1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 gfp_flags |= mc->gfp_zero; 405 406 if (mc->kmem_cache) 407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 408 else 409 return (void *)__get_free_page(gfp_flags); 410 } 411 412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 413 { 414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 415 void *obj; 416 417 if (mc->nobjs >= min) 418 return 0; 419 420 if (unlikely(!mc->objects)) { 421 if (WARN_ON_ONCE(!capacity)) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 587 588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 591 node; \ 592 node = interval_tree_iter_next(node, start, last)) \ 593 594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 595 const struct kvm_mmu_notifier_range *range) 596 { 597 struct kvm_mmu_notifier_return r = { 598 .ret = false, 599 .found_memslot = false, 600 }; 601 struct kvm_gfn_range gfn_range; 602 struct kvm_memory_slot *slot; 603 struct kvm_memslots *slots; 604 int i, idx; 605 606 if (WARN_ON_ONCE(range->end <= range->start)) 607 return r; 608 609 /* A null handler is allowed if and only if on_lock() is provided. */ 610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 611 IS_KVM_NULL_FN(range->handler))) 612 return r; 613 614 idx = srcu_read_lock(&kvm->srcu); 615 616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 617 struct interval_tree_node *node; 618 619 slots = __kvm_memslots(kvm, i); 620 kvm_for_each_memslot_in_hva_range(node, slots, 621 range->start, range->end - 1) { 622 unsigned long hva_start, hva_end; 623 624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 626 hva_end = min_t(unsigned long, range->end, 627 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 628 629 /* 630 * To optimize for the likely case where the address 631 * range is covered by zero or one memslots, don't 632 * bother making these conditional (to avoid writes on 633 * the second or later invocation of the handler). 634 */ 635 gfn_range.arg = range->arg; 636 gfn_range.may_block = range->may_block; 637 638 /* 639 * {gfn(page) | page intersects with [hva_start, hva_end)} = 640 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 641 */ 642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 644 gfn_range.slot = slot; 645 646 if (!r.found_memslot) { 647 r.found_memslot = true; 648 KVM_MMU_LOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_lock)) 650 range->on_lock(kvm); 651 652 if (IS_KVM_NULL_FN(range->handler)) 653 break; 654 } 655 r.ret |= range->handler(kvm, &gfn_range); 656 } 657 } 658 659 if (range->flush_on_ret && r.ret) 660 kvm_flush_remote_tlbs(kvm); 661 662 if (r.found_memslot) 663 KVM_MMU_UNLOCK(kvm); 664 665 srcu_read_unlock(&kvm->srcu, idx); 666 667 return r; 668 } 669 670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 union kvm_mmu_notifier_arg arg, 674 gfn_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_mmu_notifier_range range = { 678 .start = start, 679 .end = end, 680 .arg = arg, 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .flush_on_ret = true, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range).ret; 688 } 689 690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 691 unsigned long start, 692 unsigned long end, 693 gfn_handler_t handler) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 const struct kvm_mmu_notifier_range range = { 697 .start = start, 698 .end = end, 699 .handler = handler, 700 .on_lock = (void *)kvm_null_fn, 701 .flush_on_ret = false, 702 .may_block = false, 703 }; 704 705 return __kvm_handle_hva_range(kvm, &range).ret; 706 } 707 708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 709 { 710 /* 711 * Skipping invalid memslots is correct if and only change_pte() is 712 * surrounded by invalidate_range_{start,end}(), which is currently 713 * guaranteed by the primary MMU. If that ever changes, KVM needs to 714 * unmap the memslot instead of skipping the memslot to ensure that KVM 715 * doesn't hold references to the old PFN. 716 */ 717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 718 719 if (range->slot->flags & KVM_MEMSLOT_INVALID) 720 return false; 721 722 return kvm_set_spte_gfn(kvm, range); 723 } 724 725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 726 struct mm_struct *mm, 727 unsigned long address, 728 pte_t pte) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 732 733 trace_kvm_set_spte_hva(address); 734 735 /* 736 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 737 * If mmu_invalidate_in_progress is zero, then no in-progress 738 * invalidations, including this one, found a relevant memslot at 739 * start(); rechecking memslots here is unnecessary. Note, a false 740 * positive (count elevated by a different invalidation) is sub-optimal 741 * but functionally ok. 742 */ 743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 745 return; 746 747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 748 } 749 750 void kvm_mmu_invalidate_begin(struct kvm *kvm) 751 { 752 lockdep_assert_held_write(&kvm->mmu_lock); 753 /* 754 * The count increase must become visible at unlock time as no 755 * spte can be established without taking the mmu_lock and 756 * count is also read inside the mmu_lock critical section. 757 */ 758 kvm->mmu_invalidate_in_progress++; 759 760 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 761 kvm->mmu_invalidate_range_start = INVALID_GPA; 762 kvm->mmu_invalidate_range_end = INVALID_GPA; 763 } 764 } 765 766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 767 { 768 lockdep_assert_held_write(&kvm->mmu_lock); 769 770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 771 772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 773 kvm->mmu_invalidate_range_start = start; 774 kvm->mmu_invalidate_range_end = end; 775 } else { 776 /* 777 * Fully tracking multiple concurrent ranges has diminishing 778 * returns. Keep things simple and just find the minimal range 779 * which includes the current and new ranges. As there won't be 780 * enough information to subtract a range after its invalidate 781 * completes, any ranges invalidated concurrently will 782 * accumulate and persist until all outstanding invalidates 783 * complete. 784 */ 785 kvm->mmu_invalidate_range_start = 786 min(kvm->mmu_invalidate_range_start, start); 787 kvm->mmu_invalidate_range_end = 788 max(kvm->mmu_invalidate_range_end, end); 789 } 790 } 791 792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 793 { 794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 795 return kvm_unmap_gfn_range(kvm, range); 796 } 797 798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 799 const struct mmu_notifier_range *range) 800 { 801 struct kvm *kvm = mmu_notifier_to_kvm(mn); 802 const struct kvm_mmu_notifier_range hva_range = { 803 .start = range->start, 804 .end = range->end, 805 .handler = kvm_mmu_unmap_gfn_range, 806 .on_lock = kvm_mmu_invalidate_begin, 807 .flush_on_ret = true, 808 .may_block = mmu_notifier_range_blockable(range), 809 }; 810 811 trace_kvm_unmap_hva_range(range->start, range->end); 812 813 /* 814 * Prevent memslot modification between range_start() and range_end() 815 * so that conditionally locking provides the same result in both 816 * functions. Without that guarantee, the mmu_invalidate_in_progress 817 * adjustments will be imbalanced. 818 * 819 * Pairs with the decrement in range_end(). 820 */ 821 spin_lock(&kvm->mn_invalidate_lock); 822 kvm->mn_active_invalidate_count++; 823 spin_unlock(&kvm->mn_invalidate_lock); 824 825 /* 826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 828 * each cache's lock. There are relatively few caches in existence at 829 * any given time, and the caches themselves can check for hva overlap, 830 * i.e. don't need to rely on memslot overlap checks for performance. 831 * Because this runs without holding mmu_lock, the pfn caches must use 832 * mn_active_invalidate_count (see above) instead of 833 * mmu_invalidate_in_progress. 834 */ 835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 836 hva_range.may_block); 837 838 /* 839 * If one or more memslots were found and thus zapped, notify arch code 840 * that guest memory has been reclaimed. This needs to be done *after* 841 * dropping mmu_lock, as x86's reclaim path is slooooow. 842 */ 843 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 844 kvm_arch_guest_memory_reclaimed(kvm); 845 846 return 0; 847 } 848 849 void kvm_mmu_invalidate_end(struct kvm *kvm) 850 { 851 lockdep_assert_held_write(&kvm->mmu_lock); 852 853 /* 854 * This sequence increase will notify the kvm page fault that 855 * the page that is going to be mapped in the spte could have 856 * been freed. 857 */ 858 kvm->mmu_invalidate_seq++; 859 smp_wmb(); 860 /* 861 * The above sequence increase must be visible before the 862 * below count decrease, which is ensured by the smp_wmb above 863 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 864 */ 865 kvm->mmu_invalidate_in_progress--; 866 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 867 868 /* 869 * Assert that at least one range was added between start() and end(). 870 * Not adding a range isn't fatal, but it is a KVM bug. 871 */ 872 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 873 } 874 875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 876 const struct mmu_notifier_range *range) 877 { 878 struct kvm *kvm = mmu_notifier_to_kvm(mn); 879 const struct kvm_mmu_notifier_range hva_range = { 880 .start = range->start, 881 .end = range->end, 882 .handler = (void *)kvm_null_fn, 883 .on_lock = kvm_mmu_invalidate_end, 884 .flush_on_ret = false, 885 .may_block = mmu_notifier_range_blockable(range), 886 }; 887 bool wake; 888 889 __kvm_handle_hva_range(kvm, &hva_range); 890 891 /* Pairs with the increment in range_start(). */ 892 spin_lock(&kvm->mn_invalidate_lock); 893 wake = (--kvm->mn_active_invalidate_count == 0); 894 spin_unlock(&kvm->mn_invalidate_lock); 895 896 /* 897 * There can only be one waiter, since the wait happens under 898 * slots_lock. 899 */ 900 if (wake) 901 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 902 } 903 904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 905 struct mm_struct *mm, 906 unsigned long start, 907 unsigned long end) 908 { 909 trace_kvm_age_hva(start, end); 910 911 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 912 kvm_age_gfn); 913 } 914 915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 916 struct mm_struct *mm, 917 unsigned long start, 918 unsigned long end) 919 { 920 trace_kvm_age_hva(start, end); 921 922 /* 923 * Even though we do not flush TLB, this will still adversely 924 * affect performance on pre-Haswell Intel EPT, where there is 925 * no EPT Access Bit to clear so that we have to tear down EPT 926 * tables instead. If we find this unacceptable, we can always 927 * add a parameter to kvm_age_hva so that it effectively doesn't 928 * do anything on clear_young. 929 * 930 * Also note that currently we never issue secondary TLB flushes 931 * from clear_young, leaving this job up to the regular system 932 * cadence. If we find this inaccurate, we might come up with a 933 * more sophisticated heuristic later. 934 */ 935 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 936 } 937 938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 939 struct mm_struct *mm, 940 unsigned long address) 941 { 942 trace_kvm_test_age_hva(address); 943 944 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 945 kvm_test_age_gfn); 946 } 947 948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 949 struct mm_struct *mm) 950 { 951 struct kvm *kvm = mmu_notifier_to_kvm(mn); 952 int idx; 953 954 idx = srcu_read_lock(&kvm->srcu); 955 kvm_flush_shadow_all(kvm); 956 srcu_read_unlock(&kvm->srcu, idx); 957 } 958 959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 960 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 961 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 962 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 963 .clear_young = kvm_mmu_notifier_clear_young, 964 .test_young = kvm_mmu_notifier_test_young, 965 .change_pte = kvm_mmu_notifier_change_pte, 966 .release = kvm_mmu_notifier_release, 967 }; 968 969 static int kvm_init_mmu_notifier(struct kvm *kvm) 970 { 971 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 972 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 973 } 974 975 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 976 977 static int kvm_init_mmu_notifier(struct kvm *kvm) 978 { 979 return 0; 980 } 981 982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 983 984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 985 static int kvm_pm_notifier_call(struct notifier_block *bl, 986 unsigned long state, 987 void *unused) 988 { 989 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 990 991 return kvm_arch_pm_notifier(kvm, state); 992 } 993 994 static void kvm_init_pm_notifier(struct kvm *kvm) 995 { 996 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 997 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 998 kvm->pm_notifier.priority = INT_MAX; 999 register_pm_notifier(&kvm->pm_notifier); 1000 } 1001 1002 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1003 { 1004 unregister_pm_notifier(&kvm->pm_notifier); 1005 } 1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 1007 static void kvm_init_pm_notifier(struct kvm *kvm) 1008 { 1009 } 1010 1011 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1012 { 1013 } 1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 1015 1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 1017 { 1018 if (!memslot->dirty_bitmap) 1019 return; 1020 1021 kvfree(memslot->dirty_bitmap); 1022 memslot->dirty_bitmap = NULL; 1023 } 1024 1025 /* This does not remove the slot from struct kvm_memslots data structures */ 1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1027 { 1028 if (slot->flags & KVM_MEM_GUEST_MEMFD) 1029 kvm_gmem_unbind(slot); 1030 1031 kvm_destroy_dirty_bitmap(slot); 1032 1033 kvm_arch_free_memslot(kvm, slot); 1034 1035 kfree(slot); 1036 } 1037 1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 1039 { 1040 struct hlist_node *idnode; 1041 struct kvm_memory_slot *memslot; 1042 int bkt; 1043 1044 /* 1045 * The same memslot objects live in both active and inactive sets, 1046 * arbitrarily free using index '1' so the second invocation of this 1047 * function isn't operating over a structure with dangling pointers 1048 * (even though this function isn't actually touching them). 1049 */ 1050 if (!slots->node_idx) 1051 return; 1052 1053 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1054 kvm_free_memslot(kvm, memslot); 1055 } 1056 1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1058 { 1059 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1060 case KVM_STATS_TYPE_INSTANT: 1061 return 0444; 1062 case KVM_STATS_TYPE_CUMULATIVE: 1063 case KVM_STATS_TYPE_PEAK: 1064 default: 1065 return 0644; 1066 } 1067 } 1068 1069 1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1071 { 1072 int i; 1073 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1074 kvm_vcpu_stats_header.num_desc; 1075 1076 if (IS_ERR(kvm->debugfs_dentry)) 1077 return; 1078 1079 debugfs_remove_recursive(kvm->debugfs_dentry); 1080 1081 if (kvm->debugfs_stat_data) { 1082 for (i = 0; i < kvm_debugfs_num_entries; i++) 1083 kfree(kvm->debugfs_stat_data[i]); 1084 kfree(kvm->debugfs_stat_data); 1085 } 1086 } 1087 1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1089 { 1090 static DEFINE_MUTEX(kvm_debugfs_lock); 1091 struct dentry *dent; 1092 char dir_name[ITOA_MAX_LEN * 2]; 1093 struct kvm_stat_data *stat_data; 1094 const struct _kvm_stats_desc *pdesc; 1095 int i, ret = -ENOMEM; 1096 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1097 kvm_vcpu_stats_header.num_desc; 1098 1099 if (!debugfs_initialized()) 1100 return 0; 1101 1102 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1103 mutex_lock(&kvm_debugfs_lock); 1104 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1105 if (dent) { 1106 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1107 dput(dent); 1108 mutex_unlock(&kvm_debugfs_lock); 1109 return 0; 1110 } 1111 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1112 mutex_unlock(&kvm_debugfs_lock); 1113 if (IS_ERR(dent)) 1114 return 0; 1115 1116 kvm->debugfs_dentry = dent; 1117 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1118 sizeof(*kvm->debugfs_stat_data), 1119 GFP_KERNEL_ACCOUNT); 1120 if (!kvm->debugfs_stat_data) 1121 goto out_err; 1122 1123 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1124 pdesc = &kvm_vm_stats_desc[i]; 1125 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1126 if (!stat_data) 1127 goto out_err; 1128 1129 stat_data->kvm = kvm; 1130 stat_data->desc = pdesc; 1131 stat_data->kind = KVM_STAT_VM; 1132 kvm->debugfs_stat_data[i] = stat_data; 1133 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1134 kvm->debugfs_dentry, stat_data, 1135 &stat_fops_per_vm); 1136 } 1137 1138 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1139 pdesc = &kvm_vcpu_stats_desc[i]; 1140 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1141 if (!stat_data) 1142 goto out_err; 1143 1144 stat_data->kvm = kvm; 1145 stat_data->desc = pdesc; 1146 stat_data->kind = KVM_STAT_VCPU; 1147 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1148 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1149 kvm->debugfs_dentry, stat_data, 1150 &stat_fops_per_vm); 1151 } 1152 1153 kvm_arch_create_vm_debugfs(kvm); 1154 return 0; 1155 out_err: 1156 kvm_destroy_vm_debugfs(kvm); 1157 return ret; 1158 } 1159 1160 /* 1161 * Called after the VM is otherwise initialized, but just before adding it to 1162 * the vm_list. 1163 */ 1164 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1165 { 1166 return 0; 1167 } 1168 1169 /* 1170 * Called just after removing the VM from the vm_list, but before doing any 1171 * other destruction. 1172 */ 1173 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1174 { 1175 } 1176 1177 /* 1178 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1179 * be setup already, so we can create arch-specific debugfs entries under it. 1180 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1181 * a per-arch destroy interface is not needed. 1182 */ 1183 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1184 { 1185 } 1186 1187 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1188 { 1189 struct kvm *kvm = kvm_arch_alloc_vm(); 1190 struct kvm_memslots *slots; 1191 int r = -ENOMEM; 1192 int i, j; 1193 1194 if (!kvm) 1195 return ERR_PTR(-ENOMEM); 1196 1197 KVM_MMU_LOCK_INIT(kvm); 1198 mmgrab(current->mm); 1199 kvm->mm = current->mm; 1200 kvm_eventfd_init(kvm); 1201 mutex_init(&kvm->lock); 1202 mutex_init(&kvm->irq_lock); 1203 mutex_init(&kvm->slots_lock); 1204 mutex_init(&kvm->slots_arch_lock); 1205 spin_lock_init(&kvm->mn_invalidate_lock); 1206 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1207 xa_init(&kvm->vcpu_array); 1208 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1209 xa_init(&kvm->mem_attr_array); 1210 #endif 1211 1212 INIT_LIST_HEAD(&kvm->gpc_list); 1213 spin_lock_init(&kvm->gpc_lock); 1214 1215 INIT_LIST_HEAD(&kvm->devices); 1216 kvm->max_vcpus = KVM_MAX_VCPUS; 1217 1218 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1219 1220 /* 1221 * Force subsequent debugfs file creations to fail if the VM directory 1222 * is not created (by kvm_create_vm_debugfs()). 1223 */ 1224 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1225 1226 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1227 task_pid_nr(current)); 1228 1229 if (init_srcu_struct(&kvm->srcu)) 1230 goto out_err_no_srcu; 1231 if (init_srcu_struct(&kvm->irq_srcu)) 1232 goto out_err_no_irq_srcu; 1233 1234 refcount_set(&kvm->users_count, 1); 1235 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1236 for (j = 0; j < 2; j++) { 1237 slots = &kvm->__memslots[i][j]; 1238 1239 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1240 slots->hva_tree = RB_ROOT_CACHED; 1241 slots->gfn_tree = RB_ROOT; 1242 hash_init(slots->id_hash); 1243 slots->node_idx = j; 1244 1245 /* Generations must be different for each address space. */ 1246 slots->generation = i; 1247 } 1248 1249 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1250 } 1251 1252 for (i = 0; i < KVM_NR_BUSES; i++) { 1253 rcu_assign_pointer(kvm->buses[i], 1254 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1255 if (!kvm->buses[i]) 1256 goto out_err_no_arch_destroy_vm; 1257 } 1258 1259 r = kvm_arch_init_vm(kvm, type); 1260 if (r) 1261 goto out_err_no_arch_destroy_vm; 1262 1263 r = hardware_enable_all(); 1264 if (r) 1265 goto out_err_no_disable; 1266 1267 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1268 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1269 #endif 1270 1271 r = kvm_init_mmu_notifier(kvm); 1272 if (r) 1273 goto out_err_no_mmu_notifier; 1274 1275 r = kvm_coalesced_mmio_init(kvm); 1276 if (r < 0) 1277 goto out_no_coalesced_mmio; 1278 1279 r = kvm_create_vm_debugfs(kvm, fdname); 1280 if (r) 1281 goto out_err_no_debugfs; 1282 1283 r = kvm_arch_post_init_vm(kvm); 1284 if (r) 1285 goto out_err; 1286 1287 mutex_lock(&kvm_lock); 1288 list_add(&kvm->vm_list, &vm_list); 1289 mutex_unlock(&kvm_lock); 1290 1291 preempt_notifier_inc(); 1292 kvm_init_pm_notifier(kvm); 1293 1294 return kvm; 1295 1296 out_err: 1297 kvm_destroy_vm_debugfs(kvm); 1298 out_err_no_debugfs: 1299 kvm_coalesced_mmio_free(kvm); 1300 out_no_coalesced_mmio: 1301 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1302 if (kvm->mmu_notifier.ops) 1303 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1304 #endif 1305 out_err_no_mmu_notifier: 1306 hardware_disable_all(); 1307 out_err_no_disable: 1308 kvm_arch_destroy_vm(kvm); 1309 out_err_no_arch_destroy_vm: 1310 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1311 for (i = 0; i < KVM_NR_BUSES; i++) 1312 kfree(kvm_get_bus(kvm, i)); 1313 cleanup_srcu_struct(&kvm->irq_srcu); 1314 out_err_no_irq_srcu: 1315 cleanup_srcu_struct(&kvm->srcu); 1316 out_err_no_srcu: 1317 kvm_arch_free_vm(kvm); 1318 mmdrop(current->mm); 1319 return ERR_PTR(r); 1320 } 1321 1322 static void kvm_destroy_devices(struct kvm *kvm) 1323 { 1324 struct kvm_device *dev, *tmp; 1325 1326 /* 1327 * We do not need to take the kvm->lock here, because nobody else 1328 * has a reference to the struct kvm at this point and therefore 1329 * cannot access the devices list anyhow. 1330 */ 1331 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1332 list_del(&dev->vm_node); 1333 dev->ops->destroy(dev); 1334 } 1335 } 1336 1337 static void kvm_destroy_vm(struct kvm *kvm) 1338 { 1339 int i; 1340 struct mm_struct *mm = kvm->mm; 1341 1342 kvm_destroy_pm_notifier(kvm); 1343 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1344 kvm_destroy_vm_debugfs(kvm); 1345 kvm_arch_sync_events(kvm); 1346 mutex_lock(&kvm_lock); 1347 list_del(&kvm->vm_list); 1348 mutex_unlock(&kvm_lock); 1349 kvm_arch_pre_destroy_vm(kvm); 1350 1351 kvm_free_irq_routing(kvm); 1352 for (i = 0; i < KVM_NR_BUSES; i++) { 1353 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1354 1355 if (bus) 1356 kvm_io_bus_destroy(bus); 1357 kvm->buses[i] = NULL; 1358 } 1359 kvm_coalesced_mmio_free(kvm); 1360 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1361 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1362 /* 1363 * At this point, pending calls to invalidate_range_start() 1364 * have completed but no more MMU notifiers will run, so 1365 * mn_active_invalidate_count may remain unbalanced. 1366 * No threads can be waiting in kvm_swap_active_memslots() as the 1367 * last reference on KVM has been dropped, but freeing 1368 * memslots would deadlock without this manual intervention. 1369 * 1370 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1371 * notifier between a start() and end(), then there shouldn't be any 1372 * in-progress invalidations. 1373 */ 1374 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1375 if (kvm->mn_active_invalidate_count) 1376 kvm->mn_active_invalidate_count = 0; 1377 else 1378 WARN_ON(kvm->mmu_invalidate_in_progress); 1379 #else 1380 kvm_flush_shadow_all(kvm); 1381 #endif 1382 kvm_arch_destroy_vm(kvm); 1383 kvm_destroy_devices(kvm); 1384 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1385 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1386 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1387 } 1388 cleanup_srcu_struct(&kvm->irq_srcu); 1389 cleanup_srcu_struct(&kvm->srcu); 1390 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1391 xa_destroy(&kvm->mem_attr_array); 1392 #endif 1393 kvm_arch_free_vm(kvm); 1394 preempt_notifier_dec(); 1395 hardware_disable_all(); 1396 mmdrop(mm); 1397 } 1398 1399 void kvm_get_kvm(struct kvm *kvm) 1400 { 1401 refcount_inc(&kvm->users_count); 1402 } 1403 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1404 1405 /* 1406 * Make sure the vm is not during destruction, which is a safe version of 1407 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1408 */ 1409 bool kvm_get_kvm_safe(struct kvm *kvm) 1410 { 1411 return refcount_inc_not_zero(&kvm->users_count); 1412 } 1413 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1414 1415 void kvm_put_kvm(struct kvm *kvm) 1416 { 1417 if (refcount_dec_and_test(&kvm->users_count)) 1418 kvm_destroy_vm(kvm); 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1421 1422 /* 1423 * Used to put a reference that was taken on behalf of an object associated 1424 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1425 * of the new file descriptor fails and the reference cannot be transferred to 1426 * its final owner. In such cases, the caller is still actively using @kvm and 1427 * will fail miserably if the refcount unexpectedly hits zero. 1428 */ 1429 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1430 { 1431 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1432 } 1433 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1434 1435 static int kvm_vm_release(struct inode *inode, struct file *filp) 1436 { 1437 struct kvm *kvm = filp->private_data; 1438 1439 kvm_irqfd_release(kvm); 1440 1441 kvm_put_kvm(kvm); 1442 return 0; 1443 } 1444 1445 /* 1446 * Allocation size is twice as large as the actual dirty bitmap size. 1447 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1448 */ 1449 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1450 { 1451 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1452 1453 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1454 if (!memslot->dirty_bitmap) 1455 return -ENOMEM; 1456 1457 return 0; 1458 } 1459 1460 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1461 { 1462 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1463 int node_idx_inactive = active->node_idx ^ 1; 1464 1465 return &kvm->__memslots[as_id][node_idx_inactive]; 1466 } 1467 1468 /* 1469 * Helper to get the address space ID when one of memslot pointers may be NULL. 1470 * This also serves as a sanity that at least one of the pointers is non-NULL, 1471 * and that their address space IDs don't diverge. 1472 */ 1473 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1474 struct kvm_memory_slot *b) 1475 { 1476 if (WARN_ON_ONCE(!a && !b)) 1477 return 0; 1478 1479 if (!a) 1480 return b->as_id; 1481 if (!b) 1482 return a->as_id; 1483 1484 WARN_ON_ONCE(a->as_id != b->as_id); 1485 return a->as_id; 1486 } 1487 1488 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1489 struct kvm_memory_slot *slot) 1490 { 1491 struct rb_root *gfn_tree = &slots->gfn_tree; 1492 struct rb_node **node, *parent; 1493 int idx = slots->node_idx; 1494 1495 parent = NULL; 1496 for (node = &gfn_tree->rb_node; *node; ) { 1497 struct kvm_memory_slot *tmp; 1498 1499 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1500 parent = *node; 1501 if (slot->base_gfn < tmp->base_gfn) 1502 node = &(*node)->rb_left; 1503 else if (slot->base_gfn > tmp->base_gfn) 1504 node = &(*node)->rb_right; 1505 else 1506 BUG(); 1507 } 1508 1509 rb_link_node(&slot->gfn_node[idx], parent, node); 1510 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1511 } 1512 1513 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1514 struct kvm_memory_slot *slot) 1515 { 1516 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1517 } 1518 1519 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1520 struct kvm_memory_slot *old, 1521 struct kvm_memory_slot *new) 1522 { 1523 int idx = slots->node_idx; 1524 1525 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1526 1527 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1528 &slots->gfn_tree); 1529 } 1530 1531 /* 1532 * Replace @old with @new in the inactive memslots. 1533 * 1534 * With NULL @old this simply adds @new. 1535 * With NULL @new this simply removes @old. 1536 * 1537 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1538 * appropriately. 1539 */ 1540 static void kvm_replace_memslot(struct kvm *kvm, 1541 struct kvm_memory_slot *old, 1542 struct kvm_memory_slot *new) 1543 { 1544 int as_id = kvm_memslots_get_as_id(old, new); 1545 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1546 int idx = slots->node_idx; 1547 1548 if (old) { 1549 hash_del(&old->id_node[idx]); 1550 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1551 1552 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1553 atomic_long_set(&slots->last_used_slot, (long)new); 1554 1555 if (!new) { 1556 kvm_erase_gfn_node(slots, old); 1557 return; 1558 } 1559 } 1560 1561 /* 1562 * Initialize @new's hva range. Do this even when replacing an @old 1563 * slot, kvm_copy_memslot() deliberately does not touch node data. 1564 */ 1565 new->hva_node[idx].start = new->userspace_addr; 1566 new->hva_node[idx].last = new->userspace_addr + 1567 (new->npages << PAGE_SHIFT) - 1; 1568 1569 /* 1570 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1571 * hva_node needs to be swapped with remove+insert even though hva can't 1572 * change when replacing an existing slot. 1573 */ 1574 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1575 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1576 1577 /* 1578 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1579 * switch the node in the gfn tree instead of removing the old and 1580 * inserting the new as two separate operations. Replacement is a 1581 * single O(1) operation versus two O(log(n)) operations for 1582 * remove+insert. 1583 */ 1584 if (old && old->base_gfn == new->base_gfn) { 1585 kvm_replace_gfn_node(slots, old, new); 1586 } else { 1587 if (old) 1588 kvm_erase_gfn_node(slots, old); 1589 kvm_insert_gfn_node(slots, new); 1590 } 1591 } 1592 1593 /* 1594 * Flags that do not access any of the extra space of struct 1595 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1596 * only allows these. 1597 */ 1598 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1599 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1600 1601 static int check_memory_region_flags(struct kvm *kvm, 1602 const struct kvm_userspace_memory_region2 *mem) 1603 { 1604 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1605 1606 if (kvm_arch_has_private_mem(kvm)) 1607 valid_flags |= KVM_MEM_GUEST_MEMFD; 1608 1609 /* Dirty logging private memory is not currently supported. */ 1610 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1611 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1612 1613 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1614 /* 1615 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1616 * read-only memslots have emulated MMIO, not page fault, semantics, 1617 * and KVM doesn't allow emulated MMIO for private memory. 1618 */ 1619 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1620 valid_flags |= KVM_MEM_READONLY; 1621 #endif 1622 1623 if (mem->flags & ~valid_flags) 1624 return -EINVAL; 1625 1626 return 0; 1627 } 1628 1629 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1630 { 1631 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1632 1633 /* Grab the generation from the activate memslots. */ 1634 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1635 1636 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1637 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1638 1639 /* 1640 * Do not store the new memslots while there are invalidations in 1641 * progress, otherwise the locking in invalidate_range_start and 1642 * invalidate_range_end will be unbalanced. 1643 */ 1644 spin_lock(&kvm->mn_invalidate_lock); 1645 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1646 while (kvm->mn_active_invalidate_count) { 1647 set_current_state(TASK_UNINTERRUPTIBLE); 1648 spin_unlock(&kvm->mn_invalidate_lock); 1649 schedule(); 1650 spin_lock(&kvm->mn_invalidate_lock); 1651 } 1652 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1653 rcu_assign_pointer(kvm->memslots[as_id], slots); 1654 spin_unlock(&kvm->mn_invalidate_lock); 1655 1656 /* 1657 * Acquired in kvm_set_memslot. Must be released before synchronize 1658 * SRCU below in order to avoid deadlock with another thread 1659 * acquiring the slots_arch_lock in an srcu critical section. 1660 */ 1661 mutex_unlock(&kvm->slots_arch_lock); 1662 1663 synchronize_srcu_expedited(&kvm->srcu); 1664 1665 /* 1666 * Increment the new memslot generation a second time, dropping the 1667 * update in-progress flag and incrementing the generation based on 1668 * the number of address spaces. This provides a unique and easily 1669 * identifiable generation number while the memslots are in flux. 1670 */ 1671 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1672 1673 /* 1674 * Generations must be unique even across address spaces. We do not need 1675 * a global counter for that, instead the generation space is evenly split 1676 * across address spaces. For example, with two address spaces, address 1677 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1678 * use generations 1, 3, 5, ... 1679 */ 1680 gen += kvm_arch_nr_memslot_as_ids(kvm); 1681 1682 kvm_arch_memslots_updated(kvm, gen); 1683 1684 slots->generation = gen; 1685 } 1686 1687 static int kvm_prepare_memory_region(struct kvm *kvm, 1688 const struct kvm_memory_slot *old, 1689 struct kvm_memory_slot *new, 1690 enum kvm_mr_change change) 1691 { 1692 int r; 1693 1694 /* 1695 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1696 * will be freed on "commit". If logging is enabled in both old and 1697 * new, reuse the existing bitmap. If logging is enabled only in the 1698 * new and KVM isn't using a ring buffer, allocate and initialize a 1699 * new bitmap. 1700 */ 1701 if (change != KVM_MR_DELETE) { 1702 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1703 new->dirty_bitmap = NULL; 1704 else if (old && old->dirty_bitmap) 1705 new->dirty_bitmap = old->dirty_bitmap; 1706 else if (kvm_use_dirty_bitmap(kvm)) { 1707 r = kvm_alloc_dirty_bitmap(new); 1708 if (r) 1709 return r; 1710 1711 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1712 bitmap_set(new->dirty_bitmap, 0, new->npages); 1713 } 1714 } 1715 1716 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1717 1718 /* Free the bitmap on failure if it was allocated above. */ 1719 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1720 kvm_destroy_dirty_bitmap(new); 1721 1722 return r; 1723 } 1724 1725 static void kvm_commit_memory_region(struct kvm *kvm, 1726 struct kvm_memory_slot *old, 1727 const struct kvm_memory_slot *new, 1728 enum kvm_mr_change change) 1729 { 1730 int old_flags = old ? old->flags : 0; 1731 int new_flags = new ? new->flags : 0; 1732 /* 1733 * Update the total number of memslot pages before calling the arch 1734 * hook so that architectures can consume the result directly. 1735 */ 1736 if (change == KVM_MR_DELETE) 1737 kvm->nr_memslot_pages -= old->npages; 1738 else if (change == KVM_MR_CREATE) 1739 kvm->nr_memslot_pages += new->npages; 1740 1741 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1742 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1743 atomic_set(&kvm->nr_memslots_dirty_logging, 1744 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1745 } 1746 1747 kvm_arch_commit_memory_region(kvm, old, new, change); 1748 1749 switch (change) { 1750 case KVM_MR_CREATE: 1751 /* Nothing more to do. */ 1752 break; 1753 case KVM_MR_DELETE: 1754 /* Free the old memslot and all its metadata. */ 1755 kvm_free_memslot(kvm, old); 1756 break; 1757 case KVM_MR_MOVE: 1758 case KVM_MR_FLAGS_ONLY: 1759 /* 1760 * Free the dirty bitmap as needed; the below check encompasses 1761 * both the flags and whether a ring buffer is being used) 1762 */ 1763 if (old->dirty_bitmap && !new->dirty_bitmap) 1764 kvm_destroy_dirty_bitmap(old); 1765 1766 /* 1767 * The final quirk. Free the detached, old slot, but only its 1768 * memory, not any metadata. Metadata, including arch specific 1769 * data, may be reused by @new. 1770 */ 1771 kfree(old); 1772 break; 1773 default: 1774 BUG(); 1775 } 1776 } 1777 1778 /* 1779 * Activate @new, which must be installed in the inactive slots by the caller, 1780 * by swapping the active slots and then propagating @new to @old once @old is 1781 * unreachable and can be safely modified. 1782 * 1783 * With NULL @old this simply adds @new to @active (while swapping the sets). 1784 * With NULL @new this simply removes @old from @active and frees it 1785 * (while also swapping the sets). 1786 */ 1787 static void kvm_activate_memslot(struct kvm *kvm, 1788 struct kvm_memory_slot *old, 1789 struct kvm_memory_slot *new) 1790 { 1791 int as_id = kvm_memslots_get_as_id(old, new); 1792 1793 kvm_swap_active_memslots(kvm, as_id); 1794 1795 /* Propagate the new memslot to the now inactive memslots. */ 1796 kvm_replace_memslot(kvm, old, new); 1797 } 1798 1799 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1800 const struct kvm_memory_slot *src) 1801 { 1802 dest->base_gfn = src->base_gfn; 1803 dest->npages = src->npages; 1804 dest->dirty_bitmap = src->dirty_bitmap; 1805 dest->arch = src->arch; 1806 dest->userspace_addr = src->userspace_addr; 1807 dest->flags = src->flags; 1808 dest->id = src->id; 1809 dest->as_id = src->as_id; 1810 } 1811 1812 static void kvm_invalidate_memslot(struct kvm *kvm, 1813 struct kvm_memory_slot *old, 1814 struct kvm_memory_slot *invalid_slot) 1815 { 1816 /* 1817 * Mark the current slot INVALID. As with all memslot modifications, 1818 * this must be done on an unreachable slot to avoid modifying the 1819 * current slot in the active tree. 1820 */ 1821 kvm_copy_memslot(invalid_slot, old); 1822 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1823 kvm_replace_memslot(kvm, old, invalid_slot); 1824 1825 /* 1826 * Activate the slot that is now marked INVALID, but don't propagate 1827 * the slot to the now inactive slots. The slot is either going to be 1828 * deleted or recreated as a new slot. 1829 */ 1830 kvm_swap_active_memslots(kvm, old->as_id); 1831 1832 /* 1833 * From this point no new shadow pages pointing to a deleted, or moved, 1834 * memslot will be created. Validation of sp->gfn happens in: 1835 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1836 * - kvm_is_visible_gfn (mmu_check_root) 1837 */ 1838 kvm_arch_flush_shadow_memslot(kvm, old); 1839 kvm_arch_guest_memory_reclaimed(kvm); 1840 1841 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1842 mutex_lock(&kvm->slots_arch_lock); 1843 1844 /* 1845 * Copy the arch-specific field of the newly-installed slot back to the 1846 * old slot as the arch data could have changed between releasing 1847 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1848 * above. Writers are required to retrieve memslots *after* acquiring 1849 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1850 */ 1851 old->arch = invalid_slot->arch; 1852 } 1853 1854 static void kvm_create_memslot(struct kvm *kvm, 1855 struct kvm_memory_slot *new) 1856 { 1857 /* Add the new memslot to the inactive set and activate. */ 1858 kvm_replace_memslot(kvm, NULL, new); 1859 kvm_activate_memslot(kvm, NULL, new); 1860 } 1861 1862 static void kvm_delete_memslot(struct kvm *kvm, 1863 struct kvm_memory_slot *old, 1864 struct kvm_memory_slot *invalid_slot) 1865 { 1866 /* 1867 * Remove the old memslot (in the inactive memslots) by passing NULL as 1868 * the "new" slot, and for the invalid version in the active slots. 1869 */ 1870 kvm_replace_memslot(kvm, old, NULL); 1871 kvm_activate_memslot(kvm, invalid_slot, NULL); 1872 } 1873 1874 static void kvm_move_memslot(struct kvm *kvm, 1875 struct kvm_memory_slot *old, 1876 struct kvm_memory_slot *new, 1877 struct kvm_memory_slot *invalid_slot) 1878 { 1879 /* 1880 * Replace the old memslot in the inactive slots, and then swap slots 1881 * and replace the current INVALID with the new as well. 1882 */ 1883 kvm_replace_memslot(kvm, old, new); 1884 kvm_activate_memslot(kvm, invalid_slot, new); 1885 } 1886 1887 static void kvm_update_flags_memslot(struct kvm *kvm, 1888 struct kvm_memory_slot *old, 1889 struct kvm_memory_slot *new) 1890 { 1891 /* 1892 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1893 * an intermediate step. Instead, the old memslot is simply replaced 1894 * with a new, updated copy in both memslot sets. 1895 */ 1896 kvm_replace_memslot(kvm, old, new); 1897 kvm_activate_memslot(kvm, old, new); 1898 } 1899 1900 static int kvm_set_memslot(struct kvm *kvm, 1901 struct kvm_memory_slot *old, 1902 struct kvm_memory_slot *new, 1903 enum kvm_mr_change change) 1904 { 1905 struct kvm_memory_slot *invalid_slot; 1906 int r; 1907 1908 /* 1909 * Released in kvm_swap_active_memslots(). 1910 * 1911 * Must be held from before the current memslots are copied until after 1912 * the new memslots are installed with rcu_assign_pointer, then 1913 * released before the synchronize srcu in kvm_swap_active_memslots(). 1914 * 1915 * When modifying memslots outside of the slots_lock, must be held 1916 * before reading the pointer to the current memslots until after all 1917 * changes to those memslots are complete. 1918 * 1919 * These rules ensure that installing new memslots does not lose 1920 * changes made to the previous memslots. 1921 */ 1922 mutex_lock(&kvm->slots_arch_lock); 1923 1924 /* 1925 * Invalidate the old slot if it's being deleted or moved. This is 1926 * done prior to actually deleting/moving the memslot to allow vCPUs to 1927 * continue running by ensuring there are no mappings or shadow pages 1928 * for the memslot when it is deleted/moved. Without pre-invalidation 1929 * (and without a lock), a window would exist between effecting the 1930 * delete/move and committing the changes in arch code where KVM or a 1931 * guest could access a non-existent memslot. 1932 * 1933 * Modifications are done on a temporary, unreachable slot. The old 1934 * slot needs to be preserved in case a later step fails and the 1935 * invalidation needs to be reverted. 1936 */ 1937 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1938 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1939 if (!invalid_slot) { 1940 mutex_unlock(&kvm->slots_arch_lock); 1941 return -ENOMEM; 1942 } 1943 kvm_invalidate_memslot(kvm, old, invalid_slot); 1944 } 1945 1946 r = kvm_prepare_memory_region(kvm, old, new, change); 1947 if (r) { 1948 /* 1949 * For DELETE/MOVE, revert the above INVALID change. No 1950 * modifications required since the original slot was preserved 1951 * in the inactive slots. Changing the active memslots also 1952 * release slots_arch_lock. 1953 */ 1954 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1955 kvm_activate_memslot(kvm, invalid_slot, old); 1956 kfree(invalid_slot); 1957 } else { 1958 mutex_unlock(&kvm->slots_arch_lock); 1959 } 1960 return r; 1961 } 1962 1963 /* 1964 * For DELETE and MOVE, the working slot is now active as the INVALID 1965 * version of the old slot. MOVE is particularly special as it reuses 1966 * the old slot and returns a copy of the old slot (in working_slot). 1967 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1968 * old slot is detached but otherwise preserved. 1969 */ 1970 if (change == KVM_MR_CREATE) 1971 kvm_create_memslot(kvm, new); 1972 else if (change == KVM_MR_DELETE) 1973 kvm_delete_memslot(kvm, old, invalid_slot); 1974 else if (change == KVM_MR_MOVE) 1975 kvm_move_memslot(kvm, old, new, invalid_slot); 1976 else if (change == KVM_MR_FLAGS_ONLY) 1977 kvm_update_flags_memslot(kvm, old, new); 1978 else 1979 BUG(); 1980 1981 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1982 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1983 kfree(invalid_slot); 1984 1985 /* 1986 * No need to refresh new->arch, changes after dropping slots_arch_lock 1987 * will directly hit the final, active memslot. Architectures are 1988 * responsible for knowing that new->arch may be stale. 1989 */ 1990 kvm_commit_memory_region(kvm, old, new, change); 1991 1992 return 0; 1993 } 1994 1995 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1996 gfn_t start, gfn_t end) 1997 { 1998 struct kvm_memslot_iter iter; 1999 2000 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 2001 if (iter.slot->id != id) 2002 return true; 2003 } 2004 2005 return false; 2006 } 2007 2008 /* 2009 * Allocate some memory and give it an address in the guest physical address 2010 * space. 2011 * 2012 * Discontiguous memory is allowed, mostly for framebuffers. 2013 * 2014 * Must be called holding kvm->slots_lock for write. 2015 */ 2016 int __kvm_set_memory_region(struct kvm *kvm, 2017 const struct kvm_userspace_memory_region2 *mem) 2018 { 2019 struct kvm_memory_slot *old, *new; 2020 struct kvm_memslots *slots; 2021 enum kvm_mr_change change; 2022 unsigned long npages; 2023 gfn_t base_gfn; 2024 int as_id, id; 2025 int r; 2026 2027 r = check_memory_region_flags(kvm, mem); 2028 if (r) 2029 return r; 2030 2031 as_id = mem->slot >> 16; 2032 id = (u16)mem->slot; 2033 2034 /* General sanity checks */ 2035 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2036 (mem->memory_size != (unsigned long)mem->memory_size)) 2037 return -EINVAL; 2038 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2039 return -EINVAL; 2040 /* We can read the guest memory with __xxx_user() later on. */ 2041 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2042 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2043 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2044 mem->memory_size)) 2045 return -EINVAL; 2046 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2047 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2048 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2049 return -EINVAL; 2050 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2051 return -EINVAL; 2052 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2053 return -EINVAL; 2054 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2055 return -EINVAL; 2056 2057 slots = __kvm_memslots(kvm, as_id); 2058 2059 /* 2060 * Note, the old memslot (and the pointer itself!) may be invalidated 2061 * and/or destroyed by kvm_set_memslot(). 2062 */ 2063 old = id_to_memslot(slots, id); 2064 2065 if (!mem->memory_size) { 2066 if (!old || !old->npages) 2067 return -EINVAL; 2068 2069 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2070 return -EIO; 2071 2072 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2073 } 2074 2075 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2076 npages = (mem->memory_size >> PAGE_SHIFT); 2077 2078 if (!old || !old->npages) { 2079 change = KVM_MR_CREATE; 2080 2081 /* 2082 * To simplify KVM internals, the total number of pages across 2083 * all memslots must fit in an unsigned long. 2084 */ 2085 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2086 return -EINVAL; 2087 } else { /* Modify an existing slot. */ 2088 /* Private memslots are immutable, they can only be deleted. */ 2089 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2090 return -EINVAL; 2091 if ((mem->userspace_addr != old->userspace_addr) || 2092 (npages != old->npages) || 2093 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2094 return -EINVAL; 2095 2096 if (base_gfn != old->base_gfn) 2097 change = KVM_MR_MOVE; 2098 else if (mem->flags != old->flags) 2099 change = KVM_MR_FLAGS_ONLY; 2100 else /* Nothing to change. */ 2101 return 0; 2102 } 2103 2104 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2105 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2106 return -EEXIST; 2107 2108 /* Allocate a slot that will persist in the memslot. */ 2109 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2110 if (!new) 2111 return -ENOMEM; 2112 2113 new->as_id = as_id; 2114 new->id = id; 2115 new->base_gfn = base_gfn; 2116 new->npages = npages; 2117 new->flags = mem->flags; 2118 new->userspace_addr = mem->userspace_addr; 2119 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2120 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2121 if (r) 2122 goto out; 2123 } 2124 2125 r = kvm_set_memslot(kvm, old, new, change); 2126 if (r) 2127 goto out_unbind; 2128 2129 return 0; 2130 2131 out_unbind: 2132 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2133 kvm_gmem_unbind(new); 2134 out: 2135 kfree(new); 2136 return r; 2137 } 2138 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2139 2140 int kvm_set_memory_region(struct kvm *kvm, 2141 const struct kvm_userspace_memory_region2 *mem) 2142 { 2143 int r; 2144 2145 mutex_lock(&kvm->slots_lock); 2146 r = __kvm_set_memory_region(kvm, mem); 2147 mutex_unlock(&kvm->slots_lock); 2148 return r; 2149 } 2150 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2151 2152 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2153 struct kvm_userspace_memory_region2 *mem) 2154 { 2155 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2156 return -EINVAL; 2157 2158 return kvm_set_memory_region(kvm, mem); 2159 } 2160 2161 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2162 /** 2163 * kvm_get_dirty_log - get a snapshot of dirty pages 2164 * @kvm: pointer to kvm instance 2165 * @log: slot id and address to which we copy the log 2166 * @is_dirty: set to '1' if any dirty pages were found 2167 * @memslot: set to the associated memslot, always valid on success 2168 */ 2169 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2170 int *is_dirty, struct kvm_memory_slot **memslot) 2171 { 2172 struct kvm_memslots *slots; 2173 int i, as_id, id; 2174 unsigned long n; 2175 unsigned long any = 0; 2176 2177 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2178 if (!kvm_use_dirty_bitmap(kvm)) 2179 return -ENXIO; 2180 2181 *memslot = NULL; 2182 *is_dirty = 0; 2183 2184 as_id = log->slot >> 16; 2185 id = (u16)log->slot; 2186 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2187 return -EINVAL; 2188 2189 slots = __kvm_memslots(kvm, as_id); 2190 *memslot = id_to_memslot(slots, id); 2191 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2192 return -ENOENT; 2193 2194 kvm_arch_sync_dirty_log(kvm, *memslot); 2195 2196 n = kvm_dirty_bitmap_bytes(*memslot); 2197 2198 for (i = 0; !any && i < n/sizeof(long); ++i) 2199 any = (*memslot)->dirty_bitmap[i]; 2200 2201 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2202 return -EFAULT; 2203 2204 if (any) 2205 *is_dirty = 1; 2206 return 0; 2207 } 2208 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2209 2210 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2211 /** 2212 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2213 * and reenable dirty page tracking for the corresponding pages. 2214 * @kvm: pointer to kvm instance 2215 * @log: slot id and address to which we copy the log 2216 * 2217 * We need to keep it in mind that VCPU threads can write to the bitmap 2218 * concurrently. So, to avoid losing track of dirty pages we keep the 2219 * following order: 2220 * 2221 * 1. Take a snapshot of the bit and clear it if needed. 2222 * 2. Write protect the corresponding page. 2223 * 3. Copy the snapshot to the userspace. 2224 * 4. Upon return caller flushes TLB's if needed. 2225 * 2226 * Between 2 and 4, the guest may write to the page using the remaining TLB 2227 * entry. This is not a problem because the page is reported dirty using 2228 * the snapshot taken before and step 4 ensures that writes done after 2229 * exiting to userspace will be logged for the next call. 2230 * 2231 */ 2232 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2233 { 2234 struct kvm_memslots *slots; 2235 struct kvm_memory_slot *memslot; 2236 int i, as_id, id; 2237 unsigned long n; 2238 unsigned long *dirty_bitmap; 2239 unsigned long *dirty_bitmap_buffer; 2240 bool flush; 2241 2242 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2243 if (!kvm_use_dirty_bitmap(kvm)) 2244 return -ENXIO; 2245 2246 as_id = log->slot >> 16; 2247 id = (u16)log->slot; 2248 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2249 return -EINVAL; 2250 2251 slots = __kvm_memslots(kvm, as_id); 2252 memslot = id_to_memslot(slots, id); 2253 if (!memslot || !memslot->dirty_bitmap) 2254 return -ENOENT; 2255 2256 dirty_bitmap = memslot->dirty_bitmap; 2257 2258 kvm_arch_sync_dirty_log(kvm, memslot); 2259 2260 n = kvm_dirty_bitmap_bytes(memslot); 2261 flush = false; 2262 if (kvm->manual_dirty_log_protect) { 2263 /* 2264 * Unlike kvm_get_dirty_log, we always return false in *flush, 2265 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2266 * is some code duplication between this function and 2267 * kvm_get_dirty_log, but hopefully all architecture 2268 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2269 * can be eliminated. 2270 */ 2271 dirty_bitmap_buffer = dirty_bitmap; 2272 } else { 2273 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2274 memset(dirty_bitmap_buffer, 0, n); 2275 2276 KVM_MMU_LOCK(kvm); 2277 for (i = 0; i < n / sizeof(long); i++) { 2278 unsigned long mask; 2279 gfn_t offset; 2280 2281 if (!dirty_bitmap[i]) 2282 continue; 2283 2284 flush = true; 2285 mask = xchg(&dirty_bitmap[i], 0); 2286 dirty_bitmap_buffer[i] = mask; 2287 2288 offset = i * BITS_PER_LONG; 2289 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2290 offset, mask); 2291 } 2292 KVM_MMU_UNLOCK(kvm); 2293 } 2294 2295 if (flush) 2296 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2297 2298 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2299 return -EFAULT; 2300 return 0; 2301 } 2302 2303 2304 /** 2305 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2306 * @kvm: kvm instance 2307 * @log: slot id and address to which we copy the log 2308 * 2309 * Steps 1-4 below provide general overview of dirty page logging. See 2310 * kvm_get_dirty_log_protect() function description for additional details. 2311 * 2312 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2313 * always flush the TLB (step 4) even if previous step failed and the dirty 2314 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2315 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2316 * writes will be marked dirty for next log read. 2317 * 2318 * 1. Take a snapshot of the bit and clear it if needed. 2319 * 2. Write protect the corresponding page. 2320 * 3. Copy the snapshot to the userspace. 2321 * 4. Flush TLB's if needed. 2322 */ 2323 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2324 struct kvm_dirty_log *log) 2325 { 2326 int r; 2327 2328 mutex_lock(&kvm->slots_lock); 2329 2330 r = kvm_get_dirty_log_protect(kvm, log); 2331 2332 mutex_unlock(&kvm->slots_lock); 2333 return r; 2334 } 2335 2336 /** 2337 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2338 * and reenable dirty page tracking for the corresponding pages. 2339 * @kvm: pointer to kvm instance 2340 * @log: slot id and address from which to fetch the bitmap of dirty pages 2341 */ 2342 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2343 struct kvm_clear_dirty_log *log) 2344 { 2345 struct kvm_memslots *slots; 2346 struct kvm_memory_slot *memslot; 2347 int as_id, id; 2348 gfn_t offset; 2349 unsigned long i, n; 2350 unsigned long *dirty_bitmap; 2351 unsigned long *dirty_bitmap_buffer; 2352 bool flush; 2353 2354 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2355 if (!kvm_use_dirty_bitmap(kvm)) 2356 return -ENXIO; 2357 2358 as_id = log->slot >> 16; 2359 id = (u16)log->slot; 2360 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2361 return -EINVAL; 2362 2363 if (log->first_page & 63) 2364 return -EINVAL; 2365 2366 slots = __kvm_memslots(kvm, as_id); 2367 memslot = id_to_memslot(slots, id); 2368 if (!memslot || !memslot->dirty_bitmap) 2369 return -ENOENT; 2370 2371 dirty_bitmap = memslot->dirty_bitmap; 2372 2373 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2374 2375 if (log->first_page > memslot->npages || 2376 log->num_pages > memslot->npages - log->first_page || 2377 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2378 return -EINVAL; 2379 2380 kvm_arch_sync_dirty_log(kvm, memslot); 2381 2382 flush = false; 2383 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2384 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2385 return -EFAULT; 2386 2387 KVM_MMU_LOCK(kvm); 2388 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2389 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2390 i++, offset += BITS_PER_LONG) { 2391 unsigned long mask = *dirty_bitmap_buffer++; 2392 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2393 if (!mask) 2394 continue; 2395 2396 mask &= atomic_long_fetch_andnot(mask, p); 2397 2398 /* 2399 * mask contains the bits that really have been cleared. This 2400 * never includes any bits beyond the length of the memslot (if 2401 * the length is not aligned to 64 pages), therefore it is not 2402 * a problem if userspace sets them in log->dirty_bitmap. 2403 */ 2404 if (mask) { 2405 flush = true; 2406 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2407 offset, mask); 2408 } 2409 } 2410 KVM_MMU_UNLOCK(kvm); 2411 2412 if (flush) 2413 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2414 2415 return 0; 2416 } 2417 2418 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2419 struct kvm_clear_dirty_log *log) 2420 { 2421 int r; 2422 2423 mutex_lock(&kvm->slots_lock); 2424 2425 r = kvm_clear_dirty_log_protect(kvm, log); 2426 2427 mutex_unlock(&kvm->slots_lock); 2428 return r; 2429 } 2430 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2431 2432 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2433 /* 2434 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2435 * matching @attrs. 2436 */ 2437 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2438 unsigned long attrs) 2439 { 2440 XA_STATE(xas, &kvm->mem_attr_array, start); 2441 unsigned long index; 2442 bool has_attrs; 2443 void *entry; 2444 2445 rcu_read_lock(); 2446 2447 if (!attrs) { 2448 has_attrs = !xas_find(&xas, end - 1); 2449 goto out; 2450 } 2451 2452 has_attrs = true; 2453 for (index = start; index < end; index++) { 2454 do { 2455 entry = xas_next(&xas); 2456 } while (xas_retry(&xas, entry)); 2457 2458 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2459 has_attrs = false; 2460 break; 2461 } 2462 } 2463 2464 out: 2465 rcu_read_unlock(); 2466 return has_attrs; 2467 } 2468 2469 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2470 { 2471 if (!kvm || kvm_arch_has_private_mem(kvm)) 2472 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2473 2474 return 0; 2475 } 2476 2477 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2478 struct kvm_mmu_notifier_range *range) 2479 { 2480 struct kvm_gfn_range gfn_range; 2481 struct kvm_memory_slot *slot; 2482 struct kvm_memslots *slots; 2483 struct kvm_memslot_iter iter; 2484 bool found_memslot = false; 2485 bool ret = false; 2486 int i; 2487 2488 gfn_range.arg = range->arg; 2489 gfn_range.may_block = range->may_block; 2490 2491 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2492 slots = __kvm_memslots(kvm, i); 2493 2494 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2495 slot = iter.slot; 2496 gfn_range.slot = slot; 2497 2498 gfn_range.start = max(range->start, slot->base_gfn); 2499 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2500 if (gfn_range.start >= gfn_range.end) 2501 continue; 2502 2503 if (!found_memslot) { 2504 found_memslot = true; 2505 KVM_MMU_LOCK(kvm); 2506 if (!IS_KVM_NULL_FN(range->on_lock)) 2507 range->on_lock(kvm); 2508 } 2509 2510 ret |= range->handler(kvm, &gfn_range); 2511 } 2512 } 2513 2514 if (range->flush_on_ret && ret) 2515 kvm_flush_remote_tlbs(kvm); 2516 2517 if (found_memslot) 2518 KVM_MMU_UNLOCK(kvm); 2519 } 2520 2521 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2522 struct kvm_gfn_range *range) 2523 { 2524 /* 2525 * Unconditionally add the range to the invalidation set, regardless of 2526 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2527 * if KVM supports RWX attributes in the future and the attributes are 2528 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2529 * adding the range allows KVM to require that MMU invalidations add at 2530 * least one range between begin() and end(), e.g. allows KVM to detect 2531 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2532 * but it's not obvious that allowing new mappings while the attributes 2533 * are in flux is desirable or worth the complexity. 2534 */ 2535 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2536 2537 return kvm_arch_pre_set_memory_attributes(kvm, range); 2538 } 2539 2540 /* Set @attributes for the gfn range [@start, @end). */ 2541 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2542 unsigned long attributes) 2543 { 2544 struct kvm_mmu_notifier_range pre_set_range = { 2545 .start = start, 2546 .end = end, 2547 .handler = kvm_pre_set_memory_attributes, 2548 .on_lock = kvm_mmu_invalidate_begin, 2549 .flush_on_ret = true, 2550 .may_block = true, 2551 }; 2552 struct kvm_mmu_notifier_range post_set_range = { 2553 .start = start, 2554 .end = end, 2555 .arg.attributes = attributes, 2556 .handler = kvm_arch_post_set_memory_attributes, 2557 .on_lock = kvm_mmu_invalidate_end, 2558 .may_block = true, 2559 }; 2560 unsigned long i; 2561 void *entry; 2562 int r = 0; 2563 2564 entry = attributes ? xa_mk_value(attributes) : NULL; 2565 2566 mutex_lock(&kvm->slots_lock); 2567 2568 /* Nothing to do if the entire range as the desired attributes. */ 2569 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2570 goto out_unlock; 2571 2572 /* 2573 * Reserve memory ahead of time to avoid having to deal with failures 2574 * partway through setting the new attributes. 2575 */ 2576 for (i = start; i < end; i++) { 2577 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2578 if (r) 2579 goto out_unlock; 2580 } 2581 2582 kvm_handle_gfn_range(kvm, &pre_set_range); 2583 2584 for (i = start; i < end; i++) { 2585 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2586 GFP_KERNEL_ACCOUNT)); 2587 KVM_BUG_ON(r, kvm); 2588 } 2589 2590 kvm_handle_gfn_range(kvm, &post_set_range); 2591 2592 out_unlock: 2593 mutex_unlock(&kvm->slots_lock); 2594 2595 return r; 2596 } 2597 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2598 struct kvm_memory_attributes *attrs) 2599 { 2600 gfn_t start, end; 2601 2602 /* flags is currently not used. */ 2603 if (attrs->flags) 2604 return -EINVAL; 2605 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2606 return -EINVAL; 2607 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2608 return -EINVAL; 2609 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2610 return -EINVAL; 2611 2612 start = attrs->address >> PAGE_SHIFT; 2613 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2614 2615 /* 2616 * xarray tracks data using "unsigned long", and as a result so does 2617 * KVM. For simplicity, supports generic attributes only on 64-bit 2618 * architectures. 2619 */ 2620 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2621 2622 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2623 } 2624 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2625 2626 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2627 { 2628 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2629 } 2630 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2631 2632 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2633 { 2634 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2635 u64 gen = slots->generation; 2636 struct kvm_memory_slot *slot; 2637 2638 /* 2639 * This also protects against using a memslot from a different address space, 2640 * since different address spaces have different generation numbers. 2641 */ 2642 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2643 vcpu->last_used_slot = NULL; 2644 vcpu->last_used_slot_gen = gen; 2645 } 2646 2647 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2648 if (slot) 2649 return slot; 2650 2651 /* 2652 * Fall back to searching all memslots. We purposely use 2653 * search_memslots() instead of __gfn_to_memslot() to avoid 2654 * thrashing the VM-wide last_used_slot in kvm_memslots. 2655 */ 2656 slot = search_memslots(slots, gfn, false); 2657 if (slot) { 2658 vcpu->last_used_slot = slot; 2659 return slot; 2660 } 2661 2662 return NULL; 2663 } 2664 2665 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2666 { 2667 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2668 2669 return kvm_is_visible_memslot(memslot); 2670 } 2671 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2672 2673 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2674 { 2675 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2676 2677 return kvm_is_visible_memslot(memslot); 2678 } 2679 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2680 2681 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2682 { 2683 struct vm_area_struct *vma; 2684 unsigned long addr, size; 2685 2686 size = PAGE_SIZE; 2687 2688 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2689 if (kvm_is_error_hva(addr)) 2690 return PAGE_SIZE; 2691 2692 mmap_read_lock(current->mm); 2693 vma = find_vma(current->mm, addr); 2694 if (!vma) 2695 goto out; 2696 2697 size = vma_kernel_pagesize(vma); 2698 2699 out: 2700 mmap_read_unlock(current->mm); 2701 2702 return size; 2703 } 2704 2705 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2706 { 2707 return slot->flags & KVM_MEM_READONLY; 2708 } 2709 2710 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2711 gfn_t *nr_pages, bool write) 2712 { 2713 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2714 return KVM_HVA_ERR_BAD; 2715 2716 if (memslot_is_readonly(slot) && write) 2717 return KVM_HVA_ERR_RO_BAD; 2718 2719 if (nr_pages) 2720 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2721 2722 return __gfn_to_hva_memslot(slot, gfn); 2723 } 2724 2725 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2726 gfn_t *nr_pages) 2727 { 2728 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2729 } 2730 2731 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2732 gfn_t gfn) 2733 { 2734 return gfn_to_hva_many(slot, gfn, NULL); 2735 } 2736 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2737 2738 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2739 { 2740 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2741 } 2742 EXPORT_SYMBOL_GPL(gfn_to_hva); 2743 2744 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2745 { 2746 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2747 } 2748 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2749 2750 /* 2751 * Return the hva of a @gfn and the R/W attribute if possible. 2752 * 2753 * @slot: the kvm_memory_slot which contains @gfn 2754 * @gfn: the gfn to be translated 2755 * @writable: used to return the read/write attribute of the @slot if the hva 2756 * is valid and @writable is not NULL 2757 */ 2758 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2759 gfn_t gfn, bool *writable) 2760 { 2761 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2762 2763 if (!kvm_is_error_hva(hva) && writable) 2764 *writable = !memslot_is_readonly(slot); 2765 2766 return hva; 2767 } 2768 2769 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2770 { 2771 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2772 2773 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2774 } 2775 2776 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2777 { 2778 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2779 2780 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2781 } 2782 2783 static inline int check_user_page_hwpoison(unsigned long addr) 2784 { 2785 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2786 2787 rc = get_user_pages(addr, 1, flags, NULL); 2788 return rc == -EHWPOISON; 2789 } 2790 2791 /* 2792 * The fast path to get the writable pfn which will be stored in @pfn, 2793 * true indicates success, otherwise false is returned. It's also the 2794 * only part that runs if we can in atomic context. 2795 */ 2796 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2797 bool *writable, kvm_pfn_t *pfn) 2798 { 2799 struct page *page[1]; 2800 2801 /* 2802 * Fast pin a writable pfn only if it is a write fault request 2803 * or the caller allows to map a writable pfn for a read fault 2804 * request. 2805 */ 2806 if (!(write_fault || writable)) 2807 return false; 2808 2809 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2810 *pfn = page_to_pfn(page[0]); 2811 2812 if (writable) 2813 *writable = true; 2814 return true; 2815 } 2816 2817 return false; 2818 } 2819 2820 /* 2821 * The slow path to get the pfn of the specified host virtual address, 2822 * 1 indicates success, -errno is returned if error is detected. 2823 */ 2824 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2825 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2826 { 2827 /* 2828 * When a VCPU accesses a page that is not mapped into the secondary 2829 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2830 * make progress. We always want to honor NUMA hinting faults in that 2831 * case, because GUP usage corresponds to memory accesses from the VCPU. 2832 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2833 * mapped into the secondary MMU and gets accessed by a VCPU. 2834 * 2835 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2836 * implicitly honor NUMA hinting faults and don't need this flag. 2837 */ 2838 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2839 struct page *page; 2840 int npages; 2841 2842 might_sleep(); 2843 2844 if (writable) 2845 *writable = write_fault; 2846 2847 if (write_fault) 2848 flags |= FOLL_WRITE; 2849 if (async) 2850 flags |= FOLL_NOWAIT; 2851 if (interruptible) 2852 flags |= FOLL_INTERRUPTIBLE; 2853 2854 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2855 if (npages != 1) 2856 return npages; 2857 2858 /* map read fault as writable if possible */ 2859 if (unlikely(!write_fault) && writable) { 2860 struct page *wpage; 2861 2862 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2863 *writable = true; 2864 put_page(page); 2865 page = wpage; 2866 } 2867 } 2868 *pfn = page_to_pfn(page); 2869 return npages; 2870 } 2871 2872 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2873 { 2874 if (unlikely(!(vma->vm_flags & VM_READ))) 2875 return false; 2876 2877 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2878 return false; 2879 2880 return true; 2881 } 2882 2883 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2884 { 2885 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2886 2887 if (!page) 2888 return 1; 2889 2890 return get_page_unless_zero(page); 2891 } 2892 2893 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2894 unsigned long addr, bool write_fault, 2895 bool *writable, kvm_pfn_t *p_pfn) 2896 { 2897 kvm_pfn_t pfn; 2898 pte_t *ptep; 2899 pte_t pte; 2900 spinlock_t *ptl; 2901 int r; 2902 2903 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2904 if (r) { 2905 /* 2906 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2907 * not call the fault handler, so do it here. 2908 */ 2909 bool unlocked = false; 2910 r = fixup_user_fault(current->mm, addr, 2911 (write_fault ? FAULT_FLAG_WRITE : 0), 2912 &unlocked); 2913 if (unlocked) 2914 return -EAGAIN; 2915 if (r) 2916 return r; 2917 2918 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2919 if (r) 2920 return r; 2921 } 2922 2923 pte = ptep_get(ptep); 2924 2925 if (write_fault && !pte_write(pte)) { 2926 pfn = KVM_PFN_ERR_RO_FAULT; 2927 goto out; 2928 } 2929 2930 if (writable) 2931 *writable = pte_write(pte); 2932 pfn = pte_pfn(pte); 2933 2934 /* 2935 * Get a reference here because callers of *hva_to_pfn* and 2936 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2937 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2938 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2939 * simply do nothing for reserved pfns. 2940 * 2941 * Whoever called remap_pfn_range is also going to call e.g. 2942 * unmap_mapping_range before the underlying pages are freed, 2943 * causing a call to our MMU notifier. 2944 * 2945 * Certain IO or PFNMAP mappings can be backed with valid 2946 * struct pages, but be allocated without refcounting e.g., 2947 * tail pages of non-compound higher order allocations, which 2948 * would then underflow the refcount when the caller does the 2949 * required put_page. Don't allow those pages here. 2950 */ 2951 if (!kvm_try_get_pfn(pfn)) 2952 r = -EFAULT; 2953 2954 out: 2955 pte_unmap_unlock(ptep, ptl); 2956 *p_pfn = pfn; 2957 2958 return r; 2959 } 2960 2961 /* 2962 * Pin guest page in memory and return its pfn. 2963 * @addr: host virtual address which maps memory to the guest 2964 * @atomic: whether this function can sleep 2965 * @interruptible: whether the process can be interrupted by non-fatal signals 2966 * @async: whether this function need to wait IO complete if the 2967 * host page is not in the memory 2968 * @write_fault: whether we should get a writable host page 2969 * @writable: whether it allows to map a writable host page for !@write_fault 2970 * 2971 * The function will map a writable host page for these two cases: 2972 * 1): @write_fault = true 2973 * 2): @write_fault = false && @writable, @writable will tell the caller 2974 * whether the mapping is writable. 2975 */ 2976 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2977 bool *async, bool write_fault, bool *writable) 2978 { 2979 struct vm_area_struct *vma; 2980 kvm_pfn_t pfn; 2981 int npages, r; 2982 2983 /* we can do it either atomically or asynchronously, not both */ 2984 BUG_ON(atomic && async); 2985 2986 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2987 return pfn; 2988 2989 if (atomic) 2990 return KVM_PFN_ERR_FAULT; 2991 2992 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2993 writable, &pfn); 2994 if (npages == 1) 2995 return pfn; 2996 if (npages == -EINTR) 2997 return KVM_PFN_ERR_SIGPENDING; 2998 2999 mmap_read_lock(current->mm); 3000 if (npages == -EHWPOISON || 3001 (!async && check_user_page_hwpoison(addr))) { 3002 pfn = KVM_PFN_ERR_HWPOISON; 3003 goto exit; 3004 } 3005 3006 retry: 3007 vma = vma_lookup(current->mm, addr); 3008 3009 if (vma == NULL) 3010 pfn = KVM_PFN_ERR_FAULT; 3011 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3012 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 3013 if (r == -EAGAIN) 3014 goto retry; 3015 if (r < 0) 3016 pfn = KVM_PFN_ERR_FAULT; 3017 } else { 3018 if (async && vma_is_valid(vma, write_fault)) 3019 *async = true; 3020 pfn = KVM_PFN_ERR_FAULT; 3021 } 3022 exit: 3023 mmap_read_unlock(current->mm); 3024 return pfn; 3025 } 3026 3027 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 3028 bool atomic, bool interruptible, bool *async, 3029 bool write_fault, bool *writable, hva_t *hva) 3030 { 3031 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 3032 3033 if (hva) 3034 *hva = addr; 3035 3036 if (addr == KVM_HVA_ERR_RO_BAD) { 3037 if (writable) 3038 *writable = false; 3039 return KVM_PFN_ERR_RO_FAULT; 3040 } 3041 3042 if (kvm_is_error_hva(addr)) { 3043 if (writable) 3044 *writable = false; 3045 return KVM_PFN_NOSLOT; 3046 } 3047 3048 /* Do not map writable pfn in the readonly memslot. */ 3049 if (writable && memslot_is_readonly(slot)) { 3050 *writable = false; 3051 writable = NULL; 3052 } 3053 3054 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3055 writable); 3056 } 3057 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3058 3059 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3060 bool *writable) 3061 { 3062 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3063 NULL, write_fault, writable, NULL); 3064 } 3065 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3066 3067 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3068 { 3069 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3070 NULL, NULL); 3071 } 3072 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3073 3074 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3075 { 3076 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3077 NULL, NULL); 3078 } 3079 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3080 3081 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3082 { 3083 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3084 } 3085 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3086 3087 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3088 { 3089 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3090 } 3091 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3092 3093 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3094 { 3095 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3096 } 3097 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3098 3099 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3100 struct page **pages, int nr_pages) 3101 { 3102 unsigned long addr; 3103 gfn_t entry = 0; 3104 3105 addr = gfn_to_hva_many(slot, gfn, &entry); 3106 if (kvm_is_error_hva(addr)) 3107 return -1; 3108 3109 if (entry < nr_pages) 3110 return 0; 3111 3112 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3113 } 3114 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3115 3116 /* 3117 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3118 * backed by 'struct page'. A valid example is if the backing memslot is 3119 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3120 * been elevated by gfn_to_pfn(). 3121 */ 3122 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3123 { 3124 struct page *page; 3125 kvm_pfn_t pfn; 3126 3127 pfn = gfn_to_pfn(kvm, gfn); 3128 3129 if (is_error_noslot_pfn(pfn)) 3130 return KVM_ERR_PTR_BAD_PAGE; 3131 3132 page = kvm_pfn_to_refcounted_page(pfn); 3133 if (!page) 3134 return KVM_ERR_PTR_BAD_PAGE; 3135 3136 return page; 3137 } 3138 EXPORT_SYMBOL_GPL(gfn_to_page); 3139 3140 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3141 { 3142 if (dirty) 3143 kvm_release_pfn_dirty(pfn); 3144 else 3145 kvm_release_pfn_clean(pfn); 3146 } 3147 3148 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3149 { 3150 kvm_pfn_t pfn; 3151 void *hva = NULL; 3152 struct page *page = KVM_UNMAPPED_PAGE; 3153 3154 if (!map) 3155 return -EINVAL; 3156 3157 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3158 if (is_error_noslot_pfn(pfn)) 3159 return -EINVAL; 3160 3161 if (pfn_valid(pfn)) { 3162 page = pfn_to_page(pfn); 3163 hva = kmap(page); 3164 #ifdef CONFIG_HAS_IOMEM 3165 } else { 3166 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3167 #endif 3168 } 3169 3170 if (!hva) 3171 return -EFAULT; 3172 3173 map->page = page; 3174 map->hva = hva; 3175 map->pfn = pfn; 3176 map->gfn = gfn; 3177 3178 return 0; 3179 } 3180 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3181 3182 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3183 { 3184 if (!map) 3185 return; 3186 3187 if (!map->hva) 3188 return; 3189 3190 if (map->page != KVM_UNMAPPED_PAGE) 3191 kunmap(map->page); 3192 #ifdef CONFIG_HAS_IOMEM 3193 else 3194 memunmap(map->hva); 3195 #endif 3196 3197 if (dirty) 3198 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3199 3200 kvm_release_pfn(map->pfn, dirty); 3201 3202 map->hva = NULL; 3203 map->page = NULL; 3204 } 3205 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3206 3207 static bool kvm_is_ad_tracked_page(struct page *page) 3208 { 3209 /* 3210 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3211 * touched (e.g. set dirty) except by its owner". 3212 */ 3213 return !PageReserved(page); 3214 } 3215 3216 static void kvm_set_page_dirty(struct page *page) 3217 { 3218 if (kvm_is_ad_tracked_page(page)) 3219 SetPageDirty(page); 3220 } 3221 3222 static void kvm_set_page_accessed(struct page *page) 3223 { 3224 if (kvm_is_ad_tracked_page(page)) 3225 mark_page_accessed(page); 3226 } 3227 3228 void kvm_release_page_clean(struct page *page) 3229 { 3230 WARN_ON(is_error_page(page)); 3231 3232 kvm_set_page_accessed(page); 3233 put_page(page); 3234 } 3235 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3236 3237 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3238 { 3239 struct page *page; 3240 3241 if (is_error_noslot_pfn(pfn)) 3242 return; 3243 3244 page = kvm_pfn_to_refcounted_page(pfn); 3245 if (!page) 3246 return; 3247 3248 kvm_release_page_clean(page); 3249 } 3250 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3251 3252 void kvm_release_page_dirty(struct page *page) 3253 { 3254 WARN_ON(is_error_page(page)); 3255 3256 kvm_set_page_dirty(page); 3257 kvm_release_page_clean(page); 3258 } 3259 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3260 3261 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3262 { 3263 struct page *page; 3264 3265 if (is_error_noslot_pfn(pfn)) 3266 return; 3267 3268 page = kvm_pfn_to_refcounted_page(pfn); 3269 if (!page) 3270 return; 3271 3272 kvm_release_page_dirty(page); 3273 } 3274 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3275 3276 /* 3277 * Note, checking for an error/noslot pfn is the caller's responsibility when 3278 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3279 * "set" helpers are not to be used when the pfn might point at garbage. 3280 */ 3281 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3282 { 3283 if (WARN_ON(is_error_noslot_pfn(pfn))) 3284 return; 3285 3286 if (pfn_valid(pfn)) 3287 kvm_set_page_dirty(pfn_to_page(pfn)); 3288 } 3289 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3290 3291 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3292 { 3293 if (WARN_ON(is_error_noslot_pfn(pfn))) 3294 return; 3295 3296 if (pfn_valid(pfn)) 3297 kvm_set_page_accessed(pfn_to_page(pfn)); 3298 } 3299 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3300 3301 static int next_segment(unsigned long len, int offset) 3302 { 3303 if (len > PAGE_SIZE - offset) 3304 return PAGE_SIZE - offset; 3305 else 3306 return len; 3307 } 3308 3309 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3310 void *data, int offset, int len) 3311 { 3312 int r; 3313 unsigned long addr; 3314 3315 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3316 if (kvm_is_error_hva(addr)) 3317 return -EFAULT; 3318 r = __copy_from_user(data, (void __user *)addr + offset, len); 3319 if (r) 3320 return -EFAULT; 3321 return 0; 3322 } 3323 3324 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3325 int len) 3326 { 3327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3328 3329 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3330 } 3331 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3332 3333 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3334 int offset, int len) 3335 { 3336 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3337 3338 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3339 } 3340 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3341 3342 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3343 { 3344 gfn_t gfn = gpa >> PAGE_SHIFT; 3345 int seg; 3346 int offset = offset_in_page(gpa); 3347 int ret; 3348 3349 while ((seg = next_segment(len, offset)) != 0) { 3350 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3351 if (ret < 0) 3352 return ret; 3353 offset = 0; 3354 len -= seg; 3355 data += seg; 3356 ++gfn; 3357 } 3358 return 0; 3359 } 3360 EXPORT_SYMBOL_GPL(kvm_read_guest); 3361 3362 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3363 { 3364 gfn_t gfn = gpa >> PAGE_SHIFT; 3365 int seg; 3366 int offset = offset_in_page(gpa); 3367 int ret; 3368 3369 while ((seg = next_segment(len, offset)) != 0) { 3370 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3371 if (ret < 0) 3372 return ret; 3373 offset = 0; 3374 len -= seg; 3375 data += seg; 3376 ++gfn; 3377 } 3378 return 0; 3379 } 3380 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3381 3382 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3383 void *data, int offset, unsigned long len) 3384 { 3385 int r; 3386 unsigned long addr; 3387 3388 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3389 if (kvm_is_error_hva(addr)) 3390 return -EFAULT; 3391 pagefault_disable(); 3392 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3393 pagefault_enable(); 3394 if (r) 3395 return -EFAULT; 3396 return 0; 3397 } 3398 3399 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3400 void *data, unsigned long len) 3401 { 3402 gfn_t gfn = gpa >> PAGE_SHIFT; 3403 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3404 int offset = offset_in_page(gpa); 3405 3406 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3407 } 3408 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3409 3410 static int __kvm_write_guest_page(struct kvm *kvm, 3411 struct kvm_memory_slot *memslot, gfn_t gfn, 3412 const void *data, int offset, int len) 3413 { 3414 int r; 3415 unsigned long addr; 3416 3417 addr = gfn_to_hva_memslot(memslot, gfn); 3418 if (kvm_is_error_hva(addr)) 3419 return -EFAULT; 3420 r = __copy_to_user((void __user *)addr + offset, data, len); 3421 if (r) 3422 return -EFAULT; 3423 mark_page_dirty_in_slot(kvm, memslot, gfn); 3424 return 0; 3425 } 3426 3427 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3428 const void *data, int offset, int len) 3429 { 3430 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3431 3432 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3433 } 3434 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3435 3436 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3437 const void *data, int offset, int len) 3438 { 3439 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3440 3441 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3442 } 3443 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3444 3445 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3446 unsigned long len) 3447 { 3448 gfn_t gfn = gpa >> PAGE_SHIFT; 3449 int seg; 3450 int offset = offset_in_page(gpa); 3451 int ret; 3452 3453 while ((seg = next_segment(len, offset)) != 0) { 3454 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3455 if (ret < 0) 3456 return ret; 3457 offset = 0; 3458 len -= seg; 3459 data += seg; 3460 ++gfn; 3461 } 3462 return 0; 3463 } 3464 EXPORT_SYMBOL_GPL(kvm_write_guest); 3465 3466 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3467 unsigned long len) 3468 { 3469 gfn_t gfn = gpa >> PAGE_SHIFT; 3470 int seg; 3471 int offset = offset_in_page(gpa); 3472 int ret; 3473 3474 while ((seg = next_segment(len, offset)) != 0) { 3475 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3476 if (ret < 0) 3477 return ret; 3478 offset = 0; 3479 len -= seg; 3480 data += seg; 3481 ++gfn; 3482 } 3483 return 0; 3484 } 3485 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3486 3487 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3488 struct gfn_to_hva_cache *ghc, 3489 gpa_t gpa, unsigned long len) 3490 { 3491 int offset = offset_in_page(gpa); 3492 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3493 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3494 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3495 gfn_t nr_pages_avail; 3496 3497 /* Update ghc->generation before performing any error checks. */ 3498 ghc->generation = slots->generation; 3499 3500 if (start_gfn > end_gfn) { 3501 ghc->hva = KVM_HVA_ERR_BAD; 3502 return -EINVAL; 3503 } 3504 3505 /* 3506 * If the requested region crosses two memslots, we still 3507 * verify that the entire region is valid here. 3508 */ 3509 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3510 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3511 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3512 &nr_pages_avail); 3513 if (kvm_is_error_hva(ghc->hva)) 3514 return -EFAULT; 3515 } 3516 3517 /* Use the slow path for cross page reads and writes. */ 3518 if (nr_pages_needed == 1) 3519 ghc->hva += offset; 3520 else 3521 ghc->memslot = NULL; 3522 3523 ghc->gpa = gpa; 3524 ghc->len = len; 3525 return 0; 3526 } 3527 3528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3529 gpa_t gpa, unsigned long len) 3530 { 3531 struct kvm_memslots *slots = kvm_memslots(kvm); 3532 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3533 } 3534 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3535 3536 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3537 void *data, unsigned int offset, 3538 unsigned long len) 3539 { 3540 struct kvm_memslots *slots = kvm_memslots(kvm); 3541 int r; 3542 gpa_t gpa = ghc->gpa + offset; 3543 3544 if (WARN_ON_ONCE(len + offset > ghc->len)) 3545 return -EINVAL; 3546 3547 if (slots->generation != ghc->generation) { 3548 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3549 return -EFAULT; 3550 } 3551 3552 if (kvm_is_error_hva(ghc->hva)) 3553 return -EFAULT; 3554 3555 if (unlikely(!ghc->memslot)) 3556 return kvm_write_guest(kvm, gpa, data, len); 3557 3558 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3559 if (r) 3560 return -EFAULT; 3561 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3562 3563 return 0; 3564 } 3565 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3566 3567 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3568 void *data, unsigned long len) 3569 { 3570 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3571 } 3572 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3573 3574 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3575 void *data, unsigned int offset, 3576 unsigned long len) 3577 { 3578 struct kvm_memslots *slots = kvm_memslots(kvm); 3579 int r; 3580 gpa_t gpa = ghc->gpa + offset; 3581 3582 if (WARN_ON_ONCE(len + offset > ghc->len)) 3583 return -EINVAL; 3584 3585 if (slots->generation != ghc->generation) { 3586 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3587 return -EFAULT; 3588 } 3589 3590 if (kvm_is_error_hva(ghc->hva)) 3591 return -EFAULT; 3592 3593 if (unlikely(!ghc->memslot)) 3594 return kvm_read_guest(kvm, gpa, data, len); 3595 3596 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3597 if (r) 3598 return -EFAULT; 3599 3600 return 0; 3601 } 3602 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3603 3604 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3605 void *data, unsigned long len) 3606 { 3607 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3608 } 3609 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3610 3611 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3612 { 3613 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3614 gfn_t gfn = gpa >> PAGE_SHIFT; 3615 int seg; 3616 int offset = offset_in_page(gpa); 3617 int ret; 3618 3619 while ((seg = next_segment(len, offset)) != 0) { 3620 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3621 if (ret < 0) 3622 return ret; 3623 offset = 0; 3624 len -= seg; 3625 ++gfn; 3626 } 3627 return 0; 3628 } 3629 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3630 3631 void mark_page_dirty_in_slot(struct kvm *kvm, 3632 const struct kvm_memory_slot *memslot, 3633 gfn_t gfn) 3634 { 3635 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3636 3637 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3638 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3639 return; 3640 3641 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3642 #endif 3643 3644 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3645 unsigned long rel_gfn = gfn - memslot->base_gfn; 3646 u32 slot = (memslot->as_id << 16) | memslot->id; 3647 3648 if (kvm->dirty_ring_size && vcpu) 3649 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3650 else if (memslot->dirty_bitmap) 3651 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3652 } 3653 } 3654 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3655 3656 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3657 { 3658 struct kvm_memory_slot *memslot; 3659 3660 memslot = gfn_to_memslot(kvm, gfn); 3661 mark_page_dirty_in_slot(kvm, memslot, gfn); 3662 } 3663 EXPORT_SYMBOL_GPL(mark_page_dirty); 3664 3665 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3666 { 3667 struct kvm_memory_slot *memslot; 3668 3669 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3670 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3671 } 3672 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3673 3674 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3675 { 3676 if (!vcpu->sigset_active) 3677 return; 3678 3679 /* 3680 * This does a lockless modification of ->real_blocked, which is fine 3681 * because, only current can change ->real_blocked and all readers of 3682 * ->real_blocked don't care as long ->real_blocked is always a subset 3683 * of ->blocked. 3684 */ 3685 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3686 } 3687 3688 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3689 { 3690 if (!vcpu->sigset_active) 3691 return; 3692 3693 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3694 sigemptyset(¤t->real_blocked); 3695 } 3696 3697 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3698 { 3699 unsigned int old, val, grow, grow_start; 3700 3701 old = val = vcpu->halt_poll_ns; 3702 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3703 grow = READ_ONCE(halt_poll_ns_grow); 3704 if (!grow) 3705 goto out; 3706 3707 val *= grow; 3708 if (val < grow_start) 3709 val = grow_start; 3710 3711 vcpu->halt_poll_ns = val; 3712 out: 3713 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3714 } 3715 3716 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3717 { 3718 unsigned int old, val, shrink, grow_start; 3719 3720 old = val = vcpu->halt_poll_ns; 3721 shrink = READ_ONCE(halt_poll_ns_shrink); 3722 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3723 if (shrink == 0) 3724 val = 0; 3725 else 3726 val /= shrink; 3727 3728 if (val < grow_start) 3729 val = 0; 3730 3731 vcpu->halt_poll_ns = val; 3732 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3733 } 3734 3735 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3736 { 3737 int ret = -EINTR; 3738 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3739 3740 if (kvm_arch_vcpu_runnable(vcpu)) 3741 goto out; 3742 if (kvm_cpu_has_pending_timer(vcpu)) 3743 goto out; 3744 if (signal_pending(current)) 3745 goto out; 3746 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3747 goto out; 3748 3749 ret = 0; 3750 out: 3751 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3752 return ret; 3753 } 3754 3755 /* 3756 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3757 * pending. This is mostly used when halting a vCPU, but may also be used 3758 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3759 */ 3760 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3761 { 3762 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3763 bool waited = false; 3764 3765 vcpu->stat.generic.blocking = 1; 3766 3767 preempt_disable(); 3768 kvm_arch_vcpu_blocking(vcpu); 3769 prepare_to_rcuwait(wait); 3770 preempt_enable(); 3771 3772 for (;;) { 3773 set_current_state(TASK_INTERRUPTIBLE); 3774 3775 if (kvm_vcpu_check_block(vcpu) < 0) 3776 break; 3777 3778 waited = true; 3779 schedule(); 3780 } 3781 3782 preempt_disable(); 3783 finish_rcuwait(wait); 3784 kvm_arch_vcpu_unblocking(vcpu); 3785 preempt_enable(); 3786 3787 vcpu->stat.generic.blocking = 0; 3788 3789 return waited; 3790 } 3791 3792 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3793 ktime_t end, bool success) 3794 { 3795 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3796 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3797 3798 ++vcpu->stat.generic.halt_attempted_poll; 3799 3800 if (success) { 3801 ++vcpu->stat.generic.halt_successful_poll; 3802 3803 if (!vcpu_valid_wakeup(vcpu)) 3804 ++vcpu->stat.generic.halt_poll_invalid; 3805 3806 stats->halt_poll_success_ns += poll_ns; 3807 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3808 } else { 3809 stats->halt_poll_fail_ns += poll_ns; 3810 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3811 } 3812 } 3813 3814 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3815 { 3816 struct kvm *kvm = vcpu->kvm; 3817 3818 if (kvm->override_halt_poll_ns) { 3819 /* 3820 * Ensure kvm->max_halt_poll_ns is not read before 3821 * kvm->override_halt_poll_ns. 3822 * 3823 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3824 */ 3825 smp_rmb(); 3826 return READ_ONCE(kvm->max_halt_poll_ns); 3827 } 3828 3829 return READ_ONCE(halt_poll_ns); 3830 } 3831 3832 /* 3833 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3834 * polling is enabled, busy wait for a short time before blocking to avoid the 3835 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3836 * is halted. 3837 */ 3838 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3839 { 3840 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3841 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3842 ktime_t start, cur, poll_end; 3843 bool waited = false; 3844 bool do_halt_poll; 3845 u64 halt_ns; 3846 3847 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3848 vcpu->halt_poll_ns = max_halt_poll_ns; 3849 3850 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3851 3852 start = cur = poll_end = ktime_get(); 3853 if (do_halt_poll) { 3854 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3855 3856 do { 3857 if (kvm_vcpu_check_block(vcpu) < 0) 3858 goto out; 3859 cpu_relax(); 3860 poll_end = cur = ktime_get(); 3861 } while (kvm_vcpu_can_poll(cur, stop)); 3862 } 3863 3864 waited = kvm_vcpu_block(vcpu); 3865 3866 cur = ktime_get(); 3867 if (waited) { 3868 vcpu->stat.generic.halt_wait_ns += 3869 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3870 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3871 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3872 } 3873 out: 3874 /* The total time the vCPU was "halted", including polling time. */ 3875 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3876 3877 /* 3878 * Note, halt-polling is considered successful so long as the vCPU was 3879 * never actually scheduled out, i.e. even if the wake event arrived 3880 * after of the halt-polling loop itself, but before the full wait. 3881 */ 3882 if (do_halt_poll) 3883 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3884 3885 if (halt_poll_allowed) { 3886 /* Recompute the max halt poll time in case it changed. */ 3887 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3888 3889 if (!vcpu_valid_wakeup(vcpu)) { 3890 shrink_halt_poll_ns(vcpu); 3891 } else if (max_halt_poll_ns) { 3892 if (halt_ns <= vcpu->halt_poll_ns) 3893 ; 3894 /* we had a long block, shrink polling */ 3895 else if (vcpu->halt_poll_ns && 3896 halt_ns > max_halt_poll_ns) 3897 shrink_halt_poll_ns(vcpu); 3898 /* we had a short halt and our poll time is too small */ 3899 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3900 halt_ns < max_halt_poll_ns) 3901 grow_halt_poll_ns(vcpu); 3902 } else { 3903 vcpu->halt_poll_ns = 0; 3904 } 3905 } 3906 3907 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3908 } 3909 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3910 3911 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3912 { 3913 if (__kvm_vcpu_wake_up(vcpu)) { 3914 WRITE_ONCE(vcpu->ready, true); 3915 ++vcpu->stat.generic.halt_wakeup; 3916 return true; 3917 } 3918 3919 return false; 3920 } 3921 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3922 3923 #ifndef CONFIG_S390 3924 /* 3925 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3926 */ 3927 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3928 { 3929 int me, cpu; 3930 3931 if (kvm_vcpu_wake_up(vcpu)) 3932 return; 3933 3934 me = get_cpu(); 3935 /* 3936 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3937 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3938 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3939 * within the vCPU thread itself. 3940 */ 3941 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3942 if (vcpu->mode == IN_GUEST_MODE) 3943 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3944 goto out; 3945 } 3946 3947 /* 3948 * Note, the vCPU could get migrated to a different pCPU at any point 3949 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3950 * IPI to the previous pCPU. But, that's ok because the purpose of the 3951 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3952 * vCPU also requires it to leave IN_GUEST_MODE. 3953 */ 3954 if (kvm_arch_vcpu_should_kick(vcpu)) { 3955 cpu = READ_ONCE(vcpu->cpu); 3956 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3957 smp_send_reschedule(cpu); 3958 } 3959 out: 3960 put_cpu(); 3961 } 3962 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3963 #endif /* !CONFIG_S390 */ 3964 3965 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3966 { 3967 struct pid *pid; 3968 struct task_struct *task = NULL; 3969 int ret = 0; 3970 3971 rcu_read_lock(); 3972 pid = rcu_dereference(target->pid); 3973 if (pid) 3974 task = get_pid_task(pid, PIDTYPE_PID); 3975 rcu_read_unlock(); 3976 if (!task) 3977 return ret; 3978 ret = yield_to(task, 1); 3979 put_task_struct(task); 3980 3981 return ret; 3982 } 3983 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3984 3985 /* 3986 * Helper that checks whether a VCPU is eligible for directed yield. 3987 * Most eligible candidate to yield is decided by following heuristics: 3988 * 3989 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3990 * (preempted lock holder), indicated by @in_spin_loop. 3991 * Set at the beginning and cleared at the end of interception/PLE handler. 3992 * 3993 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3994 * chance last time (mostly it has become eligible now since we have probably 3995 * yielded to lockholder in last iteration. This is done by toggling 3996 * @dy_eligible each time a VCPU checked for eligibility.) 3997 * 3998 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3999 * to preempted lock-holder could result in wrong VCPU selection and CPU 4000 * burning. Giving priority for a potential lock-holder increases lock 4001 * progress. 4002 * 4003 * Since algorithm is based on heuristics, accessing another VCPU data without 4004 * locking does not harm. It may result in trying to yield to same VCPU, fail 4005 * and continue with next VCPU and so on. 4006 */ 4007 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 4008 { 4009 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 4010 bool eligible; 4011 4012 eligible = !vcpu->spin_loop.in_spin_loop || 4013 vcpu->spin_loop.dy_eligible; 4014 4015 if (vcpu->spin_loop.in_spin_loop) 4016 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 4017 4018 return eligible; 4019 #else 4020 return true; 4021 #endif 4022 } 4023 4024 /* 4025 * Unlike kvm_arch_vcpu_runnable, this function is called outside 4026 * a vcpu_load/vcpu_put pair. However, for most architectures 4027 * kvm_arch_vcpu_runnable does not require vcpu_load. 4028 */ 4029 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 4030 { 4031 return kvm_arch_vcpu_runnable(vcpu); 4032 } 4033 4034 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4035 { 4036 if (kvm_arch_dy_runnable(vcpu)) 4037 return true; 4038 4039 #ifdef CONFIG_KVM_ASYNC_PF 4040 if (!list_empty_careful(&vcpu->async_pf.done)) 4041 return true; 4042 #endif 4043 4044 return false; 4045 } 4046 4047 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4048 { 4049 return false; 4050 } 4051 4052 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4053 { 4054 struct kvm *kvm = me->kvm; 4055 struct kvm_vcpu *vcpu; 4056 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4057 unsigned long i; 4058 int yielded = 0; 4059 int try = 3; 4060 int pass; 4061 4062 kvm_vcpu_set_in_spin_loop(me, true); 4063 /* 4064 * We boost the priority of a VCPU that is runnable but not 4065 * currently running, because it got preempted by something 4066 * else and called schedule in __vcpu_run. Hopefully that 4067 * VCPU is holding the lock that we need and will release it. 4068 * We approximate round-robin by starting at the last boosted VCPU. 4069 */ 4070 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4071 kvm_for_each_vcpu(i, vcpu, kvm) { 4072 if (!pass && i <= last_boosted_vcpu) { 4073 i = last_boosted_vcpu; 4074 continue; 4075 } else if (pass && i > last_boosted_vcpu) 4076 break; 4077 if (!READ_ONCE(vcpu->ready)) 4078 continue; 4079 if (vcpu == me) 4080 continue; 4081 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4082 continue; 4083 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4084 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4085 !kvm_arch_vcpu_in_kernel(vcpu)) 4086 continue; 4087 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4088 continue; 4089 4090 yielded = kvm_vcpu_yield_to(vcpu); 4091 if (yielded > 0) { 4092 kvm->last_boosted_vcpu = i; 4093 break; 4094 } else if (yielded < 0) { 4095 try--; 4096 if (!try) 4097 break; 4098 } 4099 } 4100 } 4101 kvm_vcpu_set_in_spin_loop(me, false); 4102 4103 /* Ensure vcpu is not eligible during next spinloop */ 4104 kvm_vcpu_set_dy_eligible(me, false); 4105 } 4106 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4107 4108 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4109 { 4110 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4111 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4112 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4113 kvm->dirty_ring_size / PAGE_SIZE); 4114 #else 4115 return false; 4116 #endif 4117 } 4118 4119 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4120 { 4121 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4122 struct page *page; 4123 4124 if (vmf->pgoff == 0) 4125 page = virt_to_page(vcpu->run); 4126 #ifdef CONFIG_X86 4127 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4128 page = virt_to_page(vcpu->arch.pio_data); 4129 #endif 4130 #ifdef CONFIG_KVM_MMIO 4131 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4132 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4133 #endif 4134 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4135 page = kvm_dirty_ring_get_page( 4136 &vcpu->dirty_ring, 4137 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4138 else 4139 return kvm_arch_vcpu_fault(vcpu, vmf); 4140 get_page(page); 4141 vmf->page = page; 4142 return 0; 4143 } 4144 4145 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4146 .fault = kvm_vcpu_fault, 4147 }; 4148 4149 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4150 { 4151 struct kvm_vcpu *vcpu = file->private_data; 4152 unsigned long pages = vma_pages(vma); 4153 4154 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4155 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4156 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4157 return -EINVAL; 4158 4159 vma->vm_ops = &kvm_vcpu_vm_ops; 4160 return 0; 4161 } 4162 4163 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4164 { 4165 struct kvm_vcpu *vcpu = filp->private_data; 4166 4167 kvm_put_kvm(vcpu->kvm); 4168 return 0; 4169 } 4170 4171 static struct file_operations kvm_vcpu_fops = { 4172 .release = kvm_vcpu_release, 4173 .unlocked_ioctl = kvm_vcpu_ioctl, 4174 .mmap = kvm_vcpu_mmap, 4175 .llseek = noop_llseek, 4176 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4177 }; 4178 4179 /* 4180 * Allocates an inode for the vcpu. 4181 */ 4182 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4183 { 4184 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4185 4186 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4187 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4188 } 4189 4190 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4191 static int vcpu_get_pid(void *data, u64 *val) 4192 { 4193 struct kvm_vcpu *vcpu = data; 4194 4195 rcu_read_lock(); 4196 *val = pid_nr(rcu_dereference(vcpu->pid)); 4197 rcu_read_unlock(); 4198 return 0; 4199 } 4200 4201 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4202 4203 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4204 { 4205 struct dentry *debugfs_dentry; 4206 char dir_name[ITOA_MAX_LEN * 2]; 4207 4208 if (!debugfs_initialized()) 4209 return; 4210 4211 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4212 debugfs_dentry = debugfs_create_dir(dir_name, 4213 vcpu->kvm->debugfs_dentry); 4214 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4215 &vcpu_get_pid_fops); 4216 4217 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4218 } 4219 #endif 4220 4221 /* 4222 * Creates some virtual cpus. Good luck creating more than one. 4223 */ 4224 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4225 { 4226 int r; 4227 struct kvm_vcpu *vcpu; 4228 struct page *page; 4229 4230 if (id >= KVM_MAX_VCPU_IDS) 4231 return -EINVAL; 4232 4233 mutex_lock(&kvm->lock); 4234 if (kvm->created_vcpus >= kvm->max_vcpus) { 4235 mutex_unlock(&kvm->lock); 4236 return -EINVAL; 4237 } 4238 4239 r = kvm_arch_vcpu_precreate(kvm, id); 4240 if (r) { 4241 mutex_unlock(&kvm->lock); 4242 return r; 4243 } 4244 4245 kvm->created_vcpus++; 4246 mutex_unlock(&kvm->lock); 4247 4248 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4249 if (!vcpu) { 4250 r = -ENOMEM; 4251 goto vcpu_decrement; 4252 } 4253 4254 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4255 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4256 if (!page) { 4257 r = -ENOMEM; 4258 goto vcpu_free; 4259 } 4260 vcpu->run = page_address(page); 4261 4262 kvm_vcpu_init(vcpu, kvm, id); 4263 4264 r = kvm_arch_vcpu_create(vcpu); 4265 if (r) 4266 goto vcpu_free_run_page; 4267 4268 if (kvm->dirty_ring_size) { 4269 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4270 id, kvm->dirty_ring_size); 4271 if (r) 4272 goto arch_vcpu_destroy; 4273 } 4274 4275 mutex_lock(&kvm->lock); 4276 4277 #ifdef CONFIG_LOCKDEP 4278 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4279 mutex_lock(&vcpu->mutex); 4280 mutex_unlock(&vcpu->mutex); 4281 #endif 4282 4283 if (kvm_get_vcpu_by_id(kvm, id)) { 4284 r = -EEXIST; 4285 goto unlock_vcpu_destroy; 4286 } 4287 4288 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4289 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4290 if (r) 4291 goto unlock_vcpu_destroy; 4292 4293 /* Now it's all set up, let userspace reach it */ 4294 kvm_get_kvm(kvm); 4295 r = create_vcpu_fd(vcpu); 4296 if (r < 0) 4297 goto kvm_put_xa_release; 4298 4299 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4300 r = -EINVAL; 4301 goto kvm_put_xa_release; 4302 } 4303 4304 /* 4305 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4306 * pointer before kvm->online_vcpu's incremented value. 4307 */ 4308 smp_wmb(); 4309 atomic_inc(&kvm->online_vcpus); 4310 4311 mutex_unlock(&kvm->lock); 4312 kvm_arch_vcpu_postcreate(vcpu); 4313 kvm_create_vcpu_debugfs(vcpu); 4314 return r; 4315 4316 kvm_put_xa_release: 4317 kvm_put_kvm_no_destroy(kvm); 4318 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4319 unlock_vcpu_destroy: 4320 mutex_unlock(&kvm->lock); 4321 kvm_dirty_ring_free(&vcpu->dirty_ring); 4322 arch_vcpu_destroy: 4323 kvm_arch_vcpu_destroy(vcpu); 4324 vcpu_free_run_page: 4325 free_page((unsigned long)vcpu->run); 4326 vcpu_free: 4327 kmem_cache_free(kvm_vcpu_cache, vcpu); 4328 vcpu_decrement: 4329 mutex_lock(&kvm->lock); 4330 kvm->created_vcpus--; 4331 mutex_unlock(&kvm->lock); 4332 return r; 4333 } 4334 4335 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4336 { 4337 if (sigset) { 4338 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4339 vcpu->sigset_active = 1; 4340 vcpu->sigset = *sigset; 4341 } else 4342 vcpu->sigset_active = 0; 4343 return 0; 4344 } 4345 4346 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4347 size_t size, loff_t *offset) 4348 { 4349 struct kvm_vcpu *vcpu = file->private_data; 4350 4351 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4352 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4353 sizeof(vcpu->stat), user_buffer, size, offset); 4354 } 4355 4356 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4357 { 4358 struct kvm_vcpu *vcpu = file->private_data; 4359 4360 kvm_put_kvm(vcpu->kvm); 4361 return 0; 4362 } 4363 4364 static const struct file_operations kvm_vcpu_stats_fops = { 4365 .owner = THIS_MODULE, 4366 .read = kvm_vcpu_stats_read, 4367 .release = kvm_vcpu_stats_release, 4368 .llseek = noop_llseek, 4369 }; 4370 4371 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4372 { 4373 int fd; 4374 struct file *file; 4375 char name[15 + ITOA_MAX_LEN + 1]; 4376 4377 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4378 4379 fd = get_unused_fd_flags(O_CLOEXEC); 4380 if (fd < 0) 4381 return fd; 4382 4383 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4384 if (IS_ERR(file)) { 4385 put_unused_fd(fd); 4386 return PTR_ERR(file); 4387 } 4388 4389 kvm_get_kvm(vcpu->kvm); 4390 4391 file->f_mode |= FMODE_PREAD; 4392 fd_install(fd, file); 4393 4394 return fd; 4395 } 4396 4397 static long kvm_vcpu_ioctl(struct file *filp, 4398 unsigned int ioctl, unsigned long arg) 4399 { 4400 struct kvm_vcpu *vcpu = filp->private_data; 4401 void __user *argp = (void __user *)arg; 4402 int r; 4403 struct kvm_fpu *fpu = NULL; 4404 struct kvm_sregs *kvm_sregs = NULL; 4405 4406 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4407 return -EIO; 4408 4409 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4410 return -EINVAL; 4411 4412 /* 4413 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4414 * execution; mutex_lock() would break them. 4415 */ 4416 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4417 if (r != -ENOIOCTLCMD) 4418 return r; 4419 4420 if (mutex_lock_killable(&vcpu->mutex)) 4421 return -EINTR; 4422 switch (ioctl) { 4423 case KVM_RUN: { 4424 struct pid *oldpid; 4425 r = -EINVAL; 4426 if (arg) 4427 goto out; 4428 oldpid = rcu_access_pointer(vcpu->pid); 4429 if (unlikely(oldpid != task_pid(current))) { 4430 /* The thread running this VCPU changed. */ 4431 struct pid *newpid; 4432 4433 r = kvm_arch_vcpu_run_pid_change(vcpu); 4434 if (r) 4435 break; 4436 4437 newpid = get_task_pid(current, PIDTYPE_PID); 4438 rcu_assign_pointer(vcpu->pid, newpid); 4439 if (oldpid) 4440 synchronize_rcu(); 4441 put_pid(oldpid); 4442 } 4443 r = kvm_arch_vcpu_ioctl_run(vcpu); 4444 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4445 break; 4446 } 4447 case KVM_GET_REGS: { 4448 struct kvm_regs *kvm_regs; 4449 4450 r = -ENOMEM; 4451 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4452 if (!kvm_regs) 4453 goto out; 4454 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4455 if (r) 4456 goto out_free1; 4457 r = -EFAULT; 4458 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4459 goto out_free1; 4460 r = 0; 4461 out_free1: 4462 kfree(kvm_regs); 4463 break; 4464 } 4465 case KVM_SET_REGS: { 4466 struct kvm_regs *kvm_regs; 4467 4468 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4469 if (IS_ERR(kvm_regs)) { 4470 r = PTR_ERR(kvm_regs); 4471 goto out; 4472 } 4473 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4474 kfree(kvm_regs); 4475 break; 4476 } 4477 case KVM_GET_SREGS: { 4478 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4479 GFP_KERNEL_ACCOUNT); 4480 r = -ENOMEM; 4481 if (!kvm_sregs) 4482 goto out; 4483 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4484 if (r) 4485 goto out; 4486 r = -EFAULT; 4487 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4488 goto out; 4489 r = 0; 4490 break; 4491 } 4492 case KVM_SET_SREGS: { 4493 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4494 if (IS_ERR(kvm_sregs)) { 4495 r = PTR_ERR(kvm_sregs); 4496 kvm_sregs = NULL; 4497 goto out; 4498 } 4499 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4500 break; 4501 } 4502 case KVM_GET_MP_STATE: { 4503 struct kvm_mp_state mp_state; 4504 4505 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4506 if (r) 4507 goto out; 4508 r = -EFAULT; 4509 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4510 goto out; 4511 r = 0; 4512 break; 4513 } 4514 case KVM_SET_MP_STATE: { 4515 struct kvm_mp_state mp_state; 4516 4517 r = -EFAULT; 4518 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4519 goto out; 4520 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4521 break; 4522 } 4523 case KVM_TRANSLATE: { 4524 struct kvm_translation tr; 4525 4526 r = -EFAULT; 4527 if (copy_from_user(&tr, argp, sizeof(tr))) 4528 goto out; 4529 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4530 if (r) 4531 goto out; 4532 r = -EFAULT; 4533 if (copy_to_user(argp, &tr, sizeof(tr))) 4534 goto out; 4535 r = 0; 4536 break; 4537 } 4538 case KVM_SET_GUEST_DEBUG: { 4539 struct kvm_guest_debug dbg; 4540 4541 r = -EFAULT; 4542 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4543 goto out; 4544 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4545 break; 4546 } 4547 case KVM_SET_SIGNAL_MASK: { 4548 struct kvm_signal_mask __user *sigmask_arg = argp; 4549 struct kvm_signal_mask kvm_sigmask; 4550 sigset_t sigset, *p; 4551 4552 p = NULL; 4553 if (argp) { 4554 r = -EFAULT; 4555 if (copy_from_user(&kvm_sigmask, argp, 4556 sizeof(kvm_sigmask))) 4557 goto out; 4558 r = -EINVAL; 4559 if (kvm_sigmask.len != sizeof(sigset)) 4560 goto out; 4561 r = -EFAULT; 4562 if (copy_from_user(&sigset, sigmask_arg->sigset, 4563 sizeof(sigset))) 4564 goto out; 4565 p = &sigset; 4566 } 4567 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4568 break; 4569 } 4570 case KVM_GET_FPU: { 4571 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4572 r = -ENOMEM; 4573 if (!fpu) 4574 goto out; 4575 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4576 if (r) 4577 goto out; 4578 r = -EFAULT; 4579 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4580 goto out; 4581 r = 0; 4582 break; 4583 } 4584 case KVM_SET_FPU: { 4585 fpu = memdup_user(argp, sizeof(*fpu)); 4586 if (IS_ERR(fpu)) { 4587 r = PTR_ERR(fpu); 4588 fpu = NULL; 4589 goto out; 4590 } 4591 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4592 break; 4593 } 4594 case KVM_GET_STATS_FD: { 4595 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4596 break; 4597 } 4598 default: 4599 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4600 } 4601 out: 4602 mutex_unlock(&vcpu->mutex); 4603 kfree(fpu); 4604 kfree(kvm_sregs); 4605 return r; 4606 } 4607 4608 #ifdef CONFIG_KVM_COMPAT 4609 static long kvm_vcpu_compat_ioctl(struct file *filp, 4610 unsigned int ioctl, unsigned long arg) 4611 { 4612 struct kvm_vcpu *vcpu = filp->private_data; 4613 void __user *argp = compat_ptr(arg); 4614 int r; 4615 4616 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4617 return -EIO; 4618 4619 switch (ioctl) { 4620 case KVM_SET_SIGNAL_MASK: { 4621 struct kvm_signal_mask __user *sigmask_arg = argp; 4622 struct kvm_signal_mask kvm_sigmask; 4623 sigset_t sigset; 4624 4625 if (argp) { 4626 r = -EFAULT; 4627 if (copy_from_user(&kvm_sigmask, argp, 4628 sizeof(kvm_sigmask))) 4629 goto out; 4630 r = -EINVAL; 4631 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4632 goto out; 4633 r = -EFAULT; 4634 if (get_compat_sigset(&sigset, 4635 (compat_sigset_t __user *)sigmask_arg->sigset)) 4636 goto out; 4637 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4638 } else 4639 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4640 break; 4641 } 4642 default: 4643 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4644 } 4645 4646 out: 4647 return r; 4648 } 4649 #endif 4650 4651 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4652 { 4653 struct kvm_device *dev = filp->private_data; 4654 4655 if (dev->ops->mmap) 4656 return dev->ops->mmap(dev, vma); 4657 4658 return -ENODEV; 4659 } 4660 4661 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4662 int (*accessor)(struct kvm_device *dev, 4663 struct kvm_device_attr *attr), 4664 unsigned long arg) 4665 { 4666 struct kvm_device_attr attr; 4667 4668 if (!accessor) 4669 return -EPERM; 4670 4671 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4672 return -EFAULT; 4673 4674 return accessor(dev, &attr); 4675 } 4676 4677 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4678 unsigned long arg) 4679 { 4680 struct kvm_device *dev = filp->private_data; 4681 4682 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4683 return -EIO; 4684 4685 switch (ioctl) { 4686 case KVM_SET_DEVICE_ATTR: 4687 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4688 case KVM_GET_DEVICE_ATTR: 4689 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4690 case KVM_HAS_DEVICE_ATTR: 4691 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4692 default: 4693 if (dev->ops->ioctl) 4694 return dev->ops->ioctl(dev, ioctl, arg); 4695 4696 return -ENOTTY; 4697 } 4698 } 4699 4700 static int kvm_device_release(struct inode *inode, struct file *filp) 4701 { 4702 struct kvm_device *dev = filp->private_data; 4703 struct kvm *kvm = dev->kvm; 4704 4705 if (dev->ops->release) { 4706 mutex_lock(&kvm->lock); 4707 list_del(&dev->vm_node); 4708 dev->ops->release(dev); 4709 mutex_unlock(&kvm->lock); 4710 } 4711 4712 kvm_put_kvm(kvm); 4713 return 0; 4714 } 4715 4716 static struct file_operations kvm_device_fops = { 4717 .unlocked_ioctl = kvm_device_ioctl, 4718 .release = kvm_device_release, 4719 KVM_COMPAT(kvm_device_ioctl), 4720 .mmap = kvm_device_mmap, 4721 }; 4722 4723 struct kvm_device *kvm_device_from_filp(struct file *filp) 4724 { 4725 if (filp->f_op != &kvm_device_fops) 4726 return NULL; 4727 4728 return filp->private_data; 4729 } 4730 4731 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4732 #ifdef CONFIG_KVM_MPIC 4733 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4734 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4735 #endif 4736 }; 4737 4738 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4739 { 4740 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4741 return -ENOSPC; 4742 4743 if (kvm_device_ops_table[type] != NULL) 4744 return -EEXIST; 4745 4746 kvm_device_ops_table[type] = ops; 4747 return 0; 4748 } 4749 4750 void kvm_unregister_device_ops(u32 type) 4751 { 4752 if (kvm_device_ops_table[type] != NULL) 4753 kvm_device_ops_table[type] = NULL; 4754 } 4755 4756 static int kvm_ioctl_create_device(struct kvm *kvm, 4757 struct kvm_create_device *cd) 4758 { 4759 const struct kvm_device_ops *ops; 4760 struct kvm_device *dev; 4761 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4762 int type; 4763 int ret; 4764 4765 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4766 return -ENODEV; 4767 4768 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4769 ops = kvm_device_ops_table[type]; 4770 if (ops == NULL) 4771 return -ENODEV; 4772 4773 if (test) 4774 return 0; 4775 4776 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4777 if (!dev) 4778 return -ENOMEM; 4779 4780 dev->ops = ops; 4781 dev->kvm = kvm; 4782 4783 mutex_lock(&kvm->lock); 4784 ret = ops->create(dev, type); 4785 if (ret < 0) { 4786 mutex_unlock(&kvm->lock); 4787 kfree(dev); 4788 return ret; 4789 } 4790 list_add(&dev->vm_node, &kvm->devices); 4791 mutex_unlock(&kvm->lock); 4792 4793 if (ops->init) 4794 ops->init(dev); 4795 4796 kvm_get_kvm(kvm); 4797 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4798 if (ret < 0) { 4799 kvm_put_kvm_no_destroy(kvm); 4800 mutex_lock(&kvm->lock); 4801 list_del(&dev->vm_node); 4802 if (ops->release) 4803 ops->release(dev); 4804 mutex_unlock(&kvm->lock); 4805 if (ops->destroy) 4806 ops->destroy(dev); 4807 return ret; 4808 } 4809 4810 cd->fd = ret; 4811 return 0; 4812 } 4813 4814 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4815 { 4816 switch (arg) { 4817 case KVM_CAP_USER_MEMORY: 4818 case KVM_CAP_USER_MEMORY2: 4819 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4820 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4821 case KVM_CAP_INTERNAL_ERROR_DATA: 4822 #ifdef CONFIG_HAVE_KVM_MSI 4823 case KVM_CAP_SIGNAL_MSI: 4824 #endif 4825 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4826 case KVM_CAP_IRQFD: 4827 #endif 4828 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4829 case KVM_CAP_CHECK_EXTENSION_VM: 4830 case KVM_CAP_ENABLE_CAP_VM: 4831 case KVM_CAP_HALT_POLL: 4832 return 1; 4833 #ifdef CONFIG_KVM_MMIO 4834 case KVM_CAP_COALESCED_MMIO: 4835 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4836 case KVM_CAP_COALESCED_PIO: 4837 return 1; 4838 #endif 4839 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4840 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4841 return KVM_DIRTY_LOG_MANUAL_CAPS; 4842 #endif 4843 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4844 case KVM_CAP_IRQ_ROUTING: 4845 return KVM_MAX_IRQ_ROUTES; 4846 #endif 4847 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4848 case KVM_CAP_MULTI_ADDRESS_SPACE: 4849 if (kvm) 4850 return kvm_arch_nr_memslot_as_ids(kvm); 4851 return KVM_MAX_NR_ADDRESS_SPACES; 4852 #endif 4853 case KVM_CAP_NR_MEMSLOTS: 4854 return KVM_USER_MEM_SLOTS; 4855 case KVM_CAP_DIRTY_LOG_RING: 4856 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4857 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4858 #else 4859 return 0; 4860 #endif 4861 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4862 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4863 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4864 #else 4865 return 0; 4866 #endif 4867 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4868 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4869 #endif 4870 case KVM_CAP_BINARY_STATS_FD: 4871 case KVM_CAP_SYSTEM_EVENT_DATA: 4872 case KVM_CAP_DEVICE_CTRL: 4873 return 1; 4874 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4875 case KVM_CAP_MEMORY_ATTRIBUTES: 4876 return kvm_supported_mem_attributes(kvm); 4877 #endif 4878 #ifdef CONFIG_KVM_PRIVATE_MEM 4879 case KVM_CAP_GUEST_MEMFD: 4880 return !kvm || kvm_arch_has_private_mem(kvm); 4881 #endif 4882 default: 4883 break; 4884 } 4885 return kvm_vm_ioctl_check_extension(kvm, arg); 4886 } 4887 4888 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4889 { 4890 int r; 4891 4892 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4893 return -EINVAL; 4894 4895 /* the size should be power of 2 */ 4896 if (!size || (size & (size - 1))) 4897 return -EINVAL; 4898 4899 /* Should be bigger to keep the reserved entries, or a page */ 4900 if (size < kvm_dirty_ring_get_rsvd_entries() * 4901 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4902 return -EINVAL; 4903 4904 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4905 sizeof(struct kvm_dirty_gfn)) 4906 return -E2BIG; 4907 4908 /* We only allow it to set once */ 4909 if (kvm->dirty_ring_size) 4910 return -EINVAL; 4911 4912 mutex_lock(&kvm->lock); 4913 4914 if (kvm->created_vcpus) { 4915 /* We don't allow to change this value after vcpu created */ 4916 r = -EINVAL; 4917 } else { 4918 kvm->dirty_ring_size = size; 4919 r = 0; 4920 } 4921 4922 mutex_unlock(&kvm->lock); 4923 return r; 4924 } 4925 4926 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4927 { 4928 unsigned long i; 4929 struct kvm_vcpu *vcpu; 4930 int cleared = 0; 4931 4932 if (!kvm->dirty_ring_size) 4933 return -EINVAL; 4934 4935 mutex_lock(&kvm->slots_lock); 4936 4937 kvm_for_each_vcpu(i, vcpu, kvm) 4938 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4939 4940 mutex_unlock(&kvm->slots_lock); 4941 4942 if (cleared) 4943 kvm_flush_remote_tlbs(kvm); 4944 4945 return cleared; 4946 } 4947 4948 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4949 struct kvm_enable_cap *cap) 4950 { 4951 return -EINVAL; 4952 } 4953 4954 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4955 { 4956 int i; 4957 4958 lockdep_assert_held(&kvm->slots_lock); 4959 4960 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4961 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4962 return false; 4963 } 4964 4965 return true; 4966 } 4967 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4968 4969 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4970 struct kvm_enable_cap *cap) 4971 { 4972 switch (cap->cap) { 4973 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4974 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4975 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4976 4977 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4978 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4979 4980 if (cap->flags || (cap->args[0] & ~allowed_options)) 4981 return -EINVAL; 4982 kvm->manual_dirty_log_protect = cap->args[0]; 4983 return 0; 4984 } 4985 #endif 4986 case KVM_CAP_HALT_POLL: { 4987 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4988 return -EINVAL; 4989 4990 kvm->max_halt_poll_ns = cap->args[0]; 4991 4992 /* 4993 * Ensure kvm->override_halt_poll_ns does not become visible 4994 * before kvm->max_halt_poll_ns. 4995 * 4996 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4997 */ 4998 smp_wmb(); 4999 kvm->override_halt_poll_ns = true; 5000 5001 return 0; 5002 } 5003 case KVM_CAP_DIRTY_LOG_RING: 5004 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5005 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5006 return -EINVAL; 5007 5008 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5009 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5010 int r = -EINVAL; 5011 5012 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5013 !kvm->dirty_ring_size || cap->flags) 5014 return r; 5015 5016 mutex_lock(&kvm->slots_lock); 5017 5018 /* 5019 * For simplicity, allow enabling ring+bitmap if and only if 5020 * there are no memslots, e.g. to ensure all memslots allocate 5021 * a bitmap after the capability is enabled. 5022 */ 5023 if (kvm_are_all_memslots_empty(kvm)) { 5024 kvm->dirty_ring_with_bitmap = true; 5025 r = 0; 5026 } 5027 5028 mutex_unlock(&kvm->slots_lock); 5029 5030 return r; 5031 } 5032 default: 5033 return kvm_vm_ioctl_enable_cap(kvm, cap); 5034 } 5035 } 5036 5037 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5038 size_t size, loff_t *offset) 5039 { 5040 struct kvm *kvm = file->private_data; 5041 5042 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5043 &kvm_vm_stats_desc[0], &kvm->stat, 5044 sizeof(kvm->stat), user_buffer, size, offset); 5045 } 5046 5047 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5048 { 5049 struct kvm *kvm = file->private_data; 5050 5051 kvm_put_kvm(kvm); 5052 return 0; 5053 } 5054 5055 static const struct file_operations kvm_vm_stats_fops = { 5056 .owner = THIS_MODULE, 5057 .read = kvm_vm_stats_read, 5058 .release = kvm_vm_stats_release, 5059 .llseek = noop_llseek, 5060 }; 5061 5062 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5063 { 5064 int fd; 5065 struct file *file; 5066 5067 fd = get_unused_fd_flags(O_CLOEXEC); 5068 if (fd < 0) 5069 return fd; 5070 5071 file = anon_inode_getfile("kvm-vm-stats", 5072 &kvm_vm_stats_fops, kvm, O_RDONLY); 5073 if (IS_ERR(file)) { 5074 put_unused_fd(fd); 5075 return PTR_ERR(file); 5076 } 5077 5078 kvm_get_kvm(kvm); 5079 5080 file->f_mode |= FMODE_PREAD; 5081 fd_install(fd, file); 5082 5083 return fd; 5084 } 5085 5086 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5087 do { \ 5088 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5089 offsetof(struct kvm_userspace_memory_region2, field)); \ 5090 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5091 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5092 } while (0) 5093 5094 static long kvm_vm_ioctl(struct file *filp, 5095 unsigned int ioctl, unsigned long arg) 5096 { 5097 struct kvm *kvm = filp->private_data; 5098 void __user *argp = (void __user *)arg; 5099 int r; 5100 5101 if (kvm->mm != current->mm || kvm->vm_dead) 5102 return -EIO; 5103 switch (ioctl) { 5104 case KVM_CREATE_VCPU: 5105 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5106 break; 5107 case KVM_ENABLE_CAP: { 5108 struct kvm_enable_cap cap; 5109 5110 r = -EFAULT; 5111 if (copy_from_user(&cap, argp, sizeof(cap))) 5112 goto out; 5113 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5114 break; 5115 } 5116 case KVM_SET_USER_MEMORY_REGION2: 5117 case KVM_SET_USER_MEMORY_REGION: { 5118 struct kvm_userspace_memory_region2 mem; 5119 unsigned long size; 5120 5121 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5122 /* 5123 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5124 * accessed, but avoid leaking kernel memory in case of a bug. 5125 */ 5126 memset(&mem, 0, sizeof(mem)); 5127 size = sizeof(struct kvm_userspace_memory_region); 5128 } else { 5129 size = sizeof(struct kvm_userspace_memory_region2); 5130 } 5131 5132 /* Ensure the common parts of the two structs are identical. */ 5133 SANITY_CHECK_MEM_REGION_FIELD(slot); 5134 SANITY_CHECK_MEM_REGION_FIELD(flags); 5135 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5136 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5137 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5138 5139 r = -EFAULT; 5140 if (copy_from_user(&mem, argp, size)) 5141 goto out; 5142 5143 r = -EINVAL; 5144 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5145 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5146 goto out; 5147 5148 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5149 break; 5150 } 5151 case KVM_GET_DIRTY_LOG: { 5152 struct kvm_dirty_log log; 5153 5154 r = -EFAULT; 5155 if (copy_from_user(&log, argp, sizeof(log))) 5156 goto out; 5157 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5158 break; 5159 } 5160 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5161 case KVM_CLEAR_DIRTY_LOG: { 5162 struct kvm_clear_dirty_log log; 5163 5164 r = -EFAULT; 5165 if (copy_from_user(&log, argp, sizeof(log))) 5166 goto out; 5167 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5168 break; 5169 } 5170 #endif 5171 #ifdef CONFIG_KVM_MMIO 5172 case KVM_REGISTER_COALESCED_MMIO: { 5173 struct kvm_coalesced_mmio_zone zone; 5174 5175 r = -EFAULT; 5176 if (copy_from_user(&zone, argp, sizeof(zone))) 5177 goto out; 5178 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5179 break; 5180 } 5181 case KVM_UNREGISTER_COALESCED_MMIO: { 5182 struct kvm_coalesced_mmio_zone zone; 5183 5184 r = -EFAULT; 5185 if (copy_from_user(&zone, argp, sizeof(zone))) 5186 goto out; 5187 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5188 break; 5189 } 5190 #endif 5191 case KVM_IRQFD: { 5192 struct kvm_irqfd data; 5193 5194 r = -EFAULT; 5195 if (copy_from_user(&data, argp, sizeof(data))) 5196 goto out; 5197 r = kvm_irqfd(kvm, &data); 5198 break; 5199 } 5200 case KVM_IOEVENTFD: { 5201 struct kvm_ioeventfd data; 5202 5203 r = -EFAULT; 5204 if (copy_from_user(&data, argp, sizeof(data))) 5205 goto out; 5206 r = kvm_ioeventfd(kvm, &data); 5207 break; 5208 } 5209 #ifdef CONFIG_HAVE_KVM_MSI 5210 case KVM_SIGNAL_MSI: { 5211 struct kvm_msi msi; 5212 5213 r = -EFAULT; 5214 if (copy_from_user(&msi, argp, sizeof(msi))) 5215 goto out; 5216 r = kvm_send_userspace_msi(kvm, &msi); 5217 break; 5218 } 5219 #endif 5220 #ifdef __KVM_HAVE_IRQ_LINE 5221 case KVM_IRQ_LINE_STATUS: 5222 case KVM_IRQ_LINE: { 5223 struct kvm_irq_level irq_event; 5224 5225 r = -EFAULT; 5226 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5227 goto out; 5228 5229 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5230 ioctl == KVM_IRQ_LINE_STATUS); 5231 if (r) 5232 goto out; 5233 5234 r = -EFAULT; 5235 if (ioctl == KVM_IRQ_LINE_STATUS) { 5236 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5237 goto out; 5238 } 5239 5240 r = 0; 5241 break; 5242 } 5243 #endif 5244 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5245 case KVM_SET_GSI_ROUTING: { 5246 struct kvm_irq_routing routing; 5247 struct kvm_irq_routing __user *urouting; 5248 struct kvm_irq_routing_entry *entries = NULL; 5249 5250 r = -EFAULT; 5251 if (copy_from_user(&routing, argp, sizeof(routing))) 5252 goto out; 5253 r = -EINVAL; 5254 if (!kvm_arch_can_set_irq_routing(kvm)) 5255 goto out; 5256 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5257 goto out; 5258 if (routing.flags) 5259 goto out; 5260 if (routing.nr) { 5261 urouting = argp; 5262 entries = vmemdup_array_user(urouting->entries, 5263 routing.nr, sizeof(*entries)); 5264 if (IS_ERR(entries)) { 5265 r = PTR_ERR(entries); 5266 goto out; 5267 } 5268 } 5269 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5270 routing.flags); 5271 kvfree(entries); 5272 break; 5273 } 5274 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5275 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5276 case KVM_SET_MEMORY_ATTRIBUTES: { 5277 struct kvm_memory_attributes attrs; 5278 5279 r = -EFAULT; 5280 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5281 goto out; 5282 5283 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5284 break; 5285 } 5286 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5287 case KVM_CREATE_DEVICE: { 5288 struct kvm_create_device cd; 5289 5290 r = -EFAULT; 5291 if (copy_from_user(&cd, argp, sizeof(cd))) 5292 goto out; 5293 5294 r = kvm_ioctl_create_device(kvm, &cd); 5295 if (r) 5296 goto out; 5297 5298 r = -EFAULT; 5299 if (copy_to_user(argp, &cd, sizeof(cd))) 5300 goto out; 5301 5302 r = 0; 5303 break; 5304 } 5305 case KVM_CHECK_EXTENSION: 5306 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5307 break; 5308 case KVM_RESET_DIRTY_RINGS: 5309 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5310 break; 5311 case KVM_GET_STATS_FD: 5312 r = kvm_vm_ioctl_get_stats_fd(kvm); 5313 break; 5314 #ifdef CONFIG_KVM_PRIVATE_MEM 5315 case KVM_CREATE_GUEST_MEMFD: { 5316 struct kvm_create_guest_memfd guest_memfd; 5317 5318 r = -EFAULT; 5319 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5320 goto out; 5321 5322 r = kvm_gmem_create(kvm, &guest_memfd); 5323 break; 5324 } 5325 #endif 5326 default: 5327 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5328 } 5329 out: 5330 return r; 5331 } 5332 5333 #ifdef CONFIG_KVM_COMPAT 5334 struct compat_kvm_dirty_log { 5335 __u32 slot; 5336 __u32 padding1; 5337 union { 5338 compat_uptr_t dirty_bitmap; /* one bit per page */ 5339 __u64 padding2; 5340 }; 5341 }; 5342 5343 struct compat_kvm_clear_dirty_log { 5344 __u32 slot; 5345 __u32 num_pages; 5346 __u64 first_page; 5347 union { 5348 compat_uptr_t dirty_bitmap; /* one bit per page */ 5349 __u64 padding2; 5350 }; 5351 }; 5352 5353 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5354 unsigned long arg) 5355 { 5356 return -ENOTTY; 5357 } 5358 5359 static long kvm_vm_compat_ioctl(struct file *filp, 5360 unsigned int ioctl, unsigned long arg) 5361 { 5362 struct kvm *kvm = filp->private_data; 5363 int r; 5364 5365 if (kvm->mm != current->mm || kvm->vm_dead) 5366 return -EIO; 5367 5368 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5369 if (r != -ENOTTY) 5370 return r; 5371 5372 switch (ioctl) { 5373 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5374 case KVM_CLEAR_DIRTY_LOG: { 5375 struct compat_kvm_clear_dirty_log compat_log; 5376 struct kvm_clear_dirty_log log; 5377 5378 if (copy_from_user(&compat_log, (void __user *)arg, 5379 sizeof(compat_log))) 5380 return -EFAULT; 5381 log.slot = compat_log.slot; 5382 log.num_pages = compat_log.num_pages; 5383 log.first_page = compat_log.first_page; 5384 log.padding2 = compat_log.padding2; 5385 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5386 5387 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5388 break; 5389 } 5390 #endif 5391 case KVM_GET_DIRTY_LOG: { 5392 struct compat_kvm_dirty_log compat_log; 5393 struct kvm_dirty_log log; 5394 5395 if (copy_from_user(&compat_log, (void __user *)arg, 5396 sizeof(compat_log))) 5397 return -EFAULT; 5398 log.slot = compat_log.slot; 5399 log.padding1 = compat_log.padding1; 5400 log.padding2 = compat_log.padding2; 5401 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5402 5403 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5404 break; 5405 } 5406 default: 5407 r = kvm_vm_ioctl(filp, ioctl, arg); 5408 } 5409 return r; 5410 } 5411 #endif 5412 5413 static struct file_operations kvm_vm_fops = { 5414 .release = kvm_vm_release, 5415 .unlocked_ioctl = kvm_vm_ioctl, 5416 .llseek = noop_llseek, 5417 KVM_COMPAT(kvm_vm_compat_ioctl), 5418 }; 5419 5420 bool file_is_kvm(struct file *file) 5421 { 5422 return file && file->f_op == &kvm_vm_fops; 5423 } 5424 EXPORT_SYMBOL_GPL(file_is_kvm); 5425 5426 static int kvm_dev_ioctl_create_vm(unsigned long type) 5427 { 5428 char fdname[ITOA_MAX_LEN + 1]; 5429 int r, fd; 5430 struct kvm *kvm; 5431 struct file *file; 5432 5433 fd = get_unused_fd_flags(O_CLOEXEC); 5434 if (fd < 0) 5435 return fd; 5436 5437 snprintf(fdname, sizeof(fdname), "%d", fd); 5438 5439 kvm = kvm_create_vm(type, fdname); 5440 if (IS_ERR(kvm)) { 5441 r = PTR_ERR(kvm); 5442 goto put_fd; 5443 } 5444 5445 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5446 if (IS_ERR(file)) { 5447 r = PTR_ERR(file); 5448 goto put_kvm; 5449 } 5450 5451 /* 5452 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5453 * already set, with ->release() being kvm_vm_release(). In error 5454 * cases it will be called by the final fput(file) and will take 5455 * care of doing kvm_put_kvm(kvm). 5456 */ 5457 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5458 5459 fd_install(fd, file); 5460 return fd; 5461 5462 put_kvm: 5463 kvm_put_kvm(kvm); 5464 put_fd: 5465 put_unused_fd(fd); 5466 return r; 5467 } 5468 5469 static long kvm_dev_ioctl(struct file *filp, 5470 unsigned int ioctl, unsigned long arg) 5471 { 5472 int r = -EINVAL; 5473 5474 switch (ioctl) { 5475 case KVM_GET_API_VERSION: 5476 if (arg) 5477 goto out; 5478 r = KVM_API_VERSION; 5479 break; 5480 case KVM_CREATE_VM: 5481 r = kvm_dev_ioctl_create_vm(arg); 5482 break; 5483 case KVM_CHECK_EXTENSION: 5484 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5485 break; 5486 case KVM_GET_VCPU_MMAP_SIZE: 5487 if (arg) 5488 goto out; 5489 r = PAGE_SIZE; /* struct kvm_run */ 5490 #ifdef CONFIG_X86 5491 r += PAGE_SIZE; /* pio data page */ 5492 #endif 5493 #ifdef CONFIG_KVM_MMIO 5494 r += PAGE_SIZE; /* coalesced mmio ring page */ 5495 #endif 5496 break; 5497 default: 5498 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5499 } 5500 out: 5501 return r; 5502 } 5503 5504 static struct file_operations kvm_chardev_ops = { 5505 .unlocked_ioctl = kvm_dev_ioctl, 5506 .llseek = noop_llseek, 5507 KVM_COMPAT(kvm_dev_ioctl), 5508 }; 5509 5510 static struct miscdevice kvm_dev = { 5511 KVM_MINOR, 5512 "kvm", 5513 &kvm_chardev_ops, 5514 }; 5515 5516 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5517 __visible bool kvm_rebooting; 5518 EXPORT_SYMBOL_GPL(kvm_rebooting); 5519 5520 static DEFINE_PER_CPU(bool, hardware_enabled); 5521 static int kvm_usage_count; 5522 5523 static int __hardware_enable_nolock(void) 5524 { 5525 if (__this_cpu_read(hardware_enabled)) 5526 return 0; 5527 5528 if (kvm_arch_hardware_enable()) { 5529 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5530 raw_smp_processor_id()); 5531 return -EIO; 5532 } 5533 5534 __this_cpu_write(hardware_enabled, true); 5535 return 0; 5536 } 5537 5538 static void hardware_enable_nolock(void *failed) 5539 { 5540 if (__hardware_enable_nolock()) 5541 atomic_inc(failed); 5542 } 5543 5544 static int kvm_online_cpu(unsigned int cpu) 5545 { 5546 int ret = 0; 5547 5548 /* 5549 * Abort the CPU online process if hardware virtualization cannot 5550 * be enabled. Otherwise running VMs would encounter unrecoverable 5551 * errors when scheduled to this CPU. 5552 */ 5553 mutex_lock(&kvm_lock); 5554 if (kvm_usage_count) 5555 ret = __hardware_enable_nolock(); 5556 mutex_unlock(&kvm_lock); 5557 return ret; 5558 } 5559 5560 static void hardware_disable_nolock(void *junk) 5561 { 5562 /* 5563 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5564 * hardware, not just CPUs that successfully enabled hardware! 5565 */ 5566 if (!__this_cpu_read(hardware_enabled)) 5567 return; 5568 5569 kvm_arch_hardware_disable(); 5570 5571 __this_cpu_write(hardware_enabled, false); 5572 } 5573 5574 static int kvm_offline_cpu(unsigned int cpu) 5575 { 5576 mutex_lock(&kvm_lock); 5577 if (kvm_usage_count) 5578 hardware_disable_nolock(NULL); 5579 mutex_unlock(&kvm_lock); 5580 return 0; 5581 } 5582 5583 static void hardware_disable_all_nolock(void) 5584 { 5585 BUG_ON(!kvm_usage_count); 5586 5587 kvm_usage_count--; 5588 if (!kvm_usage_count) 5589 on_each_cpu(hardware_disable_nolock, NULL, 1); 5590 } 5591 5592 static void hardware_disable_all(void) 5593 { 5594 cpus_read_lock(); 5595 mutex_lock(&kvm_lock); 5596 hardware_disable_all_nolock(); 5597 mutex_unlock(&kvm_lock); 5598 cpus_read_unlock(); 5599 } 5600 5601 static int hardware_enable_all(void) 5602 { 5603 atomic_t failed = ATOMIC_INIT(0); 5604 int r; 5605 5606 /* 5607 * Do not enable hardware virtualization if the system is going down. 5608 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5609 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5610 * after kvm_reboot() is called. Note, this relies on system_state 5611 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5612 * hook instead of registering a dedicated reboot notifier (the latter 5613 * runs before system_state is updated). 5614 */ 5615 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5616 system_state == SYSTEM_RESTART) 5617 return -EBUSY; 5618 5619 /* 5620 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5621 * is called, and so on_each_cpu() between them includes the CPU that 5622 * is being onlined. As a result, hardware_enable_nolock() may get 5623 * invoked before kvm_online_cpu(), which also enables hardware if the 5624 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5625 * enable hardware multiple times. 5626 */ 5627 cpus_read_lock(); 5628 mutex_lock(&kvm_lock); 5629 5630 r = 0; 5631 5632 kvm_usage_count++; 5633 if (kvm_usage_count == 1) { 5634 on_each_cpu(hardware_enable_nolock, &failed, 1); 5635 5636 if (atomic_read(&failed)) { 5637 hardware_disable_all_nolock(); 5638 r = -EBUSY; 5639 } 5640 } 5641 5642 mutex_unlock(&kvm_lock); 5643 cpus_read_unlock(); 5644 5645 return r; 5646 } 5647 5648 static void kvm_shutdown(void) 5649 { 5650 /* 5651 * Disable hardware virtualization and set kvm_rebooting to indicate 5652 * that KVM has asynchronously disabled hardware virtualization, i.e. 5653 * that relevant errors and exceptions aren't entirely unexpected. 5654 * Some flavors of hardware virtualization need to be disabled before 5655 * transferring control to firmware (to perform shutdown/reboot), e.g. 5656 * on x86, virtualization can block INIT interrupts, which are used by 5657 * firmware to pull APs back under firmware control. Note, this path 5658 * is used for both shutdown and reboot scenarios, i.e. neither name is 5659 * 100% comprehensive. 5660 */ 5661 pr_info("kvm: exiting hardware virtualization\n"); 5662 kvm_rebooting = true; 5663 on_each_cpu(hardware_disable_nolock, NULL, 1); 5664 } 5665 5666 static int kvm_suspend(void) 5667 { 5668 /* 5669 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5670 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5671 * is stable. Assert that kvm_lock is not held to ensure the system 5672 * isn't suspended while KVM is enabling hardware. Hardware enabling 5673 * can be preempted, but the task cannot be frozen until it has dropped 5674 * all locks (userspace tasks are frozen via a fake signal). 5675 */ 5676 lockdep_assert_not_held(&kvm_lock); 5677 lockdep_assert_irqs_disabled(); 5678 5679 if (kvm_usage_count) 5680 hardware_disable_nolock(NULL); 5681 return 0; 5682 } 5683 5684 static void kvm_resume(void) 5685 { 5686 lockdep_assert_not_held(&kvm_lock); 5687 lockdep_assert_irqs_disabled(); 5688 5689 if (kvm_usage_count) 5690 WARN_ON_ONCE(__hardware_enable_nolock()); 5691 } 5692 5693 static struct syscore_ops kvm_syscore_ops = { 5694 .suspend = kvm_suspend, 5695 .resume = kvm_resume, 5696 .shutdown = kvm_shutdown, 5697 }; 5698 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5699 static int hardware_enable_all(void) 5700 { 5701 return 0; 5702 } 5703 5704 static void hardware_disable_all(void) 5705 { 5706 5707 } 5708 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5709 5710 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5711 { 5712 if (dev->ops->destructor) 5713 dev->ops->destructor(dev); 5714 } 5715 5716 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5717 { 5718 int i; 5719 5720 for (i = 0; i < bus->dev_count; i++) { 5721 struct kvm_io_device *pos = bus->range[i].dev; 5722 5723 kvm_iodevice_destructor(pos); 5724 } 5725 kfree(bus); 5726 } 5727 5728 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5729 const struct kvm_io_range *r2) 5730 { 5731 gpa_t addr1 = r1->addr; 5732 gpa_t addr2 = r2->addr; 5733 5734 if (addr1 < addr2) 5735 return -1; 5736 5737 /* If r2->len == 0, match the exact address. If r2->len != 0, 5738 * accept any overlapping write. Any order is acceptable for 5739 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5740 * we process all of them. 5741 */ 5742 if (r2->len) { 5743 addr1 += r1->len; 5744 addr2 += r2->len; 5745 } 5746 5747 if (addr1 > addr2) 5748 return 1; 5749 5750 return 0; 5751 } 5752 5753 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5754 { 5755 return kvm_io_bus_cmp(p1, p2); 5756 } 5757 5758 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5759 gpa_t addr, int len) 5760 { 5761 struct kvm_io_range *range, key; 5762 int off; 5763 5764 key = (struct kvm_io_range) { 5765 .addr = addr, 5766 .len = len, 5767 }; 5768 5769 range = bsearch(&key, bus->range, bus->dev_count, 5770 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5771 if (range == NULL) 5772 return -ENOENT; 5773 5774 off = range - bus->range; 5775 5776 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5777 off--; 5778 5779 return off; 5780 } 5781 5782 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5783 struct kvm_io_range *range, const void *val) 5784 { 5785 int idx; 5786 5787 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5788 if (idx < 0) 5789 return -EOPNOTSUPP; 5790 5791 while (idx < bus->dev_count && 5792 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5793 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5794 range->len, val)) 5795 return idx; 5796 idx++; 5797 } 5798 5799 return -EOPNOTSUPP; 5800 } 5801 5802 /* kvm_io_bus_write - called under kvm->slots_lock */ 5803 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5804 int len, const void *val) 5805 { 5806 struct kvm_io_bus *bus; 5807 struct kvm_io_range range; 5808 int r; 5809 5810 range = (struct kvm_io_range) { 5811 .addr = addr, 5812 .len = len, 5813 }; 5814 5815 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5816 if (!bus) 5817 return -ENOMEM; 5818 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5819 return r < 0 ? r : 0; 5820 } 5821 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5822 5823 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5824 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5825 gpa_t addr, int len, const void *val, long cookie) 5826 { 5827 struct kvm_io_bus *bus; 5828 struct kvm_io_range range; 5829 5830 range = (struct kvm_io_range) { 5831 .addr = addr, 5832 .len = len, 5833 }; 5834 5835 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5836 if (!bus) 5837 return -ENOMEM; 5838 5839 /* First try the device referenced by cookie. */ 5840 if ((cookie >= 0) && (cookie < bus->dev_count) && 5841 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5842 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5843 val)) 5844 return cookie; 5845 5846 /* 5847 * cookie contained garbage; fall back to search and return the 5848 * correct cookie value. 5849 */ 5850 return __kvm_io_bus_write(vcpu, bus, &range, val); 5851 } 5852 5853 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5854 struct kvm_io_range *range, void *val) 5855 { 5856 int idx; 5857 5858 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5859 if (idx < 0) 5860 return -EOPNOTSUPP; 5861 5862 while (idx < bus->dev_count && 5863 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5864 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5865 range->len, val)) 5866 return idx; 5867 idx++; 5868 } 5869 5870 return -EOPNOTSUPP; 5871 } 5872 5873 /* kvm_io_bus_read - called under kvm->slots_lock */ 5874 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5875 int len, void *val) 5876 { 5877 struct kvm_io_bus *bus; 5878 struct kvm_io_range range; 5879 int r; 5880 5881 range = (struct kvm_io_range) { 5882 .addr = addr, 5883 .len = len, 5884 }; 5885 5886 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5887 if (!bus) 5888 return -ENOMEM; 5889 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5890 return r < 0 ? r : 0; 5891 } 5892 5893 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5894 int len, struct kvm_io_device *dev) 5895 { 5896 int i; 5897 struct kvm_io_bus *new_bus, *bus; 5898 struct kvm_io_range range; 5899 5900 lockdep_assert_held(&kvm->slots_lock); 5901 5902 bus = kvm_get_bus(kvm, bus_idx); 5903 if (!bus) 5904 return -ENOMEM; 5905 5906 /* exclude ioeventfd which is limited by maximum fd */ 5907 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5908 return -ENOSPC; 5909 5910 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5911 GFP_KERNEL_ACCOUNT); 5912 if (!new_bus) 5913 return -ENOMEM; 5914 5915 range = (struct kvm_io_range) { 5916 .addr = addr, 5917 .len = len, 5918 .dev = dev, 5919 }; 5920 5921 for (i = 0; i < bus->dev_count; i++) 5922 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5923 break; 5924 5925 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5926 new_bus->dev_count++; 5927 new_bus->range[i] = range; 5928 memcpy(new_bus->range + i + 1, bus->range + i, 5929 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5930 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5931 synchronize_srcu_expedited(&kvm->srcu); 5932 kfree(bus); 5933 5934 return 0; 5935 } 5936 5937 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5938 struct kvm_io_device *dev) 5939 { 5940 int i; 5941 struct kvm_io_bus *new_bus, *bus; 5942 5943 lockdep_assert_held(&kvm->slots_lock); 5944 5945 bus = kvm_get_bus(kvm, bus_idx); 5946 if (!bus) 5947 return 0; 5948 5949 for (i = 0; i < bus->dev_count; i++) { 5950 if (bus->range[i].dev == dev) { 5951 break; 5952 } 5953 } 5954 5955 if (i == bus->dev_count) 5956 return 0; 5957 5958 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5959 GFP_KERNEL_ACCOUNT); 5960 if (new_bus) { 5961 memcpy(new_bus, bus, struct_size(bus, range, i)); 5962 new_bus->dev_count--; 5963 memcpy(new_bus->range + i, bus->range + i + 1, 5964 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5965 } 5966 5967 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5968 synchronize_srcu_expedited(&kvm->srcu); 5969 5970 /* 5971 * If NULL bus is installed, destroy the old bus, including all the 5972 * attached devices. Otherwise, destroy the caller's device only. 5973 */ 5974 if (!new_bus) { 5975 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5976 kvm_io_bus_destroy(bus); 5977 return -ENOMEM; 5978 } 5979 5980 kvm_iodevice_destructor(dev); 5981 kfree(bus); 5982 return 0; 5983 } 5984 5985 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5986 gpa_t addr) 5987 { 5988 struct kvm_io_bus *bus; 5989 int dev_idx, srcu_idx; 5990 struct kvm_io_device *iodev = NULL; 5991 5992 srcu_idx = srcu_read_lock(&kvm->srcu); 5993 5994 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5995 if (!bus) 5996 goto out_unlock; 5997 5998 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5999 if (dev_idx < 0) 6000 goto out_unlock; 6001 6002 iodev = bus->range[dev_idx].dev; 6003 6004 out_unlock: 6005 srcu_read_unlock(&kvm->srcu, srcu_idx); 6006 6007 return iodev; 6008 } 6009 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6010 6011 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6012 int (*get)(void *, u64 *), int (*set)(void *, u64), 6013 const char *fmt) 6014 { 6015 int ret; 6016 struct kvm_stat_data *stat_data = inode->i_private; 6017 6018 /* 6019 * The debugfs files are a reference to the kvm struct which 6020 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6021 * avoids the race between open and the removal of the debugfs directory. 6022 */ 6023 if (!kvm_get_kvm_safe(stat_data->kvm)) 6024 return -ENOENT; 6025 6026 ret = simple_attr_open(inode, file, get, 6027 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6028 ? set : NULL, fmt); 6029 if (ret) 6030 kvm_put_kvm(stat_data->kvm); 6031 6032 return ret; 6033 } 6034 6035 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6036 { 6037 struct kvm_stat_data *stat_data = inode->i_private; 6038 6039 simple_attr_release(inode, file); 6040 kvm_put_kvm(stat_data->kvm); 6041 6042 return 0; 6043 } 6044 6045 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6046 { 6047 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6048 6049 return 0; 6050 } 6051 6052 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6053 { 6054 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6055 6056 return 0; 6057 } 6058 6059 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6060 { 6061 unsigned long i; 6062 struct kvm_vcpu *vcpu; 6063 6064 *val = 0; 6065 6066 kvm_for_each_vcpu(i, vcpu, kvm) 6067 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6068 6069 return 0; 6070 } 6071 6072 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6073 { 6074 unsigned long i; 6075 struct kvm_vcpu *vcpu; 6076 6077 kvm_for_each_vcpu(i, vcpu, kvm) 6078 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6079 6080 return 0; 6081 } 6082 6083 static int kvm_stat_data_get(void *data, u64 *val) 6084 { 6085 int r = -EFAULT; 6086 struct kvm_stat_data *stat_data = data; 6087 6088 switch (stat_data->kind) { 6089 case KVM_STAT_VM: 6090 r = kvm_get_stat_per_vm(stat_data->kvm, 6091 stat_data->desc->desc.offset, val); 6092 break; 6093 case KVM_STAT_VCPU: 6094 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6095 stat_data->desc->desc.offset, val); 6096 break; 6097 } 6098 6099 return r; 6100 } 6101 6102 static int kvm_stat_data_clear(void *data, u64 val) 6103 { 6104 int r = -EFAULT; 6105 struct kvm_stat_data *stat_data = data; 6106 6107 if (val) 6108 return -EINVAL; 6109 6110 switch (stat_data->kind) { 6111 case KVM_STAT_VM: 6112 r = kvm_clear_stat_per_vm(stat_data->kvm, 6113 stat_data->desc->desc.offset); 6114 break; 6115 case KVM_STAT_VCPU: 6116 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6117 stat_data->desc->desc.offset); 6118 break; 6119 } 6120 6121 return r; 6122 } 6123 6124 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6125 { 6126 __simple_attr_check_format("%llu\n", 0ull); 6127 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6128 kvm_stat_data_clear, "%llu\n"); 6129 } 6130 6131 static const struct file_operations stat_fops_per_vm = { 6132 .owner = THIS_MODULE, 6133 .open = kvm_stat_data_open, 6134 .release = kvm_debugfs_release, 6135 .read = simple_attr_read, 6136 .write = simple_attr_write, 6137 .llseek = no_llseek, 6138 }; 6139 6140 static int vm_stat_get(void *_offset, u64 *val) 6141 { 6142 unsigned offset = (long)_offset; 6143 struct kvm *kvm; 6144 u64 tmp_val; 6145 6146 *val = 0; 6147 mutex_lock(&kvm_lock); 6148 list_for_each_entry(kvm, &vm_list, vm_list) { 6149 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6150 *val += tmp_val; 6151 } 6152 mutex_unlock(&kvm_lock); 6153 return 0; 6154 } 6155 6156 static int vm_stat_clear(void *_offset, u64 val) 6157 { 6158 unsigned offset = (long)_offset; 6159 struct kvm *kvm; 6160 6161 if (val) 6162 return -EINVAL; 6163 6164 mutex_lock(&kvm_lock); 6165 list_for_each_entry(kvm, &vm_list, vm_list) { 6166 kvm_clear_stat_per_vm(kvm, offset); 6167 } 6168 mutex_unlock(&kvm_lock); 6169 6170 return 0; 6171 } 6172 6173 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6174 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6175 6176 static int vcpu_stat_get(void *_offset, u64 *val) 6177 { 6178 unsigned offset = (long)_offset; 6179 struct kvm *kvm; 6180 u64 tmp_val; 6181 6182 *val = 0; 6183 mutex_lock(&kvm_lock); 6184 list_for_each_entry(kvm, &vm_list, vm_list) { 6185 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6186 *val += tmp_val; 6187 } 6188 mutex_unlock(&kvm_lock); 6189 return 0; 6190 } 6191 6192 static int vcpu_stat_clear(void *_offset, u64 val) 6193 { 6194 unsigned offset = (long)_offset; 6195 struct kvm *kvm; 6196 6197 if (val) 6198 return -EINVAL; 6199 6200 mutex_lock(&kvm_lock); 6201 list_for_each_entry(kvm, &vm_list, vm_list) { 6202 kvm_clear_stat_per_vcpu(kvm, offset); 6203 } 6204 mutex_unlock(&kvm_lock); 6205 6206 return 0; 6207 } 6208 6209 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6210 "%llu\n"); 6211 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6212 6213 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6214 { 6215 struct kobj_uevent_env *env; 6216 unsigned long long created, active; 6217 6218 if (!kvm_dev.this_device || !kvm) 6219 return; 6220 6221 mutex_lock(&kvm_lock); 6222 if (type == KVM_EVENT_CREATE_VM) { 6223 kvm_createvm_count++; 6224 kvm_active_vms++; 6225 } else if (type == KVM_EVENT_DESTROY_VM) { 6226 kvm_active_vms--; 6227 } 6228 created = kvm_createvm_count; 6229 active = kvm_active_vms; 6230 mutex_unlock(&kvm_lock); 6231 6232 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6233 if (!env) 6234 return; 6235 6236 add_uevent_var(env, "CREATED=%llu", created); 6237 add_uevent_var(env, "COUNT=%llu", active); 6238 6239 if (type == KVM_EVENT_CREATE_VM) { 6240 add_uevent_var(env, "EVENT=create"); 6241 kvm->userspace_pid = task_pid_nr(current); 6242 } else if (type == KVM_EVENT_DESTROY_VM) { 6243 add_uevent_var(env, "EVENT=destroy"); 6244 } 6245 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6246 6247 if (!IS_ERR(kvm->debugfs_dentry)) { 6248 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6249 6250 if (p) { 6251 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6252 if (!IS_ERR(tmp)) 6253 add_uevent_var(env, "STATS_PATH=%s", tmp); 6254 kfree(p); 6255 } 6256 } 6257 /* no need for checks, since we are adding at most only 5 keys */ 6258 env->envp[env->envp_idx++] = NULL; 6259 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6260 kfree(env); 6261 } 6262 6263 static void kvm_init_debug(void) 6264 { 6265 const struct file_operations *fops; 6266 const struct _kvm_stats_desc *pdesc; 6267 int i; 6268 6269 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6270 6271 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6272 pdesc = &kvm_vm_stats_desc[i]; 6273 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6274 fops = &vm_stat_fops; 6275 else 6276 fops = &vm_stat_readonly_fops; 6277 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6278 kvm_debugfs_dir, 6279 (void *)(long)pdesc->desc.offset, fops); 6280 } 6281 6282 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6283 pdesc = &kvm_vcpu_stats_desc[i]; 6284 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6285 fops = &vcpu_stat_fops; 6286 else 6287 fops = &vcpu_stat_readonly_fops; 6288 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6289 kvm_debugfs_dir, 6290 (void *)(long)pdesc->desc.offset, fops); 6291 } 6292 } 6293 6294 static inline 6295 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6296 { 6297 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6298 } 6299 6300 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6301 { 6302 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6303 6304 WRITE_ONCE(vcpu->preempted, false); 6305 WRITE_ONCE(vcpu->ready, false); 6306 6307 __this_cpu_write(kvm_running_vcpu, vcpu); 6308 kvm_arch_sched_in(vcpu, cpu); 6309 kvm_arch_vcpu_load(vcpu, cpu); 6310 } 6311 6312 static void kvm_sched_out(struct preempt_notifier *pn, 6313 struct task_struct *next) 6314 { 6315 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6316 6317 if (current->on_rq) { 6318 WRITE_ONCE(vcpu->preempted, true); 6319 WRITE_ONCE(vcpu->ready, true); 6320 } 6321 kvm_arch_vcpu_put(vcpu); 6322 __this_cpu_write(kvm_running_vcpu, NULL); 6323 } 6324 6325 /** 6326 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6327 * 6328 * We can disable preemption locally around accessing the per-CPU variable, 6329 * and use the resolved vcpu pointer after enabling preemption again, 6330 * because even if the current thread is migrated to another CPU, reading 6331 * the per-CPU value later will give us the same value as we update the 6332 * per-CPU variable in the preempt notifier handlers. 6333 */ 6334 struct kvm_vcpu *kvm_get_running_vcpu(void) 6335 { 6336 struct kvm_vcpu *vcpu; 6337 6338 preempt_disable(); 6339 vcpu = __this_cpu_read(kvm_running_vcpu); 6340 preempt_enable(); 6341 6342 return vcpu; 6343 } 6344 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6345 6346 /** 6347 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6348 */ 6349 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6350 { 6351 return &kvm_running_vcpu; 6352 } 6353 6354 #ifdef CONFIG_GUEST_PERF_EVENTS 6355 static unsigned int kvm_guest_state(void) 6356 { 6357 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6358 unsigned int state; 6359 6360 if (!kvm_arch_pmi_in_guest(vcpu)) 6361 return 0; 6362 6363 state = PERF_GUEST_ACTIVE; 6364 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6365 state |= PERF_GUEST_USER; 6366 6367 return state; 6368 } 6369 6370 static unsigned long kvm_guest_get_ip(void) 6371 { 6372 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6373 6374 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6375 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6376 return 0; 6377 6378 return kvm_arch_vcpu_get_ip(vcpu); 6379 } 6380 6381 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6382 .state = kvm_guest_state, 6383 .get_ip = kvm_guest_get_ip, 6384 .handle_intel_pt_intr = NULL, 6385 }; 6386 6387 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6388 { 6389 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6390 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6391 } 6392 void kvm_unregister_perf_callbacks(void) 6393 { 6394 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6395 } 6396 #endif 6397 6398 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6399 { 6400 int r; 6401 int cpu; 6402 6403 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6404 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6405 kvm_online_cpu, kvm_offline_cpu); 6406 if (r) 6407 return r; 6408 6409 register_syscore_ops(&kvm_syscore_ops); 6410 #endif 6411 6412 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6413 if (!vcpu_align) 6414 vcpu_align = __alignof__(struct kvm_vcpu); 6415 kvm_vcpu_cache = 6416 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6417 SLAB_ACCOUNT, 6418 offsetof(struct kvm_vcpu, arch), 6419 offsetofend(struct kvm_vcpu, stats_id) 6420 - offsetof(struct kvm_vcpu, arch), 6421 NULL); 6422 if (!kvm_vcpu_cache) { 6423 r = -ENOMEM; 6424 goto err_vcpu_cache; 6425 } 6426 6427 for_each_possible_cpu(cpu) { 6428 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6429 GFP_KERNEL, cpu_to_node(cpu))) { 6430 r = -ENOMEM; 6431 goto err_cpu_kick_mask; 6432 } 6433 } 6434 6435 r = kvm_irqfd_init(); 6436 if (r) 6437 goto err_irqfd; 6438 6439 r = kvm_async_pf_init(); 6440 if (r) 6441 goto err_async_pf; 6442 6443 kvm_chardev_ops.owner = module; 6444 kvm_vm_fops.owner = module; 6445 kvm_vcpu_fops.owner = module; 6446 kvm_device_fops.owner = module; 6447 6448 kvm_preempt_ops.sched_in = kvm_sched_in; 6449 kvm_preempt_ops.sched_out = kvm_sched_out; 6450 6451 kvm_init_debug(); 6452 6453 r = kvm_vfio_ops_init(); 6454 if (WARN_ON_ONCE(r)) 6455 goto err_vfio; 6456 6457 kvm_gmem_init(module); 6458 6459 /* 6460 * Registration _must_ be the very last thing done, as this exposes 6461 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6462 */ 6463 r = misc_register(&kvm_dev); 6464 if (r) { 6465 pr_err("kvm: misc device register failed\n"); 6466 goto err_register; 6467 } 6468 6469 return 0; 6470 6471 err_register: 6472 kvm_vfio_ops_exit(); 6473 err_vfio: 6474 kvm_async_pf_deinit(); 6475 err_async_pf: 6476 kvm_irqfd_exit(); 6477 err_irqfd: 6478 err_cpu_kick_mask: 6479 for_each_possible_cpu(cpu) 6480 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6481 kmem_cache_destroy(kvm_vcpu_cache); 6482 err_vcpu_cache: 6483 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6484 unregister_syscore_ops(&kvm_syscore_ops); 6485 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6486 #endif 6487 return r; 6488 } 6489 EXPORT_SYMBOL_GPL(kvm_init); 6490 6491 void kvm_exit(void) 6492 { 6493 int cpu; 6494 6495 /* 6496 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6497 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6498 * to KVM while the module is being stopped. 6499 */ 6500 misc_deregister(&kvm_dev); 6501 6502 debugfs_remove_recursive(kvm_debugfs_dir); 6503 for_each_possible_cpu(cpu) 6504 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6505 kmem_cache_destroy(kvm_vcpu_cache); 6506 kvm_vfio_ops_exit(); 6507 kvm_async_pf_deinit(); 6508 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6509 unregister_syscore_ops(&kvm_syscore_ops); 6510 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6511 #endif 6512 kvm_irqfd_exit(); 6513 } 6514 EXPORT_SYMBOL_GPL(kvm_exit); 6515 6516 struct kvm_vm_worker_thread_context { 6517 struct kvm *kvm; 6518 struct task_struct *parent; 6519 struct completion init_done; 6520 kvm_vm_thread_fn_t thread_fn; 6521 uintptr_t data; 6522 int err; 6523 }; 6524 6525 static int kvm_vm_worker_thread(void *context) 6526 { 6527 /* 6528 * The init_context is allocated on the stack of the parent thread, so 6529 * we have to locally copy anything that is needed beyond initialization 6530 */ 6531 struct kvm_vm_worker_thread_context *init_context = context; 6532 struct task_struct *parent; 6533 struct kvm *kvm = init_context->kvm; 6534 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6535 uintptr_t data = init_context->data; 6536 int err; 6537 6538 err = kthread_park(current); 6539 /* kthread_park(current) is never supposed to return an error */ 6540 WARN_ON(err != 0); 6541 if (err) 6542 goto init_complete; 6543 6544 err = cgroup_attach_task_all(init_context->parent, current); 6545 if (err) { 6546 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6547 __func__, err); 6548 goto init_complete; 6549 } 6550 6551 set_user_nice(current, task_nice(init_context->parent)); 6552 6553 init_complete: 6554 init_context->err = err; 6555 complete(&init_context->init_done); 6556 init_context = NULL; 6557 6558 if (err) 6559 goto out; 6560 6561 /* Wait to be woken up by the spawner before proceeding. */ 6562 kthread_parkme(); 6563 6564 if (!kthread_should_stop()) 6565 err = thread_fn(kvm, data); 6566 6567 out: 6568 /* 6569 * Move kthread back to its original cgroup to prevent it lingering in 6570 * the cgroup of the VM process, after the latter finishes its 6571 * execution. 6572 * 6573 * kthread_stop() waits on the 'exited' completion condition which is 6574 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6575 * kthread is removed from the cgroup in the cgroup_exit() which is 6576 * called after the exit_mm(). This causes the kthread_stop() to return 6577 * before the kthread actually quits the cgroup. 6578 */ 6579 rcu_read_lock(); 6580 parent = rcu_dereference(current->real_parent); 6581 get_task_struct(parent); 6582 rcu_read_unlock(); 6583 cgroup_attach_task_all(parent, current); 6584 put_task_struct(parent); 6585 6586 return err; 6587 } 6588 6589 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6590 uintptr_t data, const char *name, 6591 struct task_struct **thread_ptr) 6592 { 6593 struct kvm_vm_worker_thread_context init_context = {}; 6594 struct task_struct *thread; 6595 6596 *thread_ptr = NULL; 6597 init_context.kvm = kvm; 6598 init_context.parent = current; 6599 init_context.thread_fn = thread_fn; 6600 init_context.data = data; 6601 init_completion(&init_context.init_done); 6602 6603 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6604 "%s-%d", name, task_pid_nr(current)); 6605 if (IS_ERR(thread)) 6606 return PTR_ERR(thread); 6607 6608 /* kthread_run is never supposed to return NULL */ 6609 WARN_ON(thread == NULL); 6610 6611 wait_for_completion(&init_context.init_done); 6612 6613 if (!init_context.err) 6614 *thread_ptr = thread; 6615 6616 return init_context.err; 6617 } 6618