xref: /linux/virt/kvm/kvm_main.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159 
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 						   unsigned long start, unsigned long end)
162 {
163 }
164 
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167 	/*
168 	 * The metadata used by is_zone_device_page() to determine whether or
169 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
171 	 * page_count() is zero to help detect bad usage of this helper.
172 	 */
173 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 		return false;
175 
176 	return is_zone_device_page(pfn_to_page(pfn));
177 }
178 
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181 	/*
182 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 	 * perspective they are "normal" pages, albeit with slightly different
184 	 * usage rules.
185 	 */
186 	if (pfn_valid(pfn))
187 		return PageReserved(pfn_to_page(pfn)) &&
188 		       !is_zero_pfn(pfn) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 	int cpu = get_cpu();
200 
201 	__this_cpu_write(kvm_running_vcpu, vcpu);
202 	preempt_notifier_register(&vcpu->preempt_notifier);
203 	kvm_arch_vcpu_load(vcpu, cpu);
204 	put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207 
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210 	preempt_disable();
211 	kvm_arch_vcpu_put(vcpu);
212 	preempt_notifier_unregister(&vcpu->preempt_notifier);
213 	__this_cpu_write(kvm_running_vcpu, NULL);
214 	preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217 
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222 
223 	/*
224 	 * We need to wait for the VCPU to reenable interrupts and get out of
225 	 * READING_SHADOW_PAGE_TABLES mode.
226 	 */
227 	if (req & KVM_REQUEST_WAIT)
228 		return mode != OUTSIDE_GUEST_MODE;
229 
230 	/*
231 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 	 */
233 	return mode == IN_GUEST_MODE;
234 }
235 
236 static void ack_flush(void *_completed)
237 {
238 }
239 
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242 	if (cpumask_empty(cpus))
243 		return false;
244 
245 	smp_call_function_many(cpus, ack_flush, NULL, wait);
246 	return true;
247 }
248 
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250 				  unsigned int req, struct cpumask *tmp,
251 				  int current_cpu)
252 {
253 	int cpu;
254 
255 	kvm_make_request(req, vcpu);
256 
257 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258 		return;
259 
260 	/*
261 	 * Note, the vCPU could get migrated to a different pCPU at any point
262 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
263 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
264 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266 	 * after this point is also OK, as the requirement is only that KVM wait
267 	 * for vCPUs that were reading SPTEs _before_ any changes were
268 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
269 	 */
270 	if (kvm_request_needs_ipi(vcpu, req)) {
271 		cpu = READ_ONCE(vcpu->cpu);
272 		if (cpu != -1 && cpu != current_cpu)
273 			__cpumask_set_cpu(cpu, tmp);
274 	}
275 }
276 
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278 				 unsigned long *vcpu_bitmap)
279 {
280 	struct kvm_vcpu *vcpu;
281 	struct cpumask *cpus;
282 	int i, me;
283 	bool called;
284 
285 	me = get_cpu();
286 
287 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288 	cpumask_clear(cpus);
289 
290 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291 		vcpu = kvm_get_vcpu(kvm, i);
292 		if (!vcpu)
293 			continue;
294 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295 	}
296 
297 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298 	put_cpu();
299 
300 	return called;
301 }
302 
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304 				      struct kvm_vcpu *except)
305 {
306 	struct kvm_vcpu *vcpu;
307 	struct cpumask *cpus;
308 	bool called;
309 	int i, me;
310 
311 	me = get_cpu();
312 
313 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
314 	cpumask_clear(cpus);
315 
316 	kvm_for_each_vcpu(i, vcpu, kvm) {
317 		if (vcpu == except)
318 			continue;
319 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
320 	}
321 
322 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
323 	put_cpu();
324 
325 	return called;
326 }
327 
328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
329 {
330 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333 
334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
335 void kvm_flush_remote_tlbs(struct kvm *kvm)
336 {
337 	++kvm->stat.generic.remote_tlb_flush_requests;
338 
339 	/*
340 	 * We want to publish modifications to the page tables before reading
341 	 * mode. Pairs with a memory barrier in arch-specific code.
342 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
343 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
344 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
345 	 *
346 	 * There is already an smp_mb__after_atomic() before
347 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
348 	 * barrier here.
349 	 */
350 	if (!kvm_arch_flush_remote_tlb(kvm)
351 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
352 		++kvm->stat.generic.remote_tlb_flush;
353 }
354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
355 #endif
356 
357 void kvm_reload_remote_mmus(struct kvm *kvm)
358 {
359 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
360 }
361 
362 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
363 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
364 					       gfp_t gfp_flags)
365 {
366 	gfp_flags |= mc->gfp_zero;
367 
368 	if (mc->kmem_cache)
369 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
370 	else
371 		return (void *)__get_free_page(gfp_flags);
372 }
373 
374 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
375 {
376 	void *obj;
377 
378 	if (mc->nobjs >= min)
379 		return 0;
380 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
381 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
382 		if (!obj)
383 			return mc->nobjs >= min ? 0 : -ENOMEM;
384 		mc->objects[mc->nobjs++] = obj;
385 	}
386 	return 0;
387 }
388 
389 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
390 {
391 	return mc->nobjs;
392 }
393 
394 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
395 {
396 	while (mc->nobjs) {
397 		if (mc->kmem_cache)
398 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
399 		else
400 			free_page((unsigned long)mc->objects[--mc->nobjs]);
401 	}
402 }
403 
404 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
405 {
406 	void *p;
407 
408 	if (WARN_ON(!mc->nobjs))
409 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
410 	else
411 		p = mc->objects[--mc->nobjs];
412 	BUG_ON(!p);
413 	return p;
414 }
415 #endif
416 
417 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
418 {
419 	mutex_init(&vcpu->mutex);
420 	vcpu->cpu = -1;
421 	vcpu->kvm = kvm;
422 	vcpu->vcpu_id = id;
423 	vcpu->pid = NULL;
424 	rcuwait_init(&vcpu->wait);
425 	kvm_async_pf_vcpu_init(vcpu);
426 
427 	vcpu->pre_pcpu = -1;
428 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
429 
430 	kvm_vcpu_set_in_spin_loop(vcpu, false);
431 	kvm_vcpu_set_dy_eligible(vcpu, false);
432 	vcpu->preempted = false;
433 	vcpu->ready = false;
434 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435 	vcpu->last_used_slot = 0;
436 }
437 
438 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440 	kvm_dirty_ring_free(&vcpu->dirty_ring);
441 	kvm_arch_vcpu_destroy(vcpu);
442 
443 	/*
444 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445 	 * the vcpu->pid pointer, and at destruction time all file descriptors
446 	 * are already gone.
447 	 */
448 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
449 
450 	free_page((unsigned long)vcpu->run);
451 	kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
454 
455 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
456 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
457 {
458 	return container_of(mn, struct kvm, mmu_notifier);
459 }
460 
461 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
462 					      struct mm_struct *mm,
463 					      unsigned long start, unsigned long end)
464 {
465 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
466 	int idx;
467 
468 	idx = srcu_read_lock(&kvm->srcu);
469 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
470 	srcu_read_unlock(&kvm->srcu, idx);
471 }
472 
473 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
474 
475 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
476 			     unsigned long end);
477 
478 struct kvm_hva_range {
479 	unsigned long start;
480 	unsigned long end;
481 	pte_t pte;
482 	hva_handler_t handler;
483 	on_lock_fn_t on_lock;
484 	bool flush_on_ret;
485 	bool may_block;
486 };
487 
488 /*
489  * Use a dedicated stub instead of NULL to indicate that there is no callback
490  * function/handler.  The compiler technically can't guarantee that a real
491  * function will have a non-zero address, and so it will generate code to
492  * check for !NULL, whereas comparing against a stub will be elided at compile
493  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
494  */
495 static void kvm_null_fn(void)
496 {
497 
498 }
499 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
500 
501 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
502 						  const struct kvm_hva_range *range)
503 {
504 	bool ret = false, locked = false;
505 	struct kvm_gfn_range gfn_range;
506 	struct kvm_memory_slot *slot;
507 	struct kvm_memslots *slots;
508 	int i, idx;
509 
510 	/* A null handler is allowed if and only if on_lock() is provided. */
511 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
512 			 IS_KVM_NULL_FN(range->handler)))
513 		return 0;
514 
515 	idx = srcu_read_lock(&kvm->srcu);
516 
517 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
518 		slots = __kvm_memslots(kvm, i);
519 		kvm_for_each_memslot(slot, slots) {
520 			unsigned long hva_start, hva_end;
521 
522 			hva_start = max(range->start, slot->userspace_addr);
523 			hva_end = min(range->end, slot->userspace_addr +
524 						  (slot->npages << PAGE_SHIFT));
525 			if (hva_start >= hva_end)
526 				continue;
527 
528 			/*
529 			 * To optimize for the likely case where the address
530 			 * range is covered by zero or one memslots, don't
531 			 * bother making these conditional (to avoid writes on
532 			 * the second or later invocation of the handler).
533 			 */
534 			gfn_range.pte = range->pte;
535 			gfn_range.may_block = range->may_block;
536 
537 			/*
538 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
539 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
540 			 */
541 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
542 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
543 			gfn_range.slot = slot;
544 
545 			if (!locked) {
546 				locked = true;
547 				KVM_MMU_LOCK(kvm);
548 				if (!IS_KVM_NULL_FN(range->on_lock))
549 					range->on_lock(kvm, range->start, range->end);
550 				if (IS_KVM_NULL_FN(range->handler))
551 					break;
552 			}
553 			ret |= range->handler(kvm, &gfn_range);
554 		}
555 	}
556 
557 	if (range->flush_on_ret && ret)
558 		kvm_flush_remote_tlbs(kvm);
559 
560 	if (locked)
561 		KVM_MMU_UNLOCK(kvm);
562 
563 	srcu_read_unlock(&kvm->srcu, idx);
564 
565 	/* The notifiers are averse to booleans. :-( */
566 	return (int)ret;
567 }
568 
569 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
570 						unsigned long start,
571 						unsigned long end,
572 						pte_t pte,
573 						hva_handler_t handler)
574 {
575 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
576 	const struct kvm_hva_range range = {
577 		.start		= start,
578 		.end		= end,
579 		.pte		= pte,
580 		.handler	= handler,
581 		.on_lock	= (void *)kvm_null_fn,
582 		.flush_on_ret	= true,
583 		.may_block	= false,
584 	};
585 
586 	return __kvm_handle_hva_range(kvm, &range);
587 }
588 
589 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
590 							 unsigned long start,
591 							 unsigned long end,
592 							 hva_handler_t handler)
593 {
594 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
595 	const struct kvm_hva_range range = {
596 		.start		= start,
597 		.end		= end,
598 		.pte		= __pte(0),
599 		.handler	= handler,
600 		.on_lock	= (void *)kvm_null_fn,
601 		.flush_on_ret	= false,
602 		.may_block	= false,
603 	};
604 
605 	return __kvm_handle_hva_range(kvm, &range);
606 }
607 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
608 					struct mm_struct *mm,
609 					unsigned long address,
610 					pte_t pte)
611 {
612 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
613 
614 	trace_kvm_set_spte_hva(address);
615 
616 	/*
617 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
618 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
619 	 * including this one, found a relevant memslot at start(); rechecking
620 	 * memslots here is unnecessary.  Note, a false positive (count elevated
621 	 * by a different invalidation) is sub-optimal but functionally ok.
622 	 */
623 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
624 	if (!READ_ONCE(kvm->mmu_notifier_count))
625 		return;
626 
627 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
628 }
629 
630 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
631 				   unsigned long end)
632 {
633 	/*
634 	 * The count increase must become visible at unlock time as no
635 	 * spte can be established without taking the mmu_lock and
636 	 * count is also read inside the mmu_lock critical section.
637 	 */
638 	kvm->mmu_notifier_count++;
639 	if (likely(kvm->mmu_notifier_count == 1)) {
640 		kvm->mmu_notifier_range_start = start;
641 		kvm->mmu_notifier_range_end = end;
642 	} else {
643 		/*
644 		 * Fully tracking multiple concurrent ranges has dimishing
645 		 * returns. Keep things simple and just find the minimal range
646 		 * which includes the current and new ranges. As there won't be
647 		 * enough information to subtract a range after its invalidate
648 		 * completes, any ranges invalidated concurrently will
649 		 * accumulate and persist until all outstanding invalidates
650 		 * complete.
651 		 */
652 		kvm->mmu_notifier_range_start =
653 			min(kvm->mmu_notifier_range_start, start);
654 		kvm->mmu_notifier_range_end =
655 			max(kvm->mmu_notifier_range_end, end);
656 	}
657 }
658 
659 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
660 					const struct mmu_notifier_range *range)
661 {
662 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
663 	const struct kvm_hva_range hva_range = {
664 		.start		= range->start,
665 		.end		= range->end,
666 		.pte		= __pte(0),
667 		.handler	= kvm_unmap_gfn_range,
668 		.on_lock	= kvm_inc_notifier_count,
669 		.flush_on_ret	= true,
670 		.may_block	= mmu_notifier_range_blockable(range),
671 	};
672 
673 	trace_kvm_unmap_hva_range(range->start, range->end);
674 
675 	/*
676 	 * Prevent memslot modification between range_start() and range_end()
677 	 * so that conditionally locking provides the same result in both
678 	 * functions.  Without that guarantee, the mmu_notifier_count
679 	 * adjustments will be imbalanced.
680 	 *
681 	 * Pairs with the decrement in range_end().
682 	 */
683 	spin_lock(&kvm->mn_invalidate_lock);
684 	kvm->mn_active_invalidate_count++;
685 	spin_unlock(&kvm->mn_invalidate_lock);
686 
687 	__kvm_handle_hva_range(kvm, &hva_range);
688 
689 	return 0;
690 }
691 
692 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
693 				   unsigned long end)
694 {
695 	/*
696 	 * This sequence increase will notify the kvm page fault that
697 	 * the page that is going to be mapped in the spte could have
698 	 * been freed.
699 	 */
700 	kvm->mmu_notifier_seq++;
701 	smp_wmb();
702 	/*
703 	 * The above sequence increase must be visible before the
704 	 * below count decrease, which is ensured by the smp_wmb above
705 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
706 	 */
707 	kvm->mmu_notifier_count--;
708 }
709 
710 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
711 					const struct mmu_notifier_range *range)
712 {
713 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
714 	const struct kvm_hva_range hva_range = {
715 		.start		= range->start,
716 		.end		= range->end,
717 		.pte		= __pte(0),
718 		.handler	= (void *)kvm_null_fn,
719 		.on_lock	= kvm_dec_notifier_count,
720 		.flush_on_ret	= false,
721 		.may_block	= mmu_notifier_range_blockable(range),
722 	};
723 	bool wake;
724 
725 	__kvm_handle_hva_range(kvm, &hva_range);
726 
727 	/* Pairs with the increment in range_start(). */
728 	spin_lock(&kvm->mn_invalidate_lock);
729 	wake = (--kvm->mn_active_invalidate_count == 0);
730 	spin_unlock(&kvm->mn_invalidate_lock);
731 
732 	/*
733 	 * There can only be one waiter, since the wait happens under
734 	 * slots_lock.
735 	 */
736 	if (wake)
737 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
738 
739 	BUG_ON(kvm->mmu_notifier_count < 0);
740 }
741 
742 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
743 					      struct mm_struct *mm,
744 					      unsigned long start,
745 					      unsigned long end)
746 {
747 	trace_kvm_age_hva(start, end);
748 
749 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
750 }
751 
752 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
753 					struct mm_struct *mm,
754 					unsigned long start,
755 					unsigned long end)
756 {
757 	trace_kvm_age_hva(start, end);
758 
759 	/*
760 	 * Even though we do not flush TLB, this will still adversely
761 	 * affect performance on pre-Haswell Intel EPT, where there is
762 	 * no EPT Access Bit to clear so that we have to tear down EPT
763 	 * tables instead. If we find this unacceptable, we can always
764 	 * add a parameter to kvm_age_hva so that it effectively doesn't
765 	 * do anything on clear_young.
766 	 *
767 	 * Also note that currently we never issue secondary TLB flushes
768 	 * from clear_young, leaving this job up to the regular system
769 	 * cadence. If we find this inaccurate, we might come up with a
770 	 * more sophisticated heuristic later.
771 	 */
772 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
773 }
774 
775 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
776 				       struct mm_struct *mm,
777 				       unsigned long address)
778 {
779 	trace_kvm_test_age_hva(address);
780 
781 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
782 					     kvm_test_age_gfn);
783 }
784 
785 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
786 				     struct mm_struct *mm)
787 {
788 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
789 	int idx;
790 
791 	idx = srcu_read_lock(&kvm->srcu);
792 	kvm_arch_flush_shadow_all(kvm);
793 	srcu_read_unlock(&kvm->srcu, idx);
794 }
795 
796 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
797 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
798 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
799 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
800 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
801 	.clear_young		= kvm_mmu_notifier_clear_young,
802 	.test_young		= kvm_mmu_notifier_test_young,
803 	.change_pte		= kvm_mmu_notifier_change_pte,
804 	.release		= kvm_mmu_notifier_release,
805 };
806 
807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
810 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
811 }
812 
813 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
814 
815 static int kvm_init_mmu_notifier(struct kvm *kvm)
816 {
817 	return 0;
818 }
819 
820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
821 
822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
823 static int kvm_pm_notifier_call(struct notifier_block *bl,
824 				unsigned long state,
825 				void *unused)
826 {
827 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
828 
829 	return kvm_arch_pm_notifier(kvm, state);
830 }
831 
832 static void kvm_init_pm_notifier(struct kvm *kvm)
833 {
834 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
835 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
836 	kvm->pm_notifier.priority = INT_MAX;
837 	register_pm_notifier(&kvm->pm_notifier);
838 }
839 
840 static void kvm_destroy_pm_notifier(struct kvm *kvm)
841 {
842 	unregister_pm_notifier(&kvm->pm_notifier);
843 }
844 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
845 static void kvm_init_pm_notifier(struct kvm *kvm)
846 {
847 }
848 
849 static void kvm_destroy_pm_notifier(struct kvm *kvm)
850 {
851 }
852 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
853 
854 static struct kvm_memslots *kvm_alloc_memslots(void)
855 {
856 	int i;
857 	struct kvm_memslots *slots;
858 
859 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
860 	if (!slots)
861 		return NULL;
862 
863 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
864 		slots->id_to_index[i] = -1;
865 
866 	return slots;
867 }
868 
869 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871 	if (!memslot->dirty_bitmap)
872 		return;
873 
874 	kvfree(memslot->dirty_bitmap);
875 	memslot->dirty_bitmap = NULL;
876 }
877 
878 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
879 {
880 	kvm_destroy_dirty_bitmap(slot);
881 
882 	kvm_arch_free_memslot(kvm, slot);
883 
884 	slot->flags = 0;
885 	slot->npages = 0;
886 }
887 
888 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
889 {
890 	struct kvm_memory_slot *memslot;
891 
892 	if (!slots)
893 		return;
894 
895 	kvm_for_each_memslot(memslot, slots)
896 		kvm_free_memslot(kvm, memslot);
897 
898 	kvfree(slots);
899 }
900 
901 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
902 {
903 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
904 	case KVM_STATS_TYPE_INSTANT:
905 		return 0444;
906 	case KVM_STATS_TYPE_CUMULATIVE:
907 	case KVM_STATS_TYPE_PEAK:
908 	default:
909 		return 0644;
910 	}
911 }
912 
913 
914 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
915 {
916 	int i;
917 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
918 				      kvm_vcpu_stats_header.num_desc;
919 
920 	if (!kvm->debugfs_dentry)
921 		return;
922 
923 	debugfs_remove_recursive(kvm->debugfs_dentry);
924 
925 	if (kvm->debugfs_stat_data) {
926 		for (i = 0; i < kvm_debugfs_num_entries; i++)
927 			kfree(kvm->debugfs_stat_data[i]);
928 		kfree(kvm->debugfs_stat_data);
929 	}
930 }
931 
932 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
933 {
934 	static DEFINE_MUTEX(kvm_debugfs_lock);
935 	struct dentry *dent;
936 	char dir_name[ITOA_MAX_LEN * 2];
937 	struct kvm_stat_data *stat_data;
938 	const struct _kvm_stats_desc *pdesc;
939 	int i, ret;
940 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
941 				      kvm_vcpu_stats_header.num_desc;
942 
943 	if (!debugfs_initialized())
944 		return 0;
945 
946 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
947 	mutex_lock(&kvm_debugfs_lock);
948 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
949 	if (dent) {
950 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
951 		dput(dent);
952 		mutex_unlock(&kvm_debugfs_lock);
953 		return 0;
954 	}
955 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
956 	mutex_unlock(&kvm_debugfs_lock);
957 	if (IS_ERR(dent))
958 		return 0;
959 
960 	kvm->debugfs_dentry = dent;
961 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
962 					 sizeof(*kvm->debugfs_stat_data),
963 					 GFP_KERNEL_ACCOUNT);
964 	if (!kvm->debugfs_stat_data)
965 		return -ENOMEM;
966 
967 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
968 		pdesc = &kvm_vm_stats_desc[i];
969 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
970 		if (!stat_data)
971 			return -ENOMEM;
972 
973 		stat_data->kvm = kvm;
974 		stat_data->desc = pdesc;
975 		stat_data->kind = KVM_STAT_VM;
976 		kvm->debugfs_stat_data[i] = stat_data;
977 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
978 				    kvm->debugfs_dentry, stat_data,
979 				    &stat_fops_per_vm);
980 	}
981 
982 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
983 		pdesc = &kvm_vcpu_stats_desc[i];
984 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
985 		if (!stat_data)
986 			return -ENOMEM;
987 
988 		stat_data->kvm = kvm;
989 		stat_data->desc = pdesc;
990 		stat_data->kind = KVM_STAT_VCPU;
991 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
992 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
993 				    kvm->debugfs_dentry, stat_data,
994 				    &stat_fops_per_vm);
995 	}
996 
997 	ret = kvm_arch_create_vm_debugfs(kvm);
998 	if (ret) {
999 		kvm_destroy_vm_debugfs(kvm);
1000 		return i;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Called after the VM is otherwise initialized, but just before adding it to
1008  * the vm_list.
1009  */
1010 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1011 {
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Called just after removing the VM from the vm_list, but before doing any
1017  * other destruction.
1018  */
1019 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1020 {
1021 }
1022 
1023 /*
1024  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1025  * be setup already, so we can create arch-specific debugfs entries under it.
1026  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1027  * a per-arch destroy interface is not needed.
1028  */
1029 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1030 {
1031 	return 0;
1032 }
1033 
1034 static struct kvm *kvm_create_vm(unsigned long type)
1035 {
1036 	struct kvm *kvm = kvm_arch_alloc_vm();
1037 	int r = -ENOMEM;
1038 	int i;
1039 
1040 	if (!kvm)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	KVM_MMU_LOCK_INIT(kvm);
1044 	mmgrab(current->mm);
1045 	kvm->mm = current->mm;
1046 	kvm_eventfd_init(kvm);
1047 	mutex_init(&kvm->lock);
1048 	mutex_init(&kvm->irq_lock);
1049 	mutex_init(&kvm->slots_lock);
1050 	mutex_init(&kvm->slots_arch_lock);
1051 	spin_lock_init(&kvm->mn_invalidate_lock);
1052 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1053 
1054 	INIT_LIST_HEAD(&kvm->devices);
1055 
1056 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1057 
1058 	if (init_srcu_struct(&kvm->srcu))
1059 		goto out_err_no_srcu;
1060 	if (init_srcu_struct(&kvm->irq_srcu))
1061 		goto out_err_no_irq_srcu;
1062 
1063 	refcount_set(&kvm->users_count, 1);
1064 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1065 		struct kvm_memslots *slots = kvm_alloc_memslots();
1066 
1067 		if (!slots)
1068 			goto out_err_no_arch_destroy_vm;
1069 		/* Generations must be different for each address space. */
1070 		slots->generation = i;
1071 		rcu_assign_pointer(kvm->memslots[i], slots);
1072 	}
1073 
1074 	for (i = 0; i < KVM_NR_BUSES; i++) {
1075 		rcu_assign_pointer(kvm->buses[i],
1076 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1077 		if (!kvm->buses[i])
1078 			goto out_err_no_arch_destroy_vm;
1079 	}
1080 
1081 	kvm->max_halt_poll_ns = halt_poll_ns;
1082 
1083 	r = kvm_arch_init_vm(kvm, type);
1084 	if (r)
1085 		goto out_err_no_arch_destroy_vm;
1086 
1087 	r = hardware_enable_all();
1088 	if (r)
1089 		goto out_err_no_disable;
1090 
1091 #ifdef CONFIG_HAVE_KVM_IRQFD
1092 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1093 #endif
1094 
1095 	r = kvm_init_mmu_notifier(kvm);
1096 	if (r)
1097 		goto out_err_no_mmu_notifier;
1098 
1099 	r = kvm_arch_post_init_vm(kvm);
1100 	if (r)
1101 		goto out_err;
1102 
1103 	mutex_lock(&kvm_lock);
1104 	list_add(&kvm->vm_list, &vm_list);
1105 	mutex_unlock(&kvm_lock);
1106 
1107 	preempt_notifier_inc();
1108 	kvm_init_pm_notifier(kvm);
1109 
1110 	return kvm;
1111 
1112 out_err:
1113 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1114 	if (kvm->mmu_notifier.ops)
1115 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1116 #endif
1117 out_err_no_mmu_notifier:
1118 	hardware_disable_all();
1119 out_err_no_disable:
1120 	kvm_arch_destroy_vm(kvm);
1121 out_err_no_arch_destroy_vm:
1122 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1123 	for (i = 0; i < KVM_NR_BUSES; i++)
1124 		kfree(kvm_get_bus(kvm, i));
1125 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1126 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1127 	cleanup_srcu_struct(&kvm->irq_srcu);
1128 out_err_no_irq_srcu:
1129 	cleanup_srcu_struct(&kvm->srcu);
1130 out_err_no_srcu:
1131 	kvm_arch_free_vm(kvm);
1132 	mmdrop(current->mm);
1133 	return ERR_PTR(r);
1134 }
1135 
1136 static void kvm_destroy_devices(struct kvm *kvm)
1137 {
1138 	struct kvm_device *dev, *tmp;
1139 
1140 	/*
1141 	 * We do not need to take the kvm->lock here, because nobody else
1142 	 * has a reference to the struct kvm at this point and therefore
1143 	 * cannot access the devices list anyhow.
1144 	 */
1145 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1146 		list_del(&dev->vm_node);
1147 		dev->ops->destroy(dev);
1148 	}
1149 }
1150 
1151 static void kvm_destroy_vm(struct kvm *kvm)
1152 {
1153 	int i;
1154 	struct mm_struct *mm = kvm->mm;
1155 
1156 	kvm_destroy_pm_notifier(kvm);
1157 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1158 	kvm_destroy_vm_debugfs(kvm);
1159 	kvm_arch_sync_events(kvm);
1160 	mutex_lock(&kvm_lock);
1161 	list_del(&kvm->vm_list);
1162 	mutex_unlock(&kvm_lock);
1163 	kvm_arch_pre_destroy_vm(kvm);
1164 
1165 	kvm_free_irq_routing(kvm);
1166 	for (i = 0; i < KVM_NR_BUSES; i++) {
1167 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1168 
1169 		if (bus)
1170 			kvm_io_bus_destroy(bus);
1171 		kvm->buses[i] = NULL;
1172 	}
1173 	kvm_coalesced_mmio_free(kvm);
1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1176 	/*
1177 	 * At this point, pending calls to invalidate_range_start()
1178 	 * have completed but no more MMU notifiers will run, so
1179 	 * mn_active_invalidate_count may remain unbalanced.
1180 	 * No threads can be waiting in install_new_memslots as the
1181 	 * last reference on KVM has been dropped, but freeing
1182 	 * memslots would deadlock without this manual intervention.
1183 	 */
1184 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1185 	kvm->mn_active_invalidate_count = 0;
1186 #else
1187 	kvm_arch_flush_shadow_all(kvm);
1188 #endif
1189 	kvm_arch_destroy_vm(kvm);
1190 	kvm_destroy_devices(kvm);
1191 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1192 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1193 	cleanup_srcu_struct(&kvm->irq_srcu);
1194 	cleanup_srcu_struct(&kvm->srcu);
1195 	kvm_arch_free_vm(kvm);
1196 	preempt_notifier_dec();
1197 	hardware_disable_all();
1198 	mmdrop(mm);
1199 }
1200 
1201 void kvm_get_kvm(struct kvm *kvm)
1202 {
1203 	refcount_inc(&kvm->users_count);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1206 
1207 /*
1208  * Make sure the vm is not during destruction, which is a safe version of
1209  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1210  */
1211 bool kvm_get_kvm_safe(struct kvm *kvm)
1212 {
1213 	return refcount_inc_not_zero(&kvm->users_count);
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1216 
1217 void kvm_put_kvm(struct kvm *kvm)
1218 {
1219 	if (refcount_dec_and_test(&kvm->users_count))
1220 		kvm_destroy_vm(kvm);
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1223 
1224 /*
1225  * Used to put a reference that was taken on behalf of an object associated
1226  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1227  * of the new file descriptor fails and the reference cannot be transferred to
1228  * its final owner.  In such cases, the caller is still actively using @kvm and
1229  * will fail miserably if the refcount unexpectedly hits zero.
1230  */
1231 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1232 {
1233 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1236 
1237 static int kvm_vm_release(struct inode *inode, struct file *filp)
1238 {
1239 	struct kvm *kvm = filp->private_data;
1240 
1241 	kvm_irqfd_release(kvm);
1242 
1243 	kvm_put_kvm(kvm);
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Allocation size is twice as large as the actual dirty bitmap size.
1249  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1250  */
1251 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1252 {
1253 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1254 
1255 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1256 	if (!memslot->dirty_bitmap)
1257 		return -ENOMEM;
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Delete a memslot by decrementing the number of used slots and shifting all
1264  * other entries in the array forward one spot.
1265  */
1266 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1267 				      struct kvm_memory_slot *memslot)
1268 {
1269 	struct kvm_memory_slot *mslots = slots->memslots;
1270 	int i;
1271 
1272 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1273 		return;
1274 
1275 	slots->used_slots--;
1276 
1277 	if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1278 		atomic_set(&slots->last_used_slot, 0);
1279 
1280 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1281 		mslots[i] = mslots[i + 1];
1282 		slots->id_to_index[mslots[i].id] = i;
1283 	}
1284 	mslots[i] = *memslot;
1285 	slots->id_to_index[memslot->id] = -1;
1286 }
1287 
1288 /*
1289  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1290  * the new slot's initial index into the memslots array.
1291  */
1292 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1293 {
1294 	return slots->used_slots++;
1295 }
1296 
1297 /*
1298  * Move a changed memslot backwards in the array by shifting existing slots
1299  * with a higher GFN toward the front of the array.  Note, the changed memslot
1300  * itself is not preserved in the array, i.e. not swapped at this time, only
1301  * its new index into the array is tracked.  Returns the changed memslot's
1302  * current index into the memslots array.
1303  */
1304 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1305 					    struct kvm_memory_slot *memslot)
1306 {
1307 	struct kvm_memory_slot *mslots = slots->memslots;
1308 	int i;
1309 
1310 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1311 	    WARN_ON_ONCE(!slots->used_slots))
1312 		return -1;
1313 
1314 	/*
1315 	 * Move the target memslot backward in the array by shifting existing
1316 	 * memslots with a higher GFN (than the target memslot) towards the
1317 	 * front of the array.
1318 	 */
1319 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1320 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1321 			break;
1322 
1323 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1324 
1325 		/* Shift the next memslot forward one and update its index. */
1326 		mslots[i] = mslots[i + 1];
1327 		slots->id_to_index[mslots[i].id] = i;
1328 	}
1329 	return i;
1330 }
1331 
1332 /*
1333  * Move a changed memslot forwards in the array by shifting existing slots with
1334  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1335  * is not preserved in the array, i.e. not swapped at this time, only its new
1336  * index into the array is tracked.  Returns the changed memslot's final index
1337  * into the memslots array.
1338  */
1339 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1340 					   struct kvm_memory_slot *memslot,
1341 					   int start)
1342 {
1343 	struct kvm_memory_slot *mslots = slots->memslots;
1344 	int i;
1345 
1346 	for (i = start; i > 0; i--) {
1347 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1348 			break;
1349 
1350 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1351 
1352 		/* Shift the next memslot back one and update its index. */
1353 		mslots[i] = mslots[i - 1];
1354 		slots->id_to_index[mslots[i].id] = i;
1355 	}
1356 	return i;
1357 }
1358 
1359 /*
1360  * Re-sort memslots based on their GFN to account for an added, deleted, or
1361  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1362  * memslot lookup.
1363  *
1364  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1365  * at memslots[0] has the highest GFN.
1366  *
1367  * The sorting algorithm takes advantage of having initially sorted memslots
1368  * and knowing the position of the changed memslot.  Sorting is also optimized
1369  * by not swapping the updated memslot and instead only shifting other memslots
1370  * and tracking the new index for the update memslot.  Only once its final
1371  * index is known is the updated memslot copied into its position in the array.
1372  *
1373  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1374  *    the end of the array.
1375  *
1376  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1377  *    end of the array and then it forward to its correct location.
1378  *
1379  *  - When moving a memslot, the algorithm first moves the updated memslot
1380  *    backward to handle the scenario where the memslot's GFN was changed to a
1381  *    lower value.  update_memslots() then falls through and runs the same flow
1382  *    as creating a memslot to move the memslot forward to handle the scenario
1383  *    where its GFN was changed to a higher value.
1384  *
1385  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1386  * historical reasons.  Originally, invalid memslots where denoted by having
1387  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1388  * to the end of the array.  The current algorithm uses dedicated logic to
1389  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1390  *
1391  * The other historical motiviation for highest->lowest was to improve the
1392  * performance of memslot lookup.  KVM originally used a linear search starting
1393  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1394  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1395  * single memslot above the 4gb boundary.  As the largest memslot is also the
1396  * most likely to be referenced, sorting it to the front of the array was
1397  * advantageous.  The current binary search starts from the middle of the array
1398  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1399  */
1400 static void update_memslots(struct kvm_memslots *slots,
1401 			    struct kvm_memory_slot *memslot,
1402 			    enum kvm_mr_change change)
1403 {
1404 	int i;
1405 
1406 	if (change == KVM_MR_DELETE) {
1407 		kvm_memslot_delete(slots, memslot);
1408 	} else {
1409 		if (change == KVM_MR_CREATE)
1410 			i = kvm_memslot_insert_back(slots);
1411 		else
1412 			i = kvm_memslot_move_backward(slots, memslot);
1413 		i = kvm_memslot_move_forward(slots, memslot, i);
1414 
1415 		/*
1416 		 * Copy the memslot to its new position in memslots and update
1417 		 * its index accordingly.
1418 		 */
1419 		slots->memslots[i] = *memslot;
1420 		slots->id_to_index[memslot->id] = i;
1421 	}
1422 }
1423 
1424 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1425 {
1426 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1427 
1428 #ifdef __KVM_HAVE_READONLY_MEM
1429 	valid_flags |= KVM_MEM_READONLY;
1430 #endif
1431 
1432 	if (mem->flags & ~valid_flags)
1433 		return -EINVAL;
1434 
1435 	return 0;
1436 }
1437 
1438 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1439 		int as_id, struct kvm_memslots *slots)
1440 {
1441 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1442 	u64 gen = old_memslots->generation;
1443 
1444 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1445 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1446 
1447 	/*
1448 	 * Do not store the new memslots while there are invalidations in
1449 	 * progress, otherwise the locking in invalidate_range_start and
1450 	 * invalidate_range_end will be unbalanced.
1451 	 */
1452 	spin_lock(&kvm->mn_invalidate_lock);
1453 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1454 	while (kvm->mn_active_invalidate_count) {
1455 		set_current_state(TASK_UNINTERRUPTIBLE);
1456 		spin_unlock(&kvm->mn_invalidate_lock);
1457 		schedule();
1458 		spin_lock(&kvm->mn_invalidate_lock);
1459 	}
1460 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1461 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1462 	spin_unlock(&kvm->mn_invalidate_lock);
1463 
1464 	/*
1465 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1466 	 * SRCU below in order to avoid deadlock with another thread
1467 	 * acquiring the slots_arch_lock in an srcu critical section.
1468 	 */
1469 	mutex_unlock(&kvm->slots_arch_lock);
1470 
1471 	synchronize_srcu_expedited(&kvm->srcu);
1472 
1473 	/*
1474 	 * Increment the new memslot generation a second time, dropping the
1475 	 * update in-progress flag and incrementing the generation based on
1476 	 * the number of address spaces.  This provides a unique and easily
1477 	 * identifiable generation number while the memslots are in flux.
1478 	 */
1479 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1480 
1481 	/*
1482 	 * Generations must be unique even across address spaces.  We do not need
1483 	 * a global counter for that, instead the generation space is evenly split
1484 	 * across address spaces.  For example, with two address spaces, address
1485 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1486 	 * use generations 1, 3, 5, ...
1487 	 */
1488 	gen += KVM_ADDRESS_SPACE_NUM;
1489 
1490 	kvm_arch_memslots_updated(kvm, gen);
1491 
1492 	slots->generation = gen;
1493 
1494 	return old_memslots;
1495 }
1496 
1497 static size_t kvm_memslots_size(int slots)
1498 {
1499 	return sizeof(struct kvm_memslots) +
1500 	       (sizeof(struct kvm_memory_slot) * slots);
1501 }
1502 
1503 static void kvm_copy_memslots(struct kvm_memslots *to,
1504 			      struct kvm_memslots *from)
1505 {
1506 	memcpy(to, from, kvm_memslots_size(from->used_slots));
1507 }
1508 
1509 /*
1510  * Note, at a minimum, the current number of used slots must be allocated, even
1511  * when deleting a memslot, as we need a complete duplicate of the memslots for
1512  * use when invalidating a memslot prior to deleting/moving the memslot.
1513  */
1514 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1515 					     enum kvm_mr_change change)
1516 {
1517 	struct kvm_memslots *slots;
1518 	size_t new_size;
1519 
1520 	if (change == KVM_MR_CREATE)
1521 		new_size = kvm_memslots_size(old->used_slots + 1);
1522 	else
1523 		new_size = kvm_memslots_size(old->used_slots);
1524 
1525 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1526 	if (likely(slots))
1527 		kvm_copy_memslots(slots, old);
1528 
1529 	return slots;
1530 }
1531 
1532 static int kvm_set_memslot(struct kvm *kvm,
1533 			   const struct kvm_userspace_memory_region *mem,
1534 			   struct kvm_memory_slot *new, int as_id,
1535 			   enum kvm_mr_change change)
1536 {
1537 	struct kvm_memory_slot *slot, old;
1538 	struct kvm_memslots *slots;
1539 	int r;
1540 
1541 	/*
1542 	 * Released in install_new_memslots.
1543 	 *
1544 	 * Must be held from before the current memslots are copied until
1545 	 * after the new memslots are installed with rcu_assign_pointer,
1546 	 * then released before the synchronize srcu in install_new_memslots.
1547 	 *
1548 	 * When modifying memslots outside of the slots_lock, must be held
1549 	 * before reading the pointer to the current memslots until after all
1550 	 * changes to those memslots are complete.
1551 	 *
1552 	 * These rules ensure that installing new memslots does not lose
1553 	 * changes made to the previous memslots.
1554 	 */
1555 	mutex_lock(&kvm->slots_arch_lock);
1556 
1557 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1558 	if (!slots) {
1559 		mutex_unlock(&kvm->slots_arch_lock);
1560 		return -ENOMEM;
1561 	}
1562 
1563 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1564 		/*
1565 		 * Note, the INVALID flag needs to be in the appropriate entry
1566 		 * in the freshly allocated memslots, not in @old or @new.
1567 		 */
1568 		slot = id_to_memslot(slots, new->id);
1569 		slot->flags |= KVM_MEMSLOT_INVALID;
1570 
1571 		/*
1572 		 * We can re-use the memory from the old memslots.
1573 		 * It will be overwritten with a copy of the new memslots
1574 		 * after reacquiring the slots_arch_lock below.
1575 		 */
1576 		slots = install_new_memslots(kvm, as_id, slots);
1577 
1578 		/* From this point no new shadow pages pointing to a deleted,
1579 		 * or moved, memslot will be created.
1580 		 *
1581 		 * validation of sp->gfn happens in:
1582 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1583 		 *	- kvm_is_visible_gfn (mmu_check_root)
1584 		 */
1585 		kvm_arch_flush_shadow_memslot(kvm, slot);
1586 
1587 		/* Released in install_new_memslots. */
1588 		mutex_lock(&kvm->slots_arch_lock);
1589 
1590 		/*
1591 		 * The arch-specific fields of the memslots could have changed
1592 		 * between releasing the slots_arch_lock in
1593 		 * install_new_memslots and here, so get a fresh copy of the
1594 		 * slots.
1595 		 */
1596 		kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1597 	}
1598 
1599 	/*
1600 	 * Make a full copy of the old memslot, the pointer will become stale
1601 	 * when the memslots are re-sorted by update_memslots(), and the old
1602 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1603 	 * to free its resources and for arch specific behavior.  This needs to
1604 	 * happen *after* (re)acquiring slots_arch_lock.
1605 	 */
1606 	slot = id_to_memslot(slots, new->id);
1607 	if (slot) {
1608 		old = *slot;
1609 	} else {
1610 		WARN_ON_ONCE(change != KVM_MR_CREATE);
1611 		memset(&old, 0, sizeof(old));
1612 		old.id = new->id;
1613 		old.as_id = as_id;
1614 	}
1615 
1616 	/* Copy the arch-specific data, again after (re)acquiring slots_arch_lock. */
1617 	memcpy(&new->arch, &old.arch, sizeof(old.arch));
1618 
1619 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1620 	if (r)
1621 		goto out_slots;
1622 
1623 	update_memslots(slots, new, change);
1624 	slots = install_new_memslots(kvm, as_id, slots);
1625 
1626 	kvm_arch_commit_memory_region(kvm, mem, &old, new, change);
1627 
1628 	/* Free the old memslot's metadata.  Note, this is the full copy!!! */
1629 	if (change == KVM_MR_DELETE)
1630 		kvm_free_memslot(kvm, &old);
1631 
1632 	kvfree(slots);
1633 	return 0;
1634 
1635 out_slots:
1636 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1637 		slot = id_to_memslot(slots, new->id);
1638 		slot->flags &= ~KVM_MEMSLOT_INVALID;
1639 		slots = install_new_memslots(kvm, as_id, slots);
1640 	} else {
1641 		mutex_unlock(&kvm->slots_arch_lock);
1642 	}
1643 	kvfree(slots);
1644 	return r;
1645 }
1646 
1647 static int kvm_delete_memslot(struct kvm *kvm,
1648 			      const struct kvm_userspace_memory_region *mem,
1649 			      struct kvm_memory_slot *old, int as_id)
1650 {
1651 	struct kvm_memory_slot new;
1652 
1653 	if (!old->npages)
1654 		return -EINVAL;
1655 
1656 	memset(&new, 0, sizeof(new));
1657 	new.id = old->id;
1658 	/*
1659 	 * This is only for debugging purpose; it should never be referenced
1660 	 * for a removed memslot.
1661 	 */
1662 	new.as_id = as_id;
1663 
1664 	return kvm_set_memslot(kvm, mem, &new, as_id, KVM_MR_DELETE);
1665 }
1666 
1667 /*
1668  * Allocate some memory and give it an address in the guest physical address
1669  * space.
1670  *
1671  * Discontiguous memory is allowed, mostly for framebuffers.
1672  *
1673  * Must be called holding kvm->slots_lock for write.
1674  */
1675 int __kvm_set_memory_region(struct kvm *kvm,
1676 			    const struct kvm_userspace_memory_region *mem)
1677 {
1678 	struct kvm_memory_slot old, new;
1679 	struct kvm_memory_slot *tmp;
1680 	enum kvm_mr_change change;
1681 	int as_id, id;
1682 	int r;
1683 
1684 	r = check_memory_region_flags(mem);
1685 	if (r)
1686 		return r;
1687 
1688 	as_id = mem->slot >> 16;
1689 	id = (u16)mem->slot;
1690 
1691 	/* General sanity checks */
1692 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1693 	    (mem->memory_size != (unsigned long)mem->memory_size))
1694 		return -EINVAL;
1695 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1696 		return -EINVAL;
1697 	/* We can read the guest memory with __xxx_user() later on. */
1698 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1699 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1700 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1701 			mem->memory_size))
1702 		return -EINVAL;
1703 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1704 		return -EINVAL;
1705 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1706 		return -EINVAL;
1707 
1708 	/*
1709 	 * Make a full copy of the old memslot, the pointer will become stale
1710 	 * when the memslots are re-sorted by update_memslots(), and the old
1711 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1712 	 * to free its resources and for arch specific behavior.
1713 	 */
1714 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1715 	if (tmp) {
1716 		old = *tmp;
1717 		tmp = NULL;
1718 	} else {
1719 		memset(&old, 0, sizeof(old));
1720 		old.id = id;
1721 	}
1722 
1723 	if (!mem->memory_size)
1724 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1725 
1726 	new.as_id = as_id;
1727 	new.id = id;
1728 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1729 	new.npages = mem->memory_size >> PAGE_SHIFT;
1730 	new.flags = mem->flags;
1731 	new.userspace_addr = mem->userspace_addr;
1732 
1733 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1734 		return -EINVAL;
1735 
1736 	if (!old.npages) {
1737 		change = KVM_MR_CREATE;
1738 		new.dirty_bitmap = NULL;
1739 	} else { /* Modify an existing slot. */
1740 		if ((new.userspace_addr != old.userspace_addr) ||
1741 		    (new.npages != old.npages) ||
1742 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1743 			return -EINVAL;
1744 
1745 		if (new.base_gfn != old.base_gfn)
1746 			change = KVM_MR_MOVE;
1747 		else if (new.flags != old.flags)
1748 			change = KVM_MR_FLAGS_ONLY;
1749 		else /* Nothing to change. */
1750 			return 0;
1751 
1752 		/* Copy dirty_bitmap from the current memslot. */
1753 		new.dirty_bitmap = old.dirty_bitmap;
1754 	}
1755 
1756 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1757 		/* Check for overlaps */
1758 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1759 			if (tmp->id == id)
1760 				continue;
1761 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1762 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1763 				return -EEXIST;
1764 		}
1765 	}
1766 
1767 	/* Allocate/free page dirty bitmap as needed */
1768 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1769 		new.dirty_bitmap = NULL;
1770 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1771 		r = kvm_alloc_dirty_bitmap(&new);
1772 		if (r)
1773 			return r;
1774 
1775 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1776 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1777 	}
1778 
1779 	r = kvm_set_memslot(kvm, mem, &new, as_id, change);
1780 	if (r)
1781 		goto out_bitmap;
1782 
1783 	if (old.dirty_bitmap && !new.dirty_bitmap)
1784 		kvm_destroy_dirty_bitmap(&old);
1785 	return 0;
1786 
1787 out_bitmap:
1788 	if (new.dirty_bitmap && !old.dirty_bitmap)
1789 		kvm_destroy_dirty_bitmap(&new);
1790 	return r;
1791 }
1792 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1793 
1794 int kvm_set_memory_region(struct kvm *kvm,
1795 			  const struct kvm_userspace_memory_region *mem)
1796 {
1797 	int r;
1798 
1799 	mutex_lock(&kvm->slots_lock);
1800 	r = __kvm_set_memory_region(kvm, mem);
1801 	mutex_unlock(&kvm->slots_lock);
1802 	return r;
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1805 
1806 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1807 					  struct kvm_userspace_memory_region *mem)
1808 {
1809 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1810 		return -EINVAL;
1811 
1812 	return kvm_set_memory_region(kvm, mem);
1813 }
1814 
1815 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1816 /**
1817  * kvm_get_dirty_log - get a snapshot of dirty pages
1818  * @kvm:	pointer to kvm instance
1819  * @log:	slot id and address to which we copy the log
1820  * @is_dirty:	set to '1' if any dirty pages were found
1821  * @memslot:	set to the associated memslot, always valid on success
1822  */
1823 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1824 		      int *is_dirty, struct kvm_memory_slot **memslot)
1825 {
1826 	struct kvm_memslots *slots;
1827 	int i, as_id, id;
1828 	unsigned long n;
1829 	unsigned long any = 0;
1830 
1831 	/* Dirty ring tracking is exclusive to dirty log tracking */
1832 	if (kvm->dirty_ring_size)
1833 		return -ENXIO;
1834 
1835 	*memslot = NULL;
1836 	*is_dirty = 0;
1837 
1838 	as_id = log->slot >> 16;
1839 	id = (u16)log->slot;
1840 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1841 		return -EINVAL;
1842 
1843 	slots = __kvm_memslots(kvm, as_id);
1844 	*memslot = id_to_memslot(slots, id);
1845 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1846 		return -ENOENT;
1847 
1848 	kvm_arch_sync_dirty_log(kvm, *memslot);
1849 
1850 	n = kvm_dirty_bitmap_bytes(*memslot);
1851 
1852 	for (i = 0; !any && i < n/sizeof(long); ++i)
1853 		any = (*memslot)->dirty_bitmap[i];
1854 
1855 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1856 		return -EFAULT;
1857 
1858 	if (any)
1859 		*is_dirty = 1;
1860 	return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1863 
1864 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1865 /**
1866  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1867  *	and reenable dirty page tracking for the corresponding pages.
1868  * @kvm:	pointer to kvm instance
1869  * @log:	slot id and address to which we copy the log
1870  *
1871  * We need to keep it in mind that VCPU threads can write to the bitmap
1872  * concurrently. So, to avoid losing track of dirty pages we keep the
1873  * following order:
1874  *
1875  *    1. Take a snapshot of the bit and clear it if needed.
1876  *    2. Write protect the corresponding page.
1877  *    3. Copy the snapshot to the userspace.
1878  *    4. Upon return caller flushes TLB's if needed.
1879  *
1880  * Between 2 and 4, the guest may write to the page using the remaining TLB
1881  * entry.  This is not a problem because the page is reported dirty using
1882  * the snapshot taken before and step 4 ensures that writes done after
1883  * exiting to userspace will be logged for the next call.
1884  *
1885  */
1886 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1887 {
1888 	struct kvm_memslots *slots;
1889 	struct kvm_memory_slot *memslot;
1890 	int i, as_id, id;
1891 	unsigned long n;
1892 	unsigned long *dirty_bitmap;
1893 	unsigned long *dirty_bitmap_buffer;
1894 	bool flush;
1895 
1896 	/* Dirty ring tracking is exclusive to dirty log tracking */
1897 	if (kvm->dirty_ring_size)
1898 		return -ENXIO;
1899 
1900 	as_id = log->slot >> 16;
1901 	id = (u16)log->slot;
1902 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1903 		return -EINVAL;
1904 
1905 	slots = __kvm_memslots(kvm, as_id);
1906 	memslot = id_to_memslot(slots, id);
1907 	if (!memslot || !memslot->dirty_bitmap)
1908 		return -ENOENT;
1909 
1910 	dirty_bitmap = memslot->dirty_bitmap;
1911 
1912 	kvm_arch_sync_dirty_log(kvm, memslot);
1913 
1914 	n = kvm_dirty_bitmap_bytes(memslot);
1915 	flush = false;
1916 	if (kvm->manual_dirty_log_protect) {
1917 		/*
1918 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1919 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1920 		 * is some code duplication between this function and
1921 		 * kvm_get_dirty_log, but hopefully all architecture
1922 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1923 		 * can be eliminated.
1924 		 */
1925 		dirty_bitmap_buffer = dirty_bitmap;
1926 	} else {
1927 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1928 		memset(dirty_bitmap_buffer, 0, n);
1929 
1930 		KVM_MMU_LOCK(kvm);
1931 		for (i = 0; i < n / sizeof(long); i++) {
1932 			unsigned long mask;
1933 			gfn_t offset;
1934 
1935 			if (!dirty_bitmap[i])
1936 				continue;
1937 
1938 			flush = true;
1939 			mask = xchg(&dirty_bitmap[i], 0);
1940 			dirty_bitmap_buffer[i] = mask;
1941 
1942 			offset = i * BITS_PER_LONG;
1943 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1944 								offset, mask);
1945 		}
1946 		KVM_MMU_UNLOCK(kvm);
1947 	}
1948 
1949 	if (flush)
1950 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1951 
1952 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1953 		return -EFAULT;
1954 	return 0;
1955 }
1956 
1957 
1958 /**
1959  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1960  * @kvm: kvm instance
1961  * @log: slot id and address to which we copy the log
1962  *
1963  * Steps 1-4 below provide general overview of dirty page logging. See
1964  * kvm_get_dirty_log_protect() function description for additional details.
1965  *
1966  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1967  * always flush the TLB (step 4) even if previous step failed  and the dirty
1968  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1969  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1970  * writes will be marked dirty for next log read.
1971  *
1972  *   1. Take a snapshot of the bit and clear it if needed.
1973  *   2. Write protect the corresponding page.
1974  *   3. Copy the snapshot to the userspace.
1975  *   4. Flush TLB's if needed.
1976  */
1977 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1978 				      struct kvm_dirty_log *log)
1979 {
1980 	int r;
1981 
1982 	mutex_lock(&kvm->slots_lock);
1983 
1984 	r = kvm_get_dirty_log_protect(kvm, log);
1985 
1986 	mutex_unlock(&kvm->slots_lock);
1987 	return r;
1988 }
1989 
1990 /**
1991  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1992  *	and reenable dirty page tracking for the corresponding pages.
1993  * @kvm:	pointer to kvm instance
1994  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1995  */
1996 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1997 				       struct kvm_clear_dirty_log *log)
1998 {
1999 	struct kvm_memslots *slots;
2000 	struct kvm_memory_slot *memslot;
2001 	int as_id, id;
2002 	gfn_t offset;
2003 	unsigned long i, n;
2004 	unsigned long *dirty_bitmap;
2005 	unsigned long *dirty_bitmap_buffer;
2006 	bool flush;
2007 
2008 	/* Dirty ring tracking is exclusive to dirty log tracking */
2009 	if (kvm->dirty_ring_size)
2010 		return -ENXIO;
2011 
2012 	as_id = log->slot >> 16;
2013 	id = (u16)log->slot;
2014 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2015 		return -EINVAL;
2016 
2017 	if (log->first_page & 63)
2018 		return -EINVAL;
2019 
2020 	slots = __kvm_memslots(kvm, as_id);
2021 	memslot = id_to_memslot(slots, id);
2022 	if (!memslot || !memslot->dirty_bitmap)
2023 		return -ENOENT;
2024 
2025 	dirty_bitmap = memslot->dirty_bitmap;
2026 
2027 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2028 
2029 	if (log->first_page > memslot->npages ||
2030 	    log->num_pages > memslot->npages - log->first_page ||
2031 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2032 	    return -EINVAL;
2033 
2034 	kvm_arch_sync_dirty_log(kvm, memslot);
2035 
2036 	flush = false;
2037 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2038 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2039 		return -EFAULT;
2040 
2041 	KVM_MMU_LOCK(kvm);
2042 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2043 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2044 	     i++, offset += BITS_PER_LONG) {
2045 		unsigned long mask = *dirty_bitmap_buffer++;
2046 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2047 		if (!mask)
2048 			continue;
2049 
2050 		mask &= atomic_long_fetch_andnot(mask, p);
2051 
2052 		/*
2053 		 * mask contains the bits that really have been cleared.  This
2054 		 * never includes any bits beyond the length of the memslot (if
2055 		 * the length is not aligned to 64 pages), therefore it is not
2056 		 * a problem if userspace sets them in log->dirty_bitmap.
2057 		*/
2058 		if (mask) {
2059 			flush = true;
2060 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2061 								offset, mask);
2062 		}
2063 	}
2064 	KVM_MMU_UNLOCK(kvm);
2065 
2066 	if (flush)
2067 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2068 
2069 	return 0;
2070 }
2071 
2072 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2073 					struct kvm_clear_dirty_log *log)
2074 {
2075 	int r;
2076 
2077 	mutex_lock(&kvm->slots_lock);
2078 
2079 	r = kvm_clear_dirty_log_protect(kvm, log);
2080 
2081 	mutex_unlock(&kvm->slots_lock);
2082 	return r;
2083 }
2084 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2085 
2086 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2087 {
2088 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2089 }
2090 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2091 
2092 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2093 {
2094 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2095 	struct kvm_memory_slot *slot;
2096 	int slot_index;
2097 
2098 	slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2099 	if (slot)
2100 		return slot;
2101 
2102 	/*
2103 	 * Fall back to searching all memslots. We purposely use
2104 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2105 	 * thrashing the VM-wide last_used_index in kvm_memslots.
2106 	 */
2107 	slot = search_memslots(slots, gfn, &slot_index);
2108 	if (slot) {
2109 		vcpu->last_used_slot = slot_index;
2110 		return slot;
2111 	}
2112 
2113 	return NULL;
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2116 
2117 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2118 {
2119 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2120 
2121 	return kvm_is_visible_memslot(memslot);
2122 }
2123 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2124 
2125 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2126 {
2127 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2128 
2129 	return kvm_is_visible_memslot(memslot);
2130 }
2131 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2132 
2133 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2134 {
2135 	struct vm_area_struct *vma;
2136 	unsigned long addr, size;
2137 
2138 	size = PAGE_SIZE;
2139 
2140 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2141 	if (kvm_is_error_hva(addr))
2142 		return PAGE_SIZE;
2143 
2144 	mmap_read_lock(current->mm);
2145 	vma = find_vma(current->mm, addr);
2146 	if (!vma)
2147 		goto out;
2148 
2149 	size = vma_kernel_pagesize(vma);
2150 
2151 out:
2152 	mmap_read_unlock(current->mm);
2153 
2154 	return size;
2155 }
2156 
2157 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2158 {
2159 	return slot->flags & KVM_MEM_READONLY;
2160 }
2161 
2162 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2163 				       gfn_t *nr_pages, bool write)
2164 {
2165 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2166 		return KVM_HVA_ERR_BAD;
2167 
2168 	if (memslot_is_readonly(slot) && write)
2169 		return KVM_HVA_ERR_RO_BAD;
2170 
2171 	if (nr_pages)
2172 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2173 
2174 	return __gfn_to_hva_memslot(slot, gfn);
2175 }
2176 
2177 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2178 				     gfn_t *nr_pages)
2179 {
2180 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2181 }
2182 
2183 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2184 					gfn_t gfn)
2185 {
2186 	return gfn_to_hva_many(slot, gfn, NULL);
2187 }
2188 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2189 
2190 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2191 {
2192 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2193 }
2194 EXPORT_SYMBOL_GPL(gfn_to_hva);
2195 
2196 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2197 {
2198 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2199 }
2200 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2201 
2202 /*
2203  * Return the hva of a @gfn and the R/W attribute if possible.
2204  *
2205  * @slot: the kvm_memory_slot which contains @gfn
2206  * @gfn: the gfn to be translated
2207  * @writable: used to return the read/write attribute of the @slot if the hva
2208  * is valid and @writable is not NULL
2209  */
2210 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2211 				      gfn_t gfn, bool *writable)
2212 {
2213 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2214 
2215 	if (!kvm_is_error_hva(hva) && writable)
2216 		*writable = !memslot_is_readonly(slot);
2217 
2218 	return hva;
2219 }
2220 
2221 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2222 {
2223 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2224 
2225 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2226 }
2227 
2228 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2229 {
2230 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2231 
2232 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2233 }
2234 
2235 static inline int check_user_page_hwpoison(unsigned long addr)
2236 {
2237 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2238 
2239 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2240 	return rc == -EHWPOISON;
2241 }
2242 
2243 /*
2244  * The fast path to get the writable pfn which will be stored in @pfn,
2245  * true indicates success, otherwise false is returned.  It's also the
2246  * only part that runs if we can in atomic context.
2247  */
2248 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2249 			    bool *writable, kvm_pfn_t *pfn)
2250 {
2251 	struct page *page[1];
2252 
2253 	/*
2254 	 * Fast pin a writable pfn only if it is a write fault request
2255 	 * or the caller allows to map a writable pfn for a read fault
2256 	 * request.
2257 	 */
2258 	if (!(write_fault || writable))
2259 		return false;
2260 
2261 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2262 		*pfn = page_to_pfn(page[0]);
2263 
2264 		if (writable)
2265 			*writable = true;
2266 		return true;
2267 	}
2268 
2269 	return false;
2270 }
2271 
2272 /*
2273  * The slow path to get the pfn of the specified host virtual address,
2274  * 1 indicates success, -errno is returned if error is detected.
2275  */
2276 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2277 			   bool *writable, kvm_pfn_t *pfn)
2278 {
2279 	unsigned int flags = FOLL_HWPOISON;
2280 	struct page *page;
2281 	int npages = 0;
2282 
2283 	might_sleep();
2284 
2285 	if (writable)
2286 		*writable = write_fault;
2287 
2288 	if (write_fault)
2289 		flags |= FOLL_WRITE;
2290 	if (async)
2291 		flags |= FOLL_NOWAIT;
2292 
2293 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2294 	if (npages != 1)
2295 		return npages;
2296 
2297 	/* map read fault as writable if possible */
2298 	if (unlikely(!write_fault) && writable) {
2299 		struct page *wpage;
2300 
2301 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2302 			*writable = true;
2303 			put_page(page);
2304 			page = wpage;
2305 		}
2306 	}
2307 	*pfn = page_to_pfn(page);
2308 	return npages;
2309 }
2310 
2311 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2312 {
2313 	if (unlikely(!(vma->vm_flags & VM_READ)))
2314 		return false;
2315 
2316 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2317 		return false;
2318 
2319 	return true;
2320 }
2321 
2322 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2323 {
2324 	if (kvm_is_reserved_pfn(pfn))
2325 		return 1;
2326 	return get_page_unless_zero(pfn_to_page(pfn));
2327 }
2328 
2329 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2330 			       unsigned long addr, bool *async,
2331 			       bool write_fault, bool *writable,
2332 			       kvm_pfn_t *p_pfn)
2333 {
2334 	kvm_pfn_t pfn;
2335 	pte_t *ptep;
2336 	spinlock_t *ptl;
2337 	int r;
2338 
2339 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2340 	if (r) {
2341 		/*
2342 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2343 		 * not call the fault handler, so do it here.
2344 		 */
2345 		bool unlocked = false;
2346 		r = fixup_user_fault(current->mm, addr,
2347 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2348 				     &unlocked);
2349 		if (unlocked)
2350 			return -EAGAIN;
2351 		if (r)
2352 			return r;
2353 
2354 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2355 		if (r)
2356 			return r;
2357 	}
2358 
2359 	if (write_fault && !pte_write(*ptep)) {
2360 		pfn = KVM_PFN_ERR_RO_FAULT;
2361 		goto out;
2362 	}
2363 
2364 	if (writable)
2365 		*writable = pte_write(*ptep);
2366 	pfn = pte_pfn(*ptep);
2367 
2368 	/*
2369 	 * Get a reference here because callers of *hva_to_pfn* and
2370 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2371 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2372 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2373 	 * simply do nothing for reserved pfns.
2374 	 *
2375 	 * Whoever called remap_pfn_range is also going to call e.g.
2376 	 * unmap_mapping_range before the underlying pages are freed,
2377 	 * causing a call to our MMU notifier.
2378 	 *
2379 	 * Certain IO or PFNMAP mappings can be backed with valid
2380 	 * struct pages, but be allocated without refcounting e.g.,
2381 	 * tail pages of non-compound higher order allocations, which
2382 	 * would then underflow the refcount when the caller does the
2383 	 * required put_page. Don't allow those pages here.
2384 	 */
2385 	if (!kvm_try_get_pfn(pfn))
2386 		r = -EFAULT;
2387 
2388 out:
2389 	pte_unmap_unlock(ptep, ptl);
2390 	*p_pfn = pfn;
2391 
2392 	return r;
2393 }
2394 
2395 /*
2396  * Pin guest page in memory and return its pfn.
2397  * @addr: host virtual address which maps memory to the guest
2398  * @atomic: whether this function can sleep
2399  * @async: whether this function need to wait IO complete if the
2400  *         host page is not in the memory
2401  * @write_fault: whether we should get a writable host page
2402  * @writable: whether it allows to map a writable host page for !@write_fault
2403  *
2404  * The function will map a writable host page for these two cases:
2405  * 1): @write_fault = true
2406  * 2): @write_fault = false && @writable, @writable will tell the caller
2407  *     whether the mapping is writable.
2408  */
2409 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2410 			bool write_fault, bool *writable)
2411 {
2412 	struct vm_area_struct *vma;
2413 	kvm_pfn_t pfn = 0;
2414 	int npages, r;
2415 
2416 	/* we can do it either atomically or asynchronously, not both */
2417 	BUG_ON(atomic && async);
2418 
2419 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2420 		return pfn;
2421 
2422 	if (atomic)
2423 		return KVM_PFN_ERR_FAULT;
2424 
2425 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2426 	if (npages == 1)
2427 		return pfn;
2428 
2429 	mmap_read_lock(current->mm);
2430 	if (npages == -EHWPOISON ||
2431 	      (!async && check_user_page_hwpoison(addr))) {
2432 		pfn = KVM_PFN_ERR_HWPOISON;
2433 		goto exit;
2434 	}
2435 
2436 retry:
2437 	vma = vma_lookup(current->mm, addr);
2438 
2439 	if (vma == NULL)
2440 		pfn = KVM_PFN_ERR_FAULT;
2441 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2442 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2443 		if (r == -EAGAIN)
2444 			goto retry;
2445 		if (r < 0)
2446 			pfn = KVM_PFN_ERR_FAULT;
2447 	} else {
2448 		if (async && vma_is_valid(vma, write_fault))
2449 			*async = true;
2450 		pfn = KVM_PFN_ERR_FAULT;
2451 	}
2452 exit:
2453 	mmap_read_unlock(current->mm);
2454 	return pfn;
2455 }
2456 
2457 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2458 			       bool atomic, bool *async, bool write_fault,
2459 			       bool *writable, hva_t *hva)
2460 {
2461 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2462 
2463 	if (hva)
2464 		*hva = addr;
2465 
2466 	if (addr == KVM_HVA_ERR_RO_BAD) {
2467 		if (writable)
2468 			*writable = false;
2469 		return KVM_PFN_ERR_RO_FAULT;
2470 	}
2471 
2472 	if (kvm_is_error_hva(addr)) {
2473 		if (writable)
2474 			*writable = false;
2475 		return KVM_PFN_NOSLOT;
2476 	}
2477 
2478 	/* Do not map writable pfn in the readonly memslot. */
2479 	if (writable && memslot_is_readonly(slot)) {
2480 		*writable = false;
2481 		writable = NULL;
2482 	}
2483 
2484 	return hva_to_pfn(addr, atomic, async, write_fault,
2485 			  writable);
2486 }
2487 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2488 
2489 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2490 		      bool *writable)
2491 {
2492 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2493 				    write_fault, writable, NULL);
2494 }
2495 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2496 
2497 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2498 {
2499 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2500 }
2501 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2502 
2503 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2504 {
2505 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2506 }
2507 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2508 
2509 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2510 {
2511 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2512 }
2513 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2514 
2515 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2516 {
2517 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2518 }
2519 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2520 
2521 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2522 {
2523 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2524 }
2525 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2526 
2527 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2528 			    struct page **pages, int nr_pages)
2529 {
2530 	unsigned long addr;
2531 	gfn_t entry = 0;
2532 
2533 	addr = gfn_to_hva_many(slot, gfn, &entry);
2534 	if (kvm_is_error_hva(addr))
2535 		return -1;
2536 
2537 	if (entry < nr_pages)
2538 		return 0;
2539 
2540 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2541 }
2542 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2543 
2544 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2545 {
2546 	if (is_error_noslot_pfn(pfn))
2547 		return KVM_ERR_PTR_BAD_PAGE;
2548 
2549 	if (kvm_is_reserved_pfn(pfn)) {
2550 		WARN_ON(1);
2551 		return KVM_ERR_PTR_BAD_PAGE;
2552 	}
2553 
2554 	return pfn_to_page(pfn);
2555 }
2556 
2557 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2558 {
2559 	kvm_pfn_t pfn;
2560 
2561 	pfn = gfn_to_pfn(kvm, gfn);
2562 
2563 	return kvm_pfn_to_page(pfn);
2564 }
2565 EXPORT_SYMBOL_GPL(gfn_to_page);
2566 
2567 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2568 {
2569 	if (pfn == 0)
2570 		return;
2571 
2572 	if (dirty)
2573 		kvm_release_pfn_dirty(pfn);
2574 	else
2575 		kvm_release_pfn_clean(pfn);
2576 }
2577 
2578 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2579 {
2580 	kvm_pfn_t pfn;
2581 	void *hva = NULL;
2582 	struct page *page = KVM_UNMAPPED_PAGE;
2583 
2584 	if (!map)
2585 		return -EINVAL;
2586 
2587 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2588 	if (is_error_noslot_pfn(pfn))
2589 		return -EINVAL;
2590 
2591 	if (pfn_valid(pfn)) {
2592 		page = pfn_to_page(pfn);
2593 		hva = kmap(page);
2594 #ifdef CONFIG_HAS_IOMEM
2595 	} else {
2596 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2597 #endif
2598 	}
2599 
2600 	if (!hva)
2601 		return -EFAULT;
2602 
2603 	map->page = page;
2604 	map->hva = hva;
2605 	map->pfn = pfn;
2606 	map->gfn = gfn;
2607 
2608 	return 0;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2611 
2612 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2613 {
2614 	if (!map)
2615 		return;
2616 
2617 	if (!map->hva)
2618 		return;
2619 
2620 	if (map->page != KVM_UNMAPPED_PAGE)
2621 		kunmap(map->page);
2622 #ifdef CONFIG_HAS_IOMEM
2623 	else
2624 		memunmap(map->hva);
2625 #endif
2626 
2627 	if (dirty)
2628 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2629 
2630 	kvm_release_pfn(map->pfn, dirty);
2631 
2632 	map->hva = NULL;
2633 	map->page = NULL;
2634 }
2635 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2636 
2637 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2638 {
2639 	kvm_pfn_t pfn;
2640 
2641 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2642 
2643 	return kvm_pfn_to_page(pfn);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2646 
2647 void kvm_release_page_clean(struct page *page)
2648 {
2649 	WARN_ON(is_error_page(page));
2650 
2651 	kvm_release_pfn_clean(page_to_pfn(page));
2652 }
2653 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2654 
2655 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2656 {
2657 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2658 		put_page(pfn_to_page(pfn));
2659 }
2660 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2661 
2662 void kvm_release_page_dirty(struct page *page)
2663 {
2664 	WARN_ON(is_error_page(page));
2665 
2666 	kvm_release_pfn_dirty(page_to_pfn(page));
2667 }
2668 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2669 
2670 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2671 {
2672 	kvm_set_pfn_dirty(pfn);
2673 	kvm_release_pfn_clean(pfn);
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2676 
2677 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2678 {
2679 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2680 		SetPageDirty(pfn_to_page(pfn));
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2683 
2684 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2685 {
2686 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2687 		mark_page_accessed(pfn_to_page(pfn));
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2690 
2691 static int next_segment(unsigned long len, int offset)
2692 {
2693 	if (len > PAGE_SIZE - offset)
2694 		return PAGE_SIZE - offset;
2695 	else
2696 		return len;
2697 }
2698 
2699 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2700 				 void *data, int offset, int len)
2701 {
2702 	int r;
2703 	unsigned long addr;
2704 
2705 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2706 	if (kvm_is_error_hva(addr))
2707 		return -EFAULT;
2708 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2709 	if (r)
2710 		return -EFAULT;
2711 	return 0;
2712 }
2713 
2714 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2715 			int len)
2716 {
2717 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2718 
2719 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2720 }
2721 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2722 
2723 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2724 			     int offset, int len)
2725 {
2726 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2727 
2728 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2731 
2732 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2733 {
2734 	gfn_t gfn = gpa >> PAGE_SHIFT;
2735 	int seg;
2736 	int offset = offset_in_page(gpa);
2737 	int ret;
2738 
2739 	while ((seg = next_segment(len, offset)) != 0) {
2740 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2741 		if (ret < 0)
2742 			return ret;
2743 		offset = 0;
2744 		len -= seg;
2745 		data += seg;
2746 		++gfn;
2747 	}
2748 	return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(kvm_read_guest);
2751 
2752 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2753 {
2754 	gfn_t gfn = gpa >> PAGE_SHIFT;
2755 	int seg;
2756 	int offset = offset_in_page(gpa);
2757 	int ret;
2758 
2759 	while ((seg = next_segment(len, offset)) != 0) {
2760 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2761 		if (ret < 0)
2762 			return ret;
2763 		offset = 0;
2764 		len -= seg;
2765 		data += seg;
2766 		++gfn;
2767 	}
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2771 
2772 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2773 			           void *data, int offset, unsigned long len)
2774 {
2775 	int r;
2776 	unsigned long addr;
2777 
2778 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2779 	if (kvm_is_error_hva(addr))
2780 		return -EFAULT;
2781 	pagefault_disable();
2782 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2783 	pagefault_enable();
2784 	if (r)
2785 		return -EFAULT;
2786 	return 0;
2787 }
2788 
2789 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2790 			       void *data, unsigned long len)
2791 {
2792 	gfn_t gfn = gpa >> PAGE_SHIFT;
2793 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2794 	int offset = offset_in_page(gpa);
2795 
2796 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2797 }
2798 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2799 
2800 static int __kvm_write_guest_page(struct kvm *kvm,
2801 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2802 			          const void *data, int offset, int len)
2803 {
2804 	int r;
2805 	unsigned long addr;
2806 
2807 	addr = gfn_to_hva_memslot(memslot, gfn);
2808 	if (kvm_is_error_hva(addr))
2809 		return -EFAULT;
2810 	r = __copy_to_user((void __user *)addr + offset, data, len);
2811 	if (r)
2812 		return -EFAULT;
2813 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2814 	return 0;
2815 }
2816 
2817 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2818 			 const void *data, int offset, int len)
2819 {
2820 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2821 
2822 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2823 }
2824 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2825 
2826 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2827 			      const void *data, int offset, int len)
2828 {
2829 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2830 
2831 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2834 
2835 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2836 		    unsigned long len)
2837 {
2838 	gfn_t gfn = gpa >> PAGE_SHIFT;
2839 	int seg;
2840 	int offset = offset_in_page(gpa);
2841 	int ret;
2842 
2843 	while ((seg = next_segment(len, offset)) != 0) {
2844 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2845 		if (ret < 0)
2846 			return ret;
2847 		offset = 0;
2848 		len -= seg;
2849 		data += seg;
2850 		++gfn;
2851 	}
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL_GPL(kvm_write_guest);
2855 
2856 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2857 		         unsigned long len)
2858 {
2859 	gfn_t gfn = gpa >> PAGE_SHIFT;
2860 	int seg;
2861 	int offset = offset_in_page(gpa);
2862 	int ret;
2863 
2864 	while ((seg = next_segment(len, offset)) != 0) {
2865 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2866 		if (ret < 0)
2867 			return ret;
2868 		offset = 0;
2869 		len -= seg;
2870 		data += seg;
2871 		++gfn;
2872 	}
2873 	return 0;
2874 }
2875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2876 
2877 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2878 				       struct gfn_to_hva_cache *ghc,
2879 				       gpa_t gpa, unsigned long len)
2880 {
2881 	int offset = offset_in_page(gpa);
2882 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2883 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2884 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2885 	gfn_t nr_pages_avail;
2886 
2887 	/* Update ghc->generation before performing any error checks. */
2888 	ghc->generation = slots->generation;
2889 
2890 	if (start_gfn > end_gfn) {
2891 		ghc->hva = KVM_HVA_ERR_BAD;
2892 		return -EINVAL;
2893 	}
2894 
2895 	/*
2896 	 * If the requested region crosses two memslots, we still
2897 	 * verify that the entire region is valid here.
2898 	 */
2899 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2900 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2901 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2902 					   &nr_pages_avail);
2903 		if (kvm_is_error_hva(ghc->hva))
2904 			return -EFAULT;
2905 	}
2906 
2907 	/* Use the slow path for cross page reads and writes. */
2908 	if (nr_pages_needed == 1)
2909 		ghc->hva += offset;
2910 	else
2911 		ghc->memslot = NULL;
2912 
2913 	ghc->gpa = gpa;
2914 	ghc->len = len;
2915 	return 0;
2916 }
2917 
2918 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2919 			      gpa_t gpa, unsigned long len)
2920 {
2921 	struct kvm_memslots *slots = kvm_memslots(kvm);
2922 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2923 }
2924 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2925 
2926 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2927 				  void *data, unsigned int offset,
2928 				  unsigned long len)
2929 {
2930 	struct kvm_memslots *slots = kvm_memslots(kvm);
2931 	int r;
2932 	gpa_t gpa = ghc->gpa + offset;
2933 
2934 	if (WARN_ON_ONCE(len + offset > ghc->len))
2935 		return -EINVAL;
2936 
2937 	if (slots->generation != ghc->generation) {
2938 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2939 			return -EFAULT;
2940 	}
2941 
2942 	if (kvm_is_error_hva(ghc->hva))
2943 		return -EFAULT;
2944 
2945 	if (unlikely(!ghc->memslot))
2946 		return kvm_write_guest(kvm, gpa, data, len);
2947 
2948 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2949 	if (r)
2950 		return -EFAULT;
2951 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2952 
2953 	return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2956 
2957 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2958 			   void *data, unsigned long len)
2959 {
2960 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2961 }
2962 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2963 
2964 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2965 				 void *data, unsigned int offset,
2966 				 unsigned long len)
2967 {
2968 	struct kvm_memslots *slots = kvm_memslots(kvm);
2969 	int r;
2970 	gpa_t gpa = ghc->gpa + offset;
2971 
2972 	if (WARN_ON_ONCE(len + offset > ghc->len))
2973 		return -EINVAL;
2974 
2975 	if (slots->generation != ghc->generation) {
2976 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2977 			return -EFAULT;
2978 	}
2979 
2980 	if (kvm_is_error_hva(ghc->hva))
2981 		return -EFAULT;
2982 
2983 	if (unlikely(!ghc->memslot))
2984 		return kvm_read_guest(kvm, gpa, data, len);
2985 
2986 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2987 	if (r)
2988 		return -EFAULT;
2989 
2990 	return 0;
2991 }
2992 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2993 
2994 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2995 			  void *data, unsigned long len)
2996 {
2997 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3000 
3001 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3002 {
3003 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3004 	gfn_t gfn = gpa >> PAGE_SHIFT;
3005 	int seg;
3006 	int offset = offset_in_page(gpa);
3007 	int ret;
3008 
3009 	while ((seg = next_segment(len, offset)) != 0) {
3010 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3011 		if (ret < 0)
3012 			return ret;
3013 		offset = 0;
3014 		len -= seg;
3015 		++gfn;
3016 	}
3017 	return 0;
3018 }
3019 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3020 
3021 void mark_page_dirty_in_slot(struct kvm *kvm,
3022 			     struct kvm_memory_slot *memslot,
3023 		 	     gfn_t gfn)
3024 {
3025 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3026 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3027 		u32 slot = (memslot->as_id << 16) | memslot->id;
3028 
3029 		if (kvm->dirty_ring_size)
3030 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3031 					    slot, rel_gfn);
3032 		else
3033 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3034 	}
3035 }
3036 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3037 
3038 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3039 {
3040 	struct kvm_memory_slot *memslot;
3041 
3042 	memslot = gfn_to_memslot(kvm, gfn);
3043 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3044 }
3045 EXPORT_SYMBOL_GPL(mark_page_dirty);
3046 
3047 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3048 {
3049 	struct kvm_memory_slot *memslot;
3050 
3051 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3052 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3053 }
3054 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3055 
3056 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3057 {
3058 	if (!vcpu->sigset_active)
3059 		return;
3060 
3061 	/*
3062 	 * This does a lockless modification of ->real_blocked, which is fine
3063 	 * because, only current can change ->real_blocked and all readers of
3064 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3065 	 * of ->blocked.
3066 	 */
3067 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3068 }
3069 
3070 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3071 {
3072 	if (!vcpu->sigset_active)
3073 		return;
3074 
3075 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3076 	sigemptyset(&current->real_blocked);
3077 }
3078 
3079 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3080 {
3081 	unsigned int old, val, grow, grow_start;
3082 
3083 	old = val = vcpu->halt_poll_ns;
3084 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3085 	grow = READ_ONCE(halt_poll_ns_grow);
3086 	if (!grow)
3087 		goto out;
3088 
3089 	val *= grow;
3090 	if (val < grow_start)
3091 		val = grow_start;
3092 
3093 	if (val > vcpu->kvm->max_halt_poll_ns)
3094 		val = vcpu->kvm->max_halt_poll_ns;
3095 
3096 	vcpu->halt_poll_ns = val;
3097 out:
3098 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3099 }
3100 
3101 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3102 {
3103 	unsigned int old, val, shrink, grow_start;
3104 
3105 	old = val = vcpu->halt_poll_ns;
3106 	shrink = READ_ONCE(halt_poll_ns_shrink);
3107 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3108 	if (shrink == 0)
3109 		val = 0;
3110 	else
3111 		val /= shrink;
3112 
3113 	if (val < grow_start)
3114 		val = 0;
3115 
3116 	vcpu->halt_poll_ns = val;
3117 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3118 }
3119 
3120 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3121 {
3122 	int ret = -EINTR;
3123 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3124 
3125 	if (kvm_arch_vcpu_runnable(vcpu)) {
3126 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3127 		goto out;
3128 	}
3129 	if (kvm_cpu_has_pending_timer(vcpu))
3130 		goto out;
3131 	if (signal_pending(current))
3132 		goto out;
3133 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3134 		goto out;
3135 
3136 	ret = 0;
3137 out:
3138 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3139 	return ret;
3140 }
3141 
3142 static inline void
3143 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3144 {
3145 	if (waited)
3146 		vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3147 	else
3148 		vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3149 }
3150 
3151 /*
3152  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3153  */
3154 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3155 {
3156 	ktime_t start, cur, poll_end;
3157 	bool waited = false;
3158 	u64 block_ns;
3159 
3160 	kvm_arch_vcpu_blocking(vcpu);
3161 
3162 	start = cur = poll_end = ktime_get();
3163 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3164 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3165 
3166 		++vcpu->stat.generic.halt_attempted_poll;
3167 		do {
3168 			/*
3169 			 * This sets KVM_REQ_UNHALT if an interrupt
3170 			 * arrives.
3171 			 */
3172 			if (kvm_vcpu_check_block(vcpu) < 0) {
3173 				++vcpu->stat.generic.halt_successful_poll;
3174 				if (!vcpu_valid_wakeup(vcpu))
3175 					++vcpu->stat.generic.halt_poll_invalid;
3176 
3177 				KVM_STATS_LOG_HIST_UPDATE(
3178 				      vcpu->stat.generic.halt_poll_success_hist,
3179 				      ktime_to_ns(ktime_get()) -
3180 				      ktime_to_ns(start));
3181 				goto out;
3182 			}
3183 			cpu_relax();
3184 			poll_end = cur = ktime_get();
3185 		} while (kvm_vcpu_can_poll(cur, stop));
3186 
3187 		KVM_STATS_LOG_HIST_UPDATE(
3188 				vcpu->stat.generic.halt_poll_fail_hist,
3189 				ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3190 	}
3191 
3192 
3193 	prepare_to_rcuwait(&vcpu->wait);
3194 	for (;;) {
3195 		set_current_state(TASK_INTERRUPTIBLE);
3196 
3197 		if (kvm_vcpu_check_block(vcpu) < 0)
3198 			break;
3199 
3200 		waited = true;
3201 		schedule();
3202 	}
3203 	finish_rcuwait(&vcpu->wait);
3204 	cur = ktime_get();
3205 	if (waited) {
3206 		vcpu->stat.generic.halt_wait_ns +=
3207 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3208 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3209 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3210 	}
3211 out:
3212 	kvm_arch_vcpu_unblocking(vcpu);
3213 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3214 
3215 	update_halt_poll_stats(
3216 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3217 
3218 	if (!kvm_arch_no_poll(vcpu)) {
3219 		if (!vcpu_valid_wakeup(vcpu)) {
3220 			shrink_halt_poll_ns(vcpu);
3221 		} else if (vcpu->kvm->max_halt_poll_ns) {
3222 			if (block_ns <= vcpu->halt_poll_ns)
3223 				;
3224 			/* we had a long block, shrink polling */
3225 			else if (vcpu->halt_poll_ns &&
3226 					block_ns > vcpu->kvm->max_halt_poll_ns)
3227 				shrink_halt_poll_ns(vcpu);
3228 			/* we had a short halt and our poll time is too small */
3229 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3230 					block_ns < vcpu->kvm->max_halt_poll_ns)
3231 				grow_halt_poll_ns(vcpu);
3232 		} else {
3233 			vcpu->halt_poll_ns = 0;
3234 		}
3235 	}
3236 
3237 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3238 	kvm_arch_vcpu_block_finish(vcpu);
3239 }
3240 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3241 
3242 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3243 {
3244 	struct rcuwait *waitp;
3245 
3246 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3247 	if (rcuwait_wake_up(waitp)) {
3248 		WRITE_ONCE(vcpu->ready, true);
3249 		++vcpu->stat.generic.halt_wakeup;
3250 		return true;
3251 	}
3252 
3253 	return false;
3254 }
3255 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3256 
3257 #ifndef CONFIG_S390
3258 /*
3259  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3260  */
3261 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3262 {
3263 	int me, cpu;
3264 
3265 	if (kvm_vcpu_wake_up(vcpu))
3266 		return;
3267 
3268 	/*
3269 	 * Note, the vCPU could get migrated to a different pCPU at any point
3270 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3271 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3272 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3273 	 * vCPU also requires it to leave IN_GUEST_MODE.
3274 	 */
3275 	me = get_cpu();
3276 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3277 		cpu = READ_ONCE(vcpu->cpu);
3278 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3279 			smp_send_reschedule(cpu);
3280 	}
3281 	put_cpu();
3282 }
3283 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3284 #endif /* !CONFIG_S390 */
3285 
3286 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3287 {
3288 	struct pid *pid;
3289 	struct task_struct *task = NULL;
3290 	int ret = 0;
3291 
3292 	rcu_read_lock();
3293 	pid = rcu_dereference(target->pid);
3294 	if (pid)
3295 		task = get_pid_task(pid, PIDTYPE_PID);
3296 	rcu_read_unlock();
3297 	if (!task)
3298 		return ret;
3299 	ret = yield_to(task, 1);
3300 	put_task_struct(task);
3301 
3302 	return ret;
3303 }
3304 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3305 
3306 /*
3307  * Helper that checks whether a VCPU is eligible for directed yield.
3308  * Most eligible candidate to yield is decided by following heuristics:
3309  *
3310  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3311  *  (preempted lock holder), indicated by @in_spin_loop.
3312  *  Set at the beginning and cleared at the end of interception/PLE handler.
3313  *
3314  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3315  *  chance last time (mostly it has become eligible now since we have probably
3316  *  yielded to lockholder in last iteration. This is done by toggling
3317  *  @dy_eligible each time a VCPU checked for eligibility.)
3318  *
3319  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3320  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3321  *  burning. Giving priority for a potential lock-holder increases lock
3322  *  progress.
3323  *
3324  *  Since algorithm is based on heuristics, accessing another VCPU data without
3325  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3326  *  and continue with next VCPU and so on.
3327  */
3328 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3329 {
3330 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3331 	bool eligible;
3332 
3333 	eligible = !vcpu->spin_loop.in_spin_loop ||
3334 		    vcpu->spin_loop.dy_eligible;
3335 
3336 	if (vcpu->spin_loop.in_spin_loop)
3337 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3338 
3339 	return eligible;
3340 #else
3341 	return true;
3342 #endif
3343 }
3344 
3345 /*
3346  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3347  * a vcpu_load/vcpu_put pair.  However, for most architectures
3348  * kvm_arch_vcpu_runnable does not require vcpu_load.
3349  */
3350 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3351 {
3352 	return kvm_arch_vcpu_runnable(vcpu);
3353 }
3354 
3355 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3356 {
3357 	if (kvm_arch_dy_runnable(vcpu))
3358 		return true;
3359 
3360 #ifdef CONFIG_KVM_ASYNC_PF
3361 	if (!list_empty_careful(&vcpu->async_pf.done))
3362 		return true;
3363 #endif
3364 
3365 	return false;
3366 }
3367 
3368 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3369 {
3370 	return false;
3371 }
3372 
3373 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3374 {
3375 	struct kvm *kvm = me->kvm;
3376 	struct kvm_vcpu *vcpu;
3377 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3378 	int yielded = 0;
3379 	int try = 3;
3380 	int pass;
3381 	int i;
3382 
3383 	kvm_vcpu_set_in_spin_loop(me, true);
3384 	/*
3385 	 * We boost the priority of a VCPU that is runnable but not
3386 	 * currently running, because it got preempted by something
3387 	 * else and called schedule in __vcpu_run.  Hopefully that
3388 	 * VCPU is holding the lock that we need and will release it.
3389 	 * We approximate round-robin by starting at the last boosted VCPU.
3390 	 */
3391 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3392 		kvm_for_each_vcpu(i, vcpu, kvm) {
3393 			if (!pass && i <= last_boosted_vcpu) {
3394 				i = last_boosted_vcpu;
3395 				continue;
3396 			} else if (pass && i > last_boosted_vcpu)
3397 				break;
3398 			if (!READ_ONCE(vcpu->ready))
3399 				continue;
3400 			if (vcpu == me)
3401 				continue;
3402 			if (rcuwait_active(&vcpu->wait) &&
3403 			    !vcpu_dy_runnable(vcpu))
3404 				continue;
3405 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3406 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3407 			    !kvm_arch_vcpu_in_kernel(vcpu))
3408 				continue;
3409 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3410 				continue;
3411 
3412 			yielded = kvm_vcpu_yield_to(vcpu);
3413 			if (yielded > 0) {
3414 				kvm->last_boosted_vcpu = i;
3415 				break;
3416 			} else if (yielded < 0) {
3417 				try--;
3418 				if (!try)
3419 					break;
3420 			}
3421 		}
3422 	}
3423 	kvm_vcpu_set_in_spin_loop(me, false);
3424 
3425 	/* Ensure vcpu is not eligible during next spinloop */
3426 	kvm_vcpu_set_dy_eligible(me, false);
3427 }
3428 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3429 
3430 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3431 {
3432 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3433 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3434 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3435 	     kvm->dirty_ring_size / PAGE_SIZE);
3436 #else
3437 	return false;
3438 #endif
3439 }
3440 
3441 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3442 {
3443 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3444 	struct page *page;
3445 
3446 	if (vmf->pgoff == 0)
3447 		page = virt_to_page(vcpu->run);
3448 #ifdef CONFIG_X86
3449 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3450 		page = virt_to_page(vcpu->arch.pio_data);
3451 #endif
3452 #ifdef CONFIG_KVM_MMIO
3453 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3454 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3455 #endif
3456 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3457 		page = kvm_dirty_ring_get_page(
3458 		    &vcpu->dirty_ring,
3459 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3460 	else
3461 		return kvm_arch_vcpu_fault(vcpu, vmf);
3462 	get_page(page);
3463 	vmf->page = page;
3464 	return 0;
3465 }
3466 
3467 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3468 	.fault = kvm_vcpu_fault,
3469 };
3470 
3471 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3472 {
3473 	struct kvm_vcpu *vcpu = file->private_data;
3474 	unsigned long pages = vma_pages(vma);
3475 
3476 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3477 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3478 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3479 		return -EINVAL;
3480 
3481 	vma->vm_ops = &kvm_vcpu_vm_ops;
3482 	return 0;
3483 }
3484 
3485 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3486 {
3487 	struct kvm_vcpu *vcpu = filp->private_data;
3488 
3489 	kvm_put_kvm(vcpu->kvm);
3490 	return 0;
3491 }
3492 
3493 static struct file_operations kvm_vcpu_fops = {
3494 	.release        = kvm_vcpu_release,
3495 	.unlocked_ioctl = kvm_vcpu_ioctl,
3496 	.mmap           = kvm_vcpu_mmap,
3497 	.llseek		= noop_llseek,
3498 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3499 };
3500 
3501 /*
3502  * Allocates an inode for the vcpu.
3503  */
3504 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3505 {
3506 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3507 
3508 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3509 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3510 }
3511 
3512 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3513 {
3514 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3515 	struct dentry *debugfs_dentry;
3516 	char dir_name[ITOA_MAX_LEN * 2];
3517 
3518 	if (!debugfs_initialized())
3519 		return;
3520 
3521 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3522 	debugfs_dentry = debugfs_create_dir(dir_name,
3523 					    vcpu->kvm->debugfs_dentry);
3524 
3525 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3526 #endif
3527 }
3528 
3529 /*
3530  * Creates some virtual cpus.  Good luck creating more than one.
3531  */
3532 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3533 {
3534 	int r;
3535 	struct kvm_vcpu *vcpu;
3536 	struct page *page;
3537 
3538 	if (id >= KVM_MAX_VCPU_IDS)
3539 		return -EINVAL;
3540 
3541 	mutex_lock(&kvm->lock);
3542 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3543 		mutex_unlock(&kvm->lock);
3544 		return -EINVAL;
3545 	}
3546 
3547 	kvm->created_vcpus++;
3548 	mutex_unlock(&kvm->lock);
3549 
3550 	r = kvm_arch_vcpu_precreate(kvm, id);
3551 	if (r)
3552 		goto vcpu_decrement;
3553 
3554 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3555 	if (!vcpu) {
3556 		r = -ENOMEM;
3557 		goto vcpu_decrement;
3558 	}
3559 
3560 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3561 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3562 	if (!page) {
3563 		r = -ENOMEM;
3564 		goto vcpu_free;
3565 	}
3566 	vcpu->run = page_address(page);
3567 
3568 	kvm_vcpu_init(vcpu, kvm, id);
3569 
3570 	r = kvm_arch_vcpu_create(vcpu);
3571 	if (r)
3572 		goto vcpu_free_run_page;
3573 
3574 	if (kvm->dirty_ring_size) {
3575 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3576 					 id, kvm->dirty_ring_size);
3577 		if (r)
3578 			goto arch_vcpu_destroy;
3579 	}
3580 
3581 	mutex_lock(&kvm->lock);
3582 	if (kvm_get_vcpu_by_id(kvm, id)) {
3583 		r = -EEXIST;
3584 		goto unlock_vcpu_destroy;
3585 	}
3586 
3587 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3588 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3589 
3590 	/* Fill the stats id string for the vcpu */
3591 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3592 		 task_pid_nr(current), id);
3593 
3594 	/* Now it's all set up, let userspace reach it */
3595 	kvm_get_kvm(kvm);
3596 	r = create_vcpu_fd(vcpu);
3597 	if (r < 0) {
3598 		kvm_put_kvm_no_destroy(kvm);
3599 		goto unlock_vcpu_destroy;
3600 	}
3601 
3602 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3603 
3604 	/*
3605 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3606 	 * before kvm->online_vcpu's incremented value.
3607 	 */
3608 	smp_wmb();
3609 	atomic_inc(&kvm->online_vcpus);
3610 
3611 	mutex_unlock(&kvm->lock);
3612 	kvm_arch_vcpu_postcreate(vcpu);
3613 	kvm_create_vcpu_debugfs(vcpu);
3614 	return r;
3615 
3616 unlock_vcpu_destroy:
3617 	mutex_unlock(&kvm->lock);
3618 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3619 arch_vcpu_destroy:
3620 	kvm_arch_vcpu_destroy(vcpu);
3621 vcpu_free_run_page:
3622 	free_page((unsigned long)vcpu->run);
3623 vcpu_free:
3624 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3625 vcpu_decrement:
3626 	mutex_lock(&kvm->lock);
3627 	kvm->created_vcpus--;
3628 	mutex_unlock(&kvm->lock);
3629 	return r;
3630 }
3631 
3632 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3633 {
3634 	if (sigset) {
3635 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3636 		vcpu->sigset_active = 1;
3637 		vcpu->sigset = *sigset;
3638 	} else
3639 		vcpu->sigset_active = 0;
3640 	return 0;
3641 }
3642 
3643 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3644 			      size_t size, loff_t *offset)
3645 {
3646 	struct kvm_vcpu *vcpu = file->private_data;
3647 
3648 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3649 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3650 			sizeof(vcpu->stat), user_buffer, size, offset);
3651 }
3652 
3653 static const struct file_operations kvm_vcpu_stats_fops = {
3654 	.read = kvm_vcpu_stats_read,
3655 	.llseek = noop_llseek,
3656 };
3657 
3658 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3659 {
3660 	int fd;
3661 	struct file *file;
3662 	char name[15 + ITOA_MAX_LEN + 1];
3663 
3664 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3665 
3666 	fd = get_unused_fd_flags(O_CLOEXEC);
3667 	if (fd < 0)
3668 		return fd;
3669 
3670 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3671 	if (IS_ERR(file)) {
3672 		put_unused_fd(fd);
3673 		return PTR_ERR(file);
3674 	}
3675 	file->f_mode |= FMODE_PREAD;
3676 	fd_install(fd, file);
3677 
3678 	return fd;
3679 }
3680 
3681 static long kvm_vcpu_ioctl(struct file *filp,
3682 			   unsigned int ioctl, unsigned long arg)
3683 {
3684 	struct kvm_vcpu *vcpu = filp->private_data;
3685 	void __user *argp = (void __user *)arg;
3686 	int r;
3687 	struct kvm_fpu *fpu = NULL;
3688 	struct kvm_sregs *kvm_sregs = NULL;
3689 
3690 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3691 		return -EIO;
3692 
3693 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3694 		return -EINVAL;
3695 
3696 	/*
3697 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3698 	 * execution; mutex_lock() would break them.
3699 	 */
3700 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3701 	if (r != -ENOIOCTLCMD)
3702 		return r;
3703 
3704 	if (mutex_lock_killable(&vcpu->mutex))
3705 		return -EINTR;
3706 	switch (ioctl) {
3707 	case KVM_RUN: {
3708 		struct pid *oldpid;
3709 		r = -EINVAL;
3710 		if (arg)
3711 			goto out;
3712 		oldpid = rcu_access_pointer(vcpu->pid);
3713 		if (unlikely(oldpid != task_pid(current))) {
3714 			/* The thread running this VCPU changed. */
3715 			struct pid *newpid;
3716 
3717 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3718 			if (r)
3719 				break;
3720 
3721 			newpid = get_task_pid(current, PIDTYPE_PID);
3722 			rcu_assign_pointer(vcpu->pid, newpid);
3723 			if (oldpid)
3724 				synchronize_rcu();
3725 			put_pid(oldpid);
3726 		}
3727 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3728 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3729 		break;
3730 	}
3731 	case KVM_GET_REGS: {
3732 		struct kvm_regs *kvm_regs;
3733 
3734 		r = -ENOMEM;
3735 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3736 		if (!kvm_regs)
3737 			goto out;
3738 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3739 		if (r)
3740 			goto out_free1;
3741 		r = -EFAULT;
3742 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3743 			goto out_free1;
3744 		r = 0;
3745 out_free1:
3746 		kfree(kvm_regs);
3747 		break;
3748 	}
3749 	case KVM_SET_REGS: {
3750 		struct kvm_regs *kvm_regs;
3751 
3752 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3753 		if (IS_ERR(kvm_regs)) {
3754 			r = PTR_ERR(kvm_regs);
3755 			goto out;
3756 		}
3757 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3758 		kfree(kvm_regs);
3759 		break;
3760 	}
3761 	case KVM_GET_SREGS: {
3762 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3763 				    GFP_KERNEL_ACCOUNT);
3764 		r = -ENOMEM;
3765 		if (!kvm_sregs)
3766 			goto out;
3767 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3768 		if (r)
3769 			goto out;
3770 		r = -EFAULT;
3771 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3772 			goto out;
3773 		r = 0;
3774 		break;
3775 	}
3776 	case KVM_SET_SREGS: {
3777 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3778 		if (IS_ERR(kvm_sregs)) {
3779 			r = PTR_ERR(kvm_sregs);
3780 			kvm_sregs = NULL;
3781 			goto out;
3782 		}
3783 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3784 		break;
3785 	}
3786 	case KVM_GET_MP_STATE: {
3787 		struct kvm_mp_state mp_state;
3788 
3789 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3790 		if (r)
3791 			goto out;
3792 		r = -EFAULT;
3793 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3794 			goto out;
3795 		r = 0;
3796 		break;
3797 	}
3798 	case KVM_SET_MP_STATE: {
3799 		struct kvm_mp_state mp_state;
3800 
3801 		r = -EFAULT;
3802 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3803 			goto out;
3804 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3805 		break;
3806 	}
3807 	case KVM_TRANSLATE: {
3808 		struct kvm_translation tr;
3809 
3810 		r = -EFAULT;
3811 		if (copy_from_user(&tr, argp, sizeof(tr)))
3812 			goto out;
3813 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3814 		if (r)
3815 			goto out;
3816 		r = -EFAULT;
3817 		if (copy_to_user(argp, &tr, sizeof(tr)))
3818 			goto out;
3819 		r = 0;
3820 		break;
3821 	}
3822 	case KVM_SET_GUEST_DEBUG: {
3823 		struct kvm_guest_debug dbg;
3824 
3825 		r = -EFAULT;
3826 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3827 			goto out;
3828 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3829 		break;
3830 	}
3831 	case KVM_SET_SIGNAL_MASK: {
3832 		struct kvm_signal_mask __user *sigmask_arg = argp;
3833 		struct kvm_signal_mask kvm_sigmask;
3834 		sigset_t sigset, *p;
3835 
3836 		p = NULL;
3837 		if (argp) {
3838 			r = -EFAULT;
3839 			if (copy_from_user(&kvm_sigmask, argp,
3840 					   sizeof(kvm_sigmask)))
3841 				goto out;
3842 			r = -EINVAL;
3843 			if (kvm_sigmask.len != sizeof(sigset))
3844 				goto out;
3845 			r = -EFAULT;
3846 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3847 					   sizeof(sigset)))
3848 				goto out;
3849 			p = &sigset;
3850 		}
3851 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3852 		break;
3853 	}
3854 	case KVM_GET_FPU: {
3855 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3856 		r = -ENOMEM;
3857 		if (!fpu)
3858 			goto out;
3859 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3860 		if (r)
3861 			goto out;
3862 		r = -EFAULT;
3863 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3864 			goto out;
3865 		r = 0;
3866 		break;
3867 	}
3868 	case KVM_SET_FPU: {
3869 		fpu = memdup_user(argp, sizeof(*fpu));
3870 		if (IS_ERR(fpu)) {
3871 			r = PTR_ERR(fpu);
3872 			fpu = NULL;
3873 			goto out;
3874 		}
3875 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3876 		break;
3877 	}
3878 	case KVM_GET_STATS_FD: {
3879 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3880 		break;
3881 	}
3882 	default:
3883 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3884 	}
3885 out:
3886 	mutex_unlock(&vcpu->mutex);
3887 	kfree(fpu);
3888 	kfree(kvm_sregs);
3889 	return r;
3890 }
3891 
3892 #ifdef CONFIG_KVM_COMPAT
3893 static long kvm_vcpu_compat_ioctl(struct file *filp,
3894 				  unsigned int ioctl, unsigned long arg)
3895 {
3896 	struct kvm_vcpu *vcpu = filp->private_data;
3897 	void __user *argp = compat_ptr(arg);
3898 	int r;
3899 
3900 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3901 		return -EIO;
3902 
3903 	switch (ioctl) {
3904 	case KVM_SET_SIGNAL_MASK: {
3905 		struct kvm_signal_mask __user *sigmask_arg = argp;
3906 		struct kvm_signal_mask kvm_sigmask;
3907 		sigset_t sigset;
3908 
3909 		if (argp) {
3910 			r = -EFAULT;
3911 			if (copy_from_user(&kvm_sigmask, argp,
3912 					   sizeof(kvm_sigmask)))
3913 				goto out;
3914 			r = -EINVAL;
3915 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3916 				goto out;
3917 			r = -EFAULT;
3918 			if (get_compat_sigset(&sigset,
3919 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3920 				goto out;
3921 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3922 		} else
3923 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3924 		break;
3925 	}
3926 	default:
3927 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3928 	}
3929 
3930 out:
3931 	return r;
3932 }
3933 #endif
3934 
3935 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3936 {
3937 	struct kvm_device *dev = filp->private_data;
3938 
3939 	if (dev->ops->mmap)
3940 		return dev->ops->mmap(dev, vma);
3941 
3942 	return -ENODEV;
3943 }
3944 
3945 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3946 				 int (*accessor)(struct kvm_device *dev,
3947 						 struct kvm_device_attr *attr),
3948 				 unsigned long arg)
3949 {
3950 	struct kvm_device_attr attr;
3951 
3952 	if (!accessor)
3953 		return -EPERM;
3954 
3955 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3956 		return -EFAULT;
3957 
3958 	return accessor(dev, &attr);
3959 }
3960 
3961 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3962 			     unsigned long arg)
3963 {
3964 	struct kvm_device *dev = filp->private_data;
3965 
3966 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
3967 		return -EIO;
3968 
3969 	switch (ioctl) {
3970 	case KVM_SET_DEVICE_ATTR:
3971 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3972 	case KVM_GET_DEVICE_ATTR:
3973 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3974 	case KVM_HAS_DEVICE_ATTR:
3975 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3976 	default:
3977 		if (dev->ops->ioctl)
3978 			return dev->ops->ioctl(dev, ioctl, arg);
3979 
3980 		return -ENOTTY;
3981 	}
3982 }
3983 
3984 static int kvm_device_release(struct inode *inode, struct file *filp)
3985 {
3986 	struct kvm_device *dev = filp->private_data;
3987 	struct kvm *kvm = dev->kvm;
3988 
3989 	if (dev->ops->release) {
3990 		mutex_lock(&kvm->lock);
3991 		list_del(&dev->vm_node);
3992 		dev->ops->release(dev);
3993 		mutex_unlock(&kvm->lock);
3994 	}
3995 
3996 	kvm_put_kvm(kvm);
3997 	return 0;
3998 }
3999 
4000 static const struct file_operations kvm_device_fops = {
4001 	.unlocked_ioctl = kvm_device_ioctl,
4002 	.release = kvm_device_release,
4003 	KVM_COMPAT(kvm_device_ioctl),
4004 	.mmap = kvm_device_mmap,
4005 };
4006 
4007 struct kvm_device *kvm_device_from_filp(struct file *filp)
4008 {
4009 	if (filp->f_op != &kvm_device_fops)
4010 		return NULL;
4011 
4012 	return filp->private_data;
4013 }
4014 
4015 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4016 #ifdef CONFIG_KVM_MPIC
4017 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4018 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4019 #endif
4020 };
4021 
4022 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4023 {
4024 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4025 		return -ENOSPC;
4026 
4027 	if (kvm_device_ops_table[type] != NULL)
4028 		return -EEXIST;
4029 
4030 	kvm_device_ops_table[type] = ops;
4031 	return 0;
4032 }
4033 
4034 void kvm_unregister_device_ops(u32 type)
4035 {
4036 	if (kvm_device_ops_table[type] != NULL)
4037 		kvm_device_ops_table[type] = NULL;
4038 }
4039 
4040 static int kvm_ioctl_create_device(struct kvm *kvm,
4041 				   struct kvm_create_device *cd)
4042 {
4043 	const struct kvm_device_ops *ops = NULL;
4044 	struct kvm_device *dev;
4045 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4046 	int type;
4047 	int ret;
4048 
4049 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4050 		return -ENODEV;
4051 
4052 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4053 	ops = kvm_device_ops_table[type];
4054 	if (ops == NULL)
4055 		return -ENODEV;
4056 
4057 	if (test)
4058 		return 0;
4059 
4060 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4061 	if (!dev)
4062 		return -ENOMEM;
4063 
4064 	dev->ops = ops;
4065 	dev->kvm = kvm;
4066 
4067 	mutex_lock(&kvm->lock);
4068 	ret = ops->create(dev, type);
4069 	if (ret < 0) {
4070 		mutex_unlock(&kvm->lock);
4071 		kfree(dev);
4072 		return ret;
4073 	}
4074 	list_add(&dev->vm_node, &kvm->devices);
4075 	mutex_unlock(&kvm->lock);
4076 
4077 	if (ops->init)
4078 		ops->init(dev);
4079 
4080 	kvm_get_kvm(kvm);
4081 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4082 	if (ret < 0) {
4083 		kvm_put_kvm_no_destroy(kvm);
4084 		mutex_lock(&kvm->lock);
4085 		list_del(&dev->vm_node);
4086 		mutex_unlock(&kvm->lock);
4087 		ops->destroy(dev);
4088 		return ret;
4089 	}
4090 
4091 	cd->fd = ret;
4092 	return 0;
4093 }
4094 
4095 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4096 {
4097 	switch (arg) {
4098 	case KVM_CAP_USER_MEMORY:
4099 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4100 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4101 	case KVM_CAP_INTERNAL_ERROR_DATA:
4102 #ifdef CONFIG_HAVE_KVM_MSI
4103 	case KVM_CAP_SIGNAL_MSI:
4104 #endif
4105 #ifdef CONFIG_HAVE_KVM_IRQFD
4106 	case KVM_CAP_IRQFD:
4107 	case KVM_CAP_IRQFD_RESAMPLE:
4108 #endif
4109 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4110 	case KVM_CAP_CHECK_EXTENSION_VM:
4111 	case KVM_CAP_ENABLE_CAP_VM:
4112 	case KVM_CAP_HALT_POLL:
4113 		return 1;
4114 #ifdef CONFIG_KVM_MMIO
4115 	case KVM_CAP_COALESCED_MMIO:
4116 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4117 	case KVM_CAP_COALESCED_PIO:
4118 		return 1;
4119 #endif
4120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4121 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4122 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4123 #endif
4124 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4125 	case KVM_CAP_IRQ_ROUTING:
4126 		return KVM_MAX_IRQ_ROUTES;
4127 #endif
4128 #if KVM_ADDRESS_SPACE_NUM > 1
4129 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4130 		return KVM_ADDRESS_SPACE_NUM;
4131 #endif
4132 	case KVM_CAP_NR_MEMSLOTS:
4133 		return KVM_USER_MEM_SLOTS;
4134 	case KVM_CAP_DIRTY_LOG_RING:
4135 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4136 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4137 #else
4138 		return 0;
4139 #endif
4140 	case KVM_CAP_BINARY_STATS_FD:
4141 		return 1;
4142 	default:
4143 		break;
4144 	}
4145 	return kvm_vm_ioctl_check_extension(kvm, arg);
4146 }
4147 
4148 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4149 {
4150 	int r;
4151 
4152 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4153 		return -EINVAL;
4154 
4155 	/* the size should be power of 2 */
4156 	if (!size || (size & (size - 1)))
4157 		return -EINVAL;
4158 
4159 	/* Should be bigger to keep the reserved entries, or a page */
4160 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4161 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4162 		return -EINVAL;
4163 
4164 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4165 	    sizeof(struct kvm_dirty_gfn))
4166 		return -E2BIG;
4167 
4168 	/* We only allow it to set once */
4169 	if (kvm->dirty_ring_size)
4170 		return -EINVAL;
4171 
4172 	mutex_lock(&kvm->lock);
4173 
4174 	if (kvm->created_vcpus) {
4175 		/* We don't allow to change this value after vcpu created */
4176 		r = -EINVAL;
4177 	} else {
4178 		kvm->dirty_ring_size = size;
4179 		r = 0;
4180 	}
4181 
4182 	mutex_unlock(&kvm->lock);
4183 	return r;
4184 }
4185 
4186 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4187 {
4188 	int i;
4189 	struct kvm_vcpu *vcpu;
4190 	int cleared = 0;
4191 
4192 	if (!kvm->dirty_ring_size)
4193 		return -EINVAL;
4194 
4195 	mutex_lock(&kvm->slots_lock);
4196 
4197 	kvm_for_each_vcpu(i, vcpu, kvm)
4198 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4199 
4200 	mutex_unlock(&kvm->slots_lock);
4201 
4202 	if (cleared)
4203 		kvm_flush_remote_tlbs(kvm);
4204 
4205 	return cleared;
4206 }
4207 
4208 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4209 						  struct kvm_enable_cap *cap)
4210 {
4211 	return -EINVAL;
4212 }
4213 
4214 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4215 					   struct kvm_enable_cap *cap)
4216 {
4217 	switch (cap->cap) {
4218 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4219 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4220 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4221 
4222 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4223 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4224 
4225 		if (cap->flags || (cap->args[0] & ~allowed_options))
4226 			return -EINVAL;
4227 		kvm->manual_dirty_log_protect = cap->args[0];
4228 		return 0;
4229 	}
4230 #endif
4231 	case KVM_CAP_HALT_POLL: {
4232 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4233 			return -EINVAL;
4234 
4235 		kvm->max_halt_poll_ns = cap->args[0];
4236 		return 0;
4237 	}
4238 	case KVM_CAP_DIRTY_LOG_RING:
4239 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4240 	default:
4241 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4242 	}
4243 }
4244 
4245 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4246 			      size_t size, loff_t *offset)
4247 {
4248 	struct kvm *kvm = file->private_data;
4249 
4250 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4251 				&kvm_vm_stats_desc[0], &kvm->stat,
4252 				sizeof(kvm->stat), user_buffer, size, offset);
4253 }
4254 
4255 static const struct file_operations kvm_vm_stats_fops = {
4256 	.read = kvm_vm_stats_read,
4257 	.llseek = noop_llseek,
4258 };
4259 
4260 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4261 {
4262 	int fd;
4263 	struct file *file;
4264 
4265 	fd = get_unused_fd_flags(O_CLOEXEC);
4266 	if (fd < 0)
4267 		return fd;
4268 
4269 	file = anon_inode_getfile("kvm-vm-stats",
4270 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4271 	if (IS_ERR(file)) {
4272 		put_unused_fd(fd);
4273 		return PTR_ERR(file);
4274 	}
4275 	file->f_mode |= FMODE_PREAD;
4276 	fd_install(fd, file);
4277 
4278 	return fd;
4279 }
4280 
4281 static long kvm_vm_ioctl(struct file *filp,
4282 			   unsigned int ioctl, unsigned long arg)
4283 {
4284 	struct kvm *kvm = filp->private_data;
4285 	void __user *argp = (void __user *)arg;
4286 	int r;
4287 
4288 	if (kvm->mm != current->mm || kvm->vm_dead)
4289 		return -EIO;
4290 	switch (ioctl) {
4291 	case KVM_CREATE_VCPU:
4292 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4293 		break;
4294 	case KVM_ENABLE_CAP: {
4295 		struct kvm_enable_cap cap;
4296 
4297 		r = -EFAULT;
4298 		if (copy_from_user(&cap, argp, sizeof(cap)))
4299 			goto out;
4300 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4301 		break;
4302 	}
4303 	case KVM_SET_USER_MEMORY_REGION: {
4304 		struct kvm_userspace_memory_region kvm_userspace_mem;
4305 
4306 		r = -EFAULT;
4307 		if (copy_from_user(&kvm_userspace_mem, argp,
4308 						sizeof(kvm_userspace_mem)))
4309 			goto out;
4310 
4311 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4312 		break;
4313 	}
4314 	case KVM_GET_DIRTY_LOG: {
4315 		struct kvm_dirty_log log;
4316 
4317 		r = -EFAULT;
4318 		if (copy_from_user(&log, argp, sizeof(log)))
4319 			goto out;
4320 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4321 		break;
4322 	}
4323 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4324 	case KVM_CLEAR_DIRTY_LOG: {
4325 		struct kvm_clear_dirty_log log;
4326 
4327 		r = -EFAULT;
4328 		if (copy_from_user(&log, argp, sizeof(log)))
4329 			goto out;
4330 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4331 		break;
4332 	}
4333 #endif
4334 #ifdef CONFIG_KVM_MMIO
4335 	case KVM_REGISTER_COALESCED_MMIO: {
4336 		struct kvm_coalesced_mmio_zone zone;
4337 
4338 		r = -EFAULT;
4339 		if (copy_from_user(&zone, argp, sizeof(zone)))
4340 			goto out;
4341 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4342 		break;
4343 	}
4344 	case KVM_UNREGISTER_COALESCED_MMIO: {
4345 		struct kvm_coalesced_mmio_zone zone;
4346 
4347 		r = -EFAULT;
4348 		if (copy_from_user(&zone, argp, sizeof(zone)))
4349 			goto out;
4350 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4351 		break;
4352 	}
4353 #endif
4354 	case KVM_IRQFD: {
4355 		struct kvm_irqfd data;
4356 
4357 		r = -EFAULT;
4358 		if (copy_from_user(&data, argp, sizeof(data)))
4359 			goto out;
4360 		r = kvm_irqfd(kvm, &data);
4361 		break;
4362 	}
4363 	case KVM_IOEVENTFD: {
4364 		struct kvm_ioeventfd data;
4365 
4366 		r = -EFAULT;
4367 		if (copy_from_user(&data, argp, sizeof(data)))
4368 			goto out;
4369 		r = kvm_ioeventfd(kvm, &data);
4370 		break;
4371 	}
4372 #ifdef CONFIG_HAVE_KVM_MSI
4373 	case KVM_SIGNAL_MSI: {
4374 		struct kvm_msi msi;
4375 
4376 		r = -EFAULT;
4377 		if (copy_from_user(&msi, argp, sizeof(msi)))
4378 			goto out;
4379 		r = kvm_send_userspace_msi(kvm, &msi);
4380 		break;
4381 	}
4382 #endif
4383 #ifdef __KVM_HAVE_IRQ_LINE
4384 	case KVM_IRQ_LINE_STATUS:
4385 	case KVM_IRQ_LINE: {
4386 		struct kvm_irq_level irq_event;
4387 
4388 		r = -EFAULT;
4389 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4390 			goto out;
4391 
4392 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4393 					ioctl == KVM_IRQ_LINE_STATUS);
4394 		if (r)
4395 			goto out;
4396 
4397 		r = -EFAULT;
4398 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4399 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4400 				goto out;
4401 		}
4402 
4403 		r = 0;
4404 		break;
4405 	}
4406 #endif
4407 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4408 	case KVM_SET_GSI_ROUTING: {
4409 		struct kvm_irq_routing routing;
4410 		struct kvm_irq_routing __user *urouting;
4411 		struct kvm_irq_routing_entry *entries = NULL;
4412 
4413 		r = -EFAULT;
4414 		if (copy_from_user(&routing, argp, sizeof(routing)))
4415 			goto out;
4416 		r = -EINVAL;
4417 		if (!kvm_arch_can_set_irq_routing(kvm))
4418 			goto out;
4419 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4420 			goto out;
4421 		if (routing.flags)
4422 			goto out;
4423 		if (routing.nr) {
4424 			urouting = argp;
4425 			entries = vmemdup_user(urouting->entries,
4426 					       array_size(sizeof(*entries),
4427 							  routing.nr));
4428 			if (IS_ERR(entries)) {
4429 				r = PTR_ERR(entries);
4430 				goto out;
4431 			}
4432 		}
4433 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4434 					routing.flags);
4435 		kvfree(entries);
4436 		break;
4437 	}
4438 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4439 	case KVM_CREATE_DEVICE: {
4440 		struct kvm_create_device cd;
4441 
4442 		r = -EFAULT;
4443 		if (copy_from_user(&cd, argp, sizeof(cd)))
4444 			goto out;
4445 
4446 		r = kvm_ioctl_create_device(kvm, &cd);
4447 		if (r)
4448 			goto out;
4449 
4450 		r = -EFAULT;
4451 		if (copy_to_user(argp, &cd, sizeof(cd)))
4452 			goto out;
4453 
4454 		r = 0;
4455 		break;
4456 	}
4457 	case KVM_CHECK_EXTENSION:
4458 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4459 		break;
4460 	case KVM_RESET_DIRTY_RINGS:
4461 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4462 		break;
4463 	case KVM_GET_STATS_FD:
4464 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4465 		break;
4466 	default:
4467 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4468 	}
4469 out:
4470 	return r;
4471 }
4472 
4473 #ifdef CONFIG_KVM_COMPAT
4474 struct compat_kvm_dirty_log {
4475 	__u32 slot;
4476 	__u32 padding1;
4477 	union {
4478 		compat_uptr_t dirty_bitmap; /* one bit per page */
4479 		__u64 padding2;
4480 	};
4481 };
4482 
4483 struct compat_kvm_clear_dirty_log {
4484 	__u32 slot;
4485 	__u32 num_pages;
4486 	__u64 first_page;
4487 	union {
4488 		compat_uptr_t dirty_bitmap; /* one bit per page */
4489 		__u64 padding2;
4490 	};
4491 };
4492 
4493 static long kvm_vm_compat_ioctl(struct file *filp,
4494 			   unsigned int ioctl, unsigned long arg)
4495 {
4496 	struct kvm *kvm = filp->private_data;
4497 	int r;
4498 
4499 	if (kvm->mm != current->mm || kvm->vm_dead)
4500 		return -EIO;
4501 	switch (ioctl) {
4502 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4503 	case KVM_CLEAR_DIRTY_LOG: {
4504 		struct compat_kvm_clear_dirty_log compat_log;
4505 		struct kvm_clear_dirty_log log;
4506 
4507 		if (copy_from_user(&compat_log, (void __user *)arg,
4508 				   sizeof(compat_log)))
4509 			return -EFAULT;
4510 		log.slot	 = compat_log.slot;
4511 		log.num_pages	 = compat_log.num_pages;
4512 		log.first_page	 = compat_log.first_page;
4513 		log.padding2	 = compat_log.padding2;
4514 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4515 
4516 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4517 		break;
4518 	}
4519 #endif
4520 	case KVM_GET_DIRTY_LOG: {
4521 		struct compat_kvm_dirty_log compat_log;
4522 		struct kvm_dirty_log log;
4523 
4524 		if (copy_from_user(&compat_log, (void __user *)arg,
4525 				   sizeof(compat_log)))
4526 			return -EFAULT;
4527 		log.slot	 = compat_log.slot;
4528 		log.padding1	 = compat_log.padding1;
4529 		log.padding2	 = compat_log.padding2;
4530 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4531 
4532 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4533 		break;
4534 	}
4535 	default:
4536 		r = kvm_vm_ioctl(filp, ioctl, arg);
4537 	}
4538 	return r;
4539 }
4540 #endif
4541 
4542 static struct file_operations kvm_vm_fops = {
4543 	.release        = kvm_vm_release,
4544 	.unlocked_ioctl = kvm_vm_ioctl,
4545 	.llseek		= noop_llseek,
4546 	KVM_COMPAT(kvm_vm_compat_ioctl),
4547 };
4548 
4549 bool file_is_kvm(struct file *file)
4550 {
4551 	return file && file->f_op == &kvm_vm_fops;
4552 }
4553 EXPORT_SYMBOL_GPL(file_is_kvm);
4554 
4555 static int kvm_dev_ioctl_create_vm(unsigned long type)
4556 {
4557 	int r;
4558 	struct kvm *kvm;
4559 	struct file *file;
4560 
4561 	kvm = kvm_create_vm(type);
4562 	if (IS_ERR(kvm))
4563 		return PTR_ERR(kvm);
4564 #ifdef CONFIG_KVM_MMIO
4565 	r = kvm_coalesced_mmio_init(kvm);
4566 	if (r < 0)
4567 		goto put_kvm;
4568 #endif
4569 	r = get_unused_fd_flags(O_CLOEXEC);
4570 	if (r < 0)
4571 		goto put_kvm;
4572 
4573 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4574 			"kvm-%d", task_pid_nr(current));
4575 
4576 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4577 	if (IS_ERR(file)) {
4578 		put_unused_fd(r);
4579 		r = PTR_ERR(file);
4580 		goto put_kvm;
4581 	}
4582 
4583 	/*
4584 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4585 	 * already set, with ->release() being kvm_vm_release().  In error
4586 	 * cases it will be called by the final fput(file) and will take
4587 	 * care of doing kvm_put_kvm(kvm).
4588 	 */
4589 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4590 		put_unused_fd(r);
4591 		fput(file);
4592 		return -ENOMEM;
4593 	}
4594 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4595 
4596 	fd_install(r, file);
4597 	return r;
4598 
4599 put_kvm:
4600 	kvm_put_kvm(kvm);
4601 	return r;
4602 }
4603 
4604 static long kvm_dev_ioctl(struct file *filp,
4605 			  unsigned int ioctl, unsigned long arg)
4606 {
4607 	long r = -EINVAL;
4608 
4609 	switch (ioctl) {
4610 	case KVM_GET_API_VERSION:
4611 		if (arg)
4612 			goto out;
4613 		r = KVM_API_VERSION;
4614 		break;
4615 	case KVM_CREATE_VM:
4616 		r = kvm_dev_ioctl_create_vm(arg);
4617 		break;
4618 	case KVM_CHECK_EXTENSION:
4619 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4620 		break;
4621 	case KVM_GET_VCPU_MMAP_SIZE:
4622 		if (arg)
4623 			goto out;
4624 		r = PAGE_SIZE;     /* struct kvm_run */
4625 #ifdef CONFIG_X86
4626 		r += PAGE_SIZE;    /* pio data page */
4627 #endif
4628 #ifdef CONFIG_KVM_MMIO
4629 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4630 #endif
4631 		break;
4632 	case KVM_TRACE_ENABLE:
4633 	case KVM_TRACE_PAUSE:
4634 	case KVM_TRACE_DISABLE:
4635 		r = -EOPNOTSUPP;
4636 		break;
4637 	default:
4638 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4639 	}
4640 out:
4641 	return r;
4642 }
4643 
4644 static struct file_operations kvm_chardev_ops = {
4645 	.unlocked_ioctl = kvm_dev_ioctl,
4646 	.llseek		= noop_llseek,
4647 	KVM_COMPAT(kvm_dev_ioctl),
4648 };
4649 
4650 static struct miscdevice kvm_dev = {
4651 	KVM_MINOR,
4652 	"kvm",
4653 	&kvm_chardev_ops,
4654 };
4655 
4656 static void hardware_enable_nolock(void *junk)
4657 {
4658 	int cpu = raw_smp_processor_id();
4659 	int r;
4660 
4661 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4662 		return;
4663 
4664 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4665 
4666 	r = kvm_arch_hardware_enable();
4667 
4668 	if (r) {
4669 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4670 		atomic_inc(&hardware_enable_failed);
4671 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4672 	}
4673 }
4674 
4675 static int kvm_starting_cpu(unsigned int cpu)
4676 {
4677 	raw_spin_lock(&kvm_count_lock);
4678 	if (kvm_usage_count)
4679 		hardware_enable_nolock(NULL);
4680 	raw_spin_unlock(&kvm_count_lock);
4681 	return 0;
4682 }
4683 
4684 static void hardware_disable_nolock(void *junk)
4685 {
4686 	int cpu = raw_smp_processor_id();
4687 
4688 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4689 		return;
4690 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4691 	kvm_arch_hardware_disable();
4692 }
4693 
4694 static int kvm_dying_cpu(unsigned int cpu)
4695 {
4696 	raw_spin_lock(&kvm_count_lock);
4697 	if (kvm_usage_count)
4698 		hardware_disable_nolock(NULL);
4699 	raw_spin_unlock(&kvm_count_lock);
4700 	return 0;
4701 }
4702 
4703 static void hardware_disable_all_nolock(void)
4704 {
4705 	BUG_ON(!kvm_usage_count);
4706 
4707 	kvm_usage_count--;
4708 	if (!kvm_usage_count)
4709 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4710 }
4711 
4712 static void hardware_disable_all(void)
4713 {
4714 	raw_spin_lock(&kvm_count_lock);
4715 	hardware_disable_all_nolock();
4716 	raw_spin_unlock(&kvm_count_lock);
4717 }
4718 
4719 static int hardware_enable_all(void)
4720 {
4721 	int r = 0;
4722 
4723 	raw_spin_lock(&kvm_count_lock);
4724 
4725 	kvm_usage_count++;
4726 	if (kvm_usage_count == 1) {
4727 		atomic_set(&hardware_enable_failed, 0);
4728 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4729 
4730 		if (atomic_read(&hardware_enable_failed)) {
4731 			hardware_disable_all_nolock();
4732 			r = -EBUSY;
4733 		}
4734 	}
4735 
4736 	raw_spin_unlock(&kvm_count_lock);
4737 
4738 	return r;
4739 }
4740 
4741 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4742 		      void *v)
4743 {
4744 	/*
4745 	 * Some (well, at least mine) BIOSes hang on reboot if
4746 	 * in vmx root mode.
4747 	 *
4748 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4749 	 */
4750 	pr_info("kvm: exiting hardware virtualization\n");
4751 	kvm_rebooting = true;
4752 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4753 	return NOTIFY_OK;
4754 }
4755 
4756 static struct notifier_block kvm_reboot_notifier = {
4757 	.notifier_call = kvm_reboot,
4758 	.priority = 0,
4759 };
4760 
4761 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4762 {
4763 	int i;
4764 
4765 	for (i = 0; i < bus->dev_count; i++) {
4766 		struct kvm_io_device *pos = bus->range[i].dev;
4767 
4768 		kvm_iodevice_destructor(pos);
4769 	}
4770 	kfree(bus);
4771 }
4772 
4773 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4774 				 const struct kvm_io_range *r2)
4775 {
4776 	gpa_t addr1 = r1->addr;
4777 	gpa_t addr2 = r2->addr;
4778 
4779 	if (addr1 < addr2)
4780 		return -1;
4781 
4782 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4783 	 * accept any overlapping write.  Any order is acceptable for
4784 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4785 	 * we process all of them.
4786 	 */
4787 	if (r2->len) {
4788 		addr1 += r1->len;
4789 		addr2 += r2->len;
4790 	}
4791 
4792 	if (addr1 > addr2)
4793 		return 1;
4794 
4795 	return 0;
4796 }
4797 
4798 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4799 {
4800 	return kvm_io_bus_cmp(p1, p2);
4801 }
4802 
4803 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4804 			     gpa_t addr, int len)
4805 {
4806 	struct kvm_io_range *range, key;
4807 	int off;
4808 
4809 	key = (struct kvm_io_range) {
4810 		.addr = addr,
4811 		.len = len,
4812 	};
4813 
4814 	range = bsearch(&key, bus->range, bus->dev_count,
4815 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4816 	if (range == NULL)
4817 		return -ENOENT;
4818 
4819 	off = range - bus->range;
4820 
4821 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4822 		off--;
4823 
4824 	return off;
4825 }
4826 
4827 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4828 			      struct kvm_io_range *range, const void *val)
4829 {
4830 	int idx;
4831 
4832 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4833 	if (idx < 0)
4834 		return -EOPNOTSUPP;
4835 
4836 	while (idx < bus->dev_count &&
4837 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4838 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4839 					range->len, val))
4840 			return idx;
4841 		idx++;
4842 	}
4843 
4844 	return -EOPNOTSUPP;
4845 }
4846 
4847 /* kvm_io_bus_write - called under kvm->slots_lock */
4848 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4849 		     int len, const void *val)
4850 {
4851 	struct kvm_io_bus *bus;
4852 	struct kvm_io_range range;
4853 	int r;
4854 
4855 	range = (struct kvm_io_range) {
4856 		.addr = addr,
4857 		.len = len,
4858 	};
4859 
4860 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4861 	if (!bus)
4862 		return -ENOMEM;
4863 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4864 	return r < 0 ? r : 0;
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4867 
4868 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4869 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4870 			    gpa_t addr, int len, const void *val, long cookie)
4871 {
4872 	struct kvm_io_bus *bus;
4873 	struct kvm_io_range range;
4874 
4875 	range = (struct kvm_io_range) {
4876 		.addr = addr,
4877 		.len = len,
4878 	};
4879 
4880 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4881 	if (!bus)
4882 		return -ENOMEM;
4883 
4884 	/* First try the device referenced by cookie. */
4885 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4886 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4887 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4888 					val))
4889 			return cookie;
4890 
4891 	/*
4892 	 * cookie contained garbage; fall back to search and return the
4893 	 * correct cookie value.
4894 	 */
4895 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4896 }
4897 
4898 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4899 			     struct kvm_io_range *range, void *val)
4900 {
4901 	int idx;
4902 
4903 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4904 	if (idx < 0)
4905 		return -EOPNOTSUPP;
4906 
4907 	while (idx < bus->dev_count &&
4908 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4909 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4910 				       range->len, val))
4911 			return idx;
4912 		idx++;
4913 	}
4914 
4915 	return -EOPNOTSUPP;
4916 }
4917 
4918 /* kvm_io_bus_read - called under kvm->slots_lock */
4919 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4920 		    int len, void *val)
4921 {
4922 	struct kvm_io_bus *bus;
4923 	struct kvm_io_range range;
4924 	int r;
4925 
4926 	range = (struct kvm_io_range) {
4927 		.addr = addr,
4928 		.len = len,
4929 	};
4930 
4931 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4932 	if (!bus)
4933 		return -ENOMEM;
4934 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4935 	return r < 0 ? r : 0;
4936 }
4937 
4938 /* Caller must hold slots_lock. */
4939 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4940 			    int len, struct kvm_io_device *dev)
4941 {
4942 	int i;
4943 	struct kvm_io_bus *new_bus, *bus;
4944 	struct kvm_io_range range;
4945 
4946 	bus = kvm_get_bus(kvm, bus_idx);
4947 	if (!bus)
4948 		return -ENOMEM;
4949 
4950 	/* exclude ioeventfd which is limited by maximum fd */
4951 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4952 		return -ENOSPC;
4953 
4954 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4955 			  GFP_KERNEL_ACCOUNT);
4956 	if (!new_bus)
4957 		return -ENOMEM;
4958 
4959 	range = (struct kvm_io_range) {
4960 		.addr = addr,
4961 		.len = len,
4962 		.dev = dev,
4963 	};
4964 
4965 	for (i = 0; i < bus->dev_count; i++)
4966 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4967 			break;
4968 
4969 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4970 	new_bus->dev_count++;
4971 	new_bus->range[i] = range;
4972 	memcpy(new_bus->range + i + 1, bus->range + i,
4973 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4974 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4975 	synchronize_srcu_expedited(&kvm->srcu);
4976 	kfree(bus);
4977 
4978 	return 0;
4979 }
4980 
4981 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4982 			      struct kvm_io_device *dev)
4983 {
4984 	int i, j;
4985 	struct kvm_io_bus *new_bus, *bus;
4986 
4987 	lockdep_assert_held(&kvm->slots_lock);
4988 
4989 	bus = kvm_get_bus(kvm, bus_idx);
4990 	if (!bus)
4991 		return 0;
4992 
4993 	for (i = 0; i < bus->dev_count; i++) {
4994 		if (bus->range[i].dev == dev) {
4995 			break;
4996 		}
4997 	}
4998 
4999 	if (i == bus->dev_count)
5000 		return 0;
5001 
5002 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5003 			  GFP_KERNEL_ACCOUNT);
5004 	if (new_bus) {
5005 		memcpy(new_bus, bus, struct_size(bus, range, i));
5006 		new_bus->dev_count--;
5007 		memcpy(new_bus->range + i, bus->range + i + 1,
5008 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5009 	}
5010 
5011 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5012 	synchronize_srcu_expedited(&kvm->srcu);
5013 
5014 	/* Destroy the old bus _after_ installing the (null) bus. */
5015 	if (!new_bus) {
5016 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5017 		for (j = 0; j < bus->dev_count; j++) {
5018 			if (j == i)
5019 				continue;
5020 			kvm_iodevice_destructor(bus->range[j].dev);
5021 		}
5022 	}
5023 
5024 	kfree(bus);
5025 	return new_bus ? 0 : -ENOMEM;
5026 }
5027 
5028 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5029 					 gpa_t addr)
5030 {
5031 	struct kvm_io_bus *bus;
5032 	int dev_idx, srcu_idx;
5033 	struct kvm_io_device *iodev = NULL;
5034 
5035 	srcu_idx = srcu_read_lock(&kvm->srcu);
5036 
5037 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5038 	if (!bus)
5039 		goto out_unlock;
5040 
5041 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5042 	if (dev_idx < 0)
5043 		goto out_unlock;
5044 
5045 	iodev = bus->range[dev_idx].dev;
5046 
5047 out_unlock:
5048 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5049 
5050 	return iodev;
5051 }
5052 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5053 
5054 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5055 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5056 			   const char *fmt)
5057 {
5058 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5059 					  inode->i_private;
5060 
5061 	/*
5062 	 * The debugfs files are a reference to the kvm struct which
5063         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5064         * avoids the race between open and the removal of the debugfs directory.
5065 	 */
5066 	if (!kvm_get_kvm_safe(stat_data->kvm))
5067 		return -ENOENT;
5068 
5069 	if (simple_attr_open(inode, file, get,
5070 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5071 		    ? set : NULL,
5072 		    fmt)) {
5073 		kvm_put_kvm(stat_data->kvm);
5074 		return -ENOMEM;
5075 	}
5076 
5077 	return 0;
5078 }
5079 
5080 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5081 {
5082 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5083 					  inode->i_private;
5084 
5085 	simple_attr_release(inode, file);
5086 	kvm_put_kvm(stat_data->kvm);
5087 
5088 	return 0;
5089 }
5090 
5091 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5092 {
5093 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5094 
5095 	return 0;
5096 }
5097 
5098 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5099 {
5100 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5101 
5102 	return 0;
5103 }
5104 
5105 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5106 {
5107 	int i;
5108 	struct kvm_vcpu *vcpu;
5109 
5110 	*val = 0;
5111 
5112 	kvm_for_each_vcpu(i, vcpu, kvm)
5113 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5114 
5115 	return 0;
5116 }
5117 
5118 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5119 {
5120 	int i;
5121 	struct kvm_vcpu *vcpu;
5122 
5123 	kvm_for_each_vcpu(i, vcpu, kvm)
5124 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5125 
5126 	return 0;
5127 }
5128 
5129 static int kvm_stat_data_get(void *data, u64 *val)
5130 {
5131 	int r = -EFAULT;
5132 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5133 
5134 	switch (stat_data->kind) {
5135 	case KVM_STAT_VM:
5136 		r = kvm_get_stat_per_vm(stat_data->kvm,
5137 					stat_data->desc->desc.offset, val);
5138 		break;
5139 	case KVM_STAT_VCPU:
5140 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5141 					  stat_data->desc->desc.offset, val);
5142 		break;
5143 	}
5144 
5145 	return r;
5146 }
5147 
5148 static int kvm_stat_data_clear(void *data, u64 val)
5149 {
5150 	int r = -EFAULT;
5151 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5152 
5153 	if (val)
5154 		return -EINVAL;
5155 
5156 	switch (stat_data->kind) {
5157 	case KVM_STAT_VM:
5158 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5159 					  stat_data->desc->desc.offset);
5160 		break;
5161 	case KVM_STAT_VCPU:
5162 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5163 					    stat_data->desc->desc.offset);
5164 		break;
5165 	}
5166 
5167 	return r;
5168 }
5169 
5170 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5171 {
5172 	__simple_attr_check_format("%llu\n", 0ull);
5173 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5174 				kvm_stat_data_clear, "%llu\n");
5175 }
5176 
5177 static const struct file_operations stat_fops_per_vm = {
5178 	.owner = THIS_MODULE,
5179 	.open = kvm_stat_data_open,
5180 	.release = kvm_debugfs_release,
5181 	.read = simple_attr_read,
5182 	.write = simple_attr_write,
5183 	.llseek = no_llseek,
5184 };
5185 
5186 static int vm_stat_get(void *_offset, u64 *val)
5187 {
5188 	unsigned offset = (long)_offset;
5189 	struct kvm *kvm;
5190 	u64 tmp_val;
5191 
5192 	*val = 0;
5193 	mutex_lock(&kvm_lock);
5194 	list_for_each_entry(kvm, &vm_list, vm_list) {
5195 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5196 		*val += tmp_val;
5197 	}
5198 	mutex_unlock(&kvm_lock);
5199 	return 0;
5200 }
5201 
5202 static int vm_stat_clear(void *_offset, u64 val)
5203 {
5204 	unsigned offset = (long)_offset;
5205 	struct kvm *kvm;
5206 
5207 	if (val)
5208 		return -EINVAL;
5209 
5210 	mutex_lock(&kvm_lock);
5211 	list_for_each_entry(kvm, &vm_list, vm_list) {
5212 		kvm_clear_stat_per_vm(kvm, offset);
5213 	}
5214 	mutex_unlock(&kvm_lock);
5215 
5216 	return 0;
5217 }
5218 
5219 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5220 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5221 
5222 static int vcpu_stat_get(void *_offset, u64 *val)
5223 {
5224 	unsigned offset = (long)_offset;
5225 	struct kvm *kvm;
5226 	u64 tmp_val;
5227 
5228 	*val = 0;
5229 	mutex_lock(&kvm_lock);
5230 	list_for_each_entry(kvm, &vm_list, vm_list) {
5231 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5232 		*val += tmp_val;
5233 	}
5234 	mutex_unlock(&kvm_lock);
5235 	return 0;
5236 }
5237 
5238 static int vcpu_stat_clear(void *_offset, u64 val)
5239 {
5240 	unsigned offset = (long)_offset;
5241 	struct kvm *kvm;
5242 
5243 	if (val)
5244 		return -EINVAL;
5245 
5246 	mutex_lock(&kvm_lock);
5247 	list_for_each_entry(kvm, &vm_list, vm_list) {
5248 		kvm_clear_stat_per_vcpu(kvm, offset);
5249 	}
5250 	mutex_unlock(&kvm_lock);
5251 
5252 	return 0;
5253 }
5254 
5255 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5256 			"%llu\n");
5257 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5258 
5259 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5260 {
5261 	struct kobj_uevent_env *env;
5262 	unsigned long long created, active;
5263 
5264 	if (!kvm_dev.this_device || !kvm)
5265 		return;
5266 
5267 	mutex_lock(&kvm_lock);
5268 	if (type == KVM_EVENT_CREATE_VM) {
5269 		kvm_createvm_count++;
5270 		kvm_active_vms++;
5271 	} else if (type == KVM_EVENT_DESTROY_VM) {
5272 		kvm_active_vms--;
5273 	}
5274 	created = kvm_createvm_count;
5275 	active = kvm_active_vms;
5276 	mutex_unlock(&kvm_lock);
5277 
5278 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5279 	if (!env)
5280 		return;
5281 
5282 	add_uevent_var(env, "CREATED=%llu", created);
5283 	add_uevent_var(env, "COUNT=%llu", active);
5284 
5285 	if (type == KVM_EVENT_CREATE_VM) {
5286 		add_uevent_var(env, "EVENT=create");
5287 		kvm->userspace_pid = task_pid_nr(current);
5288 	} else if (type == KVM_EVENT_DESTROY_VM) {
5289 		add_uevent_var(env, "EVENT=destroy");
5290 	}
5291 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5292 
5293 	if (kvm->debugfs_dentry) {
5294 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5295 
5296 		if (p) {
5297 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5298 			if (!IS_ERR(tmp))
5299 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5300 			kfree(p);
5301 		}
5302 	}
5303 	/* no need for checks, since we are adding at most only 5 keys */
5304 	env->envp[env->envp_idx++] = NULL;
5305 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5306 	kfree(env);
5307 }
5308 
5309 static void kvm_init_debug(void)
5310 {
5311 	const struct file_operations *fops;
5312 	const struct _kvm_stats_desc *pdesc;
5313 	int i;
5314 
5315 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5316 
5317 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5318 		pdesc = &kvm_vm_stats_desc[i];
5319 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5320 			fops = &vm_stat_fops;
5321 		else
5322 			fops = &vm_stat_readonly_fops;
5323 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5324 				kvm_debugfs_dir,
5325 				(void *)(long)pdesc->desc.offset, fops);
5326 	}
5327 
5328 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5329 		pdesc = &kvm_vcpu_stats_desc[i];
5330 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5331 			fops = &vcpu_stat_fops;
5332 		else
5333 			fops = &vcpu_stat_readonly_fops;
5334 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5335 				kvm_debugfs_dir,
5336 				(void *)(long)pdesc->desc.offset, fops);
5337 	}
5338 }
5339 
5340 static int kvm_suspend(void)
5341 {
5342 	if (kvm_usage_count)
5343 		hardware_disable_nolock(NULL);
5344 	return 0;
5345 }
5346 
5347 static void kvm_resume(void)
5348 {
5349 	if (kvm_usage_count) {
5350 #ifdef CONFIG_LOCKDEP
5351 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5352 #endif
5353 		hardware_enable_nolock(NULL);
5354 	}
5355 }
5356 
5357 static struct syscore_ops kvm_syscore_ops = {
5358 	.suspend = kvm_suspend,
5359 	.resume = kvm_resume,
5360 };
5361 
5362 static inline
5363 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5364 {
5365 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5366 }
5367 
5368 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5369 {
5370 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5371 
5372 	WRITE_ONCE(vcpu->preempted, false);
5373 	WRITE_ONCE(vcpu->ready, false);
5374 
5375 	__this_cpu_write(kvm_running_vcpu, vcpu);
5376 	kvm_arch_sched_in(vcpu, cpu);
5377 	kvm_arch_vcpu_load(vcpu, cpu);
5378 }
5379 
5380 static void kvm_sched_out(struct preempt_notifier *pn,
5381 			  struct task_struct *next)
5382 {
5383 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5384 
5385 	if (current->on_rq) {
5386 		WRITE_ONCE(vcpu->preempted, true);
5387 		WRITE_ONCE(vcpu->ready, true);
5388 	}
5389 	kvm_arch_vcpu_put(vcpu);
5390 	__this_cpu_write(kvm_running_vcpu, NULL);
5391 }
5392 
5393 /**
5394  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5395  *
5396  * We can disable preemption locally around accessing the per-CPU variable,
5397  * and use the resolved vcpu pointer after enabling preemption again,
5398  * because even if the current thread is migrated to another CPU, reading
5399  * the per-CPU value later will give us the same value as we update the
5400  * per-CPU variable in the preempt notifier handlers.
5401  */
5402 struct kvm_vcpu *kvm_get_running_vcpu(void)
5403 {
5404 	struct kvm_vcpu *vcpu;
5405 
5406 	preempt_disable();
5407 	vcpu = __this_cpu_read(kvm_running_vcpu);
5408 	preempt_enable();
5409 
5410 	return vcpu;
5411 }
5412 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5413 
5414 /**
5415  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5416  */
5417 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5418 {
5419         return &kvm_running_vcpu;
5420 }
5421 
5422 struct kvm_cpu_compat_check {
5423 	void *opaque;
5424 	int *ret;
5425 };
5426 
5427 static void check_processor_compat(void *data)
5428 {
5429 	struct kvm_cpu_compat_check *c = data;
5430 
5431 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5432 }
5433 
5434 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5435 		  struct module *module)
5436 {
5437 	struct kvm_cpu_compat_check c;
5438 	int r;
5439 	int cpu;
5440 
5441 	r = kvm_arch_init(opaque);
5442 	if (r)
5443 		goto out_fail;
5444 
5445 	/*
5446 	 * kvm_arch_init makes sure there's at most one caller
5447 	 * for architectures that support multiple implementations,
5448 	 * like intel and amd on x86.
5449 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5450 	 * conflicts in case kvm is already setup for another implementation.
5451 	 */
5452 	r = kvm_irqfd_init();
5453 	if (r)
5454 		goto out_irqfd;
5455 
5456 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5457 		r = -ENOMEM;
5458 		goto out_free_0;
5459 	}
5460 
5461 	r = kvm_arch_hardware_setup(opaque);
5462 	if (r < 0)
5463 		goto out_free_1;
5464 
5465 	c.ret = &r;
5466 	c.opaque = opaque;
5467 	for_each_online_cpu(cpu) {
5468 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5469 		if (r < 0)
5470 			goto out_free_2;
5471 	}
5472 
5473 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5474 				      kvm_starting_cpu, kvm_dying_cpu);
5475 	if (r)
5476 		goto out_free_2;
5477 	register_reboot_notifier(&kvm_reboot_notifier);
5478 
5479 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5480 	if (!vcpu_align)
5481 		vcpu_align = __alignof__(struct kvm_vcpu);
5482 	kvm_vcpu_cache =
5483 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5484 					   SLAB_ACCOUNT,
5485 					   offsetof(struct kvm_vcpu, arch),
5486 					   offsetofend(struct kvm_vcpu, stats_id)
5487 					   - offsetof(struct kvm_vcpu, arch),
5488 					   NULL);
5489 	if (!kvm_vcpu_cache) {
5490 		r = -ENOMEM;
5491 		goto out_free_3;
5492 	}
5493 
5494 	for_each_possible_cpu(cpu) {
5495 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5496 					    GFP_KERNEL, cpu_to_node(cpu))) {
5497 			r = -ENOMEM;
5498 			goto out_free_4;
5499 		}
5500 	}
5501 
5502 	r = kvm_async_pf_init();
5503 	if (r)
5504 		goto out_free_5;
5505 
5506 	kvm_chardev_ops.owner = module;
5507 	kvm_vm_fops.owner = module;
5508 	kvm_vcpu_fops.owner = module;
5509 
5510 	r = misc_register(&kvm_dev);
5511 	if (r) {
5512 		pr_err("kvm: misc device register failed\n");
5513 		goto out_unreg;
5514 	}
5515 
5516 	register_syscore_ops(&kvm_syscore_ops);
5517 
5518 	kvm_preempt_ops.sched_in = kvm_sched_in;
5519 	kvm_preempt_ops.sched_out = kvm_sched_out;
5520 
5521 	kvm_init_debug();
5522 
5523 	r = kvm_vfio_ops_init();
5524 	WARN_ON(r);
5525 
5526 	return 0;
5527 
5528 out_unreg:
5529 	kvm_async_pf_deinit();
5530 out_free_5:
5531 	for_each_possible_cpu(cpu)
5532 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5533 out_free_4:
5534 	kmem_cache_destroy(kvm_vcpu_cache);
5535 out_free_3:
5536 	unregister_reboot_notifier(&kvm_reboot_notifier);
5537 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5538 out_free_2:
5539 	kvm_arch_hardware_unsetup();
5540 out_free_1:
5541 	free_cpumask_var(cpus_hardware_enabled);
5542 out_free_0:
5543 	kvm_irqfd_exit();
5544 out_irqfd:
5545 	kvm_arch_exit();
5546 out_fail:
5547 	return r;
5548 }
5549 EXPORT_SYMBOL_GPL(kvm_init);
5550 
5551 void kvm_exit(void)
5552 {
5553 	int cpu;
5554 
5555 	debugfs_remove_recursive(kvm_debugfs_dir);
5556 	misc_deregister(&kvm_dev);
5557 	for_each_possible_cpu(cpu)
5558 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5559 	kmem_cache_destroy(kvm_vcpu_cache);
5560 	kvm_async_pf_deinit();
5561 	unregister_syscore_ops(&kvm_syscore_ops);
5562 	unregister_reboot_notifier(&kvm_reboot_notifier);
5563 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5564 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5565 	kvm_arch_hardware_unsetup();
5566 	kvm_arch_exit();
5567 	kvm_irqfd_exit();
5568 	free_cpumask_var(cpus_hardware_enabled);
5569 	kvm_vfio_ops_exit();
5570 }
5571 EXPORT_SYMBOL_GPL(kvm_exit);
5572 
5573 struct kvm_vm_worker_thread_context {
5574 	struct kvm *kvm;
5575 	struct task_struct *parent;
5576 	struct completion init_done;
5577 	kvm_vm_thread_fn_t thread_fn;
5578 	uintptr_t data;
5579 	int err;
5580 };
5581 
5582 static int kvm_vm_worker_thread(void *context)
5583 {
5584 	/*
5585 	 * The init_context is allocated on the stack of the parent thread, so
5586 	 * we have to locally copy anything that is needed beyond initialization
5587 	 */
5588 	struct kvm_vm_worker_thread_context *init_context = context;
5589 	struct kvm *kvm = init_context->kvm;
5590 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5591 	uintptr_t data = init_context->data;
5592 	int err;
5593 
5594 	err = kthread_park(current);
5595 	/* kthread_park(current) is never supposed to return an error */
5596 	WARN_ON(err != 0);
5597 	if (err)
5598 		goto init_complete;
5599 
5600 	err = cgroup_attach_task_all(init_context->parent, current);
5601 	if (err) {
5602 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5603 			__func__, err);
5604 		goto init_complete;
5605 	}
5606 
5607 	set_user_nice(current, task_nice(init_context->parent));
5608 
5609 init_complete:
5610 	init_context->err = err;
5611 	complete(&init_context->init_done);
5612 	init_context = NULL;
5613 
5614 	if (err)
5615 		return err;
5616 
5617 	/* Wait to be woken up by the spawner before proceeding. */
5618 	kthread_parkme();
5619 
5620 	if (!kthread_should_stop())
5621 		err = thread_fn(kvm, data);
5622 
5623 	return err;
5624 }
5625 
5626 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5627 				uintptr_t data, const char *name,
5628 				struct task_struct **thread_ptr)
5629 {
5630 	struct kvm_vm_worker_thread_context init_context = {};
5631 	struct task_struct *thread;
5632 
5633 	*thread_ptr = NULL;
5634 	init_context.kvm = kvm;
5635 	init_context.parent = current;
5636 	init_context.thread_fn = thread_fn;
5637 	init_context.data = data;
5638 	init_completion(&init_context.init_done);
5639 
5640 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5641 			     "%s-%d", name, task_pid_nr(current));
5642 	if (IS_ERR(thread))
5643 		return PTR_ERR(thread);
5644 
5645 	/* kthread_run is never supposed to return NULL */
5646 	WARN_ON(thread == NULL);
5647 
5648 	wait_for_completion(&init_context.init_done);
5649 
5650 	if (!init_context.err)
5651 		*thread_ptr = thread;
5652 
5653 	return init_context.err;
5654 }
5655