xref: /linux/virt/kvm/kvm_main.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126 
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129 
130 static bool largepages_enabled = true;
131 
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137 
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 		unsigned long start, unsigned long end)
140 {
141 }
142 
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 	if (pfn_valid(pfn))
146 		return PageReserved(pfn_to_page(pfn));
147 
148 	return true;
149 }
150 
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 	int cpu;
157 
158 	if (mutex_lock_killable(&vcpu->mutex))
159 		return -EINTR;
160 	cpu = get_cpu();
161 	preempt_notifier_register(&vcpu->preempt_notifier);
162 	kvm_arch_vcpu_load(vcpu, cpu);
163 	put_cpu();
164 	return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167 
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170 	preempt_disable();
171 	kvm_arch_vcpu_put(vcpu);
172 	preempt_notifier_unregister(&vcpu->preempt_notifier);
173 	preempt_enable();
174 	mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183 	/*
184 	 * We need to wait for the VCPU to reenable interrupts and get out of
185 	 * READING_SHADOW_PAGE_TABLES mode.
186 	 */
187 	if (req & KVM_REQUEST_WAIT)
188 		return mode != OUTSIDE_GUEST_MODE;
189 
190 	/*
191 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 	 */
193 	return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 	if (unlikely(!cpus))
203 		cpus = cpu_online_mask;
204 
205 	if (cpumask_empty(cpus))
206 		return false;
207 
208 	smp_call_function_many(cpus, ack_flush, NULL, wait);
209 	return true;
210 }
211 
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214 	int i, cpu, me;
215 	cpumask_var_t cpus;
216 	bool called;
217 	struct kvm_vcpu *vcpu;
218 
219 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220 
221 	me = get_cpu();
222 	kvm_for_each_vcpu(i, vcpu, kvm) {
223 		kvm_make_request(req, vcpu);
224 		cpu = vcpu->cpu;
225 
226 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 			continue;
228 
229 		if (cpus != NULL && cpu != -1 && cpu != me &&
230 		    kvm_request_needs_ipi(vcpu, req))
231 			__cpumask_set_cpu(cpu, cpus);
232 	}
233 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234 	put_cpu();
235 	free_cpumask_var(cpus);
236 	return called;
237 }
238 
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242 	/*
243 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244 	 * kvm_make_all_cpus_request.
245 	 */
246 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247 
248 	/*
249 	 * We want to publish modifications to the page tables before reading
250 	 * mode. Pairs with a memory barrier in arch-specific code.
251 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
253 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254 	 *
255 	 * There is already an smp_mb__after_atomic() before
256 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257 	 * barrier here.
258 	 */
259 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260 		++kvm->stat.remote_tlb_flush;
261 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265 
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270 
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273 	struct page *page;
274 	int r;
275 
276 	mutex_init(&vcpu->mutex);
277 	vcpu->cpu = -1;
278 	vcpu->kvm = kvm;
279 	vcpu->vcpu_id = id;
280 	vcpu->pid = NULL;
281 	init_swait_queue_head(&vcpu->wq);
282 	kvm_async_pf_vcpu_init(vcpu);
283 
284 	vcpu->pre_pcpu = -1;
285 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286 
287 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288 	if (!page) {
289 		r = -ENOMEM;
290 		goto fail;
291 	}
292 	vcpu->run = page_address(page);
293 
294 	kvm_vcpu_set_in_spin_loop(vcpu, false);
295 	kvm_vcpu_set_dy_eligible(vcpu, false);
296 	vcpu->preempted = false;
297 
298 	r = kvm_arch_vcpu_init(vcpu);
299 	if (r < 0)
300 		goto fail_free_run;
301 	return 0;
302 
303 fail_free_run:
304 	free_page((unsigned long)vcpu->run);
305 fail:
306 	return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309 
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312 	/*
313 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
314 	 * will change the vcpu->pid pointer and on uninit all file
315 	 * descriptors are already gone.
316 	 */
317 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
318 	kvm_arch_vcpu_uninit(vcpu);
319 	free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322 
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326 	return container_of(mn, struct kvm, mmu_notifier);
327 }
328 
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330 					struct mm_struct *mm,
331 					unsigned long address,
332 					pte_t pte)
333 {
334 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 	int idx;
336 
337 	idx = srcu_read_lock(&kvm->srcu);
338 	spin_lock(&kvm->mmu_lock);
339 	kvm->mmu_notifier_seq++;
340 	kvm_set_spte_hva(kvm, address, pte);
341 	spin_unlock(&kvm->mmu_lock);
342 	srcu_read_unlock(&kvm->srcu, idx);
343 }
344 
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346 						    struct mm_struct *mm,
347 						    unsigned long start,
348 						    unsigned long end)
349 {
350 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 	int need_tlb_flush = 0, idx;
352 
353 	idx = srcu_read_lock(&kvm->srcu);
354 	spin_lock(&kvm->mmu_lock);
355 	/*
356 	 * The count increase must become visible at unlock time as no
357 	 * spte can be established without taking the mmu_lock and
358 	 * count is also read inside the mmu_lock critical section.
359 	 */
360 	kvm->mmu_notifier_count++;
361 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362 	need_tlb_flush |= kvm->tlbs_dirty;
363 	/* we've to flush the tlb before the pages can be freed */
364 	if (need_tlb_flush)
365 		kvm_flush_remote_tlbs(kvm);
366 
367 	spin_unlock(&kvm->mmu_lock);
368 
369 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370 
371 	srcu_read_unlock(&kvm->srcu, idx);
372 }
373 
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375 						  struct mm_struct *mm,
376 						  unsigned long start,
377 						  unsigned long end)
378 {
379 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
380 
381 	spin_lock(&kvm->mmu_lock);
382 	/*
383 	 * This sequence increase will notify the kvm page fault that
384 	 * the page that is going to be mapped in the spte could have
385 	 * been freed.
386 	 */
387 	kvm->mmu_notifier_seq++;
388 	smp_wmb();
389 	/*
390 	 * The above sequence increase must be visible before the
391 	 * below count decrease, which is ensured by the smp_wmb above
392 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
393 	 */
394 	kvm->mmu_notifier_count--;
395 	spin_unlock(&kvm->mmu_lock);
396 
397 	BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399 
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401 					      struct mm_struct *mm,
402 					      unsigned long start,
403 					      unsigned long end)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 	int young, idx;
407 
408 	idx = srcu_read_lock(&kvm->srcu);
409 	spin_lock(&kvm->mmu_lock);
410 
411 	young = kvm_age_hva(kvm, start, end);
412 	if (young)
413 		kvm_flush_remote_tlbs(kvm);
414 
415 	spin_unlock(&kvm->mmu_lock);
416 	srcu_read_unlock(&kvm->srcu, idx);
417 
418 	return young;
419 }
420 
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422 					struct mm_struct *mm,
423 					unsigned long start,
424 					unsigned long end)
425 {
426 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 	int young, idx;
428 
429 	idx = srcu_read_lock(&kvm->srcu);
430 	spin_lock(&kvm->mmu_lock);
431 	/*
432 	 * Even though we do not flush TLB, this will still adversely
433 	 * affect performance on pre-Haswell Intel EPT, where there is
434 	 * no EPT Access Bit to clear so that we have to tear down EPT
435 	 * tables instead. If we find this unacceptable, we can always
436 	 * add a parameter to kvm_age_hva so that it effectively doesn't
437 	 * do anything on clear_young.
438 	 *
439 	 * Also note that currently we never issue secondary TLB flushes
440 	 * from clear_young, leaving this job up to the regular system
441 	 * cadence. If we find this inaccurate, we might come up with a
442 	 * more sophisticated heuristic later.
443 	 */
444 	young = kvm_age_hva(kvm, start, end);
445 	spin_unlock(&kvm->mmu_lock);
446 	srcu_read_unlock(&kvm->srcu, idx);
447 
448 	return young;
449 }
450 
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452 				       struct mm_struct *mm,
453 				       unsigned long address)
454 {
455 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 	int young, idx;
457 
458 	idx = srcu_read_lock(&kvm->srcu);
459 	spin_lock(&kvm->mmu_lock);
460 	young = kvm_test_age_hva(kvm, address);
461 	spin_unlock(&kvm->mmu_lock);
462 	srcu_read_unlock(&kvm->srcu, idx);
463 
464 	return young;
465 }
466 
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468 				     struct mm_struct *mm)
469 {
470 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
471 	int idx;
472 
473 	idx = srcu_read_lock(&kvm->srcu);
474 	kvm_arch_flush_shadow_all(kvm);
475 	srcu_read_unlock(&kvm->srcu, idx);
476 }
477 
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479 	.flags			= MMU_INVALIDATE_DOES_NOT_BLOCK,
480 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
481 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
482 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
483 	.clear_young		= kvm_mmu_notifier_clear_young,
484 	.test_young		= kvm_mmu_notifier_test_young,
485 	.change_pte		= kvm_mmu_notifier_change_pte,
486 	.release		= kvm_mmu_notifier_release,
487 };
488 
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
492 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
493 }
494 
495 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
496 
497 static int kvm_init_mmu_notifier(struct kvm *kvm)
498 {
499 	return 0;
500 }
501 
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
503 
504 static struct kvm_memslots *kvm_alloc_memslots(void)
505 {
506 	int i;
507 	struct kvm_memslots *slots;
508 
509 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
510 	if (!slots)
511 		return NULL;
512 
513 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
514 		slots->id_to_index[i] = slots->memslots[i].id = i;
515 
516 	return slots;
517 }
518 
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521 	if (!memslot->dirty_bitmap)
522 		return;
523 
524 	kvfree(memslot->dirty_bitmap);
525 	memslot->dirty_bitmap = NULL;
526 }
527 
528 /*
529  * Free any memory in @free but not in @dont.
530  */
531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
532 			      struct kvm_memory_slot *dont)
533 {
534 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535 		kvm_destroy_dirty_bitmap(free);
536 
537 	kvm_arch_free_memslot(kvm, free, dont);
538 
539 	free->npages = 0;
540 }
541 
542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
543 {
544 	struct kvm_memory_slot *memslot;
545 
546 	if (!slots)
547 		return;
548 
549 	kvm_for_each_memslot(memslot, slots)
550 		kvm_free_memslot(kvm, memslot, NULL);
551 
552 	kvfree(slots);
553 }
554 
555 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
556 {
557 	int i;
558 
559 	if (!kvm->debugfs_dentry)
560 		return;
561 
562 	debugfs_remove_recursive(kvm->debugfs_dentry);
563 
564 	if (kvm->debugfs_stat_data) {
565 		for (i = 0; i < kvm_debugfs_num_entries; i++)
566 			kfree(kvm->debugfs_stat_data[i]);
567 		kfree(kvm->debugfs_stat_data);
568 	}
569 }
570 
571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
572 {
573 	char dir_name[ITOA_MAX_LEN * 2];
574 	struct kvm_stat_data *stat_data;
575 	struct kvm_stats_debugfs_item *p;
576 
577 	if (!debugfs_initialized())
578 		return 0;
579 
580 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
581 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
582 						 kvm_debugfs_dir);
583 	if (!kvm->debugfs_dentry)
584 		return -ENOMEM;
585 
586 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
587 					 sizeof(*kvm->debugfs_stat_data),
588 					 GFP_KERNEL);
589 	if (!kvm->debugfs_stat_data)
590 		return -ENOMEM;
591 
592 	for (p = debugfs_entries; p->name; p++) {
593 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
594 		if (!stat_data)
595 			return -ENOMEM;
596 
597 		stat_data->kvm = kvm;
598 		stat_data->offset = p->offset;
599 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
600 		if (!debugfs_create_file(p->name, 0644,
601 					 kvm->debugfs_dentry,
602 					 stat_data,
603 					 stat_fops_per_vm[p->kind]))
604 			return -ENOMEM;
605 	}
606 	return 0;
607 }
608 
609 static struct kvm *kvm_create_vm(unsigned long type)
610 {
611 	int r, i;
612 	struct kvm *kvm = kvm_arch_alloc_vm();
613 
614 	if (!kvm)
615 		return ERR_PTR(-ENOMEM);
616 
617 	spin_lock_init(&kvm->mmu_lock);
618 	mmgrab(current->mm);
619 	kvm->mm = current->mm;
620 	kvm_eventfd_init(kvm);
621 	mutex_init(&kvm->lock);
622 	mutex_init(&kvm->irq_lock);
623 	mutex_init(&kvm->slots_lock);
624 	refcount_set(&kvm->users_count, 1);
625 	INIT_LIST_HEAD(&kvm->devices);
626 
627 	r = kvm_arch_init_vm(kvm, type);
628 	if (r)
629 		goto out_err_no_disable;
630 
631 	r = hardware_enable_all();
632 	if (r)
633 		goto out_err_no_disable;
634 
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
637 #endif
638 
639 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
640 
641 	r = -ENOMEM;
642 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
643 		struct kvm_memslots *slots = kvm_alloc_memslots();
644 		if (!slots)
645 			goto out_err_no_srcu;
646 		/*
647 		 * Generations must be different for each address space.
648 		 * Init kvm generation close to the maximum to easily test the
649 		 * code of handling generation number wrap-around.
650 		 */
651 		slots->generation = i * 2 - 150;
652 		rcu_assign_pointer(kvm->memslots[i], slots);
653 	}
654 
655 	if (init_srcu_struct(&kvm->srcu))
656 		goto out_err_no_srcu;
657 	if (init_srcu_struct(&kvm->irq_srcu))
658 		goto out_err_no_irq_srcu;
659 	for (i = 0; i < KVM_NR_BUSES; i++) {
660 		rcu_assign_pointer(kvm->buses[i],
661 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
662 		if (!kvm->buses[i])
663 			goto out_err;
664 	}
665 
666 	r = kvm_init_mmu_notifier(kvm);
667 	if (r)
668 		goto out_err;
669 
670 	spin_lock(&kvm_lock);
671 	list_add(&kvm->vm_list, &vm_list);
672 	spin_unlock(&kvm_lock);
673 
674 	preempt_notifier_inc();
675 
676 	return kvm;
677 
678 out_err:
679 	cleanup_srcu_struct(&kvm->irq_srcu);
680 out_err_no_irq_srcu:
681 	cleanup_srcu_struct(&kvm->srcu);
682 out_err_no_srcu:
683 	hardware_disable_all();
684 out_err_no_disable:
685 	refcount_set(&kvm->users_count, 0);
686 	for (i = 0; i < KVM_NR_BUSES; i++)
687 		kfree(kvm_get_bus(kvm, i));
688 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
689 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
690 	kvm_arch_free_vm(kvm);
691 	mmdrop(current->mm);
692 	return ERR_PTR(r);
693 }
694 
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697 	struct kvm_device *dev, *tmp;
698 
699 	/*
700 	 * We do not need to take the kvm->lock here, because nobody else
701 	 * has a reference to the struct kvm at this point and therefore
702 	 * cannot access the devices list anyhow.
703 	 */
704 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705 		list_del(&dev->vm_node);
706 		dev->ops->destroy(dev);
707 	}
708 }
709 
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712 	int i;
713 	struct mm_struct *mm = kvm->mm;
714 
715 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
716 	kvm_destroy_vm_debugfs(kvm);
717 	kvm_arch_sync_events(kvm);
718 	spin_lock(&kvm_lock);
719 	list_del(&kvm->vm_list);
720 	spin_unlock(&kvm_lock);
721 	kvm_free_irq_routing(kvm);
722 	for (i = 0; i < KVM_NR_BUSES; i++) {
723 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
724 
725 		if (bus)
726 			kvm_io_bus_destroy(bus);
727 		kvm->buses[i] = NULL;
728 	}
729 	kvm_coalesced_mmio_free(kvm);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
732 #else
733 	kvm_arch_flush_shadow_all(kvm);
734 #endif
735 	kvm_arch_destroy_vm(kvm);
736 	kvm_destroy_devices(kvm);
737 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
738 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
739 	cleanup_srcu_struct(&kvm->irq_srcu);
740 	cleanup_srcu_struct(&kvm->srcu);
741 	kvm_arch_free_vm(kvm);
742 	preempt_notifier_dec();
743 	hardware_disable_all();
744 	mmdrop(mm);
745 }
746 
747 void kvm_get_kvm(struct kvm *kvm)
748 {
749 	refcount_inc(&kvm->users_count);
750 }
751 EXPORT_SYMBOL_GPL(kvm_get_kvm);
752 
753 void kvm_put_kvm(struct kvm *kvm)
754 {
755 	if (refcount_dec_and_test(&kvm->users_count))
756 		kvm_destroy_vm(kvm);
757 }
758 EXPORT_SYMBOL_GPL(kvm_put_kvm);
759 
760 
761 static int kvm_vm_release(struct inode *inode, struct file *filp)
762 {
763 	struct kvm *kvm = filp->private_data;
764 
765 	kvm_irqfd_release(kvm);
766 
767 	kvm_put_kvm(kvm);
768 	return 0;
769 }
770 
771 /*
772  * Allocation size is twice as large as the actual dirty bitmap size.
773  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
774  */
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
776 {
777 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
778 
779 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
780 	if (!memslot->dirty_bitmap)
781 		return -ENOMEM;
782 
783 	return 0;
784 }
785 
786 /*
787  * Insert memslot and re-sort memslots based on their GFN,
788  * so binary search could be used to lookup GFN.
789  * Sorting algorithm takes advantage of having initially
790  * sorted array and known changed memslot position.
791  */
792 static void update_memslots(struct kvm_memslots *slots,
793 			    struct kvm_memory_slot *new)
794 {
795 	int id = new->id;
796 	int i = slots->id_to_index[id];
797 	struct kvm_memory_slot *mslots = slots->memslots;
798 
799 	WARN_ON(mslots[i].id != id);
800 	if (!new->npages) {
801 		WARN_ON(!mslots[i].npages);
802 		if (mslots[i].npages)
803 			slots->used_slots--;
804 	} else {
805 		if (!mslots[i].npages)
806 			slots->used_slots++;
807 	}
808 
809 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
810 	       new->base_gfn <= mslots[i + 1].base_gfn) {
811 		if (!mslots[i + 1].npages)
812 			break;
813 		mslots[i] = mslots[i + 1];
814 		slots->id_to_index[mslots[i].id] = i;
815 		i++;
816 	}
817 
818 	/*
819 	 * The ">=" is needed when creating a slot with base_gfn == 0,
820 	 * so that it moves before all those with base_gfn == npages == 0.
821 	 *
822 	 * On the other hand, if new->npages is zero, the above loop has
823 	 * already left i pointing to the beginning of the empty part of
824 	 * mslots, and the ">=" would move the hole backwards in this
825 	 * case---which is wrong.  So skip the loop when deleting a slot.
826 	 */
827 	if (new->npages) {
828 		while (i > 0 &&
829 		       new->base_gfn >= mslots[i - 1].base_gfn) {
830 			mslots[i] = mslots[i - 1];
831 			slots->id_to_index[mslots[i].id] = i;
832 			i--;
833 		}
834 	} else
835 		WARN_ON_ONCE(i != slots->used_slots);
836 
837 	mslots[i] = *new;
838 	slots->id_to_index[mslots[i].id] = i;
839 }
840 
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
842 {
843 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
844 
845 #ifdef __KVM_HAVE_READONLY_MEM
846 	valid_flags |= KVM_MEM_READONLY;
847 #endif
848 
849 	if (mem->flags & ~valid_flags)
850 		return -EINVAL;
851 
852 	return 0;
853 }
854 
855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
856 		int as_id, struct kvm_memslots *slots)
857 {
858 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
859 
860 	/*
861 	 * Set the low bit in the generation, which disables SPTE caching
862 	 * until the end of synchronize_srcu_expedited.
863 	 */
864 	WARN_ON(old_memslots->generation & 1);
865 	slots->generation = old_memslots->generation + 1;
866 
867 	rcu_assign_pointer(kvm->memslots[as_id], slots);
868 	synchronize_srcu_expedited(&kvm->srcu);
869 
870 	/*
871 	 * Increment the new memslot generation a second time. This prevents
872 	 * vm exits that race with memslot updates from caching a memslot
873 	 * generation that will (potentially) be valid forever.
874 	 *
875 	 * Generations must be unique even across address spaces.  We do not need
876 	 * a global counter for that, instead the generation space is evenly split
877 	 * across address spaces.  For example, with two address spaces, address
878 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879 	 * use generations 2, 6, 10, 14, ...
880 	 */
881 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
882 
883 	kvm_arch_memslots_updated(kvm, slots);
884 
885 	return old_memslots;
886 }
887 
888 /*
889  * Allocate some memory and give it an address in the guest physical address
890  * space.
891  *
892  * Discontiguous memory is allowed, mostly for framebuffers.
893  *
894  * Must be called holding kvm->slots_lock for write.
895  */
896 int __kvm_set_memory_region(struct kvm *kvm,
897 			    const struct kvm_userspace_memory_region *mem)
898 {
899 	int r;
900 	gfn_t base_gfn;
901 	unsigned long npages;
902 	struct kvm_memory_slot *slot;
903 	struct kvm_memory_slot old, new;
904 	struct kvm_memslots *slots = NULL, *old_memslots;
905 	int as_id, id;
906 	enum kvm_mr_change change;
907 
908 	r = check_memory_region_flags(mem);
909 	if (r)
910 		goto out;
911 
912 	r = -EINVAL;
913 	as_id = mem->slot >> 16;
914 	id = (u16)mem->slot;
915 
916 	/* General sanity checks */
917 	if (mem->memory_size & (PAGE_SIZE - 1))
918 		goto out;
919 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
920 		goto out;
921 	/* We can read the guest memory with __xxx_user() later on. */
922 	if ((id < KVM_USER_MEM_SLOTS) &&
923 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
924 	     !access_ok(VERIFY_WRITE,
925 			(void __user *)(unsigned long)mem->userspace_addr,
926 			mem->memory_size)))
927 		goto out;
928 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
929 		goto out;
930 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
931 		goto out;
932 
933 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
934 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
935 	npages = mem->memory_size >> PAGE_SHIFT;
936 
937 	if (npages > KVM_MEM_MAX_NR_PAGES)
938 		goto out;
939 
940 	new = old = *slot;
941 
942 	new.id = id;
943 	new.base_gfn = base_gfn;
944 	new.npages = npages;
945 	new.flags = mem->flags;
946 
947 	if (npages) {
948 		if (!old.npages)
949 			change = KVM_MR_CREATE;
950 		else { /* Modify an existing slot. */
951 			if ((mem->userspace_addr != old.userspace_addr) ||
952 			    (npages != old.npages) ||
953 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
954 				goto out;
955 
956 			if (base_gfn != old.base_gfn)
957 				change = KVM_MR_MOVE;
958 			else if (new.flags != old.flags)
959 				change = KVM_MR_FLAGS_ONLY;
960 			else { /* Nothing to change. */
961 				r = 0;
962 				goto out;
963 			}
964 		}
965 	} else {
966 		if (!old.npages)
967 			goto out;
968 
969 		change = KVM_MR_DELETE;
970 		new.base_gfn = 0;
971 		new.flags = 0;
972 	}
973 
974 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
975 		/* Check for overlaps */
976 		r = -EEXIST;
977 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
978 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
979 			    (slot->id == id))
980 				continue;
981 			if (!((base_gfn + npages <= slot->base_gfn) ||
982 			      (base_gfn >= slot->base_gfn + slot->npages)))
983 				goto out;
984 		}
985 	}
986 
987 	/* Free page dirty bitmap if unneeded */
988 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
989 		new.dirty_bitmap = NULL;
990 
991 	r = -ENOMEM;
992 	if (change == KVM_MR_CREATE) {
993 		new.userspace_addr = mem->userspace_addr;
994 
995 		if (kvm_arch_create_memslot(kvm, &new, npages))
996 			goto out_free;
997 	}
998 
999 	/* Allocate page dirty bitmap if needed */
1000 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1001 		if (kvm_create_dirty_bitmap(&new) < 0)
1002 			goto out_free;
1003 	}
1004 
1005 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1006 	if (!slots)
1007 		goto out_free;
1008 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1009 
1010 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1011 		slot = id_to_memslot(slots, id);
1012 		slot->flags |= KVM_MEMSLOT_INVALID;
1013 
1014 		old_memslots = install_new_memslots(kvm, as_id, slots);
1015 
1016 		/* From this point no new shadow pages pointing to a deleted,
1017 		 * or moved, memslot will be created.
1018 		 *
1019 		 * validation of sp->gfn happens in:
1020 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1021 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1022 		 */
1023 		kvm_arch_flush_shadow_memslot(kvm, slot);
1024 
1025 		/*
1026 		 * We can re-use the old_memslots from above, the only difference
1027 		 * from the currently installed memslots is the invalid flag.  This
1028 		 * will get overwritten by update_memslots anyway.
1029 		 */
1030 		slots = old_memslots;
1031 	}
1032 
1033 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1034 	if (r)
1035 		goto out_slots;
1036 
1037 	/* actual memory is freed via old in kvm_free_memslot below */
1038 	if (change == KVM_MR_DELETE) {
1039 		new.dirty_bitmap = NULL;
1040 		memset(&new.arch, 0, sizeof(new.arch));
1041 	}
1042 
1043 	update_memslots(slots, &new);
1044 	old_memslots = install_new_memslots(kvm, as_id, slots);
1045 
1046 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1047 
1048 	kvm_free_memslot(kvm, &old, &new);
1049 	kvfree(old_memslots);
1050 	return 0;
1051 
1052 out_slots:
1053 	kvfree(slots);
1054 out_free:
1055 	kvm_free_memslot(kvm, &new, &old);
1056 out:
1057 	return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060 
1061 int kvm_set_memory_region(struct kvm *kvm,
1062 			  const struct kvm_userspace_memory_region *mem)
1063 {
1064 	int r;
1065 
1066 	mutex_lock(&kvm->slots_lock);
1067 	r = __kvm_set_memory_region(kvm, mem);
1068 	mutex_unlock(&kvm->slots_lock);
1069 	return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072 
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074 					  struct kvm_userspace_memory_region *mem)
1075 {
1076 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077 		return -EINVAL;
1078 
1079 	return kvm_set_memory_region(kvm, mem);
1080 }
1081 
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083 			struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085 	struct kvm_memslots *slots;
1086 	struct kvm_memory_slot *memslot;
1087 	int i, as_id, id;
1088 	unsigned long n;
1089 	unsigned long any = 0;
1090 
1091 	as_id = log->slot >> 16;
1092 	id = (u16)log->slot;
1093 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1094 		return -EINVAL;
1095 
1096 	slots = __kvm_memslots(kvm, as_id);
1097 	memslot = id_to_memslot(slots, id);
1098 	if (!memslot->dirty_bitmap)
1099 		return -ENOENT;
1100 
1101 	n = kvm_dirty_bitmap_bytes(memslot);
1102 
1103 	for (i = 0; !any && i < n/sizeof(long); ++i)
1104 		any = memslot->dirty_bitmap[i];
1105 
1106 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1107 		return -EFAULT;
1108 
1109 	if (any)
1110 		*is_dirty = 1;
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1114 
1115 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1116 /**
1117  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1118  *	are dirty write protect them for next write.
1119  * @kvm:	pointer to kvm instance
1120  * @log:	slot id and address to which we copy the log
1121  * @is_dirty:	flag set if any page is dirty
1122  *
1123  * We need to keep it in mind that VCPU threads can write to the bitmap
1124  * concurrently. So, to avoid losing track of dirty pages we keep the
1125  * following order:
1126  *
1127  *    1. Take a snapshot of the bit and clear it if needed.
1128  *    2. Write protect the corresponding page.
1129  *    3. Copy the snapshot to the userspace.
1130  *    4. Upon return caller flushes TLB's if needed.
1131  *
1132  * Between 2 and 4, the guest may write to the page using the remaining TLB
1133  * entry.  This is not a problem because the page is reported dirty using
1134  * the snapshot taken before and step 4 ensures that writes done after
1135  * exiting to userspace will be logged for the next call.
1136  *
1137  */
1138 int kvm_get_dirty_log_protect(struct kvm *kvm,
1139 			struct kvm_dirty_log *log, bool *is_dirty)
1140 {
1141 	struct kvm_memslots *slots;
1142 	struct kvm_memory_slot *memslot;
1143 	int i, as_id, id;
1144 	unsigned long n;
1145 	unsigned long *dirty_bitmap;
1146 	unsigned long *dirty_bitmap_buffer;
1147 
1148 	as_id = log->slot >> 16;
1149 	id = (u16)log->slot;
1150 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1151 		return -EINVAL;
1152 
1153 	slots = __kvm_memslots(kvm, as_id);
1154 	memslot = id_to_memslot(slots, id);
1155 
1156 	dirty_bitmap = memslot->dirty_bitmap;
1157 	if (!dirty_bitmap)
1158 		return -ENOENT;
1159 
1160 	n = kvm_dirty_bitmap_bytes(memslot);
1161 
1162 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1163 	memset(dirty_bitmap_buffer, 0, n);
1164 
1165 	spin_lock(&kvm->mmu_lock);
1166 	*is_dirty = false;
1167 	for (i = 0; i < n / sizeof(long); i++) {
1168 		unsigned long mask;
1169 		gfn_t offset;
1170 
1171 		if (!dirty_bitmap[i])
1172 			continue;
1173 
1174 		*is_dirty = true;
1175 
1176 		mask = xchg(&dirty_bitmap[i], 0);
1177 		dirty_bitmap_buffer[i] = mask;
1178 
1179 		if (mask) {
1180 			offset = i * BITS_PER_LONG;
1181 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1182 								offset, mask);
1183 		}
1184 	}
1185 
1186 	spin_unlock(&kvm->mmu_lock);
1187 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1188 		return -EFAULT;
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1192 #endif
1193 
1194 bool kvm_largepages_enabled(void)
1195 {
1196 	return largepages_enabled;
1197 }
1198 
1199 void kvm_disable_largepages(void)
1200 {
1201 	largepages_enabled = false;
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1204 
1205 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1206 {
1207 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1208 }
1209 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1210 
1211 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1212 {
1213 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1214 }
1215 
1216 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1217 {
1218 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1219 
1220 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1221 	      memslot->flags & KVM_MEMSLOT_INVALID)
1222 		return false;
1223 
1224 	return true;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1227 
1228 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1229 {
1230 	struct vm_area_struct *vma;
1231 	unsigned long addr, size;
1232 
1233 	size = PAGE_SIZE;
1234 
1235 	addr = gfn_to_hva(kvm, gfn);
1236 	if (kvm_is_error_hva(addr))
1237 		return PAGE_SIZE;
1238 
1239 	down_read(&current->mm->mmap_sem);
1240 	vma = find_vma(current->mm, addr);
1241 	if (!vma)
1242 		goto out;
1243 
1244 	size = vma_kernel_pagesize(vma);
1245 
1246 out:
1247 	up_read(&current->mm->mmap_sem);
1248 
1249 	return size;
1250 }
1251 
1252 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1253 {
1254 	return slot->flags & KVM_MEM_READONLY;
1255 }
1256 
1257 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1258 				       gfn_t *nr_pages, bool write)
1259 {
1260 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1261 		return KVM_HVA_ERR_BAD;
1262 
1263 	if (memslot_is_readonly(slot) && write)
1264 		return KVM_HVA_ERR_RO_BAD;
1265 
1266 	if (nr_pages)
1267 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1268 
1269 	return __gfn_to_hva_memslot(slot, gfn);
1270 }
1271 
1272 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1273 				     gfn_t *nr_pages)
1274 {
1275 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1276 }
1277 
1278 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1279 					gfn_t gfn)
1280 {
1281 	return gfn_to_hva_many(slot, gfn, NULL);
1282 }
1283 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1284 
1285 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1286 {
1287 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_hva);
1290 
1291 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1292 {
1293 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1296 
1297 /*
1298  * If writable is set to false, the hva returned by this function is only
1299  * allowed to be read.
1300  */
1301 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1302 				      gfn_t gfn, bool *writable)
1303 {
1304 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1305 
1306 	if (!kvm_is_error_hva(hva) && writable)
1307 		*writable = !memslot_is_readonly(slot);
1308 
1309 	return hva;
1310 }
1311 
1312 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1313 {
1314 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1315 
1316 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1317 }
1318 
1319 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1320 {
1321 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1322 
1323 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1324 }
1325 
1326 static inline int check_user_page_hwpoison(unsigned long addr)
1327 {
1328 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1329 
1330 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1331 	return rc == -EHWPOISON;
1332 }
1333 
1334 /*
1335  * The atomic path to get the writable pfn which will be stored in @pfn,
1336  * true indicates success, otherwise false is returned.
1337  */
1338 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1339 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1340 {
1341 	struct page *page[1];
1342 	int npages;
1343 
1344 	if (!(async || atomic))
1345 		return false;
1346 
1347 	/*
1348 	 * Fast pin a writable pfn only if it is a write fault request
1349 	 * or the caller allows to map a writable pfn for a read fault
1350 	 * request.
1351 	 */
1352 	if (!(write_fault || writable))
1353 		return false;
1354 
1355 	npages = __get_user_pages_fast(addr, 1, 1, page);
1356 	if (npages == 1) {
1357 		*pfn = page_to_pfn(page[0]);
1358 
1359 		if (writable)
1360 			*writable = true;
1361 		return true;
1362 	}
1363 
1364 	return false;
1365 }
1366 
1367 /*
1368  * The slow path to get the pfn of the specified host virtual address,
1369  * 1 indicates success, -errno is returned if error is detected.
1370  */
1371 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1372 			   bool *writable, kvm_pfn_t *pfn)
1373 {
1374 	unsigned int flags = FOLL_HWPOISON;
1375 	struct page *page;
1376 	int npages = 0;
1377 
1378 	might_sleep();
1379 
1380 	if (writable)
1381 		*writable = write_fault;
1382 
1383 	if (write_fault)
1384 		flags |= FOLL_WRITE;
1385 	if (async)
1386 		flags |= FOLL_NOWAIT;
1387 
1388 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1389 	if (npages != 1)
1390 		return npages;
1391 
1392 	/* map read fault as writable if possible */
1393 	if (unlikely(!write_fault) && writable) {
1394 		struct page *wpage;
1395 
1396 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1397 			*writable = true;
1398 			put_page(page);
1399 			page = wpage;
1400 		}
1401 	}
1402 	*pfn = page_to_pfn(page);
1403 	return npages;
1404 }
1405 
1406 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1407 {
1408 	if (unlikely(!(vma->vm_flags & VM_READ)))
1409 		return false;
1410 
1411 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1412 		return false;
1413 
1414 	return true;
1415 }
1416 
1417 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1418 			       unsigned long addr, bool *async,
1419 			       bool write_fault, kvm_pfn_t *p_pfn)
1420 {
1421 	unsigned long pfn;
1422 	int r;
1423 
1424 	r = follow_pfn(vma, addr, &pfn);
1425 	if (r) {
1426 		/*
1427 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1428 		 * not call the fault handler, so do it here.
1429 		 */
1430 		bool unlocked = false;
1431 		r = fixup_user_fault(current, current->mm, addr,
1432 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1433 				     &unlocked);
1434 		if (unlocked)
1435 			return -EAGAIN;
1436 		if (r)
1437 			return r;
1438 
1439 		r = follow_pfn(vma, addr, &pfn);
1440 		if (r)
1441 			return r;
1442 
1443 	}
1444 
1445 
1446 	/*
1447 	 * Get a reference here because callers of *hva_to_pfn* and
1448 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1449 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1450 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1451 	 * simply do nothing for reserved pfns.
1452 	 *
1453 	 * Whoever called remap_pfn_range is also going to call e.g.
1454 	 * unmap_mapping_range before the underlying pages are freed,
1455 	 * causing a call to our MMU notifier.
1456 	 */
1457 	kvm_get_pfn(pfn);
1458 
1459 	*p_pfn = pfn;
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Pin guest page in memory and return its pfn.
1465  * @addr: host virtual address which maps memory to the guest
1466  * @atomic: whether this function can sleep
1467  * @async: whether this function need to wait IO complete if the
1468  *         host page is not in the memory
1469  * @write_fault: whether we should get a writable host page
1470  * @writable: whether it allows to map a writable host page for !@write_fault
1471  *
1472  * The function will map a writable host page for these two cases:
1473  * 1): @write_fault = true
1474  * 2): @write_fault = false && @writable, @writable will tell the caller
1475  *     whether the mapping is writable.
1476  */
1477 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1478 			bool write_fault, bool *writable)
1479 {
1480 	struct vm_area_struct *vma;
1481 	kvm_pfn_t pfn = 0;
1482 	int npages, r;
1483 
1484 	/* we can do it either atomically or asynchronously, not both */
1485 	BUG_ON(atomic && async);
1486 
1487 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1488 		return pfn;
1489 
1490 	if (atomic)
1491 		return KVM_PFN_ERR_FAULT;
1492 
1493 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1494 	if (npages == 1)
1495 		return pfn;
1496 
1497 	down_read(&current->mm->mmap_sem);
1498 	if (npages == -EHWPOISON ||
1499 	      (!async && check_user_page_hwpoison(addr))) {
1500 		pfn = KVM_PFN_ERR_HWPOISON;
1501 		goto exit;
1502 	}
1503 
1504 retry:
1505 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1506 
1507 	if (vma == NULL)
1508 		pfn = KVM_PFN_ERR_FAULT;
1509 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1510 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1511 		if (r == -EAGAIN)
1512 			goto retry;
1513 		if (r < 0)
1514 			pfn = KVM_PFN_ERR_FAULT;
1515 	} else {
1516 		if (async && vma_is_valid(vma, write_fault))
1517 			*async = true;
1518 		pfn = KVM_PFN_ERR_FAULT;
1519 	}
1520 exit:
1521 	up_read(&current->mm->mmap_sem);
1522 	return pfn;
1523 }
1524 
1525 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1526 			       bool atomic, bool *async, bool write_fault,
1527 			       bool *writable)
1528 {
1529 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1530 
1531 	if (addr == KVM_HVA_ERR_RO_BAD) {
1532 		if (writable)
1533 			*writable = false;
1534 		return KVM_PFN_ERR_RO_FAULT;
1535 	}
1536 
1537 	if (kvm_is_error_hva(addr)) {
1538 		if (writable)
1539 			*writable = false;
1540 		return KVM_PFN_NOSLOT;
1541 	}
1542 
1543 	/* Do not map writable pfn in the readonly memslot. */
1544 	if (writable && memslot_is_readonly(slot)) {
1545 		*writable = false;
1546 		writable = NULL;
1547 	}
1548 
1549 	return hva_to_pfn(addr, atomic, async, write_fault,
1550 			  writable);
1551 }
1552 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1553 
1554 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1555 		      bool *writable)
1556 {
1557 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1558 				    write_fault, writable);
1559 }
1560 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1561 
1562 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1563 {
1564 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1565 }
1566 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1567 
1568 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1569 {
1570 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1571 }
1572 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1573 
1574 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1575 {
1576 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1577 }
1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1579 
1580 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1581 {
1582 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1583 }
1584 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1585 
1586 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1587 {
1588 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1591 
1592 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1593 {
1594 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1595 }
1596 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1597 
1598 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1599 			    struct page **pages, int nr_pages)
1600 {
1601 	unsigned long addr;
1602 	gfn_t entry = 0;
1603 
1604 	addr = gfn_to_hva_many(slot, gfn, &entry);
1605 	if (kvm_is_error_hva(addr))
1606 		return -1;
1607 
1608 	if (entry < nr_pages)
1609 		return 0;
1610 
1611 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1614 
1615 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1616 {
1617 	if (is_error_noslot_pfn(pfn))
1618 		return KVM_ERR_PTR_BAD_PAGE;
1619 
1620 	if (kvm_is_reserved_pfn(pfn)) {
1621 		WARN_ON(1);
1622 		return KVM_ERR_PTR_BAD_PAGE;
1623 	}
1624 
1625 	return pfn_to_page(pfn);
1626 }
1627 
1628 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1629 {
1630 	kvm_pfn_t pfn;
1631 
1632 	pfn = gfn_to_pfn(kvm, gfn);
1633 
1634 	return kvm_pfn_to_page(pfn);
1635 }
1636 EXPORT_SYMBOL_GPL(gfn_to_page);
1637 
1638 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1639 {
1640 	kvm_pfn_t pfn;
1641 
1642 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1643 
1644 	return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1647 
1648 void kvm_release_page_clean(struct page *page)
1649 {
1650 	WARN_ON(is_error_page(page));
1651 
1652 	kvm_release_pfn_clean(page_to_pfn(page));
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1655 
1656 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1657 {
1658 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1659 		put_page(pfn_to_page(pfn));
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1662 
1663 void kvm_release_page_dirty(struct page *page)
1664 {
1665 	WARN_ON(is_error_page(page));
1666 
1667 	kvm_release_pfn_dirty(page_to_pfn(page));
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1670 
1671 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1672 {
1673 	kvm_set_pfn_dirty(pfn);
1674 	kvm_release_pfn_clean(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1677 
1678 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1679 {
1680 	if (!kvm_is_reserved_pfn(pfn)) {
1681 		struct page *page = pfn_to_page(pfn);
1682 
1683 		if (!PageReserved(page))
1684 			SetPageDirty(page);
1685 	}
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1688 
1689 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1690 {
1691 	if (!kvm_is_reserved_pfn(pfn))
1692 		mark_page_accessed(pfn_to_page(pfn));
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1695 
1696 void kvm_get_pfn(kvm_pfn_t pfn)
1697 {
1698 	if (!kvm_is_reserved_pfn(pfn))
1699 		get_page(pfn_to_page(pfn));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1702 
1703 static int next_segment(unsigned long len, int offset)
1704 {
1705 	if (len > PAGE_SIZE - offset)
1706 		return PAGE_SIZE - offset;
1707 	else
1708 		return len;
1709 }
1710 
1711 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1712 				 void *data, int offset, int len)
1713 {
1714 	int r;
1715 	unsigned long addr;
1716 
1717 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1718 	if (kvm_is_error_hva(addr))
1719 		return -EFAULT;
1720 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1721 	if (r)
1722 		return -EFAULT;
1723 	return 0;
1724 }
1725 
1726 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1727 			int len)
1728 {
1729 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1730 
1731 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1734 
1735 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1736 			     int offset, int len)
1737 {
1738 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1739 
1740 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1743 
1744 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1745 {
1746 	gfn_t gfn = gpa >> PAGE_SHIFT;
1747 	int seg;
1748 	int offset = offset_in_page(gpa);
1749 	int ret;
1750 
1751 	while ((seg = next_segment(len, offset)) != 0) {
1752 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1753 		if (ret < 0)
1754 			return ret;
1755 		offset = 0;
1756 		len -= seg;
1757 		data += seg;
1758 		++gfn;
1759 	}
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_read_guest);
1763 
1764 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1765 {
1766 	gfn_t gfn = gpa >> PAGE_SHIFT;
1767 	int seg;
1768 	int offset = offset_in_page(gpa);
1769 	int ret;
1770 
1771 	while ((seg = next_segment(len, offset)) != 0) {
1772 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1773 		if (ret < 0)
1774 			return ret;
1775 		offset = 0;
1776 		len -= seg;
1777 		data += seg;
1778 		++gfn;
1779 	}
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1783 
1784 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1785 			           void *data, int offset, unsigned long len)
1786 {
1787 	int r;
1788 	unsigned long addr;
1789 
1790 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1791 	if (kvm_is_error_hva(addr))
1792 		return -EFAULT;
1793 	pagefault_disable();
1794 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1795 	pagefault_enable();
1796 	if (r)
1797 		return -EFAULT;
1798 	return 0;
1799 }
1800 
1801 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1802 			  unsigned long len)
1803 {
1804 	gfn_t gfn = gpa >> PAGE_SHIFT;
1805 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1806 	int offset = offset_in_page(gpa);
1807 
1808 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1811 
1812 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1813 			       void *data, unsigned long len)
1814 {
1815 	gfn_t gfn = gpa >> PAGE_SHIFT;
1816 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1817 	int offset = offset_in_page(gpa);
1818 
1819 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1822 
1823 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1824 			          const void *data, int offset, int len)
1825 {
1826 	int r;
1827 	unsigned long addr;
1828 
1829 	addr = gfn_to_hva_memslot(memslot, gfn);
1830 	if (kvm_is_error_hva(addr))
1831 		return -EFAULT;
1832 	r = __copy_to_user((void __user *)addr + offset, data, len);
1833 	if (r)
1834 		return -EFAULT;
1835 	mark_page_dirty_in_slot(memslot, gfn);
1836 	return 0;
1837 }
1838 
1839 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1840 			 const void *data, int offset, int len)
1841 {
1842 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1843 
1844 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1847 
1848 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1849 			      const void *data, int offset, int len)
1850 {
1851 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1852 
1853 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1856 
1857 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1858 		    unsigned long len)
1859 {
1860 	gfn_t gfn = gpa >> PAGE_SHIFT;
1861 	int seg;
1862 	int offset = offset_in_page(gpa);
1863 	int ret;
1864 
1865 	while ((seg = next_segment(len, offset)) != 0) {
1866 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1867 		if (ret < 0)
1868 			return ret;
1869 		offset = 0;
1870 		len -= seg;
1871 		data += seg;
1872 		++gfn;
1873 	}
1874 	return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_write_guest);
1877 
1878 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1879 		         unsigned long len)
1880 {
1881 	gfn_t gfn = gpa >> PAGE_SHIFT;
1882 	int seg;
1883 	int offset = offset_in_page(gpa);
1884 	int ret;
1885 
1886 	while ((seg = next_segment(len, offset)) != 0) {
1887 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1888 		if (ret < 0)
1889 			return ret;
1890 		offset = 0;
1891 		len -= seg;
1892 		data += seg;
1893 		++gfn;
1894 	}
1895 	return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1898 
1899 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1900 				       struct gfn_to_hva_cache *ghc,
1901 				       gpa_t gpa, unsigned long len)
1902 {
1903 	int offset = offset_in_page(gpa);
1904 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1905 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1906 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1907 	gfn_t nr_pages_avail;
1908 
1909 	ghc->gpa = gpa;
1910 	ghc->generation = slots->generation;
1911 	ghc->len = len;
1912 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1913 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1914 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1915 		ghc->hva += offset;
1916 	} else {
1917 		/*
1918 		 * If the requested region crosses two memslots, we still
1919 		 * verify that the entire region is valid here.
1920 		 */
1921 		while (start_gfn <= end_gfn) {
1922 			nr_pages_avail = 0;
1923 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1924 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1925 						   &nr_pages_avail);
1926 			if (kvm_is_error_hva(ghc->hva))
1927 				return -EFAULT;
1928 			start_gfn += nr_pages_avail;
1929 		}
1930 		/* Use the slow path for cross page reads and writes. */
1931 		ghc->memslot = NULL;
1932 	}
1933 	return 0;
1934 }
1935 
1936 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1937 			      gpa_t gpa, unsigned long len)
1938 {
1939 	struct kvm_memslots *slots = kvm_memslots(kvm);
1940 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1943 
1944 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1945 			   void *data, int offset, unsigned long len)
1946 {
1947 	struct kvm_memslots *slots = kvm_memslots(kvm);
1948 	int r;
1949 	gpa_t gpa = ghc->gpa + offset;
1950 
1951 	BUG_ON(len + offset > ghc->len);
1952 
1953 	if (slots->generation != ghc->generation)
1954 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1955 
1956 	if (unlikely(!ghc->memslot))
1957 		return kvm_write_guest(kvm, gpa, data, len);
1958 
1959 	if (kvm_is_error_hva(ghc->hva))
1960 		return -EFAULT;
1961 
1962 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1963 	if (r)
1964 		return -EFAULT;
1965 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1966 
1967 	return 0;
1968 }
1969 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1970 
1971 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1972 			   void *data, unsigned long len)
1973 {
1974 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1977 
1978 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1979 			   void *data, unsigned long len)
1980 {
1981 	struct kvm_memslots *slots = kvm_memslots(kvm);
1982 	int r;
1983 
1984 	BUG_ON(len > ghc->len);
1985 
1986 	if (slots->generation != ghc->generation)
1987 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1988 
1989 	if (unlikely(!ghc->memslot))
1990 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1991 
1992 	if (kvm_is_error_hva(ghc->hva))
1993 		return -EFAULT;
1994 
1995 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1996 	if (r)
1997 		return -EFAULT;
1998 
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2002 
2003 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2004 {
2005 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2006 
2007 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2010 
2011 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2012 {
2013 	gfn_t gfn = gpa >> PAGE_SHIFT;
2014 	int seg;
2015 	int offset = offset_in_page(gpa);
2016 	int ret;
2017 
2018 	while ((seg = next_segment(len, offset)) != 0) {
2019 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2020 		if (ret < 0)
2021 			return ret;
2022 		offset = 0;
2023 		len -= seg;
2024 		++gfn;
2025 	}
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2029 
2030 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2031 				    gfn_t gfn)
2032 {
2033 	if (memslot && memslot->dirty_bitmap) {
2034 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2035 
2036 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2037 	}
2038 }
2039 
2040 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2041 {
2042 	struct kvm_memory_slot *memslot;
2043 
2044 	memslot = gfn_to_memslot(kvm, gfn);
2045 	mark_page_dirty_in_slot(memslot, gfn);
2046 }
2047 EXPORT_SYMBOL_GPL(mark_page_dirty);
2048 
2049 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2050 {
2051 	struct kvm_memory_slot *memslot;
2052 
2053 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2054 	mark_page_dirty_in_slot(memslot, gfn);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2057 
2058 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2059 {
2060 	if (!vcpu->sigset_active)
2061 		return;
2062 
2063 	/*
2064 	 * This does a lockless modification of ->real_blocked, which is fine
2065 	 * because, only current can change ->real_blocked and all readers of
2066 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2067 	 * of ->blocked.
2068 	 */
2069 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2070 }
2071 
2072 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2073 {
2074 	if (!vcpu->sigset_active)
2075 		return;
2076 
2077 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2078 	sigemptyset(&current->real_blocked);
2079 }
2080 
2081 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2082 {
2083 	unsigned int old, val, grow;
2084 
2085 	old = val = vcpu->halt_poll_ns;
2086 	grow = READ_ONCE(halt_poll_ns_grow);
2087 	/* 10us base */
2088 	if (val == 0 && grow)
2089 		val = 10000;
2090 	else
2091 		val *= grow;
2092 
2093 	if (val > halt_poll_ns)
2094 		val = halt_poll_ns;
2095 
2096 	vcpu->halt_poll_ns = val;
2097 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2098 }
2099 
2100 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2101 {
2102 	unsigned int old, val, shrink;
2103 
2104 	old = val = vcpu->halt_poll_ns;
2105 	shrink = READ_ONCE(halt_poll_ns_shrink);
2106 	if (shrink == 0)
2107 		val = 0;
2108 	else
2109 		val /= shrink;
2110 
2111 	vcpu->halt_poll_ns = val;
2112 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2113 }
2114 
2115 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2116 {
2117 	if (kvm_arch_vcpu_runnable(vcpu)) {
2118 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2119 		return -EINTR;
2120 	}
2121 	if (kvm_cpu_has_pending_timer(vcpu))
2122 		return -EINTR;
2123 	if (signal_pending(current))
2124 		return -EINTR;
2125 
2126 	return 0;
2127 }
2128 
2129 /*
2130  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2131  */
2132 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2133 {
2134 	ktime_t start, cur;
2135 	DECLARE_SWAITQUEUE(wait);
2136 	bool waited = false;
2137 	u64 block_ns;
2138 
2139 	start = cur = ktime_get();
2140 	if (vcpu->halt_poll_ns) {
2141 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2142 
2143 		++vcpu->stat.halt_attempted_poll;
2144 		do {
2145 			/*
2146 			 * This sets KVM_REQ_UNHALT if an interrupt
2147 			 * arrives.
2148 			 */
2149 			if (kvm_vcpu_check_block(vcpu) < 0) {
2150 				++vcpu->stat.halt_successful_poll;
2151 				if (!vcpu_valid_wakeup(vcpu))
2152 					++vcpu->stat.halt_poll_invalid;
2153 				goto out;
2154 			}
2155 			cur = ktime_get();
2156 		} while (single_task_running() && ktime_before(cur, stop));
2157 	}
2158 
2159 	kvm_arch_vcpu_blocking(vcpu);
2160 
2161 	for (;;) {
2162 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2163 
2164 		if (kvm_vcpu_check_block(vcpu) < 0)
2165 			break;
2166 
2167 		waited = true;
2168 		schedule();
2169 	}
2170 
2171 	finish_swait(&vcpu->wq, &wait);
2172 	cur = ktime_get();
2173 
2174 	kvm_arch_vcpu_unblocking(vcpu);
2175 out:
2176 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2177 
2178 	if (!vcpu_valid_wakeup(vcpu))
2179 		shrink_halt_poll_ns(vcpu);
2180 	else if (halt_poll_ns) {
2181 		if (block_ns <= vcpu->halt_poll_ns)
2182 			;
2183 		/* we had a long block, shrink polling */
2184 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2185 			shrink_halt_poll_ns(vcpu);
2186 		/* we had a short halt and our poll time is too small */
2187 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2188 			block_ns < halt_poll_ns)
2189 			grow_halt_poll_ns(vcpu);
2190 	} else
2191 		vcpu->halt_poll_ns = 0;
2192 
2193 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2194 	kvm_arch_vcpu_block_finish(vcpu);
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2197 
2198 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2199 {
2200 	struct swait_queue_head *wqp;
2201 
2202 	wqp = kvm_arch_vcpu_wq(vcpu);
2203 	if (swq_has_sleeper(wqp)) {
2204 		swake_up(wqp);
2205 		++vcpu->stat.halt_wakeup;
2206 		return true;
2207 	}
2208 
2209 	return false;
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2212 
2213 #ifndef CONFIG_S390
2214 /*
2215  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2216  */
2217 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2218 {
2219 	int me;
2220 	int cpu = vcpu->cpu;
2221 
2222 	if (kvm_vcpu_wake_up(vcpu))
2223 		return;
2224 
2225 	me = get_cpu();
2226 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2227 		if (kvm_arch_vcpu_should_kick(vcpu))
2228 			smp_send_reschedule(cpu);
2229 	put_cpu();
2230 }
2231 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2232 #endif /* !CONFIG_S390 */
2233 
2234 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2235 {
2236 	struct pid *pid;
2237 	struct task_struct *task = NULL;
2238 	int ret = 0;
2239 
2240 	rcu_read_lock();
2241 	pid = rcu_dereference(target->pid);
2242 	if (pid)
2243 		task = get_pid_task(pid, PIDTYPE_PID);
2244 	rcu_read_unlock();
2245 	if (!task)
2246 		return ret;
2247 	ret = yield_to(task, 1);
2248 	put_task_struct(task);
2249 
2250 	return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2253 
2254 /*
2255  * Helper that checks whether a VCPU is eligible for directed yield.
2256  * Most eligible candidate to yield is decided by following heuristics:
2257  *
2258  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2259  *  (preempted lock holder), indicated by @in_spin_loop.
2260  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2261  *
2262  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2263  *  chance last time (mostly it has become eligible now since we have probably
2264  *  yielded to lockholder in last iteration. This is done by toggling
2265  *  @dy_eligible each time a VCPU checked for eligibility.)
2266  *
2267  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2268  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2269  *  burning. Giving priority for a potential lock-holder increases lock
2270  *  progress.
2271  *
2272  *  Since algorithm is based on heuristics, accessing another VCPU data without
2273  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2274  *  and continue with next VCPU and so on.
2275  */
2276 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2277 {
2278 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2279 	bool eligible;
2280 
2281 	eligible = !vcpu->spin_loop.in_spin_loop ||
2282 		    vcpu->spin_loop.dy_eligible;
2283 
2284 	if (vcpu->spin_loop.in_spin_loop)
2285 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2286 
2287 	return eligible;
2288 #else
2289 	return true;
2290 #endif
2291 }
2292 
2293 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2294 {
2295 	struct kvm *kvm = me->kvm;
2296 	struct kvm_vcpu *vcpu;
2297 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2298 	int yielded = 0;
2299 	int try = 3;
2300 	int pass;
2301 	int i;
2302 
2303 	kvm_vcpu_set_in_spin_loop(me, true);
2304 	/*
2305 	 * We boost the priority of a VCPU that is runnable but not
2306 	 * currently running, because it got preempted by something
2307 	 * else and called schedule in __vcpu_run.  Hopefully that
2308 	 * VCPU is holding the lock that we need and will release it.
2309 	 * We approximate round-robin by starting at the last boosted VCPU.
2310 	 */
2311 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2312 		kvm_for_each_vcpu(i, vcpu, kvm) {
2313 			if (!pass && i <= last_boosted_vcpu) {
2314 				i = last_boosted_vcpu;
2315 				continue;
2316 			} else if (pass && i > last_boosted_vcpu)
2317 				break;
2318 			if (!READ_ONCE(vcpu->preempted))
2319 				continue;
2320 			if (vcpu == me)
2321 				continue;
2322 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2323 				continue;
2324 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2325 				continue;
2326 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2327 				continue;
2328 
2329 			yielded = kvm_vcpu_yield_to(vcpu);
2330 			if (yielded > 0) {
2331 				kvm->last_boosted_vcpu = i;
2332 				break;
2333 			} else if (yielded < 0) {
2334 				try--;
2335 				if (!try)
2336 					break;
2337 			}
2338 		}
2339 	}
2340 	kvm_vcpu_set_in_spin_loop(me, false);
2341 
2342 	/* Ensure vcpu is not eligible during next spinloop */
2343 	kvm_vcpu_set_dy_eligible(me, false);
2344 }
2345 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2346 
2347 static int kvm_vcpu_fault(struct vm_fault *vmf)
2348 {
2349 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2350 	struct page *page;
2351 
2352 	if (vmf->pgoff == 0)
2353 		page = virt_to_page(vcpu->run);
2354 #ifdef CONFIG_X86
2355 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2356 		page = virt_to_page(vcpu->arch.pio_data);
2357 #endif
2358 #ifdef CONFIG_KVM_MMIO
2359 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2360 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2361 #endif
2362 	else
2363 		return kvm_arch_vcpu_fault(vcpu, vmf);
2364 	get_page(page);
2365 	vmf->page = page;
2366 	return 0;
2367 }
2368 
2369 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2370 	.fault = kvm_vcpu_fault,
2371 };
2372 
2373 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2374 {
2375 	vma->vm_ops = &kvm_vcpu_vm_ops;
2376 	return 0;
2377 }
2378 
2379 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2380 {
2381 	struct kvm_vcpu *vcpu = filp->private_data;
2382 
2383 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2384 	kvm_put_kvm(vcpu->kvm);
2385 	return 0;
2386 }
2387 
2388 static struct file_operations kvm_vcpu_fops = {
2389 	.release        = kvm_vcpu_release,
2390 	.unlocked_ioctl = kvm_vcpu_ioctl,
2391 #ifdef CONFIG_KVM_COMPAT
2392 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2393 #endif
2394 	.mmap           = kvm_vcpu_mmap,
2395 	.llseek		= noop_llseek,
2396 };
2397 
2398 /*
2399  * Allocates an inode for the vcpu.
2400  */
2401 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2402 {
2403 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2404 }
2405 
2406 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2407 {
2408 	char dir_name[ITOA_MAX_LEN * 2];
2409 	int ret;
2410 
2411 	if (!kvm_arch_has_vcpu_debugfs())
2412 		return 0;
2413 
2414 	if (!debugfs_initialized())
2415 		return 0;
2416 
2417 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2418 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2419 								vcpu->kvm->debugfs_dentry);
2420 	if (!vcpu->debugfs_dentry)
2421 		return -ENOMEM;
2422 
2423 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2424 	if (ret < 0) {
2425 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2426 		return ret;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 /*
2433  * Creates some virtual cpus.  Good luck creating more than one.
2434  */
2435 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2436 {
2437 	int r;
2438 	struct kvm_vcpu *vcpu;
2439 
2440 	if (id >= KVM_MAX_VCPU_ID)
2441 		return -EINVAL;
2442 
2443 	mutex_lock(&kvm->lock);
2444 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2445 		mutex_unlock(&kvm->lock);
2446 		return -EINVAL;
2447 	}
2448 
2449 	kvm->created_vcpus++;
2450 	mutex_unlock(&kvm->lock);
2451 
2452 	vcpu = kvm_arch_vcpu_create(kvm, id);
2453 	if (IS_ERR(vcpu)) {
2454 		r = PTR_ERR(vcpu);
2455 		goto vcpu_decrement;
2456 	}
2457 
2458 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2459 
2460 	r = kvm_arch_vcpu_setup(vcpu);
2461 	if (r)
2462 		goto vcpu_destroy;
2463 
2464 	r = kvm_create_vcpu_debugfs(vcpu);
2465 	if (r)
2466 		goto vcpu_destroy;
2467 
2468 	mutex_lock(&kvm->lock);
2469 	if (kvm_get_vcpu_by_id(kvm, id)) {
2470 		r = -EEXIST;
2471 		goto unlock_vcpu_destroy;
2472 	}
2473 
2474 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2475 
2476 	/* Now it's all set up, let userspace reach it */
2477 	kvm_get_kvm(kvm);
2478 	r = create_vcpu_fd(vcpu);
2479 	if (r < 0) {
2480 		kvm_put_kvm(kvm);
2481 		goto unlock_vcpu_destroy;
2482 	}
2483 
2484 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2485 
2486 	/*
2487 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2488 	 * before kvm->online_vcpu's incremented value.
2489 	 */
2490 	smp_wmb();
2491 	atomic_inc(&kvm->online_vcpus);
2492 
2493 	mutex_unlock(&kvm->lock);
2494 	kvm_arch_vcpu_postcreate(vcpu);
2495 	return r;
2496 
2497 unlock_vcpu_destroy:
2498 	mutex_unlock(&kvm->lock);
2499 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2500 vcpu_destroy:
2501 	kvm_arch_vcpu_destroy(vcpu);
2502 vcpu_decrement:
2503 	mutex_lock(&kvm->lock);
2504 	kvm->created_vcpus--;
2505 	mutex_unlock(&kvm->lock);
2506 	return r;
2507 }
2508 
2509 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2510 {
2511 	if (sigset) {
2512 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2513 		vcpu->sigset_active = 1;
2514 		vcpu->sigset = *sigset;
2515 	} else
2516 		vcpu->sigset_active = 0;
2517 	return 0;
2518 }
2519 
2520 static long kvm_vcpu_ioctl(struct file *filp,
2521 			   unsigned int ioctl, unsigned long arg)
2522 {
2523 	struct kvm_vcpu *vcpu = filp->private_data;
2524 	void __user *argp = (void __user *)arg;
2525 	int r;
2526 	struct kvm_fpu *fpu = NULL;
2527 	struct kvm_sregs *kvm_sregs = NULL;
2528 
2529 	if (vcpu->kvm->mm != current->mm)
2530 		return -EIO;
2531 
2532 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2533 		return -EINVAL;
2534 
2535 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2536 	/*
2537 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2538 	 * so vcpu_load() would break it.
2539 	 */
2540 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2541 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2542 #endif
2543 
2544 
2545 	r = vcpu_load(vcpu);
2546 	if (r)
2547 		return r;
2548 	switch (ioctl) {
2549 	case KVM_RUN: {
2550 		struct pid *oldpid;
2551 		r = -EINVAL;
2552 		if (arg)
2553 			goto out;
2554 		oldpid = rcu_access_pointer(vcpu->pid);
2555 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2556 			/* The thread running this VCPU changed. */
2557 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2558 
2559 			rcu_assign_pointer(vcpu->pid, newpid);
2560 			if (oldpid)
2561 				synchronize_rcu();
2562 			put_pid(oldpid);
2563 		}
2564 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2565 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2566 		break;
2567 	}
2568 	case KVM_GET_REGS: {
2569 		struct kvm_regs *kvm_regs;
2570 
2571 		r = -ENOMEM;
2572 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2573 		if (!kvm_regs)
2574 			goto out;
2575 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2576 		if (r)
2577 			goto out_free1;
2578 		r = -EFAULT;
2579 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2580 			goto out_free1;
2581 		r = 0;
2582 out_free1:
2583 		kfree(kvm_regs);
2584 		break;
2585 	}
2586 	case KVM_SET_REGS: {
2587 		struct kvm_regs *kvm_regs;
2588 
2589 		r = -ENOMEM;
2590 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2591 		if (IS_ERR(kvm_regs)) {
2592 			r = PTR_ERR(kvm_regs);
2593 			goto out;
2594 		}
2595 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2596 		kfree(kvm_regs);
2597 		break;
2598 	}
2599 	case KVM_GET_SREGS: {
2600 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2601 		r = -ENOMEM;
2602 		if (!kvm_sregs)
2603 			goto out;
2604 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2605 		if (r)
2606 			goto out;
2607 		r = -EFAULT;
2608 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2609 			goto out;
2610 		r = 0;
2611 		break;
2612 	}
2613 	case KVM_SET_SREGS: {
2614 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2615 		if (IS_ERR(kvm_sregs)) {
2616 			r = PTR_ERR(kvm_sregs);
2617 			kvm_sregs = NULL;
2618 			goto out;
2619 		}
2620 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2621 		break;
2622 	}
2623 	case KVM_GET_MP_STATE: {
2624 		struct kvm_mp_state mp_state;
2625 
2626 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2627 		if (r)
2628 			goto out;
2629 		r = -EFAULT;
2630 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2631 			goto out;
2632 		r = 0;
2633 		break;
2634 	}
2635 	case KVM_SET_MP_STATE: {
2636 		struct kvm_mp_state mp_state;
2637 
2638 		r = -EFAULT;
2639 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2640 			goto out;
2641 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2642 		break;
2643 	}
2644 	case KVM_TRANSLATE: {
2645 		struct kvm_translation tr;
2646 
2647 		r = -EFAULT;
2648 		if (copy_from_user(&tr, argp, sizeof(tr)))
2649 			goto out;
2650 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2651 		if (r)
2652 			goto out;
2653 		r = -EFAULT;
2654 		if (copy_to_user(argp, &tr, sizeof(tr)))
2655 			goto out;
2656 		r = 0;
2657 		break;
2658 	}
2659 	case KVM_SET_GUEST_DEBUG: {
2660 		struct kvm_guest_debug dbg;
2661 
2662 		r = -EFAULT;
2663 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2664 			goto out;
2665 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2666 		break;
2667 	}
2668 	case KVM_SET_SIGNAL_MASK: {
2669 		struct kvm_signal_mask __user *sigmask_arg = argp;
2670 		struct kvm_signal_mask kvm_sigmask;
2671 		sigset_t sigset, *p;
2672 
2673 		p = NULL;
2674 		if (argp) {
2675 			r = -EFAULT;
2676 			if (copy_from_user(&kvm_sigmask, argp,
2677 					   sizeof(kvm_sigmask)))
2678 				goto out;
2679 			r = -EINVAL;
2680 			if (kvm_sigmask.len != sizeof(sigset))
2681 				goto out;
2682 			r = -EFAULT;
2683 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2684 					   sizeof(sigset)))
2685 				goto out;
2686 			p = &sigset;
2687 		}
2688 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2689 		break;
2690 	}
2691 	case KVM_GET_FPU: {
2692 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2693 		r = -ENOMEM;
2694 		if (!fpu)
2695 			goto out;
2696 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2697 		if (r)
2698 			goto out;
2699 		r = -EFAULT;
2700 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2701 			goto out;
2702 		r = 0;
2703 		break;
2704 	}
2705 	case KVM_SET_FPU: {
2706 		fpu = memdup_user(argp, sizeof(*fpu));
2707 		if (IS_ERR(fpu)) {
2708 			r = PTR_ERR(fpu);
2709 			fpu = NULL;
2710 			goto out;
2711 		}
2712 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2713 		break;
2714 	}
2715 	default:
2716 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2717 	}
2718 out:
2719 	vcpu_put(vcpu);
2720 	kfree(fpu);
2721 	kfree(kvm_sregs);
2722 	return r;
2723 }
2724 
2725 #ifdef CONFIG_KVM_COMPAT
2726 static long kvm_vcpu_compat_ioctl(struct file *filp,
2727 				  unsigned int ioctl, unsigned long arg)
2728 {
2729 	struct kvm_vcpu *vcpu = filp->private_data;
2730 	void __user *argp = compat_ptr(arg);
2731 	int r;
2732 
2733 	if (vcpu->kvm->mm != current->mm)
2734 		return -EIO;
2735 
2736 	switch (ioctl) {
2737 	case KVM_SET_SIGNAL_MASK: {
2738 		struct kvm_signal_mask __user *sigmask_arg = argp;
2739 		struct kvm_signal_mask kvm_sigmask;
2740 		sigset_t sigset;
2741 
2742 		if (argp) {
2743 			r = -EFAULT;
2744 			if (copy_from_user(&kvm_sigmask, argp,
2745 					   sizeof(kvm_sigmask)))
2746 				goto out;
2747 			r = -EINVAL;
2748 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2749 				goto out;
2750 			r = -EFAULT;
2751 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2752 				goto out;
2753 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2754 		} else
2755 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2756 		break;
2757 	}
2758 	default:
2759 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2760 	}
2761 
2762 out:
2763 	return r;
2764 }
2765 #endif
2766 
2767 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2768 				 int (*accessor)(struct kvm_device *dev,
2769 						 struct kvm_device_attr *attr),
2770 				 unsigned long arg)
2771 {
2772 	struct kvm_device_attr attr;
2773 
2774 	if (!accessor)
2775 		return -EPERM;
2776 
2777 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2778 		return -EFAULT;
2779 
2780 	return accessor(dev, &attr);
2781 }
2782 
2783 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2784 			     unsigned long arg)
2785 {
2786 	struct kvm_device *dev = filp->private_data;
2787 
2788 	switch (ioctl) {
2789 	case KVM_SET_DEVICE_ATTR:
2790 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2791 	case KVM_GET_DEVICE_ATTR:
2792 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2793 	case KVM_HAS_DEVICE_ATTR:
2794 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2795 	default:
2796 		if (dev->ops->ioctl)
2797 			return dev->ops->ioctl(dev, ioctl, arg);
2798 
2799 		return -ENOTTY;
2800 	}
2801 }
2802 
2803 static int kvm_device_release(struct inode *inode, struct file *filp)
2804 {
2805 	struct kvm_device *dev = filp->private_data;
2806 	struct kvm *kvm = dev->kvm;
2807 
2808 	kvm_put_kvm(kvm);
2809 	return 0;
2810 }
2811 
2812 static const struct file_operations kvm_device_fops = {
2813 	.unlocked_ioctl = kvm_device_ioctl,
2814 #ifdef CONFIG_KVM_COMPAT
2815 	.compat_ioctl = kvm_device_ioctl,
2816 #endif
2817 	.release = kvm_device_release,
2818 };
2819 
2820 struct kvm_device *kvm_device_from_filp(struct file *filp)
2821 {
2822 	if (filp->f_op != &kvm_device_fops)
2823 		return NULL;
2824 
2825 	return filp->private_data;
2826 }
2827 
2828 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2829 #ifdef CONFIG_KVM_MPIC
2830 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2831 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2832 #endif
2833 };
2834 
2835 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2836 {
2837 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2838 		return -ENOSPC;
2839 
2840 	if (kvm_device_ops_table[type] != NULL)
2841 		return -EEXIST;
2842 
2843 	kvm_device_ops_table[type] = ops;
2844 	return 0;
2845 }
2846 
2847 void kvm_unregister_device_ops(u32 type)
2848 {
2849 	if (kvm_device_ops_table[type] != NULL)
2850 		kvm_device_ops_table[type] = NULL;
2851 }
2852 
2853 static int kvm_ioctl_create_device(struct kvm *kvm,
2854 				   struct kvm_create_device *cd)
2855 {
2856 	struct kvm_device_ops *ops = NULL;
2857 	struct kvm_device *dev;
2858 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2859 	int ret;
2860 
2861 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2862 		return -ENODEV;
2863 
2864 	ops = kvm_device_ops_table[cd->type];
2865 	if (ops == NULL)
2866 		return -ENODEV;
2867 
2868 	if (test)
2869 		return 0;
2870 
2871 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2872 	if (!dev)
2873 		return -ENOMEM;
2874 
2875 	dev->ops = ops;
2876 	dev->kvm = kvm;
2877 
2878 	mutex_lock(&kvm->lock);
2879 	ret = ops->create(dev, cd->type);
2880 	if (ret < 0) {
2881 		mutex_unlock(&kvm->lock);
2882 		kfree(dev);
2883 		return ret;
2884 	}
2885 	list_add(&dev->vm_node, &kvm->devices);
2886 	mutex_unlock(&kvm->lock);
2887 
2888 	if (ops->init)
2889 		ops->init(dev);
2890 
2891 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2892 	if (ret < 0) {
2893 		mutex_lock(&kvm->lock);
2894 		list_del(&dev->vm_node);
2895 		mutex_unlock(&kvm->lock);
2896 		ops->destroy(dev);
2897 		return ret;
2898 	}
2899 
2900 	kvm_get_kvm(kvm);
2901 	cd->fd = ret;
2902 	return 0;
2903 }
2904 
2905 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2906 {
2907 	switch (arg) {
2908 	case KVM_CAP_USER_MEMORY:
2909 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2910 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2911 	case KVM_CAP_INTERNAL_ERROR_DATA:
2912 #ifdef CONFIG_HAVE_KVM_MSI
2913 	case KVM_CAP_SIGNAL_MSI:
2914 #endif
2915 #ifdef CONFIG_HAVE_KVM_IRQFD
2916 	case KVM_CAP_IRQFD:
2917 	case KVM_CAP_IRQFD_RESAMPLE:
2918 #endif
2919 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2920 	case KVM_CAP_CHECK_EXTENSION_VM:
2921 		return 1;
2922 #ifdef CONFIG_KVM_MMIO
2923 	case KVM_CAP_COALESCED_MMIO:
2924 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2925 #endif
2926 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2927 	case KVM_CAP_IRQ_ROUTING:
2928 		return KVM_MAX_IRQ_ROUTES;
2929 #endif
2930 #if KVM_ADDRESS_SPACE_NUM > 1
2931 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2932 		return KVM_ADDRESS_SPACE_NUM;
2933 #endif
2934 	case KVM_CAP_MAX_VCPU_ID:
2935 		return KVM_MAX_VCPU_ID;
2936 	default:
2937 		break;
2938 	}
2939 	return kvm_vm_ioctl_check_extension(kvm, arg);
2940 }
2941 
2942 static long kvm_vm_ioctl(struct file *filp,
2943 			   unsigned int ioctl, unsigned long arg)
2944 {
2945 	struct kvm *kvm = filp->private_data;
2946 	void __user *argp = (void __user *)arg;
2947 	int r;
2948 
2949 	if (kvm->mm != current->mm)
2950 		return -EIO;
2951 	switch (ioctl) {
2952 	case KVM_CREATE_VCPU:
2953 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2954 		break;
2955 	case KVM_SET_USER_MEMORY_REGION: {
2956 		struct kvm_userspace_memory_region kvm_userspace_mem;
2957 
2958 		r = -EFAULT;
2959 		if (copy_from_user(&kvm_userspace_mem, argp,
2960 						sizeof(kvm_userspace_mem)))
2961 			goto out;
2962 
2963 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2964 		break;
2965 	}
2966 	case KVM_GET_DIRTY_LOG: {
2967 		struct kvm_dirty_log log;
2968 
2969 		r = -EFAULT;
2970 		if (copy_from_user(&log, argp, sizeof(log)))
2971 			goto out;
2972 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2973 		break;
2974 	}
2975 #ifdef CONFIG_KVM_MMIO
2976 	case KVM_REGISTER_COALESCED_MMIO: {
2977 		struct kvm_coalesced_mmio_zone zone;
2978 
2979 		r = -EFAULT;
2980 		if (copy_from_user(&zone, argp, sizeof(zone)))
2981 			goto out;
2982 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2983 		break;
2984 	}
2985 	case KVM_UNREGISTER_COALESCED_MMIO: {
2986 		struct kvm_coalesced_mmio_zone zone;
2987 
2988 		r = -EFAULT;
2989 		if (copy_from_user(&zone, argp, sizeof(zone)))
2990 			goto out;
2991 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2992 		break;
2993 	}
2994 #endif
2995 	case KVM_IRQFD: {
2996 		struct kvm_irqfd data;
2997 
2998 		r = -EFAULT;
2999 		if (copy_from_user(&data, argp, sizeof(data)))
3000 			goto out;
3001 		r = kvm_irqfd(kvm, &data);
3002 		break;
3003 	}
3004 	case KVM_IOEVENTFD: {
3005 		struct kvm_ioeventfd data;
3006 
3007 		r = -EFAULT;
3008 		if (copy_from_user(&data, argp, sizeof(data)))
3009 			goto out;
3010 		r = kvm_ioeventfd(kvm, &data);
3011 		break;
3012 	}
3013 #ifdef CONFIG_HAVE_KVM_MSI
3014 	case KVM_SIGNAL_MSI: {
3015 		struct kvm_msi msi;
3016 
3017 		r = -EFAULT;
3018 		if (copy_from_user(&msi, argp, sizeof(msi)))
3019 			goto out;
3020 		r = kvm_send_userspace_msi(kvm, &msi);
3021 		break;
3022 	}
3023 #endif
3024 #ifdef __KVM_HAVE_IRQ_LINE
3025 	case KVM_IRQ_LINE_STATUS:
3026 	case KVM_IRQ_LINE: {
3027 		struct kvm_irq_level irq_event;
3028 
3029 		r = -EFAULT;
3030 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3031 			goto out;
3032 
3033 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3034 					ioctl == KVM_IRQ_LINE_STATUS);
3035 		if (r)
3036 			goto out;
3037 
3038 		r = -EFAULT;
3039 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3040 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3041 				goto out;
3042 		}
3043 
3044 		r = 0;
3045 		break;
3046 	}
3047 #endif
3048 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3049 	case KVM_SET_GSI_ROUTING: {
3050 		struct kvm_irq_routing routing;
3051 		struct kvm_irq_routing __user *urouting;
3052 		struct kvm_irq_routing_entry *entries = NULL;
3053 
3054 		r = -EFAULT;
3055 		if (copy_from_user(&routing, argp, sizeof(routing)))
3056 			goto out;
3057 		r = -EINVAL;
3058 		if (!kvm_arch_can_set_irq_routing(kvm))
3059 			goto out;
3060 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3061 			goto out;
3062 		if (routing.flags)
3063 			goto out;
3064 		if (routing.nr) {
3065 			r = -ENOMEM;
3066 			entries = vmalloc(routing.nr * sizeof(*entries));
3067 			if (!entries)
3068 				goto out;
3069 			r = -EFAULT;
3070 			urouting = argp;
3071 			if (copy_from_user(entries, urouting->entries,
3072 					   routing.nr * sizeof(*entries)))
3073 				goto out_free_irq_routing;
3074 		}
3075 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3076 					routing.flags);
3077 out_free_irq_routing:
3078 		vfree(entries);
3079 		break;
3080 	}
3081 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3082 	case KVM_CREATE_DEVICE: {
3083 		struct kvm_create_device cd;
3084 
3085 		r = -EFAULT;
3086 		if (copy_from_user(&cd, argp, sizeof(cd)))
3087 			goto out;
3088 
3089 		r = kvm_ioctl_create_device(kvm, &cd);
3090 		if (r)
3091 			goto out;
3092 
3093 		r = -EFAULT;
3094 		if (copy_to_user(argp, &cd, sizeof(cd)))
3095 			goto out;
3096 
3097 		r = 0;
3098 		break;
3099 	}
3100 	case KVM_CHECK_EXTENSION:
3101 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3102 		break;
3103 	default:
3104 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3105 	}
3106 out:
3107 	return r;
3108 }
3109 
3110 #ifdef CONFIG_KVM_COMPAT
3111 struct compat_kvm_dirty_log {
3112 	__u32 slot;
3113 	__u32 padding1;
3114 	union {
3115 		compat_uptr_t dirty_bitmap; /* one bit per page */
3116 		__u64 padding2;
3117 	};
3118 };
3119 
3120 static long kvm_vm_compat_ioctl(struct file *filp,
3121 			   unsigned int ioctl, unsigned long arg)
3122 {
3123 	struct kvm *kvm = filp->private_data;
3124 	int r;
3125 
3126 	if (kvm->mm != current->mm)
3127 		return -EIO;
3128 	switch (ioctl) {
3129 	case KVM_GET_DIRTY_LOG: {
3130 		struct compat_kvm_dirty_log compat_log;
3131 		struct kvm_dirty_log log;
3132 
3133 		if (copy_from_user(&compat_log, (void __user *)arg,
3134 				   sizeof(compat_log)))
3135 			return -EFAULT;
3136 		log.slot	 = compat_log.slot;
3137 		log.padding1	 = compat_log.padding1;
3138 		log.padding2	 = compat_log.padding2;
3139 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3140 
3141 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3142 		break;
3143 	}
3144 	default:
3145 		r = kvm_vm_ioctl(filp, ioctl, arg);
3146 	}
3147 	return r;
3148 }
3149 #endif
3150 
3151 static struct file_operations kvm_vm_fops = {
3152 	.release        = kvm_vm_release,
3153 	.unlocked_ioctl = kvm_vm_ioctl,
3154 #ifdef CONFIG_KVM_COMPAT
3155 	.compat_ioctl   = kvm_vm_compat_ioctl,
3156 #endif
3157 	.llseek		= noop_llseek,
3158 };
3159 
3160 static int kvm_dev_ioctl_create_vm(unsigned long type)
3161 {
3162 	int r;
3163 	struct kvm *kvm;
3164 	struct file *file;
3165 
3166 	kvm = kvm_create_vm(type);
3167 	if (IS_ERR(kvm))
3168 		return PTR_ERR(kvm);
3169 #ifdef CONFIG_KVM_MMIO
3170 	r = kvm_coalesced_mmio_init(kvm);
3171 	if (r < 0) {
3172 		kvm_put_kvm(kvm);
3173 		return r;
3174 	}
3175 #endif
3176 	r = get_unused_fd_flags(O_CLOEXEC);
3177 	if (r < 0) {
3178 		kvm_put_kvm(kvm);
3179 		return r;
3180 	}
3181 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3182 	if (IS_ERR(file)) {
3183 		put_unused_fd(r);
3184 		kvm_put_kvm(kvm);
3185 		return PTR_ERR(file);
3186 	}
3187 
3188 	/*
3189 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3190 	 * already set, with ->release() being kvm_vm_release().  In error
3191 	 * cases it will be called by the final fput(file) and will take
3192 	 * care of doing kvm_put_kvm(kvm).
3193 	 */
3194 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195 		put_unused_fd(r);
3196 		fput(file);
3197 		return -ENOMEM;
3198 	}
3199 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3200 
3201 	fd_install(r, file);
3202 	return r;
3203 }
3204 
3205 static long kvm_dev_ioctl(struct file *filp,
3206 			  unsigned int ioctl, unsigned long arg)
3207 {
3208 	long r = -EINVAL;
3209 
3210 	switch (ioctl) {
3211 	case KVM_GET_API_VERSION:
3212 		if (arg)
3213 			goto out;
3214 		r = KVM_API_VERSION;
3215 		break;
3216 	case KVM_CREATE_VM:
3217 		r = kvm_dev_ioctl_create_vm(arg);
3218 		break;
3219 	case KVM_CHECK_EXTENSION:
3220 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3221 		break;
3222 	case KVM_GET_VCPU_MMAP_SIZE:
3223 		if (arg)
3224 			goto out;
3225 		r = PAGE_SIZE;     /* struct kvm_run */
3226 #ifdef CONFIG_X86
3227 		r += PAGE_SIZE;    /* pio data page */
3228 #endif
3229 #ifdef CONFIG_KVM_MMIO
3230 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3231 #endif
3232 		break;
3233 	case KVM_TRACE_ENABLE:
3234 	case KVM_TRACE_PAUSE:
3235 	case KVM_TRACE_DISABLE:
3236 		r = -EOPNOTSUPP;
3237 		break;
3238 	default:
3239 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240 	}
3241 out:
3242 	return r;
3243 }
3244 
3245 static struct file_operations kvm_chardev_ops = {
3246 	.unlocked_ioctl = kvm_dev_ioctl,
3247 	.compat_ioctl   = kvm_dev_ioctl,
3248 	.llseek		= noop_llseek,
3249 };
3250 
3251 static struct miscdevice kvm_dev = {
3252 	KVM_MINOR,
3253 	"kvm",
3254 	&kvm_chardev_ops,
3255 };
3256 
3257 static void hardware_enable_nolock(void *junk)
3258 {
3259 	int cpu = raw_smp_processor_id();
3260 	int r;
3261 
3262 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3263 		return;
3264 
3265 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266 
3267 	r = kvm_arch_hardware_enable();
3268 
3269 	if (r) {
3270 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3271 		atomic_inc(&hardware_enable_failed);
3272 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273 	}
3274 }
3275 
3276 static int kvm_starting_cpu(unsigned int cpu)
3277 {
3278 	raw_spin_lock(&kvm_count_lock);
3279 	if (kvm_usage_count)
3280 		hardware_enable_nolock(NULL);
3281 	raw_spin_unlock(&kvm_count_lock);
3282 	return 0;
3283 }
3284 
3285 static void hardware_disable_nolock(void *junk)
3286 {
3287 	int cpu = raw_smp_processor_id();
3288 
3289 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290 		return;
3291 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3292 	kvm_arch_hardware_disable();
3293 }
3294 
3295 static int kvm_dying_cpu(unsigned int cpu)
3296 {
3297 	raw_spin_lock(&kvm_count_lock);
3298 	if (kvm_usage_count)
3299 		hardware_disable_nolock(NULL);
3300 	raw_spin_unlock(&kvm_count_lock);
3301 	return 0;
3302 }
3303 
3304 static void hardware_disable_all_nolock(void)
3305 {
3306 	BUG_ON(!kvm_usage_count);
3307 
3308 	kvm_usage_count--;
3309 	if (!kvm_usage_count)
3310 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 }
3312 
3313 static void hardware_disable_all(void)
3314 {
3315 	raw_spin_lock(&kvm_count_lock);
3316 	hardware_disable_all_nolock();
3317 	raw_spin_unlock(&kvm_count_lock);
3318 }
3319 
3320 static int hardware_enable_all(void)
3321 {
3322 	int r = 0;
3323 
3324 	raw_spin_lock(&kvm_count_lock);
3325 
3326 	kvm_usage_count++;
3327 	if (kvm_usage_count == 1) {
3328 		atomic_set(&hardware_enable_failed, 0);
3329 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3330 
3331 		if (atomic_read(&hardware_enable_failed)) {
3332 			hardware_disable_all_nolock();
3333 			r = -EBUSY;
3334 		}
3335 	}
3336 
3337 	raw_spin_unlock(&kvm_count_lock);
3338 
3339 	return r;
3340 }
3341 
3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3343 		      void *v)
3344 {
3345 	/*
3346 	 * Some (well, at least mine) BIOSes hang on reboot if
3347 	 * in vmx root mode.
3348 	 *
3349 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3350 	 */
3351 	pr_info("kvm: exiting hardware virtualization\n");
3352 	kvm_rebooting = true;
3353 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3354 	return NOTIFY_OK;
3355 }
3356 
3357 static struct notifier_block kvm_reboot_notifier = {
3358 	.notifier_call = kvm_reboot,
3359 	.priority = 0,
3360 };
3361 
3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 {
3364 	int i;
3365 
3366 	for (i = 0; i < bus->dev_count; i++) {
3367 		struct kvm_io_device *pos = bus->range[i].dev;
3368 
3369 		kvm_iodevice_destructor(pos);
3370 	}
3371 	kfree(bus);
3372 }
3373 
3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3375 				 const struct kvm_io_range *r2)
3376 {
3377 	gpa_t addr1 = r1->addr;
3378 	gpa_t addr2 = r2->addr;
3379 
3380 	if (addr1 < addr2)
3381 		return -1;
3382 
3383 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3384 	 * accept any overlapping write.  Any order is acceptable for
3385 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3386 	 * we process all of them.
3387 	 */
3388 	if (r2->len) {
3389 		addr1 += r1->len;
3390 		addr2 += r2->len;
3391 	}
3392 
3393 	if (addr1 > addr2)
3394 		return 1;
3395 
3396 	return 0;
3397 }
3398 
3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 {
3401 	return kvm_io_bus_cmp(p1, p2);
3402 }
3403 
3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3405 			  gpa_t addr, int len)
3406 {
3407 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3408 		.addr = addr,
3409 		.len = len,
3410 		.dev = dev,
3411 	};
3412 
3413 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3414 		kvm_io_bus_sort_cmp, NULL);
3415 
3416 	return 0;
3417 }
3418 
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420 			     gpa_t addr, int len)
3421 {
3422 	struct kvm_io_range *range, key;
3423 	int off;
3424 
3425 	key = (struct kvm_io_range) {
3426 		.addr = addr,
3427 		.len = len,
3428 	};
3429 
3430 	range = bsearch(&key, bus->range, bus->dev_count,
3431 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432 	if (range == NULL)
3433 		return -ENOENT;
3434 
3435 	off = range - bus->range;
3436 
3437 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438 		off--;
3439 
3440 	return off;
3441 }
3442 
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444 			      struct kvm_io_range *range, const void *val)
3445 {
3446 	int idx;
3447 
3448 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449 	if (idx < 0)
3450 		return -EOPNOTSUPP;
3451 
3452 	while (idx < bus->dev_count &&
3453 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455 					range->len, val))
3456 			return idx;
3457 		idx++;
3458 	}
3459 
3460 	return -EOPNOTSUPP;
3461 }
3462 
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465 		     int len, const void *val)
3466 {
3467 	struct kvm_io_bus *bus;
3468 	struct kvm_io_range range;
3469 	int r;
3470 
3471 	range = (struct kvm_io_range) {
3472 		.addr = addr,
3473 		.len = len,
3474 	};
3475 
3476 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477 	if (!bus)
3478 		return -ENOMEM;
3479 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3480 	return r < 0 ? r : 0;
3481 }
3482 
3483 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3484 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3485 			    gpa_t addr, int len, const void *val, long cookie)
3486 {
3487 	struct kvm_io_bus *bus;
3488 	struct kvm_io_range range;
3489 
3490 	range = (struct kvm_io_range) {
3491 		.addr = addr,
3492 		.len = len,
3493 	};
3494 
3495 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496 	if (!bus)
3497 		return -ENOMEM;
3498 
3499 	/* First try the device referenced by cookie. */
3500 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3501 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3502 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3503 					val))
3504 			return cookie;
3505 
3506 	/*
3507 	 * cookie contained garbage; fall back to search and return the
3508 	 * correct cookie value.
3509 	 */
3510 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3511 }
3512 
3513 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3514 			     struct kvm_io_range *range, void *val)
3515 {
3516 	int idx;
3517 
3518 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3519 	if (idx < 0)
3520 		return -EOPNOTSUPP;
3521 
3522 	while (idx < bus->dev_count &&
3523 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3524 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3525 				       range->len, val))
3526 			return idx;
3527 		idx++;
3528 	}
3529 
3530 	return -EOPNOTSUPP;
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3533 
3534 /* kvm_io_bus_read - called under kvm->slots_lock */
3535 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3536 		    int len, void *val)
3537 {
3538 	struct kvm_io_bus *bus;
3539 	struct kvm_io_range range;
3540 	int r;
3541 
3542 	range = (struct kvm_io_range) {
3543 		.addr = addr,
3544 		.len = len,
3545 	};
3546 
3547 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3548 	if (!bus)
3549 		return -ENOMEM;
3550 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3551 	return r < 0 ? r : 0;
3552 }
3553 
3554 
3555 /* Caller must hold slots_lock. */
3556 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3557 			    int len, struct kvm_io_device *dev)
3558 {
3559 	struct kvm_io_bus *new_bus, *bus;
3560 
3561 	bus = kvm_get_bus(kvm, bus_idx);
3562 	if (!bus)
3563 		return -ENOMEM;
3564 
3565 	/* exclude ioeventfd which is limited by maximum fd */
3566 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3567 		return -ENOSPC;
3568 
3569 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3570 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3571 	if (!new_bus)
3572 		return -ENOMEM;
3573 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3574 	       sizeof(struct kvm_io_range)));
3575 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3576 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3577 	synchronize_srcu_expedited(&kvm->srcu);
3578 	kfree(bus);
3579 
3580 	return 0;
3581 }
3582 
3583 /* Caller must hold slots_lock. */
3584 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3585 			       struct kvm_io_device *dev)
3586 {
3587 	int i;
3588 	struct kvm_io_bus *new_bus, *bus;
3589 
3590 	bus = kvm_get_bus(kvm, bus_idx);
3591 	if (!bus)
3592 		return;
3593 
3594 	for (i = 0; i < bus->dev_count; i++)
3595 		if (bus->range[i].dev == dev) {
3596 			break;
3597 		}
3598 
3599 	if (i == bus->dev_count)
3600 		return;
3601 
3602 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3603 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3604 	if (!new_bus)  {
3605 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3606 		goto broken;
3607 	}
3608 
3609 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3610 	new_bus->dev_count--;
3611 	memcpy(new_bus->range + i, bus->range + i + 1,
3612 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3613 
3614 broken:
3615 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3616 	synchronize_srcu_expedited(&kvm->srcu);
3617 	kfree(bus);
3618 	return;
3619 }
3620 
3621 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3622 					 gpa_t addr)
3623 {
3624 	struct kvm_io_bus *bus;
3625 	int dev_idx, srcu_idx;
3626 	struct kvm_io_device *iodev = NULL;
3627 
3628 	srcu_idx = srcu_read_lock(&kvm->srcu);
3629 
3630 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3631 	if (!bus)
3632 		goto out_unlock;
3633 
3634 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3635 	if (dev_idx < 0)
3636 		goto out_unlock;
3637 
3638 	iodev = bus->range[dev_idx].dev;
3639 
3640 out_unlock:
3641 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3642 
3643 	return iodev;
3644 }
3645 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3646 
3647 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3648 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3649 			   const char *fmt)
3650 {
3651 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3652 					  inode->i_private;
3653 
3654 	/* The debugfs files are a reference to the kvm struct which
3655 	 * is still valid when kvm_destroy_vm is called.
3656 	 * To avoid the race between open and the removal of the debugfs
3657 	 * directory we test against the users count.
3658 	 */
3659 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3660 		return -ENOENT;
3661 
3662 	if (simple_attr_open(inode, file, get, set, fmt)) {
3663 		kvm_put_kvm(stat_data->kvm);
3664 		return -ENOMEM;
3665 	}
3666 
3667 	return 0;
3668 }
3669 
3670 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3671 {
3672 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3673 					  inode->i_private;
3674 
3675 	simple_attr_release(inode, file);
3676 	kvm_put_kvm(stat_data->kvm);
3677 
3678 	return 0;
3679 }
3680 
3681 static int vm_stat_get_per_vm(void *data, u64 *val)
3682 {
3683 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3684 
3685 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3686 
3687 	return 0;
3688 }
3689 
3690 static int vm_stat_clear_per_vm(void *data, u64 val)
3691 {
3692 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3693 
3694 	if (val)
3695 		return -EINVAL;
3696 
3697 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3698 
3699 	return 0;
3700 }
3701 
3702 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3703 {
3704 	__simple_attr_check_format("%llu\n", 0ull);
3705 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3706 				vm_stat_clear_per_vm, "%llu\n");
3707 }
3708 
3709 static const struct file_operations vm_stat_get_per_vm_fops = {
3710 	.owner   = THIS_MODULE,
3711 	.open    = vm_stat_get_per_vm_open,
3712 	.release = kvm_debugfs_release,
3713 	.read    = simple_attr_read,
3714 	.write   = simple_attr_write,
3715 	.llseek  = no_llseek,
3716 };
3717 
3718 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3719 {
3720 	int i;
3721 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3722 	struct kvm_vcpu *vcpu;
3723 
3724 	*val = 0;
3725 
3726 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3727 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3728 
3729 	return 0;
3730 }
3731 
3732 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3733 {
3734 	int i;
3735 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3736 	struct kvm_vcpu *vcpu;
3737 
3738 	if (val)
3739 		return -EINVAL;
3740 
3741 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3742 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3743 
3744 	return 0;
3745 }
3746 
3747 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3748 {
3749 	__simple_attr_check_format("%llu\n", 0ull);
3750 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3751 				 vcpu_stat_clear_per_vm, "%llu\n");
3752 }
3753 
3754 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3755 	.owner   = THIS_MODULE,
3756 	.open    = vcpu_stat_get_per_vm_open,
3757 	.release = kvm_debugfs_release,
3758 	.read    = simple_attr_read,
3759 	.write   = simple_attr_write,
3760 	.llseek  = no_llseek,
3761 };
3762 
3763 static const struct file_operations *stat_fops_per_vm[] = {
3764 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3765 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3766 };
3767 
3768 static int vm_stat_get(void *_offset, u64 *val)
3769 {
3770 	unsigned offset = (long)_offset;
3771 	struct kvm *kvm;
3772 	struct kvm_stat_data stat_tmp = {.offset = offset};
3773 	u64 tmp_val;
3774 
3775 	*val = 0;
3776 	spin_lock(&kvm_lock);
3777 	list_for_each_entry(kvm, &vm_list, vm_list) {
3778 		stat_tmp.kvm = kvm;
3779 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3780 		*val += tmp_val;
3781 	}
3782 	spin_unlock(&kvm_lock);
3783 	return 0;
3784 }
3785 
3786 static int vm_stat_clear(void *_offset, u64 val)
3787 {
3788 	unsigned offset = (long)_offset;
3789 	struct kvm *kvm;
3790 	struct kvm_stat_data stat_tmp = {.offset = offset};
3791 
3792 	if (val)
3793 		return -EINVAL;
3794 
3795 	spin_lock(&kvm_lock);
3796 	list_for_each_entry(kvm, &vm_list, vm_list) {
3797 		stat_tmp.kvm = kvm;
3798 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3799 	}
3800 	spin_unlock(&kvm_lock);
3801 
3802 	return 0;
3803 }
3804 
3805 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3806 
3807 static int vcpu_stat_get(void *_offset, u64 *val)
3808 {
3809 	unsigned offset = (long)_offset;
3810 	struct kvm *kvm;
3811 	struct kvm_stat_data stat_tmp = {.offset = offset};
3812 	u64 tmp_val;
3813 
3814 	*val = 0;
3815 	spin_lock(&kvm_lock);
3816 	list_for_each_entry(kvm, &vm_list, vm_list) {
3817 		stat_tmp.kvm = kvm;
3818 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3819 		*val += tmp_val;
3820 	}
3821 	spin_unlock(&kvm_lock);
3822 	return 0;
3823 }
3824 
3825 static int vcpu_stat_clear(void *_offset, u64 val)
3826 {
3827 	unsigned offset = (long)_offset;
3828 	struct kvm *kvm;
3829 	struct kvm_stat_data stat_tmp = {.offset = offset};
3830 
3831 	if (val)
3832 		return -EINVAL;
3833 
3834 	spin_lock(&kvm_lock);
3835 	list_for_each_entry(kvm, &vm_list, vm_list) {
3836 		stat_tmp.kvm = kvm;
3837 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3838 	}
3839 	spin_unlock(&kvm_lock);
3840 
3841 	return 0;
3842 }
3843 
3844 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3845 			"%llu\n");
3846 
3847 static const struct file_operations *stat_fops[] = {
3848 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3849 	[KVM_STAT_VM]   = &vm_stat_fops,
3850 };
3851 
3852 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3853 {
3854 	struct kobj_uevent_env *env;
3855 	unsigned long long created, active;
3856 
3857 	if (!kvm_dev.this_device || !kvm)
3858 		return;
3859 
3860 	spin_lock(&kvm_lock);
3861 	if (type == KVM_EVENT_CREATE_VM) {
3862 		kvm_createvm_count++;
3863 		kvm_active_vms++;
3864 	} else if (type == KVM_EVENT_DESTROY_VM) {
3865 		kvm_active_vms--;
3866 	}
3867 	created = kvm_createvm_count;
3868 	active = kvm_active_vms;
3869 	spin_unlock(&kvm_lock);
3870 
3871 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3872 	if (!env)
3873 		return;
3874 
3875 	add_uevent_var(env, "CREATED=%llu", created);
3876 	add_uevent_var(env, "COUNT=%llu", active);
3877 
3878 	if (type == KVM_EVENT_CREATE_VM) {
3879 		add_uevent_var(env, "EVENT=create");
3880 		kvm->userspace_pid = task_pid_nr(current);
3881 	} else if (type == KVM_EVENT_DESTROY_VM) {
3882 		add_uevent_var(env, "EVENT=destroy");
3883 	}
3884 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3885 
3886 	if (kvm->debugfs_dentry) {
3887 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3888 
3889 		if (p) {
3890 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3891 			if (!IS_ERR(tmp))
3892 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3893 			kfree(p);
3894 		}
3895 	}
3896 	/* no need for checks, since we are adding at most only 5 keys */
3897 	env->envp[env->envp_idx++] = NULL;
3898 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3899 	kfree(env);
3900 }
3901 
3902 static int kvm_init_debug(void)
3903 {
3904 	int r = -EEXIST;
3905 	struct kvm_stats_debugfs_item *p;
3906 
3907 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3908 	if (kvm_debugfs_dir == NULL)
3909 		goto out;
3910 
3911 	kvm_debugfs_num_entries = 0;
3912 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3913 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3914 					 (void *)(long)p->offset,
3915 					 stat_fops[p->kind]))
3916 			goto out_dir;
3917 	}
3918 
3919 	return 0;
3920 
3921 out_dir:
3922 	debugfs_remove_recursive(kvm_debugfs_dir);
3923 out:
3924 	return r;
3925 }
3926 
3927 static int kvm_suspend(void)
3928 {
3929 	if (kvm_usage_count)
3930 		hardware_disable_nolock(NULL);
3931 	return 0;
3932 }
3933 
3934 static void kvm_resume(void)
3935 {
3936 	if (kvm_usage_count) {
3937 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3938 		hardware_enable_nolock(NULL);
3939 	}
3940 }
3941 
3942 static struct syscore_ops kvm_syscore_ops = {
3943 	.suspend = kvm_suspend,
3944 	.resume = kvm_resume,
3945 };
3946 
3947 static inline
3948 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3949 {
3950 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3951 }
3952 
3953 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3954 {
3955 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3956 
3957 	if (vcpu->preempted)
3958 		vcpu->preempted = false;
3959 
3960 	kvm_arch_sched_in(vcpu, cpu);
3961 
3962 	kvm_arch_vcpu_load(vcpu, cpu);
3963 }
3964 
3965 static void kvm_sched_out(struct preempt_notifier *pn,
3966 			  struct task_struct *next)
3967 {
3968 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3969 
3970 	if (current->state == TASK_RUNNING)
3971 		vcpu->preempted = true;
3972 	kvm_arch_vcpu_put(vcpu);
3973 }
3974 
3975 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3976 		  struct module *module)
3977 {
3978 	int r;
3979 	int cpu;
3980 
3981 	r = kvm_arch_init(opaque);
3982 	if (r)
3983 		goto out_fail;
3984 
3985 	/*
3986 	 * kvm_arch_init makes sure there's at most one caller
3987 	 * for architectures that support multiple implementations,
3988 	 * like intel and amd on x86.
3989 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3990 	 * conflicts in case kvm is already setup for another implementation.
3991 	 */
3992 	r = kvm_irqfd_init();
3993 	if (r)
3994 		goto out_irqfd;
3995 
3996 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3997 		r = -ENOMEM;
3998 		goto out_free_0;
3999 	}
4000 
4001 	r = kvm_arch_hardware_setup();
4002 	if (r < 0)
4003 		goto out_free_0a;
4004 
4005 	for_each_online_cpu(cpu) {
4006 		smp_call_function_single(cpu,
4007 				kvm_arch_check_processor_compat,
4008 				&r, 1);
4009 		if (r < 0)
4010 			goto out_free_1;
4011 	}
4012 
4013 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4014 				      kvm_starting_cpu, kvm_dying_cpu);
4015 	if (r)
4016 		goto out_free_2;
4017 	register_reboot_notifier(&kvm_reboot_notifier);
4018 
4019 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4020 	if (!vcpu_align)
4021 		vcpu_align = __alignof__(struct kvm_vcpu);
4022 	kvm_vcpu_cache =
4023 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4024 					   SLAB_ACCOUNT,
4025 					   offsetof(struct kvm_vcpu, arch),
4026 					   sizeof_field(struct kvm_vcpu, arch),
4027 					   NULL);
4028 	if (!kvm_vcpu_cache) {
4029 		r = -ENOMEM;
4030 		goto out_free_3;
4031 	}
4032 
4033 	r = kvm_async_pf_init();
4034 	if (r)
4035 		goto out_free;
4036 
4037 	kvm_chardev_ops.owner = module;
4038 	kvm_vm_fops.owner = module;
4039 	kvm_vcpu_fops.owner = module;
4040 
4041 	r = misc_register(&kvm_dev);
4042 	if (r) {
4043 		pr_err("kvm: misc device register failed\n");
4044 		goto out_unreg;
4045 	}
4046 
4047 	register_syscore_ops(&kvm_syscore_ops);
4048 
4049 	kvm_preempt_ops.sched_in = kvm_sched_in;
4050 	kvm_preempt_ops.sched_out = kvm_sched_out;
4051 
4052 	r = kvm_init_debug();
4053 	if (r) {
4054 		pr_err("kvm: create debugfs files failed\n");
4055 		goto out_undebugfs;
4056 	}
4057 
4058 	r = kvm_vfio_ops_init();
4059 	WARN_ON(r);
4060 
4061 	return 0;
4062 
4063 out_undebugfs:
4064 	unregister_syscore_ops(&kvm_syscore_ops);
4065 	misc_deregister(&kvm_dev);
4066 out_unreg:
4067 	kvm_async_pf_deinit();
4068 out_free:
4069 	kmem_cache_destroy(kvm_vcpu_cache);
4070 out_free_3:
4071 	unregister_reboot_notifier(&kvm_reboot_notifier);
4072 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4073 out_free_2:
4074 out_free_1:
4075 	kvm_arch_hardware_unsetup();
4076 out_free_0a:
4077 	free_cpumask_var(cpus_hardware_enabled);
4078 out_free_0:
4079 	kvm_irqfd_exit();
4080 out_irqfd:
4081 	kvm_arch_exit();
4082 out_fail:
4083 	return r;
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_init);
4086 
4087 void kvm_exit(void)
4088 {
4089 	debugfs_remove_recursive(kvm_debugfs_dir);
4090 	misc_deregister(&kvm_dev);
4091 	kmem_cache_destroy(kvm_vcpu_cache);
4092 	kvm_async_pf_deinit();
4093 	unregister_syscore_ops(&kvm_syscore_ops);
4094 	unregister_reboot_notifier(&kvm_reboot_notifier);
4095 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4096 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4097 	kvm_arch_hardware_unsetup();
4098 	kvm_arch_exit();
4099 	kvm_irqfd_exit();
4100 	free_cpumask_var(cpus_hardware_enabled);
4101 	kvm_vfio_ops_exit();
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_exit);
4104