1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 126 127 __visible bool kvm_rebooting; 128 EXPORT_SYMBOL_GPL(kvm_rebooting); 129 130 static bool largepages_enabled = true; 131 132 #define KVM_EVENT_CREATE_VM 0 133 #define KVM_EVENT_DESTROY_VM 1 134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 135 static unsigned long long kvm_createvm_count; 136 static unsigned long long kvm_active_vms; 137 138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 139 unsigned long start, unsigned long end) 140 { 141 } 142 143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 144 { 145 if (pfn_valid(pfn)) 146 return PageReserved(pfn_to_page(pfn)); 147 148 return true; 149 } 150 151 /* 152 * Switches to specified vcpu, until a matching vcpu_put() 153 */ 154 int vcpu_load(struct kvm_vcpu *vcpu) 155 { 156 int cpu; 157 158 if (mutex_lock_killable(&vcpu->mutex)) 159 return -EINTR; 160 cpu = get_cpu(); 161 preempt_notifier_register(&vcpu->preempt_notifier); 162 kvm_arch_vcpu_load(vcpu, cpu); 163 put_cpu(); 164 return 0; 165 } 166 EXPORT_SYMBOL_GPL(vcpu_load); 167 168 void vcpu_put(struct kvm_vcpu *vcpu) 169 { 170 preempt_disable(); 171 kvm_arch_vcpu_put(vcpu); 172 preempt_notifier_unregister(&vcpu->preempt_notifier); 173 preempt_enable(); 174 mutex_unlock(&vcpu->mutex); 175 } 176 EXPORT_SYMBOL_GPL(vcpu_put); 177 178 /* TODO: merge with kvm_arch_vcpu_should_kick */ 179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 180 { 181 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 182 183 /* 184 * We need to wait for the VCPU to reenable interrupts and get out of 185 * READING_SHADOW_PAGE_TABLES mode. 186 */ 187 if (req & KVM_REQUEST_WAIT) 188 return mode != OUTSIDE_GUEST_MODE; 189 190 /* 191 * Need to kick a running VCPU, but otherwise there is nothing to do. 192 */ 193 return mode == IN_GUEST_MODE; 194 } 195 196 static void ack_flush(void *_completed) 197 { 198 } 199 200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 201 { 202 if (unlikely(!cpus)) 203 cpus = cpu_online_mask; 204 205 if (cpumask_empty(cpus)) 206 return false; 207 208 smp_call_function_many(cpus, ack_flush, NULL, wait); 209 return true; 210 } 211 212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 213 { 214 int i, cpu, me; 215 cpumask_var_t cpus; 216 bool called; 217 struct kvm_vcpu *vcpu; 218 219 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 220 221 me = get_cpu(); 222 kvm_for_each_vcpu(i, vcpu, kvm) { 223 kvm_make_request(req, vcpu); 224 cpu = vcpu->cpu; 225 226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 227 continue; 228 229 if (cpus != NULL && cpu != -1 && cpu != me && 230 kvm_request_needs_ipi(vcpu, req)) 231 __cpumask_set_cpu(cpu, cpus); 232 } 233 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 234 put_cpu(); 235 free_cpumask_var(cpus); 236 return called; 237 } 238 239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 240 void kvm_flush_remote_tlbs(struct kvm *kvm) 241 { 242 /* 243 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 244 * kvm_make_all_cpus_request. 245 */ 246 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 247 248 /* 249 * We want to publish modifications to the page tables before reading 250 * mode. Pairs with a memory barrier in arch-specific code. 251 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 252 * and smp_mb in walk_shadow_page_lockless_begin/end. 253 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 254 * 255 * There is already an smp_mb__after_atomic() before 256 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 257 * barrier here. 258 */ 259 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 260 ++kvm->stat.remote_tlb_flush; 261 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 262 } 263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 264 #endif 265 266 void kvm_reload_remote_mmus(struct kvm *kvm) 267 { 268 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 269 } 270 271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 272 { 273 struct page *page; 274 int r; 275 276 mutex_init(&vcpu->mutex); 277 vcpu->cpu = -1; 278 vcpu->kvm = kvm; 279 vcpu->vcpu_id = id; 280 vcpu->pid = NULL; 281 init_swait_queue_head(&vcpu->wq); 282 kvm_async_pf_vcpu_init(vcpu); 283 284 vcpu->pre_pcpu = -1; 285 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 286 287 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 288 if (!page) { 289 r = -ENOMEM; 290 goto fail; 291 } 292 vcpu->run = page_address(page); 293 294 kvm_vcpu_set_in_spin_loop(vcpu, false); 295 kvm_vcpu_set_dy_eligible(vcpu, false); 296 vcpu->preempted = false; 297 298 r = kvm_arch_vcpu_init(vcpu); 299 if (r < 0) 300 goto fail_free_run; 301 return 0; 302 303 fail_free_run: 304 free_page((unsigned long)vcpu->run); 305 fail: 306 return r; 307 } 308 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 309 310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 311 { 312 /* 313 * no need for rcu_read_lock as VCPU_RUN is the only place that 314 * will change the vcpu->pid pointer and on uninit all file 315 * descriptors are already gone. 316 */ 317 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 318 kvm_arch_vcpu_uninit(vcpu); 319 free_page((unsigned long)vcpu->run); 320 } 321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 322 323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 325 { 326 return container_of(mn, struct kvm, mmu_notifier); 327 } 328 329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 330 struct mm_struct *mm, 331 unsigned long address, 332 pte_t pte) 333 { 334 struct kvm *kvm = mmu_notifier_to_kvm(mn); 335 int idx; 336 337 idx = srcu_read_lock(&kvm->srcu); 338 spin_lock(&kvm->mmu_lock); 339 kvm->mmu_notifier_seq++; 340 kvm_set_spte_hva(kvm, address, pte); 341 spin_unlock(&kvm->mmu_lock); 342 srcu_read_unlock(&kvm->srcu, idx); 343 } 344 345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 346 struct mm_struct *mm, 347 unsigned long start, 348 unsigned long end) 349 { 350 struct kvm *kvm = mmu_notifier_to_kvm(mn); 351 int need_tlb_flush = 0, idx; 352 353 idx = srcu_read_lock(&kvm->srcu); 354 spin_lock(&kvm->mmu_lock); 355 /* 356 * The count increase must become visible at unlock time as no 357 * spte can be established without taking the mmu_lock and 358 * count is also read inside the mmu_lock critical section. 359 */ 360 kvm->mmu_notifier_count++; 361 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 362 need_tlb_flush |= kvm->tlbs_dirty; 363 /* we've to flush the tlb before the pages can be freed */ 364 if (need_tlb_flush) 365 kvm_flush_remote_tlbs(kvm); 366 367 spin_unlock(&kvm->mmu_lock); 368 369 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 370 371 srcu_read_unlock(&kvm->srcu, idx); 372 } 373 374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 375 struct mm_struct *mm, 376 unsigned long start, 377 unsigned long end) 378 { 379 struct kvm *kvm = mmu_notifier_to_kvm(mn); 380 381 spin_lock(&kvm->mmu_lock); 382 /* 383 * This sequence increase will notify the kvm page fault that 384 * the page that is going to be mapped in the spte could have 385 * been freed. 386 */ 387 kvm->mmu_notifier_seq++; 388 smp_wmb(); 389 /* 390 * The above sequence increase must be visible before the 391 * below count decrease, which is ensured by the smp_wmb above 392 * in conjunction with the smp_rmb in mmu_notifier_retry(). 393 */ 394 kvm->mmu_notifier_count--; 395 spin_unlock(&kvm->mmu_lock); 396 397 BUG_ON(kvm->mmu_notifier_count < 0); 398 } 399 400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 401 struct mm_struct *mm, 402 unsigned long start, 403 unsigned long end) 404 { 405 struct kvm *kvm = mmu_notifier_to_kvm(mn); 406 int young, idx; 407 408 idx = srcu_read_lock(&kvm->srcu); 409 spin_lock(&kvm->mmu_lock); 410 411 young = kvm_age_hva(kvm, start, end); 412 if (young) 413 kvm_flush_remote_tlbs(kvm); 414 415 spin_unlock(&kvm->mmu_lock); 416 srcu_read_unlock(&kvm->srcu, idx); 417 418 return young; 419 } 420 421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 422 struct mm_struct *mm, 423 unsigned long start, 424 unsigned long end) 425 { 426 struct kvm *kvm = mmu_notifier_to_kvm(mn); 427 int young, idx; 428 429 idx = srcu_read_lock(&kvm->srcu); 430 spin_lock(&kvm->mmu_lock); 431 /* 432 * Even though we do not flush TLB, this will still adversely 433 * affect performance on pre-Haswell Intel EPT, where there is 434 * no EPT Access Bit to clear so that we have to tear down EPT 435 * tables instead. If we find this unacceptable, we can always 436 * add a parameter to kvm_age_hva so that it effectively doesn't 437 * do anything on clear_young. 438 * 439 * Also note that currently we never issue secondary TLB flushes 440 * from clear_young, leaving this job up to the regular system 441 * cadence. If we find this inaccurate, we might come up with a 442 * more sophisticated heuristic later. 443 */ 444 young = kvm_age_hva(kvm, start, end); 445 spin_unlock(&kvm->mmu_lock); 446 srcu_read_unlock(&kvm->srcu, idx); 447 448 return young; 449 } 450 451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 452 struct mm_struct *mm, 453 unsigned long address) 454 { 455 struct kvm *kvm = mmu_notifier_to_kvm(mn); 456 int young, idx; 457 458 idx = srcu_read_lock(&kvm->srcu); 459 spin_lock(&kvm->mmu_lock); 460 young = kvm_test_age_hva(kvm, address); 461 spin_unlock(&kvm->mmu_lock); 462 srcu_read_unlock(&kvm->srcu, idx); 463 464 return young; 465 } 466 467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 468 struct mm_struct *mm) 469 { 470 struct kvm *kvm = mmu_notifier_to_kvm(mn); 471 int idx; 472 473 idx = srcu_read_lock(&kvm->srcu); 474 kvm_arch_flush_shadow_all(kvm); 475 srcu_read_unlock(&kvm->srcu, idx); 476 } 477 478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 479 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK, 480 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 481 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 482 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 483 .clear_young = kvm_mmu_notifier_clear_young, 484 .test_young = kvm_mmu_notifier_test_young, 485 .change_pte = kvm_mmu_notifier_change_pte, 486 .release = kvm_mmu_notifier_release, 487 }; 488 489 static int kvm_init_mmu_notifier(struct kvm *kvm) 490 { 491 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 492 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 493 } 494 495 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 496 497 static int kvm_init_mmu_notifier(struct kvm *kvm) 498 { 499 return 0; 500 } 501 502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 503 504 static struct kvm_memslots *kvm_alloc_memslots(void) 505 { 506 int i; 507 struct kvm_memslots *slots; 508 509 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 510 if (!slots) 511 return NULL; 512 513 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 514 slots->id_to_index[i] = slots->memslots[i].id = i; 515 516 return slots; 517 } 518 519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 520 { 521 if (!memslot->dirty_bitmap) 522 return; 523 524 kvfree(memslot->dirty_bitmap); 525 memslot->dirty_bitmap = NULL; 526 } 527 528 /* 529 * Free any memory in @free but not in @dont. 530 */ 531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 532 struct kvm_memory_slot *dont) 533 { 534 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 535 kvm_destroy_dirty_bitmap(free); 536 537 kvm_arch_free_memslot(kvm, free, dont); 538 539 free->npages = 0; 540 } 541 542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 543 { 544 struct kvm_memory_slot *memslot; 545 546 if (!slots) 547 return; 548 549 kvm_for_each_memslot(memslot, slots) 550 kvm_free_memslot(kvm, memslot, NULL); 551 552 kvfree(slots); 553 } 554 555 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 556 { 557 int i; 558 559 if (!kvm->debugfs_dentry) 560 return; 561 562 debugfs_remove_recursive(kvm->debugfs_dentry); 563 564 if (kvm->debugfs_stat_data) { 565 for (i = 0; i < kvm_debugfs_num_entries; i++) 566 kfree(kvm->debugfs_stat_data[i]); 567 kfree(kvm->debugfs_stat_data); 568 } 569 } 570 571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 572 { 573 char dir_name[ITOA_MAX_LEN * 2]; 574 struct kvm_stat_data *stat_data; 575 struct kvm_stats_debugfs_item *p; 576 577 if (!debugfs_initialized()) 578 return 0; 579 580 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 581 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 582 kvm_debugfs_dir); 583 if (!kvm->debugfs_dentry) 584 return -ENOMEM; 585 586 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 587 sizeof(*kvm->debugfs_stat_data), 588 GFP_KERNEL); 589 if (!kvm->debugfs_stat_data) 590 return -ENOMEM; 591 592 for (p = debugfs_entries; p->name; p++) { 593 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 594 if (!stat_data) 595 return -ENOMEM; 596 597 stat_data->kvm = kvm; 598 stat_data->offset = p->offset; 599 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 600 if (!debugfs_create_file(p->name, 0644, 601 kvm->debugfs_dentry, 602 stat_data, 603 stat_fops_per_vm[p->kind])) 604 return -ENOMEM; 605 } 606 return 0; 607 } 608 609 static struct kvm *kvm_create_vm(unsigned long type) 610 { 611 int r, i; 612 struct kvm *kvm = kvm_arch_alloc_vm(); 613 614 if (!kvm) 615 return ERR_PTR(-ENOMEM); 616 617 spin_lock_init(&kvm->mmu_lock); 618 mmgrab(current->mm); 619 kvm->mm = current->mm; 620 kvm_eventfd_init(kvm); 621 mutex_init(&kvm->lock); 622 mutex_init(&kvm->irq_lock); 623 mutex_init(&kvm->slots_lock); 624 refcount_set(&kvm->users_count, 1); 625 INIT_LIST_HEAD(&kvm->devices); 626 627 r = kvm_arch_init_vm(kvm, type); 628 if (r) 629 goto out_err_no_disable; 630 631 r = hardware_enable_all(); 632 if (r) 633 goto out_err_no_disable; 634 635 #ifdef CONFIG_HAVE_KVM_IRQFD 636 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 637 #endif 638 639 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 640 641 r = -ENOMEM; 642 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 643 struct kvm_memslots *slots = kvm_alloc_memslots(); 644 if (!slots) 645 goto out_err_no_srcu; 646 /* 647 * Generations must be different for each address space. 648 * Init kvm generation close to the maximum to easily test the 649 * code of handling generation number wrap-around. 650 */ 651 slots->generation = i * 2 - 150; 652 rcu_assign_pointer(kvm->memslots[i], slots); 653 } 654 655 if (init_srcu_struct(&kvm->srcu)) 656 goto out_err_no_srcu; 657 if (init_srcu_struct(&kvm->irq_srcu)) 658 goto out_err_no_irq_srcu; 659 for (i = 0; i < KVM_NR_BUSES; i++) { 660 rcu_assign_pointer(kvm->buses[i], 661 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 662 if (!kvm->buses[i]) 663 goto out_err; 664 } 665 666 r = kvm_init_mmu_notifier(kvm); 667 if (r) 668 goto out_err; 669 670 spin_lock(&kvm_lock); 671 list_add(&kvm->vm_list, &vm_list); 672 spin_unlock(&kvm_lock); 673 674 preempt_notifier_inc(); 675 676 return kvm; 677 678 out_err: 679 cleanup_srcu_struct(&kvm->irq_srcu); 680 out_err_no_irq_srcu: 681 cleanup_srcu_struct(&kvm->srcu); 682 out_err_no_srcu: 683 hardware_disable_all(); 684 out_err_no_disable: 685 refcount_set(&kvm->users_count, 0); 686 for (i = 0; i < KVM_NR_BUSES; i++) 687 kfree(kvm_get_bus(kvm, i)); 688 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 689 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 690 kvm_arch_free_vm(kvm); 691 mmdrop(current->mm); 692 return ERR_PTR(r); 693 } 694 695 static void kvm_destroy_devices(struct kvm *kvm) 696 { 697 struct kvm_device *dev, *tmp; 698 699 /* 700 * We do not need to take the kvm->lock here, because nobody else 701 * has a reference to the struct kvm at this point and therefore 702 * cannot access the devices list anyhow. 703 */ 704 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 705 list_del(&dev->vm_node); 706 dev->ops->destroy(dev); 707 } 708 } 709 710 static void kvm_destroy_vm(struct kvm *kvm) 711 { 712 int i; 713 struct mm_struct *mm = kvm->mm; 714 715 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 716 kvm_destroy_vm_debugfs(kvm); 717 kvm_arch_sync_events(kvm); 718 spin_lock(&kvm_lock); 719 list_del(&kvm->vm_list); 720 spin_unlock(&kvm_lock); 721 kvm_free_irq_routing(kvm); 722 for (i = 0; i < KVM_NR_BUSES; i++) { 723 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 724 725 if (bus) 726 kvm_io_bus_destroy(bus); 727 kvm->buses[i] = NULL; 728 } 729 kvm_coalesced_mmio_free(kvm); 730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 731 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 732 #else 733 kvm_arch_flush_shadow_all(kvm); 734 #endif 735 kvm_arch_destroy_vm(kvm); 736 kvm_destroy_devices(kvm); 737 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 738 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 739 cleanup_srcu_struct(&kvm->irq_srcu); 740 cleanup_srcu_struct(&kvm->srcu); 741 kvm_arch_free_vm(kvm); 742 preempt_notifier_dec(); 743 hardware_disable_all(); 744 mmdrop(mm); 745 } 746 747 void kvm_get_kvm(struct kvm *kvm) 748 { 749 refcount_inc(&kvm->users_count); 750 } 751 EXPORT_SYMBOL_GPL(kvm_get_kvm); 752 753 void kvm_put_kvm(struct kvm *kvm) 754 { 755 if (refcount_dec_and_test(&kvm->users_count)) 756 kvm_destroy_vm(kvm); 757 } 758 EXPORT_SYMBOL_GPL(kvm_put_kvm); 759 760 761 static int kvm_vm_release(struct inode *inode, struct file *filp) 762 { 763 struct kvm *kvm = filp->private_data; 764 765 kvm_irqfd_release(kvm); 766 767 kvm_put_kvm(kvm); 768 return 0; 769 } 770 771 /* 772 * Allocation size is twice as large as the actual dirty bitmap size. 773 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 774 */ 775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 776 { 777 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 778 779 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 780 if (!memslot->dirty_bitmap) 781 return -ENOMEM; 782 783 return 0; 784 } 785 786 /* 787 * Insert memslot and re-sort memslots based on their GFN, 788 * so binary search could be used to lookup GFN. 789 * Sorting algorithm takes advantage of having initially 790 * sorted array and known changed memslot position. 791 */ 792 static void update_memslots(struct kvm_memslots *slots, 793 struct kvm_memory_slot *new) 794 { 795 int id = new->id; 796 int i = slots->id_to_index[id]; 797 struct kvm_memory_slot *mslots = slots->memslots; 798 799 WARN_ON(mslots[i].id != id); 800 if (!new->npages) { 801 WARN_ON(!mslots[i].npages); 802 if (mslots[i].npages) 803 slots->used_slots--; 804 } else { 805 if (!mslots[i].npages) 806 slots->used_slots++; 807 } 808 809 while (i < KVM_MEM_SLOTS_NUM - 1 && 810 new->base_gfn <= mslots[i + 1].base_gfn) { 811 if (!mslots[i + 1].npages) 812 break; 813 mslots[i] = mslots[i + 1]; 814 slots->id_to_index[mslots[i].id] = i; 815 i++; 816 } 817 818 /* 819 * The ">=" is needed when creating a slot with base_gfn == 0, 820 * so that it moves before all those with base_gfn == npages == 0. 821 * 822 * On the other hand, if new->npages is zero, the above loop has 823 * already left i pointing to the beginning of the empty part of 824 * mslots, and the ">=" would move the hole backwards in this 825 * case---which is wrong. So skip the loop when deleting a slot. 826 */ 827 if (new->npages) { 828 while (i > 0 && 829 new->base_gfn >= mslots[i - 1].base_gfn) { 830 mslots[i] = mslots[i - 1]; 831 slots->id_to_index[mslots[i].id] = i; 832 i--; 833 } 834 } else 835 WARN_ON_ONCE(i != slots->used_slots); 836 837 mslots[i] = *new; 838 slots->id_to_index[mslots[i].id] = i; 839 } 840 841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 842 { 843 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 844 845 #ifdef __KVM_HAVE_READONLY_MEM 846 valid_flags |= KVM_MEM_READONLY; 847 #endif 848 849 if (mem->flags & ~valid_flags) 850 return -EINVAL; 851 852 return 0; 853 } 854 855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 856 int as_id, struct kvm_memslots *slots) 857 { 858 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 859 860 /* 861 * Set the low bit in the generation, which disables SPTE caching 862 * until the end of synchronize_srcu_expedited. 863 */ 864 WARN_ON(old_memslots->generation & 1); 865 slots->generation = old_memslots->generation + 1; 866 867 rcu_assign_pointer(kvm->memslots[as_id], slots); 868 synchronize_srcu_expedited(&kvm->srcu); 869 870 /* 871 * Increment the new memslot generation a second time. This prevents 872 * vm exits that race with memslot updates from caching a memslot 873 * generation that will (potentially) be valid forever. 874 * 875 * Generations must be unique even across address spaces. We do not need 876 * a global counter for that, instead the generation space is evenly split 877 * across address spaces. For example, with two address spaces, address 878 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 879 * use generations 2, 6, 10, 14, ... 880 */ 881 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 882 883 kvm_arch_memslots_updated(kvm, slots); 884 885 return old_memslots; 886 } 887 888 /* 889 * Allocate some memory and give it an address in the guest physical address 890 * space. 891 * 892 * Discontiguous memory is allowed, mostly for framebuffers. 893 * 894 * Must be called holding kvm->slots_lock for write. 895 */ 896 int __kvm_set_memory_region(struct kvm *kvm, 897 const struct kvm_userspace_memory_region *mem) 898 { 899 int r; 900 gfn_t base_gfn; 901 unsigned long npages; 902 struct kvm_memory_slot *slot; 903 struct kvm_memory_slot old, new; 904 struct kvm_memslots *slots = NULL, *old_memslots; 905 int as_id, id; 906 enum kvm_mr_change change; 907 908 r = check_memory_region_flags(mem); 909 if (r) 910 goto out; 911 912 r = -EINVAL; 913 as_id = mem->slot >> 16; 914 id = (u16)mem->slot; 915 916 /* General sanity checks */ 917 if (mem->memory_size & (PAGE_SIZE - 1)) 918 goto out; 919 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 920 goto out; 921 /* We can read the guest memory with __xxx_user() later on. */ 922 if ((id < KVM_USER_MEM_SLOTS) && 923 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 924 !access_ok(VERIFY_WRITE, 925 (void __user *)(unsigned long)mem->userspace_addr, 926 mem->memory_size))) 927 goto out; 928 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 929 goto out; 930 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 931 goto out; 932 933 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 934 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 935 npages = mem->memory_size >> PAGE_SHIFT; 936 937 if (npages > KVM_MEM_MAX_NR_PAGES) 938 goto out; 939 940 new = old = *slot; 941 942 new.id = id; 943 new.base_gfn = base_gfn; 944 new.npages = npages; 945 new.flags = mem->flags; 946 947 if (npages) { 948 if (!old.npages) 949 change = KVM_MR_CREATE; 950 else { /* Modify an existing slot. */ 951 if ((mem->userspace_addr != old.userspace_addr) || 952 (npages != old.npages) || 953 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 954 goto out; 955 956 if (base_gfn != old.base_gfn) 957 change = KVM_MR_MOVE; 958 else if (new.flags != old.flags) 959 change = KVM_MR_FLAGS_ONLY; 960 else { /* Nothing to change. */ 961 r = 0; 962 goto out; 963 } 964 } 965 } else { 966 if (!old.npages) 967 goto out; 968 969 change = KVM_MR_DELETE; 970 new.base_gfn = 0; 971 new.flags = 0; 972 } 973 974 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 975 /* Check for overlaps */ 976 r = -EEXIST; 977 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 978 if ((slot->id >= KVM_USER_MEM_SLOTS) || 979 (slot->id == id)) 980 continue; 981 if (!((base_gfn + npages <= slot->base_gfn) || 982 (base_gfn >= slot->base_gfn + slot->npages))) 983 goto out; 984 } 985 } 986 987 /* Free page dirty bitmap if unneeded */ 988 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 989 new.dirty_bitmap = NULL; 990 991 r = -ENOMEM; 992 if (change == KVM_MR_CREATE) { 993 new.userspace_addr = mem->userspace_addr; 994 995 if (kvm_arch_create_memslot(kvm, &new, npages)) 996 goto out_free; 997 } 998 999 /* Allocate page dirty bitmap if needed */ 1000 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1001 if (kvm_create_dirty_bitmap(&new) < 0) 1002 goto out_free; 1003 } 1004 1005 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1006 if (!slots) 1007 goto out_free; 1008 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1009 1010 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1011 slot = id_to_memslot(slots, id); 1012 slot->flags |= KVM_MEMSLOT_INVALID; 1013 1014 old_memslots = install_new_memslots(kvm, as_id, slots); 1015 1016 /* From this point no new shadow pages pointing to a deleted, 1017 * or moved, memslot will be created. 1018 * 1019 * validation of sp->gfn happens in: 1020 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1021 * - kvm_is_visible_gfn (mmu_check_roots) 1022 */ 1023 kvm_arch_flush_shadow_memslot(kvm, slot); 1024 1025 /* 1026 * We can re-use the old_memslots from above, the only difference 1027 * from the currently installed memslots is the invalid flag. This 1028 * will get overwritten by update_memslots anyway. 1029 */ 1030 slots = old_memslots; 1031 } 1032 1033 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1034 if (r) 1035 goto out_slots; 1036 1037 /* actual memory is freed via old in kvm_free_memslot below */ 1038 if (change == KVM_MR_DELETE) { 1039 new.dirty_bitmap = NULL; 1040 memset(&new.arch, 0, sizeof(new.arch)); 1041 } 1042 1043 update_memslots(slots, &new); 1044 old_memslots = install_new_memslots(kvm, as_id, slots); 1045 1046 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1047 1048 kvm_free_memslot(kvm, &old, &new); 1049 kvfree(old_memslots); 1050 return 0; 1051 1052 out_slots: 1053 kvfree(slots); 1054 out_free: 1055 kvm_free_memslot(kvm, &new, &old); 1056 out: 1057 return r; 1058 } 1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1060 1061 int kvm_set_memory_region(struct kvm *kvm, 1062 const struct kvm_userspace_memory_region *mem) 1063 { 1064 int r; 1065 1066 mutex_lock(&kvm->slots_lock); 1067 r = __kvm_set_memory_region(kvm, mem); 1068 mutex_unlock(&kvm->slots_lock); 1069 return r; 1070 } 1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1072 1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1074 struct kvm_userspace_memory_region *mem) 1075 { 1076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1077 return -EINVAL; 1078 1079 return kvm_set_memory_region(kvm, mem); 1080 } 1081 1082 int kvm_get_dirty_log(struct kvm *kvm, 1083 struct kvm_dirty_log *log, int *is_dirty) 1084 { 1085 struct kvm_memslots *slots; 1086 struct kvm_memory_slot *memslot; 1087 int i, as_id, id; 1088 unsigned long n; 1089 unsigned long any = 0; 1090 1091 as_id = log->slot >> 16; 1092 id = (u16)log->slot; 1093 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1094 return -EINVAL; 1095 1096 slots = __kvm_memslots(kvm, as_id); 1097 memslot = id_to_memslot(slots, id); 1098 if (!memslot->dirty_bitmap) 1099 return -ENOENT; 1100 1101 n = kvm_dirty_bitmap_bytes(memslot); 1102 1103 for (i = 0; !any && i < n/sizeof(long); ++i) 1104 any = memslot->dirty_bitmap[i]; 1105 1106 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1107 return -EFAULT; 1108 1109 if (any) 1110 *is_dirty = 1; 1111 return 0; 1112 } 1113 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1114 1115 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1116 /** 1117 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1118 * are dirty write protect them for next write. 1119 * @kvm: pointer to kvm instance 1120 * @log: slot id and address to which we copy the log 1121 * @is_dirty: flag set if any page is dirty 1122 * 1123 * We need to keep it in mind that VCPU threads can write to the bitmap 1124 * concurrently. So, to avoid losing track of dirty pages we keep the 1125 * following order: 1126 * 1127 * 1. Take a snapshot of the bit and clear it if needed. 1128 * 2. Write protect the corresponding page. 1129 * 3. Copy the snapshot to the userspace. 1130 * 4. Upon return caller flushes TLB's if needed. 1131 * 1132 * Between 2 and 4, the guest may write to the page using the remaining TLB 1133 * entry. This is not a problem because the page is reported dirty using 1134 * the snapshot taken before and step 4 ensures that writes done after 1135 * exiting to userspace will be logged for the next call. 1136 * 1137 */ 1138 int kvm_get_dirty_log_protect(struct kvm *kvm, 1139 struct kvm_dirty_log *log, bool *is_dirty) 1140 { 1141 struct kvm_memslots *slots; 1142 struct kvm_memory_slot *memslot; 1143 int i, as_id, id; 1144 unsigned long n; 1145 unsigned long *dirty_bitmap; 1146 unsigned long *dirty_bitmap_buffer; 1147 1148 as_id = log->slot >> 16; 1149 id = (u16)log->slot; 1150 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1151 return -EINVAL; 1152 1153 slots = __kvm_memslots(kvm, as_id); 1154 memslot = id_to_memslot(slots, id); 1155 1156 dirty_bitmap = memslot->dirty_bitmap; 1157 if (!dirty_bitmap) 1158 return -ENOENT; 1159 1160 n = kvm_dirty_bitmap_bytes(memslot); 1161 1162 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1163 memset(dirty_bitmap_buffer, 0, n); 1164 1165 spin_lock(&kvm->mmu_lock); 1166 *is_dirty = false; 1167 for (i = 0; i < n / sizeof(long); i++) { 1168 unsigned long mask; 1169 gfn_t offset; 1170 1171 if (!dirty_bitmap[i]) 1172 continue; 1173 1174 *is_dirty = true; 1175 1176 mask = xchg(&dirty_bitmap[i], 0); 1177 dirty_bitmap_buffer[i] = mask; 1178 1179 if (mask) { 1180 offset = i * BITS_PER_LONG; 1181 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1182 offset, mask); 1183 } 1184 } 1185 1186 spin_unlock(&kvm->mmu_lock); 1187 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1188 return -EFAULT; 1189 return 0; 1190 } 1191 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1192 #endif 1193 1194 bool kvm_largepages_enabled(void) 1195 { 1196 return largepages_enabled; 1197 } 1198 1199 void kvm_disable_largepages(void) 1200 { 1201 largepages_enabled = false; 1202 } 1203 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1204 1205 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1206 { 1207 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1208 } 1209 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1210 1211 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1212 { 1213 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1214 } 1215 1216 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1217 { 1218 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1219 1220 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1221 memslot->flags & KVM_MEMSLOT_INVALID) 1222 return false; 1223 1224 return true; 1225 } 1226 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1227 1228 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1229 { 1230 struct vm_area_struct *vma; 1231 unsigned long addr, size; 1232 1233 size = PAGE_SIZE; 1234 1235 addr = gfn_to_hva(kvm, gfn); 1236 if (kvm_is_error_hva(addr)) 1237 return PAGE_SIZE; 1238 1239 down_read(¤t->mm->mmap_sem); 1240 vma = find_vma(current->mm, addr); 1241 if (!vma) 1242 goto out; 1243 1244 size = vma_kernel_pagesize(vma); 1245 1246 out: 1247 up_read(¤t->mm->mmap_sem); 1248 1249 return size; 1250 } 1251 1252 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1253 { 1254 return slot->flags & KVM_MEM_READONLY; 1255 } 1256 1257 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1258 gfn_t *nr_pages, bool write) 1259 { 1260 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1261 return KVM_HVA_ERR_BAD; 1262 1263 if (memslot_is_readonly(slot) && write) 1264 return KVM_HVA_ERR_RO_BAD; 1265 1266 if (nr_pages) 1267 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1268 1269 return __gfn_to_hva_memslot(slot, gfn); 1270 } 1271 1272 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1273 gfn_t *nr_pages) 1274 { 1275 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1276 } 1277 1278 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1279 gfn_t gfn) 1280 { 1281 return gfn_to_hva_many(slot, gfn, NULL); 1282 } 1283 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1284 1285 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1286 { 1287 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1288 } 1289 EXPORT_SYMBOL_GPL(gfn_to_hva); 1290 1291 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1292 { 1293 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1296 1297 /* 1298 * If writable is set to false, the hva returned by this function is only 1299 * allowed to be read. 1300 */ 1301 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1302 gfn_t gfn, bool *writable) 1303 { 1304 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1305 1306 if (!kvm_is_error_hva(hva) && writable) 1307 *writable = !memslot_is_readonly(slot); 1308 1309 return hva; 1310 } 1311 1312 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1313 { 1314 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1315 1316 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1317 } 1318 1319 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1320 { 1321 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1322 1323 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1324 } 1325 1326 static inline int check_user_page_hwpoison(unsigned long addr) 1327 { 1328 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1329 1330 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1331 return rc == -EHWPOISON; 1332 } 1333 1334 /* 1335 * The atomic path to get the writable pfn which will be stored in @pfn, 1336 * true indicates success, otherwise false is returned. 1337 */ 1338 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1339 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1340 { 1341 struct page *page[1]; 1342 int npages; 1343 1344 if (!(async || atomic)) 1345 return false; 1346 1347 /* 1348 * Fast pin a writable pfn only if it is a write fault request 1349 * or the caller allows to map a writable pfn for a read fault 1350 * request. 1351 */ 1352 if (!(write_fault || writable)) 1353 return false; 1354 1355 npages = __get_user_pages_fast(addr, 1, 1, page); 1356 if (npages == 1) { 1357 *pfn = page_to_pfn(page[0]); 1358 1359 if (writable) 1360 *writable = true; 1361 return true; 1362 } 1363 1364 return false; 1365 } 1366 1367 /* 1368 * The slow path to get the pfn of the specified host virtual address, 1369 * 1 indicates success, -errno is returned if error is detected. 1370 */ 1371 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1372 bool *writable, kvm_pfn_t *pfn) 1373 { 1374 unsigned int flags = FOLL_HWPOISON; 1375 struct page *page; 1376 int npages = 0; 1377 1378 might_sleep(); 1379 1380 if (writable) 1381 *writable = write_fault; 1382 1383 if (write_fault) 1384 flags |= FOLL_WRITE; 1385 if (async) 1386 flags |= FOLL_NOWAIT; 1387 1388 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1389 if (npages != 1) 1390 return npages; 1391 1392 /* map read fault as writable if possible */ 1393 if (unlikely(!write_fault) && writable) { 1394 struct page *wpage; 1395 1396 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1397 *writable = true; 1398 put_page(page); 1399 page = wpage; 1400 } 1401 } 1402 *pfn = page_to_pfn(page); 1403 return npages; 1404 } 1405 1406 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1407 { 1408 if (unlikely(!(vma->vm_flags & VM_READ))) 1409 return false; 1410 1411 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1412 return false; 1413 1414 return true; 1415 } 1416 1417 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1418 unsigned long addr, bool *async, 1419 bool write_fault, kvm_pfn_t *p_pfn) 1420 { 1421 unsigned long pfn; 1422 int r; 1423 1424 r = follow_pfn(vma, addr, &pfn); 1425 if (r) { 1426 /* 1427 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1428 * not call the fault handler, so do it here. 1429 */ 1430 bool unlocked = false; 1431 r = fixup_user_fault(current, current->mm, addr, 1432 (write_fault ? FAULT_FLAG_WRITE : 0), 1433 &unlocked); 1434 if (unlocked) 1435 return -EAGAIN; 1436 if (r) 1437 return r; 1438 1439 r = follow_pfn(vma, addr, &pfn); 1440 if (r) 1441 return r; 1442 1443 } 1444 1445 1446 /* 1447 * Get a reference here because callers of *hva_to_pfn* and 1448 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1449 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1450 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1451 * simply do nothing for reserved pfns. 1452 * 1453 * Whoever called remap_pfn_range is also going to call e.g. 1454 * unmap_mapping_range before the underlying pages are freed, 1455 * causing a call to our MMU notifier. 1456 */ 1457 kvm_get_pfn(pfn); 1458 1459 *p_pfn = pfn; 1460 return 0; 1461 } 1462 1463 /* 1464 * Pin guest page in memory and return its pfn. 1465 * @addr: host virtual address which maps memory to the guest 1466 * @atomic: whether this function can sleep 1467 * @async: whether this function need to wait IO complete if the 1468 * host page is not in the memory 1469 * @write_fault: whether we should get a writable host page 1470 * @writable: whether it allows to map a writable host page for !@write_fault 1471 * 1472 * The function will map a writable host page for these two cases: 1473 * 1): @write_fault = true 1474 * 2): @write_fault = false && @writable, @writable will tell the caller 1475 * whether the mapping is writable. 1476 */ 1477 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1478 bool write_fault, bool *writable) 1479 { 1480 struct vm_area_struct *vma; 1481 kvm_pfn_t pfn = 0; 1482 int npages, r; 1483 1484 /* we can do it either atomically or asynchronously, not both */ 1485 BUG_ON(atomic && async); 1486 1487 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1488 return pfn; 1489 1490 if (atomic) 1491 return KVM_PFN_ERR_FAULT; 1492 1493 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1494 if (npages == 1) 1495 return pfn; 1496 1497 down_read(¤t->mm->mmap_sem); 1498 if (npages == -EHWPOISON || 1499 (!async && check_user_page_hwpoison(addr))) { 1500 pfn = KVM_PFN_ERR_HWPOISON; 1501 goto exit; 1502 } 1503 1504 retry: 1505 vma = find_vma_intersection(current->mm, addr, addr + 1); 1506 1507 if (vma == NULL) 1508 pfn = KVM_PFN_ERR_FAULT; 1509 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1510 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1511 if (r == -EAGAIN) 1512 goto retry; 1513 if (r < 0) 1514 pfn = KVM_PFN_ERR_FAULT; 1515 } else { 1516 if (async && vma_is_valid(vma, write_fault)) 1517 *async = true; 1518 pfn = KVM_PFN_ERR_FAULT; 1519 } 1520 exit: 1521 up_read(¤t->mm->mmap_sem); 1522 return pfn; 1523 } 1524 1525 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1526 bool atomic, bool *async, bool write_fault, 1527 bool *writable) 1528 { 1529 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1530 1531 if (addr == KVM_HVA_ERR_RO_BAD) { 1532 if (writable) 1533 *writable = false; 1534 return KVM_PFN_ERR_RO_FAULT; 1535 } 1536 1537 if (kvm_is_error_hva(addr)) { 1538 if (writable) 1539 *writable = false; 1540 return KVM_PFN_NOSLOT; 1541 } 1542 1543 /* Do not map writable pfn in the readonly memslot. */ 1544 if (writable && memslot_is_readonly(slot)) { 1545 *writable = false; 1546 writable = NULL; 1547 } 1548 1549 return hva_to_pfn(addr, atomic, async, write_fault, 1550 writable); 1551 } 1552 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1553 1554 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1555 bool *writable) 1556 { 1557 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1558 write_fault, writable); 1559 } 1560 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1561 1562 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1563 { 1564 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1565 } 1566 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1567 1568 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1569 { 1570 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1571 } 1572 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1573 1574 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1575 { 1576 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1577 } 1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1579 1580 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1581 { 1582 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1583 } 1584 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1585 1586 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1587 { 1588 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1589 } 1590 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1591 1592 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1593 { 1594 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1595 } 1596 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1597 1598 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1599 struct page **pages, int nr_pages) 1600 { 1601 unsigned long addr; 1602 gfn_t entry = 0; 1603 1604 addr = gfn_to_hva_many(slot, gfn, &entry); 1605 if (kvm_is_error_hva(addr)) 1606 return -1; 1607 1608 if (entry < nr_pages) 1609 return 0; 1610 1611 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1612 } 1613 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1614 1615 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1616 { 1617 if (is_error_noslot_pfn(pfn)) 1618 return KVM_ERR_PTR_BAD_PAGE; 1619 1620 if (kvm_is_reserved_pfn(pfn)) { 1621 WARN_ON(1); 1622 return KVM_ERR_PTR_BAD_PAGE; 1623 } 1624 1625 return pfn_to_page(pfn); 1626 } 1627 1628 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1629 { 1630 kvm_pfn_t pfn; 1631 1632 pfn = gfn_to_pfn(kvm, gfn); 1633 1634 return kvm_pfn_to_page(pfn); 1635 } 1636 EXPORT_SYMBOL_GPL(gfn_to_page); 1637 1638 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1639 { 1640 kvm_pfn_t pfn; 1641 1642 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1643 1644 return kvm_pfn_to_page(pfn); 1645 } 1646 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1647 1648 void kvm_release_page_clean(struct page *page) 1649 { 1650 WARN_ON(is_error_page(page)); 1651 1652 kvm_release_pfn_clean(page_to_pfn(page)); 1653 } 1654 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1655 1656 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1657 { 1658 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1659 put_page(pfn_to_page(pfn)); 1660 } 1661 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1662 1663 void kvm_release_page_dirty(struct page *page) 1664 { 1665 WARN_ON(is_error_page(page)); 1666 1667 kvm_release_pfn_dirty(page_to_pfn(page)); 1668 } 1669 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1670 1671 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1672 { 1673 kvm_set_pfn_dirty(pfn); 1674 kvm_release_pfn_clean(pfn); 1675 } 1676 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1677 1678 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1679 { 1680 if (!kvm_is_reserved_pfn(pfn)) { 1681 struct page *page = pfn_to_page(pfn); 1682 1683 if (!PageReserved(page)) 1684 SetPageDirty(page); 1685 } 1686 } 1687 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1688 1689 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1690 { 1691 if (!kvm_is_reserved_pfn(pfn)) 1692 mark_page_accessed(pfn_to_page(pfn)); 1693 } 1694 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1695 1696 void kvm_get_pfn(kvm_pfn_t pfn) 1697 { 1698 if (!kvm_is_reserved_pfn(pfn)) 1699 get_page(pfn_to_page(pfn)); 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1702 1703 static int next_segment(unsigned long len, int offset) 1704 { 1705 if (len > PAGE_SIZE - offset) 1706 return PAGE_SIZE - offset; 1707 else 1708 return len; 1709 } 1710 1711 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1712 void *data, int offset, int len) 1713 { 1714 int r; 1715 unsigned long addr; 1716 1717 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1718 if (kvm_is_error_hva(addr)) 1719 return -EFAULT; 1720 r = __copy_from_user(data, (void __user *)addr + offset, len); 1721 if (r) 1722 return -EFAULT; 1723 return 0; 1724 } 1725 1726 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1727 int len) 1728 { 1729 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1730 1731 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1732 } 1733 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1734 1735 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1736 int offset, int len) 1737 { 1738 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1739 1740 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1743 1744 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1745 { 1746 gfn_t gfn = gpa >> PAGE_SHIFT; 1747 int seg; 1748 int offset = offset_in_page(gpa); 1749 int ret; 1750 1751 while ((seg = next_segment(len, offset)) != 0) { 1752 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1753 if (ret < 0) 1754 return ret; 1755 offset = 0; 1756 len -= seg; 1757 data += seg; 1758 ++gfn; 1759 } 1760 return 0; 1761 } 1762 EXPORT_SYMBOL_GPL(kvm_read_guest); 1763 1764 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1765 { 1766 gfn_t gfn = gpa >> PAGE_SHIFT; 1767 int seg; 1768 int offset = offset_in_page(gpa); 1769 int ret; 1770 1771 while ((seg = next_segment(len, offset)) != 0) { 1772 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1773 if (ret < 0) 1774 return ret; 1775 offset = 0; 1776 len -= seg; 1777 data += seg; 1778 ++gfn; 1779 } 1780 return 0; 1781 } 1782 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1783 1784 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1785 void *data, int offset, unsigned long len) 1786 { 1787 int r; 1788 unsigned long addr; 1789 1790 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1791 if (kvm_is_error_hva(addr)) 1792 return -EFAULT; 1793 pagefault_disable(); 1794 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1795 pagefault_enable(); 1796 if (r) 1797 return -EFAULT; 1798 return 0; 1799 } 1800 1801 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1802 unsigned long len) 1803 { 1804 gfn_t gfn = gpa >> PAGE_SHIFT; 1805 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1806 int offset = offset_in_page(gpa); 1807 1808 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1809 } 1810 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1811 1812 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1813 void *data, unsigned long len) 1814 { 1815 gfn_t gfn = gpa >> PAGE_SHIFT; 1816 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1817 int offset = offset_in_page(gpa); 1818 1819 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1820 } 1821 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1822 1823 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1824 const void *data, int offset, int len) 1825 { 1826 int r; 1827 unsigned long addr; 1828 1829 addr = gfn_to_hva_memslot(memslot, gfn); 1830 if (kvm_is_error_hva(addr)) 1831 return -EFAULT; 1832 r = __copy_to_user((void __user *)addr + offset, data, len); 1833 if (r) 1834 return -EFAULT; 1835 mark_page_dirty_in_slot(memslot, gfn); 1836 return 0; 1837 } 1838 1839 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1840 const void *data, int offset, int len) 1841 { 1842 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1843 1844 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1845 } 1846 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1847 1848 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1849 const void *data, int offset, int len) 1850 { 1851 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1852 1853 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1854 } 1855 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1856 1857 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1858 unsigned long len) 1859 { 1860 gfn_t gfn = gpa >> PAGE_SHIFT; 1861 int seg; 1862 int offset = offset_in_page(gpa); 1863 int ret; 1864 1865 while ((seg = next_segment(len, offset)) != 0) { 1866 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1867 if (ret < 0) 1868 return ret; 1869 offset = 0; 1870 len -= seg; 1871 data += seg; 1872 ++gfn; 1873 } 1874 return 0; 1875 } 1876 EXPORT_SYMBOL_GPL(kvm_write_guest); 1877 1878 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1879 unsigned long len) 1880 { 1881 gfn_t gfn = gpa >> PAGE_SHIFT; 1882 int seg; 1883 int offset = offset_in_page(gpa); 1884 int ret; 1885 1886 while ((seg = next_segment(len, offset)) != 0) { 1887 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1888 if (ret < 0) 1889 return ret; 1890 offset = 0; 1891 len -= seg; 1892 data += seg; 1893 ++gfn; 1894 } 1895 return 0; 1896 } 1897 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1898 1899 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1900 struct gfn_to_hva_cache *ghc, 1901 gpa_t gpa, unsigned long len) 1902 { 1903 int offset = offset_in_page(gpa); 1904 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1905 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1906 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1907 gfn_t nr_pages_avail; 1908 1909 ghc->gpa = gpa; 1910 ghc->generation = slots->generation; 1911 ghc->len = len; 1912 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1913 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1914 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1915 ghc->hva += offset; 1916 } else { 1917 /* 1918 * If the requested region crosses two memslots, we still 1919 * verify that the entire region is valid here. 1920 */ 1921 while (start_gfn <= end_gfn) { 1922 nr_pages_avail = 0; 1923 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1924 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1925 &nr_pages_avail); 1926 if (kvm_is_error_hva(ghc->hva)) 1927 return -EFAULT; 1928 start_gfn += nr_pages_avail; 1929 } 1930 /* Use the slow path for cross page reads and writes. */ 1931 ghc->memslot = NULL; 1932 } 1933 return 0; 1934 } 1935 1936 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1937 gpa_t gpa, unsigned long len) 1938 { 1939 struct kvm_memslots *slots = kvm_memslots(kvm); 1940 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1941 } 1942 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1943 1944 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1945 void *data, int offset, unsigned long len) 1946 { 1947 struct kvm_memslots *slots = kvm_memslots(kvm); 1948 int r; 1949 gpa_t gpa = ghc->gpa + offset; 1950 1951 BUG_ON(len + offset > ghc->len); 1952 1953 if (slots->generation != ghc->generation) 1954 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1955 1956 if (unlikely(!ghc->memslot)) 1957 return kvm_write_guest(kvm, gpa, data, len); 1958 1959 if (kvm_is_error_hva(ghc->hva)) 1960 return -EFAULT; 1961 1962 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1963 if (r) 1964 return -EFAULT; 1965 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1966 1967 return 0; 1968 } 1969 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 1970 1971 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1972 void *data, unsigned long len) 1973 { 1974 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 1975 } 1976 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1977 1978 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1979 void *data, unsigned long len) 1980 { 1981 struct kvm_memslots *slots = kvm_memslots(kvm); 1982 int r; 1983 1984 BUG_ON(len > ghc->len); 1985 1986 if (slots->generation != ghc->generation) 1987 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1988 1989 if (unlikely(!ghc->memslot)) 1990 return kvm_read_guest(kvm, ghc->gpa, data, len); 1991 1992 if (kvm_is_error_hva(ghc->hva)) 1993 return -EFAULT; 1994 1995 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1996 if (r) 1997 return -EFAULT; 1998 1999 return 0; 2000 } 2001 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2002 2003 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2004 { 2005 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2006 2007 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2008 } 2009 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2010 2011 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2012 { 2013 gfn_t gfn = gpa >> PAGE_SHIFT; 2014 int seg; 2015 int offset = offset_in_page(gpa); 2016 int ret; 2017 2018 while ((seg = next_segment(len, offset)) != 0) { 2019 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2020 if (ret < 0) 2021 return ret; 2022 offset = 0; 2023 len -= seg; 2024 ++gfn; 2025 } 2026 return 0; 2027 } 2028 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2029 2030 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2031 gfn_t gfn) 2032 { 2033 if (memslot && memslot->dirty_bitmap) { 2034 unsigned long rel_gfn = gfn - memslot->base_gfn; 2035 2036 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2037 } 2038 } 2039 2040 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2041 { 2042 struct kvm_memory_slot *memslot; 2043 2044 memslot = gfn_to_memslot(kvm, gfn); 2045 mark_page_dirty_in_slot(memslot, gfn); 2046 } 2047 EXPORT_SYMBOL_GPL(mark_page_dirty); 2048 2049 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2050 { 2051 struct kvm_memory_slot *memslot; 2052 2053 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2054 mark_page_dirty_in_slot(memslot, gfn); 2055 } 2056 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2057 2058 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2059 { 2060 if (!vcpu->sigset_active) 2061 return; 2062 2063 /* 2064 * This does a lockless modification of ->real_blocked, which is fine 2065 * because, only current can change ->real_blocked and all readers of 2066 * ->real_blocked don't care as long ->real_blocked is always a subset 2067 * of ->blocked. 2068 */ 2069 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2070 } 2071 2072 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2073 { 2074 if (!vcpu->sigset_active) 2075 return; 2076 2077 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2078 sigemptyset(¤t->real_blocked); 2079 } 2080 2081 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2082 { 2083 unsigned int old, val, grow; 2084 2085 old = val = vcpu->halt_poll_ns; 2086 grow = READ_ONCE(halt_poll_ns_grow); 2087 /* 10us base */ 2088 if (val == 0 && grow) 2089 val = 10000; 2090 else 2091 val *= grow; 2092 2093 if (val > halt_poll_ns) 2094 val = halt_poll_ns; 2095 2096 vcpu->halt_poll_ns = val; 2097 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2098 } 2099 2100 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2101 { 2102 unsigned int old, val, shrink; 2103 2104 old = val = vcpu->halt_poll_ns; 2105 shrink = READ_ONCE(halt_poll_ns_shrink); 2106 if (shrink == 0) 2107 val = 0; 2108 else 2109 val /= shrink; 2110 2111 vcpu->halt_poll_ns = val; 2112 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2113 } 2114 2115 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2116 { 2117 if (kvm_arch_vcpu_runnable(vcpu)) { 2118 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2119 return -EINTR; 2120 } 2121 if (kvm_cpu_has_pending_timer(vcpu)) 2122 return -EINTR; 2123 if (signal_pending(current)) 2124 return -EINTR; 2125 2126 return 0; 2127 } 2128 2129 /* 2130 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2131 */ 2132 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2133 { 2134 ktime_t start, cur; 2135 DECLARE_SWAITQUEUE(wait); 2136 bool waited = false; 2137 u64 block_ns; 2138 2139 start = cur = ktime_get(); 2140 if (vcpu->halt_poll_ns) { 2141 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2142 2143 ++vcpu->stat.halt_attempted_poll; 2144 do { 2145 /* 2146 * This sets KVM_REQ_UNHALT if an interrupt 2147 * arrives. 2148 */ 2149 if (kvm_vcpu_check_block(vcpu) < 0) { 2150 ++vcpu->stat.halt_successful_poll; 2151 if (!vcpu_valid_wakeup(vcpu)) 2152 ++vcpu->stat.halt_poll_invalid; 2153 goto out; 2154 } 2155 cur = ktime_get(); 2156 } while (single_task_running() && ktime_before(cur, stop)); 2157 } 2158 2159 kvm_arch_vcpu_blocking(vcpu); 2160 2161 for (;;) { 2162 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2163 2164 if (kvm_vcpu_check_block(vcpu) < 0) 2165 break; 2166 2167 waited = true; 2168 schedule(); 2169 } 2170 2171 finish_swait(&vcpu->wq, &wait); 2172 cur = ktime_get(); 2173 2174 kvm_arch_vcpu_unblocking(vcpu); 2175 out: 2176 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2177 2178 if (!vcpu_valid_wakeup(vcpu)) 2179 shrink_halt_poll_ns(vcpu); 2180 else if (halt_poll_ns) { 2181 if (block_ns <= vcpu->halt_poll_ns) 2182 ; 2183 /* we had a long block, shrink polling */ 2184 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2185 shrink_halt_poll_ns(vcpu); 2186 /* we had a short halt and our poll time is too small */ 2187 else if (vcpu->halt_poll_ns < halt_poll_ns && 2188 block_ns < halt_poll_ns) 2189 grow_halt_poll_ns(vcpu); 2190 } else 2191 vcpu->halt_poll_ns = 0; 2192 2193 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2194 kvm_arch_vcpu_block_finish(vcpu); 2195 } 2196 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2197 2198 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2199 { 2200 struct swait_queue_head *wqp; 2201 2202 wqp = kvm_arch_vcpu_wq(vcpu); 2203 if (swq_has_sleeper(wqp)) { 2204 swake_up(wqp); 2205 ++vcpu->stat.halt_wakeup; 2206 return true; 2207 } 2208 2209 return false; 2210 } 2211 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2212 2213 #ifndef CONFIG_S390 2214 /* 2215 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2216 */ 2217 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2218 { 2219 int me; 2220 int cpu = vcpu->cpu; 2221 2222 if (kvm_vcpu_wake_up(vcpu)) 2223 return; 2224 2225 me = get_cpu(); 2226 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2227 if (kvm_arch_vcpu_should_kick(vcpu)) 2228 smp_send_reschedule(cpu); 2229 put_cpu(); 2230 } 2231 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2232 #endif /* !CONFIG_S390 */ 2233 2234 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2235 { 2236 struct pid *pid; 2237 struct task_struct *task = NULL; 2238 int ret = 0; 2239 2240 rcu_read_lock(); 2241 pid = rcu_dereference(target->pid); 2242 if (pid) 2243 task = get_pid_task(pid, PIDTYPE_PID); 2244 rcu_read_unlock(); 2245 if (!task) 2246 return ret; 2247 ret = yield_to(task, 1); 2248 put_task_struct(task); 2249 2250 return ret; 2251 } 2252 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2253 2254 /* 2255 * Helper that checks whether a VCPU is eligible for directed yield. 2256 * Most eligible candidate to yield is decided by following heuristics: 2257 * 2258 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2259 * (preempted lock holder), indicated by @in_spin_loop. 2260 * Set at the beiginning and cleared at the end of interception/PLE handler. 2261 * 2262 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2263 * chance last time (mostly it has become eligible now since we have probably 2264 * yielded to lockholder in last iteration. This is done by toggling 2265 * @dy_eligible each time a VCPU checked for eligibility.) 2266 * 2267 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2268 * to preempted lock-holder could result in wrong VCPU selection and CPU 2269 * burning. Giving priority for a potential lock-holder increases lock 2270 * progress. 2271 * 2272 * Since algorithm is based on heuristics, accessing another VCPU data without 2273 * locking does not harm. It may result in trying to yield to same VCPU, fail 2274 * and continue with next VCPU and so on. 2275 */ 2276 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2277 { 2278 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2279 bool eligible; 2280 2281 eligible = !vcpu->spin_loop.in_spin_loop || 2282 vcpu->spin_loop.dy_eligible; 2283 2284 if (vcpu->spin_loop.in_spin_loop) 2285 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2286 2287 return eligible; 2288 #else 2289 return true; 2290 #endif 2291 } 2292 2293 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2294 { 2295 struct kvm *kvm = me->kvm; 2296 struct kvm_vcpu *vcpu; 2297 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2298 int yielded = 0; 2299 int try = 3; 2300 int pass; 2301 int i; 2302 2303 kvm_vcpu_set_in_spin_loop(me, true); 2304 /* 2305 * We boost the priority of a VCPU that is runnable but not 2306 * currently running, because it got preempted by something 2307 * else and called schedule in __vcpu_run. Hopefully that 2308 * VCPU is holding the lock that we need and will release it. 2309 * We approximate round-robin by starting at the last boosted VCPU. 2310 */ 2311 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2312 kvm_for_each_vcpu(i, vcpu, kvm) { 2313 if (!pass && i <= last_boosted_vcpu) { 2314 i = last_boosted_vcpu; 2315 continue; 2316 } else if (pass && i > last_boosted_vcpu) 2317 break; 2318 if (!READ_ONCE(vcpu->preempted)) 2319 continue; 2320 if (vcpu == me) 2321 continue; 2322 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2323 continue; 2324 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2325 continue; 2326 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2327 continue; 2328 2329 yielded = kvm_vcpu_yield_to(vcpu); 2330 if (yielded > 0) { 2331 kvm->last_boosted_vcpu = i; 2332 break; 2333 } else if (yielded < 0) { 2334 try--; 2335 if (!try) 2336 break; 2337 } 2338 } 2339 } 2340 kvm_vcpu_set_in_spin_loop(me, false); 2341 2342 /* Ensure vcpu is not eligible during next spinloop */ 2343 kvm_vcpu_set_dy_eligible(me, false); 2344 } 2345 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2346 2347 static int kvm_vcpu_fault(struct vm_fault *vmf) 2348 { 2349 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2350 struct page *page; 2351 2352 if (vmf->pgoff == 0) 2353 page = virt_to_page(vcpu->run); 2354 #ifdef CONFIG_X86 2355 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2356 page = virt_to_page(vcpu->arch.pio_data); 2357 #endif 2358 #ifdef CONFIG_KVM_MMIO 2359 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2360 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2361 #endif 2362 else 2363 return kvm_arch_vcpu_fault(vcpu, vmf); 2364 get_page(page); 2365 vmf->page = page; 2366 return 0; 2367 } 2368 2369 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2370 .fault = kvm_vcpu_fault, 2371 }; 2372 2373 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2374 { 2375 vma->vm_ops = &kvm_vcpu_vm_ops; 2376 return 0; 2377 } 2378 2379 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2380 { 2381 struct kvm_vcpu *vcpu = filp->private_data; 2382 2383 debugfs_remove_recursive(vcpu->debugfs_dentry); 2384 kvm_put_kvm(vcpu->kvm); 2385 return 0; 2386 } 2387 2388 static struct file_operations kvm_vcpu_fops = { 2389 .release = kvm_vcpu_release, 2390 .unlocked_ioctl = kvm_vcpu_ioctl, 2391 #ifdef CONFIG_KVM_COMPAT 2392 .compat_ioctl = kvm_vcpu_compat_ioctl, 2393 #endif 2394 .mmap = kvm_vcpu_mmap, 2395 .llseek = noop_llseek, 2396 }; 2397 2398 /* 2399 * Allocates an inode for the vcpu. 2400 */ 2401 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2402 { 2403 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2404 } 2405 2406 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2407 { 2408 char dir_name[ITOA_MAX_LEN * 2]; 2409 int ret; 2410 2411 if (!kvm_arch_has_vcpu_debugfs()) 2412 return 0; 2413 2414 if (!debugfs_initialized()) 2415 return 0; 2416 2417 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2418 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2419 vcpu->kvm->debugfs_dentry); 2420 if (!vcpu->debugfs_dentry) 2421 return -ENOMEM; 2422 2423 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2424 if (ret < 0) { 2425 debugfs_remove_recursive(vcpu->debugfs_dentry); 2426 return ret; 2427 } 2428 2429 return 0; 2430 } 2431 2432 /* 2433 * Creates some virtual cpus. Good luck creating more than one. 2434 */ 2435 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2436 { 2437 int r; 2438 struct kvm_vcpu *vcpu; 2439 2440 if (id >= KVM_MAX_VCPU_ID) 2441 return -EINVAL; 2442 2443 mutex_lock(&kvm->lock); 2444 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2445 mutex_unlock(&kvm->lock); 2446 return -EINVAL; 2447 } 2448 2449 kvm->created_vcpus++; 2450 mutex_unlock(&kvm->lock); 2451 2452 vcpu = kvm_arch_vcpu_create(kvm, id); 2453 if (IS_ERR(vcpu)) { 2454 r = PTR_ERR(vcpu); 2455 goto vcpu_decrement; 2456 } 2457 2458 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2459 2460 r = kvm_arch_vcpu_setup(vcpu); 2461 if (r) 2462 goto vcpu_destroy; 2463 2464 r = kvm_create_vcpu_debugfs(vcpu); 2465 if (r) 2466 goto vcpu_destroy; 2467 2468 mutex_lock(&kvm->lock); 2469 if (kvm_get_vcpu_by_id(kvm, id)) { 2470 r = -EEXIST; 2471 goto unlock_vcpu_destroy; 2472 } 2473 2474 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2475 2476 /* Now it's all set up, let userspace reach it */ 2477 kvm_get_kvm(kvm); 2478 r = create_vcpu_fd(vcpu); 2479 if (r < 0) { 2480 kvm_put_kvm(kvm); 2481 goto unlock_vcpu_destroy; 2482 } 2483 2484 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2485 2486 /* 2487 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2488 * before kvm->online_vcpu's incremented value. 2489 */ 2490 smp_wmb(); 2491 atomic_inc(&kvm->online_vcpus); 2492 2493 mutex_unlock(&kvm->lock); 2494 kvm_arch_vcpu_postcreate(vcpu); 2495 return r; 2496 2497 unlock_vcpu_destroy: 2498 mutex_unlock(&kvm->lock); 2499 debugfs_remove_recursive(vcpu->debugfs_dentry); 2500 vcpu_destroy: 2501 kvm_arch_vcpu_destroy(vcpu); 2502 vcpu_decrement: 2503 mutex_lock(&kvm->lock); 2504 kvm->created_vcpus--; 2505 mutex_unlock(&kvm->lock); 2506 return r; 2507 } 2508 2509 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2510 { 2511 if (sigset) { 2512 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2513 vcpu->sigset_active = 1; 2514 vcpu->sigset = *sigset; 2515 } else 2516 vcpu->sigset_active = 0; 2517 return 0; 2518 } 2519 2520 static long kvm_vcpu_ioctl(struct file *filp, 2521 unsigned int ioctl, unsigned long arg) 2522 { 2523 struct kvm_vcpu *vcpu = filp->private_data; 2524 void __user *argp = (void __user *)arg; 2525 int r; 2526 struct kvm_fpu *fpu = NULL; 2527 struct kvm_sregs *kvm_sregs = NULL; 2528 2529 if (vcpu->kvm->mm != current->mm) 2530 return -EIO; 2531 2532 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2533 return -EINVAL; 2534 2535 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2536 /* 2537 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2538 * so vcpu_load() would break it. 2539 */ 2540 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2541 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2542 #endif 2543 2544 2545 r = vcpu_load(vcpu); 2546 if (r) 2547 return r; 2548 switch (ioctl) { 2549 case KVM_RUN: { 2550 struct pid *oldpid; 2551 r = -EINVAL; 2552 if (arg) 2553 goto out; 2554 oldpid = rcu_access_pointer(vcpu->pid); 2555 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2556 /* The thread running this VCPU changed. */ 2557 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2558 2559 rcu_assign_pointer(vcpu->pid, newpid); 2560 if (oldpid) 2561 synchronize_rcu(); 2562 put_pid(oldpid); 2563 } 2564 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2565 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2566 break; 2567 } 2568 case KVM_GET_REGS: { 2569 struct kvm_regs *kvm_regs; 2570 2571 r = -ENOMEM; 2572 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2573 if (!kvm_regs) 2574 goto out; 2575 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2576 if (r) 2577 goto out_free1; 2578 r = -EFAULT; 2579 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2580 goto out_free1; 2581 r = 0; 2582 out_free1: 2583 kfree(kvm_regs); 2584 break; 2585 } 2586 case KVM_SET_REGS: { 2587 struct kvm_regs *kvm_regs; 2588 2589 r = -ENOMEM; 2590 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2591 if (IS_ERR(kvm_regs)) { 2592 r = PTR_ERR(kvm_regs); 2593 goto out; 2594 } 2595 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2596 kfree(kvm_regs); 2597 break; 2598 } 2599 case KVM_GET_SREGS: { 2600 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2601 r = -ENOMEM; 2602 if (!kvm_sregs) 2603 goto out; 2604 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2605 if (r) 2606 goto out; 2607 r = -EFAULT; 2608 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2609 goto out; 2610 r = 0; 2611 break; 2612 } 2613 case KVM_SET_SREGS: { 2614 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2615 if (IS_ERR(kvm_sregs)) { 2616 r = PTR_ERR(kvm_sregs); 2617 kvm_sregs = NULL; 2618 goto out; 2619 } 2620 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2621 break; 2622 } 2623 case KVM_GET_MP_STATE: { 2624 struct kvm_mp_state mp_state; 2625 2626 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2627 if (r) 2628 goto out; 2629 r = -EFAULT; 2630 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2631 goto out; 2632 r = 0; 2633 break; 2634 } 2635 case KVM_SET_MP_STATE: { 2636 struct kvm_mp_state mp_state; 2637 2638 r = -EFAULT; 2639 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2640 goto out; 2641 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2642 break; 2643 } 2644 case KVM_TRANSLATE: { 2645 struct kvm_translation tr; 2646 2647 r = -EFAULT; 2648 if (copy_from_user(&tr, argp, sizeof(tr))) 2649 goto out; 2650 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2651 if (r) 2652 goto out; 2653 r = -EFAULT; 2654 if (copy_to_user(argp, &tr, sizeof(tr))) 2655 goto out; 2656 r = 0; 2657 break; 2658 } 2659 case KVM_SET_GUEST_DEBUG: { 2660 struct kvm_guest_debug dbg; 2661 2662 r = -EFAULT; 2663 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2664 goto out; 2665 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2666 break; 2667 } 2668 case KVM_SET_SIGNAL_MASK: { 2669 struct kvm_signal_mask __user *sigmask_arg = argp; 2670 struct kvm_signal_mask kvm_sigmask; 2671 sigset_t sigset, *p; 2672 2673 p = NULL; 2674 if (argp) { 2675 r = -EFAULT; 2676 if (copy_from_user(&kvm_sigmask, argp, 2677 sizeof(kvm_sigmask))) 2678 goto out; 2679 r = -EINVAL; 2680 if (kvm_sigmask.len != sizeof(sigset)) 2681 goto out; 2682 r = -EFAULT; 2683 if (copy_from_user(&sigset, sigmask_arg->sigset, 2684 sizeof(sigset))) 2685 goto out; 2686 p = &sigset; 2687 } 2688 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2689 break; 2690 } 2691 case KVM_GET_FPU: { 2692 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2693 r = -ENOMEM; 2694 if (!fpu) 2695 goto out; 2696 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2697 if (r) 2698 goto out; 2699 r = -EFAULT; 2700 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2701 goto out; 2702 r = 0; 2703 break; 2704 } 2705 case KVM_SET_FPU: { 2706 fpu = memdup_user(argp, sizeof(*fpu)); 2707 if (IS_ERR(fpu)) { 2708 r = PTR_ERR(fpu); 2709 fpu = NULL; 2710 goto out; 2711 } 2712 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2713 break; 2714 } 2715 default: 2716 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2717 } 2718 out: 2719 vcpu_put(vcpu); 2720 kfree(fpu); 2721 kfree(kvm_sregs); 2722 return r; 2723 } 2724 2725 #ifdef CONFIG_KVM_COMPAT 2726 static long kvm_vcpu_compat_ioctl(struct file *filp, 2727 unsigned int ioctl, unsigned long arg) 2728 { 2729 struct kvm_vcpu *vcpu = filp->private_data; 2730 void __user *argp = compat_ptr(arg); 2731 int r; 2732 2733 if (vcpu->kvm->mm != current->mm) 2734 return -EIO; 2735 2736 switch (ioctl) { 2737 case KVM_SET_SIGNAL_MASK: { 2738 struct kvm_signal_mask __user *sigmask_arg = argp; 2739 struct kvm_signal_mask kvm_sigmask; 2740 sigset_t sigset; 2741 2742 if (argp) { 2743 r = -EFAULT; 2744 if (copy_from_user(&kvm_sigmask, argp, 2745 sizeof(kvm_sigmask))) 2746 goto out; 2747 r = -EINVAL; 2748 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2749 goto out; 2750 r = -EFAULT; 2751 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2752 goto out; 2753 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2754 } else 2755 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2756 break; 2757 } 2758 default: 2759 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2760 } 2761 2762 out: 2763 return r; 2764 } 2765 #endif 2766 2767 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2768 int (*accessor)(struct kvm_device *dev, 2769 struct kvm_device_attr *attr), 2770 unsigned long arg) 2771 { 2772 struct kvm_device_attr attr; 2773 2774 if (!accessor) 2775 return -EPERM; 2776 2777 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2778 return -EFAULT; 2779 2780 return accessor(dev, &attr); 2781 } 2782 2783 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2784 unsigned long arg) 2785 { 2786 struct kvm_device *dev = filp->private_data; 2787 2788 switch (ioctl) { 2789 case KVM_SET_DEVICE_ATTR: 2790 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2791 case KVM_GET_DEVICE_ATTR: 2792 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2793 case KVM_HAS_DEVICE_ATTR: 2794 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2795 default: 2796 if (dev->ops->ioctl) 2797 return dev->ops->ioctl(dev, ioctl, arg); 2798 2799 return -ENOTTY; 2800 } 2801 } 2802 2803 static int kvm_device_release(struct inode *inode, struct file *filp) 2804 { 2805 struct kvm_device *dev = filp->private_data; 2806 struct kvm *kvm = dev->kvm; 2807 2808 kvm_put_kvm(kvm); 2809 return 0; 2810 } 2811 2812 static const struct file_operations kvm_device_fops = { 2813 .unlocked_ioctl = kvm_device_ioctl, 2814 #ifdef CONFIG_KVM_COMPAT 2815 .compat_ioctl = kvm_device_ioctl, 2816 #endif 2817 .release = kvm_device_release, 2818 }; 2819 2820 struct kvm_device *kvm_device_from_filp(struct file *filp) 2821 { 2822 if (filp->f_op != &kvm_device_fops) 2823 return NULL; 2824 2825 return filp->private_data; 2826 } 2827 2828 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2829 #ifdef CONFIG_KVM_MPIC 2830 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2831 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2832 #endif 2833 }; 2834 2835 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2836 { 2837 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2838 return -ENOSPC; 2839 2840 if (kvm_device_ops_table[type] != NULL) 2841 return -EEXIST; 2842 2843 kvm_device_ops_table[type] = ops; 2844 return 0; 2845 } 2846 2847 void kvm_unregister_device_ops(u32 type) 2848 { 2849 if (kvm_device_ops_table[type] != NULL) 2850 kvm_device_ops_table[type] = NULL; 2851 } 2852 2853 static int kvm_ioctl_create_device(struct kvm *kvm, 2854 struct kvm_create_device *cd) 2855 { 2856 struct kvm_device_ops *ops = NULL; 2857 struct kvm_device *dev; 2858 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2859 int ret; 2860 2861 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2862 return -ENODEV; 2863 2864 ops = kvm_device_ops_table[cd->type]; 2865 if (ops == NULL) 2866 return -ENODEV; 2867 2868 if (test) 2869 return 0; 2870 2871 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2872 if (!dev) 2873 return -ENOMEM; 2874 2875 dev->ops = ops; 2876 dev->kvm = kvm; 2877 2878 mutex_lock(&kvm->lock); 2879 ret = ops->create(dev, cd->type); 2880 if (ret < 0) { 2881 mutex_unlock(&kvm->lock); 2882 kfree(dev); 2883 return ret; 2884 } 2885 list_add(&dev->vm_node, &kvm->devices); 2886 mutex_unlock(&kvm->lock); 2887 2888 if (ops->init) 2889 ops->init(dev); 2890 2891 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2892 if (ret < 0) { 2893 mutex_lock(&kvm->lock); 2894 list_del(&dev->vm_node); 2895 mutex_unlock(&kvm->lock); 2896 ops->destroy(dev); 2897 return ret; 2898 } 2899 2900 kvm_get_kvm(kvm); 2901 cd->fd = ret; 2902 return 0; 2903 } 2904 2905 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2906 { 2907 switch (arg) { 2908 case KVM_CAP_USER_MEMORY: 2909 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2910 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2911 case KVM_CAP_INTERNAL_ERROR_DATA: 2912 #ifdef CONFIG_HAVE_KVM_MSI 2913 case KVM_CAP_SIGNAL_MSI: 2914 #endif 2915 #ifdef CONFIG_HAVE_KVM_IRQFD 2916 case KVM_CAP_IRQFD: 2917 case KVM_CAP_IRQFD_RESAMPLE: 2918 #endif 2919 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2920 case KVM_CAP_CHECK_EXTENSION_VM: 2921 return 1; 2922 #ifdef CONFIG_KVM_MMIO 2923 case KVM_CAP_COALESCED_MMIO: 2924 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2925 #endif 2926 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2927 case KVM_CAP_IRQ_ROUTING: 2928 return KVM_MAX_IRQ_ROUTES; 2929 #endif 2930 #if KVM_ADDRESS_SPACE_NUM > 1 2931 case KVM_CAP_MULTI_ADDRESS_SPACE: 2932 return KVM_ADDRESS_SPACE_NUM; 2933 #endif 2934 case KVM_CAP_MAX_VCPU_ID: 2935 return KVM_MAX_VCPU_ID; 2936 default: 2937 break; 2938 } 2939 return kvm_vm_ioctl_check_extension(kvm, arg); 2940 } 2941 2942 static long kvm_vm_ioctl(struct file *filp, 2943 unsigned int ioctl, unsigned long arg) 2944 { 2945 struct kvm *kvm = filp->private_data; 2946 void __user *argp = (void __user *)arg; 2947 int r; 2948 2949 if (kvm->mm != current->mm) 2950 return -EIO; 2951 switch (ioctl) { 2952 case KVM_CREATE_VCPU: 2953 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2954 break; 2955 case KVM_SET_USER_MEMORY_REGION: { 2956 struct kvm_userspace_memory_region kvm_userspace_mem; 2957 2958 r = -EFAULT; 2959 if (copy_from_user(&kvm_userspace_mem, argp, 2960 sizeof(kvm_userspace_mem))) 2961 goto out; 2962 2963 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2964 break; 2965 } 2966 case KVM_GET_DIRTY_LOG: { 2967 struct kvm_dirty_log log; 2968 2969 r = -EFAULT; 2970 if (copy_from_user(&log, argp, sizeof(log))) 2971 goto out; 2972 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2973 break; 2974 } 2975 #ifdef CONFIG_KVM_MMIO 2976 case KVM_REGISTER_COALESCED_MMIO: { 2977 struct kvm_coalesced_mmio_zone zone; 2978 2979 r = -EFAULT; 2980 if (copy_from_user(&zone, argp, sizeof(zone))) 2981 goto out; 2982 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2983 break; 2984 } 2985 case KVM_UNREGISTER_COALESCED_MMIO: { 2986 struct kvm_coalesced_mmio_zone zone; 2987 2988 r = -EFAULT; 2989 if (copy_from_user(&zone, argp, sizeof(zone))) 2990 goto out; 2991 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2992 break; 2993 } 2994 #endif 2995 case KVM_IRQFD: { 2996 struct kvm_irqfd data; 2997 2998 r = -EFAULT; 2999 if (copy_from_user(&data, argp, sizeof(data))) 3000 goto out; 3001 r = kvm_irqfd(kvm, &data); 3002 break; 3003 } 3004 case KVM_IOEVENTFD: { 3005 struct kvm_ioeventfd data; 3006 3007 r = -EFAULT; 3008 if (copy_from_user(&data, argp, sizeof(data))) 3009 goto out; 3010 r = kvm_ioeventfd(kvm, &data); 3011 break; 3012 } 3013 #ifdef CONFIG_HAVE_KVM_MSI 3014 case KVM_SIGNAL_MSI: { 3015 struct kvm_msi msi; 3016 3017 r = -EFAULT; 3018 if (copy_from_user(&msi, argp, sizeof(msi))) 3019 goto out; 3020 r = kvm_send_userspace_msi(kvm, &msi); 3021 break; 3022 } 3023 #endif 3024 #ifdef __KVM_HAVE_IRQ_LINE 3025 case KVM_IRQ_LINE_STATUS: 3026 case KVM_IRQ_LINE: { 3027 struct kvm_irq_level irq_event; 3028 3029 r = -EFAULT; 3030 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3031 goto out; 3032 3033 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3034 ioctl == KVM_IRQ_LINE_STATUS); 3035 if (r) 3036 goto out; 3037 3038 r = -EFAULT; 3039 if (ioctl == KVM_IRQ_LINE_STATUS) { 3040 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3041 goto out; 3042 } 3043 3044 r = 0; 3045 break; 3046 } 3047 #endif 3048 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3049 case KVM_SET_GSI_ROUTING: { 3050 struct kvm_irq_routing routing; 3051 struct kvm_irq_routing __user *urouting; 3052 struct kvm_irq_routing_entry *entries = NULL; 3053 3054 r = -EFAULT; 3055 if (copy_from_user(&routing, argp, sizeof(routing))) 3056 goto out; 3057 r = -EINVAL; 3058 if (!kvm_arch_can_set_irq_routing(kvm)) 3059 goto out; 3060 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3061 goto out; 3062 if (routing.flags) 3063 goto out; 3064 if (routing.nr) { 3065 r = -ENOMEM; 3066 entries = vmalloc(routing.nr * sizeof(*entries)); 3067 if (!entries) 3068 goto out; 3069 r = -EFAULT; 3070 urouting = argp; 3071 if (copy_from_user(entries, urouting->entries, 3072 routing.nr * sizeof(*entries))) 3073 goto out_free_irq_routing; 3074 } 3075 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3076 routing.flags); 3077 out_free_irq_routing: 3078 vfree(entries); 3079 break; 3080 } 3081 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3082 case KVM_CREATE_DEVICE: { 3083 struct kvm_create_device cd; 3084 3085 r = -EFAULT; 3086 if (copy_from_user(&cd, argp, sizeof(cd))) 3087 goto out; 3088 3089 r = kvm_ioctl_create_device(kvm, &cd); 3090 if (r) 3091 goto out; 3092 3093 r = -EFAULT; 3094 if (copy_to_user(argp, &cd, sizeof(cd))) 3095 goto out; 3096 3097 r = 0; 3098 break; 3099 } 3100 case KVM_CHECK_EXTENSION: 3101 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3102 break; 3103 default: 3104 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3105 } 3106 out: 3107 return r; 3108 } 3109 3110 #ifdef CONFIG_KVM_COMPAT 3111 struct compat_kvm_dirty_log { 3112 __u32 slot; 3113 __u32 padding1; 3114 union { 3115 compat_uptr_t dirty_bitmap; /* one bit per page */ 3116 __u64 padding2; 3117 }; 3118 }; 3119 3120 static long kvm_vm_compat_ioctl(struct file *filp, 3121 unsigned int ioctl, unsigned long arg) 3122 { 3123 struct kvm *kvm = filp->private_data; 3124 int r; 3125 3126 if (kvm->mm != current->mm) 3127 return -EIO; 3128 switch (ioctl) { 3129 case KVM_GET_DIRTY_LOG: { 3130 struct compat_kvm_dirty_log compat_log; 3131 struct kvm_dirty_log log; 3132 3133 if (copy_from_user(&compat_log, (void __user *)arg, 3134 sizeof(compat_log))) 3135 return -EFAULT; 3136 log.slot = compat_log.slot; 3137 log.padding1 = compat_log.padding1; 3138 log.padding2 = compat_log.padding2; 3139 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3140 3141 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3142 break; 3143 } 3144 default: 3145 r = kvm_vm_ioctl(filp, ioctl, arg); 3146 } 3147 return r; 3148 } 3149 #endif 3150 3151 static struct file_operations kvm_vm_fops = { 3152 .release = kvm_vm_release, 3153 .unlocked_ioctl = kvm_vm_ioctl, 3154 #ifdef CONFIG_KVM_COMPAT 3155 .compat_ioctl = kvm_vm_compat_ioctl, 3156 #endif 3157 .llseek = noop_llseek, 3158 }; 3159 3160 static int kvm_dev_ioctl_create_vm(unsigned long type) 3161 { 3162 int r; 3163 struct kvm *kvm; 3164 struct file *file; 3165 3166 kvm = kvm_create_vm(type); 3167 if (IS_ERR(kvm)) 3168 return PTR_ERR(kvm); 3169 #ifdef CONFIG_KVM_MMIO 3170 r = kvm_coalesced_mmio_init(kvm); 3171 if (r < 0) { 3172 kvm_put_kvm(kvm); 3173 return r; 3174 } 3175 #endif 3176 r = get_unused_fd_flags(O_CLOEXEC); 3177 if (r < 0) { 3178 kvm_put_kvm(kvm); 3179 return r; 3180 } 3181 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3182 if (IS_ERR(file)) { 3183 put_unused_fd(r); 3184 kvm_put_kvm(kvm); 3185 return PTR_ERR(file); 3186 } 3187 3188 /* 3189 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3190 * already set, with ->release() being kvm_vm_release(). In error 3191 * cases it will be called by the final fput(file) and will take 3192 * care of doing kvm_put_kvm(kvm). 3193 */ 3194 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3195 put_unused_fd(r); 3196 fput(file); 3197 return -ENOMEM; 3198 } 3199 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3200 3201 fd_install(r, file); 3202 return r; 3203 } 3204 3205 static long kvm_dev_ioctl(struct file *filp, 3206 unsigned int ioctl, unsigned long arg) 3207 { 3208 long r = -EINVAL; 3209 3210 switch (ioctl) { 3211 case KVM_GET_API_VERSION: 3212 if (arg) 3213 goto out; 3214 r = KVM_API_VERSION; 3215 break; 3216 case KVM_CREATE_VM: 3217 r = kvm_dev_ioctl_create_vm(arg); 3218 break; 3219 case KVM_CHECK_EXTENSION: 3220 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3221 break; 3222 case KVM_GET_VCPU_MMAP_SIZE: 3223 if (arg) 3224 goto out; 3225 r = PAGE_SIZE; /* struct kvm_run */ 3226 #ifdef CONFIG_X86 3227 r += PAGE_SIZE; /* pio data page */ 3228 #endif 3229 #ifdef CONFIG_KVM_MMIO 3230 r += PAGE_SIZE; /* coalesced mmio ring page */ 3231 #endif 3232 break; 3233 case KVM_TRACE_ENABLE: 3234 case KVM_TRACE_PAUSE: 3235 case KVM_TRACE_DISABLE: 3236 r = -EOPNOTSUPP; 3237 break; 3238 default: 3239 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3240 } 3241 out: 3242 return r; 3243 } 3244 3245 static struct file_operations kvm_chardev_ops = { 3246 .unlocked_ioctl = kvm_dev_ioctl, 3247 .compat_ioctl = kvm_dev_ioctl, 3248 .llseek = noop_llseek, 3249 }; 3250 3251 static struct miscdevice kvm_dev = { 3252 KVM_MINOR, 3253 "kvm", 3254 &kvm_chardev_ops, 3255 }; 3256 3257 static void hardware_enable_nolock(void *junk) 3258 { 3259 int cpu = raw_smp_processor_id(); 3260 int r; 3261 3262 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3263 return; 3264 3265 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3266 3267 r = kvm_arch_hardware_enable(); 3268 3269 if (r) { 3270 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3271 atomic_inc(&hardware_enable_failed); 3272 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3273 } 3274 } 3275 3276 static int kvm_starting_cpu(unsigned int cpu) 3277 { 3278 raw_spin_lock(&kvm_count_lock); 3279 if (kvm_usage_count) 3280 hardware_enable_nolock(NULL); 3281 raw_spin_unlock(&kvm_count_lock); 3282 return 0; 3283 } 3284 3285 static void hardware_disable_nolock(void *junk) 3286 { 3287 int cpu = raw_smp_processor_id(); 3288 3289 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3290 return; 3291 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3292 kvm_arch_hardware_disable(); 3293 } 3294 3295 static int kvm_dying_cpu(unsigned int cpu) 3296 { 3297 raw_spin_lock(&kvm_count_lock); 3298 if (kvm_usage_count) 3299 hardware_disable_nolock(NULL); 3300 raw_spin_unlock(&kvm_count_lock); 3301 return 0; 3302 } 3303 3304 static void hardware_disable_all_nolock(void) 3305 { 3306 BUG_ON(!kvm_usage_count); 3307 3308 kvm_usage_count--; 3309 if (!kvm_usage_count) 3310 on_each_cpu(hardware_disable_nolock, NULL, 1); 3311 } 3312 3313 static void hardware_disable_all(void) 3314 { 3315 raw_spin_lock(&kvm_count_lock); 3316 hardware_disable_all_nolock(); 3317 raw_spin_unlock(&kvm_count_lock); 3318 } 3319 3320 static int hardware_enable_all(void) 3321 { 3322 int r = 0; 3323 3324 raw_spin_lock(&kvm_count_lock); 3325 3326 kvm_usage_count++; 3327 if (kvm_usage_count == 1) { 3328 atomic_set(&hardware_enable_failed, 0); 3329 on_each_cpu(hardware_enable_nolock, NULL, 1); 3330 3331 if (atomic_read(&hardware_enable_failed)) { 3332 hardware_disable_all_nolock(); 3333 r = -EBUSY; 3334 } 3335 } 3336 3337 raw_spin_unlock(&kvm_count_lock); 3338 3339 return r; 3340 } 3341 3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3343 void *v) 3344 { 3345 /* 3346 * Some (well, at least mine) BIOSes hang on reboot if 3347 * in vmx root mode. 3348 * 3349 * And Intel TXT required VMX off for all cpu when system shutdown. 3350 */ 3351 pr_info("kvm: exiting hardware virtualization\n"); 3352 kvm_rebooting = true; 3353 on_each_cpu(hardware_disable_nolock, NULL, 1); 3354 return NOTIFY_OK; 3355 } 3356 3357 static struct notifier_block kvm_reboot_notifier = { 3358 .notifier_call = kvm_reboot, 3359 .priority = 0, 3360 }; 3361 3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3363 { 3364 int i; 3365 3366 for (i = 0; i < bus->dev_count; i++) { 3367 struct kvm_io_device *pos = bus->range[i].dev; 3368 3369 kvm_iodevice_destructor(pos); 3370 } 3371 kfree(bus); 3372 } 3373 3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3375 const struct kvm_io_range *r2) 3376 { 3377 gpa_t addr1 = r1->addr; 3378 gpa_t addr2 = r2->addr; 3379 3380 if (addr1 < addr2) 3381 return -1; 3382 3383 /* If r2->len == 0, match the exact address. If r2->len != 0, 3384 * accept any overlapping write. Any order is acceptable for 3385 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3386 * we process all of them. 3387 */ 3388 if (r2->len) { 3389 addr1 += r1->len; 3390 addr2 += r2->len; 3391 } 3392 3393 if (addr1 > addr2) 3394 return 1; 3395 3396 return 0; 3397 } 3398 3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3400 { 3401 return kvm_io_bus_cmp(p1, p2); 3402 } 3403 3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3405 gpa_t addr, int len) 3406 { 3407 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3408 .addr = addr, 3409 .len = len, 3410 .dev = dev, 3411 }; 3412 3413 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3414 kvm_io_bus_sort_cmp, NULL); 3415 3416 return 0; 3417 } 3418 3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3420 gpa_t addr, int len) 3421 { 3422 struct kvm_io_range *range, key; 3423 int off; 3424 3425 key = (struct kvm_io_range) { 3426 .addr = addr, 3427 .len = len, 3428 }; 3429 3430 range = bsearch(&key, bus->range, bus->dev_count, 3431 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3432 if (range == NULL) 3433 return -ENOENT; 3434 3435 off = range - bus->range; 3436 3437 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3438 off--; 3439 3440 return off; 3441 } 3442 3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3444 struct kvm_io_range *range, const void *val) 3445 { 3446 int idx; 3447 3448 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3449 if (idx < 0) 3450 return -EOPNOTSUPP; 3451 3452 while (idx < bus->dev_count && 3453 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3454 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3455 range->len, val)) 3456 return idx; 3457 idx++; 3458 } 3459 3460 return -EOPNOTSUPP; 3461 } 3462 3463 /* kvm_io_bus_write - called under kvm->slots_lock */ 3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3465 int len, const void *val) 3466 { 3467 struct kvm_io_bus *bus; 3468 struct kvm_io_range range; 3469 int r; 3470 3471 range = (struct kvm_io_range) { 3472 .addr = addr, 3473 .len = len, 3474 }; 3475 3476 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3477 if (!bus) 3478 return -ENOMEM; 3479 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3480 return r < 0 ? r : 0; 3481 } 3482 3483 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3484 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3485 gpa_t addr, int len, const void *val, long cookie) 3486 { 3487 struct kvm_io_bus *bus; 3488 struct kvm_io_range range; 3489 3490 range = (struct kvm_io_range) { 3491 .addr = addr, 3492 .len = len, 3493 }; 3494 3495 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3496 if (!bus) 3497 return -ENOMEM; 3498 3499 /* First try the device referenced by cookie. */ 3500 if ((cookie >= 0) && (cookie < bus->dev_count) && 3501 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3502 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3503 val)) 3504 return cookie; 3505 3506 /* 3507 * cookie contained garbage; fall back to search and return the 3508 * correct cookie value. 3509 */ 3510 return __kvm_io_bus_write(vcpu, bus, &range, val); 3511 } 3512 3513 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3514 struct kvm_io_range *range, void *val) 3515 { 3516 int idx; 3517 3518 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3519 if (idx < 0) 3520 return -EOPNOTSUPP; 3521 3522 while (idx < bus->dev_count && 3523 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3524 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3525 range->len, val)) 3526 return idx; 3527 idx++; 3528 } 3529 3530 return -EOPNOTSUPP; 3531 } 3532 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3533 3534 /* kvm_io_bus_read - called under kvm->slots_lock */ 3535 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3536 int len, void *val) 3537 { 3538 struct kvm_io_bus *bus; 3539 struct kvm_io_range range; 3540 int r; 3541 3542 range = (struct kvm_io_range) { 3543 .addr = addr, 3544 .len = len, 3545 }; 3546 3547 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3548 if (!bus) 3549 return -ENOMEM; 3550 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3551 return r < 0 ? r : 0; 3552 } 3553 3554 3555 /* Caller must hold slots_lock. */ 3556 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3557 int len, struct kvm_io_device *dev) 3558 { 3559 struct kvm_io_bus *new_bus, *bus; 3560 3561 bus = kvm_get_bus(kvm, bus_idx); 3562 if (!bus) 3563 return -ENOMEM; 3564 3565 /* exclude ioeventfd which is limited by maximum fd */ 3566 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3567 return -ENOSPC; 3568 3569 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3570 sizeof(struct kvm_io_range)), GFP_KERNEL); 3571 if (!new_bus) 3572 return -ENOMEM; 3573 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3574 sizeof(struct kvm_io_range))); 3575 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3576 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3577 synchronize_srcu_expedited(&kvm->srcu); 3578 kfree(bus); 3579 3580 return 0; 3581 } 3582 3583 /* Caller must hold slots_lock. */ 3584 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3585 struct kvm_io_device *dev) 3586 { 3587 int i; 3588 struct kvm_io_bus *new_bus, *bus; 3589 3590 bus = kvm_get_bus(kvm, bus_idx); 3591 if (!bus) 3592 return; 3593 3594 for (i = 0; i < bus->dev_count; i++) 3595 if (bus->range[i].dev == dev) { 3596 break; 3597 } 3598 3599 if (i == bus->dev_count) 3600 return; 3601 3602 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3603 sizeof(struct kvm_io_range)), GFP_KERNEL); 3604 if (!new_bus) { 3605 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3606 goto broken; 3607 } 3608 3609 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3610 new_bus->dev_count--; 3611 memcpy(new_bus->range + i, bus->range + i + 1, 3612 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3613 3614 broken: 3615 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3616 synchronize_srcu_expedited(&kvm->srcu); 3617 kfree(bus); 3618 return; 3619 } 3620 3621 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3622 gpa_t addr) 3623 { 3624 struct kvm_io_bus *bus; 3625 int dev_idx, srcu_idx; 3626 struct kvm_io_device *iodev = NULL; 3627 3628 srcu_idx = srcu_read_lock(&kvm->srcu); 3629 3630 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3631 if (!bus) 3632 goto out_unlock; 3633 3634 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3635 if (dev_idx < 0) 3636 goto out_unlock; 3637 3638 iodev = bus->range[dev_idx].dev; 3639 3640 out_unlock: 3641 srcu_read_unlock(&kvm->srcu, srcu_idx); 3642 3643 return iodev; 3644 } 3645 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3646 3647 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3648 int (*get)(void *, u64 *), int (*set)(void *, u64), 3649 const char *fmt) 3650 { 3651 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3652 inode->i_private; 3653 3654 /* The debugfs files are a reference to the kvm struct which 3655 * is still valid when kvm_destroy_vm is called. 3656 * To avoid the race between open and the removal of the debugfs 3657 * directory we test against the users count. 3658 */ 3659 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3660 return -ENOENT; 3661 3662 if (simple_attr_open(inode, file, get, set, fmt)) { 3663 kvm_put_kvm(stat_data->kvm); 3664 return -ENOMEM; 3665 } 3666 3667 return 0; 3668 } 3669 3670 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3671 { 3672 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3673 inode->i_private; 3674 3675 simple_attr_release(inode, file); 3676 kvm_put_kvm(stat_data->kvm); 3677 3678 return 0; 3679 } 3680 3681 static int vm_stat_get_per_vm(void *data, u64 *val) 3682 { 3683 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3684 3685 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3686 3687 return 0; 3688 } 3689 3690 static int vm_stat_clear_per_vm(void *data, u64 val) 3691 { 3692 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3693 3694 if (val) 3695 return -EINVAL; 3696 3697 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3698 3699 return 0; 3700 } 3701 3702 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3703 { 3704 __simple_attr_check_format("%llu\n", 0ull); 3705 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3706 vm_stat_clear_per_vm, "%llu\n"); 3707 } 3708 3709 static const struct file_operations vm_stat_get_per_vm_fops = { 3710 .owner = THIS_MODULE, 3711 .open = vm_stat_get_per_vm_open, 3712 .release = kvm_debugfs_release, 3713 .read = simple_attr_read, 3714 .write = simple_attr_write, 3715 .llseek = no_llseek, 3716 }; 3717 3718 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3719 { 3720 int i; 3721 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3722 struct kvm_vcpu *vcpu; 3723 3724 *val = 0; 3725 3726 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3727 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3728 3729 return 0; 3730 } 3731 3732 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3733 { 3734 int i; 3735 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3736 struct kvm_vcpu *vcpu; 3737 3738 if (val) 3739 return -EINVAL; 3740 3741 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3742 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3743 3744 return 0; 3745 } 3746 3747 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3748 { 3749 __simple_attr_check_format("%llu\n", 0ull); 3750 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3751 vcpu_stat_clear_per_vm, "%llu\n"); 3752 } 3753 3754 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3755 .owner = THIS_MODULE, 3756 .open = vcpu_stat_get_per_vm_open, 3757 .release = kvm_debugfs_release, 3758 .read = simple_attr_read, 3759 .write = simple_attr_write, 3760 .llseek = no_llseek, 3761 }; 3762 3763 static const struct file_operations *stat_fops_per_vm[] = { 3764 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3765 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3766 }; 3767 3768 static int vm_stat_get(void *_offset, u64 *val) 3769 { 3770 unsigned offset = (long)_offset; 3771 struct kvm *kvm; 3772 struct kvm_stat_data stat_tmp = {.offset = offset}; 3773 u64 tmp_val; 3774 3775 *val = 0; 3776 spin_lock(&kvm_lock); 3777 list_for_each_entry(kvm, &vm_list, vm_list) { 3778 stat_tmp.kvm = kvm; 3779 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3780 *val += tmp_val; 3781 } 3782 spin_unlock(&kvm_lock); 3783 return 0; 3784 } 3785 3786 static int vm_stat_clear(void *_offset, u64 val) 3787 { 3788 unsigned offset = (long)_offset; 3789 struct kvm *kvm; 3790 struct kvm_stat_data stat_tmp = {.offset = offset}; 3791 3792 if (val) 3793 return -EINVAL; 3794 3795 spin_lock(&kvm_lock); 3796 list_for_each_entry(kvm, &vm_list, vm_list) { 3797 stat_tmp.kvm = kvm; 3798 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3799 } 3800 spin_unlock(&kvm_lock); 3801 3802 return 0; 3803 } 3804 3805 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3806 3807 static int vcpu_stat_get(void *_offset, u64 *val) 3808 { 3809 unsigned offset = (long)_offset; 3810 struct kvm *kvm; 3811 struct kvm_stat_data stat_tmp = {.offset = offset}; 3812 u64 tmp_val; 3813 3814 *val = 0; 3815 spin_lock(&kvm_lock); 3816 list_for_each_entry(kvm, &vm_list, vm_list) { 3817 stat_tmp.kvm = kvm; 3818 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3819 *val += tmp_val; 3820 } 3821 spin_unlock(&kvm_lock); 3822 return 0; 3823 } 3824 3825 static int vcpu_stat_clear(void *_offset, u64 val) 3826 { 3827 unsigned offset = (long)_offset; 3828 struct kvm *kvm; 3829 struct kvm_stat_data stat_tmp = {.offset = offset}; 3830 3831 if (val) 3832 return -EINVAL; 3833 3834 spin_lock(&kvm_lock); 3835 list_for_each_entry(kvm, &vm_list, vm_list) { 3836 stat_tmp.kvm = kvm; 3837 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3838 } 3839 spin_unlock(&kvm_lock); 3840 3841 return 0; 3842 } 3843 3844 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3845 "%llu\n"); 3846 3847 static const struct file_operations *stat_fops[] = { 3848 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3849 [KVM_STAT_VM] = &vm_stat_fops, 3850 }; 3851 3852 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3853 { 3854 struct kobj_uevent_env *env; 3855 unsigned long long created, active; 3856 3857 if (!kvm_dev.this_device || !kvm) 3858 return; 3859 3860 spin_lock(&kvm_lock); 3861 if (type == KVM_EVENT_CREATE_VM) { 3862 kvm_createvm_count++; 3863 kvm_active_vms++; 3864 } else if (type == KVM_EVENT_DESTROY_VM) { 3865 kvm_active_vms--; 3866 } 3867 created = kvm_createvm_count; 3868 active = kvm_active_vms; 3869 spin_unlock(&kvm_lock); 3870 3871 env = kzalloc(sizeof(*env), GFP_KERNEL); 3872 if (!env) 3873 return; 3874 3875 add_uevent_var(env, "CREATED=%llu", created); 3876 add_uevent_var(env, "COUNT=%llu", active); 3877 3878 if (type == KVM_EVENT_CREATE_VM) { 3879 add_uevent_var(env, "EVENT=create"); 3880 kvm->userspace_pid = task_pid_nr(current); 3881 } else if (type == KVM_EVENT_DESTROY_VM) { 3882 add_uevent_var(env, "EVENT=destroy"); 3883 } 3884 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 3885 3886 if (kvm->debugfs_dentry) { 3887 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 3888 3889 if (p) { 3890 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 3891 if (!IS_ERR(tmp)) 3892 add_uevent_var(env, "STATS_PATH=%s", tmp); 3893 kfree(p); 3894 } 3895 } 3896 /* no need for checks, since we are adding at most only 5 keys */ 3897 env->envp[env->envp_idx++] = NULL; 3898 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3899 kfree(env); 3900 } 3901 3902 static int kvm_init_debug(void) 3903 { 3904 int r = -EEXIST; 3905 struct kvm_stats_debugfs_item *p; 3906 3907 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3908 if (kvm_debugfs_dir == NULL) 3909 goto out; 3910 3911 kvm_debugfs_num_entries = 0; 3912 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3913 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3914 (void *)(long)p->offset, 3915 stat_fops[p->kind])) 3916 goto out_dir; 3917 } 3918 3919 return 0; 3920 3921 out_dir: 3922 debugfs_remove_recursive(kvm_debugfs_dir); 3923 out: 3924 return r; 3925 } 3926 3927 static int kvm_suspend(void) 3928 { 3929 if (kvm_usage_count) 3930 hardware_disable_nolock(NULL); 3931 return 0; 3932 } 3933 3934 static void kvm_resume(void) 3935 { 3936 if (kvm_usage_count) { 3937 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3938 hardware_enable_nolock(NULL); 3939 } 3940 } 3941 3942 static struct syscore_ops kvm_syscore_ops = { 3943 .suspend = kvm_suspend, 3944 .resume = kvm_resume, 3945 }; 3946 3947 static inline 3948 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3949 { 3950 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3951 } 3952 3953 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3954 { 3955 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3956 3957 if (vcpu->preempted) 3958 vcpu->preempted = false; 3959 3960 kvm_arch_sched_in(vcpu, cpu); 3961 3962 kvm_arch_vcpu_load(vcpu, cpu); 3963 } 3964 3965 static void kvm_sched_out(struct preempt_notifier *pn, 3966 struct task_struct *next) 3967 { 3968 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3969 3970 if (current->state == TASK_RUNNING) 3971 vcpu->preempted = true; 3972 kvm_arch_vcpu_put(vcpu); 3973 } 3974 3975 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3976 struct module *module) 3977 { 3978 int r; 3979 int cpu; 3980 3981 r = kvm_arch_init(opaque); 3982 if (r) 3983 goto out_fail; 3984 3985 /* 3986 * kvm_arch_init makes sure there's at most one caller 3987 * for architectures that support multiple implementations, 3988 * like intel and amd on x86. 3989 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3990 * conflicts in case kvm is already setup for another implementation. 3991 */ 3992 r = kvm_irqfd_init(); 3993 if (r) 3994 goto out_irqfd; 3995 3996 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3997 r = -ENOMEM; 3998 goto out_free_0; 3999 } 4000 4001 r = kvm_arch_hardware_setup(); 4002 if (r < 0) 4003 goto out_free_0a; 4004 4005 for_each_online_cpu(cpu) { 4006 smp_call_function_single(cpu, 4007 kvm_arch_check_processor_compat, 4008 &r, 1); 4009 if (r < 0) 4010 goto out_free_1; 4011 } 4012 4013 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4014 kvm_starting_cpu, kvm_dying_cpu); 4015 if (r) 4016 goto out_free_2; 4017 register_reboot_notifier(&kvm_reboot_notifier); 4018 4019 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4020 if (!vcpu_align) 4021 vcpu_align = __alignof__(struct kvm_vcpu); 4022 kvm_vcpu_cache = 4023 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4024 SLAB_ACCOUNT, 4025 offsetof(struct kvm_vcpu, arch), 4026 sizeof_field(struct kvm_vcpu, arch), 4027 NULL); 4028 if (!kvm_vcpu_cache) { 4029 r = -ENOMEM; 4030 goto out_free_3; 4031 } 4032 4033 r = kvm_async_pf_init(); 4034 if (r) 4035 goto out_free; 4036 4037 kvm_chardev_ops.owner = module; 4038 kvm_vm_fops.owner = module; 4039 kvm_vcpu_fops.owner = module; 4040 4041 r = misc_register(&kvm_dev); 4042 if (r) { 4043 pr_err("kvm: misc device register failed\n"); 4044 goto out_unreg; 4045 } 4046 4047 register_syscore_ops(&kvm_syscore_ops); 4048 4049 kvm_preempt_ops.sched_in = kvm_sched_in; 4050 kvm_preempt_ops.sched_out = kvm_sched_out; 4051 4052 r = kvm_init_debug(); 4053 if (r) { 4054 pr_err("kvm: create debugfs files failed\n"); 4055 goto out_undebugfs; 4056 } 4057 4058 r = kvm_vfio_ops_init(); 4059 WARN_ON(r); 4060 4061 return 0; 4062 4063 out_undebugfs: 4064 unregister_syscore_ops(&kvm_syscore_ops); 4065 misc_deregister(&kvm_dev); 4066 out_unreg: 4067 kvm_async_pf_deinit(); 4068 out_free: 4069 kmem_cache_destroy(kvm_vcpu_cache); 4070 out_free_3: 4071 unregister_reboot_notifier(&kvm_reboot_notifier); 4072 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4073 out_free_2: 4074 out_free_1: 4075 kvm_arch_hardware_unsetup(); 4076 out_free_0a: 4077 free_cpumask_var(cpus_hardware_enabled); 4078 out_free_0: 4079 kvm_irqfd_exit(); 4080 out_irqfd: 4081 kvm_arch_exit(); 4082 out_fail: 4083 return r; 4084 } 4085 EXPORT_SYMBOL_GPL(kvm_init); 4086 4087 void kvm_exit(void) 4088 { 4089 debugfs_remove_recursive(kvm_debugfs_dir); 4090 misc_deregister(&kvm_dev); 4091 kmem_cache_destroy(kvm_vcpu_cache); 4092 kvm_async_pf_deinit(); 4093 unregister_syscore_ops(&kvm_syscore_ops); 4094 unregister_reboot_notifier(&kvm_reboot_notifier); 4095 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4096 on_each_cpu(hardware_disable_nolock, NULL, 1); 4097 kvm_arch_hardware_unsetup(); 4098 kvm_arch_exit(); 4099 kvm_irqfd_exit(); 4100 free_cpumask_var(cpus_hardware_enabled); 4101 kvm_vfio_ops_exit(); 4102 } 4103 EXPORT_SYMBOL_GPL(kvm_exit); 4104