_irq_routing __user *urouting;
5229 		struct kvm_irq_routing_entry *entries = NULL;
5230 
5231 		r = -EFAULT;
5232 		if (copy_from_user(&routing, argp, sizeof(routing)))
5233 			goto out;
5234 		r = -EINVAL;
5235 		if (!kvm_arch_can_set_irq_routing(kvm))
5236 			goto out;
5237 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5238 			goto out;
5239 		if (routing.flags)
5240 			goto out;
5241 		if (routing.nr) {
5242 			urouting = argp;
5243 			entries = vmemdup_array_user(urouting->entries,
5244 						     routing.nr, sizeof(*entries));
5245 			if (IS_ERR(entries)) {
5246 				r = PTR_ERR(entries);
5247 				goto out;
5248 			}
5249 		}
5250 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5251 					routing.flags);
5252 		kvfree(entries);
5253 		break;
5254 	}
5255 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5256 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5257 	case KVM_SET_MEMORY_ATTRIBUTES: {
5258 		struct kvm_memory_attributes attrs;
5259 
5260 		r = -EFAULT;
5261 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5262 			goto out;
5263 
5264 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5265 		break;
5266 	}
5267 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5268 	case KVM_CREATE_DEVICE: {
5269 		struct kvm_create_device cd;
5270 
5271 		r = -EFAULT;
5272 		if (copy_from_user(&cd, argp, sizeof(cd)))
5273 			goto out;
5274 
5275 		r = kvm_ioctl_create_device(kvm, &cd);
5276 		if (r)
5277 			goto out;
5278 
5279 		r = -EFAULT;
5280 		if (copy_to_user(argp, &cd, sizeof(cd)))
5281 			goto out;
5282 
5283 		r = 0;
5284 		break;
5285 	}
5286 	case KVM_CHECK_EXTENSION:
5287 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5288 		break;
5289 	case KVM_RESET_DIRTY_RINGS:
5290 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5291 		break;
5292 	case KVM_GET_STATS_FD:
5293 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5294 		break;
5295 #ifdef CONFIG_KVM_PRIVATE_MEM
5296 	case KVM_CREATE_GUEST_MEMFD: {
5297 		struct kvm_create_guest_memfd guest_memfd;
5298 
5299 		r = -EFAULT;
5300 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5301 			goto out;
5302 
5303 		r = kvm_gmem_create(kvm, &guest_memfd);
5304 		break;
5305 	}
5306 #endif
5307 	default:
5308 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5309 	}
5310 out:
5311 	return r;
5312 }
5313 
5314 #ifdef CONFIG_KVM_COMPAT
5315 struct compat_kvm_dirty_log {
5316 	__u32 slot;
5317 	__u32 padding1;
5318 	union {
5319 		compat_uptr_t dirty_bitmap; /* one bit per page */
5320 		__u64 padding2;
5321 	};
5322 };
5323 
5324 struct compat_kvm_clear_dirty_log {
5325 	__u32 slot;
5326 	__u32 num_pages;
5327 	__u64 first_page;
5328 	union {
5329 		compat_uptr_t dirty_bitmap; /* one bit per page */
5330 		__u64 padding2;
5331 	};
5332 };
5333 
5334 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5335 				     unsigned long arg)
5336 {
5337 	return -ENOTTY;
5338 }
5339 
5340 static long kvm_vm_compat_ioctl(struct file *filp,
5341 			   unsigned int ioctl, unsigned long arg)
5342 {
5343 	struct kvm *kvm = filp->private_data;
5344 	int r;
5345 
5346 	if (kvm->mm != current->mm || kvm->vm_dead)
5347 		return -EIO;
5348 
5349 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5350 	if (r != -ENOTTY)
5351 		return r;
5352 
5353 	switch (ioctl) {
5354 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5355 	case KVM_CLEAR_DIRTY_LOG: {
5356 		struct compat_kvm_clear_dirty_log compat_log;
5357 		struct kvm_clear_dirty_log log;
5358 
5359 		if (copy_from_user(&compat_log, (void __user *)arg,
5360 				   sizeof(compat_log)))
5361 			return -EFAULT;
5362 		log.slot	 = compat_log.slot;
5363 		log.num_pages	 = compat_log.num_pages;
5364 		log.first_page	 = compat_log.first_page;
5365 		log.padding2	 = compat_log.padding2;
5366 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5367 
5368 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5369 		break;
5370 	}
5371 #endif
5372 	case KVM_GET_DIRTY_LOG: {
5373 		struct compat_kvm_dirty_log compat_log;
5374 		struct kvm_dirty_log log;
5375 
5376 		if (copy_from_user(&compat_log, (void __user *)arg,
5377 				   sizeof(compat_log)))
5378 			return -EFAULT;
5379 		log.slot	 = compat_log.slot;
5380 		log.padding1	 = compat_log.padding1;
5381 		log.padding2	 = compat_log.padding2;
5382 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5383 
5384 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5385 		break;
5386 	}
5387 	default:
5388 		r = kvm_vm_ioctl(filp, ioctl, arg);
5389 	}
5390 	return r;
5391 }
5392 #endif
5393 
5394 static struct file_operations kvm_vm_fops = {
5395 	.release        = kvm_vm_release,
5396 	.unlocked_ioctl = kvm_vm_ioctl,
5397 	.llseek		= noop_llseek,
5398 	KVM_COMPAT(kvm_vm_compat_ioctl),
5399 };
5400 
5401 bool file_is_kvm(struct file *file)
5402 {
5403 	return file && file->f_op == &kvm_vm_fops;
5404 }
5405 EXPORT_SYMBOL_GPL(file_is_kvm);
5406 
5407 static int kvm_dev_ioctl_create_vm(unsigned long type)
5408 {
5409 	char fdname[ITOA_MAX_LEN + 1];
5410 	int r, fd;
5411 	struct kvm *kvm;
5412 	struct file *file;
5413 
5414 	fd = get_unused_fd_flags(O_CLOEXEC);
5415 	if (fd < 0)
5416 		return fd;
5417 
5418 	snprintf(fdname, sizeof(fdname), "%d", fd);
5419 
5420 	kvm = kvm_create_vm(type, fdname);
5421 	if (IS_ERR(kvm)) {
5422 		r = PTR_ERR(kvm);
5423 		goto put_fd;
5424 	}
5425 
5426 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5427 	if (IS_ERR(file)) {
5428 		r = PTR_ERR(file);
5429 		goto put_kvm;
5430 	}
5431 
5432 	/*
5433 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5434 	 * already set, with ->release() being kvm_vm_release().  In error
5435 	 * cases it will be called by the final fput(file) and will take
5436 	 * care of doing kvm_put_kvm(kvm).
5437 	 */
5438 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5439 
5440 	fd_install(fd, file);
5441 	return fd;
5442 
5443 put_kvm:
5444 	kvm_put_kvm(kvm);
5445 put_fd:
5446 	put_unused_fd(fd);
5447 	return r;
5448 }
5449 
5450 static long kvm_dev_ioctl(struct file *filp,
5451 			  unsigned int ioctl, unsigned long arg)
5452 {
5453 	int r = -EINVAL;
5454 
5455 	switch (ioctl) {
5456 	case KVM_GET_API_VERSION:
5457 		if (arg)
5458 			goto out;
5459 		r = KVM_API_VERSION;
5460 		break;
5461 	case KVM_CREATE_VM:
5462 		r = kvm_dev_ioctl_create_vm(arg);
5463 		break;
5464 	case KVM_CHECK_EXTENSION:
5465 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5466 		break;
5467 	case KVM_GET_VCPU_MMAP_SIZE:
5468 		if (arg)
5469 			goto out;
5470 		r = PAGE_SIZE;     /* struct kvm_run */
5471 #ifdef CONFIG_X86
5472 		r += PAGE_SIZE;    /* pio data page */
5473 #endif
5474 #ifdef CONFIG_KVM_MMIO
5475 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5476 #endif
5477 		break;
5478 	default:
5479 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5480 	}
5481 out:
5482 	return r;
5483 }
5484 
5485 static struct file_operations kvm_chardev_ops = {
5486 	.unlocked_ioctl = kvm_dev_ioctl,
5487 	.llseek		= noop_llseek,
5488 	KVM_COMPAT(kvm_dev_ioctl),
5489 };
5490 
5491 static struct miscdevice kvm_dev = {
5492 	KVM_MINOR,
5493 	"kvm",
5494 	&kvm_chardev_ops,
5495 };
5496 
5497 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5498 __visible bool kvm_rebooting;
5499 EXPORT_SYMBOL_GPL(kvm_rebooting);
5500 
5501 static DEFINE_PER_CPU(bool, hardware_enabled);
5502 static int kvm_usage_count;
5503 
5504 static int __hardware_enable_nolock(void)
5505 {
5506 	if (__this_cpu_read(hardware_enabled))
5507 		return 0;
5508 
5509 	if (kvm_arch_hardware_enable()) {
5510 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5511 			raw_smp_processor_id());
5512 		return -EIO;
5513 	}
5514 
5515 	__this_cpu_write(hardware_enabled, true);
5516 	return 0;
5517 }
5518 
5519 static void hardware_enable_nolock(void *failed)
5520 {
5521 	if (__hardware_enable_nolock())
5522 		atomic_inc(failed);
5523 }
5524 
5525 static int kvm_online_cpu(unsigned int cpu)
5526 {
5527 	int ret = 0;
5528 
5529 	/*
5530 	 * Abort the CPU online process if hardware virtualization cannot
5531 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5532 	 * errors when scheduled to this CPU.
5533 	 */
5534 	mutex_lock(&kvm_lock);
5535 	if (kvm_usage_count)
5536 		ret = __hardware_enable_nolock();
5537 	mutex_unlock(&kvm_lock);
5538 	return ret;
5539 }
5540 
5541 static void hardware_disable_nolock(void *junk)
5542 {
5543 	/*
5544 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5545 	 * hardware, not just CPUs that successfully enabled hardware!
5546 	 */
5547 	if (!__this_cpu_read(hardware_enabled))
5548 		return;
5549 
5550 	kvm_arch_hardware_disable();
5551 
5552 	__this_cpu_write(hardware_enabled, false);
5553 }
5554 
5555 static int kvm_offline_cpu(unsigned int cpu)
5556 {
5557 	mutex_lock(&kvm_lock);
5558 	if (kvm_usage_count)
5559 		hardware_disable_nolock(NULL);
5560 	mutex_unlock(&kvm_lock);
5561 	return 0;
5562 }
5563 
5564 static void hardware_disable_all_nolock(void)
5565 {
5566 	BUG_ON(!kvm_usage_count);
5567 
5568 	kvm_usage_count--;
5569 	if (!kvm_usage_count)
5570 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5571 }
5572 
5573 static void hardware_disable_all(void)
5574 {
5575 	cpus_read_lock();
5576 	mutex_lock(&kvm_lock);
5577 	hardware_disable_all_nolock();
5578 	mutex_unlock(&kvm_lock);
5579 	cpus_read_unlock();
5580 }
5581 
5582 static int hardware_enable_all(void)
5583 {
5584 	atomic_t failed = ATOMIC_INIT(0);
5585 	int r;
5586 
5587 	/*
5588 	 * Do not enable hardware virtualization if the system is going down.
5589 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5590 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5591 	 * after kvm_reboot() is called.  Note, this relies on system_state
5592 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5593 	 * hook instead of registering a dedicated reboot notifier (the latter
5594 	 * runs before system_state is updated).
5595 	 */
5596 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5597 	    system_state == SYSTEM_RESTART)
5598 		return -EBUSY;
5599 
5600 	/*
5601 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5602 	 * is called, and so on_each_cpu() between them includes the CPU that
5603 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5604 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5605 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5606 	 * enable hardware multiple times.
5607 	 */
5608 	cpus_read_lock();
5609 	mutex_lock(&kvm_lock);
5610 
5611 	r = 0;
5612 
5613 	kvm_usage_count++;
5614 	if (kvm_usage_count == 1) {
5615 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5616 
5617 		if (atomic_read(&failed)) {
5618 			hardware_disable_all_nolock();
5619 			r = -EBUSY;
5620 		}
5621 	}
5622 
5623 	mutex_unlock(&kvm_lock);
5624 	cpus_read_unlock();
5625 
5626 	return r;
5627 }
5628 
5629 static void kvm_shutdown(void)
5630 {
5631 	/*
5632 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5633 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5634 	 * that relevant errors and exceptions aren't entirely unexpected.
5635 	 * Some flavors of hardware virtualization need to be disabled before
5636 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5637 	 * on x86, virtualization can block INIT interrupts, which are used by
5638 	 * firmware to pull APs back under firmware control.  Note, this path
5639 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5640 	 * 100% comprehensive.
5641 	 */
5642 	pr_info("kvm: exiting hardware virtualization\n");
5643 	kvm_rebooting = true;
5644 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5645 }
5646 
5647 static int kvm_suspend(void)
5648 {
5649 	/*
5650 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5651 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5652 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5653 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5654 	 * can be preempted, but the task cannot be frozen until it has dropped
5655 	 * all locks (userspace tasks are frozen via a fake signal).
5656 	 */
5657 	lockdep_assert_not_held(&kvm_lock);
5658 	lockdep_assert_irqs_disabled();
5659 
5660 	if (kvm_usage_count)
5661 		hardware_disable_nolock(NULL);
5662 	return 0;
5663 }
5664 
5665 static void kvm_resume(void)
5666 {
5667 	lockdep_assert_not_held(&kvm_lock);
5668 	lockdep_assert_irqs_disabled();
5669 
5670 	if (kvm_usage_count)
5671 		WARN_ON_ONCE(__hardware_enable_nolock());
5672 }
5673 
5674 static struct syscore_ops kvm_syscore_ops = {
5675 	.suspend = kvm_suspend,
5676 	.resume = kvm_resume,
5677 	.shutdown = kvm_shutdown,
5678 };
5679 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5680 static int hardware_enable_all(void)
5681 {
5682 	return 0;
5683 }
5684 
5685 static void hardware_disable_all(void)
5686 {
5687 
5688 }
5689 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5690 
5691 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5692 {
5693 	if (dev->ops->destructor)
5694 		dev->ops->destructor(dev);
5695 }
5696 
5697 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5698 {
5699 	int i;
5700 
5701 	for (i = 0; i < bus->dev_count; i++) {
5702 		struct kvm_io_device *pos = bus->range[i].dev;
5703 
5704 		kvm_iodevice_destructor(pos);
5705 	}
5706 	kfree(bus);
5707 }
5708 
5709 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5710 				 const struct kvm_io_range *r2)
5711 {
5712 	gpa_t addr1 = r1->addr;
5713 	gpa_t addr2 = r2->addr;
5714 
5715 	if (addr1 < addr2)
5716 		return -1;
5717 
5718 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5719 	 * accept any overlapping write.  Any order is acceptable for
5720 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5721 	 * we process all of them.
5722 	 */
5723 	if (r2->len) {
5724 		addr1 += r1->len;
5725 		addr2 += r2->len;
5726 	}
5727 
5728 	if (addr1 > addr2)
5729 		return 1;
5730 
5731 	return 0;
5732 }
5733 
5734 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5735 {
5736 	return kvm_io_bus_cmp(p1, p2);
5737 }
5738 
5739 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5740 			     gpa_t addr, int len)
5741 {
5742 	struct kvm_io_range *range, key;
5743 	int off;
5744 
5745 	key = (struct kvm_io_range) {
5746 		.addr = addr,
5747 		.len = len,
5748 	};
5749 
5750 	range = bsearch(&key, bus->range, bus->dev_count,
5751 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5752 	if (range == NULL)
5753 		return -ENOENT;
5754 
5755 	off = range - bus->range;
5756 
5757 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5758 		off--;
5759 
5760 	return off;
5761 }
5762 
5763 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5764 			      struct kvm_io_range *range, const void *val)
5765 {
5766 	int idx;
5767 
5768 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5769 	if (idx < 0)
5770 		return -EOPNOTSUPP;
5771 
5772 	while (idx < bus->dev_count &&
5773 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5774 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5775 					range->len, val))
5776 			return idx;
5777 		idx++;
5778 	}
5779 
5780 	return -EOPNOTSUPP;
5781 }
5782 
5783 /* kvm_io_bus_write - called under kvm->slots_lock */
5784 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5785 		     int len, const void *val)
5786 {
5787 	struct kvm_io_bus *bus;
5788 	struct kvm_io_range range;
5789 	int r;
5790 
5791 	range = (struct kvm_io_range) {
5792 		.addr = addr,
5793 		.len = len,
5794 	};
5795 
5796 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5797 	if (!bus)
5798 		return -ENOMEM;
5799 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5800 	return r < 0 ? r : 0;
5801 }
5802 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5803 
5804 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5805 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5806 			    gpa_t addr, int len, const void *val, long cookie)
5807 {
5808 	struct kvm_io_bus *bus;
5809 	struct kvm_io_range range;
5810 
5811 	range = (struct kvm_io_range) {
5812 		.addr = addr,
5813 		.len = len,
5814 	};
5815 
5816 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5817 	if (!bus)
5818 		return -ENOMEM;
5819 
5820 	/* First try the device referenced by cookie. */
5821 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5822 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5823 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5824 					val))
5825 			return cookie;
5826 
5827 	/*
5828 	 * cookie contained garbage; fall back to search and return the
5829 	 * correct cookie value.
5830 	 */
5831 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5832 }
5833 
5834 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5835 			     struct kvm_io_range *range, void *val)
5836 {
5837 	int idx;
5838 
5839 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5840 	if (idx < 0)
5841 		return -EOPNOTSUPP;
5842 
5843 	while (idx < bus->dev_count &&
5844 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5845 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5846 				       range->len, val))
5847 			return idx;
5848 		idx++;
5849 	}
5850 
5851 	return -EOPNOTSUPP;
5852 }
5853 
5854 /* kvm_io_bus_read - called under kvm->slots_lock */
5855 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5856 		    int len, void *val)
5857 {
5858 	struct kvm_io_bus *bus;
5859 	struct kvm_io_range range;
5860 	int r;
5861 
5862 	range = (struct kvm_io_range) {
5863 		.addr = addr,
5864 		.len = len,
5865 	};
5866 
5867 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5868 	if (!bus)
5869 		return -ENOMEM;
5870 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5871 	return r < 0 ? r : 0;
5872 }
5873 
5874 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5875 			    int len, struct kvm_io_device *dev)
5876 {
5877 	int i;
5878 	struct kvm_io_bus *new_bus, *bus;
5879 	struct kvm_io_range range;
5880 
5881 	lockdep_assert_held(&kvm->slots_lock);
5882 
5883 	bus = kvm_get_bus(kvm, bus_idx);
5884 	if (!bus)
5885 		return -ENOMEM;
5886 
5887 	/* exclude ioeventfd which is limited by maximum fd */
5888 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5889 		return -ENOSPC;
5890 
5891 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5892 			  GFP_KERNEL_ACCOUNT);
5893 	if (!new_bus)
5894 		return -ENOMEM;
5895 
5896 	range = (struct kvm_io_range) {
5897 		.addr = addr,
5898 		.len = len,
5899 		.dev = dev,
5900 	};
5901 
5902 	for (i = 0; i < bus->dev_count; i++)
5903 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5904 			break;
5905 
5906 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5907 	new_bus->dev_count++;
5908 	new_bus->range[i] = range;
5909 	memcpy(new_bus->range + i + 1, bus->range + i,
5910 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5911 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5912 	synchronize_srcu_expedited(&kvm->srcu);
5913 	kfree(bus);
5914 
5915 	return 0;
5916 }
5917 
5918 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5919 			      struct kvm_io_device *dev)
5920 {
5921 	int i;
5922 	struct kvm_io_bus *new_bus, *bus;
5923 
5924 	lockdep_assert_held(&kvm->slots_lock);
5925 
5926 	bus = kvm_get_bus(kvm, bus_idx);
5927 	if (!bus)
5928 		return 0;
5929 
5930 	for (i = 0; i < bus->dev_count; i++) {
5931 		if (bus->range[i].dev == dev) {
5932 			break;
5933 		}
5934 	}
5935 
5936 	if (i == bus->dev_count)
5937 		return 0;
5938 
5939 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5940 			  GFP_KERNEL_ACCOUNT);
5941 	if (new_bus) {
5942 		memcpy(new_bus, bus, struct_size(bus, range, i));
5943 		new_bus->dev_count--;
5944 		memcpy(new_bus->range + i, bus->range + i + 1,
5945 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5946 	}
5947 
5948 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5949 	synchronize_srcu_expedited(&kvm->srcu);
5950 
5951 	/*
5952 	 * If NULL bus is installed, destroy the old bus, including all the
5953 	 * attached devices. Otherwise, destroy the caller's device only.
5954 	 */
5955 	if (!new_bus) {
5956 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5957 		kvm_io_bus_destroy(bus);
5958 		return -ENOMEM;
5959 	}
5960 
5961 	kvm_iodevice_destructor(dev);
5962 	kfree(bus);
5963 	return 0;
5964 }
5965 
5966 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5967 					 gpa_t addr)
5968 {
5969 	struct kvm_io_bus *bus;
5970 	int dev_idx, srcu_idx;
5971 	struct kvm_io_device *iodev = NULL;
5972 
5973 	srcu_idx = srcu_read_lock(&kvm->srcu);
5974 
5975 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5976 	if (!bus)
5977 		goto out_unlock;
5978 
5979 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5980 	if (dev_idx < 0)
5981 		goto out_unlock;
5982 
5983 	iodev = bus->range[dev_idx].dev;
5984 
5985 out_unlock:
5986 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5987 
5988 	return iodev;
5989 }
5990 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5991 
5992 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5993 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5994 			   const char *fmt)
5995 {
5996 	int ret;
5997 	struct kvm_stat_data *stat_data = inode->i_private;
5998 
5999 	/*
6000 	 * The debugfs files are a reference to the kvm struct which
6001         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6002         * avoids the race between open and the removal of the debugfs directory.
6003 	 */
6004 	if (!kvm_get_kvm_safe(stat_data->kvm))
6005 		return -ENOENT;
6006 
6007 	ret = simple_attr_open(inode, file, get,
6008 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6009 			       ? set : NULL, fmt);
6010 	if (ret)
6011 		kvm_put_kvm(stat_data->kvm);
6012 
6013 	return ret;
6014 }
6015 
6016 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6017 {
6018 	struct kvm_stat_data *stat_data = inode->i_private;
6019 
6020 	simple_attr_release(inode, file);
6021 	kvm_put_kvm(stat_data->kvm);
6022 
6023 	return 0;
6024 }
6025 
6026 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6027 {
6028 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6029 
6030 	return 0;
6031 }
6032 
6033 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6034 {
6035 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6036 
6037 	return 0;
6038 }
6039 
6040 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6041 {
6042 	unsigned long i;
6043 	struct kvm_vcpu *vcpu;
6044 
6045 	*val = 0;
6046 
6047 	kvm_for_each_vcpu(i, vcpu, kvm)
6048 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6049 
6050 	return 0;
6051 }
6052 
6053 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6054 {
6055 	unsigned long i;
6056 	struct kvm_vcpu *vcpu;
6057 
6058 	kvm_for_each_vcpu(i, vcpu, kvm)
6059 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6060 
6061 	return 0;
6062 }
6063 
6064 static int kvm_stat_data_get(void *data, u64 *val)
6065 {
6066 	int r = -EFAULT;
6067 	struct kvm_stat_data *stat_data = data;
6068 
6069 	switch (stat_data->kind) {
6070 	case KVM_STAT_VM:
6071 		r = kvm_get_stat_per_vm(stat_data->kvm,
6072 					stat_data->desc->desc.offset, val);
6073 		break;
6074 	case KVM_STAT_VCPU:
6075 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6076 					  stat_data->desc->desc.offset, val);
6077 		break;
6078 	}
6079 
6080 	return r;
6081 }
6082 
6083 static int kvm_stat_data_clear(void *data, u64 val)
6084 {
6085 	int r = -EFAULT;
6086 	struct kvm_stat_data *stat_data = data;
6087 
6088 	if (val)
6089 		return -EINVAL;
6090 
6091 	switch (stat_data->kind) {
6092 	case KVM_STAT_VM:
6093 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6094 					  stat_data->desc->desc.offset);
6095 		break;
6096 	case KVM_STAT_VCPU:
6097 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6098 					    stat_data->desc->desc.offset);
6099 		break;
6100 	}
6101 
6102 	return r;
6103 }
6104 
6105 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6106 {
6107 	__simple_attr_check_format("%llu\n", 0ull);
6108 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6109 				kvm_stat_data_clear, "%llu\n");
6110 }
6111 
6112 static const struct file_operations stat_fops_per_vm = {
6113 	.owner = THIS_MODULE,
6114 	.open = kvm_stat_data_open,
6115 	.release = kvm_debugfs_release,
6116 	.read = simple_attr_read,
6117 	.write = simple_attr_write,
6118 	.llseek = no_llseek,
6119 };
6120 
6121 static int vm_stat_get(void *_offset, u64 *val)
6122 {
6123 	unsigned offset = (long)_offset;
6124 	struct kvm *kvm;
6125 	u64 tmp_val;
6126 
6127 	*val = 0;
6128 	mutex_lock(&kvm_lock);
6129 	list_for_each_entry(kvm, &vm_list, vm_list) {
6130 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6131 		*val += tmp_val;
6132 	}
6133 	mutex_unlock(&kvm_lock);
6134 	return 0;
6135 }
6136 
6137 static int vm_stat_clear(void *_offset, u64 val)
6138 {
6139 	unsigned offset = (long)_offset;
6140 	struct kvm *kvm;
6141 
6142 	if (val)
6143 		return -EINVAL;
6144 
6145 	mutex_lock(&kvm_lock);
6146 	list_for_each_entry(kvm, &vm_list, vm_list) {
6147 		kvm_clear_stat_per_vm(kvm, offset);
6148 	}
6149 	mutex_unlock(&kvm_lock);
6150 
6151 	return 0;
6152 }
6153 
6154 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6155 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6156 
6157 static int vcpu_stat_get(void *_offset, u64 *val)
6158 {
6159 	unsigned offset = (long)_offset;
6160 	struct kvm *kvm;
6161 	u64 tmp_val;
6162 
6163 	*val = 0;
6164 	mutex_lock(&kvm_lock);
6165 	list_for_each_entry(kvm, &vm_list, vm_list) {
6166 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6167 		*val += tmp_val;
6168 	}
6169 	mutex_unlock(&kvm_lock);
6170 	return 0;
6171 }
6172 
6173 static int vcpu_stat_clear(void *_offset, u64 val)
6174 {
6175 	unsigned offset = (long)_offset;
6176 	struct kvm *kvm;
6177 
6178 	if (val)
6179 		return -EINVAL;
6180 
6181 	mutex_lock(&kvm_lock);
6182 	list_for_each_entry(kvm, &vm_list, vm_list) {
6183 		kvm_clear_stat_per_vcpu(kvm, offset);
6184 	}
6185 	mutex_unlock(&kvm_lock);
6186 
6187 	return 0;
6188 }
6189 
6190 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6191 			"%llu\n");
6192 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6193 
6194 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6195 {
6196 	struct kobj_uevent_env *env;
6197 	unsigned long long created, active;
6198 
6199 	if (!kvm_dev.this_device || !kvm)
6200 		return;
6201 
6202 	mutex_lock(&kvm_lock);
6203 	if (type == KVM_EVENT_CREATE_VM) {
6204 		kvm_createvm_count++;
6205 		kvm_active_vms++;
6206 	} else if (type == KVM_EVENT_DESTROY_VM) {
6207 		kvm_active_vms--;
6208 	}
6209 	created = kvm_createvm_count;
6210 	active = kvm_active_vms;
6211 	mutex_unlock(&kvm_lock);
6212 
6213 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6214 	if (!env)
6215 		return;
6216 
6217 	add_uevent_var(env, "CREATED=%llu", created);
6218 	add_uevent_var(env, "COUNT=%llu", active);
6219 
6220 	if (type == KVM_EVENT_CREATE_VM) {
6221 		add_uevent_var(env, "EVENT=create");
6222 		kvm->userspace_pid = task_pid_nr(current);
6223 	} else if (type == KVM_EVENT_DESTROY_VM) {
6224 		add_uevent_var(env, "EVENT=destroy");
6225 	}
6226 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6227 
6228 	if (!IS_ERR(kvm->debugfs_dentry)) {
6229 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6230 
6231 		if (p) {
6232 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6233 			if (!IS_ERR(tmp))
6234 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6235 			kfree(p);
6236 		}
6237 	}
6238 	/* no need for checks, since we are adding at most only 5 keys */
6239 	env->envp[env->envp_idx++] = NULL;
6240 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6241 	kfree(env);
6242 }
6243 
6244 static void kvm_init_debug(void)
6245 {
6246 	const struct file_operations *fops;
6247 	const struct _kvm_stats_desc *pdesc;
6248 	int i;
6249 
6250 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6251 
6252 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6253 		pdesc = &kvm_vm_stats_desc[i];
6254 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6255 			fops = &vm_stat_fops;
6256 		else
6257 			fops = &vm_stat_readonly_fops;
6258 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6259 				kvm_debugfs_dir,
6260 				(void *)(long)pdesc->desc.offset, fops);
6261 	}
6262 
6263 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6264 		pdesc = &kvm_vcpu_stats_desc[i];
6265 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6266 			fops = &vcpu_stat_fops;
6267 		else
6268 			fops = &vcpu_stat_readonly_fops;
6269 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6270 				kvm_debugfs_dir,
6271 				(void *)(long)pdesc->desc.offset, fops);
6272 	}
6273 }
6274 
6275 static inline
6276 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6277 {
6278 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6279 }
6280 
6281 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6282 {
6283 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6284 
6285 	WRITE_ONCE(vcpu->preempted, false);
6286 	WRITE_ONCE(vcpu->ready, false);
6287 
6288 	__this_cpu_write(kvm_running_vcpu, vcpu);
6289 	kvm_arch_sched_in(vcpu, cpu);
6290 	kvm_arch_vcpu_load(vcpu, cpu);
6291 }
6292 
6293 static void kvm_sched_out(struct preempt_notifier *pn,
6294 			  struct task_struct *next)
6295 {
6296 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6297 
6298 	if (current->on_rq) {
6299 		WRITE_ONCE(vcpu->preempted, true);
6300 		WRITE_ONCE(vcpu->ready, true);
6301 	}
6302 	kvm_arch_vcpu_put(vcpu);
6303 	__this_cpu_write(kvm_running_vcpu, NULL);
6304 }
6305 
6306 /**
6307  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6308  *
6309  * We can disable preemption locally around accessing the per-CPU variable,
6310  * and use the resolved vcpu pointer after enabling preemption again,
6311  * because even if the current thread is migrated to another CPU, reading
6312  * the per-CPU value later will give us the same value as we update the
6313  * per-CPU variable in the preempt notifier handlers.
6314  */
6315 struct kvm_vcpu *kvm_get_running_vcpu(void)
6316 {
6317 	struct kvm_vcpu *vcpu;
6318 
6319 	preempt_disable();
6320 	vcpu = __this_cpu_read(kvm_running_vcpu);
6321 	preempt_enable();
6322 
6323 	return vcpu;
6324 }
6325 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6326 
6327 /**
6328  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6329  */
6330 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6331 {
6332         return &kvm_running_vcpu;
6333 }
6334 
6335 #ifdef CONFIG_GUEST_PERF_EVENTS
6336 static unsigned int kvm_guest_state(void)
6337 {
6338 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6339 	unsigned int state;
6340 
6341 	if (!kvm_arch_pmi_in_guest(vcpu))
6342 		return 0;
6343 
6344 	state = PERF_GUEST_ACTIVE;
6345 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6346 		state |= PERF_GUEST_USER;
6347 
6348 	return state;
6349 }
6350 
6351 static unsigned long kvm_guest_get_ip(void)
6352 {
6353 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6354 
6355 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6356 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6357 		return 0;
6358 
6359 	return kvm_arch_vcpu_get_ip(vcpu);
6360 }
6361 
6362 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6363 	.state			= kvm_guest_state,
6364 	.get_ip			= kvm_guest_get_ip,
6365 	.handle_intel_pt_intr	= NULL,
6366 };
6367 
6368 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6369 {
6370 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6371 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6372 }
6373 void kvm_unregister_perf_callbacks(void)
6374 {
6375 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6376 }
6377 #endif
6378 
6379 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6380 {
6381 	int r;
6382 	int cpu;
6383 
6384 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6385 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6386 				      kvm_online_cpu, kvm_offline_cpu);
6387 	if (r)
6388 		return r;
6389 
6390 	register_syscore_ops(&kvm_syscore_ops);
6391 #endif
6392 
6393 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6394 	if (!vcpu_align)
6395 		vcpu_align = __alignof__(struct kvm_vcpu);
6396 	kvm_vcpu_cache =
6397 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6398 					   SLAB_ACCOUNT,
6399 					   offsetof(struct kvm_vcpu, arch),
6400 					   offsetofend(struct kvm_vcpu, stats_id)
6401 					   - offsetof(struct kvm_vcpu, arch),
6402 					   NULL);
6403 	if (!kvm_vcpu_cache) {
6404 		r = -ENOMEM;
6405 		goto err_vcpu_cache;
6406 	}
6407 
6408 	for_each_possible_cpu(cpu) {
6409 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6410 					    GFP_KERNEL, cpu_to_node(cpu))) {
6411 			r = -ENOMEM;
6412 			goto err_cpu_kick_mask;
6413 		}
6414 	}
6415 
6416 	r = kvm_irqfd_init();
6417 	if (r)
6418 		goto err_irqfd;
6419 
6420 	r = kvm_async_pf_init();
6421 	if (r)
6422 		goto err_async_pf;
6423 
6424 	kvm_chardev_ops.owner = module;
6425 	kvm_vm_fops.owner = module;
6426 	kvm_vcpu_fops.owner = module;
6427 	kvm_device_fops.owner = module;
6428 
6429 	kvm_preempt_ops.sched_in = kvm_sched_in;
6430 	kvm_preempt_ops.sched_out = kvm_sched_out;
6431 
6432 	kvm_init_debug();
6433 
6434 	r = kvm_vfio_ops_init();
6435 	if (WARN_ON_ONCE(r))
6436 		goto err_vfio;
6437 
6438 	kvm_gmem_init(module);
6439 
6440 	/*
6441 	 * Registration _must_ be the very last thing done, as this exposes
6442 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6443 	 */
6444 	r = misc_register(&kvm_dev);
6445 	if (r) {
6446 		pr_err("kvm: misc device register failed\n");
6447 		goto err_register;
6448 	}
6449 
6450 	return 0;
6451 
6452 err_register:
6453 	kvm_vfio_ops_exit();
6454 err_vfio:
6455 	kvm_async_pf_deinit();
6456 err_async_pf:
6457 	kvm_irqfd_exit();
6458 err_irqfd:
6459 err_cpu_kick_mask:
6460 	for_each_possible_cpu(cpu)
6461 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6462 	kmem_cache_destroy(kvm_vcpu_cache);
6463 err_vcpu_cache:
6464 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6465 	unregister_syscore_ops(&kvm_syscore_ops);
6466 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6467 #endif
6468 	return r;
6469 }
6470 EXPORT_SYMBOL_GPL(kvm_init);
6471 
6472 void kvm_exit(void)
6473 {
6474 	int cpu;
6475 
6476 	/*
6477 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6478 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6479 	 * to KVM while the module is being stopped.
6480 	 */
6481 	misc_deregister(&kvm_dev);
6482 
6483 	debugfs_remove_recursive(kvm_debugfs_dir);
6484 	for_each_possible_cpu(cpu)
6485 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6486 	kmem_cache_destroy(kvm_vcpu_cache);
6487 	kvm_vfio_ops_exit();
6488 	kvm_async_pf_deinit();
6489 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6490 	unregister_syscore_ops(&kvm_syscore_ops);
6491 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6492 #endif
6493 	kvm_irqfd_exit();
6494 }
6495 EXPORT_SYMBOL_GPL(kvm_exit);
6496 
6497 struct kvm_vm_worker_thread_context {
6498 	struct kvm *kvm;
6499 	struct task_struct *parent;
6500 	struct completion init_done;
6501 	kvm_vm_thread_fn_t thread_fn;
6502 	uintptr_t data;
6503 	int err;
6504 };
6505 
6506 static int kvm_vm_worker_thread(void *context)
6507 {
6508 	/*
6509 	 * The init_context is allocated on the stack of the parent thread, so
6510 	 * we have to locally copy anything that is needed beyond initialization
6511 	 */
6512 	struct kvm_vm_worker_thread_context *init_context = context;
6513 	struct task_struct *parent;
6514 	struct kvm *kvm = init_context->kvm;
6515 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6516 	uintptr_t data = init_context->data;
6517 	int err;
6518 
6519 	err = kthread_park(current);
6520 	/* kthread_park(current) is never supposed to return an error */
6521 	WARN_ON(err != 0);
6522 	if (err)
6523 		goto init_complete;
6524 
6525 	err = cgroup_attach_task_all(init_context->parent, current);
6526 	if (err) {
6527 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6528 			__func__, err);
6529 		goto init_complete;
6530 	}
6531 
6532 	set_user_nice(current, task_nice(init_context->parent));
6533 
6534 init_complete:
6535 	init_context->err = err;
6536 	complete(&init_context->init_done);
6537 	init_context = NULL;
6538 
6539 	if (err)
6540 		goto out;
6541 
6542 	/* Wait to be woken up by the spawner before proceeding. */
6543 	kthread_parkme();
6544 
6545 	if (!kthread_should_stop())
6546 		err = thread_fn(kvm, data);
6547 
6548 out:
6549 	/*
6550 	 * Move kthread back to its original cgroup to prevent it lingering in
6551 	 * the cgroup of the VM process, after the latter finishes its
6552 	 * execution.
6553 	 *
6554 	 * kthread_stop() waits on the 'exited' completion condition which is
6555 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6556 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6557 	 * called after the exit_mm(). This causes the kthread_stop() to return
6558 	 * before the kthread actually quits the cgroup.
6559 	 */
6560 	rcu_read_lock();
6561 	parent = rcu_dereference(current->real_parent);
6562 	get_task_struct(parent);
6563 	rcu_read_unlock();
6564 	cgroup_attach_task_all(parent, current);
6565 	put_task_struct(parent);
6566 
6567 	return err;
6568 }
6569 
6570 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6571 				uintptr_t data, const char *name,
6572 				struct task_struct **thread_ptr)
6573 {
6574 	struct kvm_vm_worker_thread_context init_context = {};
6575 	struct task_struct *thread;
6576 
6577 	*thread_ptr = NULL;
6578 	init_context.kvm = kvm;
6579 	init_context.parent = current;
6580 	init_context.thread_fn = thread_fn;
6581 	init_context.data = data;
6582 	init_completion(&init_context.init_done);
6583 
6584 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6585 			     "%s-%d", name, task_pid_nr(current));
6586 	if (IS_ERR(thread))
6587 		return PTR_ERR(thread);
6588 
6589 	/* kthread_run is never supposed to return NULL */
6590 	WARN_ON(thread == NULL);
6591 
6592 	wait_for_completion(&init_context.init_done);
6593 
6594 	if (!init_context.err)
6595 		*thread_ptr = thread;
6596 
6597 	return init_context.err;
6598 }
6599