xref: /linux/virt/kvm/kvm_main.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 				      struct kvm_vcpu *except)
316 {
317 	struct kvm_vcpu *vcpu;
318 	struct cpumask *cpus;
319 	unsigned long i;
320 	bool called;
321 	int me;
322 
323 	me = get_cpu();
324 
325 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 	cpumask_clear(cpus);
327 
328 	kvm_for_each_vcpu(i, vcpu, kvm) {
329 		if (vcpu == except)
330 			continue;
331 		kvm_make_vcpu_request(vcpu, req, cpus, me);
332 	}
333 
334 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 	put_cpu();
336 
337 	return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 	++kvm->stat.generic.remote_tlb_flush_requests;
349 
350 	/*
351 	 * We want to publish modifications to the page tables before reading
352 	 * mode. Pairs with a memory barrier in arch-specific code.
353 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 	 *
357 	 * There is already an smp_mb__after_atomic() before
358 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 	 * barrier here.
360 	 */
361 	if (!kvm_arch_flush_remote_tlbs(kvm)
362 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 		++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 		return;
371 
372 	/*
373 	 * Fall back to a flushing entire TLBs if the architecture range-based
374 	 * TLB invalidation is unsupported or can't be performed for whatever
375 	 * reason.
376 	 */
377 	kvm_flush_remote_tlbs(kvm);
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 				   const struct kvm_memory_slot *memslot)
382 {
383 	/*
384 	 * All current use cases for flushing the TLBs for a specific memslot
385 	 * are related to dirty logging, and many do the TLB flush out of
386 	 * mmu_lock. The interaction between the various operations on memslot
387 	 * must be serialized by slots_locks to ensure the TLB flush from one
388 	 * operation is observed by any other operation on the same memslot.
389 	 */
390 	lockdep_assert_held(&kvm->slots_lock);
391 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 	kvm_arch_flush_shadow_all(kvm);
397 	kvm_arch_guest_memory_reclaimed(kvm);
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 					       gfp_t gfp_flags)
403 {
404 	gfp_flags |= mc->gfp_zero;
405 
406 	if (mc->kmem_cache)
407 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 	else
409 		return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 	void *obj;
416 
417 	if (mc->nobjs >= min)
418 		return 0;
419 
420 	if (unlikely(!mc->objects)) {
421 		if (WARN_ON_ONCE(!capacity))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587 
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
590 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 	     node;							     \
592 	     node = interval_tree_iter_next(node, start, last))	     \
593 
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 							   const struct kvm_mmu_notifier_range *range)
596 {
597 	struct kvm_mmu_notifier_return r = {
598 		.ret = false,
599 		.found_memslot = false,
600 	};
601 	struct kvm_gfn_range gfn_range;
602 	struct kvm_memory_slot *slot;
603 	struct kvm_memslots *slots;
604 	int i, idx;
605 
606 	if (WARN_ON_ONCE(range->end <= range->start))
607 		return r;
608 
609 	/* A null handler is allowed if and only if on_lock() is provided. */
610 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 			 IS_KVM_NULL_FN(range->handler)))
612 		return r;
613 
614 	idx = srcu_read_lock(&kvm->srcu);
615 
616 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 		struct interval_tree_node *node;
618 
619 		slots = __kvm_memslots(kvm, i);
620 		kvm_for_each_memslot_in_hva_range(node, slots,
621 						  range->start, range->end - 1) {
622 			unsigned long hva_start, hva_end;
623 
624 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 			hva_end = min_t(unsigned long, range->end,
627 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628 
629 			/*
630 			 * To optimize for the likely case where the address
631 			 * range is covered by zero or one memslots, don't
632 			 * bother making these conditional (to avoid writes on
633 			 * the second or later invocation of the handler).
634 			 */
635 			gfn_range.arg = range->arg;
636 			gfn_range.may_block = range->may_block;
637 
638 			/*
639 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 			 */
642 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 			gfn_range.slot = slot;
645 
646 			if (!r.found_memslot) {
647 				r.found_memslot = true;
648 				KVM_MMU_LOCK(kvm);
649 				if (!IS_KVM_NULL_FN(range->on_lock))
650 					range->on_lock(kvm);
651 
652 				if (IS_KVM_NULL_FN(range->handler))
653 					break;
654 			}
655 			r.ret |= range->handler(kvm, &gfn_range);
656 		}
657 	}
658 
659 	if (range->flush_on_ret && r.ret)
660 		kvm_flush_remote_tlbs(kvm);
661 
662 	if (r.found_memslot)
663 		KVM_MMU_UNLOCK(kvm);
664 
665 	srcu_read_unlock(&kvm->srcu, idx);
666 
667 	return r;
668 }
669 
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 						unsigned long start,
672 						unsigned long end,
673 						union kvm_mmu_notifier_arg arg,
674 						gfn_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_mmu_notifier_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.arg		= arg,
681 		.handler	= handler,
682 		.on_lock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= true,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689 
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 							 unsigned long start,
692 							 unsigned long end,
693 							 gfn_handler_t handler)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 	const struct kvm_mmu_notifier_range range = {
697 		.start		= start,
698 		.end		= end,
699 		.handler	= handler,
700 		.on_lock	= (void *)kvm_null_fn,
701 		.flush_on_ret	= false,
702 		.may_block	= false,
703 	};
704 
705 	return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707 
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710 	/*
711 	 * Skipping invalid memslots is correct if and only change_pte() is
712 	 * surrounded by invalidate_range_{start,end}(), which is currently
713 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 	 * doesn't hold references to the old PFN.
716 	 */
717 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718 
719 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 		return false;
721 
722 	return kvm_set_spte_gfn(kvm, range);
723 }
724 
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 					struct mm_struct *mm,
727 					unsigned long address,
728 					pte_t pte)
729 {
730 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 	const union kvm_mmu_notifier_arg arg = { .pte = pte };
732 
733 	trace_kvm_set_spte_hva(address);
734 
735 	/*
736 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 	 * If mmu_invalidate_in_progress is zero, then no in-progress
738 	 * invalidations, including this one, found a relevant memslot at
739 	 * start(); rechecking memslots here is unnecessary.  Note, a false
740 	 * positive (count elevated by a different invalidation) is sub-optimal
741 	 * but functionally ok.
742 	 */
743 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 		return;
746 
747 	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749 
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752 	lockdep_assert_held_write(&kvm->mmu_lock);
753 	/*
754 	 * The count increase must become visible at unlock time as no
755 	 * spte can be established without taking the mmu_lock and
756 	 * count is also read inside the mmu_lock critical section.
757 	 */
758 	kvm->mmu_invalidate_in_progress++;
759 
760 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 		kvm->mmu_invalidate_range_start = INVALID_GPA;
762 		kvm->mmu_invalidate_range_end = INVALID_GPA;
763 	}
764 }
765 
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768 	lockdep_assert_held_write(&kvm->mmu_lock);
769 
770 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771 
772 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 		kvm->mmu_invalidate_range_start = start;
774 		kvm->mmu_invalidate_range_end = end;
775 	} else {
776 		/*
777 		 * Fully tracking multiple concurrent ranges has diminishing
778 		 * returns. Keep things simple and just find the minimal range
779 		 * which includes the current and new ranges. As there won't be
780 		 * enough information to subtract a range after its invalidate
781 		 * completes, any ranges invalidated concurrently will
782 		 * accumulate and persist until all outstanding invalidates
783 		 * complete.
784 		 */
785 		kvm->mmu_invalidate_range_start =
786 			min(kvm->mmu_invalidate_range_start, start);
787 		kvm->mmu_invalidate_range_end =
788 			max(kvm->mmu_invalidate_range_end, end);
789 	}
790 }
791 
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 	return kvm_unmap_gfn_range(kvm, range);
796 }
797 
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 					const struct mmu_notifier_range *range)
800 {
801 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 	const struct kvm_mmu_notifier_range hva_range = {
803 		.start		= range->start,
804 		.end		= range->end,
805 		.handler	= kvm_mmu_unmap_gfn_range,
806 		.on_lock	= kvm_mmu_invalidate_begin,
807 		.flush_on_ret	= true,
808 		.may_block	= mmu_notifier_range_blockable(range),
809 	};
810 
811 	trace_kvm_unmap_hva_range(range->start, range->end);
812 
813 	/*
814 	 * Prevent memslot modification between range_start() and range_end()
815 	 * so that conditionally locking provides the same result in both
816 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
817 	 * adjustments will be imbalanced.
818 	 *
819 	 * Pairs with the decrement in range_end().
820 	 */
821 	spin_lock(&kvm->mn_invalidate_lock);
822 	kvm->mn_active_invalidate_count++;
823 	spin_unlock(&kvm->mn_invalidate_lock);
824 
825 	/*
826 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 	 * each cache's lock.  There are relatively few caches in existence at
829 	 * any given time, and the caches themselves can check for hva overlap,
830 	 * i.e. don't need to rely on memslot overlap checks for performance.
831 	 * Because this runs without holding mmu_lock, the pfn caches must use
832 	 * mn_active_invalidate_count (see above) instead of
833 	 * mmu_invalidate_in_progress.
834 	 */
835 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836 					  hva_range.may_block);
837 
838 	/*
839 	 * If one or more memslots were found and thus zapped, notify arch code
840 	 * that guest memory has been reclaimed.  This needs to be done *after*
841 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
842 	 */
843 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844 		kvm_arch_guest_memory_reclaimed(kvm);
845 
846 	return 0;
847 }
848 
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851 	lockdep_assert_held_write(&kvm->mmu_lock);
852 
853 	/*
854 	 * This sequence increase will notify the kvm page fault that
855 	 * the page that is going to be mapped in the spte could have
856 	 * been freed.
857 	 */
858 	kvm->mmu_invalidate_seq++;
859 	smp_wmb();
860 	/*
861 	 * The above sequence increase must be visible before the
862 	 * below count decrease, which is ensured by the smp_wmb above
863 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
864 	 */
865 	kvm->mmu_invalidate_in_progress--;
866 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867 
868 	/*
869 	 * Assert that at least one range was added between start() and end().
870 	 * Not adding a range isn't fatal, but it is a KVM bug.
871 	 */
872 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874 
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876 					const struct mmu_notifier_range *range)
877 {
878 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
879 	const struct kvm_mmu_notifier_range hva_range = {
880 		.start		= range->start,
881 		.end		= range->end,
882 		.handler	= (void *)kvm_null_fn,
883 		.on_lock	= kvm_mmu_invalidate_end,
884 		.flush_on_ret	= false,
885 		.may_block	= mmu_notifier_range_blockable(range),
886 	};
887 	bool wake;
888 
889 	__kvm_handle_hva_range(kvm, &hva_range);
890 
891 	/* Pairs with the increment in range_start(). */
892 	spin_lock(&kvm->mn_invalidate_lock);
893 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
894 		--kvm->mn_active_invalidate_count;
895 	wake = !kvm->mn_active_invalidate_count;
896 	spin_unlock(&kvm->mn_invalidate_lock);
897 
898 	/*
899 	 * There can only be one waiter, since the wait happens under
900 	 * slots_lock.
901 	 */
902 	if (wake)
903 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
904 }
905 
906 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
907 					      struct mm_struct *mm,
908 					      unsigned long start,
909 					      unsigned long end)
910 {
911 	trace_kvm_age_hva(start, end);
912 
913 	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
914 				    kvm_age_gfn);
915 }
916 
917 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
918 					struct mm_struct *mm,
919 					unsigned long start,
920 					unsigned long end)
921 {
922 	trace_kvm_age_hva(start, end);
923 
924 	/*
925 	 * Even though we do not flush TLB, this will still adversely
926 	 * affect performance on pre-Haswell Intel EPT, where there is
927 	 * no EPT Access Bit to clear so that we have to tear down EPT
928 	 * tables instead. If we find this unacceptable, we can always
929 	 * add a parameter to kvm_age_hva so that it effectively doesn't
930 	 * do anything on clear_young.
931 	 *
932 	 * Also note that currently we never issue secondary TLB flushes
933 	 * from clear_young, leaving this job up to the regular system
934 	 * cadence. If we find this inaccurate, we might come up with a
935 	 * more sophisticated heuristic later.
936 	 */
937 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
938 }
939 
940 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
941 				       struct mm_struct *mm,
942 				       unsigned long address)
943 {
944 	trace_kvm_test_age_hva(address);
945 
946 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
947 					     kvm_test_age_gfn);
948 }
949 
950 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
951 				     struct mm_struct *mm)
952 {
953 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
954 	int idx;
955 
956 	idx = srcu_read_lock(&kvm->srcu);
957 	kvm_flush_shadow_all(kvm);
958 	srcu_read_unlock(&kvm->srcu, idx);
959 }
960 
961 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
962 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
963 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
964 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
965 	.clear_young		= kvm_mmu_notifier_clear_young,
966 	.test_young		= kvm_mmu_notifier_test_young,
967 	.change_pte		= kvm_mmu_notifier_change_pte,
968 	.release		= kvm_mmu_notifier_release,
969 };
970 
971 static int kvm_init_mmu_notifier(struct kvm *kvm)
972 {
973 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
974 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
975 }
976 
977 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
978 
979 static int kvm_init_mmu_notifier(struct kvm *kvm)
980 {
981 	return 0;
982 }
983 
984 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
985 
986 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
987 static int kvm_pm_notifier_call(struct notifier_block *bl,
988 				unsigned long state,
989 				void *unused)
990 {
991 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
992 
993 	return kvm_arch_pm_notifier(kvm, state);
994 }
995 
996 static void kvm_init_pm_notifier(struct kvm *kvm)
997 {
998 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
999 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
1000 	kvm->pm_notifier.priority = INT_MAX;
1001 	register_pm_notifier(&kvm->pm_notifier);
1002 }
1003 
1004 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1005 {
1006 	unregister_pm_notifier(&kvm->pm_notifier);
1007 }
1008 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1009 static void kvm_init_pm_notifier(struct kvm *kvm)
1010 {
1011 }
1012 
1013 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1014 {
1015 }
1016 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1017 
1018 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1019 {
1020 	if (!memslot->dirty_bitmap)
1021 		return;
1022 
1023 	kvfree(memslot->dirty_bitmap);
1024 	memslot->dirty_bitmap = NULL;
1025 }
1026 
1027 /* This does not remove the slot from struct kvm_memslots data structures */
1028 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1029 {
1030 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
1031 		kvm_gmem_unbind(slot);
1032 
1033 	kvm_destroy_dirty_bitmap(slot);
1034 
1035 	kvm_arch_free_memslot(kvm, slot);
1036 
1037 	kfree(slot);
1038 }
1039 
1040 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1041 {
1042 	struct hlist_node *idnode;
1043 	struct kvm_memory_slot *memslot;
1044 	int bkt;
1045 
1046 	/*
1047 	 * The same memslot objects live in both active and inactive sets,
1048 	 * arbitrarily free using index '1' so the second invocation of this
1049 	 * function isn't operating over a structure with dangling pointers
1050 	 * (even though this function isn't actually touching them).
1051 	 */
1052 	if (!slots->node_idx)
1053 		return;
1054 
1055 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1056 		kvm_free_memslot(kvm, memslot);
1057 }
1058 
1059 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1060 {
1061 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1062 	case KVM_STATS_TYPE_INSTANT:
1063 		return 0444;
1064 	case KVM_STATS_TYPE_CUMULATIVE:
1065 	case KVM_STATS_TYPE_PEAK:
1066 	default:
1067 		return 0644;
1068 	}
1069 }
1070 
1071 
1072 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1073 {
1074 	int i;
1075 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1076 				      kvm_vcpu_stats_header.num_desc;
1077 
1078 	if (IS_ERR(kvm->debugfs_dentry))
1079 		return;
1080 
1081 	debugfs_remove_recursive(kvm->debugfs_dentry);
1082 
1083 	if (kvm->debugfs_stat_data) {
1084 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1085 			kfree(kvm->debugfs_stat_data[i]);
1086 		kfree(kvm->debugfs_stat_data);
1087 	}
1088 }
1089 
1090 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1091 {
1092 	static DEFINE_MUTEX(kvm_debugfs_lock);
1093 	struct dentry *dent;
1094 	char dir_name[ITOA_MAX_LEN * 2];
1095 	struct kvm_stat_data *stat_data;
1096 	const struct _kvm_stats_desc *pdesc;
1097 	int i, ret = -ENOMEM;
1098 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1099 				      kvm_vcpu_stats_header.num_desc;
1100 
1101 	if (!debugfs_initialized())
1102 		return 0;
1103 
1104 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1105 	mutex_lock(&kvm_debugfs_lock);
1106 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1107 	if (dent) {
1108 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1109 		dput(dent);
1110 		mutex_unlock(&kvm_debugfs_lock);
1111 		return 0;
1112 	}
1113 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1114 	mutex_unlock(&kvm_debugfs_lock);
1115 	if (IS_ERR(dent))
1116 		return 0;
1117 
1118 	kvm->debugfs_dentry = dent;
1119 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1120 					 sizeof(*kvm->debugfs_stat_data),
1121 					 GFP_KERNEL_ACCOUNT);
1122 	if (!kvm->debugfs_stat_data)
1123 		goto out_err;
1124 
1125 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1126 		pdesc = &kvm_vm_stats_desc[i];
1127 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1128 		if (!stat_data)
1129 			goto out_err;
1130 
1131 		stat_data->kvm = kvm;
1132 		stat_data->desc = pdesc;
1133 		stat_data->kind = KVM_STAT_VM;
1134 		kvm->debugfs_stat_data[i] = stat_data;
1135 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1136 				    kvm->debugfs_dentry, stat_data,
1137 				    &stat_fops_per_vm);
1138 	}
1139 
1140 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1141 		pdesc = &kvm_vcpu_stats_desc[i];
1142 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1143 		if (!stat_data)
1144 			goto out_err;
1145 
1146 		stat_data->kvm = kvm;
1147 		stat_data->desc = pdesc;
1148 		stat_data->kind = KVM_STAT_VCPU;
1149 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1150 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1151 				    kvm->debugfs_dentry, stat_data,
1152 				    &stat_fops_per_vm);
1153 	}
1154 
1155 	kvm_arch_create_vm_debugfs(kvm);
1156 	return 0;
1157 out_err:
1158 	kvm_destroy_vm_debugfs(kvm);
1159 	return ret;
1160 }
1161 
1162 /*
1163  * Called after the VM is otherwise initialized, but just before adding it to
1164  * the vm_list.
1165  */
1166 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1167 {
1168 	return 0;
1169 }
1170 
1171 /*
1172  * Called just after removing the VM from the vm_list, but before doing any
1173  * other destruction.
1174  */
1175 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1176 {
1177 }
1178 
1179 /*
1180  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1181  * be setup already, so we can create arch-specific debugfs entries under it.
1182  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1183  * a per-arch destroy interface is not needed.
1184  */
1185 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1186 {
1187 }
1188 
1189 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1190 {
1191 	struct kvm *kvm = kvm_arch_alloc_vm();
1192 	struct kvm_memslots *slots;
1193 	int r = -ENOMEM;
1194 	int i, j;
1195 
1196 	if (!kvm)
1197 		return ERR_PTR(-ENOMEM);
1198 
1199 	KVM_MMU_LOCK_INIT(kvm);
1200 	mmgrab(current->mm);
1201 	kvm->mm = current->mm;
1202 	kvm_eventfd_init(kvm);
1203 	mutex_init(&kvm->lock);
1204 	mutex_init(&kvm->irq_lock);
1205 	mutex_init(&kvm->slots_lock);
1206 	mutex_init(&kvm->slots_arch_lock);
1207 	spin_lock_init(&kvm->mn_invalidate_lock);
1208 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1209 	xa_init(&kvm->vcpu_array);
1210 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1211 	xa_init(&kvm->mem_attr_array);
1212 #endif
1213 
1214 	INIT_LIST_HEAD(&kvm->gpc_list);
1215 	spin_lock_init(&kvm->gpc_lock);
1216 
1217 	INIT_LIST_HEAD(&kvm->devices);
1218 	kvm->max_vcpus = KVM_MAX_VCPUS;
1219 
1220 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1221 
1222 	/*
1223 	 * Force subsequent debugfs file creations to fail if the VM directory
1224 	 * is not created (by kvm_create_vm_debugfs()).
1225 	 */
1226 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1227 
1228 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1229 		 task_pid_nr(current));
1230 
1231 	if (init_srcu_struct(&kvm->srcu))
1232 		goto out_err_no_srcu;
1233 	if (init_srcu_struct(&kvm->irq_srcu))
1234 		goto out_err_no_irq_srcu;
1235 
1236 	refcount_set(&kvm->users_count, 1);
1237 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1238 		for (j = 0; j < 2; j++) {
1239 			slots = &kvm->__memslots[i][j];
1240 
1241 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1242 			slots->hva_tree = RB_ROOT_CACHED;
1243 			slots->gfn_tree = RB_ROOT;
1244 			hash_init(slots->id_hash);
1245 			slots->node_idx = j;
1246 
1247 			/* Generations must be different for each address space. */
1248 			slots->generation = i;
1249 		}
1250 
1251 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1252 	}
1253 
1254 	for (i = 0; i < KVM_NR_BUSES; i++) {
1255 		rcu_assign_pointer(kvm->buses[i],
1256 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1257 		if (!kvm->buses[i])
1258 			goto out_err_no_arch_destroy_vm;
1259 	}
1260 
1261 	r = kvm_arch_init_vm(kvm, type);
1262 	if (r)
1263 		goto out_err_no_arch_destroy_vm;
1264 
1265 	r = hardware_enable_all();
1266 	if (r)
1267 		goto out_err_no_disable;
1268 
1269 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1270 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1271 #endif
1272 
1273 	r = kvm_init_mmu_notifier(kvm);
1274 	if (r)
1275 		goto out_err_no_mmu_notifier;
1276 
1277 	r = kvm_coalesced_mmio_init(kvm);
1278 	if (r < 0)
1279 		goto out_no_coalesced_mmio;
1280 
1281 	r = kvm_create_vm_debugfs(kvm, fdname);
1282 	if (r)
1283 		goto out_err_no_debugfs;
1284 
1285 	r = kvm_arch_post_init_vm(kvm);
1286 	if (r)
1287 		goto out_err;
1288 
1289 	mutex_lock(&kvm_lock);
1290 	list_add(&kvm->vm_list, &vm_list);
1291 	mutex_unlock(&kvm_lock);
1292 
1293 	preempt_notifier_inc();
1294 	kvm_init_pm_notifier(kvm);
1295 
1296 	return kvm;
1297 
1298 out_err:
1299 	kvm_destroy_vm_debugfs(kvm);
1300 out_err_no_debugfs:
1301 	kvm_coalesced_mmio_free(kvm);
1302 out_no_coalesced_mmio:
1303 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1304 	if (kvm->mmu_notifier.ops)
1305 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1306 #endif
1307 out_err_no_mmu_notifier:
1308 	hardware_disable_all();
1309 out_err_no_disable:
1310 	kvm_arch_destroy_vm(kvm);
1311 out_err_no_arch_destroy_vm:
1312 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1313 	for (i = 0; i < KVM_NR_BUSES; i++)
1314 		kfree(kvm_get_bus(kvm, i));
1315 	cleanup_srcu_struct(&kvm->irq_srcu);
1316 out_err_no_irq_srcu:
1317 	cleanup_srcu_struct(&kvm->srcu);
1318 out_err_no_srcu:
1319 	kvm_arch_free_vm(kvm);
1320 	mmdrop(current->mm);
1321 	return ERR_PTR(r);
1322 }
1323 
1324 static void kvm_destroy_devices(struct kvm *kvm)
1325 {
1326 	struct kvm_device *dev, *tmp;
1327 
1328 	/*
1329 	 * We do not need to take the kvm->lock here, because nobody else
1330 	 * has a reference to the struct kvm at this point and therefore
1331 	 * cannot access the devices list anyhow.
1332 	 */
1333 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1334 		list_del(&dev->vm_node);
1335 		dev->ops->destroy(dev);
1336 	}
1337 }
1338 
1339 static void kvm_destroy_vm(struct kvm *kvm)
1340 {
1341 	int i;
1342 	struct mm_struct *mm = kvm->mm;
1343 
1344 	kvm_destroy_pm_notifier(kvm);
1345 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1346 	kvm_destroy_vm_debugfs(kvm);
1347 	kvm_arch_sync_events(kvm);
1348 	mutex_lock(&kvm_lock);
1349 	list_del(&kvm->vm_list);
1350 	mutex_unlock(&kvm_lock);
1351 	kvm_arch_pre_destroy_vm(kvm);
1352 
1353 	kvm_free_irq_routing(kvm);
1354 	for (i = 0; i < KVM_NR_BUSES; i++) {
1355 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1356 
1357 		if (bus)
1358 			kvm_io_bus_destroy(bus);
1359 		kvm->buses[i] = NULL;
1360 	}
1361 	kvm_coalesced_mmio_free(kvm);
1362 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1363 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1364 	/*
1365 	 * At this point, pending calls to invalidate_range_start()
1366 	 * have completed but no more MMU notifiers will run, so
1367 	 * mn_active_invalidate_count may remain unbalanced.
1368 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1369 	 * last reference on KVM has been dropped, but freeing
1370 	 * memslots would deadlock without this manual intervention.
1371 	 *
1372 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1373 	 * notifier between a start() and end(), then there shouldn't be any
1374 	 * in-progress invalidations.
1375 	 */
1376 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1377 	if (kvm->mn_active_invalidate_count)
1378 		kvm->mn_active_invalidate_count = 0;
1379 	else
1380 		WARN_ON(kvm->mmu_invalidate_in_progress);
1381 #else
1382 	kvm_flush_shadow_all(kvm);
1383 #endif
1384 	kvm_arch_destroy_vm(kvm);
1385 	kvm_destroy_devices(kvm);
1386 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1387 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1388 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1389 	}
1390 	cleanup_srcu_struct(&kvm->irq_srcu);
1391 	cleanup_srcu_struct(&kvm->srcu);
1392 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1393 	xa_destroy(&kvm->mem_attr_array);
1394 #endif
1395 	kvm_arch_free_vm(kvm);
1396 	preempt_notifier_dec();
1397 	hardware_disable_all();
1398 	mmdrop(mm);
1399 }
1400 
1401 void kvm_get_kvm(struct kvm *kvm)
1402 {
1403 	refcount_inc(&kvm->users_count);
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1406 
1407 /*
1408  * Make sure the vm is not during destruction, which is a safe version of
1409  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1410  */
1411 bool kvm_get_kvm_safe(struct kvm *kvm)
1412 {
1413 	return refcount_inc_not_zero(&kvm->users_count);
1414 }
1415 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1416 
1417 void kvm_put_kvm(struct kvm *kvm)
1418 {
1419 	if (refcount_dec_and_test(&kvm->users_count))
1420 		kvm_destroy_vm(kvm);
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1423 
1424 /*
1425  * Used to put a reference that was taken on behalf of an object associated
1426  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1427  * of the new file descriptor fails and the reference cannot be transferred to
1428  * its final owner.  In such cases, the caller is still actively using @kvm and
1429  * will fail miserably if the refcount unexpectedly hits zero.
1430  */
1431 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1432 {
1433 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1436 
1437 static int kvm_vm_release(struct inode *inode, struct file *filp)
1438 {
1439 	struct kvm *kvm = filp->private_data;
1440 
1441 	kvm_irqfd_release(kvm);
1442 
1443 	kvm_put_kvm(kvm);
1444 	return 0;
1445 }
1446 
1447 /*
1448  * Allocation size is twice as large as the actual dirty bitmap size.
1449  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1450  */
1451 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1452 {
1453 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1454 
1455 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1456 	if (!memslot->dirty_bitmap)
1457 		return -ENOMEM;
1458 
1459 	return 0;
1460 }
1461 
1462 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1463 {
1464 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1465 	int node_idx_inactive = active->node_idx ^ 1;
1466 
1467 	return &kvm->__memslots[as_id][node_idx_inactive];
1468 }
1469 
1470 /*
1471  * Helper to get the address space ID when one of memslot pointers may be NULL.
1472  * This also serves as a sanity that at least one of the pointers is non-NULL,
1473  * and that their address space IDs don't diverge.
1474  */
1475 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1476 				  struct kvm_memory_slot *b)
1477 {
1478 	if (WARN_ON_ONCE(!a && !b))
1479 		return 0;
1480 
1481 	if (!a)
1482 		return b->as_id;
1483 	if (!b)
1484 		return a->as_id;
1485 
1486 	WARN_ON_ONCE(a->as_id != b->as_id);
1487 	return a->as_id;
1488 }
1489 
1490 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1491 				struct kvm_memory_slot *slot)
1492 {
1493 	struct rb_root *gfn_tree = &slots->gfn_tree;
1494 	struct rb_node **node, *parent;
1495 	int idx = slots->node_idx;
1496 
1497 	parent = NULL;
1498 	for (node = &gfn_tree->rb_node; *node; ) {
1499 		struct kvm_memory_slot *tmp;
1500 
1501 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1502 		parent = *node;
1503 		if (slot->base_gfn < tmp->base_gfn)
1504 			node = &(*node)->rb_left;
1505 		else if (slot->base_gfn > tmp->base_gfn)
1506 			node = &(*node)->rb_right;
1507 		else
1508 			BUG();
1509 	}
1510 
1511 	rb_link_node(&slot->gfn_node[idx], parent, node);
1512 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1513 }
1514 
1515 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1516 			       struct kvm_memory_slot *slot)
1517 {
1518 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1519 }
1520 
1521 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1522 				 struct kvm_memory_slot *old,
1523 				 struct kvm_memory_slot *new)
1524 {
1525 	int idx = slots->node_idx;
1526 
1527 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1528 
1529 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1530 			&slots->gfn_tree);
1531 }
1532 
1533 /*
1534  * Replace @old with @new in the inactive memslots.
1535  *
1536  * With NULL @old this simply adds @new.
1537  * With NULL @new this simply removes @old.
1538  *
1539  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1540  * appropriately.
1541  */
1542 static void kvm_replace_memslot(struct kvm *kvm,
1543 				struct kvm_memory_slot *old,
1544 				struct kvm_memory_slot *new)
1545 {
1546 	int as_id = kvm_memslots_get_as_id(old, new);
1547 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1548 	int idx = slots->node_idx;
1549 
1550 	if (old) {
1551 		hash_del(&old->id_node[idx]);
1552 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1553 
1554 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1555 			atomic_long_set(&slots->last_used_slot, (long)new);
1556 
1557 		if (!new) {
1558 			kvm_erase_gfn_node(slots, old);
1559 			return;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Initialize @new's hva range.  Do this even when replacing an @old
1565 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1566 	 */
1567 	new->hva_node[idx].start = new->userspace_addr;
1568 	new->hva_node[idx].last = new->userspace_addr +
1569 				  (new->npages << PAGE_SHIFT) - 1;
1570 
1571 	/*
1572 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1573 	 * hva_node needs to be swapped with remove+insert even though hva can't
1574 	 * change when replacing an existing slot.
1575 	 */
1576 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1577 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1578 
1579 	/*
1580 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1581 	 * switch the node in the gfn tree instead of removing the old and
1582 	 * inserting the new as two separate operations. Replacement is a
1583 	 * single O(1) operation versus two O(log(n)) operations for
1584 	 * remove+insert.
1585 	 */
1586 	if (old && old->base_gfn == new->base_gfn) {
1587 		kvm_replace_gfn_node(slots, old, new);
1588 	} else {
1589 		if (old)
1590 			kvm_erase_gfn_node(slots, old);
1591 		kvm_insert_gfn_node(slots, new);
1592 	}
1593 }
1594 
1595 /*
1596  * Flags that do not access any of the extra space of struct
1597  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1598  * only allows these.
1599  */
1600 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1601 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1602 
1603 static int check_memory_region_flags(struct kvm *kvm,
1604 				     const struct kvm_userspace_memory_region2 *mem)
1605 {
1606 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1607 
1608 	if (kvm_arch_has_private_mem(kvm))
1609 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1610 
1611 	/* Dirty logging private memory is not currently supported. */
1612 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1613 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1614 
1615 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1616 	/*
1617 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1618 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1619 	 * and KVM doesn't allow emulated MMIO for private memory.
1620 	 */
1621 	if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1622 		valid_flags |= KVM_MEM_READONLY;
1623 #endif
1624 
1625 	if (mem->flags & ~valid_flags)
1626 		return -EINVAL;
1627 
1628 	return 0;
1629 }
1630 
1631 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1632 {
1633 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1634 
1635 	/* Grab the generation from the activate memslots. */
1636 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1637 
1638 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1639 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1640 
1641 	/*
1642 	 * Do not store the new memslots while there are invalidations in
1643 	 * progress, otherwise the locking in invalidate_range_start and
1644 	 * invalidate_range_end will be unbalanced.
1645 	 */
1646 	spin_lock(&kvm->mn_invalidate_lock);
1647 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1648 	while (kvm->mn_active_invalidate_count) {
1649 		set_current_state(TASK_UNINTERRUPTIBLE);
1650 		spin_unlock(&kvm->mn_invalidate_lock);
1651 		schedule();
1652 		spin_lock(&kvm->mn_invalidate_lock);
1653 	}
1654 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1655 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1656 	spin_unlock(&kvm->mn_invalidate_lock);
1657 
1658 	/*
1659 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1660 	 * SRCU below in order to avoid deadlock with another thread
1661 	 * acquiring the slots_arch_lock in an srcu critical section.
1662 	 */
1663 	mutex_unlock(&kvm->slots_arch_lock);
1664 
1665 	synchronize_srcu_expedited(&kvm->srcu);
1666 
1667 	/*
1668 	 * Increment the new memslot generation a second time, dropping the
1669 	 * update in-progress flag and incrementing the generation based on
1670 	 * the number of address spaces.  This provides a unique and easily
1671 	 * identifiable generation number while the memslots are in flux.
1672 	 */
1673 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1674 
1675 	/*
1676 	 * Generations must be unique even across address spaces.  We do not need
1677 	 * a global counter for that, instead the generation space is evenly split
1678 	 * across address spaces.  For example, with two address spaces, address
1679 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1680 	 * use generations 1, 3, 5, ...
1681 	 */
1682 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1683 
1684 	kvm_arch_memslots_updated(kvm, gen);
1685 
1686 	slots->generation = gen;
1687 }
1688 
1689 static int kvm_prepare_memory_region(struct kvm *kvm,
1690 				     const struct kvm_memory_slot *old,
1691 				     struct kvm_memory_slot *new,
1692 				     enum kvm_mr_change change)
1693 {
1694 	int r;
1695 
1696 	/*
1697 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1698 	 * will be freed on "commit".  If logging is enabled in both old and
1699 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1700 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1701 	 * new bitmap.
1702 	 */
1703 	if (change != KVM_MR_DELETE) {
1704 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1705 			new->dirty_bitmap = NULL;
1706 		else if (old && old->dirty_bitmap)
1707 			new->dirty_bitmap = old->dirty_bitmap;
1708 		else if (kvm_use_dirty_bitmap(kvm)) {
1709 			r = kvm_alloc_dirty_bitmap(new);
1710 			if (r)
1711 				return r;
1712 
1713 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1714 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1715 		}
1716 	}
1717 
1718 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1719 
1720 	/* Free the bitmap on failure if it was allocated above. */
1721 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1722 		kvm_destroy_dirty_bitmap(new);
1723 
1724 	return r;
1725 }
1726 
1727 static void kvm_commit_memory_region(struct kvm *kvm,
1728 				     struct kvm_memory_slot *old,
1729 				     const struct kvm_memory_slot *new,
1730 				     enum kvm_mr_change change)
1731 {
1732 	int old_flags = old ? old->flags : 0;
1733 	int new_flags = new ? new->flags : 0;
1734 	/*
1735 	 * Update the total number of memslot pages before calling the arch
1736 	 * hook so that architectures can consume the result directly.
1737 	 */
1738 	if (change == KVM_MR_DELETE)
1739 		kvm->nr_memslot_pages -= old->npages;
1740 	else if (change == KVM_MR_CREATE)
1741 		kvm->nr_memslot_pages += new->npages;
1742 
1743 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1744 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1745 		atomic_set(&kvm->nr_memslots_dirty_logging,
1746 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1747 	}
1748 
1749 	kvm_arch_commit_memory_region(kvm, old, new, change);
1750 
1751 	switch (change) {
1752 	case KVM_MR_CREATE:
1753 		/* Nothing more to do. */
1754 		break;
1755 	case KVM_MR_DELETE:
1756 		/* Free the old memslot and all its metadata. */
1757 		kvm_free_memslot(kvm, old);
1758 		break;
1759 	case KVM_MR_MOVE:
1760 	case KVM_MR_FLAGS_ONLY:
1761 		/*
1762 		 * Free the dirty bitmap as needed; the below check encompasses
1763 		 * both the flags and whether a ring buffer is being used)
1764 		 */
1765 		if (old->dirty_bitmap && !new->dirty_bitmap)
1766 			kvm_destroy_dirty_bitmap(old);
1767 
1768 		/*
1769 		 * The final quirk.  Free the detached, old slot, but only its
1770 		 * memory, not any metadata.  Metadata, including arch specific
1771 		 * data, may be reused by @new.
1772 		 */
1773 		kfree(old);
1774 		break;
1775 	default:
1776 		BUG();
1777 	}
1778 }
1779 
1780 /*
1781  * Activate @new, which must be installed in the inactive slots by the caller,
1782  * by swapping the active slots and then propagating @new to @old once @old is
1783  * unreachable and can be safely modified.
1784  *
1785  * With NULL @old this simply adds @new to @active (while swapping the sets).
1786  * With NULL @new this simply removes @old from @active and frees it
1787  * (while also swapping the sets).
1788  */
1789 static void kvm_activate_memslot(struct kvm *kvm,
1790 				 struct kvm_memory_slot *old,
1791 				 struct kvm_memory_slot *new)
1792 {
1793 	int as_id = kvm_memslots_get_as_id(old, new);
1794 
1795 	kvm_swap_active_memslots(kvm, as_id);
1796 
1797 	/* Propagate the new memslot to the now inactive memslots. */
1798 	kvm_replace_memslot(kvm, old, new);
1799 }
1800 
1801 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1802 			     const struct kvm_memory_slot *src)
1803 {
1804 	dest->base_gfn = src->base_gfn;
1805 	dest->npages = src->npages;
1806 	dest->dirty_bitmap = src->dirty_bitmap;
1807 	dest->arch = src->arch;
1808 	dest->userspace_addr = src->userspace_addr;
1809 	dest->flags = src->flags;
1810 	dest->id = src->id;
1811 	dest->as_id = src->as_id;
1812 }
1813 
1814 static void kvm_invalidate_memslot(struct kvm *kvm,
1815 				   struct kvm_memory_slot *old,
1816 				   struct kvm_memory_slot *invalid_slot)
1817 {
1818 	/*
1819 	 * Mark the current slot INVALID.  As with all memslot modifications,
1820 	 * this must be done on an unreachable slot to avoid modifying the
1821 	 * current slot in the active tree.
1822 	 */
1823 	kvm_copy_memslot(invalid_slot, old);
1824 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1825 	kvm_replace_memslot(kvm, old, invalid_slot);
1826 
1827 	/*
1828 	 * Activate the slot that is now marked INVALID, but don't propagate
1829 	 * the slot to the now inactive slots. The slot is either going to be
1830 	 * deleted or recreated as a new slot.
1831 	 */
1832 	kvm_swap_active_memslots(kvm, old->as_id);
1833 
1834 	/*
1835 	 * From this point no new shadow pages pointing to a deleted, or moved,
1836 	 * memslot will be created.  Validation of sp->gfn happens in:
1837 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1838 	 *	- kvm_is_visible_gfn (mmu_check_root)
1839 	 */
1840 	kvm_arch_flush_shadow_memslot(kvm, old);
1841 	kvm_arch_guest_memory_reclaimed(kvm);
1842 
1843 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1844 	mutex_lock(&kvm->slots_arch_lock);
1845 
1846 	/*
1847 	 * Copy the arch-specific field of the newly-installed slot back to the
1848 	 * old slot as the arch data could have changed between releasing
1849 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1850 	 * above.  Writers are required to retrieve memslots *after* acquiring
1851 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1852 	 */
1853 	old->arch = invalid_slot->arch;
1854 }
1855 
1856 static void kvm_create_memslot(struct kvm *kvm,
1857 			       struct kvm_memory_slot *new)
1858 {
1859 	/* Add the new memslot to the inactive set and activate. */
1860 	kvm_replace_memslot(kvm, NULL, new);
1861 	kvm_activate_memslot(kvm, NULL, new);
1862 }
1863 
1864 static void kvm_delete_memslot(struct kvm *kvm,
1865 			       struct kvm_memory_slot *old,
1866 			       struct kvm_memory_slot *invalid_slot)
1867 {
1868 	/*
1869 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1870 	 * the "new" slot, and for the invalid version in the active slots.
1871 	 */
1872 	kvm_replace_memslot(kvm, old, NULL);
1873 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1874 }
1875 
1876 static void kvm_move_memslot(struct kvm *kvm,
1877 			     struct kvm_memory_slot *old,
1878 			     struct kvm_memory_slot *new,
1879 			     struct kvm_memory_slot *invalid_slot)
1880 {
1881 	/*
1882 	 * Replace the old memslot in the inactive slots, and then swap slots
1883 	 * and replace the current INVALID with the new as well.
1884 	 */
1885 	kvm_replace_memslot(kvm, old, new);
1886 	kvm_activate_memslot(kvm, invalid_slot, new);
1887 }
1888 
1889 static void kvm_update_flags_memslot(struct kvm *kvm,
1890 				     struct kvm_memory_slot *old,
1891 				     struct kvm_memory_slot *new)
1892 {
1893 	/*
1894 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1895 	 * an intermediate step. Instead, the old memslot is simply replaced
1896 	 * with a new, updated copy in both memslot sets.
1897 	 */
1898 	kvm_replace_memslot(kvm, old, new);
1899 	kvm_activate_memslot(kvm, old, new);
1900 }
1901 
1902 static int kvm_set_memslot(struct kvm *kvm,
1903 			   struct kvm_memory_slot *old,
1904 			   struct kvm_memory_slot *new,
1905 			   enum kvm_mr_change change)
1906 {
1907 	struct kvm_memory_slot *invalid_slot;
1908 	int r;
1909 
1910 	/*
1911 	 * Released in kvm_swap_active_memslots().
1912 	 *
1913 	 * Must be held from before the current memslots are copied until after
1914 	 * the new memslots are installed with rcu_assign_pointer, then
1915 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1916 	 *
1917 	 * When modifying memslots outside of the slots_lock, must be held
1918 	 * before reading the pointer to the current memslots until after all
1919 	 * changes to those memslots are complete.
1920 	 *
1921 	 * These rules ensure that installing new memslots does not lose
1922 	 * changes made to the previous memslots.
1923 	 */
1924 	mutex_lock(&kvm->slots_arch_lock);
1925 
1926 	/*
1927 	 * Invalidate the old slot if it's being deleted or moved.  This is
1928 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1929 	 * continue running by ensuring there are no mappings or shadow pages
1930 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1931 	 * (and without a lock), a window would exist between effecting the
1932 	 * delete/move and committing the changes in arch code where KVM or a
1933 	 * guest could access a non-existent memslot.
1934 	 *
1935 	 * Modifications are done on a temporary, unreachable slot.  The old
1936 	 * slot needs to be preserved in case a later step fails and the
1937 	 * invalidation needs to be reverted.
1938 	 */
1939 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1940 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1941 		if (!invalid_slot) {
1942 			mutex_unlock(&kvm->slots_arch_lock);
1943 			return -ENOMEM;
1944 		}
1945 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1946 	}
1947 
1948 	r = kvm_prepare_memory_region(kvm, old, new, change);
1949 	if (r) {
1950 		/*
1951 		 * For DELETE/MOVE, revert the above INVALID change.  No
1952 		 * modifications required since the original slot was preserved
1953 		 * in the inactive slots.  Changing the active memslots also
1954 		 * release slots_arch_lock.
1955 		 */
1956 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1957 			kvm_activate_memslot(kvm, invalid_slot, old);
1958 			kfree(invalid_slot);
1959 		} else {
1960 			mutex_unlock(&kvm->slots_arch_lock);
1961 		}
1962 		return r;
1963 	}
1964 
1965 	/*
1966 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1967 	 * version of the old slot.  MOVE is particularly special as it reuses
1968 	 * the old slot and returns a copy of the old slot (in working_slot).
1969 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1970 	 * old slot is detached but otherwise preserved.
1971 	 */
1972 	if (change == KVM_MR_CREATE)
1973 		kvm_create_memslot(kvm, new);
1974 	else if (change == KVM_MR_DELETE)
1975 		kvm_delete_memslot(kvm, old, invalid_slot);
1976 	else if (change == KVM_MR_MOVE)
1977 		kvm_move_memslot(kvm, old, new, invalid_slot);
1978 	else if (change == KVM_MR_FLAGS_ONLY)
1979 		kvm_update_flags_memslot(kvm, old, new);
1980 	else
1981 		BUG();
1982 
1983 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1984 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1985 		kfree(invalid_slot);
1986 
1987 	/*
1988 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1989 	 * will directly hit the final, active memslot.  Architectures are
1990 	 * responsible for knowing that new->arch may be stale.
1991 	 */
1992 	kvm_commit_memory_region(kvm, old, new, change);
1993 
1994 	return 0;
1995 }
1996 
1997 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1998 				      gfn_t start, gfn_t end)
1999 {
2000 	struct kvm_memslot_iter iter;
2001 
2002 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2003 		if (iter.slot->id != id)
2004 			return true;
2005 	}
2006 
2007 	return false;
2008 }
2009 
2010 /*
2011  * Allocate some memory and give it an address in the guest physical address
2012  * space.
2013  *
2014  * Discontiguous memory is allowed, mostly for framebuffers.
2015  *
2016  * Must be called holding kvm->slots_lock for write.
2017  */
2018 int __kvm_set_memory_region(struct kvm *kvm,
2019 			    const struct kvm_userspace_memory_region2 *mem)
2020 {
2021 	struct kvm_memory_slot *old, *new;
2022 	struct kvm_memslots *slots;
2023 	enum kvm_mr_change change;
2024 	unsigned long npages;
2025 	gfn_t base_gfn;
2026 	int as_id, id;
2027 	int r;
2028 
2029 	r = check_memory_region_flags(kvm, mem);
2030 	if (r)
2031 		return r;
2032 
2033 	as_id = mem->slot >> 16;
2034 	id = (u16)mem->slot;
2035 
2036 	/* General sanity checks */
2037 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2038 	    (mem->memory_size != (unsigned long)mem->memory_size))
2039 		return -EINVAL;
2040 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2041 		return -EINVAL;
2042 	/* We can read the guest memory with __xxx_user() later on. */
2043 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2044 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2045 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2046 			mem->memory_size))
2047 		return -EINVAL;
2048 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2049 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2050 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2051 		return -EINVAL;
2052 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2053 		return -EINVAL;
2054 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2055 		return -EINVAL;
2056 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2057 		return -EINVAL;
2058 
2059 	slots = __kvm_memslots(kvm, as_id);
2060 
2061 	/*
2062 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2063 	 * and/or destroyed by kvm_set_memslot().
2064 	 */
2065 	old = id_to_memslot(slots, id);
2066 
2067 	if (!mem->memory_size) {
2068 		if (!old || !old->npages)
2069 			return -EINVAL;
2070 
2071 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2072 			return -EIO;
2073 
2074 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2075 	}
2076 
2077 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2078 	npages = (mem->memory_size >> PAGE_SHIFT);
2079 
2080 	if (!old || !old->npages) {
2081 		change = KVM_MR_CREATE;
2082 
2083 		/*
2084 		 * To simplify KVM internals, the total number of pages across
2085 		 * all memslots must fit in an unsigned long.
2086 		 */
2087 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2088 			return -EINVAL;
2089 	} else { /* Modify an existing slot. */
2090 		/* Private memslots are immutable, they can only be deleted. */
2091 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2092 			return -EINVAL;
2093 		if ((mem->userspace_addr != old->userspace_addr) ||
2094 		    (npages != old->npages) ||
2095 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2096 			return -EINVAL;
2097 
2098 		if (base_gfn != old->base_gfn)
2099 			change = KVM_MR_MOVE;
2100 		else if (mem->flags != old->flags)
2101 			change = KVM_MR_FLAGS_ONLY;
2102 		else /* Nothing to change. */
2103 			return 0;
2104 	}
2105 
2106 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2107 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2108 		return -EEXIST;
2109 
2110 	/* Allocate a slot that will persist in the memslot. */
2111 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2112 	if (!new)
2113 		return -ENOMEM;
2114 
2115 	new->as_id = as_id;
2116 	new->id = id;
2117 	new->base_gfn = base_gfn;
2118 	new->npages = npages;
2119 	new->flags = mem->flags;
2120 	new->userspace_addr = mem->userspace_addr;
2121 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2122 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2123 		if (r)
2124 			goto out;
2125 	}
2126 
2127 	r = kvm_set_memslot(kvm, old, new, change);
2128 	if (r)
2129 		goto out_unbind;
2130 
2131 	return 0;
2132 
2133 out_unbind:
2134 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2135 		kvm_gmem_unbind(new);
2136 out:
2137 	kfree(new);
2138 	return r;
2139 }
2140 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2141 
2142 int kvm_set_memory_region(struct kvm *kvm,
2143 			  const struct kvm_userspace_memory_region2 *mem)
2144 {
2145 	int r;
2146 
2147 	mutex_lock(&kvm->slots_lock);
2148 	r = __kvm_set_memory_region(kvm, mem);
2149 	mutex_unlock(&kvm->slots_lock);
2150 	return r;
2151 }
2152 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2153 
2154 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2155 					  struct kvm_userspace_memory_region2 *mem)
2156 {
2157 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2158 		return -EINVAL;
2159 
2160 	return kvm_set_memory_region(kvm, mem);
2161 }
2162 
2163 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2164 /**
2165  * kvm_get_dirty_log - get a snapshot of dirty pages
2166  * @kvm:	pointer to kvm instance
2167  * @log:	slot id and address to which we copy the log
2168  * @is_dirty:	set to '1' if any dirty pages were found
2169  * @memslot:	set to the associated memslot, always valid on success
2170  */
2171 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2172 		      int *is_dirty, struct kvm_memory_slot **memslot)
2173 {
2174 	struct kvm_memslots *slots;
2175 	int i, as_id, id;
2176 	unsigned long n;
2177 	unsigned long any = 0;
2178 
2179 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2180 	if (!kvm_use_dirty_bitmap(kvm))
2181 		return -ENXIO;
2182 
2183 	*memslot = NULL;
2184 	*is_dirty = 0;
2185 
2186 	as_id = log->slot >> 16;
2187 	id = (u16)log->slot;
2188 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2189 		return -EINVAL;
2190 
2191 	slots = __kvm_memslots(kvm, as_id);
2192 	*memslot = id_to_memslot(slots, id);
2193 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2194 		return -ENOENT;
2195 
2196 	kvm_arch_sync_dirty_log(kvm, *memslot);
2197 
2198 	n = kvm_dirty_bitmap_bytes(*memslot);
2199 
2200 	for (i = 0; !any && i < n/sizeof(long); ++i)
2201 		any = (*memslot)->dirty_bitmap[i];
2202 
2203 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2204 		return -EFAULT;
2205 
2206 	if (any)
2207 		*is_dirty = 1;
2208 	return 0;
2209 }
2210 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2211 
2212 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2213 /**
2214  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2215  *	and reenable dirty page tracking for the corresponding pages.
2216  * @kvm:	pointer to kvm instance
2217  * @log:	slot id and address to which we copy the log
2218  *
2219  * We need to keep it in mind that VCPU threads can write to the bitmap
2220  * concurrently. So, to avoid losing track of dirty pages we keep the
2221  * following order:
2222  *
2223  *    1. Take a snapshot of the bit and clear it if needed.
2224  *    2. Write protect the corresponding page.
2225  *    3. Copy the snapshot to the userspace.
2226  *    4. Upon return caller flushes TLB's if needed.
2227  *
2228  * Between 2 and 4, the guest may write to the page using the remaining TLB
2229  * entry.  This is not a problem because the page is reported dirty using
2230  * the snapshot taken before and step 4 ensures that writes done after
2231  * exiting to userspace will be logged for the next call.
2232  *
2233  */
2234 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2235 {
2236 	struct kvm_memslots *slots;
2237 	struct kvm_memory_slot *memslot;
2238 	int i, as_id, id;
2239 	unsigned long n;
2240 	unsigned long *dirty_bitmap;
2241 	unsigned long *dirty_bitmap_buffer;
2242 	bool flush;
2243 
2244 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2245 	if (!kvm_use_dirty_bitmap(kvm))
2246 		return -ENXIO;
2247 
2248 	as_id = log->slot >> 16;
2249 	id = (u16)log->slot;
2250 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2251 		return -EINVAL;
2252 
2253 	slots = __kvm_memslots(kvm, as_id);
2254 	memslot = id_to_memslot(slots, id);
2255 	if (!memslot || !memslot->dirty_bitmap)
2256 		return -ENOENT;
2257 
2258 	dirty_bitmap = memslot->dirty_bitmap;
2259 
2260 	kvm_arch_sync_dirty_log(kvm, memslot);
2261 
2262 	n = kvm_dirty_bitmap_bytes(memslot);
2263 	flush = false;
2264 	if (kvm->manual_dirty_log_protect) {
2265 		/*
2266 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2267 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2268 		 * is some code duplication between this function and
2269 		 * kvm_get_dirty_log, but hopefully all architecture
2270 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2271 		 * can be eliminated.
2272 		 */
2273 		dirty_bitmap_buffer = dirty_bitmap;
2274 	} else {
2275 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2276 		memset(dirty_bitmap_buffer, 0, n);
2277 
2278 		KVM_MMU_LOCK(kvm);
2279 		for (i = 0; i < n / sizeof(long); i++) {
2280 			unsigned long mask;
2281 			gfn_t offset;
2282 
2283 			if (!dirty_bitmap[i])
2284 				continue;
2285 
2286 			flush = true;
2287 			mask = xchg(&dirty_bitmap[i], 0);
2288 			dirty_bitmap_buffer[i] = mask;
2289 
2290 			offset = i * BITS_PER_LONG;
2291 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2292 								offset, mask);
2293 		}
2294 		KVM_MMU_UNLOCK(kvm);
2295 	}
2296 
2297 	if (flush)
2298 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2299 
2300 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2301 		return -EFAULT;
2302 	return 0;
2303 }
2304 
2305 
2306 /**
2307  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2308  * @kvm: kvm instance
2309  * @log: slot id and address to which we copy the log
2310  *
2311  * Steps 1-4 below provide general overview of dirty page logging. See
2312  * kvm_get_dirty_log_protect() function description for additional details.
2313  *
2314  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2315  * always flush the TLB (step 4) even if previous step failed  and the dirty
2316  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2317  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2318  * writes will be marked dirty for next log read.
2319  *
2320  *   1. Take a snapshot of the bit and clear it if needed.
2321  *   2. Write protect the corresponding page.
2322  *   3. Copy the snapshot to the userspace.
2323  *   4. Flush TLB's if needed.
2324  */
2325 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2326 				      struct kvm_dirty_log *log)
2327 {
2328 	int r;
2329 
2330 	mutex_lock(&kvm->slots_lock);
2331 
2332 	r = kvm_get_dirty_log_protect(kvm, log);
2333 
2334 	mutex_unlock(&kvm->slots_lock);
2335 	return r;
2336 }
2337 
2338 /**
2339  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2340  *	and reenable dirty page tracking for the corresponding pages.
2341  * @kvm:	pointer to kvm instance
2342  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2343  */
2344 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2345 				       struct kvm_clear_dirty_log *log)
2346 {
2347 	struct kvm_memslots *slots;
2348 	struct kvm_memory_slot *memslot;
2349 	int as_id, id;
2350 	gfn_t offset;
2351 	unsigned long i, n;
2352 	unsigned long *dirty_bitmap;
2353 	unsigned long *dirty_bitmap_buffer;
2354 	bool flush;
2355 
2356 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2357 	if (!kvm_use_dirty_bitmap(kvm))
2358 		return -ENXIO;
2359 
2360 	as_id = log->slot >> 16;
2361 	id = (u16)log->slot;
2362 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2363 		return -EINVAL;
2364 
2365 	if (log->first_page & 63)
2366 		return -EINVAL;
2367 
2368 	slots = __kvm_memslots(kvm, as_id);
2369 	memslot = id_to_memslot(slots, id);
2370 	if (!memslot || !memslot->dirty_bitmap)
2371 		return -ENOENT;
2372 
2373 	dirty_bitmap = memslot->dirty_bitmap;
2374 
2375 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2376 
2377 	if (log->first_page > memslot->npages ||
2378 	    log->num_pages > memslot->npages - log->first_page ||
2379 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2380 	    return -EINVAL;
2381 
2382 	kvm_arch_sync_dirty_log(kvm, memslot);
2383 
2384 	flush = false;
2385 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2386 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2387 		return -EFAULT;
2388 
2389 	KVM_MMU_LOCK(kvm);
2390 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2391 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2392 	     i++, offset += BITS_PER_LONG) {
2393 		unsigned long mask = *dirty_bitmap_buffer++;
2394 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2395 		if (!mask)
2396 			continue;
2397 
2398 		mask &= atomic_long_fetch_andnot(mask, p);
2399 
2400 		/*
2401 		 * mask contains the bits that really have been cleared.  This
2402 		 * never includes any bits beyond the length of the memslot (if
2403 		 * the length is not aligned to 64 pages), therefore it is not
2404 		 * a problem if userspace sets them in log->dirty_bitmap.
2405 		*/
2406 		if (mask) {
2407 			flush = true;
2408 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2409 								offset, mask);
2410 		}
2411 	}
2412 	KVM_MMU_UNLOCK(kvm);
2413 
2414 	if (flush)
2415 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2416 
2417 	return 0;
2418 }
2419 
2420 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2421 					struct kvm_clear_dirty_log *log)
2422 {
2423 	int r;
2424 
2425 	mutex_lock(&kvm->slots_lock);
2426 
2427 	r = kvm_clear_dirty_log_protect(kvm, log);
2428 
2429 	mutex_unlock(&kvm->slots_lock);
2430 	return r;
2431 }
2432 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2433 
2434 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2435 /*
2436  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2437  * matching @attrs.
2438  */
2439 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2440 				     unsigned long attrs)
2441 {
2442 	XA_STATE(xas, &kvm->mem_attr_array, start);
2443 	unsigned long index;
2444 	bool has_attrs;
2445 	void *entry;
2446 
2447 	rcu_read_lock();
2448 
2449 	if (!attrs) {
2450 		has_attrs = !xas_find(&xas, end - 1);
2451 		goto out;
2452 	}
2453 
2454 	has_attrs = true;
2455 	for (index = start; index < end; index++) {
2456 		do {
2457 			entry = xas_next(&xas);
2458 		} while (xas_retry(&xas, entry));
2459 
2460 		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2461 			has_attrs = false;
2462 			break;
2463 		}
2464 	}
2465 
2466 out:
2467 	rcu_read_unlock();
2468 	return has_attrs;
2469 }
2470 
2471 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2472 {
2473 	if (!kvm || kvm_arch_has_private_mem(kvm))
2474 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2475 
2476 	return 0;
2477 }
2478 
2479 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2480 						 struct kvm_mmu_notifier_range *range)
2481 {
2482 	struct kvm_gfn_range gfn_range;
2483 	struct kvm_memory_slot *slot;
2484 	struct kvm_memslots *slots;
2485 	struct kvm_memslot_iter iter;
2486 	bool found_memslot = false;
2487 	bool ret = false;
2488 	int i;
2489 
2490 	gfn_range.arg = range->arg;
2491 	gfn_range.may_block = range->may_block;
2492 
2493 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2494 		slots = __kvm_memslots(kvm, i);
2495 
2496 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2497 			slot = iter.slot;
2498 			gfn_range.slot = slot;
2499 
2500 			gfn_range.start = max(range->start, slot->base_gfn);
2501 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2502 			if (gfn_range.start >= gfn_range.end)
2503 				continue;
2504 
2505 			if (!found_memslot) {
2506 				found_memslot = true;
2507 				KVM_MMU_LOCK(kvm);
2508 				if (!IS_KVM_NULL_FN(range->on_lock))
2509 					range->on_lock(kvm);
2510 			}
2511 
2512 			ret |= range->handler(kvm, &gfn_range);
2513 		}
2514 	}
2515 
2516 	if (range->flush_on_ret && ret)
2517 		kvm_flush_remote_tlbs(kvm);
2518 
2519 	if (found_memslot)
2520 		KVM_MMU_UNLOCK(kvm);
2521 }
2522 
2523 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2524 					  struct kvm_gfn_range *range)
2525 {
2526 	/*
2527 	 * Unconditionally add the range to the invalidation set, regardless of
2528 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2529 	 * if KVM supports RWX attributes in the future and the attributes are
2530 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2531 	 * adding the range allows KVM to require that MMU invalidations add at
2532 	 * least one range between begin() and end(), e.g. allows KVM to detect
2533 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2534 	 * but it's not obvious that allowing new mappings while the attributes
2535 	 * are in flux is desirable or worth the complexity.
2536 	 */
2537 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2538 
2539 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2540 }
2541 
2542 /* Set @attributes for the gfn range [@start, @end). */
2543 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2544 				     unsigned long attributes)
2545 {
2546 	struct kvm_mmu_notifier_range pre_set_range = {
2547 		.start = start,
2548 		.end = end,
2549 		.handler = kvm_pre_set_memory_attributes,
2550 		.on_lock = kvm_mmu_invalidate_begin,
2551 		.flush_on_ret = true,
2552 		.may_block = true,
2553 	};
2554 	struct kvm_mmu_notifier_range post_set_range = {
2555 		.start = start,
2556 		.end = end,
2557 		.arg.attributes = attributes,
2558 		.handler = kvm_arch_post_set_memory_attributes,
2559 		.on_lock = kvm_mmu_invalidate_end,
2560 		.may_block = true,
2561 	};
2562 	unsigned long i;
2563 	void *entry;
2564 	int r = 0;
2565 
2566 	entry = attributes ? xa_mk_value(attributes) : NULL;
2567 
2568 	mutex_lock(&kvm->slots_lock);
2569 
2570 	/* Nothing to do if the entire range as the desired attributes. */
2571 	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2572 		goto out_unlock;
2573 
2574 	/*
2575 	 * Reserve memory ahead of time to avoid having to deal with failures
2576 	 * partway through setting the new attributes.
2577 	 */
2578 	for (i = start; i < end; i++) {
2579 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2580 		if (r)
2581 			goto out_unlock;
2582 	}
2583 
2584 	kvm_handle_gfn_range(kvm, &pre_set_range);
2585 
2586 	for (i = start; i < end; i++) {
2587 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2588 				    GFP_KERNEL_ACCOUNT));
2589 		KVM_BUG_ON(r, kvm);
2590 	}
2591 
2592 	kvm_handle_gfn_range(kvm, &post_set_range);
2593 
2594 out_unlock:
2595 	mutex_unlock(&kvm->slots_lock);
2596 
2597 	return r;
2598 }
2599 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2600 					   struct kvm_memory_attributes *attrs)
2601 {
2602 	gfn_t start, end;
2603 
2604 	/* flags is currently not used. */
2605 	if (attrs->flags)
2606 		return -EINVAL;
2607 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2608 		return -EINVAL;
2609 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2610 		return -EINVAL;
2611 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2612 		return -EINVAL;
2613 
2614 	start = attrs->address >> PAGE_SHIFT;
2615 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2616 
2617 	/*
2618 	 * xarray tracks data using "unsigned long", and as a result so does
2619 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2620 	 * architectures.
2621 	 */
2622 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2623 
2624 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2625 }
2626 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2627 
2628 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2629 {
2630 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2631 }
2632 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2633 
2634 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2635 {
2636 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2637 	u64 gen = slots->generation;
2638 	struct kvm_memory_slot *slot;
2639 
2640 	/*
2641 	 * This also protects against using a memslot from a different address space,
2642 	 * since different address spaces have different generation numbers.
2643 	 */
2644 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2645 		vcpu->last_used_slot = NULL;
2646 		vcpu->last_used_slot_gen = gen;
2647 	}
2648 
2649 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2650 	if (slot)
2651 		return slot;
2652 
2653 	/*
2654 	 * Fall back to searching all memslots. We purposely use
2655 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2656 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2657 	 */
2658 	slot = search_memslots(slots, gfn, false);
2659 	if (slot) {
2660 		vcpu->last_used_slot = slot;
2661 		return slot;
2662 	}
2663 
2664 	return NULL;
2665 }
2666 
2667 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2668 {
2669 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2670 
2671 	return kvm_is_visible_memslot(memslot);
2672 }
2673 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2674 
2675 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2676 {
2677 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2678 
2679 	return kvm_is_visible_memslot(memslot);
2680 }
2681 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2682 
2683 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2684 {
2685 	struct vm_area_struct *vma;
2686 	unsigned long addr, size;
2687 
2688 	size = PAGE_SIZE;
2689 
2690 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2691 	if (kvm_is_error_hva(addr))
2692 		return PAGE_SIZE;
2693 
2694 	mmap_read_lock(current->mm);
2695 	vma = find_vma(current->mm, addr);
2696 	if (!vma)
2697 		goto out;
2698 
2699 	size = vma_kernel_pagesize(vma);
2700 
2701 out:
2702 	mmap_read_unlock(current->mm);
2703 
2704 	return size;
2705 }
2706 
2707 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2708 {
2709 	return slot->flags & KVM_MEM_READONLY;
2710 }
2711 
2712 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2713 				       gfn_t *nr_pages, bool write)
2714 {
2715 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2716 		return KVM_HVA_ERR_BAD;
2717 
2718 	if (memslot_is_readonly(slot) && write)
2719 		return KVM_HVA_ERR_RO_BAD;
2720 
2721 	if (nr_pages)
2722 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2723 
2724 	return __gfn_to_hva_memslot(slot, gfn);
2725 }
2726 
2727 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2728 				     gfn_t *nr_pages)
2729 {
2730 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2731 }
2732 
2733 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2734 					gfn_t gfn)
2735 {
2736 	return gfn_to_hva_many(slot, gfn, NULL);
2737 }
2738 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2739 
2740 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2741 {
2742 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2743 }
2744 EXPORT_SYMBOL_GPL(gfn_to_hva);
2745 
2746 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2747 {
2748 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2749 }
2750 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2751 
2752 /*
2753  * Return the hva of a @gfn and the R/W attribute if possible.
2754  *
2755  * @slot: the kvm_memory_slot which contains @gfn
2756  * @gfn: the gfn to be translated
2757  * @writable: used to return the read/write attribute of the @slot if the hva
2758  * is valid and @writable is not NULL
2759  */
2760 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2761 				      gfn_t gfn, bool *writable)
2762 {
2763 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2764 
2765 	if (!kvm_is_error_hva(hva) && writable)
2766 		*writable = !memslot_is_readonly(slot);
2767 
2768 	return hva;
2769 }
2770 
2771 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2772 {
2773 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2774 
2775 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2776 }
2777 
2778 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2779 {
2780 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2781 
2782 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2783 }
2784 
2785 static inline int check_user_page_hwpoison(unsigned long addr)
2786 {
2787 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2788 
2789 	rc = get_user_pages(addr, 1, flags, NULL);
2790 	return rc == -EHWPOISON;
2791 }
2792 
2793 /*
2794  * The fast path to get the writable pfn which will be stored in @pfn,
2795  * true indicates success, otherwise false is returned.  It's also the
2796  * only part that runs if we can in atomic context.
2797  */
2798 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2799 			    bool *writable, kvm_pfn_t *pfn)
2800 {
2801 	struct page *page[1];
2802 
2803 	/*
2804 	 * Fast pin a writable pfn only if it is a write fault request
2805 	 * or the caller allows to map a writable pfn for a read fault
2806 	 * request.
2807 	 */
2808 	if (!(write_fault || writable))
2809 		return false;
2810 
2811 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2812 		*pfn = page_to_pfn(page[0]);
2813 
2814 		if (writable)
2815 			*writable = true;
2816 		return true;
2817 	}
2818 
2819 	return false;
2820 }
2821 
2822 /*
2823  * The slow path to get the pfn of the specified host virtual address,
2824  * 1 indicates success, -errno is returned if error is detected.
2825  */
2826 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2827 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2828 {
2829 	/*
2830 	 * When a VCPU accesses a page that is not mapped into the secondary
2831 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2832 	 * make progress. We always want to honor NUMA hinting faults in that
2833 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2834 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2835 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2836 	 *
2837 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2838 	 * implicitly honor NUMA hinting faults and don't need this flag.
2839 	 */
2840 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2841 	struct page *page;
2842 	int npages;
2843 
2844 	might_sleep();
2845 
2846 	if (writable)
2847 		*writable = write_fault;
2848 
2849 	if (write_fault)
2850 		flags |= FOLL_WRITE;
2851 	if (async)
2852 		flags |= FOLL_NOWAIT;
2853 	if (interruptible)
2854 		flags |= FOLL_INTERRUPTIBLE;
2855 
2856 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2857 	if (npages != 1)
2858 		return npages;
2859 
2860 	/* map read fault as writable if possible */
2861 	if (unlikely(!write_fault) && writable) {
2862 		struct page *wpage;
2863 
2864 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2865 			*writable = true;
2866 			put_page(page);
2867 			page = wpage;
2868 		}
2869 	}
2870 	*pfn = page_to_pfn(page);
2871 	return npages;
2872 }
2873 
2874 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2875 {
2876 	if (unlikely(!(vma->vm_flags & VM_READ)))
2877 		return false;
2878 
2879 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2880 		return false;
2881 
2882 	return true;
2883 }
2884 
2885 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2886 {
2887 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2888 
2889 	if (!page)
2890 		return 1;
2891 
2892 	return get_page_unless_zero(page);
2893 }
2894 
2895 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2896 			       unsigned long addr, bool write_fault,
2897 			       bool *writable, kvm_pfn_t *p_pfn)
2898 {
2899 	kvm_pfn_t pfn;
2900 	pte_t *ptep;
2901 	pte_t pte;
2902 	spinlock_t *ptl;
2903 	int r;
2904 
2905 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2906 	if (r) {
2907 		/*
2908 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2909 		 * not call the fault handler, so do it here.
2910 		 */
2911 		bool unlocked = false;
2912 		r = fixup_user_fault(current->mm, addr,
2913 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2914 				     &unlocked);
2915 		if (unlocked)
2916 			return -EAGAIN;
2917 		if (r)
2918 			return r;
2919 
2920 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2921 		if (r)
2922 			return r;
2923 	}
2924 
2925 	pte = ptep_get(ptep);
2926 
2927 	if (write_fault && !pte_write(pte)) {
2928 		pfn = KVM_PFN_ERR_RO_FAULT;
2929 		goto out;
2930 	}
2931 
2932 	if (writable)
2933 		*writable = pte_write(pte);
2934 	pfn = pte_pfn(pte);
2935 
2936 	/*
2937 	 * Get a reference here because callers of *hva_to_pfn* and
2938 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2939 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2940 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2941 	 * simply do nothing for reserved pfns.
2942 	 *
2943 	 * Whoever called remap_pfn_range is also going to call e.g.
2944 	 * unmap_mapping_range before the underlying pages are freed,
2945 	 * causing a call to our MMU notifier.
2946 	 *
2947 	 * Certain IO or PFNMAP mappings can be backed with valid
2948 	 * struct pages, but be allocated without refcounting e.g.,
2949 	 * tail pages of non-compound higher order allocations, which
2950 	 * would then underflow the refcount when the caller does the
2951 	 * required put_page. Don't allow those pages here.
2952 	 */
2953 	if (!kvm_try_get_pfn(pfn))
2954 		r = -EFAULT;
2955 
2956 out:
2957 	pte_unmap_unlock(ptep, ptl);
2958 	*p_pfn = pfn;
2959 
2960 	return r;
2961 }
2962 
2963 /*
2964  * Pin guest page in memory and return its pfn.
2965  * @addr: host virtual address which maps memory to the guest
2966  * @atomic: whether this function can sleep
2967  * @interruptible: whether the process can be interrupted by non-fatal signals
2968  * @async: whether this function need to wait IO complete if the
2969  *         host page is not in the memory
2970  * @write_fault: whether we should get a writable host page
2971  * @writable: whether it allows to map a writable host page for !@write_fault
2972  *
2973  * The function will map a writable host page for these two cases:
2974  * 1): @write_fault = true
2975  * 2): @write_fault = false && @writable, @writable will tell the caller
2976  *     whether the mapping is writable.
2977  */
2978 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2979 		     bool *async, bool write_fault, bool *writable)
2980 {
2981 	struct vm_area_struct *vma;
2982 	kvm_pfn_t pfn;
2983 	int npages, r;
2984 
2985 	/* we can do it either atomically or asynchronously, not both */
2986 	BUG_ON(atomic && async);
2987 
2988 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2989 		return pfn;
2990 
2991 	if (atomic)
2992 		return KVM_PFN_ERR_FAULT;
2993 
2994 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2995 				 writable, &pfn);
2996 	if (npages == 1)
2997 		return pfn;
2998 	if (npages == -EINTR)
2999 		return KVM_PFN_ERR_SIGPENDING;
3000 
3001 	mmap_read_lock(current->mm);
3002 	if (npages == -EHWPOISON ||
3003 	      (!async && check_user_page_hwpoison(addr))) {
3004 		pfn = KVM_PFN_ERR_HWPOISON;
3005 		goto exit;
3006 	}
3007 
3008 retry:
3009 	vma = vma_lookup(current->mm, addr);
3010 
3011 	if (vma == NULL)
3012 		pfn = KVM_PFN_ERR_FAULT;
3013 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3014 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3015 		if (r == -EAGAIN)
3016 			goto retry;
3017 		if (r < 0)
3018 			pfn = KVM_PFN_ERR_FAULT;
3019 	} else {
3020 		if (async && vma_is_valid(vma, write_fault))
3021 			*async = true;
3022 		pfn = KVM_PFN_ERR_FAULT;
3023 	}
3024 exit:
3025 	mmap_read_unlock(current->mm);
3026 	return pfn;
3027 }
3028 
3029 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3030 			       bool atomic, bool interruptible, bool *async,
3031 			       bool write_fault, bool *writable, hva_t *hva)
3032 {
3033 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3034 
3035 	if (hva)
3036 		*hva = addr;
3037 
3038 	if (addr == KVM_HVA_ERR_RO_BAD) {
3039 		if (writable)
3040 			*writable = false;
3041 		return KVM_PFN_ERR_RO_FAULT;
3042 	}
3043 
3044 	if (kvm_is_error_hva(addr)) {
3045 		if (writable)
3046 			*writable = false;
3047 		return KVM_PFN_NOSLOT;
3048 	}
3049 
3050 	/* Do not map writable pfn in the readonly memslot. */
3051 	if (writable && memslot_is_readonly(slot)) {
3052 		*writable = false;
3053 		writable = NULL;
3054 	}
3055 
3056 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3057 			  writable);
3058 }
3059 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3060 
3061 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3062 		      bool *writable)
3063 {
3064 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3065 				    NULL, write_fault, writable, NULL);
3066 }
3067 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3068 
3069 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3070 {
3071 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3072 				    NULL, NULL);
3073 }
3074 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3075 
3076 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3077 {
3078 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3079 				    NULL, NULL);
3080 }
3081 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3082 
3083 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3084 {
3085 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3086 }
3087 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3088 
3089 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3090 {
3091 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3092 }
3093 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3094 
3095 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3096 {
3097 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3098 }
3099 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3100 
3101 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3102 			    struct page **pages, int nr_pages)
3103 {
3104 	unsigned long addr;
3105 	gfn_t entry = 0;
3106 
3107 	addr = gfn_to_hva_many(slot, gfn, &entry);
3108 	if (kvm_is_error_hva(addr))
3109 		return -1;
3110 
3111 	if (entry < nr_pages)
3112 		return 0;
3113 
3114 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3115 }
3116 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3117 
3118 /*
3119  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3120  * backed by 'struct page'.  A valid example is if the backing memslot is
3121  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3122  * been elevated by gfn_to_pfn().
3123  */
3124 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3125 {
3126 	struct page *page;
3127 	kvm_pfn_t pfn;
3128 
3129 	pfn = gfn_to_pfn(kvm, gfn);
3130 
3131 	if (is_error_noslot_pfn(pfn))
3132 		return KVM_ERR_PTR_BAD_PAGE;
3133 
3134 	page = kvm_pfn_to_refcounted_page(pfn);
3135 	if (!page)
3136 		return KVM_ERR_PTR_BAD_PAGE;
3137 
3138 	return page;
3139 }
3140 EXPORT_SYMBOL_GPL(gfn_to_page);
3141 
3142 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3143 {
3144 	if (dirty)
3145 		kvm_release_pfn_dirty(pfn);
3146 	else
3147 		kvm_release_pfn_clean(pfn);
3148 }
3149 
3150 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3151 {
3152 	kvm_pfn_t pfn;
3153 	void *hva = NULL;
3154 	struct page *page = KVM_UNMAPPED_PAGE;
3155 
3156 	if (!map)
3157 		return -EINVAL;
3158 
3159 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3160 	if (is_error_noslot_pfn(pfn))
3161 		return -EINVAL;
3162 
3163 	if (pfn_valid(pfn)) {
3164 		page = pfn_to_page(pfn);
3165 		hva = kmap(page);
3166 #ifdef CONFIG_HAS_IOMEM
3167 	} else {
3168 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3169 #endif
3170 	}
3171 
3172 	if (!hva)
3173 		return -EFAULT;
3174 
3175 	map->page = page;
3176 	map->hva = hva;
3177 	map->pfn = pfn;
3178 	map->gfn = gfn;
3179 
3180 	return 0;
3181 }
3182 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3183 
3184 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3185 {
3186 	if (!map)
3187 		return;
3188 
3189 	if (!map->hva)
3190 		return;
3191 
3192 	if (map->page != KVM_UNMAPPED_PAGE)
3193 		kunmap(map->page);
3194 #ifdef CONFIG_HAS_IOMEM
3195 	else
3196 		memunmap(map->hva);
3197 #endif
3198 
3199 	if (dirty)
3200 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3201 
3202 	kvm_release_pfn(map->pfn, dirty);
3203 
3204 	map->hva = NULL;
3205 	map->page = NULL;
3206 }
3207 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3208 
3209 static bool kvm_is_ad_tracked_page(struct page *page)
3210 {
3211 	/*
3212 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3213 	 * touched (e.g. set dirty) except by its owner".
3214 	 */
3215 	return !PageReserved(page);
3216 }
3217 
3218 static void kvm_set_page_dirty(struct page *page)
3219 {
3220 	if (kvm_is_ad_tracked_page(page))
3221 		SetPageDirty(page);
3222 }
3223 
3224 static void kvm_set_page_accessed(struct page *page)
3225 {
3226 	if (kvm_is_ad_tracked_page(page))
3227 		mark_page_accessed(page);
3228 }
3229 
3230 void kvm_release_page_clean(struct page *page)
3231 {
3232 	WARN_ON(is_error_page(page));
3233 
3234 	kvm_set_page_accessed(page);
3235 	put_page(page);
3236 }
3237 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3238 
3239 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3240 {
3241 	struct page *page;
3242 
3243 	if (is_error_noslot_pfn(pfn))
3244 		return;
3245 
3246 	page = kvm_pfn_to_refcounted_page(pfn);
3247 	if (!page)
3248 		return;
3249 
3250 	kvm_release_page_clean(page);
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3253 
3254 void kvm_release_page_dirty(struct page *page)
3255 {
3256 	WARN_ON(is_error_page(page));
3257 
3258 	kvm_set_page_dirty(page);
3259 	kvm_release_page_clean(page);
3260 }
3261 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3262 
3263 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3264 {
3265 	struct page *page;
3266 
3267 	if (is_error_noslot_pfn(pfn))
3268 		return;
3269 
3270 	page = kvm_pfn_to_refcounted_page(pfn);
3271 	if (!page)
3272 		return;
3273 
3274 	kvm_release_page_dirty(page);
3275 }
3276 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3277 
3278 /*
3279  * Note, checking for an error/noslot pfn is the caller's responsibility when
3280  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3281  * "set" helpers are not to be used when the pfn might point at garbage.
3282  */
3283 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3284 {
3285 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3286 		return;
3287 
3288 	if (pfn_valid(pfn))
3289 		kvm_set_page_dirty(pfn_to_page(pfn));
3290 }
3291 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3292 
3293 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3294 {
3295 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3296 		return;
3297 
3298 	if (pfn_valid(pfn))
3299 		kvm_set_page_accessed(pfn_to_page(pfn));
3300 }
3301 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3302 
3303 static int next_segment(unsigned long len, int offset)
3304 {
3305 	if (len > PAGE_SIZE - offset)
3306 		return PAGE_SIZE - offset;
3307 	else
3308 		return len;
3309 }
3310 
3311 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3312 				 void *data, int offset, int len)
3313 {
3314 	int r;
3315 	unsigned long addr;
3316 
3317 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3318 	if (kvm_is_error_hva(addr))
3319 		return -EFAULT;
3320 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3321 	if (r)
3322 		return -EFAULT;
3323 	return 0;
3324 }
3325 
3326 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3327 			int len)
3328 {
3329 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3330 
3331 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3332 }
3333 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3334 
3335 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3336 			     int offset, int len)
3337 {
3338 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3339 
3340 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3341 }
3342 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3343 
3344 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3345 {
3346 	gfn_t gfn = gpa >> PAGE_SHIFT;
3347 	int seg;
3348 	int offset = offset_in_page(gpa);
3349 	int ret;
3350 
3351 	while ((seg = next_segment(len, offset)) != 0) {
3352 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3353 		if (ret < 0)
3354 			return ret;
3355 		offset = 0;
3356 		len -= seg;
3357 		data += seg;
3358 		++gfn;
3359 	}
3360 	return 0;
3361 }
3362 EXPORT_SYMBOL_GPL(kvm_read_guest);
3363 
3364 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3365 {
3366 	gfn_t gfn = gpa >> PAGE_SHIFT;
3367 	int seg;
3368 	int offset = offset_in_page(gpa);
3369 	int ret;
3370 
3371 	while ((seg = next_segment(len, offset)) != 0) {
3372 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3373 		if (ret < 0)
3374 			return ret;
3375 		offset = 0;
3376 		len -= seg;
3377 		data += seg;
3378 		++gfn;
3379 	}
3380 	return 0;
3381 }
3382 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3383 
3384 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3385 			           void *data, int offset, unsigned long len)
3386 {
3387 	int r;
3388 	unsigned long addr;
3389 
3390 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3391 	if (kvm_is_error_hva(addr))
3392 		return -EFAULT;
3393 	pagefault_disable();
3394 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3395 	pagefault_enable();
3396 	if (r)
3397 		return -EFAULT;
3398 	return 0;
3399 }
3400 
3401 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3402 			       void *data, unsigned long len)
3403 {
3404 	gfn_t gfn = gpa >> PAGE_SHIFT;
3405 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3406 	int offset = offset_in_page(gpa);
3407 
3408 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3411 
3412 static int __kvm_write_guest_page(struct kvm *kvm,
3413 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3414 			          const void *data, int offset, int len)
3415 {
3416 	int r;
3417 	unsigned long addr;
3418 
3419 	addr = gfn_to_hva_memslot(memslot, gfn);
3420 	if (kvm_is_error_hva(addr))
3421 		return -EFAULT;
3422 	r = __copy_to_user((void __user *)addr + offset, data, len);
3423 	if (r)
3424 		return -EFAULT;
3425 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3426 	return 0;
3427 }
3428 
3429 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3430 			 const void *data, int offset, int len)
3431 {
3432 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3433 
3434 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3435 }
3436 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3437 
3438 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3439 			      const void *data, int offset, int len)
3440 {
3441 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3442 
3443 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3446 
3447 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3448 		    unsigned long len)
3449 {
3450 	gfn_t gfn = gpa >> PAGE_SHIFT;
3451 	int seg;
3452 	int offset = offset_in_page(gpa);
3453 	int ret;
3454 
3455 	while ((seg = next_segment(len, offset)) != 0) {
3456 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3457 		if (ret < 0)
3458 			return ret;
3459 		offset = 0;
3460 		len -= seg;
3461 		data += seg;
3462 		++gfn;
3463 	}
3464 	return 0;
3465 }
3466 EXPORT_SYMBOL_GPL(kvm_write_guest);
3467 
3468 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3469 		         unsigned long len)
3470 {
3471 	gfn_t gfn = gpa >> PAGE_SHIFT;
3472 	int seg;
3473 	int offset = offset_in_page(gpa);
3474 	int ret;
3475 
3476 	while ((seg = next_segment(len, offset)) != 0) {
3477 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3478 		if (ret < 0)
3479 			return ret;
3480 		offset = 0;
3481 		len -= seg;
3482 		data += seg;
3483 		++gfn;
3484 	}
3485 	return 0;
3486 }
3487 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3488 
3489 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3490 				       struct gfn_to_hva_cache *ghc,
3491 				       gpa_t gpa, unsigned long len)
3492 {
3493 	int offset = offset_in_page(gpa);
3494 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3495 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3496 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3497 	gfn_t nr_pages_avail;
3498 
3499 	/* Update ghc->generation before performing any error checks. */
3500 	ghc->generation = slots->generation;
3501 
3502 	if (start_gfn > end_gfn) {
3503 		ghc->hva = KVM_HVA_ERR_BAD;
3504 		return -EINVAL;
3505 	}
3506 
3507 	/*
3508 	 * If the requested region crosses two memslots, we still
3509 	 * verify that the entire region is valid here.
3510 	 */
3511 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3512 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3513 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3514 					   &nr_pages_avail);
3515 		if (kvm_is_error_hva(ghc->hva))
3516 			return -EFAULT;
3517 	}
3518 
3519 	/* Use the slow path for cross page reads and writes. */
3520 	if (nr_pages_needed == 1)
3521 		ghc->hva += offset;
3522 	else
3523 		ghc->memslot = NULL;
3524 
3525 	ghc->gpa = gpa;
3526 	ghc->len = len;
3527 	return 0;
3528 }
3529 
3530 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3531 			      gpa_t gpa, unsigned long len)
3532 {
3533 	struct kvm_memslots *slots = kvm_memslots(kvm);
3534 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3535 }
3536 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3537 
3538 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3539 				  void *data, unsigned int offset,
3540 				  unsigned long len)
3541 {
3542 	struct kvm_memslots *slots = kvm_memslots(kvm);
3543 	int r;
3544 	gpa_t gpa = ghc->gpa + offset;
3545 
3546 	if (WARN_ON_ONCE(len + offset > ghc->len))
3547 		return -EINVAL;
3548 
3549 	if (slots->generation != ghc->generation) {
3550 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3551 			return -EFAULT;
3552 	}
3553 
3554 	if (kvm_is_error_hva(ghc->hva))
3555 		return -EFAULT;
3556 
3557 	if (unlikely(!ghc->memslot))
3558 		return kvm_write_guest(kvm, gpa, data, len);
3559 
3560 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3561 	if (r)
3562 		return -EFAULT;
3563 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3564 
3565 	return 0;
3566 }
3567 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3568 
3569 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3570 			   void *data, unsigned long len)
3571 {
3572 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3573 }
3574 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3575 
3576 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3577 				 void *data, unsigned int offset,
3578 				 unsigned long len)
3579 {
3580 	struct kvm_memslots *slots = kvm_memslots(kvm);
3581 	int r;
3582 	gpa_t gpa = ghc->gpa + offset;
3583 
3584 	if (WARN_ON_ONCE(len + offset > ghc->len))
3585 		return -EINVAL;
3586 
3587 	if (slots->generation != ghc->generation) {
3588 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3589 			return -EFAULT;
3590 	}
3591 
3592 	if (kvm_is_error_hva(ghc->hva))
3593 		return -EFAULT;
3594 
3595 	if (unlikely(!ghc->memslot))
3596 		return kvm_read_guest(kvm, gpa, data, len);
3597 
3598 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3599 	if (r)
3600 		return -EFAULT;
3601 
3602 	return 0;
3603 }
3604 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3605 
3606 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3607 			  void *data, unsigned long len)
3608 {
3609 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3610 }
3611 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3612 
3613 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3614 {
3615 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3616 	gfn_t gfn = gpa >> PAGE_SHIFT;
3617 	int seg;
3618 	int offset = offset_in_page(gpa);
3619 	int ret;
3620 
3621 	while ((seg = next_segment(len, offset)) != 0) {
3622 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3623 		if (ret < 0)
3624 			return ret;
3625 		offset = 0;
3626 		len -= seg;
3627 		++gfn;
3628 	}
3629 	return 0;
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3632 
3633 void mark_page_dirty_in_slot(struct kvm *kvm,
3634 			     const struct kvm_memory_slot *memslot,
3635 		 	     gfn_t gfn)
3636 {
3637 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3638 
3639 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3640 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3641 		return;
3642 
3643 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3644 #endif
3645 
3646 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3647 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3648 		u32 slot = (memslot->as_id << 16) | memslot->id;
3649 
3650 		if (kvm->dirty_ring_size && vcpu)
3651 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3652 		else if (memslot->dirty_bitmap)
3653 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3654 	}
3655 }
3656 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3657 
3658 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3659 {
3660 	struct kvm_memory_slot *memslot;
3661 
3662 	memslot = gfn_to_memslot(kvm, gfn);
3663 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3664 }
3665 EXPORT_SYMBOL_GPL(mark_page_dirty);
3666 
3667 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3668 {
3669 	struct kvm_memory_slot *memslot;
3670 
3671 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3672 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3673 }
3674 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3675 
3676 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3677 {
3678 	if (!vcpu->sigset_active)
3679 		return;
3680 
3681 	/*
3682 	 * This does a lockless modification of ->real_blocked, which is fine
3683 	 * because, only current can change ->real_blocked and all readers of
3684 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3685 	 * of ->blocked.
3686 	 */
3687 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3688 }
3689 
3690 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3691 {
3692 	if (!vcpu->sigset_active)
3693 		return;
3694 
3695 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3696 	sigemptyset(&current->real_blocked);
3697 }
3698 
3699 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3700 {
3701 	unsigned int old, val, grow, grow_start;
3702 
3703 	old = val = vcpu->halt_poll_ns;
3704 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3705 	grow = READ_ONCE(halt_poll_ns_grow);
3706 	if (!grow)
3707 		goto out;
3708 
3709 	val *= grow;
3710 	if (val < grow_start)
3711 		val = grow_start;
3712 
3713 	vcpu->halt_poll_ns = val;
3714 out:
3715 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3716 }
3717 
3718 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3719 {
3720 	unsigned int old, val, shrink, grow_start;
3721 
3722 	old = val = vcpu->halt_poll_ns;
3723 	shrink = READ_ONCE(halt_poll_ns_shrink);
3724 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3725 	if (shrink == 0)
3726 		val = 0;
3727 	else
3728 		val /= shrink;
3729 
3730 	if (val < grow_start)
3731 		val = 0;
3732 
3733 	vcpu->halt_poll_ns = val;
3734 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3735 }
3736 
3737 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3738 {
3739 	int ret = -EINTR;
3740 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3741 
3742 	if (kvm_arch_vcpu_runnable(vcpu))
3743 		goto out;
3744 	if (kvm_cpu_has_pending_timer(vcpu))
3745 		goto out;
3746 	if (signal_pending(current))
3747 		goto out;
3748 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3749 		goto out;
3750 
3751 	ret = 0;
3752 out:
3753 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3754 	return ret;
3755 }
3756 
3757 /*
3758  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3759  * pending.  This is mostly used when halting a vCPU, but may also be used
3760  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3761  */
3762 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3763 {
3764 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3765 	bool waited = false;
3766 
3767 	vcpu->stat.generic.blocking = 1;
3768 
3769 	preempt_disable();
3770 	kvm_arch_vcpu_blocking(vcpu);
3771 	prepare_to_rcuwait(wait);
3772 	preempt_enable();
3773 
3774 	for (;;) {
3775 		set_current_state(TASK_INTERRUPTIBLE);
3776 
3777 		if (kvm_vcpu_check_block(vcpu) < 0)
3778 			break;
3779 
3780 		waited = true;
3781 		schedule();
3782 	}
3783 
3784 	preempt_disable();
3785 	finish_rcuwait(wait);
3786 	kvm_arch_vcpu_unblocking(vcpu);
3787 	preempt_enable();
3788 
3789 	vcpu->stat.generic.blocking = 0;
3790 
3791 	return waited;
3792 }
3793 
3794 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3795 					  ktime_t end, bool success)
3796 {
3797 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3798 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3799 
3800 	++vcpu->stat.generic.halt_attempted_poll;
3801 
3802 	if (success) {
3803 		++vcpu->stat.generic.halt_successful_poll;
3804 
3805 		if (!vcpu_valid_wakeup(vcpu))
3806 			++vcpu->stat.generic.halt_poll_invalid;
3807 
3808 		stats->halt_poll_success_ns += poll_ns;
3809 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3810 	} else {
3811 		stats->halt_poll_fail_ns += poll_ns;
3812 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3813 	}
3814 }
3815 
3816 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3817 {
3818 	struct kvm *kvm = vcpu->kvm;
3819 
3820 	if (kvm->override_halt_poll_ns) {
3821 		/*
3822 		 * Ensure kvm->max_halt_poll_ns is not read before
3823 		 * kvm->override_halt_poll_ns.
3824 		 *
3825 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3826 		 */
3827 		smp_rmb();
3828 		return READ_ONCE(kvm->max_halt_poll_ns);
3829 	}
3830 
3831 	return READ_ONCE(halt_poll_ns);
3832 }
3833 
3834 /*
3835  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3836  * polling is enabled, busy wait for a short time before blocking to avoid the
3837  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3838  * is halted.
3839  */
3840 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3841 {
3842 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3843 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3844 	ktime_t start, cur, poll_end;
3845 	bool waited = false;
3846 	bool do_halt_poll;
3847 	u64 halt_ns;
3848 
3849 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3850 		vcpu->halt_poll_ns = max_halt_poll_ns;
3851 
3852 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3853 
3854 	start = cur = poll_end = ktime_get();
3855 	if (do_halt_poll) {
3856 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3857 
3858 		do {
3859 			if (kvm_vcpu_check_block(vcpu) < 0)
3860 				goto out;
3861 			cpu_relax();
3862 			poll_end = cur = ktime_get();
3863 		} while (kvm_vcpu_can_poll(cur, stop));
3864 	}
3865 
3866 	waited = kvm_vcpu_block(vcpu);
3867 
3868 	cur = ktime_get();
3869 	if (waited) {
3870 		vcpu->stat.generic.halt_wait_ns +=
3871 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3872 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3873 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3874 	}
3875 out:
3876 	/* The total time the vCPU was "halted", including polling time. */
3877 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3878 
3879 	/*
3880 	 * Note, halt-polling is considered successful so long as the vCPU was
3881 	 * never actually scheduled out, i.e. even if the wake event arrived
3882 	 * after of the halt-polling loop itself, but before the full wait.
3883 	 */
3884 	if (do_halt_poll)
3885 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3886 
3887 	if (halt_poll_allowed) {
3888 		/* Recompute the max halt poll time in case it changed. */
3889 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3890 
3891 		if (!vcpu_valid_wakeup(vcpu)) {
3892 			shrink_halt_poll_ns(vcpu);
3893 		} else if (max_halt_poll_ns) {
3894 			if (halt_ns <= vcpu->halt_poll_ns)
3895 				;
3896 			/* we had a long block, shrink polling */
3897 			else if (vcpu->halt_poll_ns &&
3898 				 halt_ns > max_halt_poll_ns)
3899 				shrink_halt_poll_ns(vcpu);
3900 			/* we had a short halt and our poll time is too small */
3901 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3902 				 halt_ns < max_halt_poll_ns)
3903 				grow_halt_poll_ns(vcpu);
3904 		} else {
3905 			vcpu->halt_poll_ns = 0;
3906 		}
3907 	}
3908 
3909 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3910 }
3911 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3912 
3913 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3914 {
3915 	if (__kvm_vcpu_wake_up(vcpu)) {
3916 		WRITE_ONCE(vcpu->ready, true);
3917 		++vcpu->stat.generic.halt_wakeup;
3918 		return true;
3919 	}
3920 
3921 	return false;
3922 }
3923 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3924 
3925 #ifndef CONFIG_S390
3926 /*
3927  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3928  */
3929 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3930 {
3931 	int me, cpu;
3932 
3933 	if (kvm_vcpu_wake_up(vcpu))
3934 		return;
3935 
3936 	me = get_cpu();
3937 	/*
3938 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3939 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3940 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3941 	 * within the vCPU thread itself.
3942 	 */
3943 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3944 		if (vcpu->mode == IN_GUEST_MODE)
3945 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3946 		goto out;
3947 	}
3948 
3949 	/*
3950 	 * Note, the vCPU could get migrated to a different pCPU at any point
3951 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3952 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3953 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3954 	 * vCPU also requires it to leave IN_GUEST_MODE.
3955 	 */
3956 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3957 		cpu = READ_ONCE(vcpu->cpu);
3958 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3959 			smp_send_reschedule(cpu);
3960 	}
3961 out:
3962 	put_cpu();
3963 }
3964 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3965 #endif /* !CONFIG_S390 */
3966 
3967 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3968 {
3969 	struct pid *pid;
3970 	struct task_struct *task = NULL;
3971 	int ret = 0;
3972 
3973 	rcu_read_lock();
3974 	pid = rcu_dereference(target->pid);
3975 	if (pid)
3976 		task = get_pid_task(pid, PIDTYPE_PID);
3977 	rcu_read_unlock();
3978 	if (!task)
3979 		return ret;
3980 	ret = yield_to(task, 1);
3981 	put_task_struct(task);
3982 
3983 	return ret;
3984 }
3985 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3986 
3987 /*
3988  * Helper that checks whether a VCPU is eligible for directed yield.
3989  * Most eligible candidate to yield is decided by following heuristics:
3990  *
3991  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3992  *  (preempted lock holder), indicated by @in_spin_loop.
3993  *  Set at the beginning and cleared at the end of interception/PLE handler.
3994  *
3995  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3996  *  chance last time (mostly it has become eligible now since we have probably
3997  *  yielded to lockholder in last iteration. This is done by toggling
3998  *  @dy_eligible each time a VCPU checked for eligibility.)
3999  *
4000  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4001  *  to preempted lock-holder could result in wrong VCPU selection and CPU
4002  *  burning. Giving priority for a potential lock-holder increases lock
4003  *  progress.
4004  *
4005  *  Since algorithm is based on heuristics, accessing another VCPU data without
4006  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4007  *  and continue with next VCPU and so on.
4008  */
4009 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4010 {
4011 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4012 	bool eligible;
4013 
4014 	eligible = !vcpu->spin_loop.in_spin_loop ||
4015 		    vcpu->spin_loop.dy_eligible;
4016 
4017 	if (vcpu->spin_loop.in_spin_loop)
4018 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4019 
4020 	return eligible;
4021 #else
4022 	return true;
4023 #endif
4024 }
4025 
4026 /*
4027  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4028  * a vcpu_load/vcpu_put pair.  However, for most architectures
4029  * kvm_arch_vcpu_runnable does not require vcpu_load.
4030  */
4031 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4032 {
4033 	return kvm_arch_vcpu_runnable(vcpu);
4034 }
4035 
4036 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4037 {
4038 	if (kvm_arch_dy_runnable(vcpu))
4039 		return true;
4040 
4041 #ifdef CONFIG_KVM_ASYNC_PF
4042 	if (!list_empty_careful(&vcpu->async_pf.done))
4043 		return true;
4044 #endif
4045 
4046 	return false;
4047 }
4048 
4049 /*
4050  * By default, simply query the target vCPU's current mode when checking if a
4051  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4052  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4053  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4054  * directly for cross-vCPU checks is functionally correct and accurate.
4055  */
4056 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4057 {
4058 	return kvm_arch_vcpu_in_kernel(vcpu);
4059 }
4060 
4061 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4062 {
4063 	return false;
4064 }
4065 
4066 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4067 {
4068 	struct kvm *kvm = me->kvm;
4069 	struct kvm_vcpu *vcpu;
4070 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4071 	unsigned long i;
4072 	int yielded = 0;
4073 	int try = 3;
4074 	int pass;
4075 
4076 	kvm_vcpu_set_in_spin_loop(me, true);
4077 	/*
4078 	 * We boost the priority of a VCPU that is runnable but not
4079 	 * currently running, because it got preempted by something
4080 	 * else and called schedule in __vcpu_run.  Hopefully that
4081 	 * VCPU is holding the lock that we need and will release it.
4082 	 * We approximate round-robin by starting at the last boosted VCPU.
4083 	 */
4084 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4085 		kvm_for_each_vcpu(i, vcpu, kvm) {
4086 			if (!pass && i <= last_boosted_vcpu) {
4087 				i = last_boosted_vcpu;
4088 				continue;
4089 			} else if (pass && i > last_boosted_vcpu)
4090 				break;
4091 			if (!READ_ONCE(vcpu->ready))
4092 				continue;
4093 			if (vcpu == me)
4094 				continue;
4095 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4096 				continue;
4097 
4098 			/*
4099 			 * Treat the target vCPU as being in-kernel if it has a
4100 			 * pending interrupt, as the vCPU trying to yield may
4101 			 * be spinning waiting on IPI delivery, i.e. the target
4102 			 * vCPU is in-kernel for the purposes of directed yield.
4103 			 */
4104 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4105 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4106 			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4107 				continue;
4108 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4109 				continue;
4110 
4111 			yielded = kvm_vcpu_yield_to(vcpu);
4112 			if (yielded > 0) {
4113 				kvm->last_boosted_vcpu = i;
4114 				break;
4115 			} else if (yielded < 0) {
4116 				try--;
4117 				if (!try)
4118 					break;
4119 			}
4120 		}
4121 	}
4122 	kvm_vcpu_set_in_spin_loop(me, false);
4123 
4124 	/* Ensure vcpu is not eligible during next spinloop */
4125 	kvm_vcpu_set_dy_eligible(me, false);
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4128 
4129 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4130 {
4131 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4132 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4133 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4134 	     kvm->dirty_ring_size / PAGE_SIZE);
4135 #else
4136 	return false;
4137 #endif
4138 }
4139 
4140 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4141 {
4142 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4143 	struct page *page;
4144 
4145 	if (vmf->pgoff == 0)
4146 		page = virt_to_page(vcpu->run);
4147 #ifdef CONFIG_X86
4148 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4149 		page = virt_to_page(vcpu->arch.pio_data);
4150 #endif
4151 #ifdef CONFIG_KVM_MMIO
4152 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4153 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4154 #endif
4155 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4156 		page = kvm_dirty_ring_get_page(
4157 		    &vcpu->dirty_ring,
4158 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4159 	else
4160 		return kvm_arch_vcpu_fault(vcpu, vmf);
4161 	get_page(page);
4162 	vmf->page = page;
4163 	return 0;
4164 }
4165 
4166 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4167 	.fault = kvm_vcpu_fault,
4168 };
4169 
4170 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4171 {
4172 	struct kvm_vcpu *vcpu = file->private_data;
4173 	unsigned long pages = vma_pages(vma);
4174 
4175 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4176 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4177 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4178 		return -EINVAL;
4179 
4180 	vma->vm_ops = &kvm_vcpu_vm_ops;
4181 	return 0;
4182 }
4183 
4184 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4185 {
4186 	struct kvm_vcpu *vcpu = filp->private_data;
4187 
4188 	kvm_put_kvm(vcpu->kvm);
4189 	return 0;
4190 }
4191 
4192 static struct file_operations kvm_vcpu_fops = {
4193 	.release        = kvm_vcpu_release,
4194 	.unlocked_ioctl = kvm_vcpu_ioctl,
4195 	.mmap           = kvm_vcpu_mmap,
4196 	.llseek		= noop_llseek,
4197 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4198 };
4199 
4200 /*
4201  * Allocates an inode for the vcpu.
4202  */
4203 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4204 {
4205 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4206 
4207 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4208 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4209 }
4210 
4211 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4212 static int vcpu_get_pid(void *data, u64 *val)
4213 {
4214 	struct kvm_vcpu *vcpu = data;
4215 
4216 	rcu_read_lock();
4217 	*val = pid_nr(rcu_dereference(vcpu->pid));
4218 	rcu_read_unlock();
4219 	return 0;
4220 }
4221 
4222 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4223 
4224 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4225 {
4226 	struct dentry *debugfs_dentry;
4227 	char dir_name[ITOA_MAX_LEN * 2];
4228 
4229 	if (!debugfs_initialized())
4230 		return;
4231 
4232 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4233 	debugfs_dentry = debugfs_create_dir(dir_name,
4234 					    vcpu->kvm->debugfs_dentry);
4235 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4236 			    &vcpu_get_pid_fops);
4237 
4238 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4239 }
4240 #endif
4241 
4242 /*
4243  * Creates some virtual cpus.  Good luck creating more than one.
4244  */
4245 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4246 {
4247 	int r;
4248 	struct kvm_vcpu *vcpu;
4249 	struct page *page;
4250 
4251 	if (id >= KVM_MAX_VCPU_IDS)
4252 		return -EINVAL;
4253 
4254 	mutex_lock(&kvm->lock);
4255 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4256 		mutex_unlock(&kvm->lock);
4257 		return -EINVAL;
4258 	}
4259 
4260 	r = kvm_arch_vcpu_precreate(kvm, id);
4261 	if (r) {
4262 		mutex_unlock(&kvm->lock);
4263 		return r;
4264 	}
4265 
4266 	kvm->created_vcpus++;
4267 	mutex_unlock(&kvm->lock);
4268 
4269 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4270 	if (!vcpu) {
4271 		r = -ENOMEM;
4272 		goto vcpu_decrement;
4273 	}
4274 
4275 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4276 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4277 	if (!page) {
4278 		r = -ENOMEM;
4279 		goto vcpu_free;
4280 	}
4281 	vcpu->run = page_address(page);
4282 
4283 	kvm_vcpu_init(vcpu, kvm, id);
4284 
4285 	r = kvm_arch_vcpu_create(vcpu);
4286 	if (r)
4287 		goto vcpu_free_run_page;
4288 
4289 	if (kvm->dirty_ring_size) {
4290 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4291 					 id, kvm->dirty_ring_size);
4292 		if (r)
4293 			goto arch_vcpu_destroy;
4294 	}
4295 
4296 	mutex_lock(&kvm->lock);
4297 
4298 #ifdef CONFIG_LOCKDEP
4299 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4300 	mutex_lock(&vcpu->mutex);
4301 	mutex_unlock(&vcpu->mutex);
4302 #endif
4303 
4304 	if (kvm_get_vcpu_by_id(kvm, id)) {
4305 		r = -EEXIST;
4306 		goto unlock_vcpu_destroy;
4307 	}
4308 
4309 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4310 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4311 	if (r)
4312 		goto unlock_vcpu_destroy;
4313 
4314 	/* Now it's all set up, let userspace reach it */
4315 	kvm_get_kvm(kvm);
4316 	r = create_vcpu_fd(vcpu);
4317 	if (r < 0)
4318 		goto kvm_put_xa_release;
4319 
4320 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4321 		r = -EINVAL;
4322 		goto kvm_put_xa_release;
4323 	}
4324 
4325 	/*
4326 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4327 	 * pointer before kvm->online_vcpu's incremented value.
4328 	 */
4329 	smp_wmb();
4330 	atomic_inc(&kvm->online_vcpus);
4331 
4332 	mutex_unlock(&kvm->lock);
4333 	kvm_arch_vcpu_postcreate(vcpu);
4334 	kvm_create_vcpu_debugfs(vcpu);
4335 	return r;
4336 
4337 kvm_put_xa_release:
4338 	kvm_put_kvm_no_destroy(kvm);
4339 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4340 unlock_vcpu_destroy:
4341 	mutex_unlock(&kvm->lock);
4342 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4343 arch_vcpu_destroy:
4344 	kvm_arch_vcpu_destroy(vcpu);
4345 vcpu_free_run_page:
4346 	free_page((unsigned long)vcpu->run);
4347 vcpu_free:
4348 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4349 vcpu_decrement:
4350 	mutex_lock(&kvm->lock);
4351 	kvm->created_vcpus--;
4352 	mutex_unlock(&kvm->lock);
4353 	return r;
4354 }
4355 
4356 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4357 {
4358 	if (sigset) {
4359 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4360 		vcpu->sigset_active = 1;
4361 		vcpu->sigset = *sigset;
4362 	} else
4363 		vcpu->sigset_active = 0;
4364 	return 0;
4365 }
4366 
4367 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4368 			      size_t size, loff_t *offset)
4369 {
4370 	struct kvm_vcpu *vcpu = file->private_data;
4371 
4372 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4373 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4374 			sizeof(vcpu->stat), user_buffer, size, offset);
4375 }
4376 
4377 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4378 {
4379 	struct kvm_vcpu *vcpu = file->private_data;
4380 
4381 	kvm_put_kvm(vcpu->kvm);
4382 	return 0;
4383 }
4384 
4385 static const struct file_operations kvm_vcpu_stats_fops = {
4386 	.owner = THIS_MODULE,
4387 	.read = kvm_vcpu_stats_read,
4388 	.release = kvm_vcpu_stats_release,
4389 	.llseek = noop_llseek,
4390 };
4391 
4392 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4393 {
4394 	int fd;
4395 	struct file *file;
4396 	char name[15 + ITOA_MAX_LEN + 1];
4397 
4398 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4399 
4400 	fd = get_unused_fd_flags(O_CLOEXEC);
4401 	if (fd < 0)
4402 		return fd;
4403 
4404 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4405 	if (IS_ERR(file)) {
4406 		put_unused_fd(fd);
4407 		return PTR_ERR(file);
4408 	}
4409 
4410 	kvm_get_kvm(vcpu->kvm);
4411 
4412 	file->f_mode |= FMODE_PREAD;
4413 	fd_install(fd, file);
4414 
4415 	return fd;
4416 }
4417 
4418 static long kvm_vcpu_ioctl(struct file *filp,
4419 			   unsigned int ioctl, unsigned long arg)
4420 {
4421 	struct kvm_vcpu *vcpu = filp->private_data;
4422 	void __user *argp = (void __user *)arg;
4423 	int r;
4424 	struct kvm_fpu *fpu = NULL;
4425 	struct kvm_sregs *kvm_sregs = NULL;
4426 
4427 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4428 		return -EIO;
4429 
4430 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4431 		return -EINVAL;
4432 
4433 	/*
4434 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4435 	 * execution; mutex_lock() would break them.
4436 	 */
4437 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4438 	if (r != -ENOIOCTLCMD)
4439 		return r;
4440 
4441 	if (mutex_lock_killable(&vcpu->mutex))
4442 		return -EINTR;
4443 	switch (ioctl) {
4444 	case KVM_RUN: {
4445 		struct pid *oldpid;
4446 		r = -EINVAL;
4447 		if (arg)
4448 			goto out;
4449 		oldpid = rcu_access_pointer(vcpu->pid);
4450 		if (unlikely(oldpid != task_pid(current))) {
4451 			/* The thread running this VCPU changed. */
4452 			struct pid *newpid;
4453 
4454 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4455 			if (r)
4456 				break;
4457 
4458 			newpid = get_task_pid(current, PIDTYPE_PID);
4459 			rcu_assign_pointer(vcpu->pid, newpid);
4460 			if (oldpid)
4461 				synchronize_rcu();
4462 			put_pid(oldpid);
4463 		}
4464 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4465 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4466 		break;
4467 	}
4468 	case KVM_GET_REGS: {
4469 		struct kvm_regs *kvm_regs;
4470 
4471 		r = -ENOMEM;
4472 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4473 		if (!kvm_regs)
4474 			goto out;
4475 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4476 		if (r)
4477 			goto out_free1;
4478 		r = -EFAULT;
4479 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4480 			goto out_free1;
4481 		r = 0;
4482 out_free1:
4483 		kfree(kvm_regs);
4484 		break;
4485 	}
4486 	case KVM_SET_REGS: {
4487 		struct kvm_regs *kvm_regs;
4488 
4489 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4490 		if (IS_ERR(kvm_regs)) {
4491 			r = PTR_ERR(kvm_regs);
4492 			goto out;
4493 		}
4494 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4495 		kfree(kvm_regs);
4496 		break;
4497 	}
4498 	case KVM_GET_SREGS: {
4499 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4500 				    GFP_KERNEL_ACCOUNT);
4501 		r = -ENOMEM;
4502 		if (!kvm_sregs)
4503 			goto out;
4504 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4505 		if (r)
4506 			goto out;
4507 		r = -EFAULT;
4508 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4509 			goto out;
4510 		r = 0;
4511 		break;
4512 	}
4513 	case KVM_SET_SREGS: {
4514 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4515 		if (IS_ERR(kvm_sregs)) {
4516 			r = PTR_ERR(kvm_sregs);
4517 			kvm_sregs = NULL;
4518 			goto out;
4519 		}
4520 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4521 		break;
4522 	}
4523 	case KVM_GET_MP_STATE: {
4524 		struct kvm_mp_state mp_state;
4525 
4526 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4527 		if (r)
4528 			goto out;
4529 		r = -EFAULT;
4530 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4531 			goto out;
4532 		r = 0;
4533 		break;
4534 	}
4535 	case KVM_SET_MP_STATE: {
4536 		struct kvm_mp_state mp_state;
4537 
4538 		r = -EFAULT;
4539 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4540 			goto out;
4541 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4542 		break;
4543 	}
4544 	case KVM_TRANSLATE: {
4545 		struct kvm_translation tr;
4546 
4547 		r = -EFAULT;
4548 		if (copy_from_user(&tr, argp, sizeof(tr)))
4549 			goto out;
4550 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4551 		if (r)
4552 			goto out;
4553 		r = -EFAULT;
4554 		if (copy_to_user(argp, &tr, sizeof(tr)))
4555 			goto out;
4556 		r = 0;
4557 		break;
4558 	}
4559 	case KVM_SET_GUEST_DEBUG: {
4560 		struct kvm_guest_debug dbg;
4561 
4562 		r = -EFAULT;
4563 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4564 			goto out;
4565 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4566 		break;
4567 	}
4568 	case KVM_SET_SIGNAL_MASK: {
4569 		struct kvm_signal_mask __user *sigmask_arg = argp;
4570 		struct kvm_signal_mask kvm_sigmask;
4571 		sigset_t sigset, *p;
4572 
4573 		p = NULL;
4574 		if (argp) {
4575 			r = -EFAULT;
4576 			if (copy_from_user(&kvm_sigmask, argp,
4577 					   sizeof(kvm_sigmask)))
4578 				goto out;
4579 			r = -EINVAL;
4580 			if (kvm_sigmask.len != sizeof(sigset))
4581 				goto out;
4582 			r = -EFAULT;
4583 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4584 					   sizeof(sigset)))
4585 				goto out;
4586 			p = &sigset;
4587 		}
4588 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4589 		break;
4590 	}
4591 	case KVM_GET_FPU: {
4592 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4593 		r = -ENOMEM;
4594 		if (!fpu)
4595 			goto out;
4596 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4597 		if (r)
4598 			goto out;
4599 		r = -EFAULT;
4600 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4601 			goto out;
4602 		r = 0;
4603 		break;
4604 	}
4605 	case KVM_SET_FPU: {
4606 		fpu = memdup_user(argp, sizeof(*fpu));
4607 		if (IS_ERR(fpu)) {
4608 			r = PTR_ERR(fpu);
4609 			fpu = NULL;
4610 			goto out;
4611 		}
4612 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4613 		break;
4614 	}
4615 	case KVM_GET_STATS_FD: {
4616 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4617 		break;
4618 	}
4619 	default:
4620 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4621 	}
4622 out:
4623 	mutex_unlock(&vcpu->mutex);
4624 	kfree(fpu);
4625 	kfree(kvm_sregs);
4626 	return r;
4627 }
4628 
4629 #ifdef CONFIG_KVM_COMPAT
4630 static long kvm_vcpu_compat_ioctl(struct file *filp,
4631 				  unsigned int ioctl, unsigned long arg)
4632 {
4633 	struct kvm_vcpu *vcpu = filp->private_data;
4634 	void __user *argp = compat_ptr(arg);
4635 	int r;
4636 
4637 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4638 		return -EIO;
4639 
4640 	switch (ioctl) {
4641 	case KVM_SET_SIGNAL_MASK: {
4642 		struct kvm_signal_mask __user *sigmask_arg = argp;
4643 		struct kvm_signal_mask kvm_sigmask;
4644 		sigset_t sigset;
4645 
4646 		if (argp) {
4647 			r = -EFAULT;
4648 			if (copy_from_user(&kvm_sigmask, argp,
4649 					   sizeof(kvm_sigmask)))
4650 				goto out;
4651 			r = -EINVAL;
4652 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4653 				goto out;
4654 			r = -EFAULT;
4655 			if (get_compat_sigset(&sigset,
4656 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4657 				goto out;
4658 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4659 		} else
4660 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4661 		break;
4662 	}
4663 	default:
4664 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4665 	}
4666 
4667 out:
4668 	return r;
4669 }
4670 #endif
4671 
4672 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4673 {
4674 	struct kvm_device *dev = filp->private_data;
4675 
4676 	if (dev->ops->mmap)
4677 		return dev->ops->mmap(dev, vma);
4678 
4679 	return -ENODEV;
4680 }
4681 
4682 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4683 				 int (*accessor)(struct kvm_device *dev,
4684 						 struct kvm_device_attr *attr),
4685 				 unsigned long arg)
4686 {
4687 	struct kvm_device_attr attr;
4688 
4689 	if (!accessor)
4690 		return -EPERM;
4691 
4692 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4693 		return -EFAULT;
4694 
4695 	return accessor(dev, &attr);
4696 }
4697 
4698 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4699 			     unsigned long arg)
4700 {
4701 	struct kvm_device *dev = filp->private_data;
4702 
4703 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4704 		return -EIO;
4705 
4706 	switch (ioctl) {
4707 	case KVM_SET_DEVICE_ATTR:
4708 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4709 	case KVM_GET_DEVICE_ATTR:
4710 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4711 	case KVM_HAS_DEVICE_ATTR:
4712 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4713 	default:
4714 		if (dev->ops->ioctl)
4715 			return dev->ops->ioctl(dev, ioctl, arg);
4716 
4717 		return -ENOTTY;
4718 	}
4719 }
4720 
4721 static int kvm_device_release(struct inode *inode, struct file *filp)
4722 {
4723 	struct kvm_device *dev = filp->private_data;
4724 	struct kvm *kvm = dev->kvm;
4725 
4726 	if (dev->ops->release) {
4727 		mutex_lock(&kvm->lock);
4728 		list_del(&dev->vm_node);
4729 		dev->ops->release(dev);
4730 		mutex_unlock(&kvm->lock);
4731 	}
4732 
4733 	kvm_put_kvm(kvm);
4734 	return 0;
4735 }
4736 
4737 static struct file_operations kvm_device_fops = {
4738 	.unlocked_ioctl = kvm_device_ioctl,
4739 	.release = kvm_device_release,
4740 	KVM_COMPAT(kvm_device_ioctl),
4741 	.mmap = kvm_device_mmap,
4742 };
4743 
4744 struct kvm_device *kvm_device_from_filp(struct file *filp)
4745 {
4746 	if (filp->f_op != &kvm_device_fops)
4747 		return NULL;
4748 
4749 	return filp->private_data;
4750 }
4751 
4752 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4753 #ifdef CONFIG_KVM_MPIC
4754 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4755 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4756 #endif
4757 };
4758 
4759 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4760 {
4761 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4762 		return -ENOSPC;
4763 
4764 	if (kvm_device_ops_table[type] != NULL)
4765 		return -EEXIST;
4766 
4767 	kvm_device_ops_table[type] = ops;
4768 	return 0;
4769 }
4770 
4771 void kvm_unregister_device_ops(u32 type)
4772 {
4773 	if (kvm_device_ops_table[type] != NULL)
4774 		kvm_device_ops_table[type] = NULL;
4775 }
4776 
4777 static int kvm_ioctl_create_device(struct kvm *kvm,
4778 				   struct kvm_create_device *cd)
4779 {
4780 	const struct kvm_device_ops *ops;
4781 	struct kvm_device *dev;
4782 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4783 	int type;
4784 	int ret;
4785 
4786 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4787 		return -ENODEV;
4788 
4789 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4790 	ops = kvm_device_ops_table[type];
4791 	if (ops == NULL)
4792 		return -ENODEV;
4793 
4794 	if (test)
4795 		return 0;
4796 
4797 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4798 	if (!dev)
4799 		return -ENOMEM;
4800 
4801 	dev->ops = ops;
4802 	dev->kvm = kvm;
4803 
4804 	mutex_lock(&kvm->lock);
4805 	ret = ops->create(dev, type);
4806 	if (ret < 0) {
4807 		mutex_unlock(&kvm->lock);
4808 		kfree(dev);
4809 		return ret;
4810 	}
4811 	list_add(&dev->vm_node, &kvm->devices);
4812 	mutex_unlock(&kvm->lock);
4813 
4814 	if (ops->init)
4815 		ops->init(dev);
4816 
4817 	kvm_get_kvm(kvm);
4818 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4819 	if (ret < 0) {
4820 		kvm_put_kvm_no_destroy(kvm);
4821 		mutex_lock(&kvm->lock);
4822 		list_del(&dev->vm_node);
4823 		if (ops->release)
4824 			ops->release(dev);
4825 		mutex_unlock(&kvm->lock);
4826 		if (ops->destroy)
4827 			ops->destroy(dev);
4828 		return ret;
4829 	}
4830 
4831 	cd->fd = ret;
4832 	return 0;
4833 }
4834 
4835 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4836 {
4837 	switch (arg) {
4838 	case KVM_CAP_USER_MEMORY:
4839 	case KVM_CAP_USER_MEMORY2:
4840 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4841 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4842 	case KVM_CAP_INTERNAL_ERROR_DATA:
4843 #ifdef CONFIG_HAVE_KVM_MSI
4844 	case KVM_CAP_SIGNAL_MSI:
4845 #endif
4846 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4847 	case KVM_CAP_IRQFD:
4848 #endif
4849 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4850 	case KVM_CAP_CHECK_EXTENSION_VM:
4851 	case KVM_CAP_ENABLE_CAP_VM:
4852 	case KVM_CAP_HALT_POLL:
4853 		return 1;
4854 #ifdef CONFIG_KVM_MMIO
4855 	case KVM_CAP_COALESCED_MMIO:
4856 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4857 	case KVM_CAP_COALESCED_PIO:
4858 		return 1;
4859 #endif
4860 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4861 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4862 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4863 #endif
4864 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4865 	case KVM_CAP_IRQ_ROUTING:
4866 		return KVM_MAX_IRQ_ROUTES;
4867 #endif
4868 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4869 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4870 		if (kvm)
4871 			return kvm_arch_nr_memslot_as_ids(kvm);
4872 		return KVM_MAX_NR_ADDRESS_SPACES;
4873 #endif
4874 	case KVM_CAP_NR_MEMSLOTS:
4875 		return KVM_USER_MEM_SLOTS;
4876 	case KVM_CAP_DIRTY_LOG_RING:
4877 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4878 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4879 #else
4880 		return 0;
4881 #endif
4882 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4883 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4884 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4885 #else
4886 		return 0;
4887 #endif
4888 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4889 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4890 #endif
4891 	case KVM_CAP_BINARY_STATS_FD:
4892 	case KVM_CAP_SYSTEM_EVENT_DATA:
4893 	case KVM_CAP_DEVICE_CTRL:
4894 		return 1;
4895 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4896 	case KVM_CAP_MEMORY_ATTRIBUTES:
4897 		return kvm_supported_mem_attributes(kvm);
4898 #endif
4899 #ifdef CONFIG_KVM_PRIVATE_MEM
4900 	case KVM_CAP_GUEST_MEMFD:
4901 		return !kvm || kvm_arch_has_private_mem(kvm);
4902 #endif
4903 	default:
4904 		break;
4905 	}
4906 	return kvm_vm_ioctl_check_extension(kvm, arg);
4907 }
4908 
4909 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4910 {
4911 	int r;
4912 
4913 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4914 		return -EINVAL;
4915 
4916 	/* the size should be power of 2 */
4917 	if (!size || (size & (size - 1)))
4918 		return -EINVAL;
4919 
4920 	/* Should be bigger to keep the reserved entries, or a page */
4921 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4922 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4923 		return -EINVAL;
4924 
4925 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4926 	    sizeof(struct kvm_dirty_gfn))
4927 		return -E2BIG;
4928 
4929 	/* We only allow it to set once */
4930 	if (kvm->dirty_ring_size)
4931 		return -EINVAL;
4932 
4933 	mutex_lock(&kvm->lock);
4934 
4935 	if (kvm->created_vcpus) {
4936 		/* We don't allow to change this value after vcpu created */
4937 		r = -EINVAL;
4938 	} else {
4939 		kvm->dirty_ring_size = size;
4940 		r = 0;
4941 	}
4942 
4943 	mutex_unlock(&kvm->lock);
4944 	return r;
4945 }
4946 
4947 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4948 {
4949 	unsigned long i;
4950 	struct kvm_vcpu *vcpu;
4951 	int cleared = 0;
4952 
4953 	if (!kvm->dirty_ring_size)
4954 		return -EINVAL;
4955 
4956 	mutex_lock(&kvm->slots_lock);
4957 
4958 	kvm_for_each_vcpu(i, vcpu, kvm)
4959 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4960 
4961 	mutex_unlock(&kvm->slots_lock);
4962 
4963 	if (cleared)
4964 		kvm_flush_remote_tlbs(kvm);
4965 
4966 	return cleared;
4967 }
4968 
4969 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4970 						  struct kvm_enable_cap *cap)
4971 {
4972 	return -EINVAL;
4973 }
4974 
4975 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4976 {
4977 	int i;
4978 
4979 	lockdep_assert_held(&kvm->slots_lock);
4980 
4981 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4982 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4983 			return false;
4984 	}
4985 
4986 	return true;
4987 }
4988 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4989 
4990 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4991 					   struct kvm_enable_cap *cap)
4992 {
4993 	switch (cap->cap) {
4994 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4995 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4996 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4997 
4998 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4999 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5000 
5001 		if (cap->flags || (cap->args[0] & ~allowed_options))
5002 			return -EINVAL;
5003 		kvm->manual_dirty_log_protect = cap->args[0];
5004 		return 0;
5005 	}
5006 #endif
5007 	case KVM_CAP_HALT_POLL: {
5008 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5009 			return -EINVAL;
5010 
5011 		kvm->max_halt_poll_ns = cap->args[0];
5012 
5013 		/*
5014 		 * Ensure kvm->override_halt_poll_ns does not become visible
5015 		 * before kvm->max_halt_poll_ns.
5016 		 *
5017 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5018 		 */
5019 		smp_wmb();
5020 		kvm->override_halt_poll_ns = true;
5021 
5022 		return 0;
5023 	}
5024 	case KVM_CAP_DIRTY_LOG_RING:
5025 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5026 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5027 			return -EINVAL;
5028 
5029 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5030 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5031 		int r = -EINVAL;
5032 
5033 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5034 		    !kvm->dirty_ring_size || cap->flags)
5035 			return r;
5036 
5037 		mutex_lock(&kvm->slots_lock);
5038 
5039 		/*
5040 		 * For simplicity, allow enabling ring+bitmap if and only if
5041 		 * there are no memslots, e.g. to ensure all memslots allocate
5042 		 * a bitmap after the capability is enabled.
5043 		 */
5044 		if (kvm_are_all_memslots_empty(kvm)) {
5045 			kvm->dirty_ring_with_bitmap = true;
5046 			r = 0;
5047 		}
5048 
5049 		mutex_unlock(&kvm->slots_lock);
5050 
5051 		return r;
5052 	}
5053 	default:
5054 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5055 	}
5056 }
5057 
5058 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5059 			      size_t size, loff_t *offset)
5060 {
5061 	struct kvm *kvm = file->private_data;
5062 
5063 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5064 				&kvm_vm_stats_desc[0], &kvm->stat,
5065 				sizeof(kvm->stat), user_buffer, size, offset);
5066 }
5067 
5068 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5069 {
5070 	struct kvm *kvm = file->private_data;
5071 
5072 	kvm_put_kvm(kvm);
5073 	return 0;
5074 }
5075 
5076 static const struct file_operations kvm_vm_stats_fops = {
5077 	.owner = THIS_MODULE,
5078 	.read = kvm_vm_stats_read,
5079 	.release = kvm_vm_stats_release,
5080 	.llseek = noop_llseek,
5081 };
5082 
5083 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5084 {
5085 	int fd;
5086 	struct file *file;
5087 
5088 	fd = get_unused_fd_flags(O_CLOEXEC);
5089 	if (fd < 0)
5090 		return fd;
5091 
5092 	file = anon_inode_getfile("kvm-vm-stats",
5093 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5094 	if (IS_ERR(file)) {
5095 		put_unused_fd(fd);
5096 		return PTR_ERR(file);
5097 	}
5098 
5099 	kvm_get_kvm(kvm);
5100 
5101 	file->f_mode |= FMODE_PREAD;
5102 	fd_install(fd, file);
5103 
5104 	return fd;
5105 }
5106 
5107 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5108 do {										\
5109 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5110 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5111 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5112 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5113 } while (0)
5114 
5115 static long kvm_vm_ioctl(struct file *filp,
5116 			   unsigned int ioctl, unsigned long arg)
5117 {
5118 	struct kvm *kvm = filp->private_data;
5119 	void __user *argp = (void __user *)arg;
5120 	int r;
5121 
5122 	if (kvm->mm != current->mm || kvm->vm_dead)
5123 		return -EIO;
5124 	switch (ioctl) {
5125 	case KVM_CREATE_VCPU:
5126 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5127 		break;
5128 	case KVM_ENABLE_CAP: {
5129 		struct kvm_enable_cap cap;
5130 
5131 		r = -EFAULT;
5132 		if (copy_from_user(&cap, argp, sizeof(cap)))
5133 			goto out;
5134 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5135 		break;
5136 	}
5137 	case KVM_SET_USER_MEMORY_REGION2:
5138 	case KVM_SET_USER_MEMORY_REGION: {
5139 		struct kvm_userspace_memory_region2 mem;
5140 		unsigned long size;
5141 
5142 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5143 			/*
5144 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5145 			 * accessed, but avoid leaking kernel memory in case of a bug.
5146 			 */
5147 			memset(&mem, 0, sizeof(mem));
5148 			size = sizeof(struct kvm_userspace_memory_region);
5149 		} else {
5150 			size = sizeof(struct kvm_userspace_memory_region2);
5151 		}
5152 
5153 		/* Ensure the common parts of the two structs are identical. */
5154 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5155 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5156 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5157 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5158 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5159 
5160 		r = -EFAULT;
5161 		if (copy_from_user(&mem, argp, size))
5162 			goto out;
5163 
5164 		r = -EINVAL;
5165 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5166 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5167 			goto out;
5168 
5169 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5170 		break;
5171 	}
5172 	case KVM_GET_DIRTY_LOG: {
5173 		struct kvm_dirty_log log;
5174 
5175 		r = -EFAULT;
5176 		if (copy_from_user(&log, argp, sizeof(log)))
5177 			goto out;
5178 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5179 		break;
5180 	}
5181 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5182 	case KVM_CLEAR_DIRTY_LOG: {
5183 		struct kvm_clear_dirty_log log;
5184 
5185 		r = -EFAULT;
5186 		if (copy_from_user(&log, argp, sizeof(log)))
5187 			goto out;
5188 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5189 		break;
5190 	}
5191 #endif
5192 #ifdef CONFIG_KVM_MMIO
5193 	case KVM_REGISTER_COALESCED_MMIO: {
5194 		struct kvm_coalesced_mmio_zone zone;
5195 
5196 		r = -EFAULT;
5197 		if (copy_from_user(&zone, argp, sizeof(zone)))
5198 			goto out;
5199 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5200 		break;
5201 	}
5202 	case KVM_UNREGISTER_COALESCED_MMIO: {
5203 		struct kvm_coalesced_mmio_zone zone;
5204 
5205 		r = -EFAULT;
5206 		if (copy_from_user(&zone, argp, sizeof(zone)))
5207 			goto out;
5208 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5209 		break;
5210 	}
5211 #endif
5212 	case KVM_IRQFD: {
5213 		struct kvm_irqfd data;
5214 
5215 		r = -EFAULT;
5216 		if (copy_from_user(&data, argp, sizeof(data)))
5217 			goto out;
5218 		r = kvm_irqfd(kvm, &data);
5219 		break;
5220 	}
5221 	case KVM_IOEVENTFD: {
5222 		struct kvm_ioeventfd data;
5223 
5224 		r = -EFAULT;
5225 		if (copy_from_user(&data, argp, sizeof(data)))
5226 			goto out;
5227 		r = kvm_ioeventfd(kvm, &data);
5228 		break;
5229 	}
5230 #ifdef CONFIG_HAVE_KVM_MSI
5231 	case KVM_SIGNAL_MSI: {
5232 		struct kvm_msi msi;
5233 
5234 		r = -EFAULT;
5235 		if (copy_from_user(&msi, argp, sizeof(msi)))
5236 			goto out;
5237 		r = kvm_send_userspace_msi(kvm, &msi);
5238 		break;
5239 	}
5240 #endif
5241 #ifdef __KVM_HAVE_IRQ_LINE
5242 	case KVM_IRQ_LINE_STATUS:
5243 	case KVM_IRQ_LINE: {
5244 		struct kvm_irq_level irq_event;
5245 
5246 		r = -EFAULT;
5247 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5248 			goto out;
5249 
5250 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5251 					ioctl == KVM_IRQ_LINE_STATUS);
5252 		if (r)
5253 			goto out;
5254 
5255 		r = -EFAULT;
5256 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5257 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5258 				goto out;
5259 		}
5260 
5261 		r = 0;
5262 		break;
5263 	}
5264 #endif
5265 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5266 	case KVM_SET_GSI_ROUTING: {
5267 		struct kvm_irq_routing routing;
5268 		struct kvm_irq_routing __user *urouting;
5269 		struct kvm_irq_routing_entry *entries = NULL;
5270 
5271 		r = -EFAULT;
5272 		if (copy_from_user(&routing, argp, sizeof(routing)))
5273 			goto out;
5274 		r = -EINVAL;
5275 		if (!kvm_arch_can_set_irq_routing(kvm))
5276 			goto out;
5277 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5278 			goto out;
5279 		if (routing.flags)
5280 			goto out;
5281 		if (routing.nr) {
5282 			urouting = argp;
5283 			entries = vmemdup_array_user(urouting->entries,
5284 						     routing.nr, sizeof(*entries));
5285 			if (IS_ERR(entries)) {
5286 				r = PTR_ERR(entries);
5287 				goto out;
5288 			}
5289 		}
5290 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5291 					routing.flags);
5292 		kvfree(entries);
5293 		break;
5294 	}
5295 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5296 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5297 	case KVM_SET_MEMORY_ATTRIBUTES: {
5298 		struct kvm_memory_attributes attrs;
5299 
5300 		r = -EFAULT;
5301 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5302 			goto out;
5303 
5304 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5305 		break;
5306 	}
5307 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5308 	case KVM_CREATE_DEVICE: {
5309 		struct kvm_create_device cd;
5310 
5311 		r = -EFAULT;
5312 		if (copy_from_user(&cd, argp, sizeof(cd)))
5313 			goto out;
5314 
5315 		r = kvm_ioctl_create_device(kvm, &cd);
5316 		if (r)
5317 			goto out;
5318 
5319 		r = -EFAULT;
5320 		if (copy_to_user(argp, &cd, sizeof(cd)))
5321 			goto out;
5322 
5323 		r = 0;
5324 		break;
5325 	}
5326 	case KVM_CHECK_EXTENSION:
5327 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5328 		break;
5329 	case KVM_RESET_DIRTY_RINGS:
5330 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5331 		break;
5332 	case KVM_GET_STATS_FD:
5333 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5334 		break;
5335 #ifdef CONFIG_KVM_PRIVATE_MEM
5336 	case KVM_CREATE_GUEST_MEMFD: {
5337 		struct kvm_create_guest_memfd guest_memfd;
5338 
5339 		r = -EFAULT;
5340 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5341 			goto out;
5342 
5343 		r = kvm_gmem_create(kvm, &guest_memfd);
5344 		break;
5345 	}
5346 #endif
5347 	default:
5348 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5349 	}
5350 out:
5351 	return r;
5352 }
5353 
5354 #ifdef CONFIG_KVM_COMPAT
5355 struct compat_kvm_dirty_log {
5356 	__u32 slot;
5357 	__u32 padding1;
5358 	union {
5359 		compat_uptr_t dirty_bitmap; /* one bit per page */
5360 		__u64 padding2;
5361 	};
5362 };
5363 
5364 struct compat_kvm_clear_dirty_log {
5365 	__u32 slot;
5366 	__u32 num_pages;
5367 	__u64 first_page;
5368 	union {
5369 		compat_uptr_t dirty_bitmap; /* one bit per page */
5370 		__u64 padding2;
5371 	};
5372 };
5373 
5374 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5375 				     unsigned long arg)
5376 {
5377 	return -ENOTTY;
5378 }
5379 
5380 static long kvm_vm_compat_ioctl(struct file *filp,
5381 			   unsigned int ioctl, unsigned long arg)
5382 {
5383 	struct kvm *kvm = filp->private_data;
5384 	int r;
5385 
5386 	if (kvm->mm != current->mm || kvm->vm_dead)
5387 		return -EIO;
5388 
5389 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5390 	if (r != -ENOTTY)
5391 		return r;
5392 
5393 	switch (ioctl) {
5394 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5395 	case KVM_CLEAR_DIRTY_LOG: {
5396 		struct compat_kvm_clear_dirty_log compat_log;
5397 		struct kvm_clear_dirty_log log;
5398 
5399 		if (copy_from_user(&compat_log, (void __user *)arg,
5400 				   sizeof(compat_log)))
5401 			return -EFAULT;
5402 		log.slot	 = compat_log.slot;
5403 		log.num_pages	 = compat_log.num_pages;
5404 		log.first_page	 = compat_log.first_page;
5405 		log.padding2	 = compat_log.padding2;
5406 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5407 
5408 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5409 		break;
5410 	}
5411 #endif
5412 	case KVM_GET_DIRTY_LOG: {
5413 		struct compat_kvm_dirty_log compat_log;
5414 		struct kvm_dirty_log log;
5415 
5416 		if (copy_from_user(&compat_log, (void __user *)arg,
5417 				   sizeof(compat_log)))
5418 			return -EFAULT;
5419 		log.slot	 = compat_log.slot;
5420 		log.padding1	 = compat_log.padding1;
5421 		log.padding2	 = compat_log.padding2;
5422 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5423 
5424 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5425 		break;
5426 	}
5427 	default:
5428 		r = kvm_vm_ioctl(filp, ioctl, arg);
5429 	}
5430 	return r;
5431 }
5432 #endif
5433 
5434 static struct file_operations kvm_vm_fops = {
5435 	.release        = kvm_vm_release,
5436 	.unlocked_ioctl = kvm_vm_ioctl,
5437 	.llseek		= noop_llseek,
5438 	KVM_COMPAT(kvm_vm_compat_ioctl),
5439 };
5440 
5441 bool file_is_kvm(struct file *file)
5442 {
5443 	return file && file->f_op == &kvm_vm_fops;
5444 }
5445 EXPORT_SYMBOL_GPL(file_is_kvm);
5446 
5447 static int kvm_dev_ioctl_create_vm(unsigned long type)
5448 {
5449 	char fdname[ITOA_MAX_LEN + 1];
5450 	int r, fd;
5451 	struct kvm *kvm;
5452 	struct file *file;
5453 
5454 	fd = get_unused_fd_flags(O_CLOEXEC);
5455 	if (fd < 0)
5456 		return fd;
5457 
5458 	snprintf(fdname, sizeof(fdname), "%d", fd);
5459 
5460 	kvm = kvm_create_vm(type, fdname);
5461 	if (IS_ERR(kvm)) {
5462 		r = PTR_ERR(kvm);
5463 		goto put_fd;
5464 	}
5465 
5466 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5467 	if (IS_ERR(file)) {
5468 		r = PTR_ERR(file);
5469 		goto put_kvm;
5470 	}
5471 
5472 	/*
5473 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5474 	 * already set, with ->release() being kvm_vm_release().  In error
5475 	 * cases it will be called by the final fput(file) and will take
5476 	 * care of doing kvm_put_kvm(kvm).
5477 	 */
5478 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5479 
5480 	fd_install(fd, file);
5481 	return fd;
5482 
5483 put_kvm:
5484 	kvm_put_kvm(kvm);
5485 put_fd:
5486 	put_unused_fd(fd);
5487 	return r;
5488 }
5489 
5490 static long kvm_dev_ioctl(struct file *filp,
5491 			  unsigned int ioctl, unsigned long arg)
5492 {
5493 	int r = -EINVAL;
5494 
5495 	switch (ioctl) {
5496 	case KVM_GET_API_VERSION:
5497 		if (arg)
5498 			goto out;
5499 		r = KVM_API_VERSION;
5500 		break;
5501 	case KVM_CREATE_VM:
5502 		r = kvm_dev_ioctl_create_vm(arg);
5503 		break;
5504 	case KVM_CHECK_EXTENSION:
5505 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5506 		break;
5507 	case KVM_GET_VCPU_MMAP_SIZE:
5508 		if (arg)
5509 			goto out;
5510 		r = PAGE_SIZE;     /* struct kvm_run */
5511 #ifdef CONFIG_X86
5512 		r += PAGE_SIZE;    /* pio data page */
5513 #endif
5514 #ifdef CONFIG_KVM_MMIO
5515 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5516 #endif
5517 		break;
5518 	default:
5519 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5520 	}
5521 out:
5522 	return r;
5523 }
5524 
5525 static struct file_operations kvm_chardev_ops = {
5526 	.unlocked_ioctl = kvm_dev_ioctl,
5527 	.llseek		= noop_llseek,
5528 	KVM_COMPAT(kvm_dev_ioctl),
5529 };
5530 
5531 static struct miscdevice kvm_dev = {
5532 	KVM_MINOR,
5533 	"kvm",
5534 	&kvm_chardev_ops,
5535 };
5536 
5537 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5538 __visible bool kvm_rebooting;
5539 EXPORT_SYMBOL_GPL(kvm_rebooting);
5540 
5541 static DEFINE_PER_CPU(bool, hardware_enabled);
5542 static int kvm_usage_count;
5543 
5544 static int __hardware_enable_nolock(void)
5545 {
5546 	if (__this_cpu_read(hardware_enabled))
5547 		return 0;
5548 
5549 	if (kvm_arch_hardware_enable()) {
5550 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5551 			raw_smp_processor_id());
5552 		return -EIO;
5553 	}
5554 
5555 	__this_cpu_write(hardware_enabled, true);
5556 	return 0;
5557 }
5558 
5559 static void hardware_enable_nolock(void *failed)
5560 {
5561 	if (__hardware_enable_nolock())
5562 		atomic_inc(failed);
5563 }
5564 
5565 static int kvm_online_cpu(unsigned int cpu)
5566 {
5567 	int ret = 0;
5568 
5569 	/*
5570 	 * Abort the CPU online process if hardware virtualization cannot
5571 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5572 	 * errors when scheduled to this CPU.
5573 	 */
5574 	mutex_lock(&kvm_lock);
5575 	if (kvm_usage_count)
5576 		ret = __hardware_enable_nolock();
5577 	mutex_unlock(&kvm_lock);
5578 	return ret;
5579 }
5580 
5581 static void hardware_disable_nolock(void *junk)
5582 {
5583 	/*
5584 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5585 	 * hardware, not just CPUs that successfully enabled hardware!
5586 	 */
5587 	if (!__this_cpu_read(hardware_enabled))
5588 		return;
5589 
5590 	kvm_arch_hardware_disable();
5591 
5592 	__this_cpu_write(hardware_enabled, false);
5593 }
5594 
5595 static int kvm_offline_cpu(unsigned int cpu)
5596 {
5597 	mutex_lock(&kvm_lock);
5598 	if (kvm_usage_count)
5599 		hardware_disable_nolock(NULL);
5600 	mutex_unlock(&kvm_lock);
5601 	return 0;
5602 }
5603 
5604 static void hardware_disable_all_nolock(void)
5605 {
5606 	BUG_ON(!kvm_usage_count);
5607 
5608 	kvm_usage_count--;
5609 	if (!kvm_usage_count)
5610 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5611 }
5612 
5613 static void hardware_disable_all(void)
5614 {
5615 	cpus_read_lock();
5616 	mutex_lock(&kvm_lock);
5617 	hardware_disable_all_nolock();
5618 	mutex_unlock(&kvm_lock);
5619 	cpus_read_unlock();
5620 }
5621 
5622 static int hardware_enable_all(void)
5623 {
5624 	atomic_t failed = ATOMIC_INIT(0);
5625 	int r;
5626 
5627 	/*
5628 	 * Do not enable hardware virtualization if the system is going down.
5629 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5630 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5631 	 * after kvm_reboot() is called.  Note, this relies on system_state
5632 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5633 	 * hook instead of registering a dedicated reboot notifier (the latter
5634 	 * runs before system_state is updated).
5635 	 */
5636 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5637 	    system_state == SYSTEM_RESTART)
5638 		return -EBUSY;
5639 
5640 	/*
5641 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5642 	 * is called, and so on_each_cpu() between them includes the CPU that
5643 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5644 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5645 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5646 	 * enable hardware multiple times.
5647 	 */
5648 	cpus_read_lock();
5649 	mutex_lock(&kvm_lock);
5650 
5651 	r = 0;
5652 
5653 	kvm_usage_count++;
5654 	if (kvm_usage_count == 1) {
5655 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5656 
5657 		if (atomic_read(&failed)) {
5658 			hardware_disable_all_nolock();
5659 			r = -EBUSY;
5660 		}
5661 	}
5662 
5663 	mutex_unlock(&kvm_lock);
5664 	cpus_read_unlock();
5665 
5666 	return r;
5667 }
5668 
5669 static void kvm_shutdown(void)
5670 {
5671 	/*
5672 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5673 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5674 	 * that relevant errors and exceptions aren't entirely unexpected.
5675 	 * Some flavors of hardware virtualization need to be disabled before
5676 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5677 	 * on x86, virtualization can block INIT interrupts, which are used by
5678 	 * firmware to pull APs back under firmware control.  Note, this path
5679 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5680 	 * 100% comprehensive.
5681 	 */
5682 	pr_info("kvm: exiting hardware virtualization\n");
5683 	kvm_rebooting = true;
5684 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5685 }
5686 
5687 static int kvm_suspend(void)
5688 {
5689 	/*
5690 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5691 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5692 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5693 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5694 	 * can be preempted, but the task cannot be frozen until it has dropped
5695 	 * all locks (userspace tasks are frozen via a fake signal).
5696 	 */
5697 	lockdep_assert_not_held(&kvm_lock);
5698 	lockdep_assert_irqs_disabled();
5699 
5700 	if (kvm_usage_count)
5701 		hardware_disable_nolock(NULL);
5702 	return 0;
5703 }
5704 
5705 static void kvm_resume(void)
5706 {
5707 	lockdep_assert_not_held(&kvm_lock);
5708 	lockdep_assert_irqs_disabled();
5709 
5710 	if (kvm_usage_count)
5711 		WARN_ON_ONCE(__hardware_enable_nolock());
5712 }
5713 
5714 static struct syscore_ops kvm_syscore_ops = {
5715 	.suspend = kvm_suspend,
5716 	.resume = kvm_resume,
5717 	.shutdown = kvm_shutdown,
5718 };
5719 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5720 static int hardware_enable_all(void)
5721 {
5722 	return 0;
5723 }
5724 
5725 static void hardware_disable_all(void)
5726 {
5727 
5728 }
5729 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5730 
5731 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5732 {
5733 	if (dev->ops->destructor)
5734 		dev->ops->destructor(dev);
5735 }
5736 
5737 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5738 {
5739 	int i;
5740 
5741 	for (i = 0; i < bus->dev_count; i++) {
5742 		struct kvm_io_device *pos = bus->range[i].dev;
5743 
5744 		kvm_iodevice_destructor(pos);
5745 	}
5746 	kfree(bus);
5747 }
5748 
5749 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5750 				 const struct kvm_io_range *r2)
5751 {
5752 	gpa_t addr1 = r1->addr;
5753 	gpa_t addr2 = r2->addr;
5754 
5755 	if (addr1 < addr2)
5756 		return -1;
5757 
5758 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5759 	 * accept any overlapping write.  Any order is acceptable for
5760 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5761 	 * we process all of them.
5762 	 */
5763 	if (r2->len) {
5764 		addr1 += r1->len;
5765 		addr2 += r2->len;
5766 	}
5767 
5768 	if (addr1 > addr2)
5769 		return 1;
5770 
5771 	return 0;
5772 }
5773 
5774 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5775 {
5776 	return kvm_io_bus_cmp(p1, p2);
5777 }
5778 
5779 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5780 			     gpa_t addr, int len)
5781 {
5782 	struct kvm_io_range *range, key;
5783 	int off;
5784 
5785 	key = (struct kvm_io_range) {
5786 		.addr = addr,
5787 		.len = len,
5788 	};
5789 
5790 	range = bsearch(&key, bus->range, bus->dev_count,
5791 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5792 	if (range == NULL)
5793 		return -ENOENT;
5794 
5795 	off = range - bus->range;
5796 
5797 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5798 		off--;
5799 
5800 	return off;
5801 }
5802 
5803 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5804 			      struct kvm_io_range *range, const void *val)
5805 {
5806 	int idx;
5807 
5808 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5809 	if (idx < 0)
5810 		return -EOPNOTSUPP;
5811 
5812 	while (idx < bus->dev_count &&
5813 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5814 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5815 					range->len, val))
5816 			return idx;
5817 		idx++;
5818 	}
5819 
5820 	return -EOPNOTSUPP;
5821 }
5822 
5823 /* kvm_io_bus_write - called under kvm->slots_lock */
5824 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5825 		     int len, const void *val)
5826 {
5827 	struct kvm_io_bus *bus;
5828 	struct kvm_io_range range;
5829 	int r;
5830 
5831 	range = (struct kvm_io_range) {
5832 		.addr = addr,
5833 		.len = len,
5834 	};
5835 
5836 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5837 	if (!bus)
5838 		return -ENOMEM;
5839 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5840 	return r < 0 ? r : 0;
5841 }
5842 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5843 
5844 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5845 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5846 			    gpa_t addr, int len, const void *val, long cookie)
5847 {
5848 	struct kvm_io_bus *bus;
5849 	struct kvm_io_range range;
5850 
5851 	range = (struct kvm_io_range) {
5852 		.addr = addr,
5853 		.len = len,
5854 	};
5855 
5856 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5857 	if (!bus)
5858 		return -ENOMEM;
5859 
5860 	/* First try the device referenced by cookie. */
5861 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5862 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5863 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5864 					val))
5865 			return cookie;
5866 
5867 	/*
5868 	 * cookie contained garbage; fall back to search and return the
5869 	 * correct cookie value.
5870 	 */
5871 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5872 }
5873 
5874 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5875 			     struct kvm_io_range *range, void *val)
5876 {
5877 	int idx;
5878 
5879 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5880 	if (idx < 0)
5881 		return -EOPNOTSUPP;
5882 
5883 	while (idx < bus->dev_count &&
5884 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5885 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5886 				       range->len, val))
5887 			return idx;
5888 		idx++;
5889 	}
5890 
5891 	return -EOPNOTSUPP;
5892 }
5893 
5894 /* kvm_io_bus_read - called under kvm->slots_lock */
5895 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5896 		    int len, void *val)
5897 {
5898 	struct kvm_io_bus *bus;
5899 	struct kvm_io_range range;
5900 	int r;
5901 
5902 	range = (struct kvm_io_range) {
5903 		.addr = addr,
5904 		.len = len,
5905 	};
5906 
5907 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5908 	if (!bus)
5909 		return -ENOMEM;
5910 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5911 	return r < 0 ? r : 0;
5912 }
5913 
5914 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5915 			    int len, struct kvm_io_device *dev)
5916 {
5917 	int i;
5918 	struct kvm_io_bus *new_bus, *bus;
5919 	struct kvm_io_range range;
5920 
5921 	lockdep_assert_held(&kvm->slots_lock);
5922 
5923 	bus = kvm_get_bus(kvm, bus_idx);
5924 	if (!bus)
5925 		return -ENOMEM;
5926 
5927 	/* exclude ioeventfd which is limited by maximum fd */
5928 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5929 		return -ENOSPC;
5930 
5931 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5932 			  GFP_KERNEL_ACCOUNT);
5933 	if (!new_bus)
5934 		return -ENOMEM;
5935 
5936 	range = (struct kvm_io_range) {
5937 		.addr = addr,
5938 		.len = len,
5939 		.dev = dev,
5940 	};
5941 
5942 	for (i = 0; i < bus->dev_count; i++)
5943 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5944 			break;
5945 
5946 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5947 	new_bus->dev_count++;
5948 	new_bus->range[i] = range;
5949 	memcpy(new_bus->range + i + 1, bus->range + i,
5950 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5951 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5952 	synchronize_srcu_expedited(&kvm->srcu);
5953 	kfree(bus);
5954 
5955 	return 0;
5956 }
5957 
5958 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5959 			      struct kvm_io_device *dev)
5960 {
5961 	int i;
5962 	struct kvm_io_bus *new_bus, *bus;
5963 
5964 	lockdep_assert_held(&kvm->slots_lock);
5965 
5966 	bus = kvm_get_bus(kvm, bus_idx);
5967 	if (!bus)
5968 		return 0;
5969 
5970 	for (i = 0; i < bus->dev_count; i++) {
5971 		if (bus->range[i].dev == dev) {
5972 			break;
5973 		}
5974 	}
5975 
5976 	if (i == bus->dev_count)
5977 		return 0;
5978 
5979 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5980 			  GFP_KERNEL_ACCOUNT);
5981 	if (new_bus) {
5982 		memcpy(new_bus, bus, struct_size(bus, range, i));
5983 		new_bus->dev_count--;
5984 		memcpy(new_bus->range + i, bus->range + i + 1,
5985 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5986 	}
5987 
5988 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5989 	synchronize_srcu_expedited(&kvm->srcu);
5990 
5991 	/*
5992 	 * If NULL bus is installed, destroy the old bus, including all the
5993 	 * attached devices. Otherwise, destroy the caller's device only.
5994 	 */
5995 	if (!new_bus) {
5996 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5997 		kvm_io_bus_destroy(bus);
5998 		return -ENOMEM;
5999 	}
6000 
6001 	kvm_iodevice_destructor(dev);
6002 	kfree(bus);
6003 	return 0;
6004 }
6005 
6006 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6007 					 gpa_t addr)
6008 {
6009 	struct kvm_io_bus *bus;
6010 	int dev_idx, srcu_idx;
6011 	struct kvm_io_device *iodev = NULL;
6012 
6013 	srcu_idx = srcu_read_lock(&kvm->srcu);
6014 
6015 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6016 	if (!bus)
6017 		goto out_unlock;
6018 
6019 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6020 	if (dev_idx < 0)
6021 		goto out_unlock;
6022 
6023 	iodev = bus->range[dev_idx].dev;
6024 
6025 out_unlock:
6026 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6027 
6028 	return iodev;
6029 }
6030 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6031 
6032 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6033 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6034 			   const char *fmt)
6035 {
6036 	int ret;
6037 	struct kvm_stat_data *stat_data = inode->i_private;
6038 
6039 	/*
6040 	 * The debugfs files are a reference to the kvm struct which
6041         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6042         * avoids the race between open and the removal of the debugfs directory.
6043 	 */
6044 	if (!kvm_get_kvm_safe(stat_data->kvm))
6045 		return -ENOENT;
6046 
6047 	ret = simple_attr_open(inode, file, get,
6048 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6049 			       ? set : NULL, fmt);
6050 	if (ret)
6051 		kvm_put_kvm(stat_data->kvm);
6052 
6053 	return ret;
6054 }
6055 
6056 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6057 {
6058 	struct kvm_stat_data *stat_data = inode->i_private;
6059 
6060 	simple_attr_release(inode, file);
6061 	kvm_put_kvm(stat_data->kvm);
6062 
6063 	return 0;
6064 }
6065 
6066 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6067 {
6068 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6069 
6070 	return 0;
6071 }
6072 
6073 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6074 {
6075 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6076 
6077 	return 0;
6078 }
6079 
6080 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6081 {
6082 	unsigned long i;
6083 	struct kvm_vcpu *vcpu;
6084 
6085 	*val = 0;
6086 
6087 	kvm_for_each_vcpu(i, vcpu, kvm)
6088 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6089 
6090 	return 0;
6091 }
6092 
6093 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6094 {
6095 	unsigned long i;
6096 	struct kvm_vcpu *vcpu;
6097 
6098 	kvm_for_each_vcpu(i, vcpu, kvm)
6099 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6100 
6101 	return 0;
6102 }
6103 
6104 static int kvm_stat_data_get(void *data, u64 *val)
6105 {
6106 	int r = -EFAULT;
6107 	struct kvm_stat_data *stat_data = data;
6108 
6109 	switch (stat_data->kind) {
6110 	case KVM_STAT_VM:
6111 		r = kvm_get_stat_per_vm(stat_data->kvm,
6112 					stat_data->desc->desc.offset, val);
6113 		break;
6114 	case KVM_STAT_VCPU:
6115 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6116 					  stat_data->desc->desc.offset, val);
6117 		break;
6118 	}
6119 
6120 	return r;
6121 }
6122 
6123 static int kvm_stat_data_clear(void *data, u64 val)
6124 {
6125 	int r = -EFAULT;
6126 	struct kvm_stat_data *stat_data = data;
6127 
6128 	if (val)
6129 		return -EINVAL;
6130 
6131 	switch (stat_data->kind) {
6132 	case KVM_STAT_VM:
6133 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6134 					  stat_data->desc->desc.offset);
6135 		break;
6136 	case KVM_STAT_VCPU:
6137 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6138 					    stat_data->desc->desc.offset);
6139 		break;
6140 	}
6141 
6142 	return r;
6143 }
6144 
6145 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6146 {
6147 	__simple_attr_check_format("%llu\n", 0ull);
6148 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6149 				kvm_stat_data_clear, "%llu\n");
6150 }
6151 
6152 static const struct file_operations stat_fops_per_vm = {
6153 	.owner = THIS_MODULE,
6154 	.open = kvm_stat_data_open,
6155 	.release = kvm_debugfs_release,
6156 	.read = simple_attr_read,
6157 	.write = simple_attr_write,
6158 	.llseek = no_llseek,
6159 };
6160 
6161 static int vm_stat_get(void *_offset, u64 *val)
6162 {
6163 	unsigned offset = (long)_offset;
6164 	struct kvm *kvm;
6165 	u64 tmp_val;
6166 
6167 	*val = 0;
6168 	mutex_lock(&kvm_lock);
6169 	list_for_each_entry(kvm, &vm_list, vm_list) {
6170 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6171 		*val += tmp_val;
6172 	}
6173 	mutex_unlock(&kvm_lock);
6174 	return 0;
6175 }
6176 
6177 static int vm_stat_clear(void *_offset, u64 val)
6178 {
6179 	unsigned offset = (long)_offset;
6180 	struct kvm *kvm;
6181 
6182 	if (val)
6183 		return -EINVAL;
6184 
6185 	mutex_lock(&kvm_lock);
6186 	list_for_each_entry(kvm, &vm_list, vm_list) {
6187 		kvm_clear_stat_per_vm(kvm, offset);
6188 	}
6189 	mutex_unlock(&kvm_lock);
6190 
6191 	return 0;
6192 }
6193 
6194 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6195 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6196 
6197 static int vcpu_stat_get(void *_offset, u64 *val)
6198 {
6199 	unsigned offset = (long)_offset;
6200 	struct kvm *kvm;
6201 	u64 tmp_val;
6202 
6203 	*val = 0;
6204 	mutex_lock(&kvm_lock);
6205 	list_for_each_entry(kvm, &vm_list, vm_list) {
6206 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6207 		*val += tmp_val;
6208 	}
6209 	mutex_unlock(&kvm_lock);
6210 	return 0;
6211 }
6212 
6213 static int vcpu_stat_clear(void *_offset, u64 val)
6214 {
6215 	unsigned offset = (long)_offset;
6216 	struct kvm *kvm;
6217 
6218 	if (val)
6219 		return -EINVAL;
6220 
6221 	mutex_lock(&kvm_lock);
6222 	list_for_each_entry(kvm, &vm_list, vm_list) {
6223 		kvm_clear_stat_per_vcpu(kvm, offset);
6224 	}
6225 	mutex_unlock(&kvm_lock);
6226 
6227 	return 0;
6228 }
6229 
6230 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6231 			"%llu\n");
6232 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6233 
6234 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6235 {
6236 	struct kobj_uevent_env *env;
6237 	unsigned long long created, active;
6238 
6239 	if (!kvm_dev.this_device || !kvm)
6240 		return;
6241 
6242 	mutex_lock(&kvm_lock);
6243 	if (type == KVM_EVENT_CREATE_VM) {
6244 		kvm_createvm_count++;
6245 		kvm_active_vms++;
6246 	} else if (type == KVM_EVENT_DESTROY_VM) {
6247 		kvm_active_vms--;
6248 	}
6249 	created = kvm_createvm_count;
6250 	active = kvm_active_vms;
6251 	mutex_unlock(&kvm_lock);
6252 
6253 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6254 	if (!env)
6255 		return;
6256 
6257 	add_uevent_var(env, "CREATED=%llu", created);
6258 	add_uevent_var(env, "COUNT=%llu", active);
6259 
6260 	if (type == KVM_EVENT_CREATE_VM) {
6261 		add_uevent_var(env, "EVENT=create");
6262 		kvm->userspace_pid = task_pid_nr(current);
6263 	} else if (type == KVM_EVENT_DESTROY_VM) {
6264 		add_uevent_var(env, "EVENT=destroy");
6265 	}
6266 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6267 
6268 	if (!IS_ERR(kvm->debugfs_dentry)) {
6269 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6270 
6271 		if (p) {
6272 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6273 			if (!IS_ERR(tmp))
6274 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6275 			kfree(p);
6276 		}
6277 	}
6278 	/* no need for checks, since we are adding at most only 5 keys */
6279 	env->envp[env->envp_idx++] = NULL;
6280 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6281 	kfree(env);
6282 }
6283 
6284 static void kvm_init_debug(void)
6285 {
6286 	const struct file_operations *fops;
6287 	const struct _kvm_stats_desc *pdesc;
6288 	int i;
6289 
6290 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6291 
6292 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6293 		pdesc = &kvm_vm_stats_desc[i];
6294 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6295 			fops = &vm_stat_fops;
6296 		else
6297 			fops = &vm_stat_readonly_fops;
6298 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6299 				kvm_debugfs_dir,
6300 				(void *)(long)pdesc->desc.offset, fops);
6301 	}
6302 
6303 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6304 		pdesc = &kvm_vcpu_stats_desc[i];
6305 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6306 			fops = &vcpu_stat_fops;
6307 		else
6308 			fops = &vcpu_stat_readonly_fops;
6309 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6310 				kvm_debugfs_dir,
6311 				(void *)(long)pdesc->desc.offset, fops);
6312 	}
6313 }
6314 
6315 static inline
6316 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6317 {
6318 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6319 }
6320 
6321 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6322 {
6323 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6324 
6325 	WRITE_ONCE(vcpu->preempted, false);
6326 	WRITE_ONCE(vcpu->ready, false);
6327 
6328 	__this_cpu_write(kvm_running_vcpu, vcpu);
6329 	kvm_arch_sched_in(vcpu, cpu);
6330 	kvm_arch_vcpu_load(vcpu, cpu);
6331 }
6332 
6333 static void kvm_sched_out(struct preempt_notifier *pn,
6334 			  struct task_struct *next)
6335 {
6336 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6337 
6338 	if (current->on_rq) {
6339 		WRITE_ONCE(vcpu->preempted, true);
6340 		WRITE_ONCE(vcpu->ready, true);
6341 	}
6342 	kvm_arch_vcpu_put(vcpu);
6343 	__this_cpu_write(kvm_running_vcpu, NULL);
6344 }
6345 
6346 /**
6347  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6348  *
6349  * We can disable preemption locally around accessing the per-CPU variable,
6350  * and use the resolved vcpu pointer after enabling preemption again,
6351  * because even if the current thread is migrated to another CPU, reading
6352  * the per-CPU value later will give us the same value as we update the
6353  * per-CPU variable in the preempt notifier handlers.
6354  */
6355 struct kvm_vcpu *kvm_get_running_vcpu(void)
6356 {
6357 	struct kvm_vcpu *vcpu;
6358 
6359 	preempt_disable();
6360 	vcpu = __this_cpu_read(kvm_running_vcpu);
6361 	preempt_enable();
6362 
6363 	return vcpu;
6364 }
6365 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6366 
6367 /**
6368  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6369  */
6370 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6371 {
6372         return &kvm_running_vcpu;
6373 }
6374 
6375 #ifdef CONFIG_GUEST_PERF_EVENTS
6376 static unsigned int kvm_guest_state(void)
6377 {
6378 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6379 	unsigned int state;
6380 
6381 	if (!kvm_arch_pmi_in_guest(vcpu))
6382 		return 0;
6383 
6384 	state = PERF_GUEST_ACTIVE;
6385 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6386 		state |= PERF_GUEST_USER;
6387 
6388 	return state;
6389 }
6390 
6391 static unsigned long kvm_guest_get_ip(void)
6392 {
6393 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6394 
6395 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6396 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6397 		return 0;
6398 
6399 	return kvm_arch_vcpu_get_ip(vcpu);
6400 }
6401 
6402 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6403 	.state			= kvm_guest_state,
6404 	.get_ip			= kvm_guest_get_ip,
6405 	.handle_intel_pt_intr	= NULL,
6406 };
6407 
6408 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6409 {
6410 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6411 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6412 }
6413 void kvm_unregister_perf_callbacks(void)
6414 {
6415 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6416 }
6417 #endif
6418 
6419 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6420 {
6421 	int r;
6422 	int cpu;
6423 
6424 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6425 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6426 				      kvm_online_cpu, kvm_offline_cpu);
6427 	if (r)
6428 		return r;
6429 
6430 	register_syscore_ops(&kvm_syscore_ops);
6431 #endif
6432 
6433 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6434 	if (!vcpu_align)
6435 		vcpu_align = __alignof__(struct kvm_vcpu);
6436 	kvm_vcpu_cache =
6437 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6438 					   SLAB_ACCOUNT,
6439 					   offsetof(struct kvm_vcpu, arch),
6440 					   offsetofend(struct kvm_vcpu, stats_id)
6441 					   - offsetof(struct kvm_vcpu, arch),
6442 					   NULL);
6443 	if (!kvm_vcpu_cache) {
6444 		r = -ENOMEM;
6445 		goto err_vcpu_cache;
6446 	}
6447 
6448 	for_each_possible_cpu(cpu) {
6449 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6450 					    GFP_KERNEL, cpu_to_node(cpu))) {
6451 			r = -ENOMEM;
6452 			goto err_cpu_kick_mask;
6453 		}
6454 	}
6455 
6456 	r = kvm_irqfd_init();
6457 	if (r)
6458 		goto err_irqfd;
6459 
6460 	r = kvm_async_pf_init();
6461 	if (r)
6462 		goto err_async_pf;
6463 
6464 	kvm_chardev_ops.owner = module;
6465 	kvm_vm_fops.owner = module;
6466 	kvm_vcpu_fops.owner = module;
6467 	kvm_device_fops.owner = module;
6468 
6469 	kvm_preempt_ops.sched_in = kvm_sched_in;
6470 	kvm_preempt_ops.sched_out = kvm_sched_out;
6471 
6472 	kvm_init_debug();
6473 
6474 	r = kvm_vfio_ops_init();
6475 	if (WARN_ON_ONCE(r))
6476 		goto err_vfio;
6477 
6478 	kvm_gmem_init(module);
6479 
6480 	/*
6481 	 * Registration _must_ be the very last thing done, as this exposes
6482 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6483 	 */
6484 	r = misc_register(&kvm_dev);
6485 	if (r) {
6486 		pr_err("kvm: misc device register failed\n");
6487 		goto err_register;
6488 	}
6489 
6490 	return 0;
6491 
6492 err_register:
6493 	kvm_vfio_ops_exit();
6494 err_vfio:
6495 	kvm_async_pf_deinit();
6496 err_async_pf:
6497 	kvm_irqfd_exit();
6498 err_irqfd:
6499 err_cpu_kick_mask:
6500 	for_each_possible_cpu(cpu)
6501 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6502 	kmem_cache_destroy(kvm_vcpu_cache);
6503 err_vcpu_cache:
6504 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6505 	unregister_syscore_ops(&kvm_syscore_ops);
6506 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6507 #endif
6508 	return r;
6509 }
6510 EXPORT_SYMBOL_GPL(kvm_init);
6511 
6512 void kvm_exit(void)
6513 {
6514 	int cpu;
6515 
6516 	/*
6517 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6518 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6519 	 * to KVM while the module is being stopped.
6520 	 */
6521 	misc_deregister(&kvm_dev);
6522 
6523 	debugfs_remove_recursive(kvm_debugfs_dir);
6524 	for_each_possible_cpu(cpu)
6525 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6526 	kmem_cache_destroy(kvm_vcpu_cache);
6527 	kvm_vfio_ops_exit();
6528 	kvm_async_pf_deinit();
6529 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6530 	unregister_syscore_ops(&kvm_syscore_ops);
6531 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6532 #endif
6533 	kvm_irqfd_exit();
6534 }
6535 EXPORT_SYMBOL_GPL(kvm_exit);
6536 
6537 struct kvm_vm_worker_thread_context {
6538 	struct kvm *kvm;
6539 	struct task_struct *parent;
6540 	struct completion init_done;
6541 	kvm_vm_thread_fn_t thread_fn;
6542 	uintptr_t data;
6543 	int err;
6544 };
6545 
6546 static int kvm_vm_worker_thread(void *context)
6547 {
6548 	/*
6549 	 * The init_context is allocated on the stack of the parent thread, so
6550 	 * we have to locally copy anything that is needed beyond initialization
6551 	 */
6552 	struct kvm_vm_worker_thread_context *init_context = context;
6553 	struct task_struct *parent;
6554 	struct kvm *kvm = init_context->kvm;
6555 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6556 	uintptr_t data = init_context->data;
6557 	int err;
6558 
6559 	err = kthread_park(current);
6560 	/* kthread_park(current) is never supposed to return an error */
6561 	WARN_ON(err != 0);
6562 	if (err)
6563 		goto init_complete;
6564 
6565 	err = cgroup_attach_task_all(init_context->parent, current);
6566 	if (err) {
6567 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6568 			__func__, err);
6569 		goto init_complete;
6570 	}
6571 
6572 	set_user_nice(current, task_nice(init_context->parent));
6573 
6574 init_complete:
6575 	init_context->err = err;
6576 	complete(&init_context->init_done);
6577 	init_context = NULL;
6578 
6579 	if (err)
6580 		goto out;
6581 
6582 	/* Wait to be woken up by the spawner before proceeding. */
6583 	kthread_parkme();
6584 
6585 	if (!kthread_should_stop())
6586 		err = thread_fn(kvm, data);
6587 
6588 out:
6589 	/*
6590 	 * Move kthread back to its original cgroup to prevent it lingering in
6591 	 * the cgroup of the VM process, after the latter finishes its
6592 	 * execution.
6593 	 *
6594 	 * kthread_stop() waits on the 'exited' completion condition which is
6595 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6596 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6597 	 * called after the exit_mm(). This causes the kthread_stop() to return
6598 	 * before the kthread actually quits the cgroup.
6599 	 */
6600 	rcu_read_lock();
6601 	parent = rcu_dereference(current->real_parent);
6602 	get_task_struct(parent);
6603 	rcu_read_unlock();
6604 	cgroup_attach_task_all(parent, current);
6605 	put_task_struct(parent);
6606 
6607 	return err;
6608 }
6609 
6610 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6611 				uintptr_t data, const char *name,
6612 				struct task_struct **thread_ptr)
6613 {
6614 	struct kvm_vm_worker_thread_context init_context = {};
6615 	struct task_struct *thread;
6616 
6617 	*thread_ptr = NULL;
6618 	init_context.kvm = kvm;
6619 	init_context.parent = current;
6620 	init_context.thread_fn = thread_fn;
6621 	init_context.data = data;
6622 	init_completion(&init_context.init_done);
6623 
6624 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6625 			     "%s-%d", name, task_pid_nr(current));
6626 	if (IS_ERR(thread))
6627 		return PTR_ERR(thread);
6628 
6629 	/* kthread_run is never supposed to return NULL */
6630 	WARN_ON(thread == NULL);
6631 
6632 	wait_for_completion(&init_context.init_done);
6633 
6634 	if (!init_context.err)
6635 		*thread_ptr = thread;
6636 
6637 	return init_context.err;
6638 }
6639