xref: /linux/virt/kvm/kvm_main.c (revision 55223394d56bab42ebac71ba52e0fd8bfdc6fc07)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88 
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93 
94 /*
95  * Ordering of locks:
96  *
97  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99 
100 DEFINE_SPINLOCK(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103 
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107 
108 struct kmem_cache *kvm_vcpu_cache;
109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
110 
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations *stat_fops_per_vm[];
118 
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 			   unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 				  unsigned long arg);
124 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
125 #else
126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127 				unsigned long arg) { return -EINVAL; }
128 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
129 #endif
130 static int hardware_enable_all(void);
131 static void hardware_disable_all(void);
132 
133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
134 
135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
136 
137 __visible bool kvm_rebooting;
138 EXPORT_SYMBOL_GPL(kvm_rebooting);
139 
140 static bool largepages_enabled = true;
141 
142 #define KVM_EVENT_CREATE_VM 0
143 #define KVM_EVENT_DESTROY_VM 1
144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145 static unsigned long long kvm_createvm_count;
146 static unsigned long long kvm_active_vms;
147 
148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149 		unsigned long start, unsigned long end, bool blockable)
150 {
151 	return 0;
152 }
153 
154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
155 {
156 	if (pfn_valid(pfn))
157 		return PageReserved(pfn_to_page(pfn));
158 
159 	return true;
160 }
161 
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167 	int cpu = get_cpu();
168 	preempt_notifier_register(&vcpu->preempt_notifier);
169 	kvm_arch_vcpu_load(vcpu, cpu);
170 	put_cpu();
171 }
172 EXPORT_SYMBOL_GPL(vcpu_load);
173 
174 void vcpu_put(struct kvm_vcpu *vcpu)
175 {
176 	preempt_disable();
177 	kvm_arch_vcpu_put(vcpu);
178 	preempt_notifier_unregister(&vcpu->preempt_notifier);
179 	preempt_enable();
180 }
181 EXPORT_SYMBOL_GPL(vcpu_put);
182 
183 /* TODO: merge with kvm_arch_vcpu_should_kick */
184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185 {
186 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187 
188 	/*
189 	 * We need to wait for the VCPU to reenable interrupts and get out of
190 	 * READING_SHADOW_PAGE_TABLES mode.
191 	 */
192 	if (req & KVM_REQUEST_WAIT)
193 		return mode != OUTSIDE_GUEST_MODE;
194 
195 	/*
196 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
197 	 */
198 	return mode == IN_GUEST_MODE;
199 }
200 
201 static void ack_flush(void *_completed)
202 {
203 }
204 
205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206 {
207 	if (unlikely(!cpus))
208 		cpus = cpu_online_mask;
209 
210 	if (cpumask_empty(cpus))
211 		return false;
212 
213 	smp_call_function_many(cpus, ack_flush, NULL, wait);
214 	return true;
215 }
216 
217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
219 {
220 	int i, cpu, me;
221 	struct kvm_vcpu *vcpu;
222 	bool called;
223 
224 	me = get_cpu();
225 
226 	kvm_for_each_vcpu(i, vcpu, kvm) {
227 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
228 			continue;
229 
230 		kvm_make_request(req, vcpu);
231 		cpu = vcpu->cpu;
232 
233 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234 			continue;
235 
236 		if (tmp != NULL && cpu != -1 && cpu != me &&
237 		    kvm_request_needs_ipi(vcpu, req))
238 			__cpumask_set_cpu(cpu, tmp);
239 	}
240 
241 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242 	put_cpu();
243 
244 	return called;
245 }
246 
247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248 {
249 	cpumask_var_t cpus;
250 	bool called;
251 
252 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253 
254 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
255 
256 	free_cpumask_var(cpus);
257 	return called;
258 }
259 
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263 	/*
264 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265 	 * kvm_make_all_cpus_request.
266 	 */
267 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268 
269 	/*
270 	 * We want to publish modifications to the page tables before reading
271 	 * mode. Pairs with a memory barrier in arch-specific code.
272 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
274 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275 	 *
276 	 * There is already an smp_mb__after_atomic() before
277 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278 	 * barrier here.
279 	 */
280 	if (!kvm_arch_flush_remote_tlb(kvm)
281 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
282 		++kvm->stat.remote_tlb_flush;
283 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
284 }
285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
286 #endif
287 
288 void kvm_reload_remote_mmus(struct kvm *kvm)
289 {
290 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 }
292 
293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294 {
295 	struct page *page;
296 	int r;
297 
298 	mutex_init(&vcpu->mutex);
299 	vcpu->cpu = -1;
300 	vcpu->kvm = kvm;
301 	vcpu->vcpu_id = id;
302 	vcpu->pid = NULL;
303 	init_swait_queue_head(&vcpu->wq);
304 	kvm_async_pf_vcpu_init(vcpu);
305 
306 	vcpu->pre_pcpu = -1;
307 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308 
309 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310 	if (!page) {
311 		r = -ENOMEM;
312 		goto fail;
313 	}
314 	vcpu->run = page_address(page);
315 
316 	kvm_vcpu_set_in_spin_loop(vcpu, false);
317 	kvm_vcpu_set_dy_eligible(vcpu, false);
318 	vcpu->preempted = false;
319 
320 	r = kvm_arch_vcpu_init(vcpu);
321 	if (r < 0)
322 		goto fail_free_run;
323 	return 0;
324 
325 fail_free_run:
326 	free_page((unsigned long)vcpu->run);
327 fail:
328 	return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331 
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334 	/*
335 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
336 	 * will change the vcpu->pid pointer and on uninit all file
337 	 * descriptors are already gone.
338 	 */
339 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
340 	kvm_arch_vcpu_uninit(vcpu);
341 	free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344 
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348 	return container_of(mn, struct kvm, mmu_notifier);
349 }
350 
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352 					struct mm_struct *mm,
353 					unsigned long address,
354 					pte_t pte)
355 {
356 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
357 	int idx;
358 
359 	idx = srcu_read_lock(&kvm->srcu);
360 	spin_lock(&kvm->mmu_lock);
361 	kvm->mmu_notifier_seq++;
362 
363 	if (kvm_set_spte_hva(kvm, address, pte))
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371 					const struct mmu_notifier_range *range)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int need_tlb_flush = 0, idx;
375 	int ret;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 	/*
380 	 * The count increase must become visible at unlock time as no
381 	 * spte can be established without taking the mmu_lock and
382 	 * count is also read inside the mmu_lock critical section.
383 	 */
384 	kvm->mmu_notifier_count++;
385 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386 	need_tlb_flush |= kvm->tlbs_dirty;
387 	/* we've to flush the tlb before the pages can be freed */
388 	if (need_tlb_flush)
389 		kvm_flush_remote_tlbs(kvm);
390 
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394 					range->end, range->blockable);
395 
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return ret;
399 }
400 
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402 					const struct mmu_notifier_range *range)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 
406 	spin_lock(&kvm->mmu_lock);
407 	/*
408 	 * This sequence increase will notify the kvm page fault that
409 	 * the page that is going to be mapped in the spte could have
410 	 * been freed.
411 	 */
412 	kvm->mmu_notifier_seq++;
413 	smp_wmb();
414 	/*
415 	 * The above sequence increase must be visible before the
416 	 * below count decrease, which is ensured by the smp_wmb above
417 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
418 	 */
419 	kvm->mmu_notifier_count--;
420 	spin_unlock(&kvm->mmu_lock);
421 
422 	BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424 
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426 					      struct mm_struct *mm,
427 					      unsigned long start,
428 					      unsigned long end)
429 {
430 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
431 	int young, idx;
432 
433 	idx = srcu_read_lock(&kvm->srcu);
434 	spin_lock(&kvm->mmu_lock);
435 
436 	young = kvm_age_hva(kvm, start, end);
437 	if (young)
438 		kvm_flush_remote_tlbs(kvm);
439 
440 	spin_unlock(&kvm->mmu_lock);
441 	srcu_read_unlock(&kvm->srcu, idx);
442 
443 	return young;
444 }
445 
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447 					struct mm_struct *mm,
448 					unsigned long start,
449 					unsigned long end)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	/*
457 	 * Even though we do not flush TLB, this will still adversely
458 	 * affect performance on pre-Haswell Intel EPT, where there is
459 	 * no EPT Access Bit to clear so that we have to tear down EPT
460 	 * tables instead. If we find this unacceptable, we can always
461 	 * add a parameter to kvm_age_hva so that it effectively doesn't
462 	 * do anything on clear_young.
463 	 *
464 	 * Also note that currently we never issue secondary TLB flushes
465 	 * from clear_young, leaving this job up to the regular system
466 	 * cadence. If we find this inaccurate, we might come up with a
467 	 * more sophisticated heuristic later.
468 	 */
469 	young = kvm_age_hva(kvm, start, end);
470 	spin_unlock(&kvm->mmu_lock);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 
473 	return young;
474 }
475 
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477 				       struct mm_struct *mm,
478 				       unsigned long address)
479 {
480 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 	int young, idx;
482 
483 	idx = srcu_read_lock(&kvm->srcu);
484 	spin_lock(&kvm->mmu_lock);
485 	young = kvm_test_age_hva(kvm, address);
486 	spin_unlock(&kvm->mmu_lock);
487 	srcu_read_unlock(&kvm->srcu, idx);
488 
489 	return young;
490 }
491 
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493 				     struct mm_struct *mm)
494 {
495 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
496 	int idx;
497 
498 	idx = srcu_read_lock(&kvm->srcu);
499 	kvm_arch_flush_shadow_all(kvm);
500 	srcu_read_unlock(&kvm->srcu, idx);
501 }
502 
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
505 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
506 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
507 	.clear_young		= kvm_mmu_notifier_clear_young,
508 	.test_young		= kvm_mmu_notifier_test_young,
509 	.change_pte		= kvm_mmu_notifier_change_pte,
510 	.release		= kvm_mmu_notifier_release,
511 };
512 
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518 
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523 	return 0;
524 }
525 
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530 	int i;
531 	struct kvm_memslots *slots;
532 
533 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534 	if (!slots)
535 		return NULL;
536 
537 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538 		slots->id_to_index[i] = slots->memslots[i].id = i;
539 
540 	return slots;
541 }
542 
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 	if (!memslot->dirty_bitmap)
546 		return;
547 
548 	kvfree(memslot->dirty_bitmap);
549 	memslot->dirty_bitmap = NULL;
550 }
551 
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556 			      struct kvm_memory_slot *dont)
557 {
558 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 		kvm_destroy_dirty_bitmap(free);
560 
561 	kvm_arch_free_memslot(kvm, free, dont);
562 
563 	free->npages = 0;
564 }
565 
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568 	struct kvm_memory_slot *memslot;
569 
570 	if (!slots)
571 		return;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_memslot(kvm, memslot, NULL);
575 
576 	kvfree(slots);
577 }
578 
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581 	int i;
582 
583 	if (!kvm->debugfs_dentry)
584 		return;
585 
586 	debugfs_remove_recursive(kvm->debugfs_dentry);
587 
588 	if (kvm->debugfs_stat_data) {
589 		for (i = 0; i < kvm_debugfs_num_entries; i++)
590 			kfree(kvm->debugfs_stat_data[i]);
591 		kfree(kvm->debugfs_stat_data);
592 	}
593 }
594 
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597 	char dir_name[ITOA_MAX_LEN * 2];
598 	struct kvm_stat_data *stat_data;
599 	struct kvm_stats_debugfs_item *p;
600 
601 	if (!debugfs_initialized())
602 		return 0;
603 
604 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606 
607 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608 					 sizeof(*kvm->debugfs_stat_data),
609 					 GFP_KERNEL_ACCOUNT);
610 	if (!kvm->debugfs_stat_data)
611 		return -ENOMEM;
612 
613 	for (p = debugfs_entries; p->name; p++) {
614 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615 		if (!stat_data)
616 			return -ENOMEM;
617 
618 		stat_data->kvm = kvm;
619 		stat_data->offset = p->offset;
620 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
621 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
622 				    stat_data, stat_fops_per_vm[p->kind]);
623 	}
624 	return 0;
625 }
626 
627 static struct kvm *kvm_create_vm(unsigned long type)
628 {
629 	int r, i;
630 	struct kvm *kvm = kvm_arch_alloc_vm();
631 
632 	if (!kvm)
633 		return ERR_PTR(-ENOMEM);
634 
635 	spin_lock_init(&kvm->mmu_lock);
636 	mmgrab(current->mm);
637 	kvm->mm = current->mm;
638 	kvm_eventfd_init(kvm);
639 	mutex_init(&kvm->lock);
640 	mutex_init(&kvm->irq_lock);
641 	mutex_init(&kvm->slots_lock);
642 	refcount_set(&kvm->users_count, 1);
643 	INIT_LIST_HEAD(&kvm->devices);
644 
645 	r = kvm_arch_init_vm(kvm, type);
646 	if (r)
647 		goto out_err_no_disable;
648 
649 	r = hardware_enable_all();
650 	if (r)
651 		goto out_err_no_disable;
652 
653 #ifdef CONFIG_HAVE_KVM_IRQFD
654 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
655 #endif
656 
657 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658 
659 	r = -ENOMEM;
660 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
661 		struct kvm_memslots *slots = kvm_alloc_memslots();
662 		if (!slots)
663 			goto out_err_no_srcu;
664 		/* Generations must be different for each address space. */
665 		slots->generation = i;
666 		rcu_assign_pointer(kvm->memslots[i], slots);
667 	}
668 
669 	if (init_srcu_struct(&kvm->srcu))
670 		goto out_err_no_srcu;
671 	if (init_srcu_struct(&kvm->irq_srcu))
672 		goto out_err_no_irq_srcu;
673 	for (i = 0; i < KVM_NR_BUSES; i++) {
674 		rcu_assign_pointer(kvm->buses[i],
675 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
676 		if (!kvm->buses[i])
677 			goto out_err;
678 	}
679 
680 	r = kvm_init_mmu_notifier(kvm);
681 	if (r)
682 		goto out_err;
683 
684 	spin_lock(&kvm_lock);
685 	list_add(&kvm->vm_list, &vm_list);
686 	spin_unlock(&kvm_lock);
687 
688 	preempt_notifier_inc();
689 
690 	return kvm;
691 
692 out_err:
693 	cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695 	cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697 	hardware_disable_all();
698 out_err_no_disable:
699 	refcount_set(&kvm->users_count, 0);
700 	for (i = 0; i < KVM_NR_BUSES; i++)
701 		kfree(kvm_get_bus(kvm, i));
702 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704 	kvm_arch_free_vm(kvm);
705 	mmdrop(current->mm);
706 	return ERR_PTR(r);
707 }
708 
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711 	struct kvm_device *dev, *tmp;
712 
713 	/*
714 	 * We do not need to take the kvm->lock here, because nobody else
715 	 * has a reference to the struct kvm at this point and therefore
716 	 * cannot access the devices list anyhow.
717 	 */
718 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 		list_del(&dev->vm_node);
720 		dev->ops->destroy(dev);
721 	}
722 }
723 
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726 	int i;
727 	struct mm_struct *mm = kvm->mm;
728 
729 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730 	kvm_destroy_vm_debugfs(kvm);
731 	kvm_arch_sync_events(kvm);
732 	spin_lock(&kvm_lock);
733 	list_del(&kvm->vm_list);
734 	spin_unlock(&kvm_lock);
735 	kvm_free_irq_routing(kvm);
736 	for (i = 0; i < KVM_NR_BUSES; i++) {
737 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738 
739 		if (bus)
740 			kvm_io_bus_destroy(bus);
741 		kvm->buses[i] = NULL;
742 	}
743 	kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747 	kvm_arch_flush_shadow_all(kvm);
748 #endif
749 	kvm_arch_destroy_vm(kvm);
750 	kvm_destroy_devices(kvm);
751 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753 	cleanup_srcu_struct(&kvm->irq_srcu);
754 	cleanup_srcu_struct(&kvm->srcu);
755 	kvm_arch_free_vm(kvm);
756 	preempt_notifier_dec();
757 	hardware_disable_all();
758 	mmdrop(mm);
759 }
760 
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763 	refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766 
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769 	if (refcount_dec_and_test(&kvm->users_count))
770 		kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773 
774 
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777 	struct kvm *kvm = filp->private_data;
778 
779 	kvm_irqfd_release(kvm);
780 
781 	kvm_put_kvm(kvm);
782 	return 0;
783 }
784 
785 /*
786  * Allocation size is twice as large as the actual dirty bitmap size.
787  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788  */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792 
793 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
794 	if (!memslot->dirty_bitmap)
795 		return -ENOMEM;
796 
797 	return 0;
798 }
799 
800 /*
801  * Insert memslot and re-sort memslots based on their GFN,
802  * so binary search could be used to lookup GFN.
803  * Sorting algorithm takes advantage of having initially
804  * sorted array and known changed memslot position.
805  */
806 static void update_memslots(struct kvm_memslots *slots,
807 			    struct kvm_memory_slot *new,
808 			    enum kvm_mr_change change)
809 {
810 	int id = new->id;
811 	int i = slots->id_to_index[id];
812 	struct kvm_memory_slot *mslots = slots->memslots;
813 
814 	WARN_ON(mslots[i].id != id);
815 	switch (change) {
816 	case KVM_MR_CREATE:
817 		slots->used_slots++;
818 		WARN_ON(mslots[i].npages || !new->npages);
819 		break;
820 	case KVM_MR_DELETE:
821 		slots->used_slots--;
822 		WARN_ON(new->npages || !mslots[i].npages);
823 		break;
824 	default:
825 		break;
826 	}
827 
828 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
829 	       new->base_gfn <= mslots[i + 1].base_gfn) {
830 		if (!mslots[i + 1].npages)
831 			break;
832 		mslots[i] = mslots[i + 1];
833 		slots->id_to_index[mslots[i].id] = i;
834 		i++;
835 	}
836 
837 	/*
838 	 * The ">=" is needed when creating a slot with base_gfn == 0,
839 	 * so that it moves before all those with base_gfn == npages == 0.
840 	 *
841 	 * On the other hand, if new->npages is zero, the above loop has
842 	 * already left i pointing to the beginning of the empty part of
843 	 * mslots, and the ">=" would move the hole backwards in this
844 	 * case---which is wrong.  So skip the loop when deleting a slot.
845 	 */
846 	if (new->npages) {
847 		while (i > 0 &&
848 		       new->base_gfn >= mslots[i - 1].base_gfn) {
849 			mslots[i] = mslots[i - 1];
850 			slots->id_to_index[mslots[i].id] = i;
851 			i--;
852 		}
853 	} else
854 		WARN_ON_ONCE(i != slots->used_slots);
855 
856 	mslots[i] = *new;
857 	slots->id_to_index[mslots[i].id] = i;
858 }
859 
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863 
864 #ifdef __KVM_HAVE_READONLY_MEM
865 	valid_flags |= KVM_MEM_READONLY;
866 #endif
867 
868 	if (mem->flags & ~valid_flags)
869 		return -EINVAL;
870 
871 	return 0;
872 }
873 
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875 		int as_id, struct kvm_memslots *slots)
876 {
877 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878 	u64 gen = old_memslots->generation;
879 
880 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
881 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
882 
883 	rcu_assign_pointer(kvm->memslots[as_id], slots);
884 	synchronize_srcu_expedited(&kvm->srcu);
885 
886 	/*
887 	 * Increment the new memslot generation a second time, dropping the
888 	 * update in-progress flag and incrementing then generation based on
889 	 * the number of address spaces.  This provides a unique and easily
890 	 * identifiable generation number while the memslots are in flux.
891 	 */
892 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
893 
894 	/*
895 	 * Generations must be unique even across address spaces.  We do not need
896 	 * a global counter for that, instead the generation space is evenly split
897 	 * across address spaces.  For example, with two address spaces, address
898 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
899 	 * use generations 1, 3, 5, ...
900 	 */
901 	gen += KVM_ADDRESS_SPACE_NUM;
902 
903 	kvm_arch_memslots_updated(kvm, gen);
904 
905 	slots->generation = gen;
906 
907 	return old_memslots;
908 }
909 
910 /*
911  * Allocate some memory and give it an address in the guest physical address
912  * space.
913  *
914  * Discontiguous memory is allowed, mostly for framebuffers.
915  *
916  * Must be called holding kvm->slots_lock for write.
917  */
918 int __kvm_set_memory_region(struct kvm *kvm,
919 			    const struct kvm_userspace_memory_region *mem)
920 {
921 	int r;
922 	gfn_t base_gfn;
923 	unsigned long npages;
924 	struct kvm_memory_slot *slot;
925 	struct kvm_memory_slot old, new;
926 	struct kvm_memslots *slots = NULL, *old_memslots;
927 	int as_id, id;
928 	enum kvm_mr_change change;
929 
930 	r = check_memory_region_flags(mem);
931 	if (r)
932 		goto out;
933 
934 	r = -EINVAL;
935 	as_id = mem->slot >> 16;
936 	id = (u16)mem->slot;
937 
938 	/* General sanity checks */
939 	if (mem->memory_size & (PAGE_SIZE - 1))
940 		goto out;
941 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
942 		goto out;
943 	/* We can read the guest memory with __xxx_user() later on. */
944 	if ((id < KVM_USER_MEM_SLOTS) &&
945 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
946 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
947 			mem->memory_size)))
948 		goto out;
949 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
950 		goto out;
951 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952 		goto out;
953 
954 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
955 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
956 	npages = mem->memory_size >> PAGE_SHIFT;
957 
958 	if (npages > KVM_MEM_MAX_NR_PAGES)
959 		goto out;
960 
961 	new = old = *slot;
962 
963 	new.id = id;
964 	new.base_gfn = base_gfn;
965 	new.npages = npages;
966 	new.flags = mem->flags;
967 
968 	if (npages) {
969 		if (!old.npages)
970 			change = KVM_MR_CREATE;
971 		else { /* Modify an existing slot. */
972 			if ((mem->userspace_addr != old.userspace_addr) ||
973 			    (npages != old.npages) ||
974 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
975 				goto out;
976 
977 			if (base_gfn != old.base_gfn)
978 				change = KVM_MR_MOVE;
979 			else if (new.flags != old.flags)
980 				change = KVM_MR_FLAGS_ONLY;
981 			else { /* Nothing to change. */
982 				r = 0;
983 				goto out;
984 			}
985 		}
986 	} else {
987 		if (!old.npages)
988 			goto out;
989 
990 		change = KVM_MR_DELETE;
991 		new.base_gfn = 0;
992 		new.flags = 0;
993 	}
994 
995 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
996 		/* Check for overlaps */
997 		r = -EEXIST;
998 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
999 			if (slot->id == id)
1000 				continue;
1001 			if (!((base_gfn + npages <= slot->base_gfn) ||
1002 			      (base_gfn >= slot->base_gfn + slot->npages)))
1003 				goto out;
1004 		}
1005 	}
1006 
1007 	/* Free page dirty bitmap if unneeded */
1008 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1009 		new.dirty_bitmap = NULL;
1010 
1011 	r = -ENOMEM;
1012 	if (change == KVM_MR_CREATE) {
1013 		new.userspace_addr = mem->userspace_addr;
1014 
1015 		if (kvm_arch_create_memslot(kvm, &new, npages))
1016 			goto out_free;
1017 	}
1018 
1019 	/* Allocate page dirty bitmap if needed */
1020 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1021 		if (kvm_create_dirty_bitmap(&new) < 0)
1022 			goto out_free;
1023 	}
1024 
1025 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1026 	if (!slots)
1027 		goto out_free;
1028 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029 
1030 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1031 		slot = id_to_memslot(slots, id);
1032 		slot->flags |= KVM_MEMSLOT_INVALID;
1033 
1034 		old_memslots = install_new_memslots(kvm, as_id, slots);
1035 
1036 		/* From this point no new shadow pages pointing to a deleted,
1037 		 * or moved, memslot will be created.
1038 		 *
1039 		 * validation of sp->gfn happens in:
1040 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1042 		 */
1043 		kvm_arch_flush_shadow_memslot(kvm, slot);
1044 
1045 		/*
1046 		 * We can re-use the old_memslots from above, the only difference
1047 		 * from the currently installed memslots is the invalid flag.  This
1048 		 * will get overwritten by update_memslots anyway.
1049 		 */
1050 		slots = old_memslots;
1051 	}
1052 
1053 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1054 	if (r)
1055 		goto out_slots;
1056 
1057 	/* actual memory is freed via old in kvm_free_memslot below */
1058 	if (change == KVM_MR_DELETE) {
1059 		new.dirty_bitmap = NULL;
1060 		memset(&new.arch, 0, sizeof(new.arch));
1061 	}
1062 
1063 	update_memslots(slots, &new, change);
1064 	old_memslots = install_new_memslots(kvm, as_id, slots);
1065 
1066 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067 
1068 	kvm_free_memslot(kvm, &old, &new);
1069 	kvfree(old_memslots);
1070 	return 0;
1071 
1072 out_slots:
1073 	kvfree(slots);
1074 out_free:
1075 	kvm_free_memslot(kvm, &new, &old);
1076 out:
1077 	return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080 
1081 int kvm_set_memory_region(struct kvm *kvm,
1082 			  const struct kvm_userspace_memory_region *mem)
1083 {
1084 	int r;
1085 
1086 	mutex_lock(&kvm->slots_lock);
1087 	r = __kvm_set_memory_region(kvm, mem);
1088 	mutex_unlock(&kvm->slots_lock);
1089 	return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092 
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094 					  struct kvm_userspace_memory_region *mem)
1095 {
1096 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097 		return -EINVAL;
1098 
1099 	return kvm_set_memory_region(kvm, mem);
1100 }
1101 
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103 			struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105 	struct kvm_memslots *slots;
1106 	struct kvm_memory_slot *memslot;
1107 	int i, as_id, id;
1108 	unsigned long n;
1109 	unsigned long any = 0;
1110 
1111 	as_id = log->slot >> 16;
1112 	id = (u16)log->slot;
1113 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114 		return -EINVAL;
1115 
1116 	slots = __kvm_memslots(kvm, as_id);
1117 	memslot = id_to_memslot(slots, id);
1118 	if (!memslot->dirty_bitmap)
1119 		return -ENOENT;
1120 
1121 	n = kvm_dirty_bitmap_bytes(memslot);
1122 
1123 	for (i = 0; !any && i < n/sizeof(long); ++i)
1124 		any = memslot->dirty_bitmap[i];
1125 
1126 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127 		return -EFAULT;
1128 
1129 	if (any)
1130 		*is_dirty = 1;
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134 
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1138  *	and reenable dirty page tracking for the corresponding pages.
1139  * @kvm:	pointer to kvm instance
1140  * @log:	slot id and address to which we copy the log
1141  * @is_dirty:	flag set if any page is dirty
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159 			struct kvm_dirty_log *log, bool *flush)
1160 {
1161 	struct kvm_memslots *slots;
1162 	struct kvm_memory_slot *memslot;
1163 	int i, as_id, id;
1164 	unsigned long n;
1165 	unsigned long *dirty_bitmap;
1166 	unsigned long *dirty_bitmap_buffer;
1167 
1168 	as_id = log->slot >> 16;
1169 	id = (u16)log->slot;
1170 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171 		return -EINVAL;
1172 
1173 	slots = __kvm_memslots(kvm, as_id);
1174 	memslot = id_to_memslot(slots, id);
1175 
1176 	dirty_bitmap = memslot->dirty_bitmap;
1177 	if (!dirty_bitmap)
1178 		return -ENOENT;
1179 
1180 	n = kvm_dirty_bitmap_bytes(memslot);
1181 	*flush = false;
1182 	if (kvm->manual_dirty_log_protect) {
1183 		/*
1184 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1185 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1186 		 * is some code duplication between this function and
1187 		 * kvm_get_dirty_log, but hopefully all architecture
1188 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189 		 * can be eliminated.
1190 		 */
1191 		dirty_bitmap_buffer = dirty_bitmap;
1192 	} else {
1193 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194 		memset(dirty_bitmap_buffer, 0, n);
1195 
1196 		spin_lock(&kvm->mmu_lock);
1197 		for (i = 0; i < n / sizeof(long); i++) {
1198 			unsigned long mask;
1199 			gfn_t offset;
1200 
1201 			if (!dirty_bitmap[i])
1202 				continue;
1203 
1204 			*flush = true;
1205 			mask = xchg(&dirty_bitmap[i], 0);
1206 			dirty_bitmap_buffer[i] = mask;
1207 
1208 			offset = i * BITS_PER_LONG;
1209 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210 								offset, mask);
1211 		}
1212 		spin_unlock(&kvm->mmu_lock);
1213 	}
1214 
1215 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216 		return -EFAULT;
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220 
1221 /**
1222  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223  *	and reenable dirty page tracking for the corresponding pages.
1224  * @kvm:	pointer to kvm instance
1225  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1226  */
1227 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1228 				struct kvm_clear_dirty_log *log, bool *flush)
1229 {
1230 	struct kvm_memslots *slots;
1231 	struct kvm_memory_slot *memslot;
1232 	int as_id, id;
1233 	gfn_t offset;
1234 	unsigned long i, n;
1235 	unsigned long *dirty_bitmap;
1236 	unsigned long *dirty_bitmap_buffer;
1237 
1238 	as_id = log->slot >> 16;
1239 	id = (u16)log->slot;
1240 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241 		return -EINVAL;
1242 
1243 	if ((log->first_page & 63) || (log->num_pages & 63))
1244 		return -EINVAL;
1245 
1246 	slots = __kvm_memslots(kvm, as_id);
1247 	memslot = id_to_memslot(slots, id);
1248 
1249 	dirty_bitmap = memslot->dirty_bitmap;
1250 	if (!dirty_bitmap)
1251 		return -ENOENT;
1252 
1253 	n = kvm_dirty_bitmap_bytes(memslot);
1254 
1255 	if (log->first_page > memslot->npages ||
1256 	    log->num_pages > memslot->npages - log->first_page)
1257 			return -EINVAL;
1258 
1259 	*flush = false;
1260 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1261 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1262 		return -EFAULT;
1263 
1264 	spin_lock(&kvm->mmu_lock);
1265 	for (offset = log->first_page,
1266 	     i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1267 	     i++, offset += BITS_PER_LONG) {
1268 		unsigned long mask = *dirty_bitmap_buffer++;
1269 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1270 		if (!mask)
1271 			continue;
1272 
1273 		mask &= atomic_long_fetch_andnot(mask, p);
1274 
1275 		/*
1276 		 * mask contains the bits that really have been cleared.  This
1277 		 * never includes any bits beyond the length of the memslot (if
1278 		 * the length is not aligned to 64 pages), therefore it is not
1279 		 * a problem if userspace sets them in log->dirty_bitmap.
1280 		*/
1281 		if (mask) {
1282 			*flush = true;
1283 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1284 								offset, mask);
1285 		}
1286 	}
1287 	spin_unlock(&kvm->mmu_lock);
1288 
1289 	return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1292 #endif
1293 
1294 bool kvm_largepages_enabled(void)
1295 {
1296 	return largepages_enabled;
1297 }
1298 
1299 void kvm_disable_largepages(void)
1300 {
1301 	largepages_enabled = false;
1302 }
1303 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1304 
1305 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1306 {
1307 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1310 
1311 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1314 }
1315 
1316 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1317 {
1318 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1319 
1320 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1321 	      memslot->flags & KVM_MEMSLOT_INVALID)
1322 		return false;
1323 
1324 	return true;
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1327 
1328 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1329 {
1330 	struct vm_area_struct *vma;
1331 	unsigned long addr, size;
1332 
1333 	size = PAGE_SIZE;
1334 
1335 	addr = gfn_to_hva(kvm, gfn);
1336 	if (kvm_is_error_hva(addr))
1337 		return PAGE_SIZE;
1338 
1339 	down_read(&current->mm->mmap_sem);
1340 	vma = find_vma(current->mm, addr);
1341 	if (!vma)
1342 		goto out;
1343 
1344 	size = vma_kernel_pagesize(vma);
1345 
1346 out:
1347 	up_read(&current->mm->mmap_sem);
1348 
1349 	return size;
1350 }
1351 
1352 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1353 {
1354 	return slot->flags & KVM_MEM_READONLY;
1355 }
1356 
1357 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1358 				       gfn_t *nr_pages, bool write)
1359 {
1360 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1361 		return KVM_HVA_ERR_BAD;
1362 
1363 	if (memslot_is_readonly(slot) && write)
1364 		return KVM_HVA_ERR_RO_BAD;
1365 
1366 	if (nr_pages)
1367 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1368 
1369 	return __gfn_to_hva_memslot(slot, gfn);
1370 }
1371 
1372 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1373 				     gfn_t *nr_pages)
1374 {
1375 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1376 }
1377 
1378 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1379 					gfn_t gfn)
1380 {
1381 	return gfn_to_hva_many(slot, gfn, NULL);
1382 }
1383 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1384 
1385 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1386 {
1387 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1388 }
1389 EXPORT_SYMBOL_GPL(gfn_to_hva);
1390 
1391 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1392 {
1393 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1396 
1397 /*
1398  * Return the hva of a @gfn and the R/W attribute if possible.
1399  *
1400  * @slot: the kvm_memory_slot which contains @gfn
1401  * @gfn: the gfn to be translated
1402  * @writable: used to return the read/write attribute of the @slot if the hva
1403  * is valid and @writable is not NULL
1404  */
1405 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1406 				      gfn_t gfn, bool *writable)
1407 {
1408 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1409 
1410 	if (!kvm_is_error_hva(hva) && writable)
1411 		*writable = !memslot_is_readonly(slot);
1412 
1413 	return hva;
1414 }
1415 
1416 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1417 {
1418 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1419 
1420 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1421 }
1422 
1423 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1424 {
1425 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1426 
1427 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1428 }
1429 
1430 static inline int check_user_page_hwpoison(unsigned long addr)
1431 {
1432 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1433 
1434 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1435 	return rc == -EHWPOISON;
1436 }
1437 
1438 /*
1439  * The fast path to get the writable pfn which will be stored in @pfn,
1440  * true indicates success, otherwise false is returned.  It's also the
1441  * only part that runs if we can are in atomic context.
1442  */
1443 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1444 			    bool *writable, kvm_pfn_t *pfn)
1445 {
1446 	struct page *page[1];
1447 	int npages;
1448 
1449 	/*
1450 	 * Fast pin a writable pfn only if it is a write fault request
1451 	 * or the caller allows to map a writable pfn for a read fault
1452 	 * request.
1453 	 */
1454 	if (!(write_fault || writable))
1455 		return false;
1456 
1457 	npages = __get_user_pages_fast(addr, 1, 1, page);
1458 	if (npages == 1) {
1459 		*pfn = page_to_pfn(page[0]);
1460 
1461 		if (writable)
1462 			*writable = true;
1463 		return true;
1464 	}
1465 
1466 	return false;
1467 }
1468 
1469 /*
1470  * The slow path to get the pfn of the specified host virtual address,
1471  * 1 indicates success, -errno is returned if error is detected.
1472  */
1473 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1474 			   bool *writable, kvm_pfn_t *pfn)
1475 {
1476 	unsigned int flags = FOLL_HWPOISON;
1477 	struct page *page;
1478 	int npages = 0;
1479 
1480 	might_sleep();
1481 
1482 	if (writable)
1483 		*writable = write_fault;
1484 
1485 	if (write_fault)
1486 		flags |= FOLL_WRITE;
1487 	if (async)
1488 		flags |= FOLL_NOWAIT;
1489 
1490 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1491 	if (npages != 1)
1492 		return npages;
1493 
1494 	/* map read fault as writable if possible */
1495 	if (unlikely(!write_fault) && writable) {
1496 		struct page *wpage;
1497 
1498 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1499 			*writable = true;
1500 			put_page(page);
1501 			page = wpage;
1502 		}
1503 	}
1504 	*pfn = page_to_pfn(page);
1505 	return npages;
1506 }
1507 
1508 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1509 {
1510 	if (unlikely(!(vma->vm_flags & VM_READ)))
1511 		return false;
1512 
1513 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1514 		return false;
1515 
1516 	return true;
1517 }
1518 
1519 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1520 			       unsigned long addr, bool *async,
1521 			       bool write_fault, bool *writable,
1522 			       kvm_pfn_t *p_pfn)
1523 {
1524 	unsigned long pfn;
1525 	int r;
1526 
1527 	r = follow_pfn(vma, addr, &pfn);
1528 	if (r) {
1529 		/*
1530 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1531 		 * not call the fault handler, so do it here.
1532 		 */
1533 		bool unlocked = false;
1534 		r = fixup_user_fault(current, current->mm, addr,
1535 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1536 				     &unlocked);
1537 		if (unlocked)
1538 			return -EAGAIN;
1539 		if (r)
1540 			return r;
1541 
1542 		r = follow_pfn(vma, addr, &pfn);
1543 		if (r)
1544 			return r;
1545 
1546 	}
1547 
1548 	if (writable)
1549 		*writable = true;
1550 
1551 	/*
1552 	 * Get a reference here because callers of *hva_to_pfn* and
1553 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1554 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1555 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1556 	 * simply do nothing for reserved pfns.
1557 	 *
1558 	 * Whoever called remap_pfn_range is also going to call e.g.
1559 	 * unmap_mapping_range before the underlying pages are freed,
1560 	 * causing a call to our MMU notifier.
1561 	 */
1562 	kvm_get_pfn(pfn);
1563 
1564 	*p_pfn = pfn;
1565 	return 0;
1566 }
1567 
1568 /*
1569  * Pin guest page in memory and return its pfn.
1570  * @addr: host virtual address which maps memory to the guest
1571  * @atomic: whether this function can sleep
1572  * @async: whether this function need to wait IO complete if the
1573  *         host page is not in the memory
1574  * @write_fault: whether we should get a writable host page
1575  * @writable: whether it allows to map a writable host page for !@write_fault
1576  *
1577  * The function will map a writable host page for these two cases:
1578  * 1): @write_fault = true
1579  * 2): @write_fault = false && @writable, @writable will tell the caller
1580  *     whether the mapping is writable.
1581  */
1582 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1583 			bool write_fault, bool *writable)
1584 {
1585 	struct vm_area_struct *vma;
1586 	kvm_pfn_t pfn = 0;
1587 	int npages, r;
1588 
1589 	/* we can do it either atomically or asynchronously, not both */
1590 	BUG_ON(atomic && async);
1591 
1592 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1593 		return pfn;
1594 
1595 	if (atomic)
1596 		return KVM_PFN_ERR_FAULT;
1597 
1598 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1599 	if (npages == 1)
1600 		return pfn;
1601 
1602 	down_read(&current->mm->mmap_sem);
1603 	if (npages == -EHWPOISON ||
1604 	      (!async && check_user_page_hwpoison(addr))) {
1605 		pfn = KVM_PFN_ERR_HWPOISON;
1606 		goto exit;
1607 	}
1608 
1609 retry:
1610 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1611 
1612 	if (vma == NULL)
1613 		pfn = KVM_PFN_ERR_FAULT;
1614 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1615 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1616 		if (r == -EAGAIN)
1617 			goto retry;
1618 		if (r < 0)
1619 			pfn = KVM_PFN_ERR_FAULT;
1620 	} else {
1621 		if (async && vma_is_valid(vma, write_fault))
1622 			*async = true;
1623 		pfn = KVM_PFN_ERR_FAULT;
1624 	}
1625 exit:
1626 	up_read(&current->mm->mmap_sem);
1627 	return pfn;
1628 }
1629 
1630 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1631 			       bool atomic, bool *async, bool write_fault,
1632 			       bool *writable)
1633 {
1634 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1635 
1636 	if (addr == KVM_HVA_ERR_RO_BAD) {
1637 		if (writable)
1638 			*writable = false;
1639 		return KVM_PFN_ERR_RO_FAULT;
1640 	}
1641 
1642 	if (kvm_is_error_hva(addr)) {
1643 		if (writable)
1644 			*writable = false;
1645 		return KVM_PFN_NOSLOT;
1646 	}
1647 
1648 	/* Do not map writable pfn in the readonly memslot. */
1649 	if (writable && memslot_is_readonly(slot)) {
1650 		*writable = false;
1651 		writable = NULL;
1652 	}
1653 
1654 	return hva_to_pfn(addr, atomic, async, write_fault,
1655 			  writable);
1656 }
1657 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1658 
1659 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1660 		      bool *writable)
1661 {
1662 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1663 				    write_fault, writable);
1664 }
1665 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1666 
1667 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1668 {
1669 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1670 }
1671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1672 
1673 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1674 {
1675 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1676 }
1677 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1678 
1679 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1680 {
1681 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1682 }
1683 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1684 
1685 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1686 {
1687 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1690 
1691 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1692 {
1693 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1694 }
1695 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1696 
1697 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1698 {
1699 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1702 
1703 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1704 			    struct page **pages, int nr_pages)
1705 {
1706 	unsigned long addr;
1707 	gfn_t entry = 0;
1708 
1709 	addr = gfn_to_hva_many(slot, gfn, &entry);
1710 	if (kvm_is_error_hva(addr))
1711 		return -1;
1712 
1713 	if (entry < nr_pages)
1714 		return 0;
1715 
1716 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1717 }
1718 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1719 
1720 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1721 {
1722 	if (is_error_noslot_pfn(pfn))
1723 		return KVM_ERR_PTR_BAD_PAGE;
1724 
1725 	if (kvm_is_reserved_pfn(pfn)) {
1726 		WARN_ON(1);
1727 		return KVM_ERR_PTR_BAD_PAGE;
1728 	}
1729 
1730 	return pfn_to_page(pfn);
1731 }
1732 
1733 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1734 {
1735 	kvm_pfn_t pfn;
1736 
1737 	pfn = gfn_to_pfn(kvm, gfn);
1738 
1739 	return kvm_pfn_to_page(pfn);
1740 }
1741 EXPORT_SYMBOL_GPL(gfn_to_page);
1742 
1743 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1744 {
1745 	kvm_pfn_t pfn;
1746 
1747 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1748 
1749 	return kvm_pfn_to_page(pfn);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1752 
1753 void kvm_release_page_clean(struct page *page)
1754 {
1755 	WARN_ON(is_error_page(page));
1756 
1757 	kvm_release_pfn_clean(page_to_pfn(page));
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1760 
1761 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1762 {
1763 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1764 		put_page(pfn_to_page(pfn));
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1767 
1768 void kvm_release_page_dirty(struct page *page)
1769 {
1770 	WARN_ON(is_error_page(page));
1771 
1772 	kvm_release_pfn_dirty(page_to_pfn(page));
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1775 
1776 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1777 {
1778 	kvm_set_pfn_dirty(pfn);
1779 	kvm_release_pfn_clean(pfn);
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1782 
1783 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1784 {
1785 	if (!kvm_is_reserved_pfn(pfn)) {
1786 		struct page *page = pfn_to_page(pfn);
1787 
1788 		if (!PageReserved(page))
1789 			SetPageDirty(page);
1790 	}
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1793 
1794 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1795 {
1796 	if (!kvm_is_reserved_pfn(pfn))
1797 		mark_page_accessed(pfn_to_page(pfn));
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1800 
1801 void kvm_get_pfn(kvm_pfn_t pfn)
1802 {
1803 	if (!kvm_is_reserved_pfn(pfn))
1804 		get_page(pfn_to_page(pfn));
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1807 
1808 static int next_segment(unsigned long len, int offset)
1809 {
1810 	if (len > PAGE_SIZE - offset)
1811 		return PAGE_SIZE - offset;
1812 	else
1813 		return len;
1814 }
1815 
1816 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1817 				 void *data, int offset, int len)
1818 {
1819 	int r;
1820 	unsigned long addr;
1821 
1822 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1823 	if (kvm_is_error_hva(addr))
1824 		return -EFAULT;
1825 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1826 	if (r)
1827 		return -EFAULT;
1828 	return 0;
1829 }
1830 
1831 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1832 			int len)
1833 {
1834 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1835 
1836 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1839 
1840 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1841 			     int offset, int len)
1842 {
1843 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1844 
1845 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1848 
1849 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1850 {
1851 	gfn_t gfn = gpa >> PAGE_SHIFT;
1852 	int seg;
1853 	int offset = offset_in_page(gpa);
1854 	int ret;
1855 
1856 	while ((seg = next_segment(len, offset)) != 0) {
1857 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1858 		if (ret < 0)
1859 			return ret;
1860 		offset = 0;
1861 		len -= seg;
1862 		data += seg;
1863 		++gfn;
1864 	}
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL_GPL(kvm_read_guest);
1868 
1869 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1870 {
1871 	gfn_t gfn = gpa >> PAGE_SHIFT;
1872 	int seg;
1873 	int offset = offset_in_page(gpa);
1874 	int ret;
1875 
1876 	while ((seg = next_segment(len, offset)) != 0) {
1877 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1878 		if (ret < 0)
1879 			return ret;
1880 		offset = 0;
1881 		len -= seg;
1882 		data += seg;
1883 		++gfn;
1884 	}
1885 	return 0;
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1888 
1889 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1890 			           void *data, int offset, unsigned long len)
1891 {
1892 	int r;
1893 	unsigned long addr;
1894 
1895 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1896 	if (kvm_is_error_hva(addr))
1897 		return -EFAULT;
1898 	pagefault_disable();
1899 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1900 	pagefault_enable();
1901 	if (r)
1902 		return -EFAULT;
1903 	return 0;
1904 }
1905 
1906 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1907 			  unsigned long len)
1908 {
1909 	gfn_t gfn = gpa >> PAGE_SHIFT;
1910 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1911 	int offset = offset_in_page(gpa);
1912 
1913 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1916 
1917 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1918 			       void *data, unsigned long len)
1919 {
1920 	gfn_t gfn = gpa >> PAGE_SHIFT;
1921 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1922 	int offset = offset_in_page(gpa);
1923 
1924 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1927 
1928 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1929 			          const void *data, int offset, int len)
1930 {
1931 	int r;
1932 	unsigned long addr;
1933 
1934 	addr = gfn_to_hva_memslot(memslot, gfn);
1935 	if (kvm_is_error_hva(addr))
1936 		return -EFAULT;
1937 	r = __copy_to_user((void __user *)addr + offset, data, len);
1938 	if (r)
1939 		return -EFAULT;
1940 	mark_page_dirty_in_slot(memslot, gfn);
1941 	return 0;
1942 }
1943 
1944 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1945 			 const void *data, int offset, int len)
1946 {
1947 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1948 
1949 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1952 
1953 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1954 			      const void *data, int offset, int len)
1955 {
1956 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1957 
1958 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1961 
1962 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1963 		    unsigned long len)
1964 {
1965 	gfn_t gfn = gpa >> PAGE_SHIFT;
1966 	int seg;
1967 	int offset = offset_in_page(gpa);
1968 	int ret;
1969 
1970 	while ((seg = next_segment(len, offset)) != 0) {
1971 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1972 		if (ret < 0)
1973 			return ret;
1974 		offset = 0;
1975 		len -= seg;
1976 		data += seg;
1977 		++gfn;
1978 	}
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_write_guest);
1982 
1983 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1984 		         unsigned long len)
1985 {
1986 	gfn_t gfn = gpa >> PAGE_SHIFT;
1987 	int seg;
1988 	int offset = offset_in_page(gpa);
1989 	int ret;
1990 
1991 	while ((seg = next_segment(len, offset)) != 0) {
1992 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1993 		if (ret < 0)
1994 			return ret;
1995 		offset = 0;
1996 		len -= seg;
1997 		data += seg;
1998 		++gfn;
1999 	}
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2003 
2004 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2005 				       struct gfn_to_hva_cache *ghc,
2006 				       gpa_t gpa, unsigned long len)
2007 {
2008 	int offset = offset_in_page(gpa);
2009 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2010 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2011 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2012 	gfn_t nr_pages_avail;
2013 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2014 
2015 	ghc->gpa = gpa;
2016 	ghc->generation = slots->generation;
2017 	ghc->len = len;
2018 	ghc->hva = KVM_HVA_ERR_BAD;
2019 
2020 	/*
2021 	 * If the requested region crosses two memslots, we still
2022 	 * verify that the entire region is valid here.
2023 	 */
2024 	while (!r && start_gfn <= end_gfn) {
2025 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2026 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2027 					   &nr_pages_avail);
2028 		if (kvm_is_error_hva(ghc->hva))
2029 			r = -EFAULT;
2030 		start_gfn += nr_pages_avail;
2031 	}
2032 
2033 	/* Use the slow path for cross page reads and writes. */
2034 	if (!r && nr_pages_needed == 1)
2035 		ghc->hva += offset;
2036 	else
2037 		ghc->memslot = NULL;
2038 
2039 	return r;
2040 }
2041 
2042 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2043 			      gpa_t gpa, unsigned long len)
2044 {
2045 	struct kvm_memslots *slots = kvm_memslots(kvm);
2046 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2049 
2050 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2051 				  void *data, unsigned int offset,
2052 				  unsigned long len)
2053 {
2054 	struct kvm_memslots *slots = kvm_memslots(kvm);
2055 	int r;
2056 	gpa_t gpa = ghc->gpa + offset;
2057 
2058 	BUG_ON(len + offset > ghc->len);
2059 
2060 	if (slots->generation != ghc->generation)
2061 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2062 
2063 	if (unlikely(!ghc->memslot))
2064 		return kvm_write_guest(kvm, gpa, data, len);
2065 
2066 	if (kvm_is_error_hva(ghc->hva))
2067 		return -EFAULT;
2068 
2069 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2070 	if (r)
2071 		return -EFAULT;
2072 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2073 
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2077 
2078 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2079 			   void *data, unsigned long len)
2080 {
2081 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2082 }
2083 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2084 
2085 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2086 			   void *data, unsigned long len)
2087 {
2088 	struct kvm_memslots *slots = kvm_memslots(kvm);
2089 	int r;
2090 
2091 	BUG_ON(len > ghc->len);
2092 
2093 	if (slots->generation != ghc->generation)
2094 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2095 
2096 	if (unlikely(!ghc->memslot))
2097 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2098 
2099 	if (kvm_is_error_hva(ghc->hva))
2100 		return -EFAULT;
2101 
2102 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2103 	if (r)
2104 		return -EFAULT;
2105 
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2109 
2110 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2111 {
2112 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2113 
2114 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2115 }
2116 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2117 
2118 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2119 {
2120 	gfn_t gfn = gpa >> PAGE_SHIFT;
2121 	int seg;
2122 	int offset = offset_in_page(gpa);
2123 	int ret;
2124 
2125 	while ((seg = next_segment(len, offset)) != 0) {
2126 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2127 		if (ret < 0)
2128 			return ret;
2129 		offset = 0;
2130 		len -= seg;
2131 		++gfn;
2132 	}
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2136 
2137 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2138 				    gfn_t gfn)
2139 {
2140 	if (memslot && memslot->dirty_bitmap) {
2141 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2142 
2143 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2144 	}
2145 }
2146 
2147 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2148 {
2149 	struct kvm_memory_slot *memslot;
2150 
2151 	memslot = gfn_to_memslot(kvm, gfn);
2152 	mark_page_dirty_in_slot(memslot, gfn);
2153 }
2154 EXPORT_SYMBOL_GPL(mark_page_dirty);
2155 
2156 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2157 {
2158 	struct kvm_memory_slot *memslot;
2159 
2160 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2161 	mark_page_dirty_in_slot(memslot, gfn);
2162 }
2163 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2164 
2165 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2166 {
2167 	if (!vcpu->sigset_active)
2168 		return;
2169 
2170 	/*
2171 	 * This does a lockless modification of ->real_blocked, which is fine
2172 	 * because, only current can change ->real_blocked and all readers of
2173 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2174 	 * of ->blocked.
2175 	 */
2176 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2177 }
2178 
2179 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2180 {
2181 	if (!vcpu->sigset_active)
2182 		return;
2183 
2184 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2185 	sigemptyset(&current->real_blocked);
2186 }
2187 
2188 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2189 {
2190 	unsigned int old, val, grow, grow_start;
2191 
2192 	old = val = vcpu->halt_poll_ns;
2193 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2194 	grow = READ_ONCE(halt_poll_ns_grow);
2195 	if (!grow)
2196 		goto out;
2197 
2198 	val *= grow;
2199 	if (val < grow_start)
2200 		val = grow_start;
2201 
2202 	if (val > halt_poll_ns)
2203 		val = halt_poll_ns;
2204 
2205 	vcpu->halt_poll_ns = val;
2206 out:
2207 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2208 }
2209 
2210 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2211 {
2212 	unsigned int old, val, shrink;
2213 
2214 	old = val = vcpu->halt_poll_ns;
2215 	shrink = READ_ONCE(halt_poll_ns_shrink);
2216 	if (shrink == 0)
2217 		val = 0;
2218 	else
2219 		val /= shrink;
2220 
2221 	vcpu->halt_poll_ns = val;
2222 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2223 }
2224 
2225 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2226 {
2227 	int ret = -EINTR;
2228 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2229 
2230 	if (kvm_arch_vcpu_runnable(vcpu)) {
2231 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2232 		goto out;
2233 	}
2234 	if (kvm_cpu_has_pending_timer(vcpu))
2235 		goto out;
2236 	if (signal_pending(current))
2237 		goto out;
2238 
2239 	ret = 0;
2240 out:
2241 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2242 	return ret;
2243 }
2244 
2245 /*
2246  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2247  */
2248 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2249 {
2250 	ktime_t start, cur;
2251 	DECLARE_SWAITQUEUE(wait);
2252 	bool waited = false;
2253 	u64 block_ns;
2254 
2255 	start = cur = ktime_get();
2256 	if (vcpu->halt_poll_ns) {
2257 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2258 
2259 		++vcpu->stat.halt_attempted_poll;
2260 		do {
2261 			/*
2262 			 * This sets KVM_REQ_UNHALT if an interrupt
2263 			 * arrives.
2264 			 */
2265 			if (kvm_vcpu_check_block(vcpu) < 0) {
2266 				++vcpu->stat.halt_successful_poll;
2267 				if (!vcpu_valid_wakeup(vcpu))
2268 					++vcpu->stat.halt_poll_invalid;
2269 				goto out;
2270 			}
2271 			cur = ktime_get();
2272 		} while (single_task_running() && ktime_before(cur, stop));
2273 	}
2274 
2275 	kvm_arch_vcpu_blocking(vcpu);
2276 
2277 	for (;;) {
2278 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2279 
2280 		if (kvm_vcpu_check_block(vcpu) < 0)
2281 			break;
2282 
2283 		waited = true;
2284 		schedule();
2285 	}
2286 
2287 	finish_swait(&vcpu->wq, &wait);
2288 	cur = ktime_get();
2289 
2290 	kvm_arch_vcpu_unblocking(vcpu);
2291 out:
2292 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2293 
2294 	if (!vcpu_valid_wakeup(vcpu))
2295 		shrink_halt_poll_ns(vcpu);
2296 	else if (halt_poll_ns) {
2297 		if (block_ns <= vcpu->halt_poll_ns)
2298 			;
2299 		/* we had a long block, shrink polling */
2300 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2301 			shrink_halt_poll_ns(vcpu);
2302 		/* we had a short halt and our poll time is too small */
2303 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2304 			block_ns < halt_poll_ns)
2305 			grow_halt_poll_ns(vcpu);
2306 	} else
2307 		vcpu->halt_poll_ns = 0;
2308 
2309 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2310 	kvm_arch_vcpu_block_finish(vcpu);
2311 }
2312 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2313 
2314 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2315 {
2316 	struct swait_queue_head *wqp;
2317 
2318 	wqp = kvm_arch_vcpu_wq(vcpu);
2319 	if (swq_has_sleeper(wqp)) {
2320 		swake_up_one(wqp);
2321 		++vcpu->stat.halt_wakeup;
2322 		return true;
2323 	}
2324 
2325 	return false;
2326 }
2327 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2328 
2329 #ifndef CONFIG_S390
2330 /*
2331  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2332  */
2333 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2334 {
2335 	int me;
2336 	int cpu = vcpu->cpu;
2337 
2338 	if (kvm_vcpu_wake_up(vcpu))
2339 		return;
2340 
2341 	me = get_cpu();
2342 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2343 		if (kvm_arch_vcpu_should_kick(vcpu))
2344 			smp_send_reschedule(cpu);
2345 	put_cpu();
2346 }
2347 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2348 #endif /* !CONFIG_S390 */
2349 
2350 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2351 {
2352 	struct pid *pid;
2353 	struct task_struct *task = NULL;
2354 	int ret = 0;
2355 
2356 	rcu_read_lock();
2357 	pid = rcu_dereference(target->pid);
2358 	if (pid)
2359 		task = get_pid_task(pid, PIDTYPE_PID);
2360 	rcu_read_unlock();
2361 	if (!task)
2362 		return ret;
2363 	ret = yield_to(task, 1);
2364 	put_task_struct(task);
2365 
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2369 
2370 /*
2371  * Helper that checks whether a VCPU is eligible for directed yield.
2372  * Most eligible candidate to yield is decided by following heuristics:
2373  *
2374  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2375  *  (preempted lock holder), indicated by @in_spin_loop.
2376  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2377  *
2378  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2379  *  chance last time (mostly it has become eligible now since we have probably
2380  *  yielded to lockholder in last iteration. This is done by toggling
2381  *  @dy_eligible each time a VCPU checked for eligibility.)
2382  *
2383  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2384  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2385  *  burning. Giving priority for a potential lock-holder increases lock
2386  *  progress.
2387  *
2388  *  Since algorithm is based on heuristics, accessing another VCPU data without
2389  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2390  *  and continue with next VCPU and so on.
2391  */
2392 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2393 {
2394 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2395 	bool eligible;
2396 
2397 	eligible = !vcpu->spin_loop.in_spin_loop ||
2398 		    vcpu->spin_loop.dy_eligible;
2399 
2400 	if (vcpu->spin_loop.in_spin_loop)
2401 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2402 
2403 	return eligible;
2404 #else
2405 	return true;
2406 #endif
2407 }
2408 
2409 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2410 {
2411 	struct kvm *kvm = me->kvm;
2412 	struct kvm_vcpu *vcpu;
2413 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2414 	int yielded = 0;
2415 	int try = 3;
2416 	int pass;
2417 	int i;
2418 
2419 	kvm_vcpu_set_in_spin_loop(me, true);
2420 	/*
2421 	 * We boost the priority of a VCPU that is runnable but not
2422 	 * currently running, because it got preempted by something
2423 	 * else and called schedule in __vcpu_run.  Hopefully that
2424 	 * VCPU is holding the lock that we need and will release it.
2425 	 * We approximate round-robin by starting at the last boosted VCPU.
2426 	 */
2427 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2428 		kvm_for_each_vcpu(i, vcpu, kvm) {
2429 			if (!pass && i <= last_boosted_vcpu) {
2430 				i = last_boosted_vcpu;
2431 				continue;
2432 			} else if (pass && i > last_boosted_vcpu)
2433 				break;
2434 			if (!READ_ONCE(vcpu->preempted))
2435 				continue;
2436 			if (vcpu == me)
2437 				continue;
2438 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2439 				continue;
2440 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2441 				continue;
2442 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2443 				continue;
2444 
2445 			yielded = kvm_vcpu_yield_to(vcpu);
2446 			if (yielded > 0) {
2447 				kvm->last_boosted_vcpu = i;
2448 				break;
2449 			} else if (yielded < 0) {
2450 				try--;
2451 				if (!try)
2452 					break;
2453 			}
2454 		}
2455 	}
2456 	kvm_vcpu_set_in_spin_loop(me, false);
2457 
2458 	/* Ensure vcpu is not eligible during next spinloop */
2459 	kvm_vcpu_set_dy_eligible(me, false);
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2462 
2463 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2464 {
2465 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2466 	struct page *page;
2467 
2468 	if (vmf->pgoff == 0)
2469 		page = virt_to_page(vcpu->run);
2470 #ifdef CONFIG_X86
2471 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2472 		page = virt_to_page(vcpu->arch.pio_data);
2473 #endif
2474 #ifdef CONFIG_KVM_MMIO
2475 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2476 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2477 #endif
2478 	else
2479 		return kvm_arch_vcpu_fault(vcpu, vmf);
2480 	get_page(page);
2481 	vmf->page = page;
2482 	return 0;
2483 }
2484 
2485 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2486 	.fault = kvm_vcpu_fault,
2487 };
2488 
2489 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2490 {
2491 	vma->vm_ops = &kvm_vcpu_vm_ops;
2492 	return 0;
2493 }
2494 
2495 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2496 {
2497 	struct kvm_vcpu *vcpu = filp->private_data;
2498 
2499 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2500 	kvm_put_kvm(vcpu->kvm);
2501 	return 0;
2502 }
2503 
2504 static struct file_operations kvm_vcpu_fops = {
2505 	.release        = kvm_vcpu_release,
2506 	.unlocked_ioctl = kvm_vcpu_ioctl,
2507 	.mmap           = kvm_vcpu_mmap,
2508 	.llseek		= noop_llseek,
2509 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2510 };
2511 
2512 /*
2513  * Allocates an inode for the vcpu.
2514  */
2515 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2516 {
2517 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2518 
2519 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2520 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2521 }
2522 
2523 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2524 {
2525 	char dir_name[ITOA_MAX_LEN * 2];
2526 	int ret;
2527 
2528 	if (!kvm_arch_has_vcpu_debugfs())
2529 		return 0;
2530 
2531 	if (!debugfs_initialized())
2532 		return 0;
2533 
2534 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2535 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2536 								vcpu->kvm->debugfs_dentry);
2537 	if (!vcpu->debugfs_dentry)
2538 		return -ENOMEM;
2539 
2540 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2541 	if (ret < 0) {
2542 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2543 		return ret;
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 /*
2550  * Creates some virtual cpus.  Good luck creating more than one.
2551  */
2552 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2553 {
2554 	int r;
2555 	struct kvm_vcpu *vcpu;
2556 
2557 	if (id >= KVM_MAX_VCPU_ID)
2558 		return -EINVAL;
2559 
2560 	mutex_lock(&kvm->lock);
2561 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2562 		mutex_unlock(&kvm->lock);
2563 		return -EINVAL;
2564 	}
2565 
2566 	kvm->created_vcpus++;
2567 	mutex_unlock(&kvm->lock);
2568 
2569 	vcpu = kvm_arch_vcpu_create(kvm, id);
2570 	if (IS_ERR(vcpu)) {
2571 		r = PTR_ERR(vcpu);
2572 		goto vcpu_decrement;
2573 	}
2574 
2575 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2576 
2577 	r = kvm_arch_vcpu_setup(vcpu);
2578 	if (r)
2579 		goto vcpu_destroy;
2580 
2581 	r = kvm_create_vcpu_debugfs(vcpu);
2582 	if (r)
2583 		goto vcpu_destroy;
2584 
2585 	mutex_lock(&kvm->lock);
2586 	if (kvm_get_vcpu_by_id(kvm, id)) {
2587 		r = -EEXIST;
2588 		goto unlock_vcpu_destroy;
2589 	}
2590 
2591 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2592 
2593 	/* Now it's all set up, let userspace reach it */
2594 	kvm_get_kvm(kvm);
2595 	r = create_vcpu_fd(vcpu);
2596 	if (r < 0) {
2597 		kvm_put_kvm(kvm);
2598 		goto unlock_vcpu_destroy;
2599 	}
2600 
2601 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2602 
2603 	/*
2604 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2605 	 * before kvm->online_vcpu's incremented value.
2606 	 */
2607 	smp_wmb();
2608 	atomic_inc(&kvm->online_vcpus);
2609 
2610 	mutex_unlock(&kvm->lock);
2611 	kvm_arch_vcpu_postcreate(vcpu);
2612 	return r;
2613 
2614 unlock_vcpu_destroy:
2615 	mutex_unlock(&kvm->lock);
2616 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2617 vcpu_destroy:
2618 	kvm_arch_vcpu_destroy(vcpu);
2619 vcpu_decrement:
2620 	mutex_lock(&kvm->lock);
2621 	kvm->created_vcpus--;
2622 	mutex_unlock(&kvm->lock);
2623 	return r;
2624 }
2625 
2626 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2627 {
2628 	if (sigset) {
2629 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2630 		vcpu->sigset_active = 1;
2631 		vcpu->sigset = *sigset;
2632 	} else
2633 		vcpu->sigset_active = 0;
2634 	return 0;
2635 }
2636 
2637 static long kvm_vcpu_ioctl(struct file *filp,
2638 			   unsigned int ioctl, unsigned long arg)
2639 {
2640 	struct kvm_vcpu *vcpu = filp->private_data;
2641 	void __user *argp = (void __user *)arg;
2642 	int r;
2643 	struct kvm_fpu *fpu = NULL;
2644 	struct kvm_sregs *kvm_sregs = NULL;
2645 
2646 	if (vcpu->kvm->mm != current->mm)
2647 		return -EIO;
2648 
2649 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2650 		return -EINVAL;
2651 
2652 	/*
2653 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2654 	 * execution; mutex_lock() would break them.
2655 	 */
2656 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2657 	if (r != -ENOIOCTLCMD)
2658 		return r;
2659 
2660 	if (mutex_lock_killable(&vcpu->mutex))
2661 		return -EINTR;
2662 	switch (ioctl) {
2663 	case KVM_RUN: {
2664 		struct pid *oldpid;
2665 		r = -EINVAL;
2666 		if (arg)
2667 			goto out;
2668 		oldpid = rcu_access_pointer(vcpu->pid);
2669 		if (unlikely(oldpid != task_pid(current))) {
2670 			/* The thread running this VCPU changed. */
2671 			struct pid *newpid;
2672 
2673 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2674 			if (r)
2675 				break;
2676 
2677 			newpid = get_task_pid(current, PIDTYPE_PID);
2678 			rcu_assign_pointer(vcpu->pid, newpid);
2679 			if (oldpid)
2680 				synchronize_rcu();
2681 			put_pid(oldpid);
2682 		}
2683 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2684 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2685 		break;
2686 	}
2687 	case KVM_GET_REGS: {
2688 		struct kvm_regs *kvm_regs;
2689 
2690 		r = -ENOMEM;
2691 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2692 		if (!kvm_regs)
2693 			goto out;
2694 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2695 		if (r)
2696 			goto out_free1;
2697 		r = -EFAULT;
2698 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2699 			goto out_free1;
2700 		r = 0;
2701 out_free1:
2702 		kfree(kvm_regs);
2703 		break;
2704 	}
2705 	case KVM_SET_REGS: {
2706 		struct kvm_regs *kvm_regs;
2707 
2708 		r = -ENOMEM;
2709 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2710 		if (IS_ERR(kvm_regs)) {
2711 			r = PTR_ERR(kvm_regs);
2712 			goto out;
2713 		}
2714 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2715 		kfree(kvm_regs);
2716 		break;
2717 	}
2718 	case KVM_GET_SREGS: {
2719 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2720 				    GFP_KERNEL_ACCOUNT);
2721 		r = -ENOMEM;
2722 		if (!kvm_sregs)
2723 			goto out;
2724 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2725 		if (r)
2726 			goto out;
2727 		r = -EFAULT;
2728 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2729 			goto out;
2730 		r = 0;
2731 		break;
2732 	}
2733 	case KVM_SET_SREGS: {
2734 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2735 		if (IS_ERR(kvm_sregs)) {
2736 			r = PTR_ERR(kvm_sregs);
2737 			kvm_sregs = NULL;
2738 			goto out;
2739 		}
2740 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2741 		break;
2742 	}
2743 	case KVM_GET_MP_STATE: {
2744 		struct kvm_mp_state mp_state;
2745 
2746 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2747 		if (r)
2748 			goto out;
2749 		r = -EFAULT;
2750 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2751 			goto out;
2752 		r = 0;
2753 		break;
2754 	}
2755 	case KVM_SET_MP_STATE: {
2756 		struct kvm_mp_state mp_state;
2757 
2758 		r = -EFAULT;
2759 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2760 			goto out;
2761 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2762 		break;
2763 	}
2764 	case KVM_TRANSLATE: {
2765 		struct kvm_translation tr;
2766 
2767 		r = -EFAULT;
2768 		if (copy_from_user(&tr, argp, sizeof(tr)))
2769 			goto out;
2770 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2771 		if (r)
2772 			goto out;
2773 		r = -EFAULT;
2774 		if (copy_to_user(argp, &tr, sizeof(tr)))
2775 			goto out;
2776 		r = 0;
2777 		break;
2778 	}
2779 	case KVM_SET_GUEST_DEBUG: {
2780 		struct kvm_guest_debug dbg;
2781 
2782 		r = -EFAULT;
2783 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2784 			goto out;
2785 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2786 		break;
2787 	}
2788 	case KVM_SET_SIGNAL_MASK: {
2789 		struct kvm_signal_mask __user *sigmask_arg = argp;
2790 		struct kvm_signal_mask kvm_sigmask;
2791 		sigset_t sigset, *p;
2792 
2793 		p = NULL;
2794 		if (argp) {
2795 			r = -EFAULT;
2796 			if (copy_from_user(&kvm_sigmask, argp,
2797 					   sizeof(kvm_sigmask)))
2798 				goto out;
2799 			r = -EINVAL;
2800 			if (kvm_sigmask.len != sizeof(sigset))
2801 				goto out;
2802 			r = -EFAULT;
2803 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2804 					   sizeof(sigset)))
2805 				goto out;
2806 			p = &sigset;
2807 		}
2808 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2809 		break;
2810 	}
2811 	case KVM_GET_FPU: {
2812 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2813 		r = -ENOMEM;
2814 		if (!fpu)
2815 			goto out;
2816 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2817 		if (r)
2818 			goto out;
2819 		r = -EFAULT;
2820 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2821 			goto out;
2822 		r = 0;
2823 		break;
2824 	}
2825 	case KVM_SET_FPU: {
2826 		fpu = memdup_user(argp, sizeof(*fpu));
2827 		if (IS_ERR(fpu)) {
2828 			r = PTR_ERR(fpu);
2829 			fpu = NULL;
2830 			goto out;
2831 		}
2832 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2833 		break;
2834 	}
2835 	default:
2836 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2837 	}
2838 out:
2839 	mutex_unlock(&vcpu->mutex);
2840 	kfree(fpu);
2841 	kfree(kvm_sregs);
2842 	return r;
2843 }
2844 
2845 #ifdef CONFIG_KVM_COMPAT
2846 static long kvm_vcpu_compat_ioctl(struct file *filp,
2847 				  unsigned int ioctl, unsigned long arg)
2848 {
2849 	struct kvm_vcpu *vcpu = filp->private_data;
2850 	void __user *argp = compat_ptr(arg);
2851 	int r;
2852 
2853 	if (vcpu->kvm->mm != current->mm)
2854 		return -EIO;
2855 
2856 	switch (ioctl) {
2857 	case KVM_SET_SIGNAL_MASK: {
2858 		struct kvm_signal_mask __user *sigmask_arg = argp;
2859 		struct kvm_signal_mask kvm_sigmask;
2860 		sigset_t sigset;
2861 
2862 		if (argp) {
2863 			r = -EFAULT;
2864 			if (copy_from_user(&kvm_sigmask, argp,
2865 					   sizeof(kvm_sigmask)))
2866 				goto out;
2867 			r = -EINVAL;
2868 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2869 				goto out;
2870 			r = -EFAULT;
2871 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2872 				goto out;
2873 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2874 		} else
2875 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2876 		break;
2877 	}
2878 	default:
2879 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2880 	}
2881 
2882 out:
2883 	return r;
2884 }
2885 #endif
2886 
2887 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2888 				 int (*accessor)(struct kvm_device *dev,
2889 						 struct kvm_device_attr *attr),
2890 				 unsigned long arg)
2891 {
2892 	struct kvm_device_attr attr;
2893 
2894 	if (!accessor)
2895 		return -EPERM;
2896 
2897 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2898 		return -EFAULT;
2899 
2900 	return accessor(dev, &attr);
2901 }
2902 
2903 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2904 			     unsigned long arg)
2905 {
2906 	struct kvm_device *dev = filp->private_data;
2907 
2908 	if (dev->kvm->mm != current->mm)
2909 		return -EIO;
2910 
2911 	switch (ioctl) {
2912 	case KVM_SET_DEVICE_ATTR:
2913 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2914 	case KVM_GET_DEVICE_ATTR:
2915 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2916 	case KVM_HAS_DEVICE_ATTR:
2917 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2918 	default:
2919 		if (dev->ops->ioctl)
2920 			return dev->ops->ioctl(dev, ioctl, arg);
2921 
2922 		return -ENOTTY;
2923 	}
2924 }
2925 
2926 static int kvm_device_release(struct inode *inode, struct file *filp)
2927 {
2928 	struct kvm_device *dev = filp->private_data;
2929 	struct kvm *kvm = dev->kvm;
2930 
2931 	kvm_put_kvm(kvm);
2932 	return 0;
2933 }
2934 
2935 static const struct file_operations kvm_device_fops = {
2936 	.unlocked_ioctl = kvm_device_ioctl,
2937 	.release = kvm_device_release,
2938 	KVM_COMPAT(kvm_device_ioctl),
2939 };
2940 
2941 struct kvm_device *kvm_device_from_filp(struct file *filp)
2942 {
2943 	if (filp->f_op != &kvm_device_fops)
2944 		return NULL;
2945 
2946 	return filp->private_data;
2947 }
2948 
2949 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2950 #ifdef CONFIG_KVM_MPIC
2951 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2952 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2953 #endif
2954 };
2955 
2956 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2957 {
2958 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2959 		return -ENOSPC;
2960 
2961 	if (kvm_device_ops_table[type] != NULL)
2962 		return -EEXIST;
2963 
2964 	kvm_device_ops_table[type] = ops;
2965 	return 0;
2966 }
2967 
2968 void kvm_unregister_device_ops(u32 type)
2969 {
2970 	if (kvm_device_ops_table[type] != NULL)
2971 		kvm_device_ops_table[type] = NULL;
2972 }
2973 
2974 static int kvm_ioctl_create_device(struct kvm *kvm,
2975 				   struct kvm_create_device *cd)
2976 {
2977 	struct kvm_device_ops *ops = NULL;
2978 	struct kvm_device *dev;
2979 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2980 	int ret;
2981 
2982 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2983 		return -ENODEV;
2984 
2985 	ops = kvm_device_ops_table[cd->type];
2986 	if (ops == NULL)
2987 		return -ENODEV;
2988 
2989 	if (test)
2990 		return 0;
2991 
2992 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
2993 	if (!dev)
2994 		return -ENOMEM;
2995 
2996 	dev->ops = ops;
2997 	dev->kvm = kvm;
2998 
2999 	mutex_lock(&kvm->lock);
3000 	ret = ops->create(dev, cd->type);
3001 	if (ret < 0) {
3002 		mutex_unlock(&kvm->lock);
3003 		kfree(dev);
3004 		return ret;
3005 	}
3006 	list_add(&dev->vm_node, &kvm->devices);
3007 	mutex_unlock(&kvm->lock);
3008 
3009 	if (ops->init)
3010 		ops->init(dev);
3011 
3012 	kvm_get_kvm(kvm);
3013 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3014 	if (ret < 0) {
3015 		kvm_put_kvm(kvm);
3016 		mutex_lock(&kvm->lock);
3017 		list_del(&dev->vm_node);
3018 		mutex_unlock(&kvm->lock);
3019 		ops->destroy(dev);
3020 		return ret;
3021 	}
3022 
3023 	cd->fd = ret;
3024 	return 0;
3025 }
3026 
3027 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3028 {
3029 	switch (arg) {
3030 	case KVM_CAP_USER_MEMORY:
3031 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3032 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3033 	case KVM_CAP_INTERNAL_ERROR_DATA:
3034 #ifdef CONFIG_HAVE_KVM_MSI
3035 	case KVM_CAP_SIGNAL_MSI:
3036 #endif
3037 #ifdef CONFIG_HAVE_KVM_IRQFD
3038 	case KVM_CAP_IRQFD:
3039 	case KVM_CAP_IRQFD_RESAMPLE:
3040 #endif
3041 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3042 	case KVM_CAP_CHECK_EXTENSION_VM:
3043 	case KVM_CAP_ENABLE_CAP_VM:
3044 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3045 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3046 #endif
3047 		return 1;
3048 #ifdef CONFIG_KVM_MMIO
3049 	case KVM_CAP_COALESCED_MMIO:
3050 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3051 	case KVM_CAP_COALESCED_PIO:
3052 		return 1;
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055 	case KVM_CAP_IRQ_ROUTING:
3056 		return KVM_MAX_IRQ_ROUTES;
3057 #endif
3058 #if KVM_ADDRESS_SPACE_NUM > 1
3059 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3060 		return KVM_ADDRESS_SPACE_NUM;
3061 #endif
3062 	case KVM_CAP_MAX_VCPU_ID:
3063 		return KVM_MAX_VCPU_ID;
3064 	default:
3065 		break;
3066 	}
3067 	return kvm_vm_ioctl_check_extension(kvm, arg);
3068 }
3069 
3070 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3071 						  struct kvm_enable_cap *cap)
3072 {
3073 	return -EINVAL;
3074 }
3075 
3076 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3077 					   struct kvm_enable_cap *cap)
3078 {
3079 	switch (cap->cap) {
3080 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3081 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3082 		if (cap->flags || (cap->args[0] & ~1))
3083 			return -EINVAL;
3084 		kvm->manual_dirty_log_protect = cap->args[0];
3085 		return 0;
3086 #endif
3087 	default:
3088 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3089 	}
3090 }
3091 
3092 static long kvm_vm_ioctl(struct file *filp,
3093 			   unsigned int ioctl, unsigned long arg)
3094 {
3095 	struct kvm *kvm = filp->private_data;
3096 	void __user *argp = (void __user *)arg;
3097 	int r;
3098 
3099 	if (kvm->mm != current->mm)
3100 		return -EIO;
3101 	switch (ioctl) {
3102 	case KVM_CREATE_VCPU:
3103 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3104 		break;
3105 	case KVM_ENABLE_CAP: {
3106 		struct kvm_enable_cap cap;
3107 
3108 		r = -EFAULT;
3109 		if (copy_from_user(&cap, argp, sizeof(cap)))
3110 			goto out;
3111 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3112 		break;
3113 	}
3114 	case KVM_SET_USER_MEMORY_REGION: {
3115 		struct kvm_userspace_memory_region kvm_userspace_mem;
3116 
3117 		r = -EFAULT;
3118 		if (copy_from_user(&kvm_userspace_mem, argp,
3119 						sizeof(kvm_userspace_mem)))
3120 			goto out;
3121 
3122 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3123 		break;
3124 	}
3125 	case KVM_GET_DIRTY_LOG: {
3126 		struct kvm_dirty_log log;
3127 
3128 		r = -EFAULT;
3129 		if (copy_from_user(&log, argp, sizeof(log)))
3130 			goto out;
3131 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3132 		break;
3133 	}
3134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3135 	case KVM_CLEAR_DIRTY_LOG: {
3136 		struct kvm_clear_dirty_log log;
3137 
3138 		r = -EFAULT;
3139 		if (copy_from_user(&log, argp, sizeof(log)))
3140 			goto out;
3141 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3142 		break;
3143 	}
3144 #endif
3145 #ifdef CONFIG_KVM_MMIO
3146 	case KVM_REGISTER_COALESCED_MMIO: {
3147 		struct kvm_coalesced_mmio_zone zone;
3148 
3149 		r = -EFAULT;
3150 		if (copy_from_user(&zone, argp, sizeof(zone)))
3151 			goto out;
3152 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3153 		break;
3154 	}
3155 	case KVM_UNREGISTER_COALESCED_MMIO: {
3156 		struct kvm_coalesced_mmio_zone zone;
3157 
3158 		r = -EFAULT;
3159 		if (copy_from_user(&zone, argp, sizeof(zone)))
3160 			goto out;
3161 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3162 		break;
3163 	}
3164 #endif
3165 	case KVM_IRQFD: {
3166 		struct kvm_irqfd data;
3167 
3168 		r = -EFAULT;
3169 		if (copy_from_user(&data, argp, sizeof(data)))
3170 			goto out;
3171 		r = kvm_irqfd(kvm, &data);
3172 		break;
3173 	}
3174 	case KVM_IOEVENTFD: {
3175 		struct kvm_ioeventfd data;
3176 
3177 		r = -EFAULT;
3178 		if (copy_from_user(&data, argp, sizeof(data)))
3179 			goto out;
3180 		r = kvm_ioeventfd(kvm, &data);
3181 		break;
3182 	}
3183 #ifdef CONFIG_HAVE_KVM_MSI
3184 	case KVM_SIGNAL_MSI: {
3185 		struct kvm_msi msi;
3186 
3187 		r = -EFAULT;
3188 		if (copy_from_user(&msi, argp, sizeof(msi)))
3189 			goto out;
3190 		r = kvm_send_userspace_msi(kvm, &msi);
3191 		break;
3192 	}
3193 #endif
3194 #ifdef __KVM_HAVE_IRQ_LINE
3195 	case KVM_IRQ_LINE_STATUS:
3196 	case KVM_IRQ_LINE: {
3197 		struct kvm_irq_level irq_event;
3198 
3199 		r = -EFAULT;
3200 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3201 			goto out;
3202 
3203 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3204 					ioctl == KVM_IRQ_LINE_STATUS);
3205 		if (r)
3206 			goto out;
3207 
3208 		r = -EFAULT;
3209 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3210 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3211 				goto out;
3212 		}
3213 
3214 		r = 0;
3215 		break;
3216 	}
3217 #endif
3218 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3219 	case KVM_SET_GSI_ROUTING: {
3220 		struct kvm_irq_routing routing;
3221 		struct kvm_irq_routing __user *urouting;
3222 		struct kvm_irq_routing_entry *entries = NULL;
3223 
3224 		r = -EFAULT;
3225 		if (copy_from_user(&routing, argp, sizeof(routing)))
3226 			goto out;
3227 		r = -EINVAL;
3228 		if (!kvm_arch_can_set_irq_routing(kvm))
3229 			goto out;
3230 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3231 			goto out;
3232 		if (routing.flags)
3233 			goto out;
3234 		if (routing.nr) {
3235 			r = -ENOMEM;
3236 			entries = vmalloc(array_size(sizeof(*entries),
3237 						     routing.nr));
3238 			if (!entries)
3239 				goto out;
3240 			r = -EFAULT;
3241 			urouting = argp;
3242 			if (copy_from_user(entries, urouting->entries,
3243 					   routing.nr * sizeof(*entries)))
3244 				goto out_free_irq_routing;
3245 		}
3246 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3247 					routing.flags);
3248 out_free_irq_routing:
3249 		vfree(entries);
3250 		break;
3251 	}
3252 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3253 	case KVM_CREATE_DEVICE: {
3254 		struct kvm_create_device cd;
3255 
3256 		r = -EFAULT;
3257 		if (copy_from_user(&cd, argp, sizeof(cd)))
3258 			goto out;
3259 
3260 		r = kvm_ioctl_create_device(kvm, &cd);
3261 		if (r)
3262 			goto out;
3263 
3264 		r = -EFAULT;
3265 		if (copy_to_user(argp, &cd, sizeof(cd)))
3266 			goto out;
3267 
3268 		r = 0;
3269 		break;
3270 	}
3271 	case KVM_CHECK_EXTENSION:
3272 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3273 		break;
3274 	default:
3275 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3276 	}
3277 out:
3278 	return r;
3279 }
3280 
3281 #ifdef CONFIG_KVM_COMPAT
3282 struct compat_kvm_dirty_log {
3283 	__u32 slot;
3284 	__u32 padding1;
3285 	union {
3286 		compat_uptr_t dirty_bitmap; /* one bit per page */
3287 		__u64 padding2;
3288 	};
3289 };
3290 
3291 static long kvm_vm_compat_ioctl(struct file *filp,
3292 			   unsigned int ioctl, unsigned long arg)
3293 {
3294 	struct kvm *kvm = filp->private_data;
3295 	int r;
3296 
3297 	if (kvm->mm != current->mm)
3298 		return -EIO;
3299 	switch (ioctl) {
3300 	case KVM_GET_DIRTY_LOG: {
3301 		struct compat_kvm_dirty_log compat_log;
3302 		struct kvm_dirty_log log;
3303 
3304 		if (copy_from_user(&compat_log, (void __user *)arg,
3305 				   sizeof(compat_log)))
3306 			return -EFAULT;
3307 		log.slot	 = compat_log.slot;
3308 		log.padding1	 = compat_log.padding1;
3309 		log.padding2	 = compat_log.padding2;
3310 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3311 
3312 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3313 		break;
3314 	}
3315 	default:
3316 		r = kvm_vm_ioctl(filp, ioctl, arg);
3317 	}
3318 	return r;
3319 }
3320 #endif
3321 
3322 static struct file_operations kvm_vm_fops = {
3323 	.release        = kvm_vm_release,
3324 	.unlocked_ioctl = kvm_vm_ioctl,
3325 	.llseek		= noop_llseek,
3326 	KVM_COMPAT(kvm_vm_compat_ioctl),
3327 };
3328 
3329 static int kvm_dev_ioctl_create_vm(unsigned long type)
3330 {
3331 	int r;
3332 	struct kvm *kvm;
3333 	struct file *file;
3334 
3335 	kvm = kvm_create_vm(type);
3336 	if (IS_ERR(kvm))
3337 		return PTR_ERR(kvm);
3338 #ifdef CONFIG_KVM_MMIO
3339 	r = kvm_coalesced_mmio_init(kvm);
3340 	if (r < 0)
3341 		goto put_kvm;
3342 #endif
3343 	r = get_unused_fd_flags(O_CLOEXEC);
3344 	if (r < 0)
3345 		goto put_kvm;
3346 
3347 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3348 	if (IS_ERR(file)) {
3349 		put_unused_fd(r);
3350 		r = PTR_ERR(file);
3351 		goto put_kvm;
3352 	}
3353 
3354 	/*
3355 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3356 	 * already set, with ->release() being kvm_vm_release().  In error
3357 	 * cases it will be called by the final fput(file) and will take
3358 	 * care of doing kvm_put_kvm(kvm).
3359 	 */
3360 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3361 		put_unused_fd(r);
3362 		fput(file);
3363 		return -ENOMEM;
3364 	}
3365 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3366 
3367 	fd_install(r, file);
3368 	return r;
3369 
3370 put_kvm:
3371 	kvm_put_kvm(kvm);
3372 	return r;
3373 }
3374 
3375 static long kvm_dev_ioctl(struct file *filp,
3376 			  unsigned int ioctl, unsigned long arg)
3377 {
3378 	long r = -EINVAL;
3379 
3380 	switch (ioctl) {
3381 	case KVM_GET_API_VERSION:
3382 		if (arg)
3383 			goto out;
3384 		r = KVM_API_VERSION;
3385 		break;
3386 	case KVM_CREATE_VM:
3387 		r = kvm_dev_ioctl_create_vm(arg);
3388 		break;
3389 	case KVM_CHECK_EXTENSION:
3390 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3391 		break;
3392 	case KVM_GET_VCPU_MMAP_SIZE:
3393 		if (arg)
3394 			goto out;
3395 		r = PAGE_SIZE;     /* struct kvm_run */
3396 #ifdef CONFIG_X86
3397 		r += PAGE_SIZE;    /* pio data page */
3398 #endif
3399 #ifdef CONFIG_KVM_MMIO
3400 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3401 #endif
3402 		break;
3403 	case KVM_TRACE_ENABLE:
3404 	case KVM_TRACE_PAUSE:
3405 	case KVM_TRACE_DISABLE:
3406 		r = -EOPNOTSUPP;
3407 		break;
3408 	default:
3409 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3410 	}
3411 out:
3412 	return r;
3413 }
3414 
3415 static struct file_operations kvm_chardev_ops = {
3416 	.unlocked_ioctl = kvm_dev_ioctl,
3417 	.llseek		= noop_llseek,
3418 	KVM_COMPAT(kvm_dev_ioctl),
3419 };
3420 
3421 static struct miscdevice kvm_dev = {
3422 	KVM_MINOR,
3423 	"kvm",
3424 	&kvm_chardev_ops,
3425 };
3426 
3427 static void hardware_enable_nolock(void *junk)
3428 {
3429 	int cpu = raw_smp_processor_id();
3430 	int r;
3431 
3432 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3433 		return;
3434 
3435 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3436 
3437 	r = kvm_arch_hardware_enable();
3438 
3439 	if (r) {
3440 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3441 		atomic_inc(&hardware_enable_failed);
3442 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3443 	}
3444 }
3445 
3446 static int kvm_starting_cpu(unsigned int cpu)
3447 {
3448 	raw_spin_lock(&kvm_count_lock);
3449 	if (kvm_usage_count)
3450 		hardware_enable_nolock(NULL);
3451 	raw_spin_unlock(&kvm_count_lock);
3452 	return 0;
3453 }
3454 
3455 static void hardware_disable_nolock(void *junk)
3456 {
3457 	int cpu = raw_smp_processor_id();
3458 
3459 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3460 		return;
3461 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3462 	kvm_arch_hardware_disable();
3463 }
3464 
3465 static int kvm_dying_cpu(unsigned int cpu)
3466 {
3467 	raw_spin_lock(&kvm_count_lock);
3468 	if (kvm_usage_count)
3469 		hardware_disable_nolock(NULL);
3470 	raw_spin_unlock(&kvm_count_lock);
3471 	return 0;
3472 }
3473 
3474 static void hardware_disable_all_nolock(void)
3475 {
3476 	BUG_ON(!kvm_usage_count);
3477 
3478 	kvm_usage_count--;
3479 	if (!kvm_usage_count)
3480 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3481 }
3482 
3483 static void hardware_disable_all(void)
3484 {
3485 	raw_spin_lock(&kvm_count_lock);
3486 	hardware_disable_all_nolock();
3487 	raw_spin_unlock(&kvm_count_lock);
3488 }
3489 
3490 static int hardware_enable_all(void)
3491 {
3492 	int r = 0;
3493 
3494 	raw_spin_lock(&kvm_count_lock);
3495 
3496 	kvm_usage_count++;
3497 	if (kvm_usage_count == 1) {
3498 		atomic_set(&hardware_enable_failed, 0);
3499 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3500 
3501 		if (atomic_read(&hardware_enable_failed)) {
3502 			hardware_disable_all_nolock();
3503 			r = -EBUSY;
3504 		}
3505 	}
3506 
3507 	raw_spin_unlock(&kvm_count_lock);
3508 
3509 	return r;
3510 }
3511 
3512 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3513 		      void *v)
3514 {
3515 	/*
3516 	 * Some (well, at least mine) BIOSes hang on reboot if
3517 	 * in vmx root mode.
3518 	 *
3519 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3520 	 */
3521 	pr_info("kvm: exiting hardware virtualization\n");
3522 	kvm_rebooting = true;
3523 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3524 	return NOTIFY_OK;
3525 }
3526 
3527 static struct notifier_block kvm_reboot_notifier = {
3528 	.notifier_call = kvm_reboot,
3529 	.priority = 0,
3530 };
3531 
3532 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3533 {
3534 	int i;
3535 
3536 	for (i = 0; i < bus->dev_count; i++) {
3537 		struct kvm_io_device *pos = bus->range[i].dev;
3538 
3539 		kvm_iodevice_destructor(pos);
3540 	}
3541 	kfree(bus);
3542 }
3543 
3544 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3545 				 const struct kvm_io_range *r2)
3546 {
3547 	gpa_t addr1 = r1->addr;
3548 	gpa_t addr2 = r2->addr;
3549 
3550 	if (addr1 < addr2)
3551 		return -1;
3552 
3553 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3554 	 * accept any overlapping write.  Any order is acceptable for
3555 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3556 	 * we process all of them.
3557 	 */
3558 	if (r2->len) {
3559 		addr1 += r1->len;
3560 		addr2 += r2->len;
3561 	}
3562 
3563 	if (addr1 > addr2)
3564 		return 1;
3565 
3566 	return 0;
3567 }
3568 
3569 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3570 {
3571 	return kvm_io_bus_cmp(p1, p2);
3572 }
3573 
3574 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3575 			     gpa_t addr, int len)
3576 {
3577 	struct kvm_io_range *range, key;
3578 	int off;
3579 
3580 	key = (struct kvm_io_range) {
3581 		.addr = addr,
3582 		.len = len,
3583 	};
3584 
3585 	range = bsearch(&key, bus->range, bus->dev_count,
3586 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3587 	if (range == NULL)
3588 		return -ENOENT;
3589 
3590 	off = range - bus->range;
3591 
3592 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3593 		off--;
3594 
3595 	return off;
3596 }
3597 
3598 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3599 			      struct kvm_io_range *range, const void *val)
3600 {
3601 	int idx;
3602 
3603 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3604 	if (idx < 0)
3605 		return -EOPNOTSUPP;
3606 
3607 	while (idx < bus->dev_count &&
3608 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3609 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3610 					range->len, val))
3611 			return idx;
3612 		idx++;
3613 	}
3614 
3615 	return -EOPNOTSUPP;
3616 }
3617 
3618 /* kvm_io_bus_write - called under kvm->slots_lock */
3619 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3620 		     int len, const void *val)
3621 {
3622 	struct kvm_io_bus *bus;
3623 	struct kvm_io_range range;
3624 	int r;
3625 
3626 	range = (struct kvm_io_range) {
3627 		.addr = addr,
3628 		.len = len,
3629 	};
3630 
3631 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3632 	if (!bus)
3633 		return -ENOMEM;
3634 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3635 	return r < 0 ? r : 0;
3636 }
3637 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3638 
3639 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3640 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3641 			    gpa_t addr, int len, const void *val, long cookie)
3642 {
3643 	struct kvm_io_bus *bus;
3644 	struct kvm_io_range range;
3645 
3646 	range = (struct kvm_io_range) {
3647 		.addr = addr,
3648 		.len = len,
3649 	};
3650 
3651 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3652 	if (!bus)
3653 		return -ENOMEM;
3654 
3655 	/* First try the device referenced by cookie. */
3656 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3657 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3658 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3659 					val))
3660 			return cookie;
3661 
3662 	/*
3663 	 * cookie contained garbage; fall back to search and return the
3664 	 * correct cookie value.
3665 	 */
3666 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3667 }
3668 
3669 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3670 			     struct kvm_io_range *range, void *val)
3671 {
3672 	int idx;
3673 
3674 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3675 	if (idx < 0)
3676 		return -EOPNOTSUPP;
3677 
3678 	while (idx < bus->dev_count &&
3679 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3680 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3681 				       range->len, val))
3682 			return idx;
3683 		idx++;
3684 	}
3685 
3686 	return -EOPNOTSUPP;
3687 }
3688 
3689 /* kvm_io_bus_read - called under kvm->slots_lock */
3690 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3691 		    int len, void *val)
3692 {
3693 	struct kvm_io_bus *bus;
3694 	struct kvm_io_range range;
3695 	int r;
3696 
3697 	range = (struct kvm_io_range) {
3698 		.addr = addr,
3699 		.len = len,
3700 	};
3701 
3702 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3703 	if (!bus)
3704 		return -ENOMEM;
3705 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3706 	return r < 0 ? r : 0;
3707 }
3708 
3709 /* Caller must hold slots_lock. */
3710 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3711 			    int len, struct kvm_io_device *dev)
3712 {
3713 	int i;
3714 	struct kvm_io_bus *new_bus, *bus;
3715 	struct kvm_io_range range;
3716 
3717 	bus = kvm_get_bus(kvm, bus_idx);
3718 	if (!bus)
3719 		return -ENOMEM;
3720 
3721 	/* exclude ioeventfd which is limited by maximum fd */
3722 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3723 		return -ENOSPC;
3724 
3725 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3726 			  GFP_KERNEL_ACCOUNT);
3727 	if (!new_bus)
3728 		return -ENOMEM;
3729 
3730 	range = (struct kvm_io_range) {
3731 		.addr = addr,
3732 		.len = len,
3733 		.dev = dev,
3734 	};
3735 
3736 	for (i = 0; i < bus->dev_count; i++)
3737 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3738 			break;
3739 
3740 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3741 	new_bus->dev_count++;
3742 	new_bus->range[i] = range;
3743 	memcpy(new_bus->range + i + 1, bus->range + i,
3744 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3745 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3746 	synchronize_srcu_expedited(&kvm->srcu);
3747 	kfree(bus);
3748 
3749 	return 0;
3750 }
3751 
3752 /* Caller must hold slots_lock. */
3753 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3754 			       struct kvm_io_device *dev)
3755 {
3756 	int i;
3757 	struct kvm_io_bus *new_bus, *bus;
3758 
3759 	bus = kvm_get_bus(kvm, bus_idx);
3760 	if (!bus)
3761 		return;
3762 
3763 	for (i = 0; i < bus->dev_count; i++)
3764 		if (bus->range[i].dev == dev) {
3765 			break;
3766 		}
3767 
3768 	if (i == bus->dev_count)
3769 		return;
3770 
3771 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3772 			  GFP_KERNEL_ACCOUNT);
3773 	if (!new_bus)  {
3774 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3775 		goto broken;
3776 	}
3777 
3778 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3779 	new_bus->dev_count--;
3780 	memcpy(new_bus->range + i, bus->range + i + 1,
3781 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3782 
3783 broken:
3784 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3785 	synchronize_srcu_expedited(&kvm->srcu);
3786 	kfree(bus);
3787 	return;
3788 }
3789 
3790 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3791 					 gpa_t addr)
3792 {
3793 	struct kvm_io_bus *bus;
3794 	int dev_idx, srcu_idx;
3795 	struct kvm_io_device *iodev = NULL;
3796 
3797 	srcu_idx = srcu_read_lock(&kvm->srcu);
3798 
3799 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3800 	if (!bus)
3801 		goto out_unlock;
3802 
3803 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3804 	if (dev_idx < 0)
3805 		goto out_unlock;
3806 
3807 	iodev = bus->range[dev_idx].dev;
3808 
3809 out_unlock:
3810 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3811 
3812 	return iodev;
3813 }
3814 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3815 
3816 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3817 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3818 			   const char *fmt)
3819 {
3820 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3821 					  inode->i_private;
3822 
3823 	/* The debugfs files are a reference to the kvm struct which
3824 	 * is still valid when kvm_destroy_vm is called.
3825 	 * To avoid the race between open and the removal of the debugfs
3826 	 * directory we test against the users count.
3827 	 */
3828 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3829 		return -ENOENT;
3830 
3831 	if (simple_attr_open(inode, file, get, set, fmt)) {
3832 		kvm_put_kvm(stat_data->kvm);
3833 		return -ENOMEM;
3834 	}
3835 
3836 	return 0;
3837 }
3838 
3839 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3840 {
3841 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3842 					  inode->i_private;
3843 
3844 	simple_attr_release(inode, file);
3845 	kvm_put_kvm(stat_data->kvm);
3846 
3847 	return 0;
3848 }
3849 
3850 static int vm_stat_get_per_vm(void *data, u64 *val)
3851 {
3852 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3853 
3854 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3855 
3856 	return 0;
3857 }
3858 
3859 static int vm_stat_clear_per_vm(void *data, u64 val)
3860 {
3861 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3862 
3863 	if (val)
3864 		return -EINVAL;
3865 
3866 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3867 
3868 	return 0;
3869 }
3870 
3871 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3872 {
3873 	__simple_attr_check_format("%llu\n", 0ull);
3874 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3875 				vm_stat_clear_per_vm, "%llu\n");
3876 }
3877 
3878 static const struct file_operations vm_stat_get_per_vm_fops = {
3879 	.owner   = THIS_MODULE,
3880 	.open    = vm_stat_get_per_vm_open,
3881 	.release = kvm_debugfs_release,
3882 	.read    = simple_attr_read,
3883 	.write   = simple_attr_write,
3884 	.llseek  = no_llseek,
3885 };
3886 
3887 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3888 {
3889 	int i;
3890 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3891 	struct kvm_vcpu *vcpu;
3892 
3893 	*val = 0;
3894 
3895 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3896 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3897 
3898 	return 0;
3899 }
3900 
3901 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3902 {
3903 	int i;
3904 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3905 	struct kvm_vcpu *vcpu;
3906 
3907 	if (val)
3908 		return -EINVAL;
3909 
3910 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3911 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3912 
3913 	return 0;
3914 }
3915 
3916 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3917 {
3918 	__simple_attr_check_format("%llu\n", 0ull);
3919 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3920 				 vcpu_stat_clear_per_vm, "%llu\n");
3921 }
3922 
3923 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3924 	.owner   = THIS_MODULE,
3925 	.open    = vcpu_stat_get_per_vm_open,
3926 	.release = kvm_debugfs_release,
3927 	.read    = simple_attr_read,
3928 	.write   = simple_attr_write,
3929 	.llseek  = no_llseek,
3930 };
3931 
3932 static const struct file_operations *stat_fops_per_vm[] = {
3933 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3934 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3935 };
3936 
3937 static int vm_stat_get(void *_offset, u64 *val)
3938 {
3939 	unsigned offset = (long)_offset;
3940 	struct kvm *kvm;
3941 	struct kvm_stat_data stat_tmp = {.offset = offset};
3942 	u64 tmp_val;
3943 
3944 	*val = 0;
3945 	spin_lock(&kvm_lock);
3946 	list_for_each_entry(kvm, &vm_list, vm_list) {
3947 		stat_tmp.kvm = kvm;
3948 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3949 		*val += tmp_val;
3950 	}
3951 	spin_unlock(&kvm_lock);
3952 	return 0;
3953 }
3954 
3955 static int vm_stat_clear(void *_offset, u64 val)
3956 {
3957 	unsigned offset = (long)_offset;
3958 	struct kvm *kvm;
3959 	struct kvm_stat_data stat_tmp = {.offset = offset};
3960 
3961 	if (val)
3962 		return -EINVAL;
3963 
3964 	spin_lock(&kvm_lock);
3965 	list_for_each_entry(kvm, &vm_list, vm_list) {
3966 		stat_tmp.kvm = kvm;
3967 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3968 	}
3969 	spin_unlock(&kvm_lock);
3970 
3971 	return 0;
3972 }
3973 
3974 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3975 
3976 static int vcpu_stat_get(void *_offset, u64 *val)
3977 {
3978 	unsigned offset = (long)_offset;
3979 	struct kvm *kvm;
3980 	struct kvm_stat_data stat_tmp = {.offset = offset};
3981 	u64 tmp_val;
3982 
3983 	*val = 0;
3984 	spin_lock(&kvm_lock);
3985 	list_for_each_entry(kvm, &vm_list, vm_list) {
3986 		stat_tmp.kvm = kvm;
3987 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3988 		*val += tmp_val;
3989 	}
3990 	spin_unlock(&kvm_lock);
3991 	return 0;
3992 }
3993 
3994 static int vcpu_stat_clear(void *_offset, u64 val)
3995 {
3996 	unsigned offset = (long)_offset;
3997 	struct kvm *kvm;
3998 	struct kvm_stat_data stat_tmp = {.offset = offset};
3999 
4000 	if (val)
4001 		return -EINVAL;
4002 
4003 	spin_lock(&kvm_lock);
4004 	list_for_each_entry(kvm, &vm_list, vm_list) {
4005 		stat_tmp.kvm = kvm;
4006 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4007 	}
4008 	spin_unlock(&kvm_lock);
4009 
4010 	return 0;
4011 }
4012 
4013 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4014 			"%llu\n");
4015 
4016 static const struct file_operations *stat_fops[] = {
4017 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4018 	[KVM_STAT_VM]   = &vm_stat_fops,
4019 };
4020 
4021 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4022 {
4023 	struct kobj_uevent_env *env;
4024 	unsigned long long created, active;
4025 
4026 	if (!kvm_dev.this_device || !kvm)
4027 		return;
4028 
4029 	spin_lock(&kvm_lock);
4030 	if (type == KVM_EVENT_CREATE_VM) {
4031 		kvm_createvm_count++;
4032 		kvm_active_vms++;
4033 	} else if (type == KVM_EVENT_DESTROY_VM) {
4034 		kvm_active_vms--;
4035 	}
4036 	created = kvm_createvm_count;
4037 	active = kvm_active_vms;
4038 	spin_unlock(&kvm_lock);
4039 
4040 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4041 	if (!env)
4042 		return;
4043 
4044 	add_uevent_var(env, "CREATED=%llu", created);
4045 	add_uevent_var(env, "COUNT=%llu", active);
4046 
4047 	if (type == KVM_EVENT_CREATE_VM) {
4048 		add_uevent_var(env, "EVENT=create");
4049 		kvm->userspace_pid = task_pid_nr(current);
4050 	} else if (type == KVM_EVENT_DESTROY_VM) {
4051 		add_uevent_var(env, "EVENT=destroy");
4052 	}
4053 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4054 
4055 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4056 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4057 
4058 		if (p) {
4059 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4060 			if (!IS_ERR(tmp))
4061 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4062 			kfree(p);
4063 		}
4064 	}
4065 	/* no need for checks, since we are adding at most only 5 keys */
4066 	env->envp[env->envp_idx++] = NULL;
4067 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4068 	kfree(env);
4069 }
4070 
4071 static void kvm_init_debug(void)
4072 {
4073 	struct kvm_stats_debugfs_item *p;
4074 
4075 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4076 
4077 	kvm_debugfs_num_entries = 0;
4078 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4079 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4080 				    (void *)(long)p->offset,
4081 				    stat_fops[p->kind]);
4082 	}
4083 }
4084 
4085 static int kvm_suspend(void)
4086 {
4087 	if (kvm_usage_count)
4088 		hardware_disable_nolock(NULL);
4089 	return 0;
4090 }
4091 
4092 static void kvm_resume(void)
4093 {
4094 	if (kvm_usage_count) {
4095 		lockdep_assert_held(&kvm_count_lock);
4096 		hardware_enable_nolock(NULL);
4097 	}
4098 }
4099 
4100 static struct syscore_ops kvm_syscore_ops = {
4101 	.suspend = kvm_suspend,
4102 	.resume = kvm_resume,
4103 };
4104 
4105 static inline
4106 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4107 {
4108 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4109 }
4110 
4111 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4112 {
4113 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4114 
4115 	if (vcpu->preempted)
4116 		vcpu->preempted = false;
4117 
4118 	kvm_arch_sched_in(vcpu, cpu);
4119 
4120 	kvm_arch_vcpu_load(vcpu, cpu);
4121 }
4122 
4123 static void kvm_sched_out(struct preempt_notifier *pn,
4124 			  struct task_struct *next)
4125 {
4126 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4127 
4128 	if (current->state == TASK_RUNNING)
4129 		vcpu->preempted = true;
4130 	kvm_arch_vcpu_put(vcpu);
4131 }
4132 
4133 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4134 		  struct module *module)
4135 {
4136 	int r;
4137 	int cpu;
4138 
4139 	r = kvm_arch_init(opaque);
4140 	if (r)
4141 		goto out_fail;
4142 
4143 	/*
4144 	 * kvm_arch_init makes sure there's at most one caller
4145 	 * for architectures that support multiple implementations,
4146 	 * like intel and amd on x86.
4147 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4148 	 * conflicts in case kvm is already setup for another implementation.
4149 	 */
4150 	r = kvm_irqfd_init();
4151 	if (r)
4152 		goto out_irqfd;
4153 
4154 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4155 		r = -ENOMEM;
4156 		goto out_free_0;
4157 	}
4158 
4159 	r = kvm_arch_hardware_setup();
4160 	if (r < 0)
4161 		goto out_free_0a;
4162 
4163 	for_each_online_cpu(cpu) {
4164 		smp_call_function_single(cpu,
4165 				kvm_arch_check_processor_compat,
4166 				&r, 1);
4167 		if (r < 0)
4168 			goto out_free_1;
4169 	}
4170 
4171 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4172 				      kvm_starting_cpu, kvm_dying_cpu);
4173 	if (r)
4174 		goto out_free_2;
4175 	register_reboot_notifier(&kvm_reboot_notifier);
4176 
4177 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4178 	if (!vcpu_align)
4179 		vcpu_align = __alignof__(struct kvm_vcpu);
4180 	kvm_vcpu_cache =
4181 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4182 					   SLAB_ACCOUNT,
4183 					   offsetof(struct kvm_vcpu, arch),
4184 					   sizeof_field(struct kvm_vcpu, arch),
4185 					   NULL);
4186 	if (!kvm_vcpu_cache) {
4187 		r = -ENOMEM;
4188 		goto out_free_3;
4189 	}
4190 
4191 	r = kvm_async_pf_init();
4192 	if (r)
4193 		goto out_free;
4194 
4195 	kvm_chardev_ops.owner = module;
4196 	kvm_vm_fops.owner = module;
4197 	kvm_vcpu_fops.owner = module;
4198 
4199 	r = misc_register(&kvm_dev);
4200 	if (r) {
4201 		pr_err("kvm: misc device register failed\n");
4202 		goto out_unreg;
4203 	}
4204 
4205 	register_syscore_ops(&kvm_syscore_ops);
4206 
4207 	kvm_preempt_ops.sched_in = kvm_sched_in;
4208 	kvm_preempt_ops.sched_out = kvm_sched_out;
4209 
4210 	kvm_init_debug();
4211 
4212 	r = kvm_vfio_ops_init();
4213 	WARN_ON(r);
4214 
4215 	return 0;
4216 
4217 out_unreg:
4218 	kvm_async_pf_deinit();
4219 out_free:
4220 	kmem_cache_destroy(kvm_vcpu_cache);
4221 out_free_3:
4222 	unregister_reboot_notifier(&kvm_reboot_notifier);
4223 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4224 out_free_2:
4225 out_free_1:
4226 	kvm_arch_hardware_unsetup();
4227 out_free_0a:
4228 	free_cpumask_var(cpus_hardware_enabled);
4229 out_free_0:
4230 	kvm_irqfd_exit();
4231 out_irqfd:
4232 	kvm_arch_exit();
4233 out_fail:
4234 	return r;
4235 }
4236 EXPORT_SYMBOL_GPL(kvm_init);
4237 
4238 void kvm_exit(void)
4239 {
4240 	debugfs_remove_recursive(kvm_debugfs_dir);
4241 	misc_deregister(&kvm_dev);
4242 	kmem_cache_destroy(kvm_vcpu_cache);
4243 	kvm_async_pf_deinit();
4244 	unregister_syscore_ops(&kvm_syscore_ops);
4245 	unregister_reboot_notifier(&kvm_reboot_notifier);
4246 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4247 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4248 	kvm_arch_hardware_unsetup();
4249 	kvm_arch_exit();
4250 	kvm_irqfd_exit();
4251 	free_cpumask_var(cpus_hardware_enabled);
4252 	kvm_vfio_ops_exit();
4253 }
4254 EXPORT_SYMBOL_GPL(kvm_exit);
4255