xref: /linux/virt/kvm/kvm_main.c (revision 4d4c02852abf01059e45a188f16f13f7ec78371c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 				      struct kvm_vcpu *except)
316 {
317 	struct kvm_vcpu *vcpu;
318 	struct cpumask *cpus;
319 	unsigned long i;
320 	bool called;
321 	int me;
322 
323 	me = get_cpu();
324 
325 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 	cpumask_clear(cpus);
327 
328 	kvm_for_each_vcpu(i, vcpu, kvm) {
329 		if (vcpu == except)
330 			continue;
331 		kvm_make_vcpu_request(vcpu, req, cpus, me);
332 	}
333 
334 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 	put_cpu();
336 
337 	return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 	++kvm->stat.generic.remote_tlb_flush_requests;
349 
350 	/*
351 	 * We want to publish modifications to the page tables before reading
352 	 * mode. Pairs with a memory barrier in arch-specific code.
353 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 	 *
357 	 * There is already an smp_mb__after_atomic() before
358 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 	 * barrier here.
360 	 */
361 	if (!kvm_arch_flush_remote_tlbs(kvm)
362 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 		++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 		return;
371 
372 	/*
373 	 * Fall back to a flushing entire TLBs if the architecture range-based
374 	 * TLB invalidation is unsupported or can't be performed for whatever
375 	 * reason.
376 	 */
377 	kvm_flush_remote_tlbs(kvm);
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 				   const struct kvm_memory_slot *memslot)
382 {
383 	/*
384 	 * All current use cases for flushing the TLBs for a specific memslot
385 	 * are related to dirty logging, and many do the TLB flush out of
386 	 * mmu_lock. The interaction between the various operations on memslot
387 	 * must be serialized by slots_locks to ensure the TLB flush from one
388 	 * operation is observed by any other operation on the same memslot.
389 	 */
390 	lockdep_assert_held(&kvm->slots_lock);
391 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 	kvm_arch_flush_shadow_all(kvm);
397 	kvm_arch_guest_memory_reclaimed(kvm);
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 					       gfp_t gfp_flags)
403 {
404 	gfp_flags |= mc->gfp_zero;
405 
406 	if (mc->kmem_cache)
407 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 	else
409 		return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 	void *obj;
416 
417 	if (mc->nobjs >= min)
418 		return 0;
419 
420 	if (unlikely(!mc->objects)) {
421 		if (WARN_ON_ONCE(!capacity))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587 
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
590 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 	     node;							     \
592 	     node = interval_tree_iter_next(node, start, last))	     \
593 
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 							   const struct kvm_mmu_notifier_range *range)
596 {
597 	struct kvm_mmu_notifier_return r = {
598 		.ret = false,
599 		.found_memslot = false,
600 	};
601 	struct kvm_gfn_range gfn_range;
602 	struct kvm_memory_slot *slot;
603 	struct kvm_memslots *slots;
604 	int i, idx;
605 
606 	if (WARN_ON_ONCE(range->end <= range->start))
607 		return r;
608 
609 	/* A null handler is allowed if and only if on_lock() is provided. */
610 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 			 IS_KVM_NULL_FN(range->handler)))
612 		return r;
613 
614 	idx = srcu_read_lock(&kvm->srcu);
615 
616 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 		struct interval_tree_node *node;
618 
619 		slots = __kvm_memslots(kvm, i);
620 		kvm_for_each_memslot_in_hva_range(node, slots,
621 						  range->start, range->end - 1) {
622 			unsigned long hva_start, hva_end;
623 
624 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 			hva_end = min_t(unsigned long, range->end,
627 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628 
629 			/*
630 			 * To optimize for the likely case where the address
631 			 * range is covered by zero or one memslots, don't
632 			 * bother making these conditional (to avoid writes on
633 			 * the second or later invocation of the handler).
634 			 */
635 			gfn_range.arg = range->arg;
636 			gfn_range.may_block = range->may_block;
637 
638 			/*
639 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 			 */
642 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 			gfn_range.slot = slot;
645 
646 			if (!r.found_memslot) {
647 				r.found_memslot = true;
648 				KVM_MMU_LOCK(kvm);
649 				if (!IS_KVM_NULL_FN(range->on_lock))
650 					range->on_lock(kvm);
651 
652 				if (IS_KVM_NULL_FN(range->handler))
653 					break;
654 			}
655 			r.ret |= range->handler(kvm, &gfn_range);
656 		}
657 	}
658 
659 	if (range->flush_on_ret && r.ret)
660 		kvm_flush_remote_tlbs(kvm);
661 
662 	if (r.found_memslot)
663 		KVM_MMU_UNLOCK(kvm);
664 
665 	srcu_read_unlock(&kvm->srcu, idx);
666 
667 	return r;
668 }
669 
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 						unsigned long start,
672 						unsigned long end,
673 						union kvm_mmu_notifier_arg arg,
674 						gfn_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_mmu_notifier_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.arg		= arg,
681 		.handler	= handler,
682 		.on_lock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= true,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689 
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 							 unsigned long start,
692 							 unsigned long end,
693 							 gfn_handler_t handler)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 	const struct kvm_mmu_notifier_range range = {
697 		.start		= start,
698 		.end		= end,
699 		.handler	= handler,
700 		.on_lock	= (void *)kvm_null_fn,
701 		.flush_on_ret	= false,
702 		.may_block	= false,
703 	};
704 
705 	return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707 
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710 	/*
711 	 * Skipping invalid memslots is correct if and only change_pte() is
712 	 * surrounded by invalidate_range_{start,end}(), which is currently
713 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 	 * doesn't hold references to the old PFN.
716 	 */
717 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718 
719 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 		return false;
721 
722 	return kvm_set_spte_gfn(kvm, range);
723 }
724 
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 					struct mm_struct *mm,
727 					unsigned long address,
728 					pte_t pte)
729 {
730 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 	const union kvm_mmu_notifier_arg arg = { .pte = pte };
732 
733 	trace_kvm_set_spte_hva(address);
734 
735 	/*
736 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 	 * If mmu_invalidate_in_progress is zero, then no in-progress
738 	 * invalidations, including this one, found a relevant memslot at
739 	 * start(); rechecking memslots here is unnecessary.  Note, a false
740 	 * positive (count elevated by a different invalidation) is sub-optimal
741 	 * but functionally ok.
742 	 */
743 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 		return;
746 
747 	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749 
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752 	lockdep_assert_held_write(&kvm->mmu_lock);
753 	/*
754 	 * The count increase must become visible at unlock time as no
755 	 * spte can be established without taking the mmu_lock and
756 	 * count is also read inside the mmu_lock critical section.
757 	 */
758 	kvm->mmu_invalidate_in_progress++;
759 
760 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 		kvm->mmu_invalidate_range_start = INVALID_GPA;
762 		kvm->mmu_invalidate_range_end = INVALID_GPA;
763 	}
764 }
765 
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768 	lockdep_assert_held_write(&kvm->mmu_lock);
769 
770 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771 
772 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 		kvm->mmu_invalidate_range_start = start;
774 		kvm->mmu_invalidate_range_end = end;
775 	} else {
776 		/*
777 		 * Fully tracking multiple concurrent ranges has diminishing
778 		 * returns. Keep things simple and just find the minimal range
779 		 * which includes the current and new ranges. As there won't be
780 		 * enough information to subtract a range after its invalidate
781 		 * completes, any ranges invalidated concurrently will
782 		 * accumulate and persist until all outstanding invalidates
783 		 * complete.
784 		 */
785 		kvm->mmu_invalidate_range_start =
786 			min(kvm->mmu_invalidate_range_start, start);
787 		kvm->mmu_invalidate_range_end =
788 			max(kvm->mmu_invalidate_range_end, end);
789 	}
790 }
791 
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 	return kvm_unmap_gfn_range(kvm, range);
796 }
797 
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 					const struct mmu_notifier_range *range)
800 {
801 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 	const struct kvm_mmu_notifier_range hva_range = {
803 		.start		= range->start,
804 		.end		= range->end,
805 		.handler	= kvm_mmu_unmap_gfn_range,
806 		.on_lock	= kvm_mmu_invalidate_begin,
807 		.flush_on_ret	= true,
808 		.may_block	= mmu_notifier_range_blockable(range),
809 	};
810 
811 	trace_kvm_unmap_hva_range(range->start, range->end);
812 
813 	/*
814 	 * Prevent memslot modification between range_start() and range_end()
815 	 * so that conditionally locking provides the same result in both
816 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
817 	 * adjustments will be imbalanced.
818 	 *
819 	 * Pairs with the decrement in range_end().
820 	 */
821 	spin_lock(&kvm->mn_invalidate_lock);
822 	kvm->mn_active_invalidate_count++;
823 	spin_unlock(&kvm->mn_invalidate_lock);
824 
825 	/*
826 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 	 * each cache's lock.  There are relatively few caches in existence at
829 	 * any given time, and the caches themselves can check for hva overlap,
830 	 * i.e. don't need to rely on memslot overlap checks for performance.
831 	 * Because this runs without holding mmu_lock, the pfn caches must use
832 	 * mn_active_invalidate_count (see above) instead of
833 	 * mmu_invalidate_in_progress.
834 	 */
835 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836 					  hva_range.may_block);
837 
838 	/*
839 	 * If one or more memslots were found and thus zapped, notify arch code
840 	 * that guest memory has been reclaimed.  This needs to be done *after*
841 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
842 	 */
843 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844 		kvm_arch_guest_memory_reclaimed(kvm);
845 
846 	return 0;
847 }
848 
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851 	lockdep_assert_held_write(&kvm->mmu_lock);
852 
853 	/*
854 	 * This sequence increase will notify the kvm page fault that
855 	 * the page that is going to be mapped in the spte could have
856 	 * been freed.
857 	 */
858 	kvm->mmu_invalidate_seq++;
859 	smp_wmb();
860 	/*
861 	 * The above sequence increase must be visible before the
862 	 * below count decrease, which is ensured by the smp_wmb above
863 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
864 	 */
865 	kvm->mmu_invalidate_in_progress--;
866 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867 
868 	/*
869 	 * Assert that at least one range was added between start() and end().
870 	 * Not adding a range isn't fatal, but it is a KVM bug.
871 	 */
872 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874 
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876 					const struct mmu_notifier_range *range)
877 {
878 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
879 	const struct kvm_mmu_notifier_range hva_range = {
880 		.start		= range->start,
881 		.end		= range->end,
882 		.handler	= (void *)kvm_null_fn,
883 		.on_lock	= kvm_mmu_invalidate_end,
884 		.flush_on_ret	= false,
885 		.may_block	= mmu_notifier_range_blockable(range),
886 	};
887 	bool wake;
888 
889 	__kvm_handle_hva_range(kvm, &hva_range);
890 
891 	/* Pairs with the increment in range_start(). */
892 	spin_lock(&kvm->mn_invalidate_lock);
893 	wake = (--kvm->mn_active_invalidate_count == 0);
894 	spin_unlock(&kvm->mn_invalidate_lock);
895 
896 	/*
897 	 * There can only be one waiter, since the wait happens under
898 	 * slots_lock.
899 	 */
900 	if (wake)
901 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
902 }
903 
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905 					      struct mm_struct *mm,
906 					      unsigned long start,
907 					      unsigned long end)
908 {
909 	trace_kvm_age_hva(start, end);
910 
911 	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
912 				    kvm_age_gfn);
913 }
914 
915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
916 					struct mm_struct *mm,
917 					unsigned long start,
918 					unsigned long end)
919 {
920 	trace_kvm_age_hva(start, end);
921 
922 	/*
923 	 * Even though we do not flush TLB, this will still adversely
924 	 * affect performance on pre-Haswell Intel EPT, where there is
925 	 * no EPT Access Bit to clear so that we have to tear down EPT
926 	 * tables instead. If we find this unacceptable, we can always
927 	 * add a parameter to kvm_age_hva so that it effectively doesn't
928 	 * do anything on clear_young.
929 	 *
930 	 * Also note that currently we never issue secondary TLB flushes
931 	 * from clear_young, leaving this job up to the regular system
932 	 * cadence. If we find this inaccurate, we might come up with a
933 	 * more sophisticated heuristic later.
934 	 */
935 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
936 }
937 
938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
939 				       struct mm_struct *mm,
940 				       unsigned long address)
941 {
942 	trace_kvm_test_age_hva(address);
943 
944 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
945 					     kvm_test_age_gfn);
946 }
947 
948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
949 				     struct mm_struct *mm)
950 {
951 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
952 	int idx;
953 
954 	idx = srcu_read_lock(&kvm->srcu);
955 	kvm_flush_shadow_all(kvm);
956 	srcu_read_unlock(&kvm->srcu, idx);
957 }
958 
959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
960 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
961 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
962 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
963 	.clear_young		= kvm_mmu_notifier_clear_young,
964 	.test_young		= kvm_mmu_notifier_test_young,
965 	.change_pte		= kvm_mmu_notifier_change_pte,
966 	.release		= kvm_mmu_notifier_release,
967 };
968 
969 static int kvm_init_mmu_notifier(struct kvm *kvm)
970 {
971 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
972 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
973 }
974 
975 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
976 
977 static int kvm_init_mmu_notifier(struct kvm *kvm)
978 {
979 	return 0;
980 }
981 
982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
983 
984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
985 static int kvm_pm_notifier_call(struct notifier_block *bl,
986 				unsigned long state,
987 				void *unused)
988 {
989 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
990 
991 	return kvm_arch_pm_notifier(kvm, state);
992 }
993 
994 static void kvm_init_pm_notifier(struct kvm *kvm)
995 {
996 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
997 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
998 	kvm->pm_notifier.priority = INT_MAX;
999 	register_pm_notifier(&kvm->pm_notifier);
1000 }
1001 
1002 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1003 {
1004 	unregister_pm_notifier(&kvm->pm_notifier);
1005 }
1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1007 static void kvm_init_pm_notifier(struct kvm *kvm)
1008 {
1009 }
1010 
1011 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1012 {
1013 }
1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1015 
1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1017 {
1018 	if (!memslot->dirty_bitmap)
1019 		return;
1020 
1021 	kvfree(memslot->dirty_bitmap);
1022 	memslot->dirty_bitmap = NULL;
1023 }
1024 
1025 /* This does not remove the slot from struct kvm_memslots data structures */
1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1027 {
1028 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
1029 		kvm_gmem_unbind(slot);
1030 
1031 	kvm_destroy_dirty_bitmap(slot);
1032 
1033 	kvm_arch_free_memslot(kvm, slot);
1034 
1035 	kfree(slot);
1036 }
1037 
1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1039 {
1040 	struct hlist_node *idnode;
1041 	struct kvm_memory_slot *memslot;
1042 	int bkt;
1043 
1044 	/*
1045 	 * The same memslot objects live in both active and inactive sets,
1046 	 * arbitrarily free using index '1' so the second invocation of this
1047 	 * function isn't operating over a structure with dangling pointers
1048 	 * (even though this function isn't actually touching them).
1049 	 */
1050 	if (!slots->node_idx)
1051 		return;
1052 
1053 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1054 		kvm_free_memslot(kvm, memslot);
1055 }
1056 
1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1058 {
1059 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1060 	case KVM_STATS_TYPE_INSTANT:
1061 		return 0444;
1062 	case KVM_STATS_TYPE_CUMULATIVE:
1063 	case KVM_STATS_TYPE_PEAK:
1064 	default:
1065 		return 0644;
1066 	}
1067 }
1068 
1069 
1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1071 {
1072 	int i;
1073 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1074 				      kvm_vcpu_stats_header.num_desc;
1075 
1076 	if (IS_ERR(kvm->debugfs_dentry))
1077 		return;
1078 
1079 	debugfs_remove_recursive(kvm->debugfs_dentry);
1080 
1081 	if (kvm->debugfs_stat_data) {
1082 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1083 			kfree(kvm->debugfs_stat_data[i]);
1084 		kfree(kvm->debugfs_stat_data);
1085 	}
1086 }
1087 
1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1089 {
1090 	static DEFINE_MUTEX(kvm_debugfs_lock);
1091 	struct dentry *dent;
1092 	char dir_name[ITOA_MAX_LEN * 2];
1093 	struct kvm_stat_data *stat_data;
1094 	const struct _kvm_stats_desc *pdesc;
1095 	int i, ret = -ENOMEM;
1096 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1097 				      kvm_vcpu_stats_header.num_desc;
1098 
1099 	if (!debugfs_initialized())
1100 		return 0;
1101 
1102 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1103 	mutex_lock(&kvm_debugfs_lock);
1104 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1105 	if (dent) {
1106 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1107 		dput(dent);
1108 		mutex_unlock(&kvm_debugfs_lock);
1109 		return 0;
1110 	}
1111 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1112 	mutex_unlock(&kvm_debugfs_lock);
1113 	if (IS_ERR(dent))
1114 		return 0;
1115 
1116 	kvm->debugfs_dentry = dent;
1117 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1118 					 sizeof(*kvm->debugfs_stat_data),
1119 					 GFP_KERNEL_ACCOUNT);
1120 	if (!kvm->debugfs_stat_data)
1121 		goto out_err;
1122 
1123 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1124 		pdesc = &kvm_vm_stats_desc[i];
1125 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1126 		if (!stat_data)
1127 			goto out_err;
1128 
1129 		stat_data->kvm = kvm;
1130 		stat_data->desc = pdesc;
1131 		stat_data->kind = KVM_STAT_VM;
1132 		kvm->debugfs_stat_data[i] = stat_data;
1133 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1134 				    kvm->debugfs_dentry, stat_data,
1135 				    &stat_fops_per_vm);
1136 	}
1137 
1138 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1139 		pdesc = &kvm_vcpu_stats_desc[i];
1140 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1141 		if (!stat_data)
1142 			goto out_err;
1143 
1144 		stat_data->kvm = kvm;
1145 		stat_data->desc = pdesc;
1146 		stat_data->kind = KVM_STAT_VCPU;
1147 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1148 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1149 				    kvm->debugfs_dentry, stat_data,
1150 				    &stat_fops_per_vm);
1151 	}
1152 
1153 	kvm_arch_create_vm_debugfs(kvm);
1154 	return 0;
1155 out_err:
1156 	kvm_destroy_vm_debugfs(kvm);
1157 	return ret;
1158 }
1159 
1160 /*
1161  * Called after the VM is otherwise initialized, but just before adding it to
1162  * the vm_list.
1163  */
1164 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1165 {
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Called just after removing the VM from the vm_list, but before doing any
1171  * other destruction.
1172  */
1173 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1174 {
1175 }
1176 
1177 /*
1178  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1179  * be setup already, so we can create arch-specific debugfs entries under it.
1180  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1181  * a per-arch destroy interface is not needed.
1182  */
1183 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1184 {
1185 }
1186 
1187 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1188 {
1189 	struct kvm *kvm = kvm_arch_alloc_vm();
1190 	struct kvm_memslots *slots;
1191 	int r = -ENOMEM;
1192 	int i, j;
1193 
1194 	if (!kvm)
1195 		return ERR_PTR(-ENOMEM);
1196 
1197 	KVM_MMU_LOCK_INIT(kvm);
1198 	mmgrab(current->mm);
1199 	kvm->mm = current->mm;
1200 	kvm_eventfd_init(kvm);
1201 	mutex_init(&kvm->lock);
1202 	mutex_init(&kvm->irq_lock);
1203 	mutex_init(&kvm->slots_lock);
1204 	mutex_init(&kvm->slots_arch_lock);
1205 	spin_lock_init(&kvm->mn_invalidate_lock);
1206 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1207 	xa_init(&kvm->vcpu_array);
1208 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1209 	xa_init(&kvm->mem_attr_array);
1210 #endif
1211 
1212 	INIT_LIST_HEAD(&kvm->gpc_list);
1213 	spin_lock_init(&kvm->gpc_lock);
1214 
1215 	INIT_LIST_HEAD(&kvm->devices);
1216 	kvm->max_vcpus = KVM_MAX_VCPUS;
1217 
1218 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1219 
1220 	/*
1221 	 * Force subsequent debugfs file creations to fail if the VM directory
1222 	 * is not created (by kvm_create_vm_debugfs()).
1223 	 */
1224 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1225 
1226 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1227 		 task_pid_nr(current));
1228 
1229 	if (init_srcu_struct(&kvm->srcu))
1230 		goto out_err_no_srcu;
1231 	if (init_srcu_struct(&kvm->irq_srcu))
1232 		goto out_err_no_irq_srcu;
1233 
1234 	refcount_set(&kvm->users_count, 1);
1235 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1236 		for (j = 0; j < 2; j++) {
1237 			slots = &kvm->__memslots[i][j];
1238 
1239 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1240 			slots->hva_tree = RB_ROOT_CACHED;
1241 			slots->gfn_tree = RB_ROOT;
1242 			hash_init(slots->id_hash);
1243 			slots->node_idx = j;
1244 
1245 			/* Generations must be different for each address space. */
1246 			slots->generation = i;
1247 		}
1248 
1249 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1250 	}
1251 
1252 	for (i = 0; i < KVM_NR_BUSES; i++) {
1253 		rcu_assign_pointer(kvm->buses[i],
1254 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1255 		if (!kvm->buses[i])
1256 			goto out_err_no_arch_destroy_vm;
1257 	}
1258 
1259 	r = kvm_arch_init_vm(kvm, type);
1260 	if (r)
1261 		goto out_err_no_arch_destroy_vm;
1262 
1263 	r = hardware_enable_all();
1264 	if (r)
1265 		goto out_err_no_disable;
1266 
1267 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1268 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1269 #endif
1270 
1271 	r = kvm_init_mmu_notifier(kvm);
1272 	if (r)
1273 		goto out_err_no_mmu_notifier;
1274 
1275 	r = kvm_coalesced_mmio_init(kvm);
1276 	if (r < 0)
1277 		goto out_no_coalesced_mmio;
1278 
1279 	r = kvm_create_vm_debugfs(kvm, fdname);
1280 	if (r)
1281 		goto out_err_no_debugfs;
1282 
1283 	r = kvm_arch_post_init_vm(kvm);
1284 	if (r)
1285 		goto out_err;
1286 
1287 	mutex_lock(&kvm_lock);
1288 	list_add(&kvm->vm_list, &vm_list);
1289 	mutex_unlock(&kvm_lock);
1290 
1291 	preempt_notifier_inc();
1292 	kvm_init_pm_notifier(kvm);
1293 
1294 	return kvm;
1295 
1296 out_err:
1297 	kvm_destroy_vm_debugfs(kvm);
1298 out_err_no_debugfs:
1299 	kvm_coalesced_mmio_free(kvm);
1300 out_no_coalesced_mmio:
1301 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1302 	if (kvm->mmu_notifier.ops)
1303 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1304 #endif
1305 out_err_no_mmu_notifier:
1306 	hardware_disable_all();
1307 out_err_no_disable:
1308 	kvm_arch_destroy_vm(kvm);
1309 out_err_no_arch_destroy_vm:
1310 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1311 	for (i = 0; i < KVM_NR_BUSES; i++)
1312 		kfree(kvm_get_bus(kvm, i));
1313 	cleanup_srcu_struct(&kvm->irq_srcu);
1314 out_err_no_irq_srcu:
1315 	cleanup_srcu_struct(&kvm->srcu);
1316 out_err_no_srcu:
1317 	kvm_arch_free_vm(kvm);
1318 	mmdrop(current->mm);
1319 	return ERR_PTR(r);
1320 }
1321 
1322 static void kvm_destroy_devices(struct kvm *kvm)
1323 {
1324 	struct kvm_device *dev, *tmp;
1325 
1326 	/*
1327 	 * We do not need to take the kvm->lock here, because nobody else
1328 	 * has a reference to the struct kvm at this point and therefore
1329 	 * cannot access the devices list anyhow.
1330 	 */
1331 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1332 		list_del(&dev->vm_node);
1333 		dev->ops->destroy(dev);
1334 	}
1335 }
1336 
1337 static void kvm_destroy_vm(struct kvm *kvm)
1338 {
1339 	int i;
1340 	struct mm_struct *mm = kvm->mm;
1341 
1342 	kvm_destroy_pm_notifier(kvm);
1343 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1344 	kvm_destroy_vm_debugfs(kvm);
1345 	kvm_arch_sync_events(kvm);
1346 	mutex_lock(&kvm_lock);
1347 	list_del(&kvm->vm_list);
1348 	mutex_unlock(&kvm_lock);
1349 	kvm_arch_pre_destroy_vm(kvm);
1350 
1351 	kvm_free_irq_routing(kvm);
1352 	for (i = 0; i < KVM_NR_BUSES; i++) {
1353 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1354 
1355 		if (bus)
1356 			kvm_io_bus_destroy(bus);
1357 		kvm->buses[i] = NULL;
1358 	}
1359 	kvm_coalesced_mmio_free(kvm);
1360 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1361 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1362 	/*
1363 	 * At this point, pending calls to invalidate_range_start()
1364 	 * have completed but no more MMU notifiers will run, so
1365 	 * mn_active_invalidate_count may remain unbalanced.
1366 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1367 	 * last reference on KVM has been dropped, but freeing
1368 	 * memslots would deadlock without this manual intervention.
1369 	 *
1370 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1371 	 * notifier between a start() and end(), then there shouldn't be any
1372 	 * in-progress invalidations.
1373 	 */
1374 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1375 	if (kvm->mn_active_invalidate_count)
1376 		kvm->mn_active_invalidate_count = 0;
1377 	else
1378 		WARN_ON(kvm->mmu_invalidate_in_progress);
1379 #else
1380 	kvm_flush_shadow_all(kvm);
1381 #endif
1382 	kvm_arch_destroy_vm(kvm);
1383 	kvm_destroy_devices(kvm);
1384 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1385 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1386 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1387 	}
1388 	cleanup_srcu_struct(&kvm->irq_srcu);
1389 	cleanup_srcu_struct(&kvm->srcu);
1390 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1391 	xa_destroy(&kvm->mem_attr_array);
1392 #endif
1393 	kvm_arch_free_vm(kvm);
1394 	preempt_notifier_dec();
1395 	hardware_disable_all();
1396 	mmdrop(mm);
1397 }
1398 
1399 void kvm_get_kvm(struct kvm *kvm)
1400 {
1401 	refcount_inc(&kvm->users_count);
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1404 
1405 /*
1406  * Make sure the vm is not during destruction, which is a safe version of
1407  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1408  */
1409 bool kvm_get_kvm_safe(struct kvm *kvm)
1410 {
1411 	return refcount_inc_not_zero(&kvm->users_count);
1412 }
1413 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1414 
1415 void kvm_put_kvm(struct kvm *kvm)
1416 {
1417 	if (refcount_dec_and_test(&kvm->users_count))
1418 		kvm_destroy_vm(kvm);
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1421 
1422 /*
1423  * Used to put a reference that was taken on behalf of an object associated
1424  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1425  * of the new file descriptor fails and the reference cannot be transferred to
1426  * its final owner.  In such cases, the caller is still actively using @kvm and
1427  * will fail miserably if the refcount unexpectedly hits zero.
1428  */
1429 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1430 {
1431 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1434 
1435 static int kvm_vm_release(struct inode *inode, struct file *filp)
1436 {
1437 	struct kvm *kvm = filp->private_data;
1438 
1439 	kvm_irqfd_release(kvm);
1440 
1441 	kvm_put_kvm(kvm);
1442 	return 0;
1443 }
1444 
1445 /*
1446  * Allocation size is twice as large as the actual dirty bitmap size.
1447  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1448  */
1449 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1450 {
1451 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1452 
1453 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1454 	if (!memslot->dirty_bitmap)
1455 		return -ENOMEM;
1456 
1457 	return 0;
1458 }
1459 
1460 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1461 {
1462 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1463 	int node_idx_inactive = active->node_idx ^ 1;
1464 
1465 	return &kvm->__memslots[as_id][node_idx_inactive];
1466 }
1467 
1468 /*
1469  * Helper to get the address space ID when one of memslot pointers may be NULL.
1470  * This also serves as a sanity that at least one of the pointers is non-NULL,
1471  * and that their address space IDs don't diverge.
1472  */
1473 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1474 				  struct kvm_memory_slot *b)
1475 {
1476 	if (WARN_ON_ONCE(!a && !b))
1477 		return 0;
1478 
1479 	if (!a)
1480 		return b->as_id;
1481 	if (!b)
1482 		return a->as_id;
1483 
1484 	WARN_ON_ONCE(a->as_id != b->as_id);
1485 	return a->as_id;
1486 }
1487 
1488 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1489 				struct kvm_memory_slot *slot)
1490 {
1491 	struct rb_root *gfn_tree = &slots->gfn_tree;
1492 	struct rb_node **node, *parent;
1493 	int idx = slots->node_idx;
1494 
1495 	parent = NULL;
1496 	for (node = &gfn_tree->rb_node; *node; ) {
1497 		struct kvm_memory_slot *tmp;
1498 
1499 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1500 		parent = *node;
1501 		if (slot->base_gfn < tmp->base_gfn)
1502 			node = &(*node)->rb_left;
1503 		else if (slot->base_gfn > tmp->base_gfn)
1504 			node = &(*node)->rb_right;
1505 		else
1506 			BUG();
1507 	}
1508 
1509 	rb_link_node(&slot->gfn_node[idx], parent, node);
1510 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1511 }
1512 
1513 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1514 			       struct kvm_memory_slot *slot)
1515 {
1516 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1517 }
1518 
1519 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1520 				 struct kvm_memory_slot *old,
1521 				 struct kvm_memory_slot *new)
1522 {
1523 	int idx = slots->node_idx;
1524 
1525 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1526 
1527 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1528 			&slots->gfn_tree);
1529 }
1530 
1531 /*
1532  * Replace @old with @new in the inactive memslots.
1533  *
1534  * With NULL @old this simply adds @new.
1535  * With NULL @new this simply removes @old.
1536  *
1537  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1538  * appropriately.
1539  */
1540 static void kvm_replace_memslot(struct kvm *kvm,
1541 				struct kvm_memory_slot *old,
1542 				struct kvm_memory_slot *new)
1543 {
1544 	int as_id = kvm_memslots_get_as_id(old, new);
1545 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1546 	int idx = slots->node_idx;
1547 
1548 	if (old) {
1549 		hash_del(&old->id_node[idx]);
1550 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1551 
1552 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1553 			atomic_long_set(&slots->last_used_slot, (long)new);
1554 
1555 		if (!new) {
1556 			kvm_erase_gfn_node(slots, old);
1557 			return;
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * Initialize @new's hva range.  Do this even when replacing an @old
1563 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1564 	 */
1565 	new->hva_node[idx].start = new->userspace_addr;
1566 	new->hva_node[idx].last = new->userspace_addr +
1567 				  (new->npages << PAGE_SHIFT) - 1;
1568 
1569 	/*
1570 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1571 	 * hva_node needs to be swapped with remove+insert even though hva can't
1572 	 * change when replacing an existing slot.
1573 	 */
1574 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1575 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1576 
1577 	/*
1578 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1579 	 * switch the node in the gfn tree instead of removing the old and
1580 	 * inserting the new as two separate operations. Replacement is a
1581 	 * single O(1) operation versus two O(log(n)) operations for
1582 	 * remove+insert.
1583 	 */
1584 	if (old && old->base_gfn == new->base_gfn) {
1585 		kvm_replace_gfn_node(slots, old, new);
1586 	} else {
1587 		if (old)
1588 			kvm_erase_gfn_node(slots, old);
1589 		kvm_insert_gfn_node(slots, new);
1590 	}
1591 }
1592 
1593 /*
1594  * Flags that do not access any of the extra space of struct
1595  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1596  * only allows these.
1597  */
1598 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1599 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1600 
1601 static int check_memory_region_flags(struct kvm *kvm,
1602 				     const struct kvm_userspace_memory_region2 *mem)
1603 {
1604 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1605 
1606 	if (kvm_arch_has_private_mem(kvm))
1607 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1608 
1609 	/* Dirty logging private memory is not currently supported. */
1610 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1611 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1612 
1613 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1614 	/*
1615 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1616 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1617 	 * and KVM doesn't allow emulated MMIO for private memory.
1618 	 */
1619 	if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1620 		valid_flags |= KVM_MEM_READONLY;
1621 #endif
1622 
1623 	if (mem->flags & ~valid_flags)
1624 		return -EINVAL;
1625 
1626 	return 0;
1627 }
1628 
1629 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1630 {
1631 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1632 
1633 	/* Grab the generation from the activate memslots. */
1634 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1635 
1636 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1637 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1638 
1639 	/*
1640 	 * Do not store the new memslots while there are invalidations in
1641 	 * progress, otherwise the locking in invalidate_range_start and
1642 	 * invalidate_range_end will be unbalanced.
1643 	 */
1644 	spin_lock(&kvm->mn_invalidate_lock);
1645 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1646 	while (kvm->mn_active_invalidate_count) {
1647 		set_current_state(TASK_UNINTERRUPTIBLE);
1648 		spin_unlock(&kvm->mn_invalidate_lock);
1649 		schedule();
1650 		spin_lock(&kvm->mn_invalidate_lock);
1651 	}
1652 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1653 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1654 	spin_unlock(&kvm->mn_invalidate_lock);
1655 
1656 	/*
1657 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1658 	 * SRCU below in order to avoid deadlock with another thread
1659 	 * acquiring the slots_arch_lock in an srcu critical section.
1660 	 */
1661 	mutex_unlock(&kvm->slots_arch_lock);
1662 
1663 	synchronize_srcu_expedited(&kvm->srcu);
1664 
1665 	/*
1666 	 * Increment the new memslot generation a second time, dropping the
1667 	 * update in-progress flag and incrementing the generation based on
1668 	 * the number of address spaces.  This provides a unique and easily
1669 	 * identifiable generation number while the memslots are in flux.
1670 	 */
1671 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1672 
1673 	/*
1674 	 * Generations must be unique even across address spaces.  We do not need
1675 	 * a global counter for that, instead the generation space is evenly split
1676 	 * across address spaces.  For example, with two address spaces, address
1677 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1678 	 * use generations 1, 3, 5, ...
1679 	 */
1680 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1681 
1682 	kvm_arch_memslots_updated(kvm, gen);
1683 
1684 	slots->generation = gen;
1685 }
1686 
1687 static int kvm_prepare_memory_region(struct kvm *kvm,
1688 				     const struct kvm_memory_slot *old,
1689 				     struct kvm_memory_slot *new,
1690 				     enum kvm_mr_change change)
1691 {
1692 	int r;
1693 
1694 	/*
1695 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1696 	 * will be freed on "commit".  If logging is enabled in both old and
1697 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1698 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1699 	 * new bitmap.
1700 	 */
1701 	if (change != KVM_MR_DELETE) {
1702 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1703 			new->dirty_bitmap = NULL;
1704 		else if (old && old->dirty_bitmap)
1705 			new->dirty_bitmap = old->dirty_bitmap;
1706 		else if (kvm_use_dirty_bitmap(kvm)) {
1707 			r = kvm_alloc_dirty_bitmap(new);
1708 			if (r)
1709 				return r;
1710 
1711 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1712 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1713 		}
1714 	}
1715 
1716 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1717 
1718 	/* Free the bitmap on failure if it was allocated above. */
1719 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1720 		kvm_destroy_dirty_bitmap(new);
1721 
1722 	return r;
1723 }
1724 
1725 static void kvm_commit_memory_region(struct kvm *kvm,
1726 				     struct kvm_memory_slot *old,
1727 				     const struct kvm_memory_slot *new,
1728 				     enum kvm_mr_change change)
1729 {
1730 	int old_flags = old ? old->flags : 0;
1731 	int new_flags = new ? new->flags : 0;
1732 	/*
1733 	 * Update the total number of memslot pages before calling the arch
1734 	 * hook so that architectures can consume the result directly.
1735 	 */
1736 	if (change == KVM_MR_DELETE)
1737 		kvm->nr_memslot_pages -= old->npages;
1738 	else if (change == KVM_MR_CREATE)
1739 		kvm->nr_memslot_pages += new->npages;
1740 
1741 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1742 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1743 		atomic_set(&kvm->nr_memslots_dirty_logging,
1744 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1745 	}
1746 
1747 	kvm_arch_commit_memory_region(kvm, old, new, change);
1748 
1749 	switch (change) {
1750 	case KVM_MR_CREATE:
1751 		/* Nothing more to do. */
1752 		break;
1753 	case KVM_MR_DELETE:
1754 		/* Free the old memslot and all its metadata. */
1755 		kvm_free_memslot(kvm, old);
1756 		break;
1757 	case KVM_MR_MOVE:
1758 	case KVM_MR_FLAGS_ONLY:
1759 		/*
1760 		 * Free the dirty bitmap as needed; the below check encompasses
1761 		 * both the flags and whether a ring buffer is being used)
1762 		 */
1763 		if (old->dirty_bitmap && !new->dirty_bitmap)
1764 			kvm_destroy_dirty_bitmap(old);
1765 
1766 		/*
1767 		 * The final quirk.  Free the detached, old slot, but only its
1768 		 * memory, not any metadata.  Metadata, including arch specific
1769 		 * data, may be reused by @new.
1770 		 */
1771 		kfree(old);
1772 		break;
1773 	default:
1774 		BUG();
1775 	}
1776 }
1777 
1778 /*
1779  * Activate @new, which must be installed in the inactive slots by the caller,
1780  * by swapping the active slots and then propagating @new to @old once @old is
1781  * unreachable and can be safely modified.
1782  *
1783  * With NULL @old this simply adds @new to @active (while swapping the sets).
1784  * With NULL @new this simply removes @old from @active and frees it
1785  * (while also swapping the sets).
1786  */
1787 static void kvm_activate_memslot(struct kvm *kvm,
1788 				 struct kvm_memory_slot *old,
1789 				 struct kvm_memory_slot *new)
1790 {
1791 	int as_id = kvm_memslots_get_as_id(old, new);
1792 
1793 	kvm_swap_active_memslots(kvm, as_id);
1794 
1795 	/* Propagate the new memslot to the now inactive memslots. */
1796 	kvm_replace_memslot(kvm, old, new);
1797 }
1798 
1799 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1800 			     const struct kvm_memory_slot *src)
1801 {
1802 	dest->base_gfn = src->base_gfn;
1803 	dest->npages = src->npages;
1804 	dest->dirty_bitmap = src->dirty_bitmap;
1805 	dest->arch = src->arch;
1806 	dest->userspace_addr = src->userspace_addr;
1807 	dest->flags = src->flags;
1808 	dest->id = src->id;
1809 	dest->as_id = src->as_id;
1810 }
1811 
1812 static void kvm_invalidate_memslot(struct kvm *kvm,
1813 				   struct kvm_memory_slot *old,
1814 				   struct kvm_memory_slot *invalid_slot)
1815 {
1816 	/*
1817 	 * Mark the current slot INVALID.  As with all memslot modifications,
1818 	 * this must be done on an unreachable slot to avoid modifying the
1819 	 * current slot in the active tree.
1820 	 */
1821 	kvm_copy_memslot(invalid_slot, old);
1822 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1823 	kvm_replace_memslot(kvm, old, invalid_slot);
1824 
1825 	/*
1826 	 * Activate the slot that is now marked INVALID, but don't propagate
1827 	 * the slot to the now inactive slots. The slot is either going to be
1828 	 * deleted or recreated as a new slot.
1829 	 */
1830 	kvm_swap_active_memslots(kvm, old->as_id);
1831 
1832 	/*
1833 	 * From this point no new shadow pages pointing to a deleted, or moved,
1834 	 * memslot will be created.  Validation of sp->gfn happens in:
1835 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1836 	 *	- kvm_is_visible_gfn (mmu_check_root)
1837 	 */
1838 	kvm_arch_flush_shadow_memslot(kvm, old);
1839 	kvm_arch_guest_memory_reclaimed(kvm);
1840 
1841 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1842 	mutex_lock(&kvm->slots_arch_lock);
1843 
1844 	/*
1845 	 * Copy the arch-specific field of the newly-installed slot back to the
1846 	 * old slot as the arch data could have changed between releasing
1847 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1848 	 * above.  Writers are required to retrieve memslots *after* acquiring
1849 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1850 	 */
1851 	old->arch = invalid_slot->arch;
1852 }
1853 
1854 static void kvm_create_memslot(struct kvm *kvm,
1855 			       struct kvm_memory_slot *new)
1856 {
1857 	/* Add the new memslot to the inactive set and activate. */
1858 	kvm_replace_memslot(kvm, NULL, new);
1859 	kvm_activate_memslot(kvm, NULL, new);
1860 }
1861 
1862 static void kvm_delete_memslot(struct kvm *kvm,
1863 			       struct kvm_memory_slot *old,
1864 			       struct kvm_memory_slot *invalid_slot)
1865 {
1866 	/*
1867 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1868 	 * the "new" slot, and for the invalid version in the active slots.
1869 	 */
1870 	kvm_replace_memslot(kvm, old, NULL);
1871 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1872 }
1873 
1874 static void kvm_move_memslot(struct kvm *kvm,
1875 			     struct kvm_memory_slot *old,
1876 			     struct kvm_memory_slot *new,
1877 			     struct kvm_memory_slot *invalid_slot)
1878 {
1879 	/*
1880 	 * Replace the old memslot in the inactive slots, and then swap slots
1881 	 * and replace the current INVALID with the new as well.
1882 	 */
1883 	kvm_replace_memslot(kvm, old, new);
1884 	kvm_activate_memslot(kvm, invalid_slot, new);
1885 }
1886 
1887 static void kvm_update_flags_memslot(struct kvm *kvm,
1888 				     struct kvm_memory_slot *old,
1889 				     struct kvm_memory_slot *new)
1890 {
1891 	/*
1892 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1893 	 * an intermediate step. Instead, the old memslot is simply replaced
1894 	 * with a new, updated copy in both memslot sets.
1895 	 */
1896 	kvm_replace_memslot(kvm, old, new);
1897 	kvm_activate_memslot(kvm, old, new);
1898 }
1899 
1900 static int kvm_set_memslot(struct kvm *kvm,
1901 			   struct kvm_memory_slot *old,
1902 			   struct kvm_memory_slot *new,
1903 			   enum kvm_mr_change change)
1904 {
1905 	struct kvm_memory_slot *invalid_slot;
1906 	int r;
1907 
1908 	/*
1909 	 * Released in kvm_swap_active_memslots().
1910 	 *
1911 	 * Must be held from before the current memslots are copied until after
1912 	 * the new memslots are installed with rcu_assign_pointer, then
1913 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1914 	 *
1915 	 * When modifying memslots outside of the slots_lock, must be held
1916 	 * before reading the pointer to the current memslots until after all
1917 	 * changes to those memslots are complete.
1918 	 *
1919 	 * These rules ensure that installing new memslots does not lose
1920 	 * changes made to the previous memslots.
1921 	 */
1922 	mutex_lock(&kvm->slots_arch_lock);
1923 
1924 	/*
1925 	 * Invalidate the old slot if it's being deleted or moved.  This is
1926 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1927 	 * continue running by ensuring there are no mappings or shadow pages
1928 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1929 	 * (and without a lock), a window would exist between effecting the
1930 	 * delete/move and committing the changes in arch code where KVM or a
1931 	 * guest could access a non-existent memslot.
1932 	 *
1933 	 * Modifications are done on a temporary, unreachable slot.  The old
1934 	 * slot needs to be preserved in case a later step fails and the
1935 	 * invalidation needs to be reverted.
1936 	 */
1937 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1938 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1939 		if (!invalid_slot) {
1940 			mutex_unlock(&kvm->slots_arch_lock);
1941 			return -ENOMEM;
1942 		}
1943 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1944 	}
1945 
1946 	r = kvm_prepare_memory_region(kvm, old, new, change);
1947 	if (r) {
1948 		/*
1949 		 * For DELETE/MOVE, revert the above INVALID change.  No
1950 		 * modifications required since the original slot was preserved
1951 		 * in the inactive slots.  Changing the active memslots also
1952 		 * release slots_arch_lock.
1953 		 */
1954 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1955 			kvm_activate_memslot(kvm, invalid_slot, old);
1956 			kfree(invalid_slot);
1957 		} else {
1958 			mutex_unlock(&kvm->slots_arch_lock);
1959 		}
1960 		return r;
1961 	}
1962 
1963 	/*
1964 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1965 	 * version of the old slot.  MOVE is particularly special as it reuses
1966 	 * the old slot and returns a copy of the old slot (in working_slot).
1967 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1968 	 * old slot is detached but otherwise preserved.
1969 	 */
1970 	if (change == KVM_MR_CREATE)
1971 		kvm_create_memslot(kvm, new);
1972 	else if (change == KVM_MR_DELETE)
1973 		kvm_delete_memslot(kvm, old, invalid_slot);
1974 	else if (change == KVM_MR_MOVE)
1975 		kvm_move_memslot(kvm, old, new, invalid_slot);
1976 	else if (change == KVM_MR_FLAGS_ONLY)
1977 		kvm_update_flags_memslot(kvm, old, new);
1978 	else
1979 		BUG();
1980 
1981 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1982 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1983 		kfree(invalid_slot);
1984 
1985 	/*
1986 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1987 	 * will directly hit the final, active memslot.  Architectures are
1988 	 * responsible for knowing that new->arch may be stale.
1989 	 */
1990 	kvm_commit_memory_region(kvm, old, new, change);
1991 
1992 	return 0;
1993 }
1994 
1995 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1996 				      gfn_t start, gfn_t end)
1997 {
1998 	struct kvm_memslot_iter iter;
1999 
2000 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2001 		if (iter.slot->id != id)
2002 			return true;
2003 	}
2004 
2005 	return false;
2006 }
2007 
2008 /*
2009  * Allocate some memory and give it an address in the guest physical address
2010  * space.
2011  *
2012  * Discontiguous memory is allowed, mostly for framebuffers.
2013  *
2014  * Must be called holding kvm->slots_lock for write.
2015  */
2016 int __kvm_set_memory_region(struct kvm *kvm,
2017 			    const struct kvm_userspace_memory_region2 *mem)
2018 {
2019 	struct kvm_memory_slot *old, *new;
2020 	struct kvm_memslots *slots;
2021 	enum kvm_mr_change change;
2022 	unsigned long npages;
2023 	gfn_t base_gfn;
2024 	int as_id, id;
2025 	int r;
2026 
2027 	r = check_memory_region_flags(kvm, mem);
2028 	if (r)
2029 		return r;
2030 
2031 	as_id = mem->slot >> 16;
2032 	id = (u16)mem->slot;
2033 
2034 	/* General sanity checks */
2035 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2036 	    (mem->memory_size != (unsigned long)mem->memory_size))
2037 		return -EINVAL;
2038 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2039 		return -EINVAL;
2040 	/* We can read the guest memory with __xxx_user() later on. */
2041 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2042 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2043 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2044 			mem->memory_size))
2045 		return -EINVAL;
2046 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2047 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2048 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2049 		return -EINVAL;
2050 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2051 		return -EINVAL;
2052 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2053 		return -EINVAL;
2054 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2055 		return -EINVAL;
2056 
2057 	slots = __kvm_memslots(kvm, as_id);
2058 
2059 	/*
2060 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2061 	 * and/or destroyed by kvm_set_memslot().
2062 	 */
2063 	old = id_to_memslot(slots, id);
2064 
2065 	if (!mem->memory_size) {
2066 		if (!old || !old->npages)
2067 			return -EINVAL;
2068 
2069 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2070 			return -EIO;
2071 
2072 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2073 	}
2074 
2075 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2076 	npages = (mem->memory_size >> PAGE_SHIFT);
2077 
2078 	if (!old || !old->npages) {
2079 		change = KVM_MR_CREATE;
2080 
2081 		/*
2082 		 * To simplify KVM internals, the total number of pages across
2083 		 * all memslots must fit in an unsigned long.
2084 		 */
2085 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2086 			return -EINVAL;
2087 	} else { /* Modify an existing slot. */
2088 		/* Private memslots are immutable, they can only be deleted. */
2089 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2090 			return -EINVAL;
2091 		if ((mem->userspace_addr != old->userspace_addr) ||
2092 		    (npages != old->npages) ||
2093 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2094 			return -EINVAL;
2095 
2096 		if (base_gfn != old->base_gfn)
2097 			change = KVM_MR_MOVE;
2098 		else if (mem->flags != old->flags)
2099 			change = KVM_MR_FLAGS_ONLY;
2100 		else /* Nothing to change. */
2101 			return 0;
2102 	}
2103 
2104 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2105 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2106 		return -EEXIST;
2107 
2108 	/* Allocate a slot that will persist in the memslot. */
2109 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2110 	if (!new)
2111 		return -ENOMEM;
2112 
2113 	new->as_id = as_id;
2114 	new->id = id;
2115 	new->base_gfn = base_gfn;
2116 	new->npages = npages;
2117 	new->flags = mem->flags;
2118 	new->userspace_addr = mem->userspace_addr;
2119 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2120 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2121 		if (r)
2122 			goto out;
2123 	}
2124 
2125 	r = kvm_set_memslot(kvm, old, new, change);
2126 	if (r)
2127 		goto out_unbind;
2128 
2129 	return 0;
2130 
2131 out_unbind:
2132 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2133 		kvm_gmem_unbind(new);
2134 out:
2135 	kfree(new);
2136 	return r;
2137 }
2138 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2139 
2140 int kvm_set_memory_region(struct kvm *kvm,
2141 			  const struct kvm_userspace_memory_region2 *mem)
2142 {
2143 	int r;
2144 
2145 	mutex_lock(&kvm->slots_lock);
2146 	r = __kvm_set_memory_region(kvm, mem);
2147 	mutex_unlock(&kvm->slots_lock);
2148 	return r;
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2151 
2152 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2153 					  struct kvm_userspace_memory_region2 *mem)
2154 {
2155 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2156 		return -EINVAL;
2157 
2158 	return kvm_set_memory_region(kvm, mem);
2159 }
2160 
2161 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2162 /**
2163  * kvm_get_dirty_log - get a snapshot of dirty pages
2164  * @kvm:	pointer to kvm instance
2165  * @log:	slot id and address to which we copy the log
2166  * @is_dirty:	set to '1' if any dirty pages were found
2167  * @memslot:	set to the associated memslot, always valid on success
2168  */
2169 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2170 		      int *is_dirty, struct kvm_memory_slot **memslot)
2171 {
2172 	struct kvm_memslots *slots;
2173 	int i, as_id, id;
2174 	unsigned long n;
2175 	unsigned long any = 0;
2176 
2177 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2178 	if (!kvm_use_dirty_bitmap(kvm))
2179 		return -ENXIO;
2180 
2181 	*memslot = NULL;
2182 	*is_dirty = 0;
2183 
2184 	as_id = log->slot >> 16;
2185 	id = (u16)log->slot;
2186 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2187 		return -EINVAL;
2188 
2189 	slots = __kvm_memslots(kvm, as_id);
2190 	*memslot = id_to_memslot(slots, id);
2191 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2192 		return -ENOENT;
2193 
2194 	kvm_arch_sync_dirty_log(kvm, *memslot);
2195 
2196 	n = kvm_dirty_bitmap_bytes(*memslot);
2197 
2198 	for (i = 0; !any && i < n/sizeof(long); ++i)
2199 		any = (*memslot)->dirty_bitmap[i];
2200 
2201 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2202 		return -EFAULT;
2203 
2204 	if (any)
2205 		*is_dirty = 1;
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2209 
2210 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2211 /**
2212  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2213  *	and reenable dirty page tracking for the corresponding pages.
2214  * @kvm:	pointer to kvm instance
2215  * @log:	slot id and address to which we copy the log
2216  *
2217  * We need to keep it in mind that VCPU threads can write to the bitmap
2218  * concurrently. So, to avoid losing track of dirty pages we keep the
2219  * following order:
2220  *
2221  *    1. Take a snapshot of the bit and clear it if needed.
2222  *    2. Write protect the corresponding page.
2223  *    3. Copy the snapshot to the userspace.
2224  *    4. Upon return caller flushes TLB's if needed.
2225  *
2226  * Between 2 and 4, the guest may write to the page using the remaining TLB
2227  * entry.  This is not a problem because the page is reported dirty using
2228  * the snapshot taken before and step 4 ensures that writes done after
2229  * exiting to userspace will be logged for the next call.
2230  *
2231  */
2232 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2233 {
2234 	struct kvm_memslots *slots;
2235 	struct kvm_memory_slot *memslot;
2236 	int i, as_id, id;
2237 	unsigned long n;
2238 	unsigned long *dirty_bitmap;
2239 	unsigned long *dirty_bitmap_buffer;
2240 	bool flush;
2241 
2242 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2243 	if (!kvm_use_dirty_bitmap(kvm))
2244 		return -ENXIO;
2245 
2246 	as_id = log->slot >> 16;
2247 	id = (u16)log->slot;
2248 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2249 		return -EINVAL;
2250 
2251 	slots = __kvm_memslots(kvm, as_id);
2252 	memslot = id_to_memslot(slots, id);
2253 	if (!memslot || !memslot->dirty_bitmap)
2254 		return -ENOENT;
2255 
2256 	dirty_bitmap = memslot->dirty_bitmap;
2257 
2258 	kvm_arch_sync_dirty_log(kvm, memslot);
2259 
2260 	n = kvm_dirty_bitmap_bytes(memslot);
2261 	flush = false;
2262 	if (kvm->manual_dirty_log_protect) {
2263 		/*
2264 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2265 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2266 		 * is some code duplication between this function and
2267 		 * kvm_get_dirty_log, but hopefully all architecture
2268 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2269 		 * can be eliminated.
2270 		 */
2271 		dirty_bitmap_buffer = dirty_bitmap;
2272 	} else {
2273 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2274 		memset(dirty_bitmap_buffer, 0, n);
2275 
2276 		KVM_MMU_LOCK(kvm);
2277 		for (i = 0; i < n / sizeof(long); i++) {
2278 			unsigned long mask;
2279 			gfn_t offset;
2280 
2281 			if (!dirty_bitmap[i])
2282 				continue;
2283 
2284 			flush = true;
2285 			mask = xchg(&dirty_bitmap[i], 0);
2286 			dirty_bitmap_buffer[i] = mask;
2287 
2288 			offset = i * BITS_PER_LONG;
2289 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2290 								offset, mask);
2291 		}
2292 		KVM_MMU_UNLOCK(kvm);
2293 	}
2294 
2295 	if (flush)
2296 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2297 
2298 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2299 		return -EFAULT;
2300 	return 0;
2301 }
2302 
2303 
2304 /**
2305  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2306  * @kvm: kvm instance
2307  * @log: slot id and address to which we copy the log
2308  *
2309  * Steps 1-4 below provide general overview of dirty page logging. See
2310  * kvm_get_dirty_log_protect() function description for additional details.
2311  *
2312  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2313  * always flush the TLB (step 4) even if previous step failed  and the dirty
2314  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2315  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2316  * writes will be marked dirty for next log read.
2317  *
2318  *   1. Take a snapshot of the bit and clear it if needed.
2319  *   2. Write protect the corresponding page.
2320  *   3. Copy the snapshot to the userspace.
2321  *   4. Flush TLB's if needed.
2322  */
2323 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2324 				      struct kvm_dirty_log *log)
2325 {
2326 	int r;
2327 
2328 	mutex_lock(&kvm->slots_lock);
2329 
2330 	r = kvm_get_dirty_log_protect(kvm, log);
2331 
2332 	mutex_unlock(&kvm->slots_lock);
2333 	return r;
2334 }
2335 
2336 /**
2337  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2338  *	and reenable dirty page tracking for the corresponding pages.
2339  * @kvm:	pointer to kvm instance
2340  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2341  */
2342 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2343 				       struct kvm_clear_dirty_log *log)
2344 {
2345 	struct kvm_memslots *slots;
2346 	struct kvm_memory_slot *memslot;
2347 	int as_id, id;
2348 	gfn_t offset;
2349 	unsigned long i, n;
2350 	unsigned long *dirty_bitmap;
2351 	unsigned long *dirty_bitmap_buffer;
2352 	bool flush;
2353 
2354 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2355 	if (!kvm_use_dirty_bitmap(kvm))
2356 		return -ENXIO;
2357 
2358 	as_id = log->slot >> 16;
2359 	id = (u16)log->slot;
2360 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2361 		return -EINVAL;
2362 
2363 	if (log->first_page & 63)
2364 		return -EINVAL;
2365 
2366 	slots = __kvm_memslots(kvm, as_id);
2367 	memslot = id_to_memslot(slots, id);
2368 	if (!memslot || !memslot->dirty_bitmap)
2369 		return -ENOENT;
2370 
2371 	dirty_bitmap = memslot->dirty_bitmap;
2372 
2373 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2374 
2375 	if (log->first_page > memslot->npages ||
2376 	    log->num_pages > memslot->npages - log->first_page ||
2377 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2378 	    return -EINVAL;
2379 
2380 	kvm_arch_sync_dirty_log(kvm, memslot);
2381 
2382 	flush = false;
2383 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2384 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2385 		return -EFAULT;
2386 
2387 	KVM_MMU_LOCK(kvm);
2388 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2389 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2390 	     i++, offset += BITS_PER_LONG) {
2391 		unsigned long mask = *dirty_bitmap_buffer++;
2392 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2393 		if (!mask)
2394 			continue;
2395 
2396 		mask &= atomic_long_fetch_andnot(mask, p);
2397 
2398 		/*
2399 		 * mask contains the bits that really have been cleared.  This
2400 		 * never includes any bits beyond the length of the memslot (if
2401 		 * the length is not aligned to 64 pages), therefore it is not
2402 		 * a problem if userspace sets them in log->dirty_bitmap.
2403 		*/
2404 		if (mask) {
2405 			flush = true;
2406 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2407 								offset, mask);
2408 		}
2409 	}
2410 	KVM_MMU_UNLOCK(kvm);
2411 
2412 	if (flush)
2413 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2414 
2415 	return 0;
2416 }
2417 
2418 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2419 					struct kvm_clear_dirty_log *log)
2420 {
2421 	int r;
2422 
2423 	mutex_lock(&kvm->slots_lock);
2424 
2425 	r = kvm_clear_dirty_log_protect(kvm, log);
2426 
2427 	mutex_unlock(&kvm->slots_lock);
2428 	return r;
2429 }
2430 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2431 
2432 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2433 /*
2434  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2435  * matching @attrs.
2436  */
2437 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2438 				     unsigned long attrs)
2439 {
2440 	XA_STATE(xas, &kvm->mem_attr_array, start);
2441 	unsigned long index;
2442 	bool has_attrs;
2443 	void *entry;
2444 
2445 	rcu_read_lock();
2446 
2447 	if (!attrs) {
2448 		has_attrs = !xas_find(&xas, end - 1);
2449 		goto out;
2450 	}
2451 
2452 	has_attrs = true;
2453 	for (index = start; index < end; index++) {
2454 		do {
2455 			entry = xas_next(&xas);
2456 		} while (xas_retry(&xas, entry));
2457 
2458 		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2459 			has_attrs = false;
2460 			break;
2461 		}
2462 	}
2463 
2464 out:
2465 	rcu_read_unlock();
2466 	return has_attrs;
2467 }
2468 
2469 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2470 {
2471 	if (!kvm || kvm_arch_has_private_mem(kvm))
2472 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2473 
2474 	return 0;
2475 }
2476 
2477 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2478 						 struct kvm_mmu_notifier_range *range)
2479 {
2480 	struct kvm_gfn_range gfn_range;
2481 	struct kvm_memory_slot *slot;
2482 	struct kvm_memslots *slots;
2483 	struct kvm_memslot_iter iter;
2484 	bool found_memslot = false;
2485 	bool ret = false;
2486 	int i;
2487 
2488 	gfn_range.arg = range->arg;
2489 	gfn_range.may_block = range->may_block;
2490 
2491 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2492 		slots = __kvm_memslots(kvm, i);
2493 
2494 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2495 			slot = iter.slot;
2496 			gfn_range.slot = slot;
2497 
2498 			gfn_range.start = max(range->start, slot->base_gfn);
2499 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2500 			if (gfn_range.start >= gfn_range.end)
2501 				continue;
2502 
2503 			if (!found_memslot) {
2504 				found_memslot = true;
2505 				KVM_MMU_LOCK(kvm);
2506 				if (!IS_KVM_NULL_FN(range->on_lock))
2507 					range->on_lock(kvm);
2508 			}
2509 
2510 			ret |= range->handler(kvm, &gfn_range);
2511 		}
2512 	}
2513 
2514 	if (range->flush_on_ret && ret)
2515 		kvm_flush_remote_tlbs(kvm);
2516 
2517 	if (found_memslot)
2518 		KVM_MMU_UNLOCK(kvm);
2519 }
2520 
2521 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2522 					  struct kvm_gfn_range *range)
2523 {
2524 	/*
2525 	 * Unconditionally add the range to the invalidation set, regardless of
2526 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2527 	 * if KVM supports RWX attributes in the future and the attributes are
2528 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2529 	 * adding the range allows KVM to require that MMU invalidations add at
2530 	 * least one range between begin() and end(), e.g. allows KVM to detect
2531 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2532 	 * but it's not obvious that allowing new mappings while the attributes
2533 	 * are in flux is desirable or worth the complexity.
2534 	 */
2535 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2536 
2537 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2538 }
2539 
2540 /* Set @attributes for the gfn range [@start, @end). */
2541 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2542 				     unsigned long attributes)
2543 {
2544 	struct kvm_mmu_notifier_range pre_set_range = {
2545 		.start = start,
2546 		.end = end,
2547 		.handler = kvm_pre_set_memory_attributes,
2548 		.on_lock = kvm_mmu_invalidate_begin,
2549 		.flush_on_ret = true,
2550 		.may_block = true,
2551 	};
2552 	struct kvm_mmu_notifier_range post_set_range = {
2553 		.start = start,
2554 		.end = end,
2555 		.arg.attributes = attributes,
2556 		.handler = kvm_arch_post_set_memory_attributes,
2557 		.on_lock = kvm_mmu_invalidate_end,
2558 		.may_block = true,
2559 	};
2560 	unsigned long i;
2561 	void *entry;
2562 	int r = 0;
2563 
2564 	entry = attributes ? xa_mk_value(attributes) : NULL;
2565 
2566 	mutex_lock(&kvm->slots_lock);
2567 
2568 	/* Nothing to do if the entire range as the desired attributes. */
2569 	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2570 		goto out_unlock;
2571 
2572 	/*
2573 	 * Reserve memory ahead of time to avoid having to deal with failures
2574 	 * partway through setting the new attributes.
2575 	 */
2576 	for (i = start; i < end; i++) {
2577 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2578 		if (r)
2579 			goto out_unlock;
2580 	}
2581 
2582 	kvm_handle_gfn_range(kvm, &pre_set_range);
2583 
2584 	for (i = start; i < end; i++) {
2585 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2586 				    GFP_KERNEL_ACCOUNT));
2587 		KVM_BUG_ON(r, kvm);
2588 	}
2589 
2590 	kvm_handle_gfn_range(kvm, &post_set_range);
2591 
2592 out_unlock:
2593 	mutex_unlock(&kvm->slots_lock);
2594 
2595 	return r;
2596 }
2597 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2598 					   struct kvm_memory_attributes *attrs)
2599 {
2600 	gfn_t start, end;
2601 
2602 	/* flags is currently not used. */
2603 	if (attrs->flags)
2604 		return -EINVAL;
2605 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2606 		return -EINVAL;
2607 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2608 		return -EINVAL;
2609 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2610 		return -EINVAL;
2611 
2612 	start = attrs->address >> PAGE_SHIFT;
2613 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2614 
2615 	/*
2616 	 * xarray tracks data using "unsigned long", and as a result so does
2617 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2618 	 * architectures.
2619 	 */
2620 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2621 
2622 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2623 }
2624 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2625 
2626 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2627 {
2628 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2629 }
2630 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2631 
2632 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2633 {
2634 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2635 	u64 gen = slots->generation;
2636 	struct kvm_memory_slot *slot;
2637 
2638 	/*
2639 	 * This also protects against using a memslot from a different address space,
2640 	 * since different address spaces have different generation numbers.
2641 	 */
2642 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2643 		vcpu->last_used_slot = NULL;
2644 		vcpu->last_used_slot_gen = gen;
2645 	}
2646 
2647 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2648 	if (slot)
2649 		return slot;
2650 
2651 	/*
2652 	 * Fall back to searching all memslots. We purposely use
2653 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2654 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2655 	 */
2656 	slot = search_memslots(slots, gfn, false);
2657 	if (slot) {
2658 		vcpu->last_used_slot = slot;
2659 		return slot;
2660 	}
2661 
2662 	return NULL;
2663 }
2664 
2665 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2666 {
2667 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2668 
2669 	return kvm_is_visible_memslot(memslot);
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2672 
2673 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2674 {
2675 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2676 
2677 	return kvm_is_visible_memslot(memslot);
2678 }
2679 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2680 
2681 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2682 {
2683 	struct vm_area_struct *vma;
2684 	unsigned long addr, size;
2685 
2686 	size = PAGE_SIZE;
2687 
2688 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2689 	if (kvm_is_error_hva(addr))
2690 		return PAGE_SIZE;
2691 
2692 	mmap_read_lock(current->mm);
2693 	vma = find_vma(current->mm, addr);
2694 	if (!vma)
2695 		goto out;
2696 
2697 	size = vma_kernel_pagesize(vma);
2698 
2699 out:
2700 	mmap_read_unlock(current->mm);
2701 
2702 	return size;
2703 }
2704 
2705 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2706 {
2707 	return slot->flags & KVM_MEM_READONLY;
2708 }
2709 
2710 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2711 				       gfn_t *nr_pages, bool write)
2712 {
2713 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2714 		return KVM_HVA_ERR_BAD;
2715 
2716 	if (memslot_is_readonly(slot) && write)
2717 		return KVM_HVA_ERR_RO_BAD;
2718 
2719 	if (nr_pages)
2720 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2721 
2722 	return __gfn_to_hva_memslot(slot, gfn);
2723 }
2724 
2725 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2726 				     gfn_t *nr_pages)
2727 {
2728 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2729 }
2730 
2731 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2732 					gfn_t gfn)
2733 {
2734 	return gfn_to_hva_many(slot, gfn, NULL);
2735 }
2736 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2737 
2738 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2739 {
2740 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2741 }
2742 EXPORT_SYMBOL_GPL(gfn_to_hva);
2743 
2744 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2745 {
2746 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2747 }
2748 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2749 
2750 /*
2751  * Return the hva of a @gfn and the R/W attribute if possible.
2752  *
2753  * @slot: the kvm_memory_slot which contains @gfn
2754  * @gfn: the gfn to be translated
2755  * @writable: used to return the read/write attribute of the @slot if the hva
2756  * is valid and @writable is not NULL
2757  */
2758 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2759 				      gfn_t gfn, bool *writable)
2760 {
2761 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2762 
2763 	if (!kvm_is_error_hva(hva) && writable)
2764 		*writable = !memslot_is_readonly(slot);
2765 
2766 	return hva;
2767 }
2768 
2769 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2770 {
2771 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2772 
2773 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2774 }
2775 
2776 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2777 {
2778 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2779 
2780 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2781 }
2782 
2783 static inline int check_user_page_hwpoison(unsigned long addr)
2784 {
2785 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2786 
2787 	rc = get_user_pages(addr, 1, flags, NULL);
2788 	return rc == -EHWPOISON;
2789 }
2790 
2791 /*
2792  * The fast path to get the writable pfn which will be stored in @pfn,
2793  * true indicates success, otherwise false is returned.  It's also the
2794  * only part that runs if we can in atomic context.
2795  */
2796 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2797 			    bool *writable, kvm_pfn_t *pfn)
2798 {
2799 	struct page *page[1];
2800 
2801 	/*
2802 	 * Fast pin a writable pfn only if it is a write fault request
2803 	 * or the caller allows to map a writable pfn for a read fault
2804 	 * request.
2805 	 */
2806 	if (!(write_fault || writable))
2807 		return false;
2808 
2809 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2810 		*pfn = page_to_pfn(page[0]);
2811 
2812 		if (writable)
2813 			*writable = true;
2814 		return true;
2815 	}
2816 
2817 	return false;
2818 }
2819 
2820 /*
2821  * The slow path to get the pfn of the specified host virtual address,
2822  * 1 indicates success, -errno is returned if error is detected.
2823  */
2824 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2825 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2826 {
2827 	/*
2828 	 * When a VCPU accesses a page that is not mapped into the secondary
2829 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2830 	 * make progress. We always want to honor NUMA hinting faults in that
2831 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2832 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2833 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2834 	 *
2835 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2836 	 * implicitly honor NUMA hinting faults and don't need this flag.
2837 	 */
2838 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2839 	struct page *page;
2840 	int npages;
2841 
2842 	might_sleep();
2843 
2844 	if (writable)
2845 		*writable = write_fault;
2846 
2847 	if (write_fault)
2848 		flags |= FOLL_WRITE;
2849 	if (async)
2850 		flags |= FOLL_NOWAIT;
2851 	if (interruptible)
2852 		flags |= FOLL_INTERRUPTIBLE;
2853 
2854 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2855 	if (npages != 1)
2856 		return npages;
2857 
2858 	/* map read fault as writable if possible */
2859 	if (unlikely(!write_fault) && writable) {
2860 		struct page *wpage;
2861 
2862 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2863 			*writable = true;
2864 			put_page(page);
2865 			page = wpage;
2866 		}
2867 	}
2868 	*pfn = page_to_pfn(page);
2869 	return npages;
2870 }
2871 
2872 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2873 {
2874 	if (unlikely(!(vma->vm_flags & VM_READ)))
2875 		return false;
2876 
2877 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2878 		return false;
2879 
2880 	return true;
2881 }
2882 
2883 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2884 {
2885 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2886 
2887 	if (!page)
2888 		return 1;
2889 
2890 	return get_page_unless_zero(page);
2891 }
2892 
2893 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2894 			       unsigned long addr, bool write_fault,
2895 			       bool *writable, kvm_pfn_t *p_pfn)
2896 {
2897 	kvm_pfn_t pfn;
2898 	pte_t *ptep;
2899 	pte_t pte;
2900 	spinlock_t *ptl;
2901 	int r;
2902 
2903 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2904 	if (r) {
2905 		/*
2906 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2907 		 * not call the fault handler, so do it here.
2908 		 */
2909 		bool unlocked = false;
2910 		r = fixup_user_fault(current->mm, addr,
2911 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2912 				     &unlocked);
2913 		if (unlocked)
2914 			return -EAGAIN;
2915 		if (r)
2916 			return r;
2917 
2918 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2919 		if (r)
2920 			return r;
2921 	}
2922 
2923 	pte = ptep_get(ptep);
2924 
2925 	if (write_fault && !pte_write(pte)) {
2926 		pfn = KVM_PFN_ERR_RO_FAULT;
2927 		goto out;
2928 	}
2929 
2930 	if (writable)
2931 		*writable = pte_write(pte);
2932 	pfn = pte_pfn(pte);
2933 
2934 	/*
2935 	 * Get a reference here because callers of *hva_to_pfn* and
2936 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2937 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2938 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2939 	 * simply do nothing for reserved pfns.
2940 	 *
2941 	 * Whoever called remap_pfn_range is also going to call e.g.
2942 	 * unmap_mapping_range before the underlying pages are freed,
2943 	 * causing a call to our MMU notifier.
2944 	 *
2945 	 * Certain IO or PFNMAP mappings can be backed with valid
2946 	 * struct pages, but be allocated without refcounting e.g.,
2947 	 * tail pages of non-compound higher order allocations, which
2948 	 * would then underflow the refcount when the caller does the
2949 	 * required put_page. Don't allow those pages here.
2950 	 */
2951 	if (!kvm_try_get_pfn(pfn))
2952 		r = -EFAULT;
2953 
2954 out:
2955 	pte_unmap_unlock(ptep, ptl);
2956 	*p_pfn = pfn;
2957 
2958 	return r;
2959 }
2960 
2961 /*
2962  * Pin guest page in memory and return its pfn.
2963  * @addr: host virtual address which maps memory to the guest
2964  * @atomic: whether this function can sleep
2965  * @interruptible: whether the process can be interrupted by non-fatal signals
2966  * @async: whether this function need to wait IO complete if the
2967  *         host page is not in the memory
2968  * @write_fault: whether we should get a writable host page
2969  * @writable: whether it allows to map a writable host page for !@write_fault
2970  *
2971  * The function will map a writable host page for these two cases:
2972  * 1): @write_fault = true
2973  * 2): @write_fault = false && @writable, @writable will tell the caller
2974  *     whether the mapping is writable.
2975  */
2976 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2977 		     bool *async, bool write_fault, bool *writable)
2978 {
2979 	struct vm_area_struct *vma;
2980 	kvm_pfn_t pfn;
2981 	int npages, r;
2982 
2983 	/* we can do it either atomically or asynchronously, not both */
2984 	BUG_ON(atomic && async);
2985 
2986 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2987 		return pfn;
2988 
2989 	if (atomic)
2990 		return KVM_PFN_ERR_FAULT;
2991 
2992 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2993 				 writable, &pfn);
2994 	if (npages == 1)
2995 		return pfn;
2996 	if (npages == -EINTR)
2997 		return KVM_PFN_ERR_SIGPENDING;
2998 
2999 	mmap_read_lock(current->mm);
3000 	if (npages == -EHWPOISON ||
3001 	      (!async && check_user_page_hwpoison(addr))) {
3002 		pfn = KVM_PFN_ERR_HWPOISON;
3003 		goto exit;
3004 	}
3005 
3006 retry:
3007 	vma = vma_lookup(current->mm, addr);
3008 
3009 	if (vma == NULL)
3010 		pfn = KVM_PFN_ERR_FAULT;
3011 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3012 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3013 		if (r == -EAGAIN)
3014 			goto retry;
3015 		if (r < 0)
3016 			pfn = KVM_PFN_ERR_FAULT;
3017 	} else {
3018 		if (async && vma_is_valid(vma, write_fault))
3019 			*async = true;
3020 		pfn = KVM_PFN_ERR_FAULT;
3021 	}
3022 exit:
3023 	mmap_read_unlock(current->mm);
3024 	return pfn;
3025 }
3026 
3027 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3028 			       bool atomic, bool interruptible, bool *async,
3029 			       bool write_fault, bool *writable, hva_t *hva)
3030 {
3031 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3032 
3033 	if (hva)
3034 		*hva = addr;
3035 
3036 	if (addr == KVM_HVA_ERR_RO_BAD) {
3037 		if (writable)
3038 			*writable = false;
3039 		return KVM_PFN_ERR_RO_FAULT;
3040 	}
3041 
3042 	if (kvm_is_error_hva(addr)) {
3043 		if (writable)
3044 			*writable = false;
3045 		return KVM_PFN_NOSLOT;
3046 	}
3047 
3048 	/* Do not map writable pfn in the readonly memslot. */
3049 	if (writable && memslot_is_readonly(slot)) {
3050 		*writable = false;
3051 		writable = NULL;
3052 	}
3053 
3054 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3055 			  writable);
3056 }
3057 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3058 
3059 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3060 		      bool *writable)
3061 {
3062 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3063 				    NULL, write_fault, writable, NULL);
3064 }
3065 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3066 
3067 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3068 {
3069 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3070 				    NULL, NULL);
3071 }
3072 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3073 
3074 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3075 {
3076 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3077 				    NULL, NULL);
3078 }
3079 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3080 
3081 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3082 {
3083 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3084 }
3085 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3086 
3087 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3088 {
3089 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3090 }
3091 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3092 
3093 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3094 {
3095 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3096 }
3097 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3098 
3099 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3100 			    struct page **pages, int nr_pages)
3101 {
3102 	unsigned long addr;
3103 	gfn_t entry = 0;
3104 
3105 	addr = gfn_to_hva_many(slot, gfn, &entry);
3106 	if (kvm_is_error_hva(addr))
3107 		return -1;
3108 
3109 	if (entry < nr_pages)
3110 		return 0;
3111 
3112 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3113 }
3114 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3115 
3116 /*
3117  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3118  * backed by 'struct page'.  A valid example is if the backing memslot is
3119  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3120  * been elevated by gfn_to_pfn().
3121  */
3122 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3123 {
3124 	struct page *page;
3125 	kvm_pfn_t pfn;
3126 
3127 	pfn = gfn_to_pfn(kvm, gfn);
3128 
3129 	if (is_error_noslot_pfn(pfn))
3130 		return KVM_ERR_PTR_BAD_PAGE;
3131 
3132 	page = kvm_pfn_to_refcounted_page(pfn);
3133 	if (!page)
3134 		return KVM_ERR_PTR_BAD_PAGE;
3135 
3136 	return page;
3137 }
3138 EXPORT_SYMBOL_GPL(gfn_to_page);
3139 
3140 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3141 {
3142 	if (dirty)
3143 		kvm_release_pfn_dirty(pfn);
3144 	else
3145 		kvm_release_pfn_clean(pfn);
3146 }
3147 
3148 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3149 {
3150 	kvm_pfn_t pfn;
3151 	void *hva = NULL;
3152 	struct page *page = KVM_UNMAPPED_PAGE;
3153 
3154 	if (!map)
3155 		return -EINVAL;
3156 
3157 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3158 	if (is_error_noslot_pfn(pfn))
3159 		return -EINVAL;
3160 
3161 	if (pfn_valid(pfn)) {
3162 		page = pfn_to_page(pfn);
3163 		hva = kmap(page);
3164 #ifdef CONFIG_HAS_IOMEM
3165 	} else {
3166 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3167 #endif
3168 	}
3169 
3170 	if (!hva)
3171 		return -EFAULT;
3172 
3173 	map->page = page;
3174 	map->hva = hva;
3175 	map->pfn = pfn;
3176 	map->gfn = gfn;
3177 
3178 	return 0;
3179 }
3180 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3181 
3182 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3183 {
3184 	if (!map)
3185 		return;
3186 
3187 	if (!map->hva)
3188 		return;
3189 
3190 	if (map->page != KVM_UNMAPPED_PAGE)
3191 		kunmap(map->page);
3192 #ifdef CONFIG_HAS_IOMEM
3193 	else
3194 		memunmap(map->hva);
3195 #endif
3196 
3197 	if (dirty)
3198 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3199 
3200 	kvm_release_pfn(map->pfn, dirty);
3201 
3202 	map->hva = NULL;
3203 	map->page = NULL;
3204 }
3205 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3206 
3207 static bool kvm_is_ad_tracked_page(struct page *page)
3208 {
3209 	/*
3210 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3211 	 * touched (e.g. set dirty) except by its owner".
3212 	 */
3213 	return !PageReserved(page);
3214 }
3215 
3216 static void kvm_set_page_dirty(struct page *page)
3217 {
3218 	if (kvm_is_ad_tracked_page(page))
3219 		SetPageDirty(page);
3220 }
3221 
3222 static void kvm_set_page_accessed(struct page *page)
3223 {
3224 	if (kvm_is_ad_tracked_page(page))
3225 		mark_page_accessed(page);
3226 }
3227 
3228 void kvm_release_page_clean(struct page *page)
3229 {
3230 	WARN_ON(is_error_page(page));
3231 
3232 	kvm_set_page_accessed(page);
3233 	put_page(page);
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3236 
3237 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3238 {
3239 	struct page *page;
3240 
3241 	if (is_error_noslot_pfn(pfn))
3242 		return;
3243 
3244 	page = kvm_pfn_to_refcounted_page(pfn);
3245 	if (!page)
3246 		return;
3247 
3248 	kvm_release_page_clean(page);
3249 }
3250 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3251 
3252 void kvm_release_page_dirty(struct page *page)
3253 {
3254 	WARN_ON(is_error_page(page));
3255 
3256 	kvm_set_page_dirty(page);
3257 	kvm_release_page_clean(page);
3258 }
3259 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3260 
3261 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3262 {
3263 	struct page *page;
3264 
3265 	if (is_error_noslot_pfn(pfn))
3266 		return;
3267 
3268 	page = kvm_pfn_to_refcounted_page(pfn);
3269 	if (!page)
3270 		return;
3271 
3272 	kvm_release_page_dirty(page);
3273 }
3274 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3275 
3276 /*
3277  * Note, checking for an error/noslot pfn is the caller's responsibility when
3278  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3279  * "set" helpers are not to be used when the pfn might point at garbage.
3280  */
3281 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3282 {
3283 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3284 		return;
3285 
3286 	if (pfn_valid(pfn))
3287 		kvm_set_page_dirty(pfn_to_page(pfn));
3288 }
3289 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3290 
3291 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3292 {
3293 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3294 		return;
3295 
3296 	if (pfn_valid(pfn))
3297 		kvm_set_page_accessed(pfn_to_page(pfn));
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3300 
3301 static int next_segment(unsigned long len, int offset)
3302 {
3303 	if (len > PAGE_SIZE - offset)
3304 		return PAGE_SIZE - offset;
3305 	else
3306 		return len;
3307 }
3308 
3309 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3310 				 void *data, int offset, int len)
3311 {
3312 	int r;
3313 	unsigned long addr;
3314 
3315 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3316 	if (kvm_is_error_hva(addr))
3317 		return -EFAULT;
3318 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3319 	if (r)
3320 		return -EFAULT;
3321 	return 0;
3322 }
3323 
3324 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3325 			int len)
3326 {
3327 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3328 
3329 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3330 }
3331 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3332 
3333 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3334 			     int offset, int len)
3335 {
3336 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3337 
3338 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3339 }
3340 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3341 
3342 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3343 {
3344 	gfn_t gfn = gpa >> PAGE_SHIFT;
3345 	int seg;
3346 	int offset = offset_in_page(gpa);
3347 	int ret;
3348 
3349 	while ((seg = next_segment(len, offset)) != 0) {
3350 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3351 		if (ret < 0)
3352 			return ret;
3353 		offset = 0;
3354 		len -= seg;
3355 		data += seg;
3356 		++gfn;
3357 	}
3358 	return 0;
3359 }
3360 EXPORT_SYMBOL_GPL(kvm_read_guest);
3361 
3362 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3363 {
3364 	gfn_t gfn = gpa >> PAGE_SHIFT;
3365 	int seg;
3366 	int offset = offset_in_page(gpa);
3367 	int ret;
3368 
3369 	while ((seg = next_segment(len, offset)) != 0) {
3370 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3371 		if (ret < 0)
3372 			return ret;
3373 		offset = 0;
3374 		len -= seg;
3375 		data += seg;
3376 		++gfn;
3377 	}
3378 	return 0;
3379 }
3380 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3381 
3382 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3383 			           void *data, int offset, unsigned long len)
3384 {
3385 	int r;
3386 	unsigned long addr;
3387 
3388 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3389 	if (kvm_is_error_hva(addr))
3390 		return -EFAULT;
3391 	pagefault_disable();
3392 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3393 	pagefault_enable();
3394 	if (r)
3395 		return -EFAULT;
3396 	return 0;
3397 }
3398 
3399 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3400 			       void *data, unsigned long len)
3401 {
3402 	gfn_t gfn = gpa >> PAGE_SHIFT;
3403 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3404 	int offset = offset_in_page(gpa);
3405 
3406 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3407 }
3408 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3409 
3410 static int __kvm_write_guest_page(struct kvm *kvm,
3411 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3412 			          const void *data, int offset, int len)
3413 {
3414 	int r;
3415 	unsigned long addr;
3416 
3417 	addr = gfn_to_hva_memslot(memslot, gfn);
3418 	if (kvm_is_error_hva(addr))
3419 		return -EFAULT;
3420 	r = __copy_to_user((void __user *)addr + offset, data, len);
3421 	if (r)
3422 		return -EFAULT;
3423 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3424 	return 0;
3425 }
3426 
3427 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3428 			 const void *data, int offset, int len)
3429 {
3430 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3431 
3432 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3433 }
3434 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3435 
3436 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3437 			      const void *data, int offset, int len)
3438 {
3439 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3440 
3441 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3442 }
3443 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3444 
3445 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3446 		    unsigned long len)
3447 {
3448 	gfn_t gfn = gpa >> PAGE_SHIFT;
3449 	int seg;
3450 	int offset = offset_in_page(gpa);
3451 	int ret;
3452 
3453 	while ((seg = next_segment(len, offset)) != 0) {
3454 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3455 		if (ret < 0)
3456 			return ret;
3457 		offset = 0;
3458 		len -= seg;
3459 		data += seg;
3460 		++gfn;
3461 	}
3462 	return 0;
3463 }
3464 EXPORT_SYMBOL_GPL(kvm_write_guest);
3465 
3466 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3467 		         unsigned long len)
3468 {
3469 	gfn_t gfn = gpa >> PAGE_SHIFT;
3470 	int seg;
3471 	int offset = offset_in_page(gpa);
3472 	int ret;
3473 
3474 	while ((seg = next_segment(len, offset)) != 0) {
3475 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3476 		if (ret < 0)
3477 			return ret;
3478 		offset = 0;
3479 		len -= seg;
3480 		data += seg;
3481 		++gfn;
3482 	}
3483 	return 0;
3484 }
3485 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3486 
3487 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3488 				       struct gfn_to_hva_cache *ghc,
3489 				       gpa_t gpa, unsigned long len)
3490 {
3491 	int offset = offset_in_page(gpa);
3492 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3493 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3494 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3495 	gfn_t nr_pages_avail;
3496 
3497 	/* Update ghc->generation before performing any error checks. */
3498 	ghc->generation = slots->generation;
3499 
3500 	if (start_gfn > end_gfn) {
3501 		ghc->hva = KVM_HVA_ERR_BAD;
3502 		return -EINVAL;
3503 	}
3504 
3505 	/*
3506 	 * If the requested region crosses two memslots, we still
3507 	 * verify that the entire region is valid here.
3508 	 */
3509 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3510 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3511 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3512 					   &nr_pages_avail);
3513 		if (kvm_is_error_hva(ghc->hva))
3514 			return -EFAULT;
3515 	}
3516 
3517 	/* Use the slow path for cross page reads and writes. */
3518 	if (nr_pages_needed == 1)
3519 		ghc->hva += offset;
3520 	else
3521 		ghc->memslot = NULL;
3522 
3523 	ghc->gpa = gpa;
3524 	ghc->len = len;
3525 	return 0;
3526 }
3527 
3528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3529 			      gpa_t gpa, unsigned long len)
3530 {
3531 	struct kvm_memslots *slots = kvm_memslots(kvm);
3532 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3533 }
3534 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3535 
3536 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3537 				  void *data, unsigned int offset,
3538 				  unsigned long len)
3539 {
3540 	struct kvm_memslots *slots = kvm_memslots(kvm);
3541 	int r;
3542 	gpa_t gpa = ghc->gpa + offset;
3543 
3544 	if (WARN_ON_ONCE(len + offset > ghc->len))
3545 		return -EINVAL;
3546 
3547 	if (slots->generation != ghc->generation) {
3548 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3549 			return -EFAULT;
3550 	}
3551 
3552 	if (kvm_is_error_hva(ghc->hva))
3553 		return -EFAULT;
3554 
3555 	if (unlikely(!ghc->memslot))
3556 		return kvm_write_guest(kvm, gpa, data, len);
3557 
3558 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3559 	if (r)
3560 		return -EFAULT;
3561 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3562 
3563 	return 0;
3564 }
3565 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3566 
3567 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3568 			   void *data, unsigned long len)
3569 {
3570 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3571 }
3572 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3573 
3574 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3575 				 void *data, unsigned int offset,
3576 				 unsigned long len)
3577 {
3578 	struct kvm_memslots *slots = kvm_memslots(kvm);
3579 	int r;
3580 	gpa_t gpa = ghc->gpa + offset;
3581 
3582 	if (WARN_ON_ONCE(len + offset > ghc->len))
3583 		return -EINVAL;
3584 
3585 	if (slots->generation != ghc->generation) {
3586 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3587 			return -EFAULT;
3588 	}
3589 
3590 	if (kvm_is_error_hva(ghc->hva))
3591 		return -EFAULT;
3592 
3593 	if (unlikely(!ghc->memslot))
3594 		return kvm_read_guest(kvm, gpa, data, len);
3595 
3596 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3597 	if (r)
3598 		return -EFAULT;
3599 
3600 	return 0;
3601 }
3602 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3603 
3604 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3605 			  void *data, unsigned long len)
3606 {
3607 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3608 }
3609 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3610 
3611 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3612 {
3613 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3614 	gfn_t gfn = gpa >> PAGE_SHIFT;
3615 	int seg;
3616 	int offset = offset_in_page(gpa);
3617 	int ret;
3618 
3619 	while ((seg = next_segment(len, offset)) != 0) {
3620 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3621 		if (ret < 0)
3622 			return ret;
3623 		offset = 0;
3624 		len -= seg;
3625 		++gfn;
3626 	}
3627 	return 0;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3630 
3631 void mark_page_dirty_in_slot(struct kvm *kvm,
3632 			     const struct kvm_memory_slot *memslot,
3633 		 	     gfn_t gfn)
3634 {
3635 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3636 
3637 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3638 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3639 		return;
3640 
3641 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3642 #endif
3643 
3644 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3645 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3646 		u32 slot = (memslot->as_id << 16) | memslot->id;
3647 
3648 		if (kvm->dirty_ring_size && vcpu)
3649 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3650 		else if (memslot->dirty_bitmap)
3651 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3652 	}
3653 }
3654 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3655 
3656 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3657 {
3658 	struct kvm_memory_slot *memslot;
3659 
3660 	memslot = gfn_to_memslot(kvm, gfn);
3661 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3662 }
3663 EXPORT_SYMBOL_GPL(mark_page_dirty);
3664 
3665 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3666 {
3667 	struct kvm_memory_slot *memslot;
3668 
3669 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3670 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3671 }
3672 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3673 
3674 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3675 {
3676 	if (!vcpu->sigset_active)
3677 		return;
3678 
3679 	/*
3680 	 * This does a lockless modification of ->real_blocked, which is fine
3681 	 * because, only current can change ->real_blocked and all readers of
3682 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3683 	 * of ->blocked.
3684 	 */
3685 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3686 }
3687 
3688 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3689 {
3690 	if (!vcpu->sigset_active)
3691 		return;
3692 
3693 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3694 	sigemptyset(&current->real_blocked);
3695 }
3696 
3697 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3698 {
3699 	unsigned int old, val, grow, grow_start;
3700 
3701 	old = val = vcpu->halt_poll_ns;
3702 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3703 	grow = READ_ONCE(halt_poll_ns_grow);
3704 	if (!grow)
3705 		goto out;
3706 
3707 	val *= grow;
3708 	if (val < grow_start)
3709 		val = grow_start;
3710 
3711 	vcpu->halt_poll_ns = val;
3712 out:
3713 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3714 }
3715 
3716 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3717 {
3718 	unsigned int old, val, shrink, grow_start;
3719 
3720 	old = val = vcpu->halt_poll_ns;
3721 	shrink = READ_ONCE(halt_poll_ns_shrink);
3722 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3723 	if (shrink == 0)
3724 		val = 0;
3725 	else
3726 		val /= shrink;
3727 
3728 	if (val < grow_start)
3729 		val = 0;
3730 
3731 	vcpu->halt_poll_ns = val;
3732 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3733 }
3734 
3735 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3736 {
3737 	int ret = -EINTR;
3738 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3739 
3740 	if (kvm_arch_vcpu_runnable(vcpu))
3741 		goto out;
3742 	if (kvm_cpu_has_pending_timer(vcpu))
3743 		goto out;
3744 	if (signal_pending(current))
3745 		goto out;
3746 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3747 		goto out;
3748 
3749 	ret = 0;
3750 out:
3751 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3752 	return ret;
3753 }
3754 
3755 /*
3756  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3757  * pending.  This is mostly used when halting a vCPU, but may also be used
3758  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3759  */
3760 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3761 {
3762 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3763 	bool waited = false;
3764 
3765 	vcpu->stat.generic.blocking = 1;
3766 
3767 	preempt_disable();
3768 	kvm_arch_vcpu_blocking(vcpu);
3769 	prepare_to_rcuwait(wait);
3770 	preempt_enable();
3771 
3772 	for (;;) {
3773 		set_current_state(TASK_INTERRUPTIBLE);
3774 
3775 		if (kvm_vcpu_check_block(vcpu) < 0)
3776 			break;
3777 
3778 		waited = true;
3779 		schedule();
3780 	}
3781 
3782 	preempt_disable();
3783 	finish_rcuwait(wait);
3784 	kvm_arch_vcpu_unblocking(vcpu);
3785 	preempt_enable();
3786 
3787 	vcpu->stat.generic.blocking = 0;
3788 
3789 	return waited;
3790 }
3791 
3792 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3793 					  ktime_t end, bool success)
3794 {
3795 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3796 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3797 
3798 	++vcpu->stat.generic.halt_attempted_poll;
3799 
3800 	if (success) {
3801 		++vcpu->stat.generic.halt_successful_poll;
3802 
3803 		if (!vcpu_valid_wakeup(vcpu))
3804 			++vcpu->stat.generic.halt_poll_invalid;
3805 
3806 		stats->halt_poll_success_ns += poll_ns;
3807 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3808 	} else {
3809 		stats->halt_poll_fail_ns += poll_ns;
3810 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3811 	}
3812 }
3813 
3814 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3815 {
3816 	struct kvm *kvm = vcpu->kvm;
3817 
3818 	if (kvm->override_halt_poll_ns) {
3819 		/*
3820 		 * Ensure kvm->max_halt_poll_ns is not read before
3821 		 * kvm->override_halt_poll_ns.
3822 		 *
3823 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3824 		 */
3825 		smp_rmb();
3826 		return READ_ONCE(kvm->max_halt_poll_ns);
3827 	}
3828 
3829 	return READ_ONCE(halt_poll_ns);
3830 }
3831 
3832 /*
3833  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3834  * polling is enabled, busy wait for a short time before blocking to avoid the
3835  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3836  * is halted.
3837  */
3838 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3839 {
3840 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3841 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3842 	ktime_t start, cur, poll_end;
3843 	bool waited = false;
3844 	bool do_halt_poll;
3845 	u64 halt_ns;
3846 
3847 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3848 		vcpu->halt_poll_ns = max_halt_poll_ns;
3849 
3850 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3851 
3852 	start = cur = poll_end = ktime_get();
3853 	if (do_halt_poll) {
3854 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3855 
3856 		do {
3857 			if (kvm_vcpu_check_block(vcpu) < 0)
3858 				goto out;
3859 			cpu_relax();
3860 			poll_end = cur = ktime_get();
3861 		} while (kvm_vcpu_can_poll(cur, stop));
3862 	}
3863 
3864 	waited = kvm_vcpu_block(vcpu);
3865 
3866 	cur = ktime_get();
3867 	if (waited) {
3868 		vcpu->stat.generic.halt_wait_ns +=
3869 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3870 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3871 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3872 	}
3873 out:
3874 	/* The total time the vCPU was "halted", including polling time. */
3875 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3876 
3877 	/*
3878 	 * Note, halt-polling is considered successful so long as the vCPU was
3879 	 * never actually scheduled out, i.e. even if the wake event arrived
3880 	 * after of the halt-polling loop itself, but before the full wait.
3881 	 */
3882 	if (do_halt_poll)
3883 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3884 
3885 	if (halt_poll_allowed) {
3886 		/* Recompute the max halt poll time in case it changed. */
3887 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3888 
3889 		if (!vcpu_valid_wakeup(vcpu)) {
3890 			shrink_halt_poll_ns(vcpu);
3891 		} else if (max_halt_poll_ns) {
3892 			if (halt_ns <= vcpu->halt_poll_ns)
3893 				;
3894 			/* we had a long block, shrink polling */
3895 			else if (vcpu->halt_poll_ns &&
3896 				 halt_ns > max_halt_poll_ns)
3897 				shrink_halt_poll_ns(vcpu);
3898 			/* we had a short halt and our poll time is too small */
3899 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3900 				 halt_ns < max_halt_poll_ns)
3901 				grow_halt_poll_ns(vcpu);
3902 		} else {
3903 			vcpu->halt_poll_ns = 0;
3904 		}
3905 	}
3906 
3907 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3908 }
3909 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3910 
3911 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3912 {
3913 	if (__kvm_vcpu_wake_up(vcpu)) {
3914 		WRITE_ONCE(vcpu->ready, true);
3915 		++vcpu->stat.generic.halt_wakeup;
3916 		return true;
3917 	}
3918 
3919 	return false;
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3922 
3923 #ifndef CONFIG_S390
3924 /*
3925  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3926  */
3927 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3928 {
3929 	int me, cpu;
3930 
3931 	if (kvm_vcpu_wake_up(vcpu))
3932 		return;
3933 
3934 	me = get_cpu();
3935 	/*
3936 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3937 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3938 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3939 	 * within the vCPU thread itself.
3940 	 */
3941 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3942 		if (vcpu->mode == IN_GUEST_MODE)
3943 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3944 		goto out;
3945 	}
3946 
3947 	/*
3948 	 * Note, the vCPU could get migrated to a different pCPU at any point
3949 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3950 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3951 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3952 	 * vCPU also requires it to leave IN_GUEST_MODE.
3953 	 */
3954 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3955 		cpu = READ_ONCE(vcpu->cpu);
3956 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3957 			smp_send_reschedule(cpu);
3958 	}
3959 out:
3960 	put_cpu();
3961 }
3962 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3963 #endif /* !CONFIG_S390 */
3964 
3965 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3966 {
3967 	struct pid *pid;
3968 	struct task_struct *task = NULL;
3969 	int ret = 0;
3970 
3971 	rcu_read_lock();
3972 	pid = rcu_dereference(target->pid);
3973 	if (pid)
3974 		task = get_pid_task(pid, PIDTYPE_PID);
3975 	rcu_read_unlock();
3976 	if (!task)
3977 		return ret;
3978 	ret = yield_to(task, 1);
3979 	put_task_struct(task);
3980 
3981 	return ret;
3982 }
3983 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3984 
3985 /*
3986  * Helper that checks whether a VCPU is eligible for directed yield.
3987  * Most eligible candidate to yield is decided by following heuristics:
3988  *
3989  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3990  *  (preempted lock holder), indicated by @in_spin_loop.
3991  *  Set at the beginning and cleared at the end of interception/PLE handler.
3992  *
3993  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3994  *  chance last time (mostly it has become eligible now since we have probably
3995  *  yielded to lockholder in last iteration. This is done by toggling
3996  *  @dy_eligible each time a VCPU checked for eligibility.)
3997  *
3998  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3999  *  to preempted lock-holder could result in wrong VCPU selection and CPU
4000  *  burning. Giving priority for a potential lock-holder increases lock
4001  *  progress.
4002  *
4003  *  Since algorithm is based on heuristics, accessing another VCPU data without
4004  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4005  *  and continue with next VCPU and so on.
4006  */
4007 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4008 {
4009 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4010 	bool eligible;
4011 
4012 	eligible = !vcpu->spin_loop.in_spin_loop ||
4013 		    vcpu->spin_loop.dy_eligible;
4014 
4015 	if (vcpu->spin_loop.in_spin_loop)
4016 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4017 
4018 	return eligible;
4019 #else
4020 	return true;
4021 #endif
4022 }
4023 
4024 /*
4025  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4026  * a vcpu_load/vcpu_put pair.  However, for most architectures
4027  * kvm_arch_vcpu_runnable does not require vcpu_load.
4028  */
4029 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4030 {
4031 	return kvm_arch_vcpu_runnable(vcpu);
4032 }
4033 
4034 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4035 {
4036 	if (kvm_arch_dy_runnable(vcpu))
4037 		return true;
4038 
4039 #ifdef CONFIG_KVM_ASYNC_PF
4040 	if (!list_empty_careful(&vcpu->async_pf.done))
4041 		return true;
4042 #endif
4043 
4044 	return false;
4045 }
4046 
4047 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4048 {
4049 	return false;
4050 }
4051 
4052 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4053 {
4054 	struct kvm *kvm = me->kvm;
4055 	struct kvm_vcpu *vcpu;
4056 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4057 	unsigned long i;
4058 	int yielded = 0;
4059 	int try = 3;
4060 	int pass;
4061 
4062 	kvm_vcpu_set_in_spin_loop(me, true);
4063 	/*
4064 	 * We boost the priority of a VCPU that is runnable but not
4065 	 * currently running, because it got preempted by something
4066 	 * else and called schedule in __vcpu_run.  Hopefully that
4067 	 * VCPU is holding the lock that we need and will release it.
4068 	 * We approximate round-robin by starting at the last boosted VCPU.
4069 	 */
4070 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4071 		kvm_for_each_vcpu(i, vcpu, kvm) {
4072 			if (!pass && i <= last_boosted_vcpu) {
4073 				i = last_boosted_vcpu;
4074 				continue;
4075 			} else if (pass && i > last_boosted_vcpu)
4076 				break;
4077 			if (!READ_ONCE(vcpu->ready))
4078 				continue;
4079 			if (vcpu == me)
4080 				continue;
4081 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4082 				continue;
4083 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4084 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4085 			    !kvm_arch_vcpu_in_kernel(vcpu))
4086 				continue;
4087 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4088 				continue;
4089 
4090 			yielded = kvm_vcpu_yield_to(vcpu);
4091 			if (yielded > 0) {
4092 				kvm->last_boosted_vcpu = i;
4093 				break;
4094 			} else if (yielded < 0) {
4095 				try--;
4096 				if (!try)
4097 					break;
4098 			}
4099 		}
4100 	}
4101 	kvm_vcpu_set_in_spin_loop(me, false);
4102 
4103 	/* Ensure vcpu is not eligible during next spinloop */
4104 	kvm_vcpu_set_dy_eligible(me, false);
4105 }
4106 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4107 
4108 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4109 {
4110 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4111 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4112 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4113 	     kvm->dirty_ring_size / PAGE_SIZE);
4114 #else
4115 	return false;
4116 #endif
4117 }
4118 
4119 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4120 {
4121 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4122 	struct page *page;
4123 
4124 	if (vmf->pgoff == 0)
4125 		page = virt_to_page(vcpu->run);
4126 #ifdef CONFIG_X86
4127 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4128 		page = virt_to_page(vcpu->arch.pio_data);
4129 #endif
4130 #ifdef CONFIG_KVM_MMIO
4131 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4132 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4133 #endif
4134 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4135 		page = kvm_dirty_ring_get_page(
4136 		    &vcpu->dirty_ring,
4137 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4138 	else
4139 		return kvm_arch_vcpu_fault(vcpu, vmf);
4140 	get_page(page);
4141 	vmf->page = page;
4142 	return 0;
4143 }
4144 
4145 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4146 	.fault = kvm_vcpu_fault,
4147 };
4148 
4149 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4150 {
4151 	struct kvm_vcpu *vcpu = file->private_data;
4152 	unsigned long pages = vma_pages(vma);
4153 
4154 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4155 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4156 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4157 		return -EINVAL;
4158 
4159 	vma->vm_ops = &kvm_vcpu_vm_ops;
4160 	return 0;
4161 }
4162 
4163 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4164 {
4165 	struct kvm_vcpu *vcpu = filp->private_data;
4166 
4167 	kvm_put_kvm(vcpu->kvm);
4168 	return 0;
4169 }
4170 
4171 static struct file_operations kvm_vcpu_fops = {
4172 	.release        = kvm_vcpu_release,
4173 	.unlocked_ioctl = kvm_vcpu_ioctl,
4174 	.mmap           = kvm_vcpu_mmap,
4175 	.llseek		= noop_llseek,
4176 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4177 };
4178 
4179 /*
4180  * Allocates an inode for the vcpu.
4181  */
4182 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4183 {
4184 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4185 
4186 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4187 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4188 }
4189 
4190 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4191 static int vcpu_get_pid(void *data, u64 *val)
4192 {
4193 	struct kvm_vcpu *vcpu = data;
4194 
4195 	rcu_read_lock();
4196 	*val = pid_nr(rcu_dereference(vcpu->pid));
4197 	rcu_read_unlock();
4198 	return 0;
4199 }
4200 
4201 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4202 
4203 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4204 {
4205 	struct dentry *debugfs_dentry;
4206 	char dir_name[ITOA_MAX_LEN * 2];
4207 
4208 	if (!debugfs_initialized())
4209 		return;
4210 
4211 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4212 	debugfs_dentry = debugfs_create_dir(dir_name,
4213 					    vcpu->kvm->debugfs_dentry);
4214 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4215 			    &vcpu_get_pid_fops);
4216 
4217 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4218 }
4219 #endif
4220 
4221 /*
4222  * Creates some virtual cpus.  Good luck creating more than one.
4223  */
4224 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4225 {
4226 	int r;
4227 	struct kvm_vcpu *vcpu;
4228 	struct page *page;
4229 
4230 	if (id >= KVM_MAX_VCPU_IDS)
4231 		return -EINVAL;
4232 
4233 	mutex_lock(&kvm->lock);
4234 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4235 		mutex_unlock(&kvm->lock);
4236 		return -EINVAL;
4237 	}
4238 
4239 	r = kvm_arch_vcpu_precreate(kvm, id);
4240 	if (r) {
4241 		mutex_unlock(&kvm->lock);
4242 		return r;
4243 	}
4244 
4245 	kvm->created_vcpus++;
4246 	mutex_unlock(&kvm->lock);
4247 
4248 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4249 	if (!vcpu) {
4250 		r = -ENOMEM;
4251 		goto vcpu_decrement;
4252 	}
4253 
4254 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4255 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4256 	if (!page) {
4257 		r = -ENOMEM;
4258 		goto vcpu_free;
4259 	}
4260 	vcpu->run = page_address(page);
4261 
4262 	kvm_vcpu_init(vcpu, kvm, id);
4263 
4264 	r = kvm_arch_vcpu_create(vcpu);
4265 	if (r)
4266 		goto vcpu_free_run_page;
4267 
4268 	if (kvm->dirty_ring_size) {
4269 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4270 					 id, kvm->dirty_ring_size);
4271 		if (r)
4272 			goto arch_vcpu_destroy;
4273 	}
4274 
4275 	mutex_lock(&kvm->lock);
4276 
4277 #ifdef CONFIG_LOCKDEP
4278 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4279 	mutex_lock(&vcpu->mutex);
4280 	mutex_unlock(&vcpu->mutex);
4281 #endif
4282 
4283 	if (kvm_get_vcpu_by_id(kvm, id)) {
4284 		r = -EEXIST;
4285 		goto unlock_vcpu_destroy;
4286 	}
4287 
4288 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4289 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4290 	if (r)
4291 		goto unlock_vcpu_destroy;
4292 
4293 	/* Now it's all set up, let userspace reach it */
4294 	kvm_get_kvm(kvm);
4295 	r = create_vcpu_fd(vcpu);
4296 	if (r < 0)
4297 		goto kvm_put_xa_release;
4298 
4299 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4300 		r = -EINVAL;
4301 		goto kvm_put_xa_release;
4302 	}
4303 
4304 	/*
4305 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4306 	 * pointer before kvm->online_vcpu's incremented value.
4307 	 */
4308 	smp_wmb();
4309 	atomic_inc(&kvm->online_vcpus);
4310 
4311 	mutex_unlock(&kvm->lock);
4312 	kvm_arch_vcpu_postcreate(vcpu);
4313 	kvm_create_vcpu_debugfs(vcpu);
4314 	return r;
4315 
4316 kvm_put_xa_release:
4317 	kvm_put_kvm_no_destroy(kvm);
4318 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4319 unlock_vcpu_destroy:
4320 	mutex_unlock(&kvm->lock);
4321 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4322 arch_vcpu_destroy:
4323 	kvm_arch_vcpu_destroy(vcpu);
4324 vcpu_free_run_page:
4325 	free_page((unsigned long)vcpu->run);
4326 vcpu_free:
4327 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4328 vcpu_decrement:
4329 	mutex_lock(&kvm->lock);
4330 	kvm->created_vcpus--;
4331 	mutex_unlock(&kvm->lock);
4332 	return r;
4333 }
4334 
4335 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4336 {
4337 	if (sigset) {
4338 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4339 		vcpu->sigset_active = 1;
4340 		vcpu->sigset = *sigset;
4341 	} else
4342 		vcpu->sigset_active = 0;
4343 	return 0;
4344 }
4345 
4346 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4347 			      size_t size, loff_t *offset)
4348 {
4349 	struct kvm_vcpu *vcpu = file->private_data;
4350 
4351 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4352 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4353 			sizeof(vcpu->stat), user_buffer, size, offset);
4354 }
4355 
4356 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4357 {
4358 	struct kvm_vcpu *vcpu = file->private_data;
4359 
4360 	kvm_put_kvm(vcpu->kvm);
4361 	return 0;
4362 }
4363 
4364 static const struct file_operations kvm_vcpu_stats_fops = {
4365 	.owner = THIS_MODULE,
4366 	.read = kvm_vcpu_stats_read,
4367 	.release = kvm_vcpu_stats_release,
4368 	.llseek = noop_llseek,
4369 };
4370 
4371 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4372 {
4373 	int fd;
4374 	struct file *file;
4375 	char name[15 + ITOA_MAX_LEN + 1];
4376 
4377 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4378 
4379 	fd = get_unused_fd_flags(O_CLOEXEC);
4380 	if (fd < 0)
4381 		return fd;
4382 
4383 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4384 	if (IS_ERR(file)) {
4385 		put_unused_fd(fd);
4386 		return PTR_ERR(file);
4387 	}
4388 
4389 	kvm_get_kvm(vcpu->kvm);
4390 
4391 	file->f_mode |= FMODE_PREAD;
4392 	fd_install(fd, file);
4393 
4394 	return fd;
4395 }
4396 
4397 static long kvm_vcpu_ioctl(struct file *filp,
4398 			   unsigned int ioctl, unsigned long arg)
4399 {
4400 	struct kvm_vcpu *vcpu = filp->private_data;
4401 	void __user *argp = (void __user *)arg;
4402 	int r;
4403 	struct kvm_fpu *fpu = NULL;
4404 	struct kvm_sregs *kvm_sregs = NULL;
4405 
4406 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4407 		return -EIO;
4408 
4409 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4410 		return -EINVAL;
4411 
4412 	/*
4413 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4414 	 * execution; mutex_lock() would break them.
4415 	 */
4416 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4417 	if (r != -ENOIOCTLCMD)
4418 		return r;
4419 
4420 	if (mutex_lock_killable(&vcpu->mutex))
4421 		return -EINTR;
4422 	switch (ioctl) {
4423 	case KVM_RUN: {
4424 		struct pid *oldpid;
4425 		r = -EINVAL;
4426 		if (arg)
4427 			goto out;
4428 		oldpid = rcu_access_pointer(vcpu->pid);
4429 		if (unlikely(oldpid != task_pid(current))) {
4430 			/* The thread running this VCPU changed. */
4431 			struct pid *newpid;
4432 
4433 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4434 			if (r)
4435 				break;
4436 
4437 			newpid = get_task_pid(current, PIDTYPE_PID);
4438 			rcu_assign_pointer(vcpu->pid, newpid);
4439 			if (oldpid)
4440 				synchronize_rcu();
4441 			put_pid(oldpid);
4442 		}
4443 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4444 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4445 		break;
4446 	}
4447 	case KVM_GET_REGS: {
4448 		struct kvm_regs *kvm_regs;
4449 
4450 		r = -ENOMEM;
4451 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4452 		if (!kvm_regs)
4453 			goto out;
4454 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4455 		if (r)
4456 			goto out_free1;
4457 		r = -EFAULT;
4458 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4459 			goto out_free1;
4460 		r = 0;
4461 out_free1:
4462 		kfree(kvm_regs);
4463 		break;
4464 	}
4465 	case KVM_SET_REGS: {
4466 		struct kvm_regs *kvm_regs;
4467 
4468 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4469 		if (IS_ERR(kvm_regs)) {
4470 			r = PTR_ERR(kvm_regs);
4471 			goto out;
4472 		}
4473 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4474 		kfree(kvm_regs);
4475 		break;
4476 	}
4477 	case KVM_GET_SREGS: {
4478 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4479 				    GFP_KERNEL_ACCOUNT);
4480 		r = -ENOMEM;
4481 		if (!kvm_sregs)
4482 			goto out;
4483 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4484 		if (r)
4485 			goto out;
4486 		r = -EFAULT;
4487 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4488 			goto out;
4489 		r = 0;
4490 		break;
4491 	}
4492 	case KVM_SET_SREGS: {
4493 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4494 		if (IS_ERR(kvm_sregs)) {
4495 			r = PTR_ERR(kvm_sregs);
4496 			kvm_sregs = NULL;
4497 			goto out;
4498 		}
4499 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4500 		break;
4501 	}
4502 	case KVM_GET_MP_STATE: {
4503 		struct kvm_mp_state mp_state;
4504 
4505 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4506 		if (r)
4507 			goto out;
4508 		r = -EFAULT;
4509 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4510 			goto out;
4511 		r = 0;
4512 		break;
4513 	}
4514 	case KVM_SET_MP_STATE: {
4515 		struct kvm_mp_state mp_state;
4516 
4517 		r = -EFAULT;
4518 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4519 			goto out;
4520 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4521 		break;
4522 	}
4523 	case KVM_TRANSLATE: {
4524 		struct kvm_translation tr;
4525 
4526 		r = -EFAULT;
4527 		if (copy_from_user(&tr, argp, sizeof(tr)))
4528 			goto out;
4529 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4530 		if (r)
4531 			goto out;
4532 		r = -EFAULT;
4533 		if (copy_to_user(argp, &tr, sizeof(tr)))
4534 			goto out;
4535 		r = 0;
4536 		break;
4537 	}
4538 	case KVM_SET_GUEST_DEBUG: {
4539 		struct kvm_guest_debug dbg;
4540 
4541 		r = -EFAULT;
4542 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4543 			goto out;
4544 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4545 		break;
4546 	}
4547 	case KVM_SET_SIGNAL_MASK: {
4548 		struct kvm_signal_mask __user *sigmask_arg = argp;
4549 		struct kvm_signal_mask kvm_sigmask;
4550 		sigset_t sigset, *p;
4551 
4552 		p = NULL;
4553 		if (argp) {
4554 			r = -EFAULT;
4555 			if (copy_from_user(&kvm_sigmask, argp,
4556 					   sizeof(kvm_sigmask)))
4557 				goto out;
4558 			r = -EINVAL;
4559 			if (kvm_sigmask.len != sizeof(sigset))
4560 				goto out;
4561 			r = -EFAULT;
4562 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4563 					   sizeof(sigset)))
4564 				goto out;
4565 			p = &sigset;
4566 		}
4567 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4568 		break;
4569 	}
4570 	case KVM_GET_FPU: {
4571 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4572 		r = -ENOMEM;
4573 		if (!fpu)
4574 			goto out;
4575 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4576 		if (r)
4577 			goto out;
4578 		r = -EFAULT;
4579 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4580 			goto out;
4581 		r = 0;
4582 		break;
4583 	}
4584 	case KVM_SET_FPU: {
4585 		fpu = memdup_user(argp, sizeof(*fpu));
4586 		if (IS_ERR(fpu)) {
4587 			r = PTR_ERR(fpu);
4588 			fpu = NULL;
4589 			goto out;
4590 		}
4591 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4592 		break;
4593 	}
4594 	case KVM_GET_STATS_FD: {
4595 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4596 		break;
4597 	}
4598 	default:
4599 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4600 	}
4601 out:
4602 	mutex_unlock(&vcpu->mutex);
4603 	kfree(fpu);
4604 	kfree(kvm_sregs);
4605 	return r;
4606 }
4607 
4608 #ifdef CONFIG_KVM_COMPAT
4609 static long kvm_vcpu_compat_ioctl(struct file *filp,
4610 				  unsigned int ioctl, unsigned long arg)
4611 {
4612 	struct kvm_vcpu *vcpu = filp->private_data;
4613 	void __user *argp = compat_ptr(arg);
4614 	int r;
4615 
4616 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4617 		return -EIO;
4618 
4619 	switch (ioctl) {
4620 	case KVM_SET_SIGNAL_MASK: {
4621 		struct kvm_signal_mask __user *sigmask_arg = argp;
4622 		struct kvm_signal_mask kvm_sigmask;
4623 		sigset_t sigset;
4624 
4625 		if (argp) {
4626 			r = -EFAULT;
4627 			if (copy_from_user(&kvm_sigmask, argp,
4628 					   sizeof(kvm_sigmask)))
4629 				goto out;
4630 			r = -EINVAL;
4631 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4632 				goto out;
4633 			r = -EFAULT;
4634 			if (get_compat_sigset(&sigset,
4635 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4636 				goto out;
4637 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4638 		} else
4639 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4640 		break;
4641 	}
4642 	default:
4643 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4644 	}
4645 
4646 out:
4647 	return r;
4648 }
4649 #endif
4650 
4651 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4652 {
4653 	struct kvm_device *dev = filp->private_data;
4654 
4655 	if (dev->ops->mmap)
4656 		return dev->ops->mmap(dev, vma);
4657 
4658 	return -ENODEV;
4659 }
4660 
4661 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4662 				 int (*accessor)(struct kvm_device *dev,
4663 						 struct kvm_device_attr *attr),
4664 				 unsigned long arg)
4665 {
4666 	struct kvm_device_attr attr;
4667 
4668 	if (!accessor)
4669 		return -EPERM;
4670 
4671 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4672 		return -EFAULT;
4673 
4674 	return accessor(dev, &attr);
4675 }
4676 
4677 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4678 			     unsigned long arg)
4679 {
4680 	struct kvm_device *dev = filp->private_data;
4681 
4682 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4683 		return -EIO;
4684 
4685 	switch (ioctl) {
4686 	case KVM_SET_DEVICE_ATTR:
4687 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4688 	case KVM_GET_DEVICE_ATTR:
4689 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4690 	case KVM_HAS_DEVICE_ATTR:
4691 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4692 	default:
4693 		if (dev->ops->ioctl)
4694 			return dev->ops->ioctl(dev, ioctl, arg);
4695 
4696 		return -ENOTTY;
4697 	}
4698 }
4699 
4700 static int kvm_device_release(struct inode *inode, struct file *filp)
4701 {
4702 	struct kvm_device *dev = filp->private_data;
4703 	struct kvm *kvm = dev->kvm;
4704 
4705 	if (dev->ops->release) {
4706 		mutex_lock(&kvm->lock);
4707 		list_del(&dev->vm_node);
4708 		dev->ops->release(dev);
4709 		mutex_unlock(&kvm->lock);
4710 	}
4711 
4712 	kvm_put_kvm(kvm);
4713 	return 0;
4714 }
4715 
4716 static struct file_operations kvm_device_fops = {
4717 	.unlocked_ioctl = kvm_device_ioctl,
4718 	.release = kvm_device_release,
4719 	KVM_COMPAT(kvm_device_ioctl),
4720 	.mmap = kvm_device_mmap,
4721 };
4722 
4723 struct kvm_device *kvm_device_from_filp(struct file *filp)
4724 {
4725 	if (filp->f_op != &kvm_device_fops)
4726 		return NULL;
4727 
4728 	return filp->private_data;
4729 }
4730 
4731 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4732 #ifdef CONFIG_KVM_MPIC
4733 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4734 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4735 #endif
4736 };
4737 
4738 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4739 {
4740 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4741 		return -ENOSPC;
4742 
4743 	if (kvm_device_ops_table[type] != NULL)
4744 		return -EEXIST;
4745 
4746 	kvm_device_ops_table[type] = ops;
4747 	return 0;
4748 }
4749 
4750 void kvm_unregister_device_ops(u32 type)
4751 {
4752 	if (kvm_device_ops_table[type] != NULL)
4753 		kvm_device_ops_table[type] = NULL;
4754 }
4755 
4756 static int kvm_ioctl_create_device(struct kvm *kvm,
4757 				   struct kvm_create_device *cd)
4758 {
4759 	const struct kvm_device_ops *ops;
4760 	struct kvm_device *dev;
4761 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4762 	int type;
4763 	int ret;
4764 
4765 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4766 		return -ENODEV;
4767 
4768 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4769 	ops = kvm_device_ops_table[type];
4770 	if (ops == NULL)
4771 		return -ENODEV;
4772 
4773 	if (test)
4774 		return 0;
4775 
4776 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4777 	if (!dev)
4778 		return -ENOMEM;
4779 
4780 	dev->ops = ops;
4781 	dev->kvm = kvm;
4782 
4783 	mutex_lock(&kvm->lock);
4784 	ret = ops->create(dev, type);
4785 	if (ret < 0) {
4786 		mutex_unlock(&kvm->lock);
4787 		kfree(dev);
4788 		return ret;
4789 	}
4790 	list_add(&dev->vm_node, &kvm->devices);
4791 	mutex_unlock(&kvm->lock);
4792 
4793 	if (ops->init)
4794 		ops->init(dev);
4795 
4796 	kvm_get_kvm(kvm);
4797 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4798 	if (ret < 0) {
4799 		kvm_put_kvm_no_destroy(kvm);
4800 		mutex_lock(&kvm->lock);
4801 		list_del(&dev->vm_node);
4802 		if (ops->release)
4803 			ops->release(dev);
4804 		mutex_unlock(&kvm->lock);
4805 		if (ops->destroy)
4806 			ops->destroy(dev);
4807 		return ret;
4808 	}
4809 
4810 	cd->fd = ret;
4811 	return 0;
4812 }
4813 
4814 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4815 {
4816 	switch (arg) {
4817 	case KVM_CAP_USER_MEMORY:
4818 	case KVM_CAP_USER_MEMORY2:
4819 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4820 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4821 	case KVM_CAP_INTERNAL_ERROR_DATA:
4822 #ifdef CONFIG_HAVE_KVM_MSI
4823 	case KVM_CAP_SIGNAL_MSI:
4824 #endif
4825 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4826 	case KVM_CAP_IRQFD:
4827 #endif
4828 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4829 	case KVM_CAP_CHECK_EXTENSION_VM:
4830 	case KVM_CAP_ENABLE_CAP_VM:
4831 	case KVM_CAP_HALT_POLL:
4832 		return 1;
4833 #ifdef CONFIG_KVM_MMIO
4834 	case KVM_CAP_COALESCED_MMIO:
4835 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4836 	case KVM_CAP_COALESCED_PIO:
4837 		return 1;
4838 #endif
4839 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4840 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4841 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4842 #endif
4843 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4844 	case KVM_CAP_IRQ_ROUTING:
4845 		return KVM_MAX_IRQ_ROUTES;
4846 #endif
4847 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4848 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4849 		if (kvm)
4850 			return kvm_arch_nr_memslot_as_ids(kvm);
4851 		return KVM_MAX_NR_ADDRESS_SPACES;
4852 #endif
4853 	case KVM_CAP_NR_MEMSLOTS:
4854 		return KVM_USER_MEM_SLOTS;
4855 	case KVM_CAP_DIRTY_LOG_RING:
4856 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4857 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4858 #else
4859 		return 0;
4860 #endif
4861 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4862 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4863 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4864 #else
4865 		return 0;
4866 #endif
4867 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4868 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4869 #endif
4870 	case KVM_CAP_BINARY_STATS_FD:
4871 	case KVM_CAP_SYSTEM_EVENT_DATA:
4872 	case KVM_CAP_DEVICE_CTRL:
4873 		return 1;
4874 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4875 	case KVM_CAP_MEMORY_ATTRIBUTES:
4876 		return kvm_supported_mem_attributes(kvm);
4877 #endif
4878 #ifdef CONFIG_KVM_PRIVATE_MEM
4879 	case KVM_CAP_GUEST_MEMFD:
4880 		return !kvm || kvm_arch_has_private_mem(kvm);
4881 #endif
4882 	default:
4883 		break;
4884 	}
4885 	return kvm_vm_ioctl_check_extension(kvm, arg);
4886 }
4887 
4888 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4889 {
4890 	int r;
4891 
4892 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4893 		return -EINVAL;
4894 
4895 	/* the size should be power of 2 */
4896 	if (!size || (size & (size - 1)))
4897 		return -EINVAL;
4898 
4899 	/* Should be bigger to keep the reserved entries, or a page */
4900 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4901 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4902 		return -EINVAL;
4903 
4904 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4905 	    sizeof(struct kvm_dirty_gfn))
4906 		return -E2BIG;
4907 
4908 	/* We only allow it to set once */
4909 	if (kvm->dirty_ring_size)
4910 		return -EINVAL;
4911 
4912 	mutex_lock(&kvm->lock);
4913 
4914 	if (kvm->created_vcpus) {
4915 		/* We don't allow to change this value after vcpu created */
4916 		r = -EINVAL;
4917 	} else {
4918 		kvm->dirty_ring_size = size;
4919 		r = 0;
4920 	}
4921 
4922 	mutex_unlock(&kvm->lock);
4923 	return r;
4924 }
4925 
4926 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4927 {
4928 	unsigned long i;
4929 	struct kvm_vcpu *vcpu;
4930 	int cleared = 0;
4931 
4932 	if (!kvm->dirty_ring_size)
4933 		return -EINVAL;
4934 
4935 	mutex_lock(&kvm->slots_lock);
4936 
4937 	kvm_for_each_vcpu(i, vcpu, kvm)
4938 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4939 
4940 	mutex_unlock(&kvm->slots_lock);
4941 
4942 	if (cleared)
4943 		kvm_flush_remote_tlbs(kvm);
4944 
4945 	return cleared;
4946 }
4947 
4948 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4949 						  struct kvm_enable_cap *cap)
4950 {
4951 	return -EINVAL;
4952 }
4953 
4954 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4955 {
4956 	int i;
4957 
4958 	lockdep_assert_held(&kvm->slots_lock);
4959 
4960 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4961 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4962 			return false;
4963 	}
4964 
4965 	return true;
4966 }
4967 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4968 
4969 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4970 					   struct kvm_enable_cap *cap)
4971 {
4972 	switch (cap->cap) {
4973 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4974 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4975 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4976 
4977 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4978 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4979 
4980 		if (cap->flags || (cap->args[0] & ~allowed_options))
4981 			return -EINVAL;
4982 		kvm->manual_dirty_log_protect = cap->args[0];
4983 		return 0;
4984 	}
4985 #endif
4986 	case KVM_CAP_HALT_POLL: {
4987 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4988 			return -EINVAL;
4989 
4990 		kvm->max_halt_poll_ns = cap->args[0];
4991 
4992 		/*
4993 		 * Ensure kvm->override_halt_poll_ns does not become visible
4994 		 * before kvm->max_halt_poll_ns.
4995 		 *
4996 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4997 		 */
4998 		smp_wmb();
4999 		kvm->override_halt_poll_ns = true;
5000 
5001 		return 0;
5002 	}
5003 	case KVM_CAP_DIRTY_LOG_RING:
5004 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5005 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5006 			return -EINVAL;
5007 
5008 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5009 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5010 		int r = -EINVAL;
5011 
5012 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5013 		    !kvm->dirty_ring_size || cap->flags)
5014 			return r;
5015 
5016 		mutex_lock(&kvm->slots_lock);
5017 
5018 		/*
5019 		 * For simplicity, allow enabling ring+bitmap if and only if
5020 		 * there are no memslots, e.g. to ensure all memslots allocate
5021 		 * a bitmap after the capability is enabled.
5022 		 */
5023 		if (kvm_are_all_memslots_empty(kvm)) {
5024 			kvm->dirty_ring_with_bitmap = true;
5025 			r = 0;
5026 		}
5027 
5028 		mutex_unlock(&kvm->slots_lock);
5029 
5030 		return r;
5031 	}
5032 	default:
5033 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5034 	}
5035 }
5036 
5037 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5038 			      size_t size, loff_t *offset)
5039 {
5040 	struct kvm *kvm = file->private_data;
5041 
5042 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5043 				&kvm_vm_stats_desc[0], &kvm->stat,
5044 				sizeof(kvm->stat), user_buffer, size, offset);
5045 }
5046 
5047 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5048 {
5049 	struct kvm *kvm = file->private_data;
5050 
5051 	kvm_put_kvm(kvm);
5052 	return 0;
5053 }
5054 
5055 static const struct file_operations kvm_vm_stats_fops = {
5056 	.owner = THIS_MODULE,
5057 	.read = kvm_vm_stats_read,
5058 	.release = kvm_vm_stats_release,
5059 	.llseek = noop_llseek,
5060 };
5061 
5062 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5063 {
5064 	int fd;
5065 	struct file *file;
5066 
5067 	fd = get_unused_fd_flags(O_CLOEXEC);
5068 	if (fd < 0)
5069 		return fd;
5070 
5071 	file = anon_inode_getfile("kvm-vm-stats",
5072 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5073 	if (IS_ERR(file)) {
5074 		put_unused_fd(fd);
5075 		return PTR_ERR(file);
5076 	}
5077 
5078 	kvm_get_kvm(kvm);
5079 
5080 	file->f_mode |= FMODE_PREAD;
5081 	fd_install(fd, file);
5082 
5083 	return fd;
5084 }
5085 
5086 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5087 do {										\
5088 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5089 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5090 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5091 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5092 } while (0)
5093 
5094 static long kvm_vm_ioctl(struct file *filp,
5095 			   unsigned int ioctl, unsigned long arg)
5096 {
5097 	struct kvm *kvm = filp->private_data;
5098 	void __user *argp = (void __user *)arg;
5099 	int r;
5100 
5101 	if (kvm->mm != current->mm || kvm->vm_dead)
5102 		return -EIO;
5103 	switch (ioctl) {
5104 	case KVM_CREATE_VCPU:
5105 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5106 		break;
5107 	case KVM_ENABLE_CAP: {
5108 		struct kvm_enable_cap cap;
5109 
5110 		r = -EFAULT;
5111 		if (copy_from_user(&cap, argp, sizeof(cap)))
5112 			goto out;
5113 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5114 		break;
5115 	}
5116 	case KVM_SET_USER_MEMORY_REGION2:
5117 	case KVM_SET_USER_MEMORY_REGION: {
5118 		struct kvm_userspace_memory_region2 mem;
5119 		unsigned long size;
5120 
5121 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5122 			/*
5123 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5124 			 * accessed, but avoid leaking kernel memory in case of a bug.
5125 			 */
5126 			memset(&mem, 0, sizeof(mem));
5127 			size = sizeof(struct kvm_userspace_memory_region);
5128 		} else {
5129 			size = sizeof(struct kvm_userspace_memory_region2);
5130 		}
5131 
5132 		/* Ensure the common parts of the two structs are identical. */
5133 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5134 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5135 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5136 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5137 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5138 
5139 		r = -EFAULT;
5140 		if (copy_from_user(&mem, argp, size))
5141 			goto out;
5142 
5143 		r = -EINVAL;
5144 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5145 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5146 			goto out;
5147 
5148 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5149 		break;
5150 	}
5151 	case KVM_GET_DIRTY_LOG: {
5152 		struct kvm_dirty_log log;
5153 
5154 		r = -EFAULT;
5155 		if (copy_from_user(&log, argp, sizeof(log)))
5156 			goto out;
5157 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5158 		break;
5159 	}
5160 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5161 	case KVM_CLEAR_DIRTY_LOG: {
5162 		struct kvm_clear_dirty_log log;
5163 
5164 		r = -EFAULT;
5165 		if (copy_from_user(&log, argp, sizeof(log)))
5166 			goto out;
5167 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5168 		break;
5169 	}
5170 #endif
5171 #ifdef CONFIG_KVM_MMIO
5172 	case KVM_REGISTER_COALESCED_MMIO: {
5173 		struct kvm_coalesced_mmio_zone zone;
5174 
5175 		r = -EFAULT;
5176 		if (copy_from_user(&zone, argp, sizeof(zone)))
5177 			goto out;
5178 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5179 		break;
5180 	}
5181 	case KVM_UNREGISTER_COALESCED_MMIO: {
5182 		struct kvm_coalesced_mmio_zone zone;
5183 
5184 		r = -EFAULT;
5185 		if (copy_from_user(&zone, argp, sizeof(zone)))
5186 			goto out;
5187 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5188 		break;
5189 	}
5190 #endif
5191 	case KVM_IRQFD: {
5192 		struct kvm_irqfd data;
5193 
5194 		r = -EFAULT;
5195 		if (copy_from_user(&data, argp, sizeof(data)))
5196 			goto out;
5197 		r = kvm_irqfd(kvm, &data);
5198 		break;
5199 	}
5200 	case KVM_IOEVENTFD: {
5201 		struct kvm_ioeventfd data;
5202 
5203 		r = -EFAULT;
5204 		if (copy_from_user(&data, argp, sizeof(data)))
5205 			goto out;
5206 		r = kvm_ioeventfd(kvm, &data);
5207 		break;
5208 	}
5209 #ifdef CONFIG_HAVE_KVM_MSI
5210 	case KVM_SIGNAL_MSI: {
5211 		struct kvm_msi msi;
5212 
5213 		r = -EFAULT;
5214 		if (copy_from_user(&msi, argp, sizeof(msi)))
5215 			goto out;
5216 		r = kvm_send_userspace_msi(kvm, &msi);
5217 		break;
5218 	}
5219 #endif
5220 #ifdef __KVM_HAVE_IRQ_LINE
5221 	case KVM_IRQ_LINE_STATUS:
5222 	case KVM_IRQ_LINE: {
5223 		struct kvm_irq_level irq_event;
5224 
5225 		r = -EFAULT;
5226 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5227 			goto out;
5228 
5229 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5230 					ioctl == KVM_IRQ_LINE_STATUS);
5231 		if (r)
5232 			goto out;
5233 
5234 		r = -EFAULT;
5235 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5236 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5237 				goto out;
5238 		}
5239 
5240 		r = 0;
5241 		break;
5242 	}
5243 #endif
5244 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5245 	case KVM_SET_GSI_ROUTING: {
5246 		struct kvm_irq_routing routing;
5247 		struct kvm_irq_routing __user *urouting;
5248 		struct kvm_irq_routing_entry *entries = NULL;
5249 
5250 		r = -EFAULT;
5251 		if (copy_from_user(&routing, argp, sizeof(routing)))
5252 			goto out;
5253 		r = -EINVAL;
5254 		if (!kvm_arch_can_set_irq_routing(kvm))
5255 			goto out;
5256 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5257 			goto out;
5258 		if (routing.flags)
5259 			goto out;
5260 		if (routing.nr) {
5261 			urouting = argp;
5262 			entries = vmemdup_array_user(urouting->entries,
5263 						     routing.nr, sizeof(*entries));
5264 			if (IS_ERR(entries)) {
5265 				r = PTR_ERR(entries);
5266 				goto out;
5267 			}
5268 		}
5269 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5270 					routing.flags);
5271 		kvfree(entries);
5272 		break;
5273 	}
5274 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5275 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5276 	case KVM_SET_MEMORY_ATTRIBUTES: {
5277 		struct kvm_memory_attributes attrs;
5278 
5279 		r = -EFAULT;
5280 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5281 			goto out;
5282 
5283 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5284 		break;
5285 	}
5286 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5287 	case KVM_CREATE_DEVICE: {
5288 		struct kvm_create_device cd;
5289 
5290 		r = -EFAULT;
5291 		if (copy_from_user(&cd, argp, sizeof(cd)))
5292 			goto out;
5293 
5294 		r = kvm_ioctl_create_device(kvm, &cd);
5295 		if (r)
5296 			goto out;
5297 
5298 		r = -EFAULT;
5299 		if (copy_to_user(argp, &cd, sizeof(cd)))
5300 			goto out;
5301 
5302 		r = 0;
5303 		break;
5304 	}
5305 	case KVM_CHECK_EXTENSION:
5306 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5307 		break;
5308 	case KVM_RESET_DIRTY_RINGS:
5309 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5310 		break;
5311 	case KVM_GET_STATS_FD:
5312 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5313 		break;
5314 #ifdef CONFIG_KVM_PRIVATE_MEM
5315 	case KVM_CREATE_GUEST_MEMFD: {
5316 		struct kvm_create_guest_memfd guest_memfd;
5317 
5318 		r = -EFAULT;
5319 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5320 			goto out;
5321 
5322 		r = kvm_gmem_create(kvm, &guest_memfd);
5323 		break;
5324 	}
5325 #endif
5326 	default:
5327 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5328 	}
5329 out:
5330 	return r;
5331 }
5332 
5333 #ifdef CONFIG_KVM_COMPAT
5334 struct compat_kvm_dirty_log {
5335 	__u32 slot;
5336 	__u32 padding1;
5337 	union {
5338 		compat_uptr_t dirty_bitmap; /* one bit per page */
5339 		__u64 padding2;
5340 	};
5341 };
5342 
5343 struct compat_kvm_clear_dirty_log {
5344 	__u32 slot;
5345 	__u32 num_pages;
5346 	__u64 first_page;
5347 	union {
5348 		compat_uptr_t dirty_bitmap; /* one bit per page */
5349 		__u64 padding2;
5350 	};
5351 };
5352 
5353 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5354 				     unsigned long arg)
5355 {
5356 	return -ENOTTY;
5357 }
5358 
5359 static long kvm_vm_compat_ioctl(struct file *filp,
5360 			   unsigned int ioctl, unsigned long arg)
5361 {
5362 	struct kvm *kvm = filp->private_data;
5363 	int r;
5364 
5365 	if (kvm->mm != current->mm || kvm->vm_dead)
5366 		return -EIO;
5367 
5368 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5369 	if (r != -ENOTTY)
5370 		return r;
5371 
5372 	switch (ioctl) {
5373 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5374 	case KVM_CLEAR_DIRTY_LOG: {
5375 		struct compat_kvm_clear_dirty_log compat_log;
5376 		struct kvm_clear_dirty_log log;
5377 
5378 		if (copy_from_user(&compat_log, (void __user *)arg,
5379 				   sizeof(compat_log)))
5380 			return -EFAULT;
5381 		log.slot	 = compat_log.slot;
5382 		log.num_pages	 = compat_log.num_pages;
5383 		log.first_page	 = compat_log.first_page;
5384 		log.padding2	 = compat_log.padding2;
5385 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5386 
5387 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5388 		break;
5389 	}
5390 #endif
5391 	case KVM_GET_DIRTY_LOG: {
5392 		struct compat_kvm_dirty_log compat_log;
5393 		struct kvm_dirty_log log;
5394 
5395 		if (copy_from_user(&compat_log, (void __user *)arg,
5396 				   sizeof(compat_log)))
5397 			return -EFAULT;
5398 		log.slot	 = compat_log.slot;
5399 		log.padding1	 = compat_log.padding1;
5400 		log.padding2	 = compat_log.padding2;
5401 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5402 
5403 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5404 		break;
5405 	}
5406 	default:
5407 		r = kvm_vm_ioctl(filp, ioctl, arg);
5408 	}
5409 	return r;
5410 }
5411 #endif
5412 
5413 static struct file_operations kvm_vm_fops = {
5414 	.release        = kvm_vm_release,
5415 	.unlocked_ioctl = kvm_vm_ioctl,
5416 	.llseek		= noop_llseek,
5417 	KVM_COMPAT(kvm_vm_compat_ioctl),
5418 };
5419 
5420 bool file_is_kvm(struct file *file)
5421 {
5422 	return file && file->f_op == &kvm_vm_fops;
5423 }
5424 EXPORT_SYMBOL_GPL(file_is_kvm);
5425 
5426 static int kvm_dev_ioctl_create_vm(unsigned long type)
5427 {
5428 	char fdname[ITOA_MAX_LEN + 1];
5429 	int r, fd;
5430 	struct kvm *kvm;
5431 	struct file *file;
5432 
5433 	fd = get_unused_fd_flags(O_CLOEXEC);
5434 	if (fd < 0)
5435 		return fd;
5436 
5437 	snprintf(fdname, sizeof(fdname), "%d", fd);
5438 
5439 	kvm = kvm_create_vm(type, fdname);
5440 	if (IS_ERR(kvm)) {
5441 		r = PTR_ERR(kvm);
5442 		goto put_fd;
5443 	}
5444 
5445 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5446 	if (IS_ERR(file)) {
5447 		r = PTR_ERR(file);
5448 		goto put_kvm;
5449 	}
5450 
5451 	/*
5452 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5453 	 * already set, with ->release() being kvm_vm_release().  In error
5454 	 * cases it will be called by the final fput(file) and will take
5455 	 * care of doing kvm_put_kvm(kvm).
5456 	 */
5457 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5458 
5459 	fd_install(fd, file);
5460 	return fd;
5461 
5462 put_kvm:
5463 	kvm_put_kvm(kvm);
5464 put_fd:
5465 	put_unused_fd(fd);
5466 	return r;
5467 }
5468 
5469 static long kvm_dev_ioctl(struct file *filp,
5470 			  unsigned int ioctl, unsigned long arg)
5471 {
5472 	int r = -EINVAL;
5473 
5474 	switch (ioctl) {
5475 	case KVM_GET_API_VERSION:
5476 		if (arg)
5477 			goto out;
5478 		r = KVM_API_VERSION;
5479 		break;
5480 	case KVM_CREATE_VM:
5481 		r = kvm_dev_ioctl_create_vm(arg);
5482 		break;
5483 	case KVM_CHECK_EXTENSION:
5484 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5485 		break;
5486 	case KVM_GET_VCPU_MMAP_SIZE:
5487 		if (arg)
5488 			goto out;
5489 		r = PAGE_SIZE;     /* struct kvm_run */
5490 #ifdef CONFIG_X86
5491 		r += PAGE_SIZE;    /* pio data page */
5492 #endif
5493 #ifdef CONFIG_KVM_MMIO
5494 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5495 #endif
5496 		break;
5497 	default:
5498 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5499 	}
5500 out:
5501 	return r;
5502 }
5503 
5504 static struct file_operations kvm_chardev_ops = {
5505 	.unlocked_ioctl = kvm_dev_ioctl,
5506 	.llseek		= noop_llseek,
5507 	KVM_COMPAT(kvm_dev_ioctl),
5508 };
5509 
5510 static struct miscdevice kvm_dev = {
5511 	KVM_MINOR,
5512 	"kvm",
5513 	&kvm_chardev_ops,
5514 };
5515 
5516 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5517 __visible bool kvm_rebooting;
5518 EXPORT_SYMBOL_GPL(kvm_rebooting);
5519 
5520 static DEFINE_PER_CPU(bool, hardware_enabled);
5521 static int kvm_usage_count;
5522 
5523 static int __hardware_enable_nolock(void)
5524 {
5525 	if (__this_cpu_read(hardware_enabled))
5526 		return 0;
5527 
5528 	if (kvm_arch_hardware_enable()) {
5529 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5530 			raw_smp_processor_id());
5531 		return -EIO;
5532 	}
5533 
5534 	__this_cpu_write(hardware_enabled, true);
5535 	return 0;
5536 }
5537 
5538 static void hardware_enable_nolock(void *failed)
5539 {
5540 	if (__hardware_enable_nolock())
5541 		atomic_inc(failed);
5542 }
5543 
5544 static int kvm_online_cpu(unsigned int cpu)
5545 {
5546 	int ret = 0;
5547 
5548 	/*
5549 	 * Abort the CPU online process if hardware virtualization cannot
5550 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5551 	 * errors when scheduled to this CPU.
5552 	 */
5553 	mutex_lock(&kvm_lock);
5554 	if (kvm_usage_count)
5555 		ret = __hardware_enable_nolock();
5556 	mutex_unlock(&kvm_lock);
5557 	return ret;
5558 }
5559 
5560 static void hardware_disable_nolock(void *junk)
5561 {
5562 	/*
5563 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5564 	 * hardware, not just CPUs that successfully enabled hardware!
5565 	 */
5566 	if (!__this_cpu_read(hardware_enabled))
5567 		return;
5568 
5569 	kvm_arch_hardware_disable();
5570 
5571 	__this_cpu_write(hardware_enabled, false);
5572 }
5573 
5574 static int kvm_offline_cpu(unsigned int cpu)
5575 {
5576 	mutex_lock(&kvm_lock);
5577 	if (kvm_usage_count)
5578 		hardware_disable_nolock(NULL);
5579 	mutex_unlock(&kvm_lock);
5580 	return 0;
5581 }
5582 
5583 static void hardware_disable_all_nolock(void)
5584 {
5585 	BUG_ON(!kvm_usage_count);
5586 
5587 	kvm_usage_count--;
5588 	if (!kvm_usage_count)
5589 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5590 }
5591 
5592 static void hardware_disable_all(void)
5593 {
5594 	cpus_read_lock();
5595 	mutex_lock(&kvm_lock);
5596 	hardware_disable_all_nolock();
5597 	mutex_unlock(&kvm_lock);
5598 	cpus_read_unlock();
5599 }
5600 
5601 static int hardware_enable_all(void)
5602 {
5603 	atomic_t failed = ATOMIC_INIT(0);
5604 	int r;
5605 
5606 	/*
5607 	 * Do not enable hardware virtualization if the system is going down.
5608 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5609 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5610 	 * after kvm_reboot() is called.  Note, this relies on system_state
5611 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5612 	 * hook instead of registering a dedicated reboot notifier (the latter
5613 	 * runs before system_state is updated).
5614 	 */
5615 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5616 	    system_state == SYSTEM_RESTART)
5617 		return -EBUSY;
5618 
5619 	/*
5620 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5621 	 * is called, and so on_each_cpu() between them includes the CPU that
5622 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5623 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5624 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5625 	 * enable hardware multiple times.
5626 	 */
5627 	cpus_read_lock();
5628 	mutex_lock(&kvm_lock);
5629 
5630 	r = 0;
5631 
5632 	kvm_usage_count++;
5633 	if (kvm_usage_count == 1) {
5634 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5635 
5636 		if (atomic_read(&failed)) {
5637 			hardware_disable_all_nolock();
5638 			r = -EBUSY;
5639 		}
5640 	}
5641 
5642 	mutex_unlock(&kvm_lock);
5643 	cpus_read_unlock();
5644 
5645 	return r;
5646 }
5647 
5648 static void kvm_shutdown(void)
5649 {
5650 	/*
5651 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5652 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5653 	 * that relevant errors and exceptions aren't entirely unexpected.
5654 	 * Some flavors of hardware virtualization need to be disabled before
5655 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5656 	 * on x86, virtualization can block INIT interrupts, which are used by
5657 	 * firmware to pull APs back under firmware control.  Note, this path
5658 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5659 	 * 100% comprehensive.
5660 	 */
5661 	pr_info("kvm: exiting hardware virtualization\n");
5662 	kvm_rebooting = true;
5663 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5664 }
5665 
5666 static int kvm_suspend(void)
5667 {
5668 	/*
5669 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5670 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5671 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5672 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5673 	 * can be preempted, but the task cannot be frozen until it has dropped
5674 	 * all locks (userspace tasks are frozen via a fake signal).
5675 	 */
5676 	lockdep_assert_not_held(&kvm_lock);
5677 	lockdep_assert_irqs_disabled();
5678 
5679 	if (kvm_usage_count)
5680 		hardware_disable_nolock(NULL);
5681 	return 0;
5682 }
5683 
5684 static void kvm_resume(void)
5685 {
5686 	lockdep_assert_not_held(&kvm_lock);
5687 	lockdep_assert_irqs_disabled();
5688 
5689 	if (kvm_usage_count)
5690 		WARN_ON_ONCE(__hardware_enable_nolock());
5691 }
5692 
5693 static struct syscore_ops kvm_syscore_ops = {
5694 	.suspend = kvm_suspend,
5695 	.resume = kvm_resume,
5696 	.shutdown = kvm_shutdown,
5697 };
5698 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5699 static int hardware_enable_all(void)
5700 {
5701 	return 0;
5702 }
5703 
5704 static void hardware_disable_all(void)
5705 {
5706 
5707 }
5708 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5709 
5710 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5711 {
5712 	if (dev->ops->destructor)
5713 		dev->ops->destructor(dev);
5714 }
5715 
5716 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5717 {
5718 	int i;
5719 
5720 	for (i = 0; i < bus->dev_count; i++) {
5721 		struct kvm_io_device *pos = bus->range[i].dev;
5722 
5723 		kvm_iodevice_destructor(pos);
5724 	}
5725 	kfree(bus);
5726 }
5727 
5728 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5729 				 const struct kvm_io_range *r2)
5730 {
5731 	gpa_t addr1 = r1->addr;
5732 	gpa_t addr2 = r2->addr;
5733 
5734 	if (addr1 < addr2)
5735 		return -1;
5736 
5737 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5738 	 * accept any overlapping write.  Any order is acceptable for
5739 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5740 	 * we process all of them.
5741 	 */
5742 	if (r2->len) {
5743 		addr1 += r1->len;
5744 		addr2 += r2->len;
5745 	}
5746 
5747 	if (addr1 > addr2)
5748 		return 1;
5749 
5750 	return 0;
5751 }
5752 
5753 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5754 {
5755 	return kvm_io_bus_cmp(p1, p2);
5756 }
5757 
5758 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5759 			     gpa_t addr, int len)
5760 {
5761 	struct kvm_io_range *range, key;
5762 	int off;
5763 
5764 	key = (struct kvm_io_range) {
5765 		.addr = addr,
5766 		.len = len,
5767 	};
5768 
5769 	range = bsearch(&key, bus->range, bus->dev_count,
5770 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5771 	if (range == NULL)
5772 		return -ENOENT;
5773 
5774 	off = range - bus->range;
5775 
5776 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5777 		off--;
5778 
5779 	return off;
5780 }
5781 
5782 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5783 			      struct kvm_io_range *range, const void *val)
5784 {
5785 	int idx;
5786 
5787 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5788 	if (idx < 0)
5789 		return -EOPNOTSUPP;
5790 
5791 	while (idx < bus->dev_count &&
5792 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5793 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5794 					range->len, val))
5795 			return idx;
5796 		idx++;
5797 	}
5798 
5799 	return -EOPNOTSUPP;
5800 }
5801 
5802 /* kvm_io_bus_write - called under kvm->slots_lock */
5803 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5804 		     int len, const void *val)
5805 {
5806 	struct kvm_io_bus *bus;
5807 	struct kvm_io_range range;
5808 	int r;
5809 
5810 	range = (struct kvm_io_range) {
5811 		.addr = addr,
5812 		.len = len,
5813 	};
5814 
5815 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5816 	if (!bus)
5817 		return -ENOMEM;
5818 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5819 	return r < 0 ? r : 0;
5820 }
5821 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5822 
5823 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5824 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5825 			    gpa_t addr, int len, const void *val, long cookie)
5826 {
5827 	struct kvm_io_bus *bus;
5828 	struct kvm_io_range range;
5829 
5830 	range = (struct kvm_io_range) {
5831 		.addr = addr,
5832 		.len = len,
5833 	};
5834 
5835 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5836 	if (!bus)
5837 		return -ENOMEM;
5838 
5839 	/* First try the device referenced by cookie. */
5840 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5841 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5842 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5843 					val))
5844 			return cookie;
5845 
5846 	/*
5847 	 * cookie contained garbage; fall back to search and return the
5848 	 * correct cookie value.
5849 	 */
5850 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5851 }
5852 
5853 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5854 			     struct kvm_io_range *range, void *val)
5855 {
5856 	int idx;
5857 
5858 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5859 	if (idx < 0)
5860 		return -EOPNOTSUPP;
5861 
5862 	while (idx < bus->dev_count &&
5863 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5864 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5865 				       range->len, val))
5866 			return idx;
5867 		idx++;
5868 	}
5869 
5870 	return -EOPNOTSUPP;
5871 }
5872 
5873 /* kvm_io_bus_read - called under kvm->slots_lock */
5874 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5875 		    int len, void *val)
5876 {
5877 	struct kvm_io_bus *bus;
5878 	struct kvm_io_range range;
5879 	int r;
5880 
5881 	range = (struct kvm_io_range) {
5882 		.addr = addr,
5883 		.len = len,
5884 	};
5885 
5886 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5887 	if (!bus)
5888 		return -ENOMEM;
5889 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5890 	return r < 0 ? r : 0;
5891 }
5892 
5893 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5894 			    int len, struct kvm_io_device *dev)
5895 {
5896 	int i;
5897 	struct kvm_io_bus *new_bus, *bus;
5898 	struct kvm_io_range range;
5899 
5900 	lockdep_assert_held(&kvm->slots_lock);
5901 
5902 	bus = kvm_get_bus(kvm, bus_idx);
5903 	if (!bus)
5904 		return -ENOMEM;
5905 
5906 	/* exclude ioeventfd which is limited by maximum fd */
5907 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5908 		return -ENOSPC;
5909 
5910 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5911 			  GFP_KERNEL_ACCOUNT);
5912 	if (!new_bus)
5913 		return -ENOMEM;
5914 
5915 	range = (struct kvm_io_range) {
5916 		.addr = addr,
5917 		.len = len,
5918 		.dev = dev,
5919 	};
5920 
5921 	for (i = 0; i < bus->dev_count; i++)
5922 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5923 			break;
5924 
5925 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5926 	new_bus->dev_count++;
5927 	new_bus->range[i] = range;
5928 	memcpy(new_bus->range + i + 1, bus->range + i,
5929 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5930 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5931 	synchronize_srcu_expedited(&kvm->srcu);
5932 	kfree(bus);
5933 
5934 	return 0;
5935 }
5936 
5937 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5938 			      struct kvm_io_device *dev)
5939 {
5940 	int i;
5941 	struct kvm_io_bus *new_bus, *bus;
5942 
5943 	lockdep_assert_held(&kvm->slots_lock);
5944 
5945 	bus = kvm_get_bus(kvm, bus_idx);
5946 	if (!bus)
5947 		return 0;
5948 
5949 	for (i = 0; i < bus->dev_count; i++) {
5950 		if (bus->range[i].dev == dev) {
5951 			break;
5952 		}
5953 	}
5954 
5955 	if (i == bus->dev_count)
5956 		return 0;
5957 
5958 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5959 			  GFP_KERNEL_ACCOUNT);
5960 	if (new_bus) {
5961 		memcpy(new_bus, bus, struct_size(bus, range, i));
5962 		new_bus->dev_count--;
5963 		memcpy(new_bus->range + i, bus->range + i + 1,
5964 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5965 	}
5966 
5967 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5968 	synchronize_srcu_expedited(&kvm->srcu);
5969 
5970 	/*
5971 	 * If NULL bus is installed, destroy the old bus, including all the
5972 	 * attached devices. Otherwise, destroy the caller's device only.
5973 	 */
5974 	if (!new_bus) {
5975 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5976 		kvm_io_bus_destroy(bus);
5977 		return -ENOMEM;
5978 	}
5979 
5980 	kvm_iodevice_destructor(dev);
5981 	kfree(bus);
5982 	return 0;
5983 }
5984 
5985 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5986 					 gpa_t addr)
5987 {
5988 	struct kvm_io_bus *bus;
5989 	int dev_idx, srcu_idx;
5990 	struct kvm_io_device *iodev = NULL;
5991 
5992 	srcu_idx = srcu_read_lock(&kvm->srcu);
5993 
5994 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5995 	if (!bus)
5996 		goto out_unlock;
5997 
5998 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5999 	if (dev_idx < 0)
6000 		goto out_unlock;
6001 
6002 	iodev = bus->range[dev_idx].dev;
6003 
6004 out_unlock:
6005 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6006 
6007 	return iodev;
6008 }
6009 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6010 
6011 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6012 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6013 			   const char *fmt)
6014 {
6015 	int ret;
6016 	struct kvm_stat_data *stat_data = inode->i_private;
6017 
6018 	/*
6019 	 * The debugfs files are a reference to the kvm struct which
6020         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6021         * avoids the race between open and the removal of the debugfs directory.
6022 	 */
6023 	if (!kvm_get_kvm_safe(stat_data->kvm))
6024 		return -ENOENT;
6025 
6026 	ret = simple_attr_open(inode, file, get,
6027 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6028 			       ? set : NULL, fmt);
6029 	if (ret)
6030 		kvm_put_kvm(stat_data->kvm);
6031 
6032 	return ret;
6033 }
6034 
6035 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6036 {
6037 	struct kvm_stat_data *stat_data = inode->i_private;
6038 
6039 	simple_attr_release(inode, file);
6040 	kvm_put_kvm(stat_data->kvm);
6041 
6042 	return 0;
6043 }
6044 
6045 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6046 {
6047 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6048 
6049 	return 0;
6050 }
6051 
6052 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6053 {
6054 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6055 
6056 	return 0;
6057 }
6058 
6059 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6060 {
6061 	unsigned long i;
6062 	struct kvm_vcpu *vcpu;
6063 
6064 	*val = 0;
6065 
6066 	kvm_for_each_vcpu(i, vcpu, kvm)
6067 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6068 
6069 	return 0;
6070 }
6071 
6072 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6073 {
6074 	unsigned long i;
6075 	struct kvm_vcpu *vcpu;
6076 
6077 	kvm_for_each_vcpu(i, vcpu, kvm)
6078 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6079 
6080 	return 0;
6081 }
6082 
6083 static int kvm_stat_data_get(void *data, u64 *val)
6084 {
6085 	int r = -EFAULT;
6086 	struct kvm_stat_data *stat_data = data;
6087 
6088 	switch (stat_data->kind) {
6089 	case KVM_STAT_VM:
6090 		r = kvm_get_stat_per_vm(stat_data->kvm,
6091 					stat_data->desc->desc.offset, val);
6092 		break;
6093 	case KVM_STAT_VCPU:
6094 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6095 					  stat_data->desc->desc.offset, val);
6096 		break;
6097 	}
6098 
6099 	return r;
6100 }
6101 
6102 static int kvm_stat_data_clear(void *data, u64 val)
6103 {
6104 	int r = -EFAULT;
6105 	struct kvm_stat_data *stat_data = data;
6106 
6107 	if (val)
6108 		return -EINVAL;
6109 
6110 	switch (stat_data->kind) {
6111 	case KVM_STAT_VM:
6112 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6113 					  stat_data->desc->desc.offset);
6114 		break;
6115 	case KVM_STAT_VCPU:
6116 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6117 					    stat_data->desc->desc.offset);
6118 		break;
6119 	}
6120 
6121 	return r;
6122 }
6123 
6124 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6125 {
6126 	__simple_attr_check_format("%llu\n", 0ull);
6127 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6128 				kvm_stat_data_clear, "%llu\n");
6129 }
6130 
6131 static const struct file_operations stat_fops_per_vm = {
6132 	.owner = THIS_MODULE,
6133 	.open = kvm_stat_data_open,
6134 	.release = kvm_debugfs_release,
6135 	.read = simple_attr_read,
6136 	.write = simple_attr_write,
6137 	.llseek = no_llseek,
6138 };
6139 
6140 static int vm_stat_get(void *_offset, u64 *val)
6141 {
6142 	unsigned offset = (long)_offset;
6143 	struct kvm *kvm;
6144 	u64 tmp_val;
6145 
6146 	*val = 0;
6147 	mutex_lock(&kvm_lock);
6148 	list_for_each_entry(kvm, &vm_list, vm_list) {
6149 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6150 		*val += tmp_val;
6151 	}
6152 	mutex_unlock(&kvm_lock);
6153 	return 0;
6154 }
6155 
6156 static int vm_stat_clear(void *_offset, u64 val)
6157 {
6158 	unsigned offset = (long)_offset;
6159 	struct kvm *kvm;
6160 
6161 	if (val)
6162 		return -EINVAL;
6163 
6164 	mutex_lock(&kvm_lock);
6165 	list_for_each_entry(kvm, &vm_list, vm_list) {
6166 		kvm_clear_stat_per_vm(kvm, offset);
6167 	}
6168 	mutex_unlock(&kvm_lock);
6169 
6170 	return 0;
6171 }
6172 
6173 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6174 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6175 
6176 static int vcpu_stat_get(void *_offset, u64 *val)
6177 {
6178 	unsigned offset = (long)_offset;
6179 	struct kvm *kvm;
6180 	u64 tmp_val;
6181 
6182 	*val = 0;
6183 	mutex_lock(&kvm_lock);
6184 	list_for_each_entry(kvm, &vm_list, vm_list) {
6185 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6186 		*val += tmp_val;
6187 	}
6188 	mutex_unlock(&kvm_lock);
6189 	return 0;
6190 }
6191 
6192 static int vcpu_stat_clear(void *_offset, u64 val)
6193 {
6194 	unsigned offset = (long)_offset;
6195 	struct kvm *kvm;
6196 
6197 	if (val)
6198 		return -EINVAL;
6199 
6200 	mutex_lock(&kvm_lock);
6201 	list_for_each_entry(kvm, &vm_list, vm_list) {
6202 		kvm_clear_stat_per_vcpu(kvm, offset);
6203 	}
6204 	mutex_unlock(&kvm_lock);
6205 
6206 	return 0;
6207 }
6208 
6209 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6210 			"%llu\n");
6211 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6212 
6213 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6214 {
6215 	struct kobj_uevent_env *env;
6216 	unsigned long long created, active;
6217 
6218 	if (!kvm_dev.this_device || !kvm)
6219 		return;
6220 
6221 	mutex_lock(&kvm_lock);
6222 	if (type == KVM_EVENT_CREATE_VM) {
6223 		kvm_createvm_count++;
6224 		kvm_active_vms++;
6225 	} else if (type == KVM_EVENT_DESTROY_VM) {
6226 		kvm_active_vms--;
6227 	}
6228 	created = kvm_createvm_count;
6229 	active = kvm_active_vms;
6230 	mutex_unlock(&kvm_lock);
6231 
6232 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6233 	if (!env)
6234 		return;
6235 
6236 	add_uevent_var(env, "CREATED=%llu", created);
6237 	add_uevent_var(env, "COUNT=%llu", active);
6238 
6239 	if (type == KVM_EVENT_CREATE_VM) {
6240 		add_uevent_var(env, "EVENT=create");
6241 		kvm->userspace_pid = task_pid_nr(current);
6242 	} else if (type == KVM_EVENT_DESTROY_VM) {
6243 		add_uevent_var(env, "EVENT=destroy");
6244 	}
6245 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6246 
6247 	if (!IS_ERR(kvm->debugfs_dentry)) {
6248 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6249 
6250 		if (p) {
6251 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6252 			if (!IS_ERR(tmp))
6253 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6254 			kfree(p);
6255 		}
6256 	}
6257 	/* no need for checks, since we are adding at most only 5 keys */
6258 	env->envp[env->envp_idx++] = NULL;
6259 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6260 	kfree(env);
6261 }
6262 
6263 static void kvm_init_debug(void)
6264 {
6265 	const struct file_operations *fops;
6266 	const struct _kvm_stats_desc *pdesc;
6267 	int i;
6268 
6269 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6270 
6271 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6272 		pdesc = &kvm_vm_stats_desc[i];
6273 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6274 			fops = &vm_stat_fops;
6275 		else
6276 			fops = &vm_stat_readonly_fops;
6277 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6278 				kvm_debugfs_dir,
6279 				(void *)(long)pdesc->desc.offset, fops);
6280 	}
6281 
6282 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6283 		pdesc = &kvm_vcpu_stats_desc[i];
6284 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6285 			fops = &vcpu_stat_fops;
6286 		else
6287 			fops = &vcpu_stat_readonly_fops;
6288 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6289 				kvm_debugfs_dir,
6290 				(void *)(long)pdesc->desc.offset, fops);
6291 	}
6292 }
6293 
6294 static inline
6295 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6296 {
6297 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6298 }
6299 
6300 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6301 {
6302 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6303 
6304 	WRITE_ONCE(vcpu->preempted, false);
6305 	WRITE_ONCE(vcpu->ready, false);
6306 
6307 	__this_cpu_write(kvm_running_vcpu, vcpu);
6308 	kvm_arch_sched_in(vcpu, cpu);
6309 	kvm_arch_vcpu_load(vcpu, cpu);
6310 }
6311 
6312 static void kvm_sched_out(struct preempt_notifier *pn,
6313 			  struct task_struct *next)
6314 {
6315 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6316 
6317 	if (current->on_rq) {
6318 		WRITE_ONCE(vcpu->preempted, true);
6319 		WRITE_ONCE(vcpu->ready, true);
6320 	}
6321 	kvm_arch_vcpu_put(vcpu);
6322 	__this_cpu_write(kvm_running_vcpu, NULL);
6323 }
6324 
6325 /**
6326  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6327  *
6328  * We can disable preemption locally around accessing the per-CPU variable,
6329  * and use the resolved vcpu pointer after enabling preemption again,
6330  * because even if the current thread is migrated to another CPU, reading
6331  * the per-CPU value later will give us the same value as we update the
6332  * per-CPU variable in the preempt notifier handlers.
6333  */
6334 struct kvm_vcpu *kvm_get_running_vcpu(void)
6335 {
6336 	struct kvm_vcpu *vcpu;
6337 
6338 	preempt_disable();
6339 	vcpu = __this_cpu_read(kvm_running_vcpu);
6340 	preempt_enable();
6341 
6342 	return vcpu;
6343 }
6344 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6345 
6346 /**
6347  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6348  */
6349 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6350 {
6351         return &kvm_running_vcpu;
6352 }
6353 
6354 #ifdef CONFIG_GUEST_PERF_EVENTS
6355 static unsigned int kvm_guest_state(void)
6356 {
6357 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6358 	unsigned int state;
6359 
6360 	if (!kvm_arch_pmi_in_guest(vcpu))
6361 		return 0;
6362 
6363 	state = PERF_GUEST_ACTIVE;
6364 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6365 		state |= PERF_GUEST_USER;
6366 
6367 	return state;
6368 }
6369 
6370 static unsigned long kvm_guest_get_ip(void)
6371 {
6372 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6373 
6374 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6375 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6376 		return 0;
6377 
6378 	return kvm_arch_vcpu_get_ip(vcpu);
6379 }
6380 
6381 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6382 	.state			= kvm_guest_state,
6383 	.get_ip			= kvm_guest_get_ip,
6384 	.handle_intel_pt_intr	= NULL,
6385 };
6386 
6387 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6388 {
6389 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6390 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6391 }
6392 void kvm_unregister_perf_callbacks(void)
6393 {
6394 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6395 }
6396 #endif
6397 
6398 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6399 {
6400 	int r;
6401 	int cpu;
6402 
6403 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6404 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6405 				      kvm_online_cpu, kvm_offline_cpu);
6406 	if (r)
6407 		return r;
6408 
6409 	register_syscore_ops(&kvm_syscore_ops);
6410 #endif
6411 
6412 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6413 	if (!vcpu_align)
6414 		vcpu_align = __alignof__(struct kvm_vcpu);
6415 	kvm_vcpu_cache =
6416 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6417 					   SLAB_ACCOUNT,
6418 					   offsetof(struct kvm_vcpu, arch),
6419 					   offsetofend(struct kvm_vcpu, stats_id)
6420 					   - offsetof(struct kvm_vcpu, arch),
6421 					   NULL);
6422 	if (!kvm_vcpu_cache) {
6423 		r = -ENOMEM;
6424 		goto err_vcpu_cache;
6425 	}
6426 
6427 	for_each_possible_cpu(cpu) {
6428 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6429 					    GFP_KERNEL, cpu_to_node(cpu))) {
6430 			r = -ENOMEM;
6431 			goto err_cpu_kick_mask;
6432 		}
6433 	}
6434 
6435 	r = kvm_irqfd_init();
6436 	if (r)
6437 		goto err_irqfd;
6438 
6439 	r = kvm_async_pf_init();
6440 	if (r)
6441 		goto err_async_pf;
6442 
6443 	kvm_chardev_ops.owner = module;
6444 	kvm_vm_fops.owner = module;
6445 	kvm_vcpu_fops.owner = module;
6446 	kvm_device_fops.owner = module;
6447 
6448 	kvm_preempt_ops.sched_in = kvm_sched_in;
6449 	kvm_preempt_ops.sched_out = kvm_sched_out;
6450 
6451 	kvm_init_debug();
6452 
6453 	r = kvm_vfio_ops_init();
6454 	if (WARN_ON_ONCE(r))
6455 		goto err_vfio;
6456 
6457 	kvm_gmem_init(module);
6458 
6459 	/*
6460 	 * Registration _must_ be the very last thing done, as this exposes
6461 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6462 	 */
6463 	r = misc_register(&kvm_dev);
6464 	if (r) {
6465 		pr_err("kvm: misc device register failed\n");
6466 		goto err_register;
6467 	}
6468 
6469 	return 0;
6470 
6471 err_register:
6472 	kvm_vfio_ops_exit();
6473 err_vfio:
6474 	kvm_async_pf_deinit();
6475 err_async_pf:
6476 	kvm_irqfd_exit();
6477 err_irqfd:
6478 err_cpu_kick_mask:
6479 	for_each_possible_cpu(cpu)
6480 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6481 	kmem_cache_destroy(kvm_vcpu_cache);
6482 err_vcpu_cache:
6483 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6484 	unregister_syscore_ops(&kvm_syscore_ops);
6485 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6486 #endif
6487 	return r;
6488 }
6489 EXPORT_SYMBOL_GPL(kvm_init);
6490 
6491 void kvm_exit(void)
6492 {
6493 	int cpu;
6494 
6495 	/*
6496 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6497 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6498 	 * to KVM while the module is being stopped.
6499 	 */
6500 	misc_deregister(&kvm_dev);
6501 
6502 	debugfs_remove_recursive(kvm_debugfs_dir);
6503 	for_each_possible_cpu(cpu)
6504 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6505 	kmem_cache_destroy(kvm_vcpu_cache);
6506 	kvm_vfio_ops_exit();
6507 	kvm_async_pf_deinit();
6508 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6509 	unregister_syscore_ops(&kvm_syscore_ops);
6510 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6511 #endif
6512 	kvm_irqfd_exit();
6513 }
6514 EXPORT_SYMBOL_GPL(kvm_exit);
6515 
6516 struct kvm_vm_worker_thread_context {
6517 	struct kvm *kvm;
6518 	struct task_struct *parent;
6519 	struct completion init_done;
6520 	kvm_vm_thread_fn_t thread_fn;
6521 	uintptr_t data;
6522 	int err;
6523 };
6524 
6525 static int kvm_vm_worker_thread(void *context)
6526 {
6527 	/*
6528 	 * The init_context is allocated on the stack of the parent thread, so
6529 	 * we have to locally copy anything that is needed beyond initialization
6530 	 */
6531 	struct kvm_vm_worker_thread_context *init_context = context;
6532 	struct task_struct *parent;
6533 	struct kvm *kvm = init_context->kvm;
6534 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6535 	uintptr_t data = init_context->data;
6536 	int err;
6537 
6538 	err = kthread_park(current);
6539 	/* kthread_park(current) is never supposed to return an error */
6540 	WARN_ON(err != 0);
6541 	if (err)
6542 		goto init_complete;
6543 
6544 	err = cgroup_attach_task_all(init_context->parent, current);
6545 	if (err) {
6546 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6547 			__func__, err);
6548 		goto init_complete;
6549 	}
6550 
6551 	set_user_nice(current, task_nice(init_context->parent));
6552 
6553 init_complete:
6554 	init_context->err = err;
6555 	complete(&init_context->init_done);
6556 	init_context = NULL;
6557 
6558 	if (err)
6559 		goto out;
6560 
6561 	/* Wait to be woken up by the spawner before proceeding. */
6562 	kthread_parkme();
6563 
6564 	if (!kthread_should_stop())
6565 		err = thread_fn(kvm, data);
6566 
6567 out:
6568 	/*
6569 	 * Move kthread back to its original cgroup to prevent it lingering in
6570 	 * the cgroup of the VM process, after the latter finishes its
6571 	 * execution.
6572 	 *
6573 	 * kthread_stop() waits on the 'exited' completion condition which is
6574 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6575 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6576 	 * called after the exit_mm(). This causes the kthread_stop() to return
6577 	 * before the kthread actually quits the cgroup.
6578 	 */
6579 	rcu_read_lock();
6580 	parent = rcu_dereference(current->real_parent);
6581 	get_task_struct(parent);
6582 	rcu_read_unlock();
6583 	cgroup_attach_task_all(parent, current);
6584 	put_task_struct(parent);
6585 
6586 	return err;
6587 }
6588 
6589 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6590 				uintptr_t data, const char *name,
6591 				struct task_struct **thread_ptr)
6592 {
6593 	struct kvm_vm_worker_thread_context init_context = {};
6594 	struct task_struct *thread;
6595 
6596 	*thread_ptr = NULL;
6597 	init_context.kvm = kvm;
6598 	init_context.parent = current;
6599 	init_context.thread_fn = thread_fn;
6600 	init_context.data = data;
6601 	init_completion(&init_context.init_done);
6602 
6603 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6604 			     "%s-%d", name, task_pid_nr(current));
6605 	if (IS_ERR(thread))
6606 		return PTR_ERR(thread);
6607 
6608 	/* kthread_run is never supposed to return NULL */
6609 	WARN_ON(thread == NULL);
6610 
6611 	wait_for_completion(&init_context.init_done);
6612 
6613 	if (!init_context.err)
6614 		*thread_ptr = thread;
6615 
6616 	return init_context.err;
6617 }
6618