1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 void *page; 405 406 gfp_flags |= mc->gfp_zero; 407 408 if (mc->kmem_cache) 409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 410 411 page = (void *)__get_free_page(gfp_flags); 412 if (page && mc->init_value) 413 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 414 return page; 415 } 416 417 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 418 { 419 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 420 void *obj; 421 422 if (mc->nobjs >= min) 423 return 0; 424 425 if (unlikely(!mc->objects)) { 426 if (WARN_ON_ONCE(!capacity)) 427 return -EIO; 428 429 /* 430 * Custom init values can be used only for page allocations, 431 * and obviously conflict with __GFP_ZERO. 432 */ 433 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 434 return -EIO; 435 436 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 437 if (!mc->objects) 438 return -ENOMEM; 439 440 mc->capacity = capacity; 441 } 442 443 /* It is illegal to request a different capacity across topups. */ 444 if (WARN_ON_ONCE(mc->capacity != capacity)) 445 return -EIO; 446 447 while (mc->nobjs < mc->capacity) { 448 obj = mmu_memory_cache_alloc_obj(mc, gfp); 449 if (!obj) 450 return mc->nobjs >= min ? 0 : -ENOMEM; 451 mc->objects[mc->nobjs++] = obj; 452 } 453 return 0; 454 } 455 456 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 457 { 458 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 459 } 460 461 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 462 { 463 return mc->nobjs; 464 } 465 466 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 467 { 468 while (mc->nobjs) { 469 if (mc->kmem_cache) 470 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 471 else 472 free_page((unsigned long)mc->objects[--mc->nobjs]); 473 } 474 475 kvfree(mc->objects); 476 477 mc->objects = NULL; 478 mc->capacity = 0; 479 } 480 481 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 482 { 483 void *p; 484 485 if (WARN_ON(!mc->nobjs)) 486 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 487 else 488 p = mc->objects[--mc->nobjs]; 489 BUG_ON(!p); 490 return p; 491 } 492 #endif 493 494 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 495 { 496 mutex_init(&vcpu->mutex); 497 vcpu->cpu = -1; 498 vcpu->kvm = kvm; 499 vcpu->vcpu_id = id; 500 vcpu->pid = NULL; 501 #ifndef __KVM_HAVE_ARCH_WQP 502 rcuwait_init(&vcpu->wait); 503 #endif 504 kvm_async_pf_vcpu_init(vcpu); 505 506 kvm_vcpu_set_in_spin_loop(vcpu, false); 507 kvm_vcpu_set_dy_eligible(vcpu, false); 508 vcpu->preempted = false; 509 vcpu->ready = false; 510 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 511 vcpu->last_used_slot = NULL; 512 513 /* Fill the stats id string for the vcpu */ 514 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 515 task_pid_nr(current), id); 516 } 517 518 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 519 { 520 kvm_arch_vcpu_destroy(vcpu); 521 kvm_dirty_ring_free(&vcpu->dirty_ring); 522 523 /* 524 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 525 * the vcpu->pid pointer, and at destruction time all file descriptors 526 * are already gone. 527 */ 528 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 529 530 free_page((unsigned long)vcpu->run); 531 kmem_cache_free(kvm_vcpu_cache, vcpu); 532 } 533 534 void kvm_destroy_vcpus(struct kvm *kvm) 535 { 536 unsigned long i; 537 struct kvm_vcpu *vcpu; 538 539 kvm_for_each_vcpu(i, vcpu, kvm) { 540 kvm_vcpu_destroy(vcpu); 541 xa_erase(&kvm->vcpu_array, i); 542 } 543 544 atomic_set(&kvm->online_vcpus, 0); 545 } 546 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 547 548 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 549 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 550 { 551 return container_of(mn, struct kvm, mmu_notifier); 552 } 553 554 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 555 556 typedef void (*on_lock_fn_t)(struct kvm *kvm); 557 558 struct kvm_mmu_notifier_range { 559 /* 560 * 64-bit addresses, as KVM notifiers can operate on host virtual 561 * addresses (unsigned long) and guest physical addresses (64-bit). 562 */ 563 u64 start; 564 u64 end; 565 union kvm_mmu_notifier_arg arg; 566 gfn_handler_t handler; 567 on_lock_fn_t on_lock; 568 bool flush_on_ret; 569 bool may_block; 570 }; 571 572 /* 573 * The inner-most helper returns a tuple containing the return value from the 574 * arch- and action-specific handler, plus a flag indicating whether or not at 575 * least one memslot was found, i.e. if the handler found guest memory. 576 * 577 * Note, most notifiers are averse to booleans, so even though KVM tracks the 578 * return from arch code as a bool, outer helpers will cast it to an int. :-( 579 */ 580 typedef struct kvm_mmu_notifier_return { 581 bool ret; 582 bool found_memslot; 583 } kvm_mn_ret_t; 584 585 /* 586 * Use a dedicated stub instead of NULL to indicate that there is no callback 587 * function/handler. The compiler technically can't guarantee that a real 588 * function will have a non-zero address, and so it will generate code to 589 * check for !NULL, whereas comparing against a stub will be elided at compile 590 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 591 */ 592 static void kvm_null_fn(void) 593 { 594 595 } 596 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 597 598 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 599 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 600 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 601 node; \ 602 node = interval_tree_iter_next(node, start, last)) \ 603 604 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 605 const struct kvm_mmu_notifier_range *range) 606 { 607 struct kvm_mmu_notifier_return r = { 608 .ret = false, 609 .found_memslot = false, 610 }; 611 struct kvm_gfn_range gfn_range; 612 struct kvm_memory_slot *slot; 613 struct kvm_memslots *slots; 614 int i, idx; 615 616 if (WARN_ON_ONCE(range->end <= range->start)) 617 return r; 618 619 /* A null handler is allowed if and only if on_lock() is provided. */ 620 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 621 IS_KVM_NULL_FN(range->handler))) 622 return r; 623 624 idx = srcu_read_lock(&kvm->srcu); 625 626 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 627 struct interval_tree_node *node; 628 629 slots = __kvm_memslots(kvm, i); 630 kvm_for_each_memslot_in_hva_range(node, slots, 631 range->start, range->end - 1) { 632 unsigned long hva_start, hva_end; 633 634 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 635 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 636 hva_end = min_t(unsigned long, range->end, 637 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 638 639 /* 640 * To optimize for the likely case where the address 641 * range is covered by zero or one memslots, don't 642 * bother making these conditional (to avoid writes on 643 * the second or later invocation of the handler). 644 */ 645 gfn_range.arg = range->arg; 646 gfn_range.may_block = range->may_block; 647 648 /* 649 * {gfn(page) | page intersects with [hva_start, hva_end)} = 650 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 651 */ 652 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 653 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 654 gfn_range.slot = slot; 655 656 if (!r.found_memslot) { 657 r.found_memslot = true; 658 KVM_MMU_LOCK(kvm); 659 if (!IS_KVM_NULL_FN(range->on_lock)) 660 range->on_lock(kvm); 661 662 if (IS_KVM_NULL_FN(range->handler)) 663 break; 664 } 665 r.ret |= range->handler(kvm, &gfn_range); 666 } 667 } 668 669 if (range->flush_on_ret && r.ret) 670 kvm_flush_remote_tlbs(kvm); 671 672 if (r.found_memslot) 673 KVM_MMU_UNLOCK(kvm); 674 675 srcu_read_unlock(&kvm->srcu, idx); 676 677 return r; 678 } 679 680 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 681 unsigned long start, 682 unsigned long end, 683 gfn_handler_t handler) 684 { 685 struct kvm *kvm = mmu_notifier_to_kvm(mn); 686 const struct kvm_mmu_notifier_range range = { 687 .start = start, 688 .end = end, 689 .handler = handler, 690 .on_lock = (void *)kvm_null_fn, 691 .flush_on_ret = true, 692 .may_block = false, 693 }; 694 695 return __kvm_handle_hva_range(kvm, &range).ret; 696 } 697 698 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 699 unsigned long start, 700 unsigned long end, 701 gfn_handler_t handler) 702 { 703 struct kvm *kvm = mmu_notifier_to_kvm(mn); 704 const struct kvm_mmu_notifier_range range = { 705 .start = start, 706 .end = end, 707 .handler = handler, 708 .on_lock = (void *)kvm_null_fn, 709 .flush_on_ret = false, 710 .may_block = false, 711 }; 712 713 return __kvm_handle_hva_range(kvm, &range).ret; 714 } 715 716 void kvm_mmu_invalidate_begin(struct kvm *kvm) 717 { 718 lockdep_assert_held_write(&kvm->mmu_lock); 719 /* 720 * The count increase must become visible at unlock time as no 721 * spte can be established without taking the mmu_lock and 722 * count is also read inside the mmu_lock critical section. 723 */ 724 kvm->mmu_invalidate_in_progress++; 725 726 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 727 kvm->mmu_invalidate_range_start = INVALID_GPA; 728 kvm->mmu_invalidate_range_end = INVALID_GPA; 729 } 730 } 731 732 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 733 { 734 lockdep_assert_held_write(&kvm->mmu_lock); 735 736 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 737 738 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 739 kvm->mmu_invalidate_range_start = start; 740 kvm->mmu_invalidate_range_end = end; 741 } else { 742 /* 743 * Fully tracking multiple concurrent ranges has diminishing 744 * returns. Keep things simple and just find the minimal range 745 * which includes the current and new ranges. As there won't be 746 * enough information to subtract a range after its invalidate 747 * completes, any ranges invalidated concurrently will 748 * accumulate and persist until all outstanding invalidates 749 * complete. 750 */ 751 kvm->mmu_invalidate_range_start = 752 min(kvm->mmu_invalidate_range_start, start); 753 kvm->mmu_invalidate_range_end = 754 max(kvm->mmu_invalidate_range_end, end); 755 } 756 } 757 758 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 759 { 760 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 761 return kvm_unmap_gfn_range(kvm, range); 762 } 763 764 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 765 const struct mmu_notifier_range *range) 766 { 767 struct kvm *kvm = mmu_notifier_to_kvm(mn); 768 const struct kvm_mmu_notifier_range hva_range = { 769 .start = range->start, 770 .end = range->end, 771 .handler = kvm_mmu_unmap_gfn_range, 772 .on_lock = kvm_mmu_invalidate_begin, 773 .flush_on_ret = true, 774 .may_block = mmu_notifier_range_blockable(range), 775 }; 776 777 trace_kvm_unmap_hva_range(range->start, range->end); 778 779 /* 780 * Prevent memslot modification between range_start() and range_end() 781 * so that conditionally locking provides the same result in both 782 * functions. Without that guarantee, the mmu_invalidate_in_progress 783 * adjustments will be imbalanced. 784 * 785 * Pairs with the decrement in range_end(). 786 */ 787 spin_lock(&kvm->mn_invalidate_lock); 788 kvm->mn_active_invalidate_count++; 789 spin_unlock(&kvm->mn_invalidate_lock); 790 791 /* 792 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 793 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 794 * each cache's lock. There are relatively few caches in existence at 795 * any given time, and the caches themselves can check for hva overlap, 796 * i.e. don't need to rely on memslot overlap checks for performance. 797 * Because this runs without holding mmu_lock, the pfn caches must use 798 * mn_active_invalidate_count (see above) instead of 799 * mmu_invalidate_in_progress. 800 */ 801 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 802 803 /* 804 * If one or more memslots were found and thus zapped, notify arch code 805 * that guest memory has been reclaimed. This needs to be done *after* 806 * dropping mmu_lock, as x86's reclaim path is slooooow. 807 */ 808 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 809 kvm_arch_guest_memory_reclaimed(kvm); 810 811 return 0; 812 } 813 814 void kvm_mmu_invalidate_end(struct kvm *kvm) 815 { 816 lockdep_assert_held_write(&kvm->mmu_lock); 817 818 /* 819 * This sequence increase will notify the kvm page fault that 820 * the page that is going to be mapped in the spte could have 821 * been freed. 822 */ 823 kvm->mmu_invalidate_seq++; 824 smp_wmb(); 825 /* 826 * The above sequence increase must be visible before the 827 * below count decrease, which is ensured by the smp_wmb above 828 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 829 */ 830 kvm->mmu_invalidate_in_progress--; 831 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 832 833 /* 834 * Assert that at least one range was added between start() and end(). 835 * Not adding a range isn't fatal, but it is a KVM bug. 836 */ 837 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 838 } 839 840 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 841 const struct mmu_notifier_range *range) 842 { 843 struct kvm *kvm = mmu_notifier_to_kvm(mn); 844 const struct kvm_mmu_notifier_range hva_range = { 845 .start = range->start, 846 .end = range->end, 847 .handler = (void *)kvm_null_fn, 848 .on_lock = kvm_mmu_invalidate_end, 849 .flush_on_ret = false, 850 .may_block = mmu_notifier_range_blockable(range), 851 }; 852 bool wake; 853 854 __kvm_handle_hva_range(kvm, &hva_range); 855 856 /* Pairs with the increment in range_start(). */ 857 spin_lock(&kvm->mn_invalidate_lock); 858 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 859 --kvm->mn_active_invalidate_count; 860 wake = !kvm->mn_active_invalidate_count; 861 spin_unlock(&kvm->mn_invalidate_lock); 862 863 /* 864 * There can only be one waiter, since the wait happens under 865 * slots_lock. 866 */ 867 if (wake) 868 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 869 } 870 871 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 872 struct mm_struct *mm, 873 unsigned long start, 874 unsigned long end) 875 { 876 trace_kvm_age_hva(start, end); 877 878 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 879 } 880 881 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 882 struct mm_struct *mm, 883 unsigned long start, 884 unsigned long end) 885 { 886 trace_kvm_age_hva(start, end); 887 888 /* 889 * Even though we do not flush TLB, this will still adversely 890 * affect performance on pre-Haswell Intel EPT, where there is 891 * no EPT Access Bit to clear so that we have to tear down EPT 892 * tables instead. If we find this unacceptable, we can always 893 * add a parameter to kvm_age_hva so that it effectively doesn't 894 * do anything on clear_young. 895 * 896 * Also note that currently we never issue secondary TLB flushes 897 * from clear_young, leaving this job up to the regular system 898 * cadence. If we find this inaccurate, we might come up with a 899 * more sophisticated heuristic later. 900 */ 901 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 902 } 903 904 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 905 struct mm_struct *mm, 906 unsigned long address) 907 { 908 trace_kvm_test_age_hva(address); 909 910 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 911 kvm_test_age_gfn); 912 } 913 914 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 915 struct mm_struct *mm) 916 { 917 struct kvm *kvm = mmu_notifier_to_kvm(mn); 918 int idx; 919 920 idx = srcu_read_lock(&kvm->srcu); 921 kvm_flush_shadow_all(kvm); 922 srcu_read_unlock(&kvm->srcu, idx); 923 } 924 925 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 926 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 927 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 928 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 929 .clear_young = kvm_mmu_notifier_clear_young, 930 .test_young = kvm_mmu_notifier_test_young, 931 .release = kvm_mmu_notifier_release, 932 }; 933 934 static int kvm_init_mmu_notifier(struct kvm *kvm) 935 { 936 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 937 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 938 } 939 940 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 941 942 static int kvm_init_mmu_notifier(struct kvm *kvm) 943 { 944 return 0; 945 } 946 947 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 948 949 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 950 static int kvm_pm_notifier_call(struct notifier_block *bl, 951 unsigned long state, 952 void *unused) 953 { 954 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 955 956 return kvm_arch_pm_notifier(kvm, state); 957 } 958 959 static void kvm_init_pm_notifier(struct kvm *kvm) 960 { 961 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 962 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 963 kvm->pm_notifier.priority = INT_MAX; 964 register_pm_notifier(&kvm->pm_notifier); 965 } 966 967 static void kvm_destroy_pm_notifier(struct kvm *kvm) 968 { 969 unregister_pm_notifier(&kvm->pm_notifier); 970 } 971 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 972 static void kvm_init_pm_notifier(struct kvm *kvm) 973 { 974 } 975 976 static void kvm_destroy_pm_notifier(struct kvm *kvm) 977 { 978 } 979 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 980 981 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 982 { 983 if (!memslot->dirty_bitmap) 984 return; 985 986 kvfree(memslot->dirty_bitmap); 987 memslot->dirty_bitmap = NULL; 988 } 989 990 /* This does not remove the slot from struct kvm_memslots data structures */ 991 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 992 { 993 if (slot->flags & KVM_MEM_GUEST_MEMFD) 994 kvm_gmem_unbind(slot); 995 996 kvm_destroy_dirty_bitmap(slot); 997 998 kvm_arch_free_memslot(kvm, slot); 999 1000 kfree(slot); 1001 } 1002 1003 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 1004 { 1005 struct hlist_node *idnode; 1006 struct kvm_memory_slot *memslot; 1007 int bkt; 1008 1009 /* 1010 * The same memslot objects live in both active and inactive sets, 1011 * arbitrarily free using index '1' so the second invocation of this 1012 * function isn't operating over a structure with dangling pointers 1013 * (even though this function isn't actually touching them). 1014 */ 1015 if (!slots->node_idx) 1016 return; 1017 1018 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1019 kvm_free_memslot(kvm, memslot); 1020 } 1021 1022 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1023 { 1024 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1025 case KVM_STATS_TYPE_INSTANT: 1026 return 0444; 1027 case KVM_STATS_TYPE_CUMULATIVE: 1028 case KVM_STATS_TYPE_PEAK: 1029 default: 1030 return 0644; 1031 } 1032 } 1033 1034 1035 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1036 { 1037 int i; 1038 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1039 kvm_vcpu_stats_header.num_desc; 1040 1041 if (IS_ERR(kvm->debugfs_dentry)) 1042 return; 1043 1044 debugfs_remove_recursive(kvm->debugfs_dentry); 1045 1046 if (kvm->debugfs_stat_data) { 1047 for (i = 0; i < kvm_debugfs_num_entries; i++) 1048 kfree(kvm->debugfs_stat_data[i]); 1049 kfree(kvm->debugfs_stat_data); 1050 } 1051 } 1052 1053 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1054 { 1055 static DEFINE_MUTEX(kvm_debugfs_lock); 1056 struct dentry *dent; 1057 char dir_name[ITOA_MAX_LEN * 2]; 1058 struct kvm_stat_data *stat_data; 1059 const struct _kvm_stats_desc *pdesc; 1060 int i, ret = -ENOMEM; 1061 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1062 kvm_vcpu_stats_header.num_desc; 1063 1064 if (!debugfs_initialized()) 1065 return 0; 1066 1067 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1068 mutex_lock(&kvm_debugfs_lock); 1069 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1070 if (dent) { 1071 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1072 dput(dent); 1073 mutex_unlock(&kvm_debugfs_lock); 1074 return 0; 1075 } 1076 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1077 mutex_unlock(&kvm_debugfs_lock); 1078 if (IS_ERR(dent)) 1079 return 0; 1080 1081 kvm->debugfs_dentry = dent; 1082 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1083 sizeof(*kvm->debugfs_stat_data), 1084 GFP_KERNEL_ACCOUNT); 1085 if (!kvm->debugfs_stat_data) 1086 goto out_err; 1087 1088 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1089 pdesc = &kvm_vm_stats_desc[i]; 1090 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1091 if (!stat_data) 1092 goto out_err; 1093 1094 stat_data->kvm = kvm; 1095 stat_data->desc = pdesc; 1096 stat_data->kind = KVM_STAT_VM; 1097 kvm->debugfs_stat_data[i] = stat_data; 1098 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1099 kvm->debugfs_dentry, stat_data, 1100 &stat_fops_per_vm); 1101 } 1102 1103 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1104 pdesc = &kvm_vcpu_stats_desc[i]; 1105 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1106 if (!stat_data) 1107 goto out_err; 1108 1109 stat_data->kvm = kvm; 1110 stat_data->desc = pdesc; 1111 stat_data->kind = KVM_STAT_VCPU; 1112 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1113 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1114 kvm->debugfs_dentry, stat_data, 1115 &stat_fops_per_vm); 1116 } 1117 1118 kvm_arch_create_vm_debugfs(kvm); 1119 return 0; 1120 out_err: 1121 kvm_destroy_vm_debugfs(kvm); 1122 return ret; 1123 } 1124 1125 /* 1126 * Called after the VM is otherwise initialized, but just before adding it to 1127 * the vm_list. 1128 */ 1129 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1130 { 1131 return 0; 1132 } 1133 1134 /* 1135 * Called just after removing the VM from the vm_list, but before doing any 1136 * other destruction. 1137 */ 1138 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1139 { 1140 } 1141 1142 /* 1143 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1144 * be setup already, so we can create arch-specific debugfs entries under it. 1145 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1146 * a per-arch destroy interface is not needed. 1147 */ 1148 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1149 { 1150 } 1151 1152 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1153 { 1154 struct kvm *kvm = kvm_arch_alloc_vm(); 1155 struct kvm_memslots *slots; 1156 int r = -ENOMEM; 1157 int i, j; 1158 1159 if (!kvm) 1160 return ERR_PTR(-ENOMEM); 1161 1162 KVM_MMU_LOCK_INIT(kvm); 1163 mmgrab(current->mm); 1164 kvm->mm = current->mm; 1165 kvm_eventfd_init(kvm); 1166 mutex_init(&kvm->lock); 1167 mutex_init(&kvm->irq_lock); 1168 mutex_init(&kvm->slots_lock); 1169 mutex_init(&kvm->slots_arch_lock); 1170 spin_lock_init(&kvm->mn_invalidate_lock); 1171 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1172 xa_init(&kvm->vcpu_array); 1173 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1174 xa_init(&kvm->mem_attr_array); 1175 #endif 1176 1177 INIT_LIST_HEAD(&kvm->gpc_list); 1178 spin_lock_init(&kvm->gpc_lock); 1179 1180 INIT_LIST_HEAD(&kvm->devices); 1181 kvm->max_vcpus = KVM_MAX_VCPUS; 1182 1183 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1184 1185 /* 1186 * Force subsequent debugfs file creations to fail if the VM directory 1187 * is not created (by kvm_create_vm_debugfs()). 1188 */ 1189 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1190 1191 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1192 task_pid_nr(current)); 1193 1194 if (init_srcu_struct(&kvm->srcu)) 1195 goto out_err_no_srcu; 1196 if (init_srcu_struct(&kvm->irq_srcu)) 1197 goto out_err_no_irq_srcu; 1198 1199 refcount_set(&kvm->users_count, 1); 1200 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1201 for (j = 0; j < 2; j++) { 1202 slots = &kvm->__memslots[i][j]; 1203 1204 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1205 slots->hva_tree = RB_ROOT_CACHED; 1206 slots->gfn_tree = RB_ROOT; 1207 hash_init(slots->id_hash); 1208 slots->node_idx = j; 1209 1210 /* Generations must be different for each address space. */ 1211 slots->generation = i; 1212 } 1213 1214 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1215 } 1216 1217 for (i = 0; i < KVM_NR_BUSES; i++) { 1218 rcu_assign_pointer(kvm->buses[i], 1219 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1220 if (!kvm->buses[i]) 1221 goto out_err_no_arch_destroy_vm; 1222 } 1223 1224 r = kvm_arch_init_vm(kvm, type); 1225 if (r) 1226 goto out_err_no_arch_destroy_vm; 1227 1228 r = hardware_enable_all(); 1229 if (r) 1230 goto out_err_no_disable; 1231 1232 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1233 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1234 #endif 1235 1236 r = kvm_init_mmu_notifier(kvm); 1237 if (r) 1238 goto out_err_no_mmu_notifier; 1239 1240 r = kvm_coalesced_mmio_init(kvm); 1241 if (r < 0) 1242 goto out_no_coalesced_mmio; 1243 1244 r = kvm_create_vm_debugfs(kvm, fdname); 1245 if (r) 1246 goto out_err_no_debugfs; 1247 1248 r = kvm_arch_post_init_vm(kvm); 1249 if (r) 1250 goto out_err; 1251 1252 mutex_lock(&kvm_lock); 1253 list_add(&kvm->vm_list, &vm_list); 1254 mutex_unlock(&kvm_lock); 1255 1256 preempt_notifier_inc(); 1257 kvm_init_pm_notifier(kvm); 1258 1259 return kvm; 1260 1261 out_err: 1262 kvm_destroy_vm_debugfs(kvm); 1263 out_err_no_debugfs: 1264 kvm_coalesced_mmio_free(kvm); 1265 out_no_coalesced_mmio: 1266 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1267 if (kvm->mmu_notifier.ops) 1268 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1269 #endif 1270 out_err_no_mmu_notifier: 1271 hardware_disable_all(); 1272 out_err_no_disable: 1273 kvm_arch_destroy_vm(kvm); 1274 out_err_no_arch_destroy_vm: 1275 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1276 for (i = 0; i < KVM_NR_BUSES; i++) 1277 kfree(kvm_get_bus(kvm, i)); 1278 cleanup_srcu_struct(&kvm->irq_srcu); 1279 out_err_no_irq_srcu: 1280 cleanup_srcu_struct(&kvm->srcu); 1281 out_err_no_srcu: 1282 kvm_arch_free_vm(kvm); 1283 mmdrop(current->mm); 1284 return ERR_PTR(r); 1285 } 1286 1287 static void kvm_destroy_devices(struct kvm *kvm) 1288 { 1289 struct kvm_device *dev, *tmp; 1290 1291 /* 1292 * We do not need to take the kvm->lock here, because nobody else 1293 * has a reference to the struct kvm at this point and therefore 1294 * cannot access the devices list anyhow. 1295 */ 1296 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1297 list_del(&dev->vm_node); 1298 dev->ops->destroy(dev); 1299 } 1300 } 1301 1302 static void kvm_destroy_vm(struct kvm *kvm) 1303 { 1304 int i; 1305 struct mm_struct *mm = kvm->mm; 1306 1307 kvm_destroy_pm_notifier(kvm); 1308 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1309 kvm_destroy_vm_debugfs(kvm); 1310 kvm_arch_sync_events(kvm); 1311 mutex_lock(&kvm_lock); 1312 list_del(&kvm->vm_list); 1313 mutex_unlock(&kvm_lock); 1314 kvm_arch_pre_destroy_vm(kvm); 1315 1316 kvm_free_irq_routing(kvm); 1317 for (i = 0; i < KVM_NR_BUSES; i++) { 1318 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1319 1320 if (bus) 1321 kvm_io_bus_destroy(bus); 1322 kvm->buses[i] = NULL; 1323 } 1324 kvm_coalesced_mmio_free(kvm); 1325 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1326 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1327 /* 1328 * At this point, pending calls to invalidate_range_start() 1329 * have completed but no more MMU notifiers will run, so 1330 * mn_active_invalidate_count may remain unbalanced. 1331 * No threads can be waiting in kvm_swap_active_memslots() as the 1332 * last reference on KVM has been dropped, but freeing 1333 * memslots would deadlock without this manual intervention. 1334 * 1335 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1336 * notifier between a start() and end(), then there shouldn't be any 1337 * in-progress invalidations. 1338 */ 1339 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1340 if (kvm->mn_active_invalidate_count) 1341 kvm->mn_active_invalidate_count = 0; 1342 else 1343 WARN_ON(kvm->mmu_invalidate_in_progress); 1344 #else 1345 kvm_flush_shadow_all(kvm); 1346 #endif 1347 kvm_arch_destroy_vm(kvm); 1348 kvm_destroy_devices(kvm); 1349 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1350 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1351 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1352 } 1353 cleanup_srcu_struct(&kvm->irq_srcu); 1354 cleanup_srcu_struct(&kvm->srcu); 1355 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1356 xa_destroy(&kvm->mem_attr_array); 1357 #endif 1358 kvm_arch_free_vm(kvm); 1359 preempt_notifier_dec(); 1360 hardware_disable_all(); 1361 mmdrop(mm); 1362 } 1363 1364 void kvm_get_kvm(struct kvm *kvm) 1365 { 1366 refcount_inc(&kvm->users_count); 1367 } 1368 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1369 1370 /* 1371 * Make sure the vm is not during destruction, which is a safe version of 1372 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1373 */ 1374 bool kvm_get_kvm_safe(struct kvm *kvm) 1375 { 1376 return refcount_inc_not_zero(&kvm->users_count); 1377 } 1378 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1379 1380 void kvm_put_kvm(struct kvm *kvm) 1381 { 1382 if (refcount_dec_and_test(&kvm->users_count)) 1383 kvm_destroy_vm(kvm); 1384 } 1385 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1386 1387 /* 1388 * Used to put a reference that was taken on behalf of an object associated 1389 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1390 * of the new file descriptor fails and the reference cannot be transferred to 1391 * its final owner. In such cases, the caller is still actively using @kvm and 1392 * will fail miserably if the refcount unexpectedly hits zero. 1393 */ 1394 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1395 { 1396 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1397 } 1398 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1399 1400 static int kvm_vm_release(struct inode *inode, struct file *filp) 1401 { 1402 struct kvm *kvm = filp->private_data; 1403 1404 kvm_irqfd_release(kvm); 1405 1406 kvm_put_kvm(kvm); 1407 return 0; 1408 } 1409 1410 /* 1411 * Allocation size is twice as large as the actual dirty bitmap size. 1412 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1413 */ 1414 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1415 { 1416 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1417 1418 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1419 if (!memslot->dirty_bitmap) 1420 return -ENOMEM; 1421 1422 return 0; 1423 } 1424 1425 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1426 { 1427 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1428 int node_idx_inactive = active->node_idx ^ 1; 1429 1430 return &kvm->__memslots[as_id][node_idx_inactive]; 1431 } 1432 1433 /* 1434 * Helper to get the address space ID when one of memslot pointers may be NULL. 1435 * This also serves as a sanity that at least one of the pointers is non-NULL, 1436 * and that their address space IDs don't diverge. 1437 */ 1438 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1439 struct kvm_memory_slot *b) 1440 { 1441 if (WARN_ON_ONCE(!a && !b)) 1442 return 0; 1443 1444 if (!a) 1445 return b->as_id; 1446 if (!b) 1447 return a->as_id; 1448 1449 WARN_ON_ONCE(a->as_id != b->as_id); 1450 return a->as_id; 1451 } 1452 1453 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1454 struct kvm_memory_slot *slot) 1455 { 1456 struct rb_root *gfn_tree = &slots->gfn_tree; 1457 struct rb_node **node, *parent; 1458 int idx = slots->node_idx; 1459 1460 parent = NULL; 1461 for (node = &gfn_tree->rb_node; *node; ) { 1462 struct kvm_memory_slot *tmp; 1463 1464 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1465 parent = *node; 1466 if (slot->base_gfn < tmp->base_gfn) 1467 node = &(*node)->rb_left; 1468 else if (slot->base_gfn > tmp->base_gfn) 1469 node = &(*node)->rb_right; 1470 else 1471 BUG(); 1472 } 1473 1474 rb_link_node(&slot->gfn_node[idx], parent, node); 1475 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1476 } 1477 1478 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1479 struct kvm_memory_slot *slot) 1480 { 1481 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1482 } 1483 1484 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1485 struct kvm_memory_slot *old, 1486 struct kvm_memory_slot *new) 1487 { 1488 int idx = slots->node_idx; 1489 1490 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1491 1492 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1493 &slots->gfn_tree); 1494 } 1495 1496 /* 1497 * Replace @old with @new in the inactive memslots. 1498 * 1499 * With NULL @old this simply adds @new. 1500 * With NULL @new this simply removes @old. 1501 * 1502 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1503 * appropriately. 1504 */ 1505 static void kvm_replace_memslot(struct kvm *kvm, 1506 struct kvm_memory_slot *old, 1507 struct kvm_memory_slot *new) 1508 { 1509 int as_id = kvm_memslots_get_as_id(old, new); 1510 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1511 int idx = slots->node_idx; 1512 1513 if (old) { 1514 hash_del(&old->id_node[idx]); 1515 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1516 1517 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1518 atomic_long_set(&slots->last_used_slot, (long)new); 1519 1520 if (!new) { 1521 kvm_erase_gfn_node(slots, old); 1522 return; 1523 } 1524 } 1525 1526 /* 1527 * Initialize @new's hva range. Do this even when replacing an @old 1528 * slot, kvm_copy_memslot() deliberately does not touch node data. 1529 */ 1530 new->hva_node[idx].start = new->userspace_addr; 1531 new->hva_node[idx].last = new->userspace_addr + 1532 (new->npages << PAGE_SHIFT) - 1; 1533 1534 /* 1535 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1536 * hva_node needs to be swapped with remove+insert even though hva can't 1537 * change when replacing an existing slot. 1538 */ 1539 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1540 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1541 1542 /* 1543 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1544 * switch the node in the gfn tree instead of removing the old and 1545 * inserting the new as two separate operations. Replacement is a 1546 * single O(1) operation versus two O(log(n)) operations for 1547 * remove+insert. 1548 */ 1549 if (old && old->base_gfn == new->base_gfn) { 1550 kvm_replace_gfn_node(slots, old, new); 1551 } else { 1552 if (old) 1553 kvm_erase_gfn_node(slots, old); 1554 kvm_insert_gfn_node(slots, new); 1555 } 1556 } 1557 1558 /* 1559 * Flags that do not access any of the extra space of struct 1560 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1561 * only allows these. 1562 */ 1563 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1564 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1565 1566 static int check_memory_region_flags(struct kvm *kvm, 1567 const struct kvm_userspace_memory_region2 *mem) 1568 { 1569 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1570 1571 if (kvm_arch_has_private_mem(kvm)) 1572 valid_flags |= KVM_MEM_GUEST_MEMFD; 1573 1574 /* Dirty logging private memory is not currently supported. */ 1575 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1576 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1577 1578 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1579 /* 1580 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1581 * read-only memslots have emulated MMIO, not page fault, semantics, 1582 * and KVM doesn't allow emulated MMIO for private memory. 1583 */ 1584 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1585 valid_flags |= KVM_MEM_READONLY; 1586 #endif 1587 1588 if (mem->flags & ~valid_flags) 1589 return -EINVAL; 1590 1591 return 0; 1592 } 1593 1594 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1595 { 1596 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1597 1598 /* Grab the generation from the activate memslots. */ 1599 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1600 1601 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1602 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1603 1604 /* 1605 * Do not store the new memslots while there are invalidations in 1606 * progress, otherwise the locking in invalidate_range_start and 1607 * invalidate_range_end will be unbalanced. 1608 */ 1609 spin_lock(&kvm->mn_invalidate_lock); 1610 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1611 while (kvm->mn_active_invalidate_count) { 1612 set_current_state(TASK_UNINTERRUPTIBLE); 1613 spin_unlock(&kvm->mn_invalidate_lock); 1614 schedule(); 1615 spin_lock(&kvm->mn_invalidate_lock); 1616 } 1617 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1618 rcu_assign_pointer(kvm->memslots[as_id], slots); 1619 spin_unlock(&kvm->mn_invalidate_lock); 1620 1621 /* 1622 * Acquired in kvm_set_memslot. Must be released before synchronize 1623 * SRCU below in order to avoid deadlock with another thread 1624 * acquiring the slots_arch_lock in an srcu critical section. 1625 */ 1626 mutex_unlock(&kvm->slots_arch_lock); 1627 1628 synchronize_srcu_expedited(&kvm->srcu); 1629 1630 /* 1631 * Increment the new memslot generation a second time, dropping the 1632 * update in-progress flag and incrementing the generation based on 1633 * the number of address spaces. This provides a unique and easily 1634 * identifiable generation number while the memslots are in flux. 1635 */ 1636 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1637 1638 /* 1639 * Generations must be unique even across address spaces. We do not need 1640 * a global counter for that, instead the generation space is evenly split 1641 * across address spaces. For example, with two address spaces, address 1642 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1643 * use generations 1, 3, 5, ... 1644 */ 1645 gen += kvm_arch_nr_memslot_as_ids(kvm); 1646 1647 kvm_arch_memslots_updated(kvm, gen); 1648 1649 slots->generation = gen; 1650 } 1651 1652 static int kvm_prepare_memory_region(struct kvm *kvm, 1653 const struct kvm_memory_slot *old, 1654 struct kvm_memory_slot *new, 1655 enum kvm_mr_change change) 1656 { 1657 int r; 1658 1659 /* 1660 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1661 * will be freed on "commit". If logging is enabled in both old and 1662 * new, reuse the existing bitmap. If logging is enabled only in the 1663 * new and KVM isn't using a ring buffer, allocate and initialize a 1664 * new bitmap. 1665 */ 1666 if (change != KVM_MR_DELETE) { 1667 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1668 new->dirty_bitmap = NULL; 1669 else if (old && old->dirty_bitmap) 1670 new->dirty_bitmap = old->dirty_bitmap; 1671 else if (kvm_use_dirty_bitmap(kvm)) { 1672 r = kvm_alloc_dirty_bitmap(new); 1673 if (r) 1674 return r; 1675 1676 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1677 bitmap_set(new->dirty_bitmap, 0, new->npages); 1678 } 1679 } 1680 1681 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1682 1683 /* Free the bitmap on failure if it was allocated above. */ 1684 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1685 kvm_destroy_dirty_bitmap(new); 1686 1687 return r; 1688 } 1689 1690 static void kvm_commit_memory_region(struct kvm *kvm, 1691 struct kvm_memory_slot *old, 1692 const struct kvm_memory_slot *new, 1693 enum kvm_mr_change change) 1694 { 1695 int old_flags = old ? old->flags : 0; 1696 int new_flags = new ? new->flags : 0; 1697 /* 1698 * Update the total number of memslot pages before calling the arch 1699 * hook so that architectures can consume the result directly. 1700 */ 1701 if (change == KVM_MR_DELETE) 1702 kvm->nr_memslot_pages -= old->npages; 1703 else if (change == KVM_MR_CREATE) 1704 kvm->nr_memslot_pages += new->npages; 1705 1706 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1707 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1708 atomic_set(&kvm->nr_memslots_dirty_logging, 1709 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1710 } 1711 1712 kvm_arch_commit_memory_region(kvm, old, new, change); 1713 1714 switch (change) { 1715 case KVM_MR_CREATE: 1716 /* Nothing more to do. */ 1717 break; 1718 case KVM_MR_DELETE: 1719 /* Free the old memslot and all its metadata. */ 1720 kvm_free_memslot(kvm, old); 1721 break; 1722 case KVM_MR_MOVE: 1723 case KVM_MR_FLAGS_ONLY: 1724 /* 1725 * Free the dirty bitmap as needed; the below check encompasses 1726 * both the flags and whether a ring buffer is being used) 1727 */ 1728 if (old->dirty_bitmap && !new->dirty_bitmap) 1729 kvm_destroy_dirty_bitmap(old); 1730 1731 /* 1732 * The final quirk. Free the detached, old slot, but only its 1733 * memory, not any metadata. Metadata, including arch specific 1734 * data, may be reused by @new. 1735 */ 1736 kfree(old); 1737 break; 1738 default: 1739 BUG(); 1740 } 1741 } 1742 1743 /* 1744 * Activate @new, which must be installed in the inactive slots by the caller, 1745 * by swapping the active slots and then propagating @new to @old once @old is 1746 * unreachable and can be safely modified. 1747 * 1748 * With NULL @old this simply adds @new to @active (while swapping the sets). 1749 * With NULL @new this simply removes @old from @active and frees it 1750 * (while also swapping the sets). 1751 */ 1752 static void kvm_activate_memslot(struct kvm *kvm, 1753 struct kvm_memory_slot *old, 1754 struct kvm_memory_slot *new) 1755 { 1756 int as_id = kvm_memslots_get_as_id(old, new); 1757 1758 kvm_swap_active_memslots(kvm, as_id); 1759 1760 /* Propagate the new memslot to the now inactive memslots. */ 1761 kvm_replace_memslot(kvm, old, new); 1762 } 1763 1764 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1765 const struct kvm_memory_slot *src) 1766 { 1767 dest->base_gfn = src->base_gfn; 1768 dest->npages = src->npages; 1769 dest->dirty_bitmap = src->dirty_bitmap; 1770 dest->arch = src->arch; 1771 dest->userspace_addr = src->userspace_addr; 1772 dest->flags = src->flags; 1773 dest->id = src->id; 1774 dest->as_id = src->as_id; 1775 } 1776 1777 static void kvm_invalidate_memslot(struct kvm *kvm, 1778 struct kvm_memory_slot *old, 1779 struct kvm_memory_slot *invalid_slot) 1780 { 1781 /* 1782 * Mark the current slot INVALID. As with all memslot modifications, 1783 * this must be done on an unreachable slot to avoid modifying the 1784 * current slot in the active tree. 1785 */ 1786 kvm_copy_memslot(invalid_slot, old); 1787 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1788 kvm_replace_memslot(kvm, old, invalid_slot); 1789 1790 /* 1791 * Activate the slot that is now marked INVALID, but don't propagate 1792 * the slot to the now inactive slots. The slot is either going to be 1793 * deleted or recreated as a new slot. 1794 */ 1795 kvm_swap_active_memslots(kvm, old->as_id); 1796 1797 /* 1798 * From this point no new shadow pages pointing to a deleted, or moved, 1799 * memslot will be created. Validation of sp->gfn happens in: 1800 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1801 * - kvm_is_visible_gfn (mmu_check_root) 1802 */ 1803 kvm_arch_flush_shadow_memslot(kvm, old); 1804 kvm_arch_guest_memory_reclaimed(kvm); 1805 1806 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1807 mutex_lock(&kvm->slots_arch_lock); 1808 1809 /* 1810 * Copy the arch-specific field of the newly-installed slot back to the 1811 * old slot as the arch data could have changed between releasing 1812 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1813 * above. Writers are required to retrieve memslots *after* acquiring 1814 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1815 */ 1816 old->arch = invalid_slot->arch; 1817 } 1818 1819 static void kvm_create_memslot(struct kvm *kvm, 1820 struct kvm_memory_slot *new) 1821 { 1822 /* Add the new memslot to the inactive set and activate. */ 1823 kvm_replace_memslot(kvm, NULL, new); 1824 kvm_activate_memslot(kvm, NULL, new); 1825 } 1826 1827 static void kvm_delete_memslot(struct kvm *kvm, 1828 struct kvm_memory_slot *old, 1829 struct kvm_memory_slot *invalid_slot) 1830 { 1831 /* 1832 * Remove the old memslot (in the inactive memslots) by passing NULL as 1833 * the "new" slot, and for the invalid version in the active slots. 1834 */ 1835 kvm_replace_memslot(kvm, old, NULL); 1836 kvm_activate_memslot(kvm, invalid_slot, NULL); 1837 } 1838 1839 static void kvm_move_memslot(struct kvm *kvm, 1840 struct kvm_memory_slot *old, 1841 struct kvm_memory_slot *new, 1842 struct kvm_memory_slot *invalid_slot) 1843 { 1844 /* 1845 * Replace the old memslot in the inactive slots, and then swap slots 1846 * and replace the current INVALID with the new as well. 1847 */ 1848 kvm_replace_memslot(kvm, old, new); 1849 kvm_activate_memslot(kvm, invalid_slot, new); 1850 } 1851 1852 static void kvm_update_flags_memslot(struct kvm *kvm, 1853 struct kvm_memory_slot *old, 1854 struct kvm_memory_slot *new) 1855 { 1856 /* 1857 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1858 * an intermediate step. Instead, the old memslot is simply replaced 1859 * with a new, updated copy in both memslot sets. 1860 */ 1861 kvm_replace_memslot(kvm, old, new); 1862 kvm_activate_memslot(kvm, old, new); 1863 } 1864 1865 static int kvm_set_memslot(struct kvm *kvm, 1866 struct kvm_memory_slot *old, 1867 struct kvm_memory_slot *new, 1868 enum kvm_mr_change change) 1869 { 1870 struct kvm_memory_slot *invalid_slot; 1871 int r; 1872 1873 /* 1874 * Released in kvm_swap_active_memslots(). 1875 * 1876 * Must be held from before the current memslots are copied until after 1877 * the new memslots are installed with rcu_assign_pointer, then 1878 * released before the synchronize srcu in kvm_swap_active_memslots(). 1879 * 1880 * When modifying memslots outside of the slots_lock, must be held 1881 * before reading the pointer to the current memslots until after all 1882 * changes to those memslots are complete. 1883 * 1884 * These rules ensure that installing new memslots does not lose 1885 * changes made to the previous memslots. 1886 */ 1887 mutex_lock(&kvm->slots_arch_lock); 1888 1889 /* 1890 * Invalidate the old slot if it's being deleted or moved. This is 1891 * done prior to actually deleting/moving the memslot to allow vCPUs to 1892 * continue running by ensuring there are no mappings or shadow pages 1893 * for the memslot when it is deleted/moved. Without pre-invalidation 1894 * (and without a lock), a window would exist between effecting the 1895 * delete/move and committing the changes in arch code where KVM or a 1896 * guest could access a non-existent memslot. 1897 * 1898 * Modifications are done on a temporary, unreachable slot. The old 1899 * slot needs to be preserved in case a later step fails and the 1900 * invalidation needs to be reverted. 1901 */ 1902 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1903 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1904 if (!invalid_slot) { 1905 mutex_unlock(&kvm->slots_arch_lock); 1906 return -ENOMEM; 1907 } 1908 kvm_invalidate_memslot(kvm, old, invalid_slot); 1909 } 1910 1911 r = kvm_prepare_memory_region(kvm, old, new, change); 1912 if (r) { 1913 /* 1914 * For DELETE/MOVE, revert the above INVALID change. No 1915 * modifications required since the original slot was preserved 1916 * in the inactive slots. Changing the active memslots also 1917 * release slots_arch_lock. 1918 */ 1919 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1920 kvm_activate_memslot(kvm, invalid_slot, old); 1921 kfree(invalid_slot); 1922 } else { 1923 mutex_unlock(&kvm->slots_arch_lock); 1924 } 1925 return r; 1926 } 1927 1928 /* 1929 * For DELETE and MOVE, the working slot is now active as the INVALID 1930 * version of the old slot. MOVE is particularly special as it reuses 1931 * the old slot and returns a copy of the old slot (in working_slot). 1932 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1933 * old slot is detached but otherwise preserved. 1934 */ 1935 if (change == KVM_MR_CREATE) 1936 kvm_create_memslot(kvm, new); 1937 else if (change == KVM_MR_DELETE) 1938 kvm_delete_memslot(kvm, old, invalid_slot); 1939 else if (change == KVM_MR_MOVE) 1940 kvm_move_memslot(kvm, old, new, invalid_slot); 1941 else if (change == KVM_MR_FLAGS_ONLY) 1942 kvm_update_flags_memslot(kvm, old, new); 1943 else 1944 BUG(); 1945 1946 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1947 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1948 kfree(invalid_slot); 1949 1950 /* 1951 * No need to refresh new->arch, changes after dropping slots_arch_lock 1952 * will directly hit the final, active memslot. Architectures are 1953 * responsible for knowing that new->arch may be stale. 1954 */ 1955 kvm_commit_memory_region(kvm, old, new, change); 1956 1957 return 0; 1958 } 1959 1960 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1961 gfn_t start, gfn_t end) 1962 { 1963 struct kvm_memslot_iter iter; 1964 1965 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1966 if (iter.slot->id != id) 1967 return true; 1968 } 1969 1970 return false; 1971 } 1972 1973 /* 1974 * Allocate some memory and give it an address in the guest physical address 1975 * space. 1976 * 1977 * Discontiguous memory is allowed, mostly for framebuffers. 1978 * 1979 * Must be called holding kvm->slots_lock for write. 1980 */ 1981 int __kvm_set_memory_region(struct kvm *kvm, 1982 const struct kvm_userspace_memory_region2 *mem) 1983 { 1984 struct kvm_memory_slot *old, *new; 1985 struct kvm_memslots *slots; 1986 enum kvm_mr_change change; 1987 unsigned long npages; 1988 gfn_t base_gfn; 1989 int as_id, id; 1990 int r; 1991 1992 r = check_memory_region_flags(kvm, mem); 1993 if (r) 1994 return r; 1995 1996 as_id = mem->slot >> 16; 1997 id = (u16)mem->slot; 1998 1999 /* General sanity checks */ 2000 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2001 (mem->memory_size != (unsigned long)mem->memory_size)) 2002 return -EINVAL; 2003 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2004 return -EINVAL; 2005 /* We can read the guest memory with __xxx_user() later on. */ 2006 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2007 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2008 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2009 mem->memory_size)) 2010 return -EINVAL; 2011 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2012 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2013 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2014 return -EINVAL; 2015 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2016 return -EINVAL; 2017 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2018 return -EINVAL; 2019 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2020 return -EINVAL; 2021 2022 slots = __kvm_memslots(kvm, as_id); 2023 2024 /* 2025 * Note, the old memslot (and the pointer itself!) may be invalidated 2026 * and/or destroyed by kvm_set_memslot(). 2027 */ 2028 old = id_to_memslot(slots, id); 2029 2030 if (!mem->memory_size) { 2031 if (!old || !old->npages) 2032 return -EINVAL; 2033 2034 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2035 return -EIO; 2036 2037 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2038 } 2039 2040 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2041 npages = (mem->memory_size >> PAGE_SHIFT); 2042 2043 if (!old || !old->npages) { 2044 change = KVM_MR_CREATE; 2045 2046 /* 2047 * To simplify KVM internals, the total number of pages across 2048 * all memslots must fit in an unsigned long. 2049 */ 2050 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2051 return -EINVAL; 2052 } else { /* Modify an existing slot. */ 2053 /* Private memslots are immutable, they can only be deleted. */ 2054 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2055 return -EINVAL; 2056 if ((mem->userspace_addr != old->userspace_addr) || 2057 (npages != old->npages) || 2058 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2059 return -EINVAL; 2060 2061 if (base_gfn != old->base_gfn) 2062 change = KVM_MR_MOVE; 2063 else if (mem->flags != old->flags) 2064 change = KVM_MR_FLAGS_ONLY; 2065 else /* Nothing to change. */ 2066 return 0; 2067 } 2068 2069 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2070 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2071 return -EEXIST; 2072 2073 /* Allocate a slot that will persist in the memslot. */ 2074 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2075 if (!new) 2076 return -ENOMEM; 2077 2078 new->as_id = as_id; 2079 new->id = id; 2080 new->base_gfn = base_gfn; 2081 new->npages = npages; 2082 new->flags = mem->flags; 2083 new->userspace_addr = mem->userspace_addr; 2084 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2085 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2086 if (r) 2087 goto out; 2088 } 2089 2090 r = kvm_set_memslot(kvm, old, new, change); 2091 if (r) 2092 goto out_unbind; 2093 2094 return 0; 2095 2096 out_unbind: 2097 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2098 kvm_gmem_unbind(new); 2099 out: 2100 kfree(new); 2101 return r; 2102 } 2103 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2104 2105 int kvm_set_memory_region(struct kvm *kvm, 2106 const struct kvm_userspace_memory_region2 *mem) 2107 { 2108 int r; 2109 2110 mutex_lock(&kvm->slots_lock); 2111 r = __kvm_set_memory_region(kvm, mem); 2112 mutex_unlock(&kvm->slots_lock); 2113 return r; 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2116 2117 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2118 struct kvm_userspace_memory_region2 *mem) 2119 { 2120 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2121 return -EINVAL; 2122 2123 return kvm_set_memory_region(kvm, mem); 2124 } 2125 2126 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2127 /** 2128 * kvm_get_dirty_log - get a snapshot of dirty pages 2129 * @kvm: pointer to kvm instance 2130 * @log: slot id and address to which we copy the log 2131 * @is_dirty: set to '1' if any dirty pages were found 2132 * @memslot: set to the associated memslot, always valid on success 2133 */ 2134 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2135 int *is_dirty, struct kvm_memory_slot **memslot) 2136 { 2137 struct kvm_memslots *slots; 2138 int i, as_id, id; 2139 unsigned long n; 2140 unsigned long any = 0; 2141 2142 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2143 if (!kvm_use_dirty_bitmap(kvm)) 2144 return -ENXIO; 2145 2146 *memslot = NULL; 2147 *is_dirty = 0; 2148 2149 as_id = log->slot >> 16; 2150 id = (u16)log->slot; 2151 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2152 return -EINVAL; 2153 2154 slots = __kvm_memslots(kvm, as_id); 2155 *memslot = id_to_memslot(slots, id); 2156 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2157 return -ENOENT; 2158 2159 kvm_arch_sync_dirty_log(kvm, *memslot); 2160 2161 n = kvm_dirty_bitmap_bytes(*memslot); 2162 2163 for (i = 0; !any && i < n/sizeof(long); ++i) 2164 any = (*memslot)->dirty_bitmap[i]; 2165 2166 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2167 return -EFAULT; 2168 2169 if (any) 2170 *is_dirty = 1; 2171 return 0; 2172 } 2173 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2174 2175 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2176 /** 2177 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2178 * and reenable dirty page tracking for the corresponding pages. 2179 * @kvm: pointer to kvm instance 2180 * @log: slot id and address to which we copy the log 2181 * 2182 * We need to keep it in mind that VCPU threads can write to the bitmap 2183 * concurrently. So, to avoid losing track of dirty pages we keep the 2184 * following order: 2185 * 2186 * 1. Take a snapshot of the bit and clear it if needed. 2187 * 2. Write protect the corresponding page. 2188 * 3. Copy the snapshot to the userspace. 2189 * 4. Upon return caller flushes TLB's if needed. 2190 * 2191 * Between 2 and 4, the guest may write to the page using the remaining TLB 2192 * entry. This is not a problem because the page is reported dirty using 2193 * the snapshot taken before and step 4 ensures that writes done after 2194 * exiting to userspace will be logged for the next call. 2195 * 2196 */ 2197 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2198 { 2199 struct kvm_memslots *slots; 2200 struct kvm_memory_slot *memslot; 2201 int i, as_id, id; 2202 unsigned long n; 2203 unsigned long *dirty_bitmap; 2204 unsigned long *dirty_bitmap_buffer; 2205 bool flush; 2206 2207 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2208 if (!kvm_use_dirty_bitmap(kvm)) 2209 return -ENXIO; 2210 2211 as_id = log->slot >> 16; 2212 id = (u16)log->slot; 2213 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2214 return -EINVAL; 2215 2216 slots = __kvm_memslots(kvm, as_id); 2217 memslot = id_to_memslot(slots, id); 2218 if (!memslot || !memslot->dirty_bitmap) 2219 return -ENOENT; 2220 2221 dirty_bitmap = memslot->dirty_bitmap; 2222 2223 kvm_arch_sync_dirty_log(kvm, memslot); 2224 2225 n = kvm_dirty_bitmap_bytes(memslot); 2226 flush = false; 2227 if (kvm->manual_dirty_log_protect) { 2228 /* 2229 * Unlike kvm_get_dirty_log, we always return false in *flush, 2230 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2231 * is some code duplication between this function and 2232 * kvm_get_dirty_log, but hopefully all architecture 2233 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2234 * can be eliminated. 2235 */ 2236 dirty_bitmap_buffer = dirty_bitmap; 2237 } else { 2238 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2239 memset(dirty_bitmap_buffer, 0, n); 2240 2241 KVM_MMU_LOCK(kvm); 2242 for (i = 0; i < n / sizeof(long); i++) { 2243 unsigned long mask; 2244 gfn_t offset; 2245 2246 if (!dirty_bitmap[i]) 2247 continue; 2248 2249 flush = true; 2250 mask = xchg(&dirty_bitmap[i], 0); 2251 dirty_bitmap_buffer[i] = mask; 2252 2253 offset = i * BITS_PER_LONG; 2254 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2255 offset, mask); 2256 } 2257 KVM_MMU_UNLOCK(kvm); 2258 } 2259 2260 if (flush) 2261 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2262 2263 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2264 return -EFAULT; 2265 return 0; 2266 } 2267 2268 2269 /** 2270 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2271 * @kvm: kvm instance 2272 * @log: slot id and address to which we copy the log 2273 * 2274 * Steps 1-4 below provide general overview of dirty page logging. See 2275 * kvm_get_dirty_log_protect() function description for additional details. 2276 * 2277 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2278 * always flush the TLB (step 4) even if previous step failed and the dirty 2279 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2280 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2281 * writes will be marked dirty for next log read. 2282 * 2283 * 1. Take a snapshot of the bit and clear it if needed. 2284 * 2. Write protect the corresponding page. 2285 * 3. Copy the snapshot to the userspace. 2286 * 4. Flush TLB's if needed. 2287 */ 2288 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2289 struct kvm_dirty_log *log) 2290 { 2291 int r; 2292 2293 mutex_lock(&kvm->slots_lock); 2294 2295 r = kvm_get_dirty_log_protect(kvm, log); 2296 2297 mutex_unlock(&kvm->slots_lock); 2298 return r; 2299 } 2300 2301 /** 2302 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2303 * and reenable dirty page tracking for the corresponding pages. 2304 * @kvm: pointer to kvm instance 2305 * @log: slot id and address from which to fetch the bitmap of dirty pages 2306 */ 2307 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2308 struct kvm_clear_dirty_log *log) 2309 { 2310 struct kvm_memslots *slots; 2311 struct kvm_memory_slot *memslot; 2312 int as_id, id; 2313 gfn_t offset; 2314 unsigned long i, n; 2315 unsigned long *dirty_bitmap; 2316 unsigned long *dirty_bitmap_buffer; 2317 bool flush; 2318 2319 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2320 if (!kvm_use_dirty_bitmap(kvm)) 2321 return -ENXIO; 2322 2323 as_id = log->slot >> 16; 2324 id = (u16)log->slot; 2325 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2326 return -EINVAL; 2327 2328 if (log->first_page & 63) 2329 return -EINVAL; 2330 2331 slots = __kvm_memslots(kvm, as_id); 2332 memslot = id_to_memslot(slots, id); 2333 if (!memslot || !memslot->dirty_bitmap) 2334 return -ENOENT; 2335 2336 dirty_bitmap = memslot->dirty_bitmap; 2337 2338 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2339 2340 if (log->first_page > memslot->npages || 2341 log->num_pages > memslot->npages - log->first_page || 2342 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2343 return -EINVAL; 2344 2345 kvm_arch_sync_dirty_log(kvm, memslot); 2346 2347 flush = false; 2348 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2349 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2350 return -EFAULT; 2351 2352 KVM_MMU_LOCK(kvm); 2353 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2354 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2355 i++, offset += BITS_PER_LONG) { 2356 unsigned long mask = *dirty_bitmap_buffer++; 2357 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2358 if (!mask) 2359 continue; 2360 2361 mask &= atomic_long_fetch_andnot(mask, p); 2362 2363 /* 2364 * mask contains the bits that really have been cleared. This 2365 * never includes any bits beyond the length of the memslot (if 2366 * the length is not aligned to 64 pages), therefore it is not 2367 * a problem if userspace sets them in log->dirty_bitmap. 2368 */ 2369 if (mask) { 2370 flush = true; 2371 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2372 offset, mask); 2373 } 2374 } 2375 KVM_MMU_UNLOCK(kvm); 2376 2377 if (flush) 2378 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2379 2380 return 0; 2381 } 2382 2383 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2384 struct kvm_clear_dirty_log *log) 2385 { 2386 int r; 2387 2388 mutex_lock(&kvm->slots_lock); 2389 2390 r = kvm_clear_dirty_log_protect(kvm, log); 2391 2392 mutex_unlock(&kvm->slots_lock); 2393 return r; 2394 } 2395 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2396 2397 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2398 /* 2399 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2400 * matching @attrs. 2401 */ 2402 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2403 unsigned long attrs) 2404 { 2405 XA_STATE(xas, &kvm->mem_attr_array, start); 2406 unsigned long index; 2407 bool has_attrs; 2408 void *entry; 2409 2410 rcu_read_lock(); 2411 2412 if (!attrs) { 2413 has_attrs = !xas_find(&xas, end - 1); 2414 goto out; 2415 } 2416 2417 has_attrs = true; 2418 for (index = start; index < end; index++) { 2419 do { 2420 entry = xas_next(&xas); 2421 } while (xas_retry(&xas, entry)); 2422 2423 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2424 has_attrs = false; 2425 break; 2426 } 2427 } 2428 2429 out: 2430 rcu_read_unlock(); 2431 return has_attrs; 2432 } 2433 2434 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2435 { 2436 if (!kvm || kvm_arch_has_private_mem(kvm)) 2437 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2438 2439 return 0; 2440 } 2441 2442 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2443 struct kvm_mmu_notifier_range *range) 2444 { 2445 struct kvm_gfn_range gfn_range; 2446 struct kvm_memory_slot *slot; 2447 struct kvm_memslots *slots; 2448 struct kvm_memslot_iter iter; 2449 bool found_memslot = false; 2450 bool ret = false; 2451 int i; 2452 2453 gfn_range.arg = range->arg; 2454 gfn_range.may_block = range->may_block; 2455 2456 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2457 slots = __kvm_memslots(kvm, i); 2458 2459 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2460 slot = iter.slot; 2461 gfn_range.slot = slot; 2462 2463 gfn_range.start = max(range->start, slot->base_gfn); 2464 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2465 if (gfn_range.start >= gfn_range.end) 2466 continue; 2467 2468 if (!found_memslot) { 2469 found_memslot = true; 2470 KVM_MMU_LOCK(kvm); 2471 if (!IS_KVM_NULL_FN(range->on_lock)) 2472 range->on_lock(kvm); 2473 } 2474 2475 ret |= range->handler(kvm, &gfn_range); 2476 } 2477 } 2478 2479 if (range->flush_on_ret && ret) 2480 kvm_flush_remote_tlbs(kvm); 2481 2482 if (found_memslot) 2483 KVM_MMU_UNLOCK(kvm); 2484 } 2485 2486 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2487 struct kvm_gfn_range *range) 2488 { 2489 /* 2490 * Unconditionally add the range to the invalidation set, regardless of 2491 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2492 * if KVM supports RWX attributes in the future and the attributes are 2493 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2494 * adding the range allows KVM to require that MMU invalidations add at 2495 * least one range between begin() and end(), e.g. allows KVM to detect 2496 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2497 * but it's not obvious that allowing new mappings while the attributes 2498 * are in flux is desirable or worth the complexity. 2499 */ 2500 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2501 2502 return kvm_arch_pre_set_memory_attributes(kvm, range); 2503 } 2504 2505 /* Set @attributes for the gfn range [@start, @end). */ 2506 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2507 unsigned long attributes) 2508 { 2509 struct kvm_mmu_notifier_range pre_set_range = { 2510 .start = start, 2511 .end = end, 2512 .handler = kvm_pre_set_memory_attributes, 2513 .on_lock = kvm_mmu_invalidate_begin, 2514 .flush_on_ret = true, 2515 .may_block = true, 2516 }; 2517 struct kvm_mmu_notifier_range post_set_range = { 2518 .start = start, 2519 .end = end, 2520 .arg.attributes = attributes, 2521 .handler = kvm_arch_post_set_memory_attributes, 2522 .on_lock = kvm_mmu_invalidate_end, 2523 .may_block = true, 2524 }; 2525 unsigned long i; 2526 void *entry; 2527 int r = 0; 2528 2529 entry = attributes ? xa_mk_value(attributes) : NULL; 2530 2531 mutex_lock(&kvm->slots_lock); 2532 2533 /* Nothing to do if the entire range as the desired attributes. */ 2534 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2535 goto out_unlock; 2536 2537 /* 2538 * Reserve memory ahead of time to avoid having to deal with failures 2539 * partway through setting the new attributes. 2540 */ 2541 for (i = start; i < end; i++) { 2542 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2543 if (r) 2544 goto out_unlock; 2545 } 2546 2547 kvm_handle_gfn_range(kvm, &pre_set_range); 2548 2549 for (i = start; i < end; i++) { 2550 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2551 GFP_KERNEL_ACCOUNT)); 2552 KVM_BUG_ON(r, kvm); 2553 } 2554 2555 kvm_handle_gfn_range(kvm, &post_set_range); 2556 2557 out_unlock: 2558 mutex_unlock(&kvm->slots_lock); 2559 2560 return r; 2561 } 2562 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2563 struct kvm_memory_attributes *attrs) 2564 { 2565 gfn_t start, end; 2566 2567 /* flags is currently not used. */ 2568 if (attrs->flags) 2569 return -EINVAL; 2570 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2571 return -EINVAL; 2572 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2573 return -EINVAL; 2574 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2575 return -EINVAL; 2576 2577 start = attrs->address >> PAGE_SHIFT; 2578 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2579 2580 /* 2581 * xarray tracks data using "unsigned long", and as a result so does 2582 * KVM. For simplicity, supports generic attributes only on 64-bit 2583 * architectures. 2584 */ 2585 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2586 2587 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2588 } 2589 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2590 2591 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2592 { 2593 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2594 } 2595 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2596 2597 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2598 { 2599 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2600 u64 gen = slots->generation; 2601 struct kvm_memory_slot *slot; 2602 2603 /* 2604 * This also protects against using a memslot from a different address space, 2605 * since different address spaces have different generation numbers. 2606 */ 2607 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2608 vcpu->last_used_slot = NULL; 2609 vcpu->last_used_slot_gen = gen; 2610 } 2611 2612 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2613 if (slot) 2614 return slot; 2615 2616 /* 2617 * Fall back to searching all memslots. We purposely use 2618 * search_memslots() instead of __gfn_to_memslot() to avoid 2619 * thrashing the VM-wide last_used_slot in kvm_memslots. 2620 */ 2621 slot = search_memslots(slots, gfn, false); 2622 if (slot) { 2623 vcpu->last_used_slot = slot; 2624 return slot; 2625 } 2626 2627 return NULL; 2628 } 2629 2630 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2631 { 2632 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2633 2634 return kvm_is_visible_memslot(memslot); 2635 } 2636 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2637 2638 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2639 { 2640 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2641 2642 return kvm_is_visible_memslot(memslot); 2643 } 2644 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2645 2646 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2647 { 2648 struct vm_area_struct *vma; 2649 unsigned long addr, size; 2650 2651 size = PAGE_SIZE; 2652 2653 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2654 if (kvm_is_error_hva(addr)) 2655 return PAGE_SIZE; 2656 2657 mmap_read_lock(current->mm); 2658 vma = find_vma(current->mm, addr); 2659 if (!vma) 2660 goto out; 2661 2662 size = vma_kernel_pagesize(vma); 2663 2664 out: 2665 mmap_read_unlock(current->mm); 2666 2667 return size; 2668 } 2669 2670 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2671 { 2672 return slot->flags & KVM_MEM_READONLY; 2673 } 2674 2675 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2676 gfn_t *nr_pages, bool write) 2677 { 2678 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2679 return KVM_HVA_ERR_BAD; 2680 2681 if (memslot_is_readonly(slot) && write) 2682 return KVM_HVA_ERR_RO_BAD; 2683 2684 if (nr_pages) 2685 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2686 2687 return __gfn_to_hva_memslot(slot, gfn); 2688 } 2689 2690 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2691 gfn_t *nr_pages) 2692 { 2693 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2694 } 2695 2696 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2697 gfn_t gfn) 2698 { 2699 return gfn_to_hva_many(slot, gfn, NULL); 2700 } 2701 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2702 2703 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2704 { 2705 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2706 } 2707 EXPORT_SYMBOL_GPL(gfn_to_hva); 2708 2709 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2710 { 2711 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2712 } 2713 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2714 2715 /* 2716 * Return the hva of a @gfn and the R/W attribute if possible. 2717 * 2718 * @slot: the kvm_memory_slot which contains @gfn 2719 * @gfn: the gfn to be translated 2720 * @writable: used to return the read/write attribute of the @slot if the hva 2721 * is valid and @writable is not NULL 2722 */ 2723 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2724 gfn_t gfn, bool *writable) 2725 { 2726 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2727 2728 if (!kvm_is_error_hva(hva) && writable) 2729 *writable = !memslot_is_readonly(slot); 2730 2731 return hva; 2732 } 2733 2734 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2735 { 2736 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2737 2738 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2739 } 2740 2741 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2742 { 2743 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2744 2745 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2746 } 2747 2748 static inline int check_user_page_hwpoison(unsigned long addr) 2749 { 2750 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2751 2752 rc = get_user_pages(addr, 1, flags, NULL); 2753 return rc == -EHWPOISON; 2754 } 2755 2756 /* 2757 * The fast path to get the writable pfn which will be stored in @pfn, 2758 * true indicates success, otherwise false is returned. It's also the 2759 * only part that runs if we can in atomic context. 2760 */ 2761 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2762 bool *writable, kvm_pfn_t *pfn) 2763 { 2764 struct page *page[1]; 2765 2766 /* 2767 * Fast pin a writable pfn only if it is a write fault request 2768 * or the caller allows to map a writable pfn for a read fault 2769 * request. 2770 */ 2771 if (!(write_fault || writable)) 2772 return false; 2773 2774 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2775 *pfn = page_to_pfn(page[0]); 2776 2777 if (writable) 2778 *writable = true; 2779 return true; 2780 } 2781 2782 return false; 2783 } 2784 2785 /* 2786 * The slow path to get the pfn of the specified host virtual address, 2787 * 1 indicates success, -errno is returned if error is detected. 2788 */ 2789 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2790 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2791 { 2792 /* 2793 * When a VCPU accesses a page that is not mapped into the secondary 2794 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2795 * make progress. We always want to honor NUMA hinting faults in that 2796 * case, because GUP usage corresponds to memory accesses from the VCPU. 2797 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2798 * mapped into the secondary MMU and gets accessed by a VCPU. 2799 * 2800 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2801 * implicitly honor NUMA hinting faults and don't need this flag. 2802 */ 2803 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2804 struct page *page; 2805 int npages; 2806 2807 might_sleep(); 2808 2809 if (writable) 2810 *writable = write_fault; 2811 2812 if (write_fault) 2813 flags |= FOLL_WRITE; 2814 if (async) 2815 flags |= FOLL_NOWAIT; 2816 if (interruptible) 2817 flags |= FOLL_INTERRUPTIBLE; 2818 2819 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2820 if (npages != 1) 2821 return npages; 2822 2823 /* map read fault as writable if possible */ 2824 if (unlikely(!write_fault) && writable) { 2825 struct page *wpage; 2826 2827 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2828 *writable = true; 2829 put_page(page); 2830 page = wpage; 2831 } 2832 } 2833 *pfn = page_to_pfn(page); 2834 return npages; 2835 } 2836 2837 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2838 { 2839 if (unlikely(!(vma->vm_flags & VM_READ))) 2840 return false; 2841 2842 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2843 return false; 2844 2845 return true; 2846 } 2847 2848 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2849 { 2850 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2851 2852 if (!page) 2853 return 1; 2854 2855 return get_page_unless_zero(page); 2856 } 2857 2858 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2859 unsigned long addr, bool write_fault, 2860 bool *writable, kvm_pfn_t *p_pfn) 2861 { 2862 kvm_pfn_t pfn; 2863 pte_t *ptep; 2864 pte_t pte; 2865 spinlock_t *ptl; 2866 int r; 2867 2868 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2869 if (r) { 2870 /* 2871 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2872 * not call the fault handler, so do it here. 2873 */ 2874 bool unlocked = false; 2875 r = fixup_user_fault(current->mm, addr, 2876 (write_fault ? FAULT_FLAG_WRITE : 0), 2877 &unlocked); 2878 if (unlocked) 2879 return -EAGAIN; 2880 if (r) 2881 return r; 2882 2883 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2884 if (r) 2885 return r; 2886 } 2887 2888 pte = ptep_get(ptep); 2889 2890 if (write_fault && !pte_write(pte)) { 2891 pfn = KVM_PFN_ERR_RO_FAULT; 2892 goto out; 2893 } 2894 2895 if (writable) 2896 *writable = pte_write(pte); 2897 pfn = pte_pfn(pte); 2898 2899 /* 2900 * Get a reference here because callers of *hva_to_pfn* and 2901 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2902 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2903 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2904 * simply do nothing for reserved pfns. 2905 * 2906 * Whoever called remap_pfn_range is also going to call e.g. 2907 * unmap_mapping_range before the underlying pages are freed, 2908 * causing a call to our MMU notifier. 2909 * 2910 * Certain IO or PFNMAP mappings can be backed with valid 2911 * struct pages, but be allocated without refcounting e.g., 2912 * tail pages of non-compound higher order allocations, which 2913 * would then underflow the refcount when the caller does the 2914 * required put_page. Don't allow those pages here. 2915 */ 2916 if (!kvm_try_get_pfn(pfn)) 2917 r = -EFAULT; 2918 2919 out: 2920 pte_unmap_unlock(ptep, ptl); 2921 *p_pfn = pfn; 2922 2923 return r; 2924 } 2925 2926 /* 2927 * Pin guest page in memory and return its pfn. 2928 * @addr: host virtual address which maps memory to the guest 2929 * @atomic: whether this function can sleep 2930 * @interruptible: whether the process can be interrupted by non-fatal signals 2931 * @async: whether this function need to wait IO complete if the 2932 * host page is not in the memory 2933 * @write_fault: whether we should get a writable host page 2934 * @writable: whether it allows to map a writable host page for !@write_fault 2935 * 2936 * The function will map a writable host page for these two cases: 2937 * 1): @write_fault = true 2938 * 2): @write_fault = false && @writable, @writable will tell the caller 2939 * whether the mapping is writable. 2940 */ 2941 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2942 bool *async, bool write_fault, bool *writable) 2943 { 2944 struct vm_area_struct *vma; 2945 kvm_pfn_t pfn; 2946 int npages, r; 2947 2948 /* we can do it either atomically or asynchronously, not both */ 2949 BUG_ON(atomic && async); 2950 2951 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2952 return pfn; 2953 2954 if (atomic) 2955 return KVM_PFN_ERR_FAULT; 2956 2957 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2958 writable, &pfn); 2959 if (npages == 1) 2960 return pfn; 2961 if (npages == -EINTR) 2962 return KVM_PFN_ERR_SIGPENDING; 2963 2964 mmap_read_lock(current->mm); 2965 if (npages == -EHWPOISON || 2966 (!async && check_user_page_hwpoison(addr))) { 2967 pfn = KVM_PFN_ERR_HWPOISON; 2968 goto exit; 2969 } 2970 2971 retry: 2972 vma = vma_lookup(current->mm, addr); 2973 2974 if (vma == NULL) 2975 pfn = KVM_PFN_ERR_FAULT; 2976 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2977 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2978 if (r == -EAGAIN) 2979 goto retry; 2980 if (r < 0) 2981 pfn = KVM_PFN_ERR_FAULT; 2982 } else { 2983 if (async && vma_is_valid(vma, write_fault)) 2984 *async = true; 2985 pfn = KVM_PFN_ERR_FAULT; 2986 } 2987 exit: 2988 mmap_read_unlock(current->mm); 2989 return pfn; 2990 } 2991 2992 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2993 bool atomic, bool interruptible, bool *async, 2994 bool write_fault, bool *writable, hva_t *hva) 2995 { 2996 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2997 2998 if (hva) 2999 *hva = addr; 3000 3001 if (addr == KVM_HVA_ERR_RO_BAD) { 3002 if (writable) 3003 *writable = false; 3004 return KVM_PFN_ERR_RO_FAULT; 3005 } 3006 3007 if (kvm_is_error_hva(addr)) { 3008 if (writable) 3009 *writable = false; 3010 return KVM_PFN_NOSLOT; 3011 } 3012 3013 /* Do not map writable pfn in the readonly memslot. */ 3014 if (writable && memslot_is_readonly(slot)) { 3015 *writable = false; 3016 writable = NULL; 3017 } 3018 3019 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3020 writable); 3021 } 3022 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3023 3024 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3025 bool *writable) 3026 { 3027 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3028 NULL, write_fault, writable, NULL); 3029 } 3030 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3031 3032 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3033 { 3034 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3035 NULL, NULL); 3036 } 3037 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3038 3039 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3040 { 3041 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3042 NULL, NULL); 3043 } 3044 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3045 3046 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3047 { 3048 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3049 } 3050 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3051 3052 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3053 { 3054 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3055 } 3056 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3057 3058 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3059 { 3060 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3061 } 3062 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3063 3064 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3065 struct page **pages, int nr_pages) 3066 { 3067 unsigned long addr; 3068 gfn_t entry = 0; 3069 3070 addr = gfn_to_hva_many(slot, gfn, &entry); 3071 if (kvm_is_error_hva(addr)) 3072 return -1; 3073 3074 if (entry < nr_pages) 3075 return 0; 3076 3077 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3078 } 3079 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3080 3081 /* 3082 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3083 * backed by 'struct page'. A valid example is if the backing memslot is 3084 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3085 * been elevated by gfn_to_pfn(). 3086 */ 3087 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3088 { 3089 struct page *page; 3090 kvm_pfn_t pfn; 3091 3092 pfn = gfn_to_pfn(kvm, gfn); 3093 3094 if (is_error_noslot_pfn(pfn)) 3095 return KVM_ERR_PTR_BAD_PAGE; 3096 3097 page = kvm_pfn_to_refcounted_page(pfn); 3098 if (!page) 3099 return KVM_ERR_PTR_BAD_PAGE; 3100 3101 return page; 3102 } 3103 EXPORT_SYMBOL_GPL(gfn_to_page); 3104 3105 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3106 { 3107 if (dirty) 3108 kvm_release_pfn_dirty(pfn); 3109 else 3110 kvm_release_pfn_clean(pfn); 3111 } 3112 3113 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3114 { 3115 kvm_pfn_t pfn; 3116 void *hva = NULL; 3117 struct page *page = KVM_UNMAPPED_PAGE; 3118 3119 if (!map) 3120 return -EINVAL; 3121 3122 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3123 if (is_error_noslot_pfn(pfn)) 3124 return -EINVAL; 3125 3126 if (pfn_valid(pfn)) { 3127 page = pfn_to_page(pfn); 3128 hva = kmap(page); 3129 #ifdef CONFIG_HAS_IOMEM 3130 } else { 3131 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3132 #endif 3133 } 3134 3135 if (!hva) 3136 return -EFAULT; 3137 3138 map->page = page; 3139 map->hva = hva; 3140 map->pfn = pfn; 3141 map->gfn = gfn; 3142 3143 return 0; 3144 } 3145 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3146 3147 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3148 { 3149 if (!map) 3150 return; 3151 3152 if (!map->hva) 3153 return; 3154 3155 if (map->page != KVM_UNMAPPED_PAGE) 3156 kunmap(map->page); 3157 #ifdef CONFIG_HAS_IOMEM 3158 else 3159 memunmap(map->hva); 3160 #endif 3161 3162 if (dirty) 3163 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3164 3165 kvm_release_pfn(map->pfn, dirty); 3166 3167 map->hva = NULL; 3168 map->page = NULL; 3169 } 3170 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3171 3172 static bool kvm_is_ad_tracked_page(struct page *page) 3173 { 3174 /* 3175 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3176 * touched (e.g. set dirty) except by its owner". 3177 */ 3178 return !PageReserved(page); 3179 } 3180 3181 static void kvm_set_page_dirty(struct page *page) 3182 { 3183 if (kvm_is_ad_tracked_page(page)) 3184 SetPageDirty(page); 3185 } 3186 3187 static void kvm_set_page_accessed(struct page *page) 3188 { 3189 if (kvm_is_ad_tracked_page(page)) 3190 mark_page_accessed(page); 3191 } 3192 3193 void kvm_release_page_clean(struct page *page) 3194 { 3195 WARN_ON(is_error_page(page)); 3196 3197 kvm_set_page_accessed(page); 3198 put_page(page); 3199 } 3200 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3201 3202 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3203 { 3204 struct page *page; 3205 3206 if (is_error_noslot_pfn(pfn)) 3207 return; 3208 3209 page = kvm_pfn_to_refcounted_page(pfn); 3210 if (!page) 3211 return; 3212 3213 kvm_release_page_clean(page); 3214 } 3215 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3216 3217 void kvm_release_page_dirty(struct page *page) 3218 { 3219 WARN_ON(is_error_page(page)); 3220 3221 kvm_set_page_dirty(page); 3222 kvm_release_page_clean(page); 3223 } 3224 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3225 3226 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3227 { 3228 struct page *page; 3229 3230 if (is_error_noslot_pfn(pfn)) 3231 return; 3232 3233 page = kvm_pfn_to_refcounted_page(pfn); 3234 if (!page) 3235 return; 3236 3237 kvm_release_page_dirty(page); 3238 } 3239 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3240 3241 /* 3242 * Note, checking for an error/noslot pfn is the caller's responsibility when 3243 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3244 * "set" helpers are not to be used when the pfn might point at garbage. 3245 */ 3246 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3247 { 3248 if (WARN_ON(is_error_noslot_pfn(pfn))) 3249 return; 3250 3251 if (pfn_valid(pfn)) 3252 kvm_set_page_dirty(pfn_to_page(pfn)); 3253 } 3254 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3255 3256 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3257 { 3258 if (WARN_ON(is_error_noslot_pfn(pfn))) 3259 return; 3260 3261 if (pfn_valid(pfn)) 3262 kvm_set_page_accessed(pfn_to_page(pfn)); 3263 } 3264 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3265 3266 static int next_segment(unsigned long len, int offset) 3267 { 3268 if (len > PAGE_SIZE - offset) 3269 return PAGE_SIZE - offset; 3270 else 3271 return len; 3272 } 3273 3274 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3275 void *data, int offset, int len) 3276 { 3277 int r; 3278 unsigned long addr; 3279 3280 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3281 if (kvm_is_error_hva(addr)) 3282 return -EFAULT; 3283 r = __copy_from_user(data, (void __user *)addr + offset, len); 3284 if (r) 3285 return -EFAULT; 3286 return 0; 3287 } 3288 3289 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3290 int len) 3291 { 3292 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3293 3294 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3295 } 3296 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3297 3298 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3299 int offset, int len) 3300 { 3301 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3302 3303 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3304 } 3305 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3306 3307 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3308 { 3309 gfn_t gfn = gpa >> PAGE_SHIFT; 3310 int seg; 3311 int offset = offset_in_page(gpa); 3312 int ret; 3313 3314 while ((seg = next_segment(len, offset)) != 0) { 3315 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3316 if (ret < 0) 3317 return ret; 3318 offset = 0; 3319 len -= seg; 3320 data += seg; 3321 ++gfn; 3322 } 3323 return 0; 3324 } 3325 EXPORT_SYMBOL_GPL(kvm_read_guest); 3326 3327 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3328 { 3329 gfn_t gfn = gpa >> PAGE_SHIFT; 3330 int seg; 3331 int offset = offset_in_page(gpa); 3332 int ret; 3333 3334 while ((seg = next_segment(len, offset)) != 0) { 3335 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3336 if (ret < 0) 3337 return ret; 3338 offset = 0; 3339 len -= seg; 3340 data += seg; 3341 ++gfn; 3342 } 3343 return 0; 3344 } 3345 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3346 3347 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3348 void *data, int offset, unsigned long len) 3349 { 3350 int r; 3351 unsigned long addr; 3352 3353 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3354 if (kvm_is_error_hva(addr)) 3355 return -EFAULT; 3356 pagefault_disable(); 3357 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3358 pagefault_enable(); 3359 if (r) 3360 return -EFAULT; 3361 return 0; 3362 } 3363 3364 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3365 void *data, unsigned long len) 3366 { 3367 gfn_t gfn = gpa >> PAGE_SHIFT; 3368 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3369 int offset = offset_in_page(gpa); 3370 3371 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3372 } 3373 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3374 3375 static int __kvm_write_guest_page(struct kvm *kvm, 3376 struct kvm_memory_slot *memslot, gfn_t gfn, 3377 const void *data, int offset, int len) 3378 { 3379 int r; 3380 unsigned long addr; 3381 3382 addr = gfn_to_hva_memslot(memslot, gfn); 3383 if (kvm_is_error_hva(addr)) 3384 return -EFAULT; 3385 r = __copy_to_user((void __user *)addr + offset, data, len); 3386 if (r) 3387 return -EFAULT; 3388 mark_page_dirty_in_slot(kvm, memslot, gfn); 3389 return 0; 3390 } 3391 3392 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3393 const void *data, int offset, int len) 3394 { 3395 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3396 3397 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3398 } 3399 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3400 3401 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3402 const void *data, int offset, int len) 3403 { 3404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3405 3406 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3407 } 3408 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3409 3410 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3411 unsigned long len) 3412 { 3413 gfn_t gfn = gpa >> PAGE_SHIFT; 3414 int seg; 3415 int offset = offset_in_page(gpa); 3416 int ret; 3417 3418 while ((seg = next_segment(len, offset)) != 0) { 3419 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3420 if (ret < 0) 3421 return ret; 3422 offset = 0; 3423 len -= seg; 3424 data += seg; 3425 ++gfn; 3426 } 3427 return 0; 3428 } 3429 EXPORT_SYMBOL_GPL(kvm_write_guest); 3430 3431 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3432 unsigned long len) 3433 { 3434 gfn_t gfn = gpa >> PAGE_SHIFT; 3435 int seg; 3436 int offset = offset_in_page(gpa); 3437 int ret; 3438 3439 while ((seg = next_segment(len, offset)) != 0) { 3440 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3441 if (ret < 0) 3442 return ret; 3443 offset = 0; 3444 len -= seg; 3445 data += seg; 3446 ++gfn; 3447 } 3448 return 0; 3449 } 3450 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3451 3452 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3453 struct gfn_to_hva_cache *ghc, 3454 gpa_t gpa, unsigned long len) 3455 { 3456 int offset = offset_in_page(gpa); 3457 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3458 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3459 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3460 gfn_t nr_pages_avail; 3461 3462 /* Update ghc->generation before performing any error checks. */ 3463 ghc->generation = slots->generation; 3464 3465 if (start_gfn > end_gfn) { 3466 ghc->hva = KVM_HVA_ERR_BAD; 3467 return -EINVAL; 3468 } 3469 3470 /* 3471 * If the requested region crosses two memslots, we still 3472 * verify that the entire region is valid here. 3473 */ 3474 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3475 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3476 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3477 &nr_pages_avail); 3478 if (kvm_is_error_hva(ghc->hva)) 3479 return -EFAULT; 3480 } 3481 3482 /* Use the slow path for cross page reads and writes. */ 3483 if (nr_pages_needed == 1) 3484 ghc->hva += offset; 3485 else 3486 ghc->memslot = NULL; 3487 3488 ghc->gpa = gpa; 3489 ghc->len = len; 3490 return 0; 3491 } 3492 3493 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3494 gpa_t gpa, unsigned long len) 3495 { 3496 struct kvm_memslots *slots = kvm_memslots(kvm); 3497 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3498 } 3499 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3500 3501 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3502 void *data, unsigned int offset, 3503 unsigned long len) 3504 { 3505 struct kvm_memslots *slots = kvm_memslots(kvm); 3506 int r; 3507 gpa_t gpa = ghc->gpa + offset; 3508 3509 if (WARN_ON_ONCE(len + offset > ghc->len)) 3510 return -EINVAL; 3511 3512 if (slots->generation != ghc->generation) { 3513 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3514 return -EFAULT; 3515 } 3516 3517 if (kvm_is_error_hva(ghc->hva)) 3518 return -EFAULT; 3519 3520 if (unlikely(!ghc->memslot)) 3521 return kvm_write_guest(kvm, gpa, data, len); 3522 3523 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3524 if (r) 3525 return -EFAULT; 3526 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3527 3528 return 0; 3529 } 3530 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3531 3532 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3533 void *data, unsigned long len) 3534 { 3535 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3536 } 3537 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3538 3539 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3540 void *data, unsigned int offset, 3541 unsigned long len) 3542 { 3543 struct kvm_memslots *slots = kvm_memslots(kvm); 3544 int r; 3545 gpa_t gpa = ghc->gpa + offset; 3546 3547 if (WARN_ON_ONCE(len + offset > ghc->len)) 3548 return -EINVAL; 3549 3550 if (slots->generation != ghc->generation) { 3551 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3552 return -EFAULT; 3553 } 3554 3555 if (kvm_is_error_hva(ghc->hva)) 3556 return -EFAULT; 3557 3558 if (unlikely(!ghc->memslot)) 3559 return kvm_read_guest(kvm, gpa, data, len); 3560 3561 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3562 if (r) 3563 return -EFAULT; 3564 3565 return 0; 3566 } 3567 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3568 3569 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3570 void *data, unsigned long len) 3571 { 3572 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3573 } 3574 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3575 3576 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3577 { 3578 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3579 gfn_t gfn = gpa >> PAGE_SHIFT; 3580 int seg; 3581 int offset = offset_in_page(gpa); 3582 int ret; 3583 3584 while ((seg = next_segment(len, offset)) != 0) { 3585 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3586 if (ret < 0) 3587 return ret; 3588 offset = 0; 3589 len -= seg; 3590 ++gfn; 3591 } 3592 return 0; 3593 } 3594 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3595 3596 void mark_page_dirty_in_slot(struct kvm *kvm, 3597 const struct kvm_memory_slot *memslot, 3598 gfn_t gfn) 3599 { 3600 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3601 3602 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3603 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3604 return; 3605 3606 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3607 #endif 3608 3609 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3610 unsigned long rel_gfn = gfn - memslot->base_gfn; 3611 u32 slot = (memslot->as_id << 16) | memslot->id; 3612 3613 if (kvm->dirty_ring_size && vcpu) 3614 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3615 else if (memslot->dirty_bitmap) 3616 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3617 } 3618 } 3619 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3620 3621 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3622 { 3623 struct kvm_memory_slot *memslot; 3624 3625 memslot = gfn_to_memslot(kvm, gfn); 3626 mark_page_dirty_in_slot(kvm, memslot, gfn); 3627 } 3628 EXPORT_SYMBOL_GPL(mark_page_dirty); 3629 3630 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3631 { 3632 struct kvm_memory_slot *memslot; 3633 3634 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3635 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3636 } 3637 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3638 3639 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3640 { 3641 if (!vcpu->sigset_active) 3642 return; 3643 3644 /* 3645 * This does a lockless modification of ->real_blocked, which is fine 3646 * because, only current can change ->real_blocked and all readers of 3647 * ->real_blocked don't care as long ->real_blocked is always a subset 3648 * of ->blocked. 3649 */ 3650 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3651 } 3652 3653 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3654 { 3655 if (!vcpu->sigset_active) 3656 return; 3657 3658 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3659 sigemptyset(¤t->real_blocked); 3660 } 3661 3662 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3663 { 3664 unsigned int old, val, grow, grow_start; 3665 3666 old = val = vcpu->halt_poll_ns; 3667 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3668 grow = READ_ONCE(halt_poll_ns_grow); 3669 if (!grow) 3670 goto out; 3671 3672 val *= grow; 3673 if (val < grow_start) 3674 val = grow_start; 3675 3676 vcpu->halt_poll_ns = val; 3677 out: 3678 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3679 } 3680 3681 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3682 { 3683 unsigned int old, val, shrink, grow_start; 3684 3685 old = val = vcpu->halt_poll_ns; 3686 shrink = READ_ONCE(halt_poll_ns_shrink); 3687 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3688 if (shrink == 0) 3689 val = 0; 3690 else 3691 val /= shrink; 3692 3693 if (val < grow_start) 3694 val = 0; 3695 3696 vcpu->halt_poll_ns = val; 3697 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3698 } 3699 3700 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3701 { 3702 int ret = -EINTR; 3703 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3704 3705 if (kvm_arch_vcpu_runnable(vcpu)) 3706 goto out; 3707 if (kvm_cpu_has_pending_timer(vcpu)) 3708 goto out; 3709 if (signal_pending(current)) 3710 goto out; 3711 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3712 goto out; 3713 3714 ret = 0; 3715 out: 3716 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3717 return ret; 3718 } 3719 3720 /* 3721 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3722 * pending. This is mostly used when halting a vCPU, but may also be used 3723 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3724 */ 3725 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3726 { 3727 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3728 bool waited = false; 3729 3730 vcpu->stat.generic.blocking = 1; 3731 3732 preempt_disable(); 3733 kvm_arch_vcpu_blocking(vcpu); 3734 prepare_to_rcuwait(wait); 3735 preempt_enable(); 3736 3737 for (;;) { 3738 set_current_state(TASK_INTERRUPTIBLE); 3739 3740 if (kvm_vcpu_check_block(vcpu) < 0) 3741 break; 3742 3743 waited = true; 3744 schedule(); 3745 } 3746 3747 preempt_disable(); 3748 finish_rcuwait(wait); 3749 kvm_arch_vcpu_unblocking(vcpu); 3750 preempt_enable(); 3751 3752 vcpu->stat.generic.blocking = 0; 3753 3754 return waited; 3755 } 3756 3757 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3758 ktime_t end, bool success) 3759 { 3760 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3761 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3762 3763 ++vcpu->stat.generic.halt_attempted_poll; 3764 3765 if (success) { 3766 ++vcpu->stat.generic.halt_successful_poll; 3767 3768 if (!vcpu_valid_wakeup(vcpu)) 3769 ++vcpu->stat.generic.halt_poll_invalid; 3770 3771 stats->halt_poll_success_ns += poll_ns; 3772 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3773 } else { 3774 stats->halt_poll_fail_ns += poll_ns; 3775 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3776 } 3777 } 3778 3779 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3780 { 3781 struct kvm *kvm = vcpu->kvm; 3782 3783 if (kvm->override_halt_poll_ns) { 3784 /* 3785 * Ensure kvm->max_halt_poll_ns is not read before 3786 * kvm->override_halt_poll_ns. 3787 * 3788 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3789 */ 3790 smp_rmb(); 3791 return READ_ONCE(kvm->max_halt_poll_ns); 3792 } 3793 3794 return READ_ONCE(halt_poll_ns); 3795 } 3796 3797 /* 3798 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3799 * polling is enabled, busy wait for a short time before blocking to avoid the 3800 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3801 * is halted. 3802 */ 3803 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3804 { 3805 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3806 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3807 ktime_t start, cur, poll_end; 3808 bool waited = false; 3809 bool do_halt_poll; 3810 u64 halt_ns; 3811 3812 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3813 vcpu->halt_poll_ns = max_halt_poll_ns; 3814 3815 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3816 3817 start = cur = poll_end = ktime_get(); 3818 if (do_halt_poll) { 3819 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3820 3821 do { 3822 if (kvm_vcpu_check_block(vcpu) < 0) 3823 goto out; 3824 cpu_relax(); 3825 poll_end = cur = ktime_get(); 3826 } while (kvm_vcpu_can_poll(cur, stop)); 3827 } 3828 3829 waited = kvm_vcpu_block(vcpu); 3830 3831 cur = ktime_get(); 3832 if (waited) { 3833 vcpu->stat.generic.halt_wait_ns += 3834 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3835 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3836 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3837 } 3838 out: 3839 /* The total time the vCPU was "halted", including polling time. */ 3840 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3841 3842 /* 3843 * Note, halt-polling is considered successful so long as the vCPU was 3844 * never actually scheduled out, i.e. even if the wake event arrived 3845 * after of the halt-polling loop itself, but before the full wait. 3846 */ 3847 if (do_halt_poll) 3848 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3849 3850 if (halt_poll_allowed) { 3851 /* Recompute the max halt poll time in case it changed. */ 3852 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3853 3854 if (!vcpu_valid_wakeup(vcpu)) { 3855 shrink_halt_poll_ns(vcpu); 3856 } else if (max_halt_poll_ns) { 3857 if (halt_ns <= vcpu->halt_poll_ns) 3858 ; 3859 /* we had a long block, shrink polling */ 3860 else if (vcpu->halt_poll_ns && 3861 halt_ns > max_halt_poll_ns) 3862 shrink_halt_poll_ns(vcpu); 3863 /* we had a short halt and our poll time is too small */ 3864 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3865 halt_ns < max_halt_poll_ns) 3866 grow_halt_poll_ns(vcpu); 3867 } else { 3868 vcpu->halt_poll_ns = 0; 3869 } 3870 } 3871 3872 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3873 } 3874 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3875 3876 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3877 { 3878 if (__kvm_vcpu_wake_up(vcpu)) { 3879 WRITE_ONCE(vcpu->ready, true); 3880 ++vcpu->stat.generic.halt_wakeup; 3881 return true; 3882 } 3883 3884 return false; 3885 } 3886 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3887 3888 #ifndef CONFIG_S390 3889 /* 3890 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3891 */ 3892 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3893 { 3894 int me, cpu; 3895 3896 if (kvm_vcpu_wake_up(vcpu)) 3897 return; 3898 3899 me = get_cpu(); 3900 /* 3901 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3902 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3903 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3904 * within the vCPU thread itself. 3905 */ 3906 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3907 if (vcpu->mode == IN_GUEST_MODE) 3908 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3909 goto out; 3910 } 3911 3912 /* 3913 * Note, the vCPU could get migrated to a different pCPU at any point 3914 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3915 * IPI to the previous pCPU. But, that's ok because the purpose of the 3916 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3917 * vCPU also requires it to leave IN_GUEST_MODE. 3918 */ 3919 if (kvm_arch_vcpu_should_kick(vcpu)) { 3920 cpu = READ_ONCE(vcpu->cpu); 3921 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3922 smp_send_reschedule(cpu); 3923 } 3924 out: 3925 put_cpu(); 3926 } 3927 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3928 #endif /* !CONFIG_S390 */ 3929 3930 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3931 { 3932 struct pid *pid; 3933 struct task_struct *task = NULL; 3934 int ret = 0; 3935 3936 rcu_read_lock(); 3937 pid = rcu_dereference(target->pid); 3938 if (pid) 3939 task = get_pid_task(pid, PIDTYPE_PID); 3940 rcu_read_unlock(); 3941 if (!task) 3942 return ret; 3943 ret = yield_to(task, 1); 3944 put_task_struct(task); 3945 3946 return ret; 3947 } 3948 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3949 3950 /* 3951 * Helper that checks whether a VCPU is eligible for directed yield. 3952 * Most eligible candidate to yield is decided by following heuristics: 3953 * 3954 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3955 * (preempted lock holder), indicated by @in_spin_loop. 3956 * Set at the beginning and cleared at the end of interception/PLE handler. 3957 * 3958 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3959 * chance last time (mostly it has become eligible now since we have probably 3960 * yielded to lockholder in last iteration. This is done by toggling 3961 * @dy_eligible each time a VCPU checked for eligibility.) 3962 * 3963 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3964 * to preempted lock-holder could result in wrong VCPU selection and CPU 3965 * burning. Giving priority for a potential lock-holder increases lock 3966 * progress. 3967 * 3968 * Since algorithm is based on heuristics, accessing another VCPU data without 3969 * locking does not harm. It may result in trying to yield to same VCPU, fail 3970 * and continue with next VCPU and so on. 3971 */ 3972 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3973 { 3974 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3975 bool eligible; 3976 3977 eligible = !vcpu->spin_loop.in_spin_loop || 3978 vcpu->spin_loop.dy_eligible; 3979 3980 if (vcpu->spin_loop.in_spin_loop) 3981 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3982 3983 return eligible; 3984 #else 3985 return true; 3986 #endif 3987 } 3988 3989 /* 3990 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3991 * a vcpu_load/vcpu_put pair. However, for most architectures 3992 * kvm_arch_vcpu_runnable does not require vcpu_load. 3993 */ 3994 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3995 { 3996 return kvm_arch_vcpu_runnable(vcpu); 3997 } 3998 3999 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4000 { 4001 if (kvm_arch_dy_runnable(vcpu)) 4002 return true; 4003 4004 #ifdef CONFIG_KVM_ASYNC_PF 4005 if (!list_empty_careful(&vcpu->async_pf.done)) 4006 return true; 4007 #endif 4008 4009 return false; 4010 } 4011 4012 /* 4013 * By default, simply query the target vCPU's current mode when checking if a 4014 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4015 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4016 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4017 * directly for cross-vCPU checks is functionally correct and accurate. 4018 */ 4019 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4020 { 4021 return kvm_arch_vcpu_in_kernel(vcpu); 4022 } 4023 4024 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4025 { 4026 return false; 4027 } 4028 4029 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4030 { 4031 struct kvm *kvm = me->kvm; 4032 struct kvm_vcpu *vcpu; 4033 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4034 unsigned long i; 4035 int yielded = 0; 4036 int try = 3; 4037 int pass; 4038 4039 kvm_vcpu_set_in_spin_loop(me, true); 4040 /* 4041 * We boost the priority of a VCPU that is runnable but not 4042 * currently running, because it got preempted by something 4043 * else and called schedule in __vcpu_run. Hopefully that 4044 * VCPU is holding the lock that we need and will release it. 4045 * We approximate round-robin by starting at the last boosted VCPU. 4046 */ 4047 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4048 kvm_for_each_vcpu(i, vcpu, kvm) { 4049 if (!pass && i <= last_boosted_vcpu) { 4050 i = last_boosted_vcpu; 4051 continue; 4052 } else if (pass && i > last_boosted_vcpu) 4053 break; 4054 if (!READ_ONCE(vcpu->ready)) 4055 continue; 4056 if (vcpu == me) 4057 continue; 4058 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4059 continue; 4060 4061 /* 4062 * Treat the target vCPU as being in-kernel if it has a 4063 * pending interrupt, as the vCPU trying to yield may 4064 * be spinning waiting on IPI delivery, i.e. the target 4065 * vCPU is in-kernel for the purposes of directed yield. 4066 */ 4067 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4068 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4069 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4070 continue; 4071 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4072 continue; 4073 4074 yielded = kvm_vcpu_yield_to(vcpu); 4075 if (yielded > 0) { 4076 kvm->last_boosted_vcpu = i; 4077 break; 4078 } else if (yielded < 0) { 4079 try--; 4080 if (!try) 4081 break; 4082 } 4083 } 4084 } 4085 kvm_vcpu_set_in_spin_loop(me, false); 4086 4087 /* Ensure vcpu is not eligible during next spinloop */ 4088 kvm_vcpu_set_dy_eligible(me, false); 4089 } 4090 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4091 4092 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4093 { 4094 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4095 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4096 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4097 kvm->dirty_ring_size / PAGE_SIZE); 4098 #else 4099 return false; 4100 #endif 4101 } 4102 4103 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4104 { 4105 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4106 struct page *page; 4107 4108 if (vmf->pgoff == 0) 4109 page = virt_to_page(vcpu->run); 4110 #ifdef CONFIG_X86 4111 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4112 page = virt_to_page(vcpu->arch.pio_data); 4113 #endif 4114 #ifdef CONFIG_KVM_MMIO 4115 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4116 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4117 #endif 4118 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4119 page = kvm_dirty_ring_get_page( 4120 &vcpu->dirty_ring, 4121 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4122 else 4123 return kvm_arch_vcpu_fault(vcpu, vmf); 4124 get_page(page); 4125 vmf->page = page; 4126 return 0; 4127 } 4128 4129 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4130 .fault = kvm_vcpu_fault, 4131 }; 4132 4133 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4134 { 4135 struct kvm_vcpu *vcpu = file->private_data; 4136 unsigned long pages = vma_pages(vma); 4137 4138 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4139 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4140 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4141 return -EINVAL; 4142 4143 vma->vm_ops = &kvm_vcpu_vm_ops; 4144 return 0; 4145 } 4146 4147 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4148 { 4149 struct kvm_vcpu *vcpu = filp->private_data; 4150 4151 kvm_put_kvm(vcpu->kvm); 4152 return 0; 4153 } 4154 4155 static struct file_operations kvm_vcpu_fops = { 4156 .release = kvm_vcpu_release, 4157 .unlocked_ioctl = kvm_vcpu_ioctl, 4158 .mmap = kvm_vcpu_mmap, 4159 .llseek = noop_llseek, 4160 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4161 }; 4162 4163 /* 4164 * Allocates an inode for the vcpu. 4165 */ 4166 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4167 { 4168 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4169 4170 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4171 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4172 } 4173 4174 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4175 static int vcpu_get_pid(void *data, u64 *val) 4176 { 4177 struct kvm_vcpu *vcpu = data; 4178 4179 rcu_read_lock(); 4180 *val = pid_nr(rcu_dereference(vcpu->pid)); 4181 rcu_read_unlock(); 4182 return 0; 4183 } 4184 4185 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4186 4187 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4188 { 4189 struct dentry *debugfs_dentry; 4190 char dir_name[ITOA_MAX_LEN * 2]; 4191 4192 if (!debugfs_initialized()) 4193 return; 4194 4195 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4196 debugfs_dentry = debugfs_create_dir(dir_name, 4197 vcpu->kvm->debugfs_dentry); 4198 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4199 &vcpu_get_pid_fops); 4200 4201 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4202 } 4203 #endif 4204 4205 /* 4206 * Creates some virtual cpus. Good luck creating more than one. 4207 */ 4208 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4209 { 4210 int r; 4211 struct kvm_vcpu *vcpu; 4212 struct page *page; 4213 4214 if (id >= KVM_MAX_VCPU_IDS) 4215 return -EINVAL; 4216 4217 mutex_lock(&kvm->lock); 4218 if (kvm->created_vcpus >= kvm->max_vcpus) { 4219 mutex_unlock(&kvm->lock); 4220 return -EINVAL; 4221 } 4222 4223 r = kvm_arch_vcpu_precreate(kvm, id); 4224 if (r) { 4225 mutex_unlock(&kvm->lock); 4226 return r; 4227 } 4228 4229 kvm->created_vcpus++; 4230 mutex_unlock(&kvm->lock); 4231 4232 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4233 if (!vcpu) { 4234 r = -ENOMEM; 4235 goto vcpu_decrement; 4236 } 4237 4238 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4239 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4240 if (!page) { 4241 r = -ENOMEM; 4242 goto vcpu_free; 4243 } 4244 vcpu->run = page_address(page); 4245 4246 kvm_vcpu_init(vcpu, kvm, id); 4247 4248 r = kvm_arch_vcpu_create(vcpu); 4249 if (r) 4250 goto vcpu_free_run_page; 4251 4252 if (kvm->dirty_ring_size) { 4253 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4254 id, kvm->dirty_ring_size); 4255 if (r) 4256 goto arch_vcpu_destroy; 4257 } 4258 4259 mutex_lock(&kvm->lock); 4260 4261 #ifdef CONFIG_LOCKDEP 4262 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4263 mutex_lock(&vcpu->mutex); 4264 mutex_unlock(&vcpu->mutex); 4265 #endif 4266 4267 if (kvm_get_vcpu_by_id(kvm, id)) { 4268 r = -EEXIST; 4269 goto unlock_vcpu_destroy; 4270 } 4271 4272 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4273 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4274 if (r) 4275 goto unlock_vcpu_destroy; 4276 4277 /* Now it's all set up, let userspace reach it */ 4278 kvm_get_kvm(kvm); 4279 r = create_vcpu_fd(vcpu); 4280 if (r < 0) 4281 goto kvm_put_xa_release; 4282 4283 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4284 r = -EINVAL; 4285 goto kvm_put_xa_release; 4286 } 4287 4288 /* 4289 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4290 * pointer before kvm->online_vcpu's incremented value. 4291 */ 4292 smp_wmb(); 4293 atomic_inc(&kvm->online_vcpus); 4294 4295 mutex_unlock(&kvm->lock); 4296 kvm_arch_vcpu_postcreate(vcpu); 4297 kvm_create_vcpu_debugfs(vcpu); 4298 return r; 4299 4300 kvm_put_xa_release: 4301 kvm_put_kvm_no_destroy(kvm); 4302 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4303 unlock_vcpu_destroy: 4304 mutex_unlock(&kvm->lock); 4305 kvm_dirty_ring_free(&vcpu->dirty_ring); 4306 arch_vcpu_destroy: 4307 kvm_arch_vcpu_destroy(vcpu); 4308 vcpu_free_run_page: 4309 free_page((unsigned long)vcpu->run); 4310 vcpu_free: 4311 kmem_cache_free(kvm_vcpu_cache, vcpu); 4312 vcpu_decrement: 4313 mutex_lock(&kvm->lock); 4314 kvm->created_vcpus--; 4315 mutex_unlock(&kvm->lock); 4316 return r; 4317 } 4318 4319 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4320 { 4321 if (sigset) { 4322 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4323 vcpu->sigset_active = 1; 4324 vcpu->sigset = *sigset; 4325 } else 4326 vcpu->sigset_active = 0; 4327 return 0; 4328 } 4329 4330 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4331 size_t size, loff_t *offset) 4332 { 4333 struct kvm_vcpu *vcpu = file->private_data; 4334 4335 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4336 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4337 sizeof(vcpu->stat), user_buffer, size, offset); 4338 } 4339 4340 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4341 { 4342 struct kvm_vcpu *vcpu = file->private_data; 4343 4344 kvm_put_kvm(vcpu->kvm); 4345 return 0; 4346 } 4347 4348 static const struct file_operations kvm_vcpu_stats_fops = { 4349 .owner = THIS_MODULE, 4350 .read = kvm_vcpu_stats_read, 4351 .release = kvm_vcpu_stats_release, 4352 .llseek = noop_llseek, 4353 }; 4354 4355 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4356 { 4357 int fd; 4358 struct file *file; 4359 char name[15 + ITOA_MAX_LEN + 1]; 4360 4361 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4362 4363 fd = get_unused_fd_flags(O_CLOEXEC); 4364 if (fd < 0) 4365 return fd; 4366 4367 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4368 if (IS_ERR(file)) { 4369 put_unused_fd(fd); 4370 return PTR_ERR(file); 4371 } 4372 4373 kvm_get_kvm(vcpu->kvm); 4374 4375 file->f_mode |= FMODE_PREAD; 4376 fd_install(fd, file); 4377 4378 return fd; 4379 } 4380 4381 static long kvm_vcpu_ioctl(struct file *filp, 4382 unsigned int ioctl, unsigned long arg) 4383 { 4384 struct kvm_vcpu *vcpu = filp->private_data; 4385 void __user *argp = (void __user *)arg; 4386 int r; 4387 struct kvm_fpu *fpu = NULL; 4388 struct kvm_sregs *kvm_sregs = NULL; 4389 4390 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4391 return -EIO; 4392 4393 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4394 return -EINVAL; 4395 4396 /* 4397 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4398 * execution; mutex_lock() would break them. 4399 */ 4400 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4401 if (r != -ENOIOCTLCMD) 4402 return r; 4403 4404 if (mutex_lock_killable(&vcpu->mutex)) 4405 return -EINTR; 4406 switch (ioctl) { 4407 case KVM_RUN: { 4408 struct pid *oldpid; 4409 r = -EINVAL; 4410 if (arg) 4411 goto out; 4412 oldpid = rcu_access_pointer(vcpu->pid); 4413 if (unlikely(oldpid != task_pid(current))) { 4414 /* The thread running this VCPU changed. */ 4415 struct pid *newpid; 4416 4417 r = kvm_arch_vcpu_run_pid_change(vcpu); 4418 if (r) 4419 break; 4420 4421 newpid = get_task_pid(current, PIDTYPE_PID); 4422 rcu_assign_pointer(vcpu->pid, newpid); 4423 if (oldpid) 4424 synchronize_rcu(); 4425 put_pid(oldpid); 4426 } 4427 r = kvm_arch_vcpu_ioctl_run(vcpu); 4428 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4429 break; 4430 } 4431 case KVM_GET_REGS: { 4432 struct kvm_regs *kvm_regs; 4433 4434 r = -ENOMEM; 4435 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4436 if (!kvm_regs) 4437 goto out; 4438 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4439 if (r) 4440 goto out_free1; 4441 r = -EFAULT; 4442 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4443 goto out_free1; 4444 r = 0; 4445 out_free1: 4446 kfree(kvm_regs); 4447 break; 4448 } 4449 case KVM_SET_REGS: { 4450 struct kvm_regs *kvm_regs; 4451 4452 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4453 if (IS_ERR(kvm_regs)) { 4454 r = PTR_ERR(kvm_regs); 4455 goto out; 4456 } 4457 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4458 kfree(kvm_regs); 4459 break; 4460 } 4461 case KVM_GET_SREGS: { 4462 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4463 GFP_KERNEL_ACCOUNT); 4464 r = -ENOMEM; 4465 if (!kvm_sregs) 4466 goto out; 4467 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4468 if (r) 4469 goto out; 4470 r = -EFAULT; 4471 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4472 goto out; 4473 r = 0; 4474 break; 4475 } 4476 case KVM_SET_SREGS: { 4477 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4478 if (IS_ERR(kvm_sregs)) { 4479 r = PTR_ERR(kvm_sregs); 4480 kvm_sregs = NULL; 4481 goto out; 4482 } 4483 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4484 break; 4485 } 4486 case KVM_GET_MP_STATE: { 4487 struct kvm_mp_state mp_state; 4488 4489 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4490 if (r) 4491 goto out; 4492 r = -EFAULT; 4493 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4494 goto out; 4495 r = 0; 4496 break; 4497 } 4498 case KVM_SET_MP_STATE: { 4499 struct kvm_mp_state mp_state; 4500 4501 r = -EFAULT; 4502 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4503 goto out; 4504 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4505 break; 4506 } 4507 case KVM_TRANSLATE: { 4508 struct kvm_translation tr; 4509 4510 r = -EFAULT; 4511 if (copy_from_user(&tr, argp, sizeof(tr))) 4512 goto out; 4513 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4514 if (r) 4515 goto out; 4516 r = -EFAULT; 4517 if (copy_to_user(argp, &tr, sizeof(tr))) 4518 goto out; 4519 r = 0; 4520 break; 4521 } 4522 case KVM_SET_GUEST_DEBUG: { 4523 struct kvm_guest_debug dbg; 4524 4525 r = -EFAULT; 4526 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4527 goto out; 4528 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4529 break; 4530 } 4531 case KVM_SET_SIGNAL_MASK: { 4532 struct kvm_signal_mask __user *sigmask_arg = argp; 4533 struct kvm_signal_mask kvm_sigmask; 4534 sigset_t sigset, *p; 4535 4536 p = NULL; 4537 if (argp) { 4538 r = -EFAULT; 4539 if (copy_from_user(&kvm_sigmask, argp, 4540 sizeof(kvm_sigmask))) 4541 goto out; 4542 r = -EINVAL; 4543 if (kvm_sigmask.len != sizeof(sigset)) 4544 goto out; 4545 r = -EFAULT; 4546 if (copy_from_user(&sigset, sigmask_arg->sigset, 4547 sizeof(sigset))) 4548 goto out; 4549 p = &sigset; 4550 } 4551 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4552 break; 4553 } 4554 case KVM_GET_FPU: { 4555 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4556 r = -ENOMEM; 4557 if (!fpu) 4558 goto out; 4559 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4560 if (r) 4561 goto out; 4562 r = -EFAULT; 4563 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4564 goto out; 4565 r = 0; 4566 break; 4567 } 4568 case KVM_SET_FPU: { 4569 fpu = memdup_user(argp, sizeof(*fpu)); 4570 if (IS_ERR(fpu)) { 4571 r = PTR_ERR(fpu); 4572 fpu = NULL; 4573 goto out; 4574 } 4575 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4576 break; 4577 } 4578 case KVM_GET_STATS_FD: { 4579 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4580 break; 4581 } 4582 default: 4583 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4584 } 4585 out: 4586 mutex_unlock(&vcpu->mutex); 4587 kfree(fpu); 4588 kfree(kvm_sregs); 4589 return r; 4590 } 4591 4592 #ifdef CONFIG_KVM_COMPAT 4593 static long kvm_vcpu_compat_ioctl(struct file *filp, 4594 unsigned int ioctl, unsigned long arg) 4595 { 4596 struct kvm_vcpu *vcpu = filp->private_data; 4597 void __user *argp = compat_ptr(arg); 4598 int r; 4599 4600 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4601 return -EIO; 4602 4603 switch (ioctl) { 4604 case KVM_SET_SIGNAL_MASK: { 4605 struct kvm_signal_mask __user *sigmask_arg = argp; 4606 struct kvm_signal_mask kvm_sigmask; 4607 sigset_t sigset; 4608 4609 if (argp) { 4610 r = -EFAULT; 4611 if (copy_from_user(&kvm_sigmask, argp, 4612 sizeof(kvm_sigmask))) 4613 goto out; 4614 r = -EINVAL; 4615 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4616 goto out; 4617 r = -EFAULT; 4618 if (get_compat_sigset(&sigset, 4619 (compat_sigset_t __user *)sigmask_arg->sigset)) 4620 goto out; 4621 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4622 } else 4623 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4624 break; 4625 } 4626 default: 4627 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4628 } 4629 4630 out: 4631 return r; 4632 } 4633 #endif 4634 4635 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4636 { 4637 struct kvm_device *dev = filp->private_data; 4638 4639 if (dev->ops->mmap) 4640 return dev->ops->mmap(dev, vma); 4641 4642 return -ENODEV; 4643 } 4644 4645 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4646 int (*accessor)(struct kvm_device *dev, 4647 struct kvm_device_attr *attr), 4648 unsigned long arg) 4649 { 4650 struct kvm_device_attr attr; 4651 4652 if (!accessor) 4653 return -EPERM; 4654 4655 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4656 return -EFAULT; 4657 4658 return accessor(dev, &attr); 4659 } 4660 4661 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4662 unsigned long arg) 4663 { 4664 struct kvm_device *dev = filp->private_data; 4665 4666 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4667 return -EIO; 4668 4669 switch (ioctl) { 4670 case KVM_SET_DEVICE_ATTR: 4671 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4672 case KVM_GET_DEVICE_ATTR: 4673 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4674 case KVM_HAS_DEVICE_ATTR: 4675 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4676 default: 4677 if (dev->ops->ioctl) 4678 return dev->ops->ioctl(dev, ioctl, arg); 4679 4680 return -ENOTTY; 4681 } 4682 } 4683 4684 static int kvm_device_release(struct inode *inode, struct file *filp) 4685 { 4686 struct kvm_device *dev = filp->private_data; 4687 struct kvm *kvm = dev->kvm; 4688 4689 if (dev->ops->release) { 4690 mutex_lock(&kvm->lock); 4691 list_del(&dev->vm_node); 4692 dev->ops->release(dev); 4693 mutex_unlock(&kvm->lock); 4694 } 4695 4696 kvm_put_kvm(kvm); 4697 return 0; 4698 } 4699 4700 static struct file_operations kvm_device_fops = { 4701 .unlocked_ioctl = kvm_device_ioctl, 4702 .release = kvm_device_release, 4703 KVM_COMPAT(kvm_device_ioctl), 4704 .mmap = kvm_device_mmap, 4705 }; 4706 4707 struct kvm_device *kvm_device_from_filp(struct file *filp) 4708 { 4709 if (filp->f_op != &kvm_device_fops) 4710 return NULL; 4711 4712 return filp->private_data; 4713 } 4714 4715 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4716 #ifdef CONFIG_KVM_MPIC 4717 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4718 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4719 #endif 4720 }; 4721 4722 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4723 { 4724 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4725 return -ENOSPC; 4726 4727 if (kvm_device_ops_table[type] != NULL) 4728 return -EEXIST; 4729 4730 kvm_device_ops_table[type] = ops; 4731 return 0; 4732 } 4733 4734 void kvm_unregister_device_ops(u32 type) 4735 { 4736 if (kvm_device_ops_table[type] != NULL) 4737 kvm_device_ops_table[type] = NULL; 4738 } 4739 4740 static int kvm_ioctl_create_device(struct kvm *kvm, 4741 struct kvm_create_device *cd) 4742 { 4743 const struct kvm_device_ops *ops; 4744 struct kvm_device *dev; 4745 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4746 int type; 4747 int ret; 4748 4749 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4750 return -ENODEV; 4751 4752 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4753 ops = kvm_device_ops_table[type]; 4754 if (ops == NULL) 4755 return -ENODEV; 4756 4757 if (test) 4758 return 0; 4759 4760 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4761 if (!dev) 4762 return -ENOMEM; 4763 4764 dev->ops = ops; 4765 dev->kvm = kvm; 4766 4767 mutex_lock(&kvm->lock); 4768 ret = ops->create(dev, type); 4769 if (ret < 0) { 4770 mutex_unlock(&kvm->lock); 4771 kfree(dev); 4772 return ret; 4773 } 4774 list_add(&dev->vm_node, &kvm->devices); 4775 mutex_unlock(&kvm->lock); 4776 4777 if (ops->init) 4778 ops->init(dev); 4779 4780 kvm_get_kvm(kvm); 4781 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4782 if (ret < 0) { 4783 kvm_put_kvm_no_destroy(kvm); 4784 mutex_lock(&kvm->lock); 4785 list_del(&dev->vm_node); 4786 if (ops->release) 4787 ops->release(dev); 4788 mutex_unlock(&kvm->lock); 4789 if (ops->destroy) 4790 ops->destroy(dev); 4791 return ret; 4792 } 4793 4794 cd->fd = ret; 4795 return 0; 4796 } 4797 4798 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4799 { 4800 switch (arg) { 4801 case KVM_CAP_USER_MEMORY: 4802 case KVM_CAP_USER_MEMORY2: 4803 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4804 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4805 case KVM_CAP_INTERNAL_ERROR_DATA: 4806 #ifdef CONFIG_HAVE_KVM_MSI 4807 case KVM_CAP_SIGNAL_MSI: 4808 #endif 4809 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4810 case KVM_CAP_IRQFD: 4811 #endif 4812 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4813 case KVM_CAP_CHECK_EXTENSION_VM: 4814 case KVM_CAP_ENABLE_CAP_VM: 4815 case KVM_CAP_HALT_POLL: 4816 return 1; 4817 #ifdef CONFIG_KVM_MMIO 4818 case KVM_CAP_COALESCED_MMIO: 4819 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4820 case KVM_CAP_COALESCED_PIO: 4821 return 1; 4822 #endif 4823 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4824 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4825 return KVM_DIRTY_LOG_MANUAL_CAPS; 4826 #endif 4827 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4828 case KVM_CAP_IRQ_ROUTING: 4829 return KVM_MAX_IRQ_ROUTES; 4830 #endif 4831 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4832 case KVM_CAP_MULTI_ADDRESS_SPACE: 4833 if (kvm) 4834 return kvm_arch_nr_memslot_as_ids(kvm); 4835 return KVM_MAX_NR_ADDRESS_SPACES; 4836 #endif 4837 case KVM_CAP_NR_MEMSLOTS: 4838 return KVM_USER_MEM_SLOTS; 4839 case KVM_CAP_DIRTY_LOG_RING: 4840 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4841 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4842 #else 4843 return 0; 4844 #endif 4845 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4846 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4847 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4848 #else 4849 return 0; 4850 #endif 4851 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4852 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4853 #endif 4854 case KVM_CAP_BINARY_STATS_FD: 4855 case KVM_CAP_SYSTEM_EVENT_DATA: 4856 case KVM_CAP_DEVICE_CTRL: 4857 return 1; 4858 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4859 case KVM_CAP_MEMORY_ATTRIBUTES: 4860 return kvm_supported_mem_attributes(kvm); 4861 #endif 4862 #ifdef CONFIG_KVM_PRIVATE_MEM 4863 case KVM_CAP_GUEST_MEMFD: 4864 return !kvm || kvm_arch_has_private_mem(kvm); 4865 #endif 4866 default: 4867 break; 4868 } 4869 return kvm_vm_ioctl_check_extension(kvm, arg); 4870 } 4871 4872 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4873 { 4874 int r; 4875 4876 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4877 return -EINVAL; 4878 4879 /* the size should be power of 2 */ 4880 if (!size || (size & (size - 1))) 4881 return -EINVAL; 4882 4883 /* Should be bigger to keep the reserved entries, or a page */ 4884 if (size < kvm_dirty_ring_get_rsvd_entries() * 4885 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4886 return -EINVAL; 4887 4888 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4889 sizeof(struct kvm_dirty_gfn)) 4890 return -E2BIG; 4891 4892 /* We only allow it to set once */ 4893 if (kvm->dirty_ring_size) 4894 return -EINVAL; 4895 4896 mutex_lock(&kvm->lock); 4897 4898 if (kvm->created_vcpus) { 4899 /* We don't allow to change this value after vcpu created */ 4900 r = -EINVAL; 4901 } else { 4902 kvm->dirty_ring_size = size; 4903 r = 0; 4904 } 4905 4906 mutex_unlock(&kvm->lock); 4907 return r; 4908 } 4909 4910 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4911 { 4912 unsigned long i; 4913 struct kvm_vcpu *vcpu; 4914 int cleared = 0; 4915 4916 if (!kvm->dirty_ring_size) 4917 return -EINVAL; 4918 4919 mutex_lock(&kvm->slots_lock); 4920 4921 kvm_for_each_vcpu(i, vcpu, kvm) 4922 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4923 4924 mutex_unlock(&kvm->slots_lock); 4925 4926 if (cleared) 4927 kvm_flush_remote_tlbs(kvm); 4928 4929 return cleared; 4930 } 4931 4932 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4933 struct kvm_enable_cap *cap) 4934 { 4935 return -EINVAL; 4936 } 4937 4938 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4939 { 4940 int i; 4941 4942 lockdep_assert_held(&kvm->slots_lock); 4943 4944 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4945 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4946 return false; 4947 } 4948 4949 return true; 4950 } 4951 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4952 4953 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4954 struct kvm_enable_cap *cap) 4955 { 4956 switch (cap->cap) { 4957 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4958 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4959 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4960 4961 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4962 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4963 4964 if (cap->flags || (cap->args[0] & ~allowed_options)) 4965 return -EINVAL; 4966 kvm->manual_dirty_log_protect = cap->args[0]; 4967 return 0; 4968 } 4969 #endif 4970 case KVM_CAP_HALT_POLL: { 4971 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4972 return -EINVAL; 4973 4974 kvm->max_halt_poll_ns = cap->args[0]; 4975 4976 /* 4977 * Ensure kvm->override_halt_poll_ns does not become visible 4978 * before kvm->max_halt_poll_ns. 4979 * 4980 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4981 */ 4982 smp_wmb(); 4983 kvm->override_halt_poll_ns = true; 4984 4985 return 0; 4986 } 4987 case KVM_CAP_DIRTY_LOG_RING: 4988 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4989 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4990 return -EINVAL; 4991 4992 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4993 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4994 int r = -EINVAL; 4995 4996 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4997 !kvm->dirty_ring_size || cap->flags) 4998 return r; 4999 5000 mutex_lock(&kvm->slots_lock); 5001 5002 /* 5003 * For simplicity, allow enabling ring+bitmap if and only if 5004 * there are no memslots, e.g. to ensure all memslots allocate 5005 * a bitmap after the capability is enabled. 5006 */ 5007 if (kvm_are_all_memslots_empty(kvm)) { 5008 kvm->dirty_ring_with_bitmap = true; 5009 r = 0; 5010 } 5011 5012 mutex_unlock(&kvm->slots_lock); 5013 5014 return r; 5015 } 5016 default: 5017 return kvm_vm_ioctl_enable_cap(kvm, cap); 5018 } 5019 } 5020 5021 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5022 size_t size, loff_t *offset) 5023 { 5024 struct kvm *kvm = file->private_data; 5025 5026 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5027 &kvm_vm_stats_desc[0], &kvm->stat, 5028 sizeof(kvm->stat), user_buffer, size, offset); 5029 } 5030 5031 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5032 { 5033 struct kvm *kvm = file->private_data; 5034 5035 kvm_put_kvm(kvm); 5036 return 0; 5037 } 5038 5039 static const struct file_operations kvm_vm_stats_fops = { 5040 .owner = THIS_MODULE, 5041 .read = kvm_vm_stats_read, 5042 .release = kvm_vm_stats_release, 5043 .llseek = noop_llseek, 5044 }; 5045 5046 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5047 { 5048 int fd; 5049 struct file *file; 5050 5051 fd = get_unused_fd_flags(O_CLOEXEC); 5052 if (fd < 0) 5053 return fd; 5054 5055 file = anon_inode_getfile("kvm-vm-stats", 5056 &kvm_vm_stats_fops, kvm, O_RDONLY); 5057 if (IS_ERR(file)) { 5058 put_unused_fd(fd); 5059 return PTR_ERR(file); 5060 } 5061 5062 kvm_get_kvm(kvm); 5063 5064 file->f_mode |= FMODE_PREAD; 5065 fd_install(fd, file); 5066 5067 return fd; 5068 } 5069 5070 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5071 do { \ 5072 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5073 offsetof(struct kvm_userspace_memory_region2, field)); \ 5074 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5075 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5076 } while (0) 5077 5078 static long kvm_vm_ioctl(struct file *filp, 5079 unsigned int ioctl, unsigned long arg) 5080 { 5081 struct kvm *kvm = filp->private_data; 5082 void __user *argp = (void __user *)arg; 5083 int r; 5084 5085 if (kvm->mm != current->mm || kvm->vm_dead) 5086 return -EIO; 5087 switch (ioctl) { 5088 case KVM_CREATE_VCPU: 5089 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5090 break; 5091 case KVM_ENABLE_CAP: { 5092 struct kvm_enable_cap cap; 5093 5094 r = -EFAULT; 5095 if (copy_from_user(&cap, argp, sizeof(cap))) 5096 goto out; 5097 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5098 break; 5099 } 5100 case KVM_SET_USER_MEMORY_REGION2: 5101 case KVM_SET_USER_MEMORY_REGION: { 5102 struct kvm_userspace_memory_region2 mem; 5103 unsigned long size; 5104 5105 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5106 /* 5107 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5108 * accessed, but avoid leaking kernel memory in case of a bug. 5109 */ 5110 memset(&mem, 0, sizeof(mem)); 5111 size = sizeof(struct kvm_userspace_memory_region); 5112 } else { 5113 size = sizeof(struct kvm_userspace_memory_region2); 5114 } 5115 5116 /* Ensure the common parts of the two structs are identical. */ 5117 SANITY_CHECK_MEM_REGION_FIELD(slot); 5118 SANITY_CHECK_MEM_REGION_FIELD(flags); 5119 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5120 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5121 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5122 5123 r = -EFAULT; 5124 if (copy_from_user(&mem, argp, size)) 5125 goto out; 5126 5127 r = -EINVAL; 5128 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5129 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5130 goto out; 5131 5132 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5133 break; 5134 } 5135 case KVM_GET_DIRTY_LOG: { 5136 struct kvm_dirty_log log; 5137 5138 r = -EFAULT; 5139 if (copy_from_user(&log, argp, sizeof(log))) 5140 goto out; 5141 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5142 break; 5143 } 5144 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5145 case KVM_CLEAR_DIRTY_LOG: { 5146 struct kvm_clear_dirty_log log; 5147 5148 r = -EFAULT; 5149 if (copy_from_user(&log, argp, sizeof(log))) 5150 goto out; 5151 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5152 break; 5153 } 5154 #endif 5155 #ifdef CONFIG_KVM_MMIO 5156 case KVM_REGISTER_COALESCED_MMIO: { 5157 struct kvm_coalesced_mmio_zone zone; 5158 5159 r = -EFAULT; 5160 if (copy_from_user(&zone, argp, sizeof(zone))) 5161 goto out; 5162 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5163 break; 5164 } 5165 case KVM_UNREGISTER_COALESCED_MMIO: { 5166 struct kvm_coalesced_mmio_zone zone; 5167 5168 r = -EFAULT; 5169 if (copy_from_user(&zone, argp, sizeof(zone))) 5170 goto out; 5171 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5172 break; 5173 } 5174 #endif 5175 case KVM_IRQFD: { 5176 struct kvm_irqfd data; 5177 5178 r = -EFAULT; 5179 if (copy_from_user(&data, argp, sizeof(data))) 5180 goto out; 5181 r = kvm_irqfd(kvm, &data); 5182 break; 5183 } 5184 case KVM_IOEVENTFD: { 5185 struct kvm_ioeventfd data; 5186 5187 r = -EFAULT; 5188 if (copy_from_user(&data, argp, sizeof(data))) 5189 goto out; 5190 r = kvm_ioeventfd(kvm, &data); 5191 break; 5192 } 5193 #ifdef CONFIG_HAVE_KVM_MSI 5194 case KVM_SIGNAL_MSI: { 5195 struct kvm_msi msi; 5196 5197 r = -EFAULT; 5198 if (copy_from_user(&msi, argp, sizeof(msi))) 5199 goto out; 5200 r = kvm_send_userspace_msi(kvm, &msi); 5201 break; 5202 } 5203 #endif 5204 #ifdef __KVM_HAVE_IRQ_LINE 5205 case KVM_IRQ_LINE_STATUS: 5206 case KVM_IRQ_LINE: { 5207 struct kvm_irq_level irq_event; 5208 5209 r = -EFAULT; 5210 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5211 goto out; 5212 5213 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5214 ioctl == KVM_IRQ_LINE_STATUS); 5215 if (r) 5216 goto out; 5217 5218 r = -EFAULT; 5219 if (ioctl == KVM_IRQ_LINE_STATUS) { 5220 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5221 goto out; 5222 } 5223 5224 r = 0; 5225 break; 5226 } 5227 #endif 5228 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5229 case KVM_SET_GSI_ROUTING: { 5230 struct kvm_irq_routing routing; 5231 struct kvm_irq_routing __user *urouting; 5232 struct kvm_irq_routing_entry *entries = NULL; 5233 5234 r = -EFAULT; 5235 if (copy_from_user(&routing, argp, sizeof(routing))) 5236 goto out; 5237 r = -EINVAL; 5238 if (!kvm_arch_can_set_irq_routing(kvm)) 5239 goto out; 5240 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5241 goto out; 5242 if (routing.flags) 5243 goto out; 5244 if (routing.nr) { 5245 urouting = argp; 5246 entries = vmemdup_array_user(urouting->entries, 5247 routing.nr, sizeof(*entries)); 5248 if (IS_ERR(entries)) { 5249 r = PTR_ERR(entries); 5250 goto out; 5251 } 5252 } 5253 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5254 routing.flags); 5255 kvfree(entries); 5256 break; 5257 } 5258 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5259 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5260 case KVM_SET_MEMORY_ATTRIBUTES: { 5261 struct kvm_memory_attributes attrs; 5262 5263 r = -EFAULT; 5264 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5265 goto out; 5266 5267 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5268 break; 5269 } 5270 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5271 case KVM_CREATE_DEVICE: { 5272 struct kvm_create_device cd; 5273 5274 r = -EFAULT; 5275 if (copy_from_user(&cd, argp, sizeof(cd))) 5276 goto out; 5277 5278 r = kvm_ioctl_create_device(kvm, &cd); 5279 if (r) 5280 goto out; 5281 5282 r = -EFAULT; 5283 if (copy_to_user(argp, &cd, sizeof(cd))) 5284 goto out; 5285 5286 r = 0; 5287 break; 5288 } 5289 case KVM_CHECK_EXTENSION: 5290 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5291 break; 5292 case KVM_RESET_DIRTY_RINGS: 5293 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5294 break; 5295 case KVM_GET_STATS_FD: 5296 r = kvm_vm_ioctl_get_stats_fd(kvm); 5297 break; 5298 #ifdef CONFIG_KVM_PRIVATE_MEM 5299 case KVM_CREATE_GUEST_MEMFD: { 5300 struct kvm_create_guest_memfd guest_memfd; 5301 5302 r = -EFAULT; 5303 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5304 goto out; 5305 5306 r = kvm_gmem_create(kvm, &guest_memfd); 5307 break; 5308 } 5309 #endif 5310 default: 5311 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5312 } 5313 out: 5314 return r; 5315 } 5316 5317 #ifdef CONFIG_KVM_COMPAT 5318 struct compat_kvm_dirty_log { 5319 __u32 slot; 5320 __u32 padding1; 5321 union { 5322 compat_uptr_t dirty_bitmap; /* one bit per page */ 5323 __u64 padding2; 5324 }; 5325 }; 5326 5327 struct compat_kvm_clear_dirty_log { 5328 __u32 slot; 5329 __u32 num_pages; 5330 __u64 first_page; 5331 union { 5332 compat_uptr_t dirty_bitmap; /* one bit per page */ 5333 __u64 padding2; 5334 }; 5335 }; 5336 5337 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5338 unsigned long arg) 5339 { 5340 return -ENOTTY; 5341 } 5342 5343 static long kvm_vm_compat_ioctl(struct file *filp, 5344 unsigned int ioctl, unsigned long arg) 5345 { 5346 struct kvm *kvm = filp->private_data; 5347 int r; 5348 5349 if (kvm->mm != current->mm || kvm->vm_dead) 5350 return -EIO; 5351 5352 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5353 if (r != -ENOTTY) 5354 return r; 5355 5356 switch (ioctl) { 5357 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5358 case KVM_CLEAR_DIRTY_LOG: { 5359 struct compat_kvm_clear_dirty_log compat_log; 5360 struct kvm_clear_dirty_log log; 5361 5362 if (copy_from_user(&compat_log, (void __user *)arg, 5363 sizeof(compat_log))) 5364 return -EFAULT; 5365 log.slot = compat_log.slot; 5366 log.num_pages = compat_log.num_pages; 5367 log.first_page = compat_log.first_page; 5368 log.padding2 = compat_log.padding2; 5369 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5370 5371 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5372 break; 5373 } 5374 #endif 5375 case KVM_GET_DIRTY_LOG: { 5376 struct compat_kvm_dirty_log compat_log; 5377 struct kvm_dirty_log log; 5378 5379 if (copy_from_user(&compat_log, (void __user *)arg, 5380 sizeof(compat_log))) 5381 return -EFAULT; 5382 log.slot = compat_log.slot; 5383 log.padding1 = compat_log.padding1; 5384 log.padding2 = compat_log.padding2; 5385 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5386 5387 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5388 break; 5389 } 5390 default: 5391 r = kvm_vm_ioctl(filp, ioctl, arg); 5392 } 5393 return r; 5394 } 5395 #endif 5396 5397 static struct file_operations kvm_vm_fops = { 5398 .release = kvm_vm_release, 5399 .unlocked_ioctl = kvm_vm_ioctl, 5400 .llseek = noop_llseek, 5401 KVM_COMPAT(kvm_vm_compat_ioctl), 5402 }; 5403 5404 bool file_is_kvm(struct file *file) 5405 { 5406 return file && file->f_op == &kvm_vm_fops; 5407 } 5408 EXPORT_SYMBOL_GPL(file_is_kvm); 5409 5410 static int kvm_dev_ioctl_create_vm(unsigned long type) 5411 { 5412 char fdname[ITOA_MAX_LEN + 1]; 5413 int r, fd; 5414 struct kvm *kvm; 5415 struct file *file; 5416 5417 fd = get_unused_fd_flags(O_CLOEXEC); 5418 if (fd < 0) 5419 return fd; 5420 5421 snprintf(fdname, sizeof(fdname), "%d", fd); 5422 5423 kvm = kvm_create_vm(type, fdname); 5424 if (IS_ERR(kvm)) { 5425 r = PTR_ERR(kvm); 5426 goto put_fd; 5427 } 5428 5429 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5430 if (IS_ERR(file)) { 5431 r = PTR_ERR(file); 5432 goto put_kvm; 5433 } 5434 5435 /* 5436 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5437 * already set, with ->release() being kvm_vm_release(). In error 5438 * cases it will be called by the final fput(file) and will take 5439 * care of doing kvm_put_kvm(kvm). 5440 */ 5441 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5442 5443 fd_install(fd, file); 5444 return fd; 5445 5446 put_kvm: 5447 kvm_put_kvm(kvm); 5448 put_fd: 5449 put_unused_fd(fd); 5450 return r; 5451 } 5452 5453 static long kvm_dev_ioctl(struct file *filp, 5454 unsigned int ioctl, unsigned long arg) 5455 { 5456 int r = -EINVAL; 5457 5458 switch (ioctl) { 5459 case KVM_GET_API_VERSION: 5460 if (arg) 5461 goto out; 5462 r = KVM_API_VERSION; 5463 break; 5464 case KVM_CREATE_VM: 5465 r = kvm_dev_ioctl_create_vm(arg); 5466 break; 5467 case KVM_CHECK_EXTENSION: 5468 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5469 break; 5470 case KVM_GET_VCPU_MMAP_SIZE: 5471 if (arg) 5472 goto out; 5473 r = PAGE_SIZE; /* struct kvm_run */ 5474 #ifdef CONFIG_X86 5475 r += PAGE_SIZE; /* pio data page */ 5476 #endif 5477 #ifdef CONFIG_KVM_MMIO 5478 r += PAGE_SIZE; /* coalesced mmio ring page */ 5479 #endif 5480 break; 5481 default: 5482 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5483 } 5484 out: 5485 return r; 5486 } 5487 5488 static struct file_operations kvm_chardev_ops = { 5489 .unlocked_ioctl = kvm_dev_ioctl, 5490 .llseek = noop_llseek, 5491 KVM_COMPAT(kvm_dev_ioctl), 5492 }; 5493 5494 static struct miscdevice kvm_dev = { 5495 KVM_MINOR, 5496 "kvm", 5497 &kvm_chardev_ops, 5498 }; 5499 5500 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5501 __visible bool kvm_rebooting; 5502 EXPORT_SYMBOL_GPL(kvm_rebooting); 5503 5504 static DEFINE_PER_CPU(bool, hardware_enabled); 5505 static int kvm_usage_count; 5506 5507 static int __hardware_enable_nolock(void) 5508 { 5509 if (__this_cpu_read(hardware_enabled)) 5510 return 0; 5511 5512 if (kvm_arch_hardware_enable()) { 5513 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5514 raw_smp_processor_id()); 5515 return -EIO; 5516 } 5517 5518 __this_cpu_write(hardware_enabled, true); 5519 return 0; 5520 } 5521 5522 static void hardware_enable_nolock(void *failed) 5523 { 5524 if (__hardware_enable_nolock()) 5525 atomic_inc(failed); 5526 } 5527 5528 static int kvm_online_cpu(unsigned int cpu) 5529 { 5530 int ret = 0; 5531 5532 /* 5533 * Abort the CPU online process if hardware virtualization cannot 5534 * be enabled. Otherwise running VMs would encounter unrecoverable 5535 * errors when scheduled to this CPU. 5536 */ 5537 mutex_lock(&kvm_lock); 5538 if (kvm_usage_count) 5539 ret = __hardware_enable_nolock(); 5540 mutex_unlock(&kvm_lock); 5541 return ret; 5542 } 5543 5544 static void hardware_disable_nolock(void *junk) 5545 { 5546 /* 5547 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5548 * hardware, not just CPUs that successfully enabled hardware! 5549 */ 5550 if (!__this_cpu_read(hardware_enabled)) 5551 return; 5552 5553 kvm_arch_hardware_disable(); 5554 5555 __this_cpu_write(hardware_enabled, false); 5556 } 5557 5558 static int kvm_offline_cpu(unsigned int cpu) 5559 { 5560 mutex_lock(&kvm_lock); 5561 if (kvm_usage_count) 5562 hardware_disable_nolock(NULL); 5563 mutex_unlock(&kvm_lock); 5564 return 0; 5565 } 5566 5567 static void hardware_disable_all_nolock(void) 5568 { 5569 BUG_ON(!kvm_usage_count); 5570 5571 kvm_usage_count--; 5572 if (!kvm_usage_count) 5573 on_each_cpu(hardware_disable_nolock, NULL, 1); 5574 } 5575 5576 static void hardware_disable_all(void) 5577 { 5578 cpus_read_lock(); 5579 mutex_lock(&kvm_lock); 5580 hardware_disable_all_nolock(); 5581 mutex_unlock(&kvm_lock); 5582 cpus_read_unlock(); 5583 } 5584 5585 static int hardware_enable_all(void) 5586 { 5587 atomic_t failed = ATOMIC_INIT(0); 5588 int r; 5589 5590 /* 5591 * Do not enable hardware virtualization if the system is going down. 5592 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5593 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5594 * after kvm_reboot() is called. Note, this relies on system_state 5595 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5596 * hook instead of registering a dedicated reboot notifier (the latter 5597 * runs before system_state is updated). 5598 */ 5599 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5600 system_state == SYSTEM_RESTART) 5601 return -EBUSY; 5602 5603 /* 5604 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5605 * is called, and so on_each_cpu() between them includes the CPU that 5606 * is being onlined. As a result, hardware_enable_nolock() may get 5607 * invoked before kvm_online_cpu(), which also enables hardware if the 5608 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5609 * enable hardware multiple times. 5610 */ 5611 cpus_read_lock(); 5612 mutex_lock(&kvm_lock); 5613 5614 r = 0; 5615 5616 kvm_usage_count++; 5617 if (kvm_usage_count == 1) { 5618 on_each_cpu(hardware_enable_nolock, &failed, 1); 5619 5620 if (atomic_read(&failed)) { 5621 hardware_disable_all_nolock(); 5622 r = -EBUSY; 5623 } 5624 } 5625 5626 mutex_unlock(&kvm_lock); 5627 cpus_read_unlock(); 5628 5629 return r; 5630 } 5631 5632 static void kvm_shutdown(void) 5633 { 5634 /* 5635 * Disable hardware virtualization and set kvm_rebooting to indicate 5636 * that KVM has asynchronously disabled hardware virtualization, i.e. 5637 * that relevant errors and exceptions aren't entirely unexpected. 5638 * Some flavors of hardware virtualization need to be disabled before 5639 * transferring control to firmware (to perform shutdown/reboot), e.g. 5640 * on x86, virtualization can block INIT interrupts, which are used by 5641 * firmware to pull APs back under firmware control. Note, this path 5642 * is used for both shutdown and reboot scenarios, i.e. neither name is 5643 * 100% comprehensive. 5644 */ 5645 pr_info("kvm: exiting hardware virtualization\n"); 5646 kvm_rebooting = true; 5647 on_each_cpu(hardware_disable_nolock, NULL, 1); 5648 } 5649 5650 static int kvm_suspend(void) 5651 { 5652 /* 5653 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5654 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5655 * is stable. Assert that kvm_lock is not held to ensure the system 5656 * isn't suspended while KVM is enabling hardware. Hardware enabling 5657 * can be preempted, but the task cannot be frozen until it has dropped 5658 * all locks (userspace tasks are frozen via a fake signal). 5659 */ 5660 lockdep_assert_not_held(&kvm_lock); 5661 lockdep_assert_irqs_disabled(); 5662 5663 if (kvm_usage_count) 5664 hardware_disable_nolock(NULL); 5665 return 0; 5666 } 5667 5668 static void kvm_resume(void) 5669 { 5670 lockdep_assert_not_held(&kvm_lock); 5671 lockdep_assert_irqs_disabled(); 5672 5673 if (kvm_usage_count) 5674 WARN_ON_ONCE(__hardware_enable_nolock()); 5675 } 5676 5677 static struct syscore_ops kvm_syscore_ops = { 5678 .suspend = kvm_suspend, 5679 .resume = kvm_resume, 5680 .shutdown = kvm_shutdown, 5681 }; 5682 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5683 static int hardware_enable_all(void) 5684 { 5685 return 0; 5686 } 5687 5688 static void hardware_disable_all(void) 5689 { 5690 5691 } 5692 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5693 5694 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5695 { 5696 if (dev->ops->destructor) 5697 dev->ops->destructor(dev); 5698 } 5699 5700 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5701 { 5702 int i; 5703 5704 for (i = 0; i < bus->dev_count; i++) { 5705 struct kvm_io_device *pos = bus->range[i].dev; 5706 5707 kvm_iodevice_destructor(pos); 5708 } 5709 kfree(bus); 5710 } 5711 5712 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5713 const struct kvm_io_range *r2) 5714 { 5715 gpa_t addr1 = r1->addr; 5716 gpa_t addr2 = r2->addr; 5717 5718 if (addr1 < addr2) 5719 return -1; 5720 5721 /* If r2->len == 0, match the exact address. If r2->len != 0, 5722 * accept any overlapping write. Any order is acceptable for 5723 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5724 * we process all of them. 5725 */ 5726 if (r2->len) { 5727 addr1 += r1->len; 5728 addr2 += r2->len; 5729 } 5730 5731 if (addr1 > addr2) 5732 return 1; 5733 5734 return 0; 5735 } 5736 5737 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5738 { 5739 return kvm_io_bus_cmp(p1, p2); 5740 } 5741 5742 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5743 gpa_t addr, int len) 5744 { 5745 struct kvm_io_range *range, key; 5746 int off; 5747 5748 key = (struct kvm_io_range) { 5749 .addr = addr, 5750 .len = len, 5751 }; 5752 5753 range = bsearch(&key, bus->range, bus->dev_count, 5754 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5755 if (range == NULL) 5756 return -ENOENT; 5757 5758 off = range - bus->range; 5759 5760 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5761 off--; 5762 5763 return off; 5764 } 5765 5766 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5767 struct kvm_io_range *range, const void *val) 5768 { 5769 int idx; 5770 5771 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5772 if (idx < 0) 5773 return -EOPNOTSUPP; 5774 5775 while (idx < bus->dev_count && 5776 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5777 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5778 range->len, val)) 5779 return idx; 5780 idx++; 5781 } 5782 5783 return -EOPNOTSUPP; 5784 } 5785 5786 /* kvm_io_bus_write - called under kvm->slots_lock */ 5787 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5788 int len, const void *val) 5789 { 5790 struct kvm_io_bus *bus; 5791 struct kvm_io_range range; 5792 int r; 5793 5794 range = (struct kvm_io_range) { 5795 .addr = addr, 5796 .len = len, 5797 }; 5798 5799 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5800 if (!bus) 5801 return -ENOMEM; 5802 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5803 return r < 0 ? r : 0; 5804 } 5805 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5806 5807 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5808 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5809 gpa_t addr, int len, const void *val, long cookie) 5810 { 5811 struct kvm_io_bus *bus; 5812 struct kvm_io_range range; 5813 5814 range = (struct kvm_io_range) { 5815 .addr = addr, 5816 .len = len, 5817 }; 5818 5819 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5820 if (!bus) 5821 return -ENOMEM; 5822 5823 /* First try the device referenced by cookie. */ 5824 if ((cookie >= 0) && (cookie < bus->dev_count) && 5825 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5826 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5827 val)) 5828 return cookie; 5829 5830 /* 5831 * cookie contained garbage; fall back to search and return the 5832 * correct cookie value. 5833 */ 5834 return __kvm_io_bus_write(vcpu, bus, &range, val); 5835 } 5836 5837 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5838 struct kvm_io_range *range, void *val) 5839 { 5840 int idx; 5841 5842 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5843 if (idx < 0) 5844 return -EOPNOTSUPP; 5845 5846 while (idx < bus->dev_count && 5847 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5848 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5849 range->len, val)) 5850 return idx; 5851 idx++; 5852 } 5853 5854 return -EOPNOTSUPP; 5855 } 5856 5857 /* kvm_io_bus_read - called under kvm->slots_lock */ 5858 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5859 int len, void *val) 5860 { 5861 struct kvm_io_bus *bus; 5862 struct kvm_io_range range; 5863 int r; 5864 5865 range = (struct kvm_io_range) { 5866 .addr = addr, 5867 .len = len, 5868 }; 5869 5870 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5871 if (!bus) 5872 return -ENOMEM; 5873 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5874 return r < 0 ? r : 0; 5875 } 5876 5877 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5878 int len, struct kvm_io_device *dev) 5879 { 5880 int i; 5881 struct kvm_io_bus *new_bus, *bus; 5882 struct kvm_io_range range; 5883 5884 lockdep_assert_held(&kvm->slots_lock); 5885 5886 bus = kvm_get_bus(kvm, bus_idx); 5887 if (!bus) 5888 return -ENOMEM; 5889 5890 /* exclude ioeventfd which is limited by maximum fd */ 5891 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5892 return -ENOSPC; 5893 5894 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5895 GFP_KERNEL_ACCOUNT); 5896 if (!new_bus) 5897 return -ENOMEM; 5898 5899 range = (struct kvm_io_range) { 5900 .addr = addr, 5901 .len = len, 5902 .dev = dev, 5903 }; 5904 5905 for (i = 0; i < bus->dev_count; i++) 5906 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5907 break; 5908 5909 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5910 new_bus->dev_count++; 5911 new_bus->range[i] = range; 5912 memcpy(new_bus->range + i + 1, bus->range + i, 5913 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5914 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5915 synchronize_srcu_expedited(&kvm->srcu); 5916 kfree(bus); 5917 5918 return 0; 5919 } 5920 5921 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5922 struct kvm_io_device *dev) 5923 { 5924 int i; 5925 struct kvm_io_bus *new_bus, *bus; 5926 5927 lockdep_assert_held(&kvm->slots_lock); 5928 5929 bus = kvm_get_bus(kvm, bus_idx); 5930 if (!bus) 5931 return 0; 5932 5933 for (i = 0; i < bus->dev_count; i++) { 5934 if (bus->range[i].dev == dev) { 5935 break; 5936 } 5937 } 5938 5939 if (i == bus->dev_count) 5940 return 0; 5941 5942 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5943 GFP_KERNEL_ACCOUNT); 5944 if (new_bus) { 5945 memcpy(new_bus, bus, struct_size(bus, range, i)); 5946 new_bus->dev_count--; 5947 memcpy(new_bus->range + i, bus->range + i + 1, 5948 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5949 } 5950 5951 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5952 synchronize_srcu_expedited(&kvm->srcu); 5953 5954 /* 5955 * If NULL bus is installed, destroy the old bus, including all the 5956 * attached devices. Otherwise, destroy the caller's device only. 5957 */ 5958 if (!new_bus) { 5959 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5960 kvm_io_bus_destroy(bus); 5961 return -ENOMEM; 5962 } 5963 5964 kvm_iodevice_destructor(dev); 5965 kfree(bus); 5966 return 0; 5967 } 5968 5969 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5970 gpa_t addr) 5971 { 5972 struct kvm_io_bus *bus; 5973 int dev_idx, srcu_idx; 5974 struct kvm_io_device *iodev = NULL; 5975 5976 srcu_idx = srcu_read_lock(&kvm->srcu); 5977 5978 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5979 if (!bus) 5980 goto out_unlock; 5981 5982 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5983 if (dev_idx < 0) 5984 goto out_unlock; 5985 5986 iodev = bus->range[dev_idx].dev; 5987 5988 out_unlock: 5989 srcu_read_unlock(&kvm->srcu, srcu_idx); 5990 5991 return iodev; 5992 } 5993 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5994 5995 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5996 int (*get)(void *, u64 *), int (*set)(void *, u64), 5997 const char *fmt) 5998 { 5999 int ret; 6000 struct kvm_stat_data *stat_data = inode->i_private; 6001 6002 /* 6003 * The debugfs files are a reference to the kvm struct which 6004 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6005 * avoids the race between open and the removal of the debugfs directory. 6006 */ 6007 if (!kvm_get_kvm_safe(stat_data->kvm)) 6008 return -ENOENT; 6009 6010 ret = simple_attr_open(inode, file, get, 6011 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6012 ? set : NULL, fmt); 6013 if (ret) 6014 kvm_put_kvm(stat_data->kvm); 6015 6016 return ret; 6017 } 6018 6019 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6020 { 6021 struct kvm_stat_data *stat_data = inode->i_private; 6022 6023 simple_attr_release(inode, file); 6024 kvm_put_kvm(stat_data->kvm); 6025 6026 return 0; 6027 } 6028 6029 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6030 { 6031 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6032 6033 return 0; 6034 } 6035 6036 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6037 { 6038 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6039 6040 return 0; 6041 } 6042 6043 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6044 { 6045 unsigned long i; 6046 struct kvm_vcpu *vcpu; 6047 6048 *val = 0; 6049 6050 kvm_for_each_vcpu(i, vcpu, kvm) 6051 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6052 6053 return 0; 6054 } 6055 6056 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6057 { 6058 unsigned long i; 6059 struct kvm_vcpu *vcpu; 6060 6061 kvm_for_each_vcpu(i, vcpu, kvm) 6062 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6063 6064 return 0; 6065 } 6066 6067 static int kvm_stat_data_get(void *data, u64 *val) 6068 { 6069 int r = -EFAULT; 6070 struct kvm_stat_data *stat_data = data; 6071 6072 switch (stat_data->kind) { 6073 case KVM_STAT_VM: 6074 r = kvm_get_stat_per_vm(stat_data->kvm, 6075 stat_data->desc->desc.offset, val); 6076 break; 6077 case KVM_STAT_VCPU: 6078 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6079 stat_data->desc->desc.offset, val); 6080 break; 6081 } 6082 6083 return r; 6084 } 6085 6086 static int kvm_stat_data_clear(void *data, u64 val) 6087 { 6088 int r = -EFAULT; 6089 struct kvm_stat_data *stat_data = data; 6090 6091 if (val) 6092 return -EINVAL; 6093 6094 switch (stat_data->kind) { 6095 case KVM_STAT_VM: 6096 r = kvm_clear_stat_per_vm(stat_data->kvm, 6097 stat_data->desc->desc.offset); 6098 break; 6099 case KVM_STAT_VCPU: 6100 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6101 stat_data->desc->desc.offset); 6102 break; 6103 } 6104 6105 return r; 6106 } 6107 6108 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6109 { 6110 __simple_attr_check_format("%llu\n", 0ull); 6111 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6112 kvm_stat_data_clear, "%llu\n"); 6113 } 6114 6115 static const struct file_operations stat_fops_per_vm = { 6116 .owner = THIS_MODULE, 6117 .open = kvm_stat_data_open, 6118 .release = kvm_debugfs_release, 6119 .read = simple_attr_read, 6120 .write = simple_attr_write, 6121 .llseek = no_llseek, 6122 }; 6123 6124 static int vm_stat_get(void *_offset, u64 *val) 6125 { 6126 unsigned offset = (long)_offset; 6127 struct kvm *kvm; 6128 u64 tmp_val; 6129 6130 *val = 0; 6131 mutex_lock(&kvm_lock); 6132 list_for_each_entry(kvm, &vm_list, vm_list) { 6133 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6134 *val += tmp_val; 6135 } 6136 mutex_unlock(&kvm_lock); 6137 return 0; 6138 } 6139 6140 static int vm_stat_clear(void *_offset, u64 val) 6141 { 6142 unsigned offset = (long)_offset; 6143 struct kvm *kvm; 6144 6145 if (val) 6146 return -EINVAL; 6147 6148 mutex_lock(&kvm_lock); 6149 list_for_each_entry(kvm, &vm_list, vm_list) { 6150 kvm_clear_stat_per_vm(kvm, offset); 6151 } 6152 mutex_unlock(&kvm_lock); 6153 6154 return 0; 6155 } 6156 6157 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6158 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6159 6160 static int vcpu_stat_get(void *_offset, u64 *val) 6161 { 6162 unsigned offset = (long)_offset; 6163 struct kvm *kvm; 6164 u64 tmp_val; 6165 6166 *val = 0; 6167 mutex_lock(&kvm_lock); 6168 list_for_each_entry(kvm, &vm_list, vm_list) { 6169 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6170 *val += tmp_val; 6171 } 6172 mutex_unlock(&kvm_lock); 6173 return 0; 6174 } 6175 6176 static int vcpu_stat_clear(void *_offset, u64 val) 6177 { 6178 unsigned offset = (long)_offset; 6179 struct kvm *kvm; 6180 6181 if (val) 6182 return -EINVAL; 6183 6184 mutex_lock(&kvm_lock); 6185 list_for_each_entry(kvm, &vm_list, vm_list) { 6186 kvm_clear_stat_per_vcpu(kvm, offset); 6187 } 6188 mutex_unlock(&kvm_lock); 6189 6190 return 0; 6191 } 6192 6193 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6194 "%llu\n"); 6195 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6196 6197 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6198 { 6199 struct kobj_uevent_env *env; 6200 unsigned long long created, active; 6201 6202 if (!kvm_dev.this_device || !kvm) 6203 return; 6204 6205 mutex_lock(&kvm_lock); 6206 if (type == KVM_EVENT_CREATE_VM) { 6207 kvm_createvm_count++; 6208 kvm_active_vms++; 6209 } else if (type == KVM_EVENT_DESTROY_VM) { 6210 kvm_active_vms--; 6211 } 6212 created = kvm_createvm_count; 6213 active = kvm_active_vms; 6214 mutex_unlock(&kvm_lock); 6215 6216 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6217 if (!env) 6218 return; 6219 6220 add_uevent_var(env, "CREATED=%llu", created); 6221 add_uevent_var(env, "COUNT=%llu", active); 6222 6223 if (type == KVM_EVENT_CREATE_VM) { 6224 add_uevent_var(env, "EVENT=create"); 6225 kvm->userspace_pid = task_pid_nr(current); 6226 } else if (type == KVM_EVENT_DESTROY_VM) { 6227 add_uevent_var(env, "EVENT=destroy"); 6228 } 6229 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6230 6231 if (!IS_ERR(kvm->debugfs_dentry)) { 6232 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6233 6234 if (p) { 6235 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6236 if (!IS_ERR(tmp)) 6237 add_uevent_var(env, "STATS_PATH=%s", tmp); 6238 kfree(p); 6239 } 6240 } 6241 /* no need for checks, since we are adding at most only 5 keys */ 6242 env->envp[env->envp_idx++] = NULL; 6243 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6244 kfree(env); 6245 } 6246 6247 static void kvm_init_debug(void) 6248 { 6249 const struct file_operations *fops; 6250 const struct _kvm_stats_desc *pdesc; 6251 int i; 6252 6253 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6254 6255 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6256 pdesc = &kvm_vm_stats_desc[i]; 6257 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6258 fops = &vm_stat_fops; 6259 else 6260 fops = &vm_stat_readonly_fops; 6261 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6262 kvm_debugfs_dir, 6263 (void *)(long)pdesc->desc.offset, fops); 6264 } 6265 6266 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6267 pdesc = &kvm_vcpu_stats_desc[i]; 6268 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6269 fops = &vcpu_stat_fops; 6270 else 6271 fops = &vcpu_stat_readonly_fops; 6272 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6273 kvm_debugfs_dir, 6274 (void *)(long)pdesc->desc.offset, fops); 6275 } 6276 } 6277 6278 static inline 6279 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6280 { 6281 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6282 } 6283 6284 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6285 { 6286 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6287 6288 WRITE_ONCE(vcpu->preempted, false); 6289 WRITE_ONCE(vcpu->ready, false); 6290 6291 __this_cpu_write(kvm_running_vcpu, vcpu); 6292 kvm_arch_sched_in(vcpu, cpu); 6293 kvm_arch_vcpu_load(vcpu, cpu); 6294 } 6295 6296 static void kvm_sched_out(struct preempt_notifier *pn, 6297 struct task_struct *next) 6298 { 6299 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6300 6301 if (current->on_rq) { 6302 WRITE_ONCE(vcpu->preempted, true); 6303 WRITE_ONCE(vcpu->ready, true); 6304 } 6305 kvm_arch_vcpu_put(vcpu); 6306 __this_cpu_write(kvm_running_vcpu, NULL); 6307 } 6308 6309 /** 6310 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6311 * 6312 * We can disable preemption locally around accessing the per-CPU variable, 6313 * and use the resolved vcpu pointer after enabling preemption again, 6314 * because even if the current thread is migrated to another CPU, reading 6315 * the per-CPU value later will give us the same value as we update the 6316 * per-CPU variable in the preempt notifier handlers. 6317 */ 6318 struct kvm_vcpu *kvm_get_running_vcpu(void) 6319 { 6320 struct kvm_vcpu *vcpu; 6321 6322 preempt_disable(); 6323 vcpu = __this_cpu_read(kvm_running_vcpu); 6324 preempt_enable(); 6325 6326 return vcpu; 6327 } 6328 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6329 6330 /** 6331 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6332 */ 6333 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6334 { 6335 return &kvm_running_vcpu; 6336 } 6337 6338 #ifdef CONFIG_GUEST_PERF_EVENTS 6339 static unsigned int kvm_guest_state(void) 6340 { 6341 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6342 unsigned int state; 6343 6344 if (!kvm_arch_pmi_in_guest(vcpu)) 6345 return 0; 6346 6347 state = PERF_GUEST_ACTIVE; 6348 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6349 state |= PERF_GUEST_USER; 6350 6351 return state; 6352 } 6353 6354 static unsigned long kvm_guest_get_ip(void) 6355 { 6356 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6357 6358 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6359 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6360 return 0; 6361 6362 return kvm_arch_vcpu_get_ip(vcpu); 6363 } 6364 6365 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6366 .state = kvm_guest_state, 6367 .get_ip = kvm_guest_get_ip, 6368 .handle_intel_pt_intr = NULL, 6369 }; 6370 6371 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6372 { 6373 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6374 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6375 } 6376 void kvm_unregister_perf_callbacks(void) 6377 { 6378 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6379 } 6380 #endif 6381 6382 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6383 { 6384 int r; 6385 int cpu; 6386 6387 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6388 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6389 kvm_online_cpu, kvm_offline_cpu); 6390 if (r) 6391 return r; 6392 6393 register_syscore_ops(&kvm_syscore_ops); 6394 #endif 6395 6396 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6397 if (!vcpu_align) 6398 vcpu_align = __alignof__(struct kvm_vcpu); 6399 kvm_vcpu_cache = 6400 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6401 SLAB_ACCOUNT, 6402 offsetof(struct kvm_vcpu, arch), 6403 offsetofend(struct kvm_vcpu, stats_id) 6404 - offsetof(struct kvm_vcpu, arch), 6405 NULL); 6406 if (!kvm_vcpu_cache) { 6407 r = -ENOMEM; 6408 goto err_vcpu_cache; 6409 } 6410 6411 for_each_possible_cpu(cpu) { 6412 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6413 GFP_KERNEL, cpu_to_node(cpu))) { 6414 r = -ENOMEM; 6415 goto err_cpu_kick_mask; 6416 } 6417 } 6418 6419 r = kvm_irqfd_init(); 6420 if (r) 6421 goto err_irqfd; 6422 6423 r = kvm_async_pf_init(); 6424 if (r) 6425 goto err_async_pf; 6426 6427 kvm_chardev_ops.owner = module; 6428 kvm_vm_fops.owner = module; 6429 kvm_vcpu_fops.owner = module; 6430 kvm_device_fops.owner = module; 6431 6432 kvm_preempt_ops.sched_in = kvm_sched_in; 6433 kvm_preempt_ops.sched_out = kvm_sched_out; 6434 6435 kvm_init_debug(); 6436 6437 r = kvm_vfio_ops_init(); 6438 if (WARN_ON_ONCE(r)) 6439 goto err_vfio; 6440 6441 kvm_gmem_init(module); 6442 6443 /* 6444 * Registration _must_ be the very last thing done, as this exposes 6445 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6446 */ 6447 r = misc_register(&kvm_dev); 6448 if (r) { 6449 pr_err("kvm: misc device register failed\n"); 6450 goto err_register; 6451 } 6452 6453 return 0; 6454 6455 err_register: 6456 kvm_vfio_ops_exit(); 6457 err_vfio: 6458 kvm_async_pf_deinit(); 6459 err_async_pf: 6460 kvm_irqfd_exit(); 6461 err_irqfd: 6462 err_cpu_kick_mask: 6463 for_each_possible_cpu(cpu) 6464 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6465 kmem_cache_destroy(kvm_vcpu_cache); 6466 err_vcpu_cache: 6467 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6468 unregister_syscore_ops(&kvm_syscore_ops); 6469 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6470 #endif 6471 return r; 6472 } 6473 EXPORT_SYMBOL_GPL(kvm_init); 6474 6475 void kvm_exit(void) 6476 { 6477 int cpu; 6478 6479 /* 6480 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6481 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6482 * to KVM while the module is being stopped. 6483 */ 6484 misc_deregister(&kvm_dev); 6485 6486 debugfs_remove_recursive(kvm_debugfs_dir); 6487 for_each_possible_cpu(cpu) 6488 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6489 kmem_cache_destroy(kvm_vcpu_cache); 6490 kvm_vfio_ops_exit(); 6491 kvm_async_pf_deinit(); 6492 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6493 unregister_syscore_ops(&kvm_syscore_ops); 6494 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6495 #endif 6496 kvm_irqfd_exit(); 6497 } 6498 EXPORT_SYMBOL_GPL(kvm_exit); 6499 6500 struct kvm_vm_worker_thread_context { 6501 struct kvm *kvm; 6502 struct task_struct *parent; 6503 struct completion init_done; 6504 kvm_vm_thread_fn_t thread_fn; 6505 uintptr_t data; 6506 int err; 6507 }; 6508 6509 static int kvm_vm_worker_thread(void *context) 6510 { 6511 /* 6512 * The init_context is allocated on the stack of the parent thread, so 6513 * we have to locally copy anything that is needed beyond initialization 6514 */ 6515 struct kvm_vm_worker_thread_context *init_context = context; 6516 struct task_struct *parent; 6517 struct kvm *kvm = init_context->kvm; 6518 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6519 uintptr_t data = init_context->data; 6520 int err; 6521 6522 err = kthread_park(current); 6523 /* kthread_park(current) is never supposed to return an error */ 6524 WARN_ON(err != 0); 6525 if (err) 6526 goto init_complete; 6527 6528 err = cgroup_attach_task_all(init_context->parent, current); 6529 if (err) { 6530 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6531 __func__, err); 6532 goto init_complete; 6533 } 6534 6535 set_user_nice(current, task_nice(init_context->parent)); 6536 6537 init_complete: 6538 init_context->err = err; 6539 complete(&init_context->init_done); 6540 init_context = NULL; 6541 6542 if (err) 6543 goto out; 6544 6545 /* Wait to be woken up by the spawner before proceeding. */ 6546 kthread_parkme(); 6547 6548 if (!kthread_should_stop()) 6549 err = thread_fn(kvm, data); 6550 6551 out: 6552 /* 6553 * Move kthread back to its original cgroup to prevent it lingering in 6554 * the cgroup of the VM process, after the latter finishes its 6555 * execution. 6556 * 6557 * kthread_stop() waits on the 'exited' completion condition which is 6558 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6559 * kthread is removed from the cgroup in the cgroup_exit() which is 6560 * called after the exit_mm(). This causes the kthread_stop() to return 6561 * before the kthread actually quits the cgroup. 6562 */ 6563 rcu_read_lock(); 6564 parent = rcu_dereference(current->real_parent); 6565 get_task_struct(parent); 6566 rcu_read_unlock(); 6567 cgroup_attach_task_all(parent, current); 6568 put_task_struct(parent); 6569 6570 return err; 6571 } 6572 6573 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6574 uintptr_t data, const char *name, 6575 struct task_struct **thread_ptr) 6576 { 6577 struct kvm_vm_worker_thread_context init_context = {}; 6578 struct task_struct *thread; 6579 6580 *thread_ptr = NULL; 6581 init_context.kvm = kvm; 6582 init_context.parent = current; 6583 init_context.thread_fn = thread_fn; 6584 init_context.data = data; 6585 init_completion(&init_context.init_done); 6586 6587 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6588 "%s-%d", name, task_pid_nr(current)); 6589 if (IS_ERR(thread)) 6590 return PTR_ERR(thread); 6591 6592 /* kthread_run is never supposed to return NULL */ 6593 WARN_ON(thread == NULL); 6594 6595 wait_for_completion(&init_context.init_done); 6596 6597 if (!init_context.err) 6598 *thread_ptr = thread; 6599 6600 return init_context.err; 6601 } 6602