1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 53 #include <asm/processor.h> 54 #include <asm/ioctl.h> 55 #include <linux/uaccess.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 #include "kvm_mm.h" 60 #include "vfio.h" 61 62 #include <trace/events/ipi.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 #include <linux/kvm_dirty_ring.h> 68 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 75 MODULE_LICENSE("GPL"); 76 77 /* Architectures should define their poll value according to the halt latency */ 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 79 module_param(halt_poll_ns, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns); 81 82 /* Default doubles per-vcpu halt_poll_ns. */ 83 unsigned int halt_poll_ns_grow = 2; 84 module_param(halt_poll_ns_grow, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 86 87 /* The start value to grow halt_poll_ns from */ 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 89 module_param(halt_poll_ns_grow_start, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 91 92 /* Default halves per-vcpu halt_poll_ns. */ 93 unsigned int halt_poll_ns_shrink = 2; 94 module_param(halt_poll_ns_shrink, uint, 0644); 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 96 97 /* 98 * Ordering of locks: 99 * 100 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 101 */ 102 103 DEFINE_MUTEX(kvm_lock); 104 LIST_HEAD(vm_list); 105 106 static struct kmem_cache *kvm_vcpu_cache; 107 108 static __read_mostly struct preempt_ops kvm_preempt_ops; 109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 110 111 static struct dentry *kvm_debugfs_dir; 112 113 static const struct file_operations stat_fops_per_vm; 114 115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 116 unsigned long arg); 117 #ifdef CONFIG_KVM_COMPAT 118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #define KVM_COMPAT(c) .compat_ioctl = (c) 121 #else 122 /* 123 * For architectures that don't implement a compat infrastructure, 124 * adopt a double line of defense: 125 * - Prevent a compat task from opening /dev/kvm 126 * - If the open has been done by a 64bit task, and the KVM fd 127 * passed to a compat task, let the ioctls fail. 128 */ 129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 130 unsigned long arg) { return -EINVAL; } 131 132 static int kvm_no_compat_open(struct inode *inode, struct file *file) 133 { 134 return is_compat_task() ? -ENODEV : 0; 135 } 136 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 137 .open = kvm_no_compat_open 138 #endif 139 static int hardware_enable_all(void); 140 static void hardware_disable_all(void); 141 142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 143 144 #define KVM_EVENT_CREATE_VM 0 145 #define KVM_EVENT_DESTROY_VM 1 146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 147 static unsigned long long kvm_createvm_count; 148 static unsigned long long kvm_active_vms; 149 150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 151 152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 153 { 154 } 155 156 bool kvm_is_zone_device_page(struct page *page) 157 { 158 /* 159 * The metadata used by is_zone_device_page() to determine whether or 160 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 161 * the device has been pinned, e.g. by get_user_pages(). WARN if the 162 * page_count() is zero to help detect bad usage of this helper. 163 */ 164 if (WARN_ON_ONCE(!page_count(page))) 165 return false; 166 167 return is_zone_device_page(page); 168 } 169 170 /* 171 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 172 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 173 * is likely incomplete, it has been compiled purely through people wanting to 174 * back guest with a certain type of memory and encountering issues. 175 */ 176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 177 { 178 struct page *page; 179 180 if (!pfn_valid(pfn)) 181 return NULL; 182 183 page = pfn_to_page(pfn); 184 if (!PageReserved(page)) 185 return page; 186 187 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 188 if (is_zero_pfn(pfn)) 189 return page; 190 191 /* 192 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 193 * perspective they are "normal" pages, albeit with slightly different 194 * usage rules. 195 */ 196 if (kvm_is_zone_device_page(page)) 197 return page; 198 199 return NULL; 200 } 201 202 /* 203 * Switches to specified vcpu, until a matching vcpu_put() 204 */ 205 void vcpu_load(struct kvm_vcpu *vcpu) 206 { 207 int cpu = get_cpu(); 208 209 __this_cpu_write(kvm_running_vcpu, vcpu); 210 preempt_notifier_register(&vcpu->preempt_notifier); 211 kvm_arch_vcpu_load(vcpu, cpu); 212 put_cpu(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_load); 215 216 void vcpu_put(struct kvm_vcpu *vcpu) 217 { 218 preempt_disable(); 219 kvm_arch_vcpu_put(vcpu); 220 preempt_notifier_unregister(&vcpu->preempt_notifier); 221 __this_cpu_write(kvm_running_vcpu, NULL); 222 preempt_enable(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_put); 225 226 /* TODO: merge with kvm_arch_vcpu_should_kick */ 227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 228 { 229 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 230 231 /* 232 * We need to wait for the VCPU to reenable interrupts and get out of 233 * READING_SHADOW_PAGE_TABLES mode. 234 */ 235 if (req & KVM_REQUEST_WAIT) 236 return mode != OUTSIDE_GUEST_MODE; 237 238 /* 239 * Need to kick a running VCPU, but otherwise there is nothing to do. 240 */ 241 return mode == IN_GUEST_MODE; 242 } 243 244 static void ack_kick(void *_completed) 245 { 246 } 247 248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 249 { 250 if (cpumask_empty(cpus)) 251 return false; 252 253 smp_call_function_many(cpus, ack_kick, NULL, wait); 254 return true; 255 } 256 257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 258 struct cpumask *tmp, int current_cpu) 259 { 260 int cpu; 261 262 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 263 __kvm_make_request(req, vcpu); 264 265 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 266 return; 267 268 /* 269 * Note, the vCPU could get migrated to a different pCPU at any point 270 * after kvm_request_needs_ipi(), which could result in sending an IPI 271 * to the previous pCPU. But, that's OK because the purpose of the IPI 272 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 273 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 274 * after this point is also OK, as the requirement is only that KVM wait 275 * for vCPUs that were reading SPTEs _before_ any changes were 276 * finalized. See kvm_vcpu_kick() for more details on handling requests. 277 */ 278 if (kvm_request_needs_ipi(vcpu, req)) { 279 cpu = READ_ONCE(vcpu->cpu); 280 if (cpu != -1 && cpu != current_cpu) 281 __cpumask_set_cpu(cpu, tmp); 282 } 283 } 284 285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 286 unsigned long *vcpu_bitmap) 287 { 288 struct kvm_vcpu *vcpu; 289 struct cpumask *cpus; 290 int i, me; 291 bool called; 292 293 me = get_cpu(); 294 295 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 296 cpumask_clear(cpus); 297 298 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 299 vcpu = kvm_get_vcpu(kvm, i); 300 if (!vcpu) 301 continue; 302 kvm_make_vcpu_request(vcpu, req, cpus, me); 303 } 304 305 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 306 put_cpu(); 307 308 return called; 309 } 310 311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 312 { 313 struct kvm_vcpu *vcpu; 314 struct cpumask *cpus; 315 unsigned long i; 316 bool called; 317 int me; 318 319 me = get_cpu(); 320 321 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 322 cpumask_clear(cpus); 323 324 kvm_for_each_vcpu(i, vcpu, kvm) 325 kvm_make_vcpu_request(vcpu, req, cpus, me); 326 327 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 328 put_cpu(); 329 330 return called; 331 } 332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 333 334 void kvm_flush_remote_tlbs(struct kvm *kvm) 335 { 336 ++kvm->stat.generic.remote_tlb_flush_requests; 337 338 /* 339 * We want to publish modifications to the page tables before reading 340 * mode. Pairs with a memory barrier in arch-specific code. 341 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 342 * and smp_mb in walk_shadow_page_lockless_begin/end. 343 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 344 * 345 * There is already an smp_mb__after_atomic() before 346 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 347 * barrier here. 348 */ 349 if (!kvm_arch_flush_remote_tlbs(kvm) 350 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 351 ++kvm->stat.generic.remote_tlb_flush; 352 } 353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 354 355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 356 { 357 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 358 return; 359 360 /* 361 * Fall back to a flushing entire TLBs if the architecture range-based 362 * TLB invalidation is unsupported or can't be performed for whatever 363 * reason. 364 */ 365 kvm_flush_remote_tlbs(kvm); 366 } 367 368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 369 const struct kvm_memory_slot *memslot) 370 { 371 /* 372 * All current use cases for flushing the TLBs for a specific memslot 373 * are related to dirty logging, and many do the TLB flush out of 374 * mmu_lock. The interaction between the various operations on memslot 375 * must be serialized by slots_locks to ensure the TLB flush from one 376 * operation is observed by any other operation on the same memslot. 377 */ 378 lockdep_assert_held(&kvm->slots_lock); 379 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 380 } 381 382 static void kvm_flush_shadow_all(struct kvm *kvm) 383 { 384 kvm_arch_flush_shadow_all(kvm); 385 kvm_arch_guest_memory_reclaimed(kvm); 386 } 387 388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 390 gfp_t gfp_flags) 391 { 392 void *page; 393 394 gfp_flags |= mc->gfp_zero; 395 396 if (mc->kmem_cache) 397 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 398 399 page = (void *)__get_free_page(gfp_flags); 400 if (page && mc->init_value) 401 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 402 return page; 403 } 404 405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 406 { 407 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 408 void *obj; 409 410 if (mc->nobjs >= min) 411 return 0; 412 413 if (unlikely(!mc->objects)) { 414 if (WARN_ON_ONCE(!capacity)) 415 return -EIO; 416 417 /* 418 * Custom init values can be used only for page allocations, 419 * and obviously conflict with __GFP_ZERO. 420 */ 421 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 588 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 589 node; \ 590 node = interval_tree_iter_next(node, start, last)) \ 591 592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 593 const struct kvm_mmu_notifier_range *range) 594 { 595 struct kvm_mmu_notifier_return r = { 596 .ret = false, 597 .found_memslot = false, 598 }; 599 struct kvm_gfn_range gfn_range; 600 struct kvm_memory_slot *slot; 601 struct kvm_memslots *slots; 602 int i, idx; 603 604 if (WARN_ON_ONCE(range->end <= range->start)) 605 return r; 606 607 /* A null handler is allowed if and only if on_lock() is provided. */ 608 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 609 IS_KVM_NULL_FN(range->handler))) 610 return r; 611 612 idx = srcu_read_lock(&kvm->srcu); 613 614 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 615 struct interval_tree_node *node; 616 617 slots = __kvm_memslots(kvm, i); 618 kvm_for_each_memslot_in_hva_range(node, slots, 619 range->start, range->end - 1) { 620 unsigned long hva_start, hva_end; 621 622 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 623 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 624 hva_end = min_t(unsigned long, range->end, 625 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 626 627 /* 628 * To optimize for the likely case where the address 629 * range is covered by zero or one memslots, don't 630 * bother making these conditional (to avoid writes on 631 * the second or later invocation of the handler). 632 */ 633 gfn_range.arg = range->arg; 634 gfn_range.may_block = range->may_block; 635 636 /* 637 * {gfn(page) | page intersects with [hva_start, hva_end)} = 638 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 639 */ 640 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 641 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 642 gfn_range.slot = slot; 643 644 if (!r.found_memslot) { 645 r.found_memslot = true; 646 KVM_MMU_LOCK(kvm); 647 if (!IS_KVM_NULL_FN(range->on_lock)) 648 range->on_lock(kvm); 649 650 if (IS_KVM_NULL_FN(range->handler)) 651 goto mmu_unlock; 652 } 653 r.ret |= range->handler(kvm, &gfn_range); 654 } 655 } 656 657 if (range->flush_on_ret && r.ret) 658 kvm_flush_remote_tlbs(kvm); 659 660 mmu_unlock: 661 if (r.found_memslot) 662 KVM_MMU_UNLOCK(kvm); 663 664 srcu_read_unlock(&kvm->srcu, idx); 665 666 return r; 667 } 668 669 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 670 unsigned long start, 671 unsigned long end, 672 gfn_handler_t handler) 673 { 674 struct kvm *kvm = mmu_notifier_to_kvm(mn); 675 const struct kvm_mmu_notifier_range range = { 676 .start = start, 677 .end = end, 678 .handler = handler, 679 .on_lock = (void *)kvm_null_fn, 680 .flush_on_ret = true, 681 .may_block = false, 682 }; 683 684 return __kvm_handle_hva_range(kvm, &range).ret; 685 } 686 687 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 688 unsigned long start, 689 unsigned long end, 690 gfn_handler_t handler) 691 { 692 struct kvm *kvm = mmu_notifier_to_kvm(mn); 693 const struct kvm_mmu_notifier_range range = { 694 .start = start, 695 .end = end, 696 .handler = handler, 697 .on_lock = (void *)kvm_null_fn, 698 .flush_on_ret = false, 699 .may_block = false, 700 }; 701 702 return __kvm_handle_hva_range(kvm, &range).ret; 703 } 704 705 void kvm_mmu_invalidate_begin(struct kvm *kvm) 706 { 707 lockdep_assert_held_write(&kvm->mmu_lock); 708 /* 709 * The count increase must become visible at unlock time as no 710 * spte can be established without taking the mmu_lock and 711 * count is also read inside the mmu_lock critical section. 712 */ 713 kvm->mmu_invalidate_in_progress++; 714 715 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 716 kvm->mmu_invalidate_range_start = INVALID_GPA; 717 kvm->mmu_invalidate_range_end = INVALID_GPA; 718 } 719 } 720 721 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 722 { 723 lockdep_assert_held_write(&kvm->mmu_lock); 724 725 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 726 727 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 728 kvm->mmu_invalidate_range_start = start; 729 kvm->mmu_invalidate_range_end = end; 730 } else { 731 /* 732 * Fully tracking multiple concurrent ranges has diminishing 733 * returns. Keep things simple and just find the minimal range 734 * which includes the current and new ranges. As there won't be 735 * enough information to subtract a range after its invalidate 736 * completes, any ranges invalidated concurrently will 737 * accumulate and persist until all outstanding invalidates 738 * complete. 739 */ 740 kvm->mmu_invalidate_range_start = 741 min(kvm->mmu_invalidate_range_start, start); 742 kvm->mmu_invalidate_range_end = 743 max(kvm->mmu_invalidate_range_end, end); 744 } 745 } 746 747 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 748 { 749 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 750 return kvm_unmap_gfn_range(kvm, range); 751 } 752 753 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 754 const struct mmu_notifier_range *range) 755 { 756 struct kvm *kvm = mmu_notifier_to_kvm(mn); 757 const struct kvm_mmu_notifier_range hva_range = { 758 .start = range->start, 759 .end = range->end, 760 .handler = kvm_mmu_unmap_gfn_range, 761 .on_lock = kvm_mmu_invalidate_begin, 762 .flush_on_ret = true, 763 .may_block = mmu_notifier_range_blockable(range), 764 }; 765 766 trace_kvm_unmap_hva_range(range->start, range->end); 767 768 /* 769 * Prevent memslot modification between range_start() and range_end() 770 * so that conditionally locking provides the same result in both 771 * functions. Without that guarantee, the mmu_invalidate_in_progress 772 * adjustments will be imbalanced. 773 * 774 * Pairs with the decrement in range_end(). 775 */ 776 spin_lock(&kvm->mn_invalidate_lock); 777 kvm->mn_active_invalidate_count++; 778 spin_unlock(&kvm->mn_invalidate_lock); 779 780 /* 781 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 782 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 783 * each cache's lock. There are relatively few caches in existence at 784 * any given time, and the caches themselves can check for hva overlap, 785 * i.e. don't need to rely on memslot overlap checks for performance. 786 * Because this runs without holding mmu_lock, the pfn caches must use 787 * mn_active_invalidate_count (see above) instead of 788 * mmu_invalidate_in_progress. 789 */ 790 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 791 792 /* 793 * If one or more memslots were found and thus zapped, notify arch code 794 * that guest memory has been reclaimed. This needs to be done *after* 795 * dropping mmu_lock, as x86's reclaim path is slooooow. 796 */ 797 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 798 kvm_arch_guest_memory_reclaimed(kvm); 799 800 return 0; 801 } 802 803 void kvm_mmu_invalidate_end(struct kvm *kvm) 804 { 805 lockdep_assert_held_write(&kvm->mmu_lock); 806 807 /* 808 * This sequence increase will notify the kvm page fault that 809 * the page that is going to be mapped in the spte could have 810 * been freed. 811 */ 812 kvm->mmu_invalidate_seq++; 813 smp_wmb(); 814 /* 815 * The above sequence increase must be visible before the 816 * below count decrease, which is ensured by the smp_wmb above 817 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 818 */ 819 kvm->mmu_invalidate_in_progress--; 820 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 821 822 /* 823 * Assert that at least one range was added between start() and end(). 824 * Not adding a range isn't fatal, but it is a KVM bug. 825 */ 826 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 827 } 828 829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 830 const struct mmu_notifier_range *range) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 const struct kvm_mmu_notifier_range hva_range = { 834 .start = range->start, 835 .end = range->end, 836 .handler = (void *)kvm_null_fn, 837 .on_lock = kvm_mmu_invalidate_end, 838 .flush_on_ret = false, 839 .may_block = mmu_notifier_range_blockable(range), 840 }; 841 bool wake; 842 843 __kvm_handle_hva_range(kvm, &hva_range); 844 845 /* Pairs with the increment in range_start(). */ 846 spin_lock(&kvm->mn_invalidate_lock); 847 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 848 --kvm->mn_active_invalidate_count; 849 wake = !kvm->mn_active_invalidate_count; 850 spin_unlock(&kvm->mn_invalidate_lock); 851 852 /* 853 * There can only be one waiter, since the wait happens under 854 * slots_lock. 855 */ 856 if (wake) 857 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 858 } 859 860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 861 struct mm_struct *mm, 862 unsigned long start, 863 unsigned long end) 864 { 865 trace_kvm_age_hva(start, end); 866 867 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 868 } 869 870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 871 struct mm_struct *mm, 872 unsigned long start, 873 unsigned long end) 874 { 875 trace_kvm_age_hva(start, end); 876 877 /* 878 * Even though we do not flush TLB, this will still adversely 879 * affect performance on pre-Haswell Intel EPT, where there is 880 * no EPT Access Bit to clear so that we have to tear down EPT 881 * tables instead. If we find this unacceptable, we can always 882 * add a parameter to kvm_age_hva so that it effectively doesn't 883 * do anything on clear_young. 884 * 885 * Also note that currently we never issue secondary TLB flushes 886 * from clear_young, leaving this job up to the regular system 887 * cadence. If we find this inaccurate, we might come up with a 888 * more sophisticated heuristic later. 889 */ 890 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 891 } 892 893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 894 struct mm_struct *mm, 895 unsigned long address) 896 { 897 trace_kvm_test_age_hva(address); 898 899 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 900 kvm_test_age_gfn); 901 } 902 903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 904 struct mm_struct *mm) 905 { 906 struct kvm *kvm = mmu_notifier_to_kvm(mn); 907 int idx; 908 909 idx = srcu_read_lock(&kvm->srcu); 910 kvm_flush_shadow_all(kvm); 911 srcu_read_unlock(&kvm->srcu, idx); 912 } 913 914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 915 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 916 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 917 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 918 .clear_young = kvm_mmu_notifier_clear_young, 919 .test_young = kvm_mmu_notifier_test_young, 920 .release = kvm_mmu_notifier_release, 921 }; 922 923 static int kvm_init_mmu_notifier(struct kvm *kvm) 924 { 925 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 926 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 927 } 928 929 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 930 931 static int kvm_init_mmu_notifier(struct kvm *kvm) 932 { 933 return 0; 934 } 935 936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 937 938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 939 static int kvm_pm_notifier_call(struct notifier_block *bl, 940 unsigned long state, 941 void *unused) 942 { 943 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 944 945 return kvm_arch_pm_notifier(kvm, state); 946 } 947 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 951 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 952 kvm->pm_notifier.priority = INT_MAX; 953 register_pm_notifier(&kvm->pm_notifier); 954 } 955 956 static void kvm_destroy_pm_notifier(struct kvm *kvm) 957 { 958 unregister_pm_notifier(&kvm->pm_notifier); 959 } 960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 961 static void kvm_init_pm_notifier(struct kvm *kvm) 962 { 963 } 964 965 static void kvm_destroy_pm_notifier(struct kvm *kvm) 966 { 967 } 968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 969 970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 971 { 972 if (!memslot->dirty_bitmap) 973 return; 974 975 vfree(memslot->dirty_bitmap); 976 memslot->dirty_bitmap = NULL; 977 } 978 979 /* This does not remove the slot from struct kvm_memslots data structures */ 980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 981 { 982 if (slot->flags & KVM_MEM_GUEST_MEMFD) 983 kvm_gmem_unbind(slot); 984 985 kvm_destroy_dirty_bitmap(slot); 986 987 kvm_arch_free_memslot(kvm, slot); 988 989 kfree(slot); 990 } 991 992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 993 { 994 struct hlist_node *idnode; 995 struct kvm_memory_slot *memslot; 996 int bkt; 997 998 /* 999 * The same memslot objects live in both active and inactive sets, 1000 * arbitrarily free using index '1' so the second invocation of this 1001 * function isn't operating over a structure with dangling pointers 1002 * (even though this function isn't actually touching them). 1003 */ 1004 if (!slots->node_idx) 1005 return; 1006 1007 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1008 kvm_free_memslot(kvm, memslot); 1009 } 1010 1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1012 { 1013 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1014 case KVM_STATS_TYPE_INSTANT: 1015 return 0444; 1016 case KVM_STATS_TYPE_CUMULATIVE: 1017 case KVM_STATS_TYPE_PEAK: 1018 default: 1019 return 0644; 1020 } 1021 } 1022 1023 1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1025 { 1026 int i; 1027 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1028 kvm_vcpu_stats_header.num_desc; 1029 1030 if (IS_ERR(kvm->debugfs_dentry)) 1031 return; 1032 1033 debugfs_remove_recursive(kvm->debugfs_dentry); 1034 1035 if (kvm->debugfs_stat_data) { 1036 for (i = 0; i < kvm_debugfs_num_entries; i++) 1037 kfree(kvm->debugfs_stat_data[i]); 1038 kfree(kvm->debugfs_stat_data); 1039 } 1040 } 1041 1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1043 { 1044 static DEFINE_MUTEX(kvm_debugfs_lock); 1045 struct dentry *dent; 1046 char dir_name[ITOA_MAX_LEN * 2]; 1047 struct kvm_stat_data *stat_data; 1048 const struct _kvm_stats_desc *pdesc; 1049 int i, ret = -ENOMEM; 1050 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1051 kvm_vcpu_stats_header.num_desc; 1052 1053 if (!debugfs_initialized()) 1054 return 0; 1055 1056 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1057 mutex_lock(&kvm_debugfs_lock); 1058 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1059 if (dent) { 1060 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1061 dput(dent); 1062 mutex_unlock(&kvm_debugfs_lock); 1063 return 0; 1064 } 1065 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1066 mutex_unlock(&kvm_debugfs_lock); 1067 if (IS_ERR(dent)) 1068 return 0; 1069 1070 kvm->debugfs_dentry = dent; 1071 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1072 sizeof(*kvm->debugfs_stat_data), 1073 GFP_KERNEL_ACCOUNT); 1074 if (!kvm->debugfs_stat_data) 1075 goto out_err; 1076 1077 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1078 pdesc = &kvm_vm_stats_desc[i]; 1079 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1080 if (!stat_data) 1081 goto out_err; 1082 1083 stat_data->kvm = kvm; 1084 stat_data->desc = pdesc; 1085 stat_data->kind = KVM_STAT_VM; 1086 kvm->debugfs_stat_data[i] = stat_data; 1087 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1088 kvm->debugfs_dentry, stat_data, 1089 &stat_fops_per_vm); 1090 } 1091 1092 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1093 pdesc = &kvm_vcpu_stats_desc[i]; 1094 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1095 if (!stat_data) 1096 goto out_err; 1097 1098 stat_data->kvm = kvm; 1099 stat_data->desc = pdesc; 1100 stat_data->kind = KVM_STAT_VCPU; 1101 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1102 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1103 kvm->debugfs_dentry, stat_data, 1104 &stat_fops_per_vm); 1105 } 1106 1107 kvm_arch_create_vm_debugfs(kvm); 1108 return 0; 1109 out_err: 1110 kvm_destroy_vm_debugfs(kvm); 1111 return ret; 1112 } 1113 1114 /* 1115 * Called after the VM is otherwise initialized, but just before adding it to 1116 * the vm_list. 1117 */ 1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1119 { 1120 return 0; 1121 } 1122 1123 /* 1124 * Called just after removing the VM from the vm_list, but before doing any 1125 * other destruction. 1126 */ 1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1128 { 1129 } 1130 1131 /* 1132 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1133 * be setup already, so we can create arch-specific debugfs entries under it. 1134 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1135 * a per-arch destroy interface is not needed. 1136 */ 1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1138 { 1139 } 1140 1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1142 { 1143 struct kvm *kvm = kvm_arch_alloc_vm(); 1144 struct kvm_memslots *slots; 1145 int r, i, j; 1146 1147 if (!kvm) 1148 return ERR_PTR(-ENOMEM); 1149 1150 KVM_MMU_LOCK_INIT(kvm); 1151 mmgrab(current->mm); 1152 kvm->mm = current->mm; 1153 kvm_eventfd_init(kvm); 1154 mutex_init(&kvm->lock); 1155 mutex_init(&kvm->irq_lock); 1156 mutex_init(&kvm->slots_lock); 1157 mutex_init(&kvm->slots_arch_lock); 1158 spin_lock_init(&kvm->mn_invalidate_lock); 1159 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1160 xa_init(&kvm->vcpu_array); 1161 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1162 xa_init(&kvm->mem_attr_array); 1163 #endif 1164 1165 INIT_LIST_HEAD(&kvm->gpc_list); 1166 spin_lock_init(&kvm->gpc_lock); 1167 1168 INIT_LIST_HEAD(&kvm->devices); 1169 kvm->max_vcpus = KVM_MAX_VCPUS; 1170 1171 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1172 1173 /* 1174 * Force subsequent debugfs file creations to fail if the VM directory 1175 * is not created (by kvm_create_vm_debugfs()). 1176 */ 1177 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1178 1179 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1180 task_pid_nr(current)); 1181 1182 r = -ENOMEM; 1183 if (init_srcu_struct(&kvm->srcu)) 1184 goto out_err_no_srcu; 1185 if (init_srcu_struct(&kvm->irq_srcu)) 1186 goto out_err_no_irq_srcu; 1187 1188 r = kvm_init_irq_routing(kvm); 1189 if (r) 1190 goto out_err_no_irq_routing; 1191 1192 refcount_set(&kvm->users_count, 1); 1193 1194 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1195 for (j = 0; j < 2; j++) { 1196 slots = &kvm->__memslots[i][j]; 1197 1198 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1199 slots->hva_tree = RB_ROOT_CACHED; 1200 slots->gfn_tree = RB_ROOT; 1201 hash_init(slots->id_hash); 1202 slots->node_idx = j; 1203 1204 /* Generations must be different for each address space. */ 1205 slots->generation = i; 1206 } 1207 1208 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1209 } 1210 1211 r = -ENOMEM; 1212 for (i = 0; i < KVM_NR_BUSES; i++) { 1213 rcu_assign_pointer(kvm->buses[i], 1214 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1215 if (!kvm->buses[i]) 1216 goto out_err_no_arch_destroy_vm; 1217 } 1218 1219 r = kvm_arch_init_vm(kvm, type); 1220 if (r) 1221 goto out_err_no_arch_destroy_vm; 1222 1223 r = hardware_enable_all(); 1224 if (r) 1225 goto out_err_no_disable; 1226 1227 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1228 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1229 #endif 1230 1231 r = kvm_init_mmu_notifier(kvm); 1232 if (r) 1233 goto out_err_no_mmu_notifier; 1234 1235 r = kvm_coalesced_mmio_init(kvm); 1236 if (r < 0) 1237 goto out_no_coalesced_mmio; 1238 1239 r = kvm_create_vm_debugfs(kvm, fdname); 1240 if (r) 1241 goto out_err_no_debugfs; 1242 1243 r = kvm_arch_post_init_vm(kvm); 1244 if (r) 1245 goto out_err; 1246 1247 mutex_lock(&kvm_lock); 1248 list_add(&kvm->vm_list, &vm_list); 1249 mutex_unlock(&kvm_lock); 1250 1251 preempt_notifier_inc(); 1252 kvm_init_pm_notifier(kvm); 1253 1254 return kvm; 1255 1256 out_err: 1257 kvm_destroy_vm_debugfs(kvm); 1258 out_err_no_debugfs: 1259 kvm_coalesced_mmio_free(kvm); 1260 out_no_coalesced_mmio: 1261 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1262 if (kvm->mmu_notifier.ops) 1263 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1264 #endif 1265 out_err_no_mmu_notifier: 1266 hardware_disable_all(); 1267 out_err_no_disable: 1268 kvm_arch_destroy_vm(kvm); 1269 out_err_no_arch_destroy_vm: 1270 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1271 for (i = 0; i < KVM_NR_BUSES; i++) 1272 kfree(kvm_get_bus(kvm, i)); 1273 kvm_free_irq_routing(kvm); 1274 out_err_no_irq_routing: 1275 cleanup_srcu_struct(&kvm->irq_srcu); 1276 out_err_no_irq_srcu: 1277 cleanup_srcu_struct(&kvm->srcu); 1278 out_err_no_srcu: 1279 kvm_arch_free_vm(kvm); 1280 mmdrop(current->mm); 1281 return ERR_PTR(r); 1282 } 1283 1284 static void kvm_destroy_devices(struct kvm *kvm) 1285 { 1286 struct kvm_device *dev, *tmp; 1287 1288 /* 1289 * We do not need to take the kvm->lock here, because nobody else 1290 * has a reference to the struct kvm at this point and therefore 1291 * cannot access the devices list anyhow. 1292 * 1293 * The device list is generally managed as an rculist, but list_del() 1294 * is used intentionally here. If a bug in KVM introduced a reader that 1295 * was not backed by a reference on the kvm struct, the hope is that 1296 * it'd consume the poisoned forward pointer instead of suffering a 1297 * use-after-free, even though this cannot be guaranteed. 1298 */ 1299 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1300 list_del(&dev->vm_node); 1301 dev->ops->destroy(dev); 1302 } 1303 } 1304 1305 static void kvm_destroy_vm(struct kvm *kvm) 1306 { 1307 int i; 1308 struct mm_struct *mm = kvm->mm; 1309 1310 kvm_destroy_pm_notifier(kvm); 1311 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1312 kvm_destroy_vm_debugfs(kvm); 1313 kvm_arch_sync_events(kvm); 1314 mutex_lock(&kvm_lock); 1315 list_del(&kvm->vm_list); 1316 mutex_unlock(&kvm_lock); 1317 kvm_arch_pre_destroy_vm(kvm); 1318 1319 kvm_free_irq_routing(kvm); 1320 for (i = 0; i < KVM_NR_BUSES; i++) { 1321 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1322 1323 if (bus) 1324 kvm_io_bus_destroy(bus); 1325 kvm->buses[i] = NULL; 1326 } 1327 kvm_coalesced_mmio_free(kvm); 1328 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1329 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1330 /* 1331 * At this point, pending calls to invalidate_range_start() 1332 * have completed but no more MMU notifiers will run, so 1333 * mn_active_invalidate_count may remain unbalanced. 1334 * No threads can be waiting in kvm_swap_active_memslots() as the 1335 * last reference on KVM has been dropped, but freeing 1336 * memslots would deadlock without this manual intervention. 1337 * 1338 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1339 * notifier between a start() and end(), then there shouldn't be any 1340 * in-progress invalidations. 1341 */ 1342 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1343 if (kvm->mn_active_invalidate_count) 1344 kvm->mn_active_invalidate_count = 0; 1345 else 1346 WARN_ON(kvm->mmu_invalidate_in_progress); 1347 #else 1348 kvm_flush_shadow_all(kvm); 1349 #endif 1350 kvm_arch_destroy_vm(kvm); 1351 kvm_destroy_devices(kvm); 1352 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1353 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1354 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1355 } 1356 cleanup_srcu_struct(&kvm->irq_srcu); 1357 cleanup_srcu_struct(&kvm->srcu); 1358 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1359 xa_destroy(&kvm->mem_attr_array); 1360 #endif 1361 kvm_arch_free_vm(kvm); 1362 preempt_notifier_dec(); 1363 hardware_disable_all(); 1364 mmdrop(mm); 1365 } 1366 1367 void kvm_get_kvm(struct kvm *kvm) 1368 { 1369 refcount_inc(&kvm->users_count); 1370 } 1371 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1372 1373 /* 1374 * Make sure the vm is not during destruction, which is a safe version of 1375 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1376 */ 1377 bool kvm_get_kvm_safe(struct kvm *kvm) 1378 { 1379 return refcount_inc_not_zero(&kvm->users_count); 1380 } 1381 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1382 1383 void kvm_put_kvm(struct kvm *kvm) 1384 { 1385 if (refcount_dec_and_test(&kvm->users_count)) 1386 kvm_destroy_vm(kvm); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1389 1390 /* 1391 * Used to put a reference that was taken on behalf of an object associated 1392 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1393 * of the new file descriptor fails and the reference cannot be transferred to 1394 * its final owner. In such cases, the caller is still actively using @kvm and 1395 * will fail miserably if the refcount unexpectedly hits zero. 1396 */ 1397 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1398 { 1399 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1400 } 1401 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1402 1403 static int kvm_vm_release(struct inode *inode, struct file *filp) 1404 { 1405 struct kvm *kvm = filp->private_data; 1406 1407 kvm_irqfd_release(kvm); 1408 1409 kvm_put_kvm(kvm); 1410 return 0; 1411 } 1412 1413 /* 1414 * Allocation size is twice as large as the actual dirty bitmap size. 1415 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1416 */ 1417 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1418 { 1419 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1420 1421 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1422 if (!memslot->dirty_bitmap) 1423 return -ENOMEM; 1424 1425 return 0; 1426 } 1427 1428 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1429 { 1430 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1431 int node_idx_inactive = active->node_idx ^ 1; 1432 1433 return &kvm->__memslots[as_id][node_idx_inactive]; 1434 } 1435 1436 /* 1437 * Helper to get the address space ID when one of memslot pointers may be NULL. 1438 * This also serves as a sanity that at least one of the pointers is non-NULL, 1439 * and that their address space IDs don't diverge. 1440 */ 1441 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1442 struct kvm_memory_slot *b) 1443 { 1444 if (WARN_ON_ONCE(!a && !b)) 1445 return 0; 1446 1447 if (!a) 1448 return b->as_id; 1449 if (!b) 1450 return a->as_id; 1451 1452 WARN_ON_ONCE(a->as_id != b->as_id); 1453 return a->as_id; 1454 } 1455 1456 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1457 struct kvm_memory_slot *slot) 1458 { 1459 struct rb_root *gfn_tree = &slots->gfn_tree; 1460 struct rb_node **node, *parent; 1461 int idx = slots->node_idx; 1462 1463 parent = NULL; 1464 for (node = &gfn_tree->rb_node; *node; ) { 1465 struct kvm_memory_slot *tmp; 1466 1467 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1468 parent = *node; 1469 if (slot->base_gfn < tmp->base_gfn) 1470 node = &(*node)->rb_left; 1471 else if (slot->base_gfn > tmp->base_gfn) 1472 node = &(*node)->rb_right; 1473 else 1474 BUG(); 1475 } 1476 1477 rb_link_node(&slot->gfn_node[idx], parent, node); 1478 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1479 } 1480 1481 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1482 struct kvm_memory_slot *slot) 1483 { 1484 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1485 } 1486 1487 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1488 struct kvm_memory_slot *old, 1489 struct kvm_memory_slot *new) 1490 { 1491 int idx = slots->node_idx; 1492 1493 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1494 1495 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1496 &slots->gfn_tree); 1497 } 1498 1499 /* 1500 * Replace @old with @new in the inactive memslots. 1501 * 1502 * With NULL @old this simply adds @new. 1503 * With NULL @new this simply removes @old. 1504 * 1505 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1506 * appropriately. 1507 */ 1508 static void kvm_replace_memslot(struct kvm *kvm, 1509 struct kvm_memory_slot *old, 1510 struct kvm_memory_slot *new) 1511 { 1512 int as_id = kvm_memslots_get_as_id(old, new); 1513 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1514 int idx = slots->node_idx; 1515 1516 if (old) { 1517 hash_del(&old->id_node[idx]); 1518 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1519 1520 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1521 atomic_long_set(&slots->last_used_slot, (long)new); 1522 1523 if (!new) { 1524 kvm_erase_gfn_node(slots, old); 1525 return; 1526 } 1527 } 1528 1529 /* 1530 * Initialize @new's hva range. Do this even when replacing an @old 1531 * slot, kvm_copy_memslot() deliberately does not touch node data. 1532 */ 1533 new->hva_node[idx].start = new->userspace_addr; 1534 new->hva_node[idx].last = new->userspace_addr + 1535 (new->npages << PAGE_SHIFT) - 1; 1536 1537 /* 1538 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1539 * hva_node needs to be swapped with remove+insert even though hva can't 1540 * change when replacing an existing slot. 1541 */ 1542 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1543 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1544 1545 /* 1546 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1547 * switch the node in the gfn tree instead of removing the old and 1548 * inserting the new as two separate operations. Replacement is a 1549 * single O(1) operation versus two O(log(n)) operations for 1550 * remove+insert. 1551 */ 1552 if (old && old->base_gfn == new->base_gfn) { 1553 kvm_replace_gfn_node(slots, old, new); 1554 } else { 1555 if (old) 1556 kvm_erase_gfn_node(slots, old); 1557 kvm_insert_gfn_node(slots, new); 1558 } 1559 } 1560 1561 /* 1562 * Flags that do not access any of the extra space of struct 1563 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1564 * only allows these. 1565 */ 1566 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1567 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1568 1569 static int check_memory_region_flags(struct kvm *kvm, 1570 const struct kvm_userspace_memory_region2 *mem) 1571 { 1572 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1573 1574 if (kvm_arch_has_private_mem(kvm)) 1575 valid_flags |= KVM_MEM_GUEST_MEMFD; 1576 1577 /* Dirty logging private memory is not currently supported. */ 1578 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1579 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1580 1581 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1582 /* 1583 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1584 * read-only memslots have emulated MMIO, not page fault, semantics, 1585 * and KVM doesn't allow emulated MMIO for private memory. 1586 */ 1587 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1588 valid_flags |= KVM_MEM_READONLY; 1589 #endif 1590 1591 if (mem->flags & ~valid_flags) 1592 return -EINVAL; 1593 1594 return 0; 1595 } 1596 1597 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1598 { 1599 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1600 1601 /* Grab the generation from the activate memslots. */ 1602 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1603 1604 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1605 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1606 1607 /* 1608 * Do not store the new memslots while there are invalidations in 1609 * progress, otherwise the locking in invalidate_range_start and 1610 * invalidate_range_end will be unbalanced. 1611 */ 1612 spin_lock(&kvm->mn_invalidate_lock); 1613 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1614 while (kvm->mn_active_invalidate_count) { 1615 set_current_state(TASK_UNINTERRUPTIBLE); 1616 spin_unlock(&kvm->mn_invalidate_lock); 1617 schedule(); 1618 spin_lock(&kvm->mn_invalidate_lock); 1619 } 1620 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1621 rcu_assign_pointer(kvm->memslots[as_id], slots); 1622 spin_unlock(&kvm->mn_invalidate_lock); 1623 1624 /* 1625 * Acquired in kvm_set_memslot. Must be released before synchronize 1626 * SRCU below in order to avoid deadlock with another thread 1627 * acquiring the slots_arch_lock in an srcu critical section. 1628 */ 1629 mutex_unlock(&kvm->slots_arch_lock); 1630 1631 synchronize_srcu_expedited(&kvm->srcu); 1632 1633 /* 1634 * Increment the new memslot generation a second time, dropping the 1635 * update in-progress flag and incrementing the generation based on 1636 * the number of address spaces. This provides a unique and easily 1637 * identifiable generation number while the memslots are in flux. 1638 */ 1639 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1640 1641 /* 1642 * Generations must be unique even across address spaces. We do not need 1643 * a global counter for that, instead the generation space is evenly split 1644 * across address spaces. For example, with two address spaces, address 1645 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1646 * use generations 1, 3, 5, ... 1647 */ 1648 gen += kvm_arch_nr_memslot_as_ids(kvm); 1649 1650 kvm_arch_memslots_updated(kvm, gen); 1651 1652 slots->generation = gen; 1653 } 1654 1655 static int kvm_prepare_memory_region(struct kvm *kvm, 1656 const struct kvm_memory_slot *old, 1657 struct kvm_memory_slot *new, 1658 enum kvm_mr_change change) 1659 { 1660 int r; 1661 1662 /* 1663 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1664 * will be freed on "commit". If logging is enabled in both old and 1665 * new, reuse the existing bitmap. If logging is enabled only in the 1666 * new and KVM isn't using a ring buffer, allocate and initialize a 1667 * new bitmap. 1668 */ 1669 if (change != KVM_MR_DELETE) { 1670 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1671 new->dirty_bitmap = NULL; 1672 else if (old && old->dirty_bitmap) 1673 new->dirty_bitmap = old->dirty_bitmap; 1674 else if (kvm_use_dirty_bitmap(kvm)) { 1675 r = kvm_alloc_dirty_bitmap(new); 1676 if (r) 1677 return r; 1678 1679 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1680 bitmap_set(new->dirty_bitmap, 0, new->npages); 1681 } 1682 } 1683 1684 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1685 1686 /* Free the bitmap on failure if it was allocated above. */ 1687 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1688 kvm_destroy_dirty_bitmap(new); 1689 1690 return r; 1691 } 1692 1693 static void kvm_commit_memory_region(struct kvm *kvm, 1694 struct kvm_memory_slot *old, 1695 const struct kvm_memory_slot *new, 1696 enum kvm_mr_change change) 1697 { 1698 int old_flags = old ? old->flags : 0; 1699 int new_flags = new ? new->flags : 0; 1700 /* 1701 * Update the total number of memslot pages before calling the arch 1702 * hook so that architectures can consume the result directly. 1703 */ 1704 if (change == KVM_MR_DELETE) 1705 kvm->nr_memslot_pages -= old->npages; 1706 else if (change == KVM_MR_CREATE) 1707 kvm->nr_memslot_pages += new->npages; 1708 1709 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1710 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1711 atomic_set(&kvm->nr_memslots_dirty_logging, 1712 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1713 } 1714 1715 kvm_arch_commit_memory_region(kvm, old, new, change); 1716 1717 switch (change) { 1718 case KVM_MR_CREATE: 1719 /* Nothing more to do. */ 1720 break; 1721 case KVM_MR_DELETE: 1722 /* Free the old memslot and all its metadata. */ 1723 kvm_free_memslot(kvm, old); 1724 break; 1725 case KVM_MR_MOVE: 1726 case KVM_MR_FLAGS_ONLY: 1727 /* 1728 * Free the dirty bitmap as needed; the below check encompasses 1729 * both the flags and whether a ring buffer is being used) 1730 */ 1731 if (old->dirty_bitmap && !new->dirty_bitmap) 1732 kvm_destroy_dirty_bitmap(old); 1733 1734 /* 1735 * The final quirk. Free the detached, old slot, but only its 1736 * memory, not any metadata. Metadata, including arch specific 1737 * data, may be reused by @new. 1738 */ 1739 kfree(old); 1740 break; 1741 default: 1742 BUG(); 1743 } 1744 } 1745 1746 /* 1747 * Activate @new, which must be installed in the inactive slots by the caller, 1748 * by swapping the active slots and then propagating @new to @old once @old is 1749 * unreachable and can be safely modified. 1750 * 1751 * With NULL @old this simply adds @new to @active (while swapping the sets). 1752 * With NULL @new this simply removes @old from @active and frees it 1753 * (while also swapping the sets). 1754 */ 1755 static void kvm_activate_memslot(struct kvm *kvm, 1756 struct kvm_memory_slot *old, 1757 struct kvm_memory_slot *new) 1758 { 1759 int as_id = kvm_memslots_get_as_id(old, new); 1760 1761 kvm_swap_active_memslots(kvm, as_id); 1762 1763 /* Propagate the new memslot to the now inactive memslots. */ 1764 kvm_replace_memslot(kvm, old, new); 1765 } 1766 1767 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1768 const struct kvm_memory_slot *src) 1769 { 1770 dest->base_gfn = src->base_gfn; 1771 dest->npages = src->npages; 1772 dest->dirty_bitmap = src->dirty_bitmap; 1773 dest->arch = src->arch; 1774 dest->userspace_addr = src->userspace_addr; 1775 dest->flags = src->flags; 1776 dest->id = src->id; 1777 dest->as_id = src->as_id; 1778 } 1779 1780 static void kvm_invalidate_memslot(struct kvm *kvm, 1781 struct kvm_memory_slot *old, 1782 struct kvm_memory_slot *invalid_slot) 1783 { 1784 /* 1785 * Mark the current slot INVALID. As with all memslot modifications, 1786 * this must be done on an unreachable slot to avoid modifying the 1787 * current slot in the active tree. 1788 */ 1789 kvm_copy_memslot(invalid_slot, old); 1790 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1791 kvm_replace_memslot(kvm, old, invalid_slot); 1792 1793 /* 1794 * Activate the slot that is now marked INVALID, but don't propagate 1795 * the slot to the now inactive slots. The slot is either going to be 1796 * deleted or recreated as a new slot. 1797 */ 1798 kvm_swap_active_memslots(kvm, old->as_id); 1799 1800 /* 1801 * From this point no new shadow pages pointing to a deleted, or moved, 1802 * memslot will be created. Validation of sp->gfn happens in: 1803 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1804 * - kvm_is_visible_gfn (mmu_check_root) 1805 */ 1806 kvm_arch_flush_shadow_memslot(kvm, old); 1807 kvm_arch_guest_memory_reclaimed(kvm); 1808 1809 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1810 mutex_lock(&kvm->slots_arch_lock); 1811 1812 /* 1813 * Copy the arch-specific field of the newly-installed slot back to the 1814 * old slot as the arch data could have changed between releasing 1815 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1816 * above. Writers are required to retrieve memslots *after* acquiring 1817 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1818 */ 1819 old->arch = invalid_slot->arch; 1820 } 1821 1822 static void kvm_create_memslot(struct kvm *kvm, 1823 struct kvm_memory_slot *new) 1824 { 1825 /* Add the new memslot to the inactive set and activate. */ 1826 kvm_replace_memslot(kvm, NULL, new); 1827 kvm_activate_memslot(kvm, NULL, new); 1828 } 1829 1830 static void kvm_delete_memslot(struct kvm *kvm, 1831 struct kvm_memory_slot *old, 1832 struct kvm_memory_slot *invalid_slot) 1833 { 1834 /* 1835 * Remove the old memslot (in the inactive memslots) by passing NULL as 1836 * the "new" slot, and for the invalid version in the active slots. 1837 */ 1838 kvm_replace_memslot(kvm, old, NULL); 1839 kvm_activate_memslot(kvm, invalid_slot, NULL); 1840 } 1841 1842 static void kvm_move_memslot(struct kvm *kvm, 1843 struct kvm_memory_slot *old, 1844 struct kvm_memory_slot *new, 1845 struct kvm_memory_slot *invalid_slot) 1846 { 1847 /* 1848 * Replace the old memslot in the inactive slots, and then swap slots 1849 * and replace the current INVALID with the new as well. 1850 */ 1851 kvm_replace_memslot(kvm, old, new); 1852 kvm_activate_memslot(kvm, invalid_slot, new); 1853 } 1854 1855 static void kvm_update_flags_memslot(struct kvm *kvm, 1856 struct kvm_memory_slot *old, 1857 struct kvm_memory_slot *new) 1858 { 1859 /* 1860 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1861 * an intermediate step. Instead, the old memslot is simply replaced 1862 * with a new, updated copy in both memslot sets. 1863 */ 1864 kvm_replace_memslot(kvm, old, new); 1865 kvm_activate_memslot(kvm, old, new); 1866 } 1867 1868 static int kvm_set_memslot(struct kvm *kvm, 1869 struct kvm_memory_slot *old, 1870 struct kvm_memory_slot *new, 1871 enum kvm_mr_change change) 1872 { 1873 struct kvm_memory_slot *invalid_slot; 1874 int r; 1875 1876 /* 1877 * Released in kvm_swap_active_memslots(). 1878 * 1879 * Must be held from before the current memslots are copied until after 1880 * the new memslots are installed with rcu_assign_pointer, then 1881 * released before the synchronize srcu in kvm_swap_active_memslots(). 1882 * 1883 * When modifying memslots outside of the slots_lock, must be held 1884 * before reading the pointer to the current memslots until after all 1885 * changes to those memslots are complete. 1886 * 1887 * These rules ensure that installing new memslots does not lose 1888 * changes made to the previous memslots. 1889 */ 1890 mutex_lock(&kvm->slots_arch_lock); 1891 1892 /* 1893 * Invalidate the old slot if it's being deleted or moved. This is 1894 * done prior to actually deleting/moving the memslot to allow vCPUs to 1895 * continue running by ensuring there are no mappings or shadow pages 1896 * for the memslot when it is deleted/moved. Without pre-invalidation 1897 * (and without a lock), a window would exist between effecting the 1898 * delete/move and committing the changes in arch code where KVM or a 1899 * guest could access a non-existent memslot. 1900 * 1901 * Modifications are done on a temporary, unreachable slot. The old 1902 * slot needs to be preserved in case a later step fails and the 1903 * invalidation needs to be reverted. 1904 */ 1905 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1906 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1907 if (!invalid_slot) { 1908 mutex_unlock(&kvm->slots_arch_lock); 1909 return -ENOMEM; 1910 } 1911 kvm_invalidate_memslot(kvm, old, invalid_slot); 1912 } 1913 1914 r = kvm_prepare_memory_region(kvm, old, new, change); 1915 if (r) { 1916 /* 1917 * For DELETE/MOVE, revert the above INVALID change. No 1918 * modifications required since the original slot was preserved 1919 * in the inactive slots. Changing the active memslots also 1920 * release slots_arch_lock. 1921 */ 1922 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1923 kvm_activate_memslot(kvm, invalid_slot, old); 1924 kfree(invalid_slot); 1925 } else { 1926 mutex_unlock(&kvm->slots_arch_lock); 1927 } 1928 return r; 1929 } 1930 1931 /* 1932 * For DELETE and MOVE, the working slot is now active as the INVALID 1933 * version of the old slot. MOVE is particularly special as it reuses 1934 * the old slot and returns a copy of the old slot (in working_slot). 1935 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1936 * old slot is detached but otherwise preserved. 1937 */ 1938 if (change == KVM_MR_CREATE) 1939 kvm_create_memslot(kvm, new); 1940 else if (change == KVM_MR_DELETE) 1941 kvm_delete_memslot(kvm, old, invalid_slot); 1942 else if (change == KVM_MR_MOVE) 1943 kvm_move_memslot(kvm, old, new, invalid_slot); 1944 else if (change == KVM_MR_FLAGS_ONLY) 1945 kvm_update_flags_memslot(kvm, old, new); 1946 else 1947 BUG(); 1948 1949 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1950 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1951 kfree(invalid_slot); 1952 1953 /* 1954 * No need to refresh new->arch, changes after dropping slots_arch_lock 1955 * will directly hit the final, active memslot. Architectures are 1956 * responsible for knowing that new->arch may be stale. 1957 */ 1958 kvm_commit_memory_region(kvm, old, new, change); 1959 1960 return 0; 1961 } 1962 1963 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1964 gfn_t start, gfn_t end) 1965 { 1966 struct kvm_memslot_iter iter; 1967 1968 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1969 if (iter.slot->id != id) 1970 return true; 1971 } 1972 1973 return false; 1974 } 1975 1976 /* 1977 * Allocate some memory and give it an address in the guest physical address 1978 * space. 1979 * 1980 * Discontiguous memory is allowed, mostly for framebuffers. 1981 * 1982 * Must be called holding kvm->slots_lock for write. 1983 */ 1984 int __kvm_set_memory_region(struct kvm *kvm, 1985 const struct kvm_userspace_memory_region2 *mem) 1986 { 1987 struct kvm_memory_slot *old, *new; 1988 struct kvm_memslots *slots; 1989 enum kvm_mr_change change; 1990 unsigned long npages; 1991 gfn_t base_gfn; 1992 int as_id, id; 1993 int r; 1994 1995 r = check_memory_region_flags(kvm, mem); 1996 if (r) 1997 return r; 1998 1999 as_id = mem->slot >> 16; 2000 id = (u16)mem->slot; 2001 2002 /* General sanity checks */ 2003 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2004 (mem->memory_size != (unsigned long)mem->memory_size)) 2005 return -EINVAL; 2006 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2007 return -EINVAL; 2008 /* We can read the guest memory with __xxx_user() later on. */ 2009 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2010 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2011 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2012 mem->memory_size)) 2013 return -EINVAL; 2014 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2015 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2016 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2017 return -EINVAL; 2018 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2019 return -EINVAL; 2020 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2021 return -EINVAL; 2022 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2023 return -EINVAL; 2024 2025 slots = __kvm_memslots(kvm, as_id); 2026 2027 /* 2028 * Note, the old memslot (and the pointer itself!) may be invalidated 2029 * and/or destroyed by kvm_set_memslot(). 2030 */ 2031 old = id_to_memslot(slots, id); 2032 2033 if (!mem->memory_size) { 2034 if (!old || !old->npages) 2035 return -EINVAL; 2036 2037 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2038 return -EIO; 2039 2040 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2041 } 2042 2043 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2044 npages = (mem->memory_size >> PAGE_SHIFT); 2045 2046 if (!old || !old->npages) { 2047 change = KVM_MR_CREATE; 2048 2049 /* 2050 * To simplify KVM internals, the total number of pages across 2051 * all memslots must fit in an unsigned long. 2052 */ 2053 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2054 return -EINVAL; 2055 } else { /* Modify an existing slot. */ 2056 /* Private memslots are immutable, they can only be deleted. */ 2057 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2058 return -EINVAL; 2059 if ((mem->userspace_addr != old->userspace_addr) || 2060 (npages != old->npages) || 2061 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2062 return -EINVAL; 2063 2064 if (base_gfn != old->base_gfn) 2065 change = KVM_MR_MOVE; 2066 else if (mem->flags != old->flags) 2067 change = KVM_MR_FLAGS_ONLY; 2068 else /* Nothing to change. */ 2069 return 0; 2070 } 2071 2072 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2073 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2074 return -EEXIST; 2075 2076 /* Allocate a slot that will persist in the memslot. */ 2077 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2078 if (!new) 2079 return -ENOMEM; 2080 2081 new->as_id = as_id; 2082 new->id = id; 2083 new->base_gfn = base_gfn; 2084 new->npages = npages; 2085 new->flags = mem->flags; 2086 new->userspace_addr = mem->userspace_addr; 2087 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2088 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2089 if (r) 2090 goto out; 2091 } 2092 2093 r = kvm_set_memslot(kvm, old, new, change); 2094 if (r) 2095 goto out_unbind; 2096 2097 return 0; 2098 2099 out_unbind: 2100 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2101 kvm_gmem_unbind(new); 2102 out: 2103 kfree(new); 2104 return r; 2105 } 2106 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2107 2108 int kvm_set_memory_region(struct kvm *kvm, 2109 const struct kvm_userspace_memory_region2 *mem) 2110 { 2111 int r; 2112 2113 mutex_lock(&kvm->slots_lock); 2114 r = __kvm_set_memory_region(kvm, mem); 2115 mutex_unlock(&kvm->slots_lock); 2116 return r; 2117 } 2118 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2119 2120 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2121 struct kvm_userspace_memory_region2 *mem) 2122 { 2123 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2124 return -EINVAL; 2125 2126 return kvm_set_memory_region(kvm, mem); 2127 } 2128 2129 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2130 /** 2131 * kvm_get_dirty_log - get a snapshot of dirty pages 2132 * @kvm: pointer to kvm instance 2133 * @log: slot id and address to which we copy the log 2134 * @is_dirty: set to '1' if any dirty pages were found 2135 * @memslot: set to the associated memslot, always valid on success 2136 */ 2137 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2138 int *is_dirty, struct kvm_memory_slot **memslot) 2139 { 2140 struct kvm_memslots *slots; 2141 int i, as_id, id; 2142 unsigned long n; 2143 unsigned long any = 0; 2144 2145 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2146 if (!kvm_use_dirty_bitmap(kvm)) 2147 return -ENXIO; 2148 2149 *memslot = NULL; 2150 *is_dirty = 0; 2151 2152 as_id = log->slot >> 16; 2153 id = (u16)log->slot; 2154 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2155 return -EINVAL; 2156 2157 slots = __kvm_memslots(kvm, as_id); 2158 *memslot = id_to_memslot(slots, id); 2159 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2160 return -ENOENT; 2161 2162 kvm_arch_sync_dirty_log(kvm, *memslot); 2163 2164 n = kvm_dirty_bitmap_bytes(*memslot); 2165 2166 for (i = 0; !any && i < n/sizeof(long); ++i) 2167 any = (*memslot)->dirty_bitmap[i]; 2168 2169 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2170 return -EFAULT; 2171 2172 if (any) 2173 *is_dirty = 1; 2174 return 0; 2175 } 2176 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2177 2178 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2179 /** 2180 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2181 * and reenable dirty page tracking for the corresponding pages. 2182 * @kvm: pointer to kvm instance 2183 * @log: slot id and address to which we copy the log 2184 * 2185 * We need to keep it in mind that VCPU threads can write to the bitmap 2186 * concurrently. So, to avoid losing track of dirty pages we keep the 2187 * following order: 2188 * 2189 * 1. Take a snapshot of the bit and clear it if needed. 2190 * 2. Write protect the corresponding page. 2191 * 3. Copy the snapshot to the userspace. 2192 * 4. Upon return caller flushes TLB's if needed. 2193 * 2194 * Between 2 and 4, the guest may write to the page using the remaining TLB 2195 * entry. This is not a problem because the page is reported dirty using 2196 * the snapshot taken before and step 4 ensures that writes done after 2197 * exiting to userspace will be logged for the next call. 2198 * 2199 */ 2200 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2201 { 2202 struct kvm_memslots *slots; 2203 struct kvm_memory_slot *memslot; 2204 int i, as_id, id; 2205 unsigned long n; 2206 unsigned long *dirty_bitmap; 2207 unsigned long *dirty_bitmap_buffer; 2208 bool flush; 2209 2210 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2211 if (!kvm_use_dirty_bitmap(kvm)) 2212 return -ENXIO; 2213 2214 as_id = log->slot >> 16; 2215 id = (u16)log->slot; 2216 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2217 return -EINVAL; 2218 2219 slots = __kvm_memslots(kvm, as_id); 2220 memslot = id_to_memslot(slots, id); 2221 if (!memslot || !memslot->dirty_bitmap) 2222 return -ENOENT; 2223 2224 dirty_bitmap = memslot->dirty_bitmap; 2225 2226 kvm_arch_sync_dirty_log(kvm, memslot); 2227 2228 n = kvm_dirty_bitmap_bytes(memslot); 2229 flush = false; 2230 if (kvm->manual_dirty_log_protect) { 2231 /* 2232 * Unlike kvm_get_dirty_log, we always return false in *flush, 2233 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2234 * is some code duplication between this function and 2235 * kvm_get_dirty_log, but hopefully all architecture 2236 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2237 * can be eliminated. 2238 */ 2239 dirty_bitmap_buffer = dirty_bitmap; 2240 } else { 2241 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2242 memset(dirty_bitmap_buffer, 0, n); 2243 2244 KVM_MMU_LOCK(kvm); 2245 for (i = 0; i < n / sizeof(long); i++) { 2246 unsigned long mask; 2247 gfn_t offset; 2248 2249 if (!dirty_bitmap[i]) 2250 continue; 2251 2252 flush = true; 2253 mask = xchg(&dirty_bitmap[i], 0); 2254 dirty_bitmap_buffer[i] = mask; 2255 2256 offset = i * BITS_PER_LONG; 2257 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2258 offset, mask); 2259 } 2260 KVM_MMU_UNLOCK(kvm); 2261 } 2262 2263 if (flush) 2264 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2265 2266 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2267 return -EFAULT; 2268 return 0; 2269 } 2270 2271 2272 /** 2273 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2274 * @kvm: kvm instance 2275 * @log: slot id and address to which we copy the log 2276 * 2277 * Steps 1-4 below provide general overview of dirty page logging. See 2278 * kvm_get_dirty_log_protect() function description for additional details. 2279 * 2280 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2281 * always flush the TLB (step 4) even if previous step failed and the dirty 2282 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2283 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2284 * writes will be marked dirty for next log read. 2285 * 2286 * 1. Take a snapshot of the bit and clear it if needed. 2287 * 2. Write protect the corresponding page. 2288 * 3. Copy the snapshot to the userspace. 2289 * 4. Flush TLB's if needed. 2290 */ 2291 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2292 struct kvm_dirty_log *log) 2293 { 2294 int r; 2295 2296 mutex_lock(&kvm->slots_lock); 2297 2298 r = kvm_get_dirty_log_protect(kvm, log); 2299 2300 mutex_unlock(&kvm->slots_lock); 2301 return r; 2302 } 2303 2304 /** 2305 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2306 * and reenable dirty page tracking for the corresponding pages. 2307 * @kvm: pointer to kvm instance 2308 * @log: slot id and address from which to fetch the bitmap of dirty pages 2309 */ 2310 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2311 struct kvm_clear_dirty_log *log) 2312 { 2313 struct kvm_memslots *slots; 2314 struct kvm_memory_slot *memslot; 2315 int as_id, id; 2316 gfn_t offset; 2317 unsigned long i, n; 2318 unsigned long *dirty_bitmap; 2319 unsigned long *dirty_bitmap_buffer; 2320 bool flush; 2321 2322 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2323 if (!kvm_use_dirty_bitmap(kvm)) 2324 return -ENXIO; 2325 2326 as_id = log->slot >> 16; 2327 id = (u16)log->slot; 2328 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2329 return -EINVAL; 2330 2331 if (log->first_page & 63) 2332 return -EINVAL; 2333 2334 slots = __kvm_memslots(kvm, as_id); 2335 memslot = id_to_memslot(slots, id); 2336 if (!memslot || !memslot->dirty_bitmap) 2337 return -ENOENT; 2338 2339 dirty_bitmap = memslot->dirty_bitmap; 2340 2341 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2342 2343 if (log->first_page > memslot->npages || 2344 log->num_pages > memslot->npages - log->first_page || 2345 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2346 return -EINVAL; 2347 2348 kvm_arch_sync_dirty_log(kvm, memslot); 2349 2350 flush = false; 2351 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2352 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2353 return -EFAULT; 2354 2355 KVM_MMU_LOCK(kvm); 2356 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2357 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2358 i++, offset += BITS_PER_LONG) { 2359 unsigned long mask = *dirty_bitmap_buffer++; 2360 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2361 if (!mask) 2362 continue; 2363 2364 mask &= atomic_long_fetch_andnot(mask, p); 2365 2366 /* 2367 * mask contains the bits that really have been cleared. This 2368 * never includes any bits beyond the length of the memslot (if 2369 * the length is not aligned to 64 pages), therefore it is not 2370 * a problem if userspace sets them in log->dirty_bitmap. 2371 */ 2372 if (mask) { 2373 flush = true; 2374 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2375 offset, mask); 2376 } 2377 } 2378 KVM_MMU_UNLOCK(kvm); 2379 2380 if (flush) 2381 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2382 2383 return 0; 2384 } 2385 2386 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2387 struct kvm_clear_dirty_log *log) 2388 { 2389 int r; 2390 2391 mutex_lock(&kvm->slots_lock); 2392 2393 r = kvm_clear_dirty_log_protect(kvm, log); 2394 2395 mutex_unlock(&kvm->slots_lock); 2396 return r; 2397 } 2398 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2399 2400 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2401 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2402 { 2403 if (!kvm || kvm_arch_has_private_mem(kvm)) 2404 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2405 2406 return 0; 2407 } 2408 2409 /* 2410 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2411 * such that the bits in @mask match @attrs. 2412 */ 2413 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2414 unsigned long mask, unsigned long attrs) 2415 { 2416 XA_STATE(xas, &kvm->mem_attr_array, start); 2417 unsigned long index; 2418 void *entry; 2419 2420 mask &= kvm_supported_mem_attributes(kvm); 2421 if (attrs & ~mask) 2422 return false; 2423 2424 if (end == start + 1) 2425 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2426 2427 guard(rcu)(); 2428 if (!attrs) 2429 return !xas_find(&xas, end - 1); 2430 2431 for (index = start; index < end; index++) { 2432 do { 2433 entry = xas_next(&xas); 2434 } while (xas_retry(&xas, entry)); 2435 2436 if (xas.xa_index != index || 2437 (xa_to_value(entry) & mask) != attrs) 2438 return false; 2439 } 2440 2441 return true; 2442 } 2443 2444 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2445 struct kvm_mmu_notifier_range *range) 2446 { 2447 struct kvm_gfn_range gfn_range; 2448 struct kvm_memory_slot *slot; 2449 struct kvm_memslots *slots; 2450 struct kvm_memslot_iter iter; 2451 bool found_memslot = false; 2452 bool ret = false; 2453 int i; 2454 2455 gfn_range.arg = range->arg; 2456 gfn_range.may_block = range->may_block; 2457 2458 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2459 slots = __kvm_memslots(kvm, i); 2460 2461 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2462 slot = iter.slot; 2463 gfn_range.slot = slot; 2464 2465 gfn_range.start = max(range->start, slot->base_gfn); 2466 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2467 if (gfn_range.start >= gfn_range.end) 2468 continue; 2469 2470 if (!found_memslot) { 2471 found_memslot = true; 2472 KVM_MMU_LOCK(kvm); 2473 if (!IS_KVM_NULL_FN(range->on_lock)) 2474 range->on_lock(kvm); 2475 } 2476 2477 ret |= range->handler(kvm, &gfn_range); 2478 } 2479 } 2480 2481 if (range->flush_on_ret && ret) 2482 kvm_flush_remote_tlbs(kvm); 2483 2484 if (found_memslot) 2485 KVM_MMU_UNLOCK(kvm); 2486 } 2487 2488 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2489 struct kvm_gfn_range *range) 2490 { 2491 /* 2492 * Unconditionally add the range to the invalidation set, regardless of 2493 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2494 * if KVM supports RWX attributes in the future and the attributes are 2495 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2496 * adding the range allows KVM to require that MMU invalidations add at 2497 * least one range between begin() and end(), e.g. allows KVM to detect 2498 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2499 * but it's not obvious that allowing new mappings while the attributes 2500 * are in flux is desirable or worth the complexity. 2501 */ 2502 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2503 2504 return kvm_arch_pre_set_memory_attributes(kvm, range); 2505 } 2506 2507 /* Set @attributes for the gfn range [@start, @end). */ 2508 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2509 unsigned long attributes) 2510 { 2511 struct kvm_mmu_notifier_range pre_set_range = { 2512 .start = start, 2513 .end = end, 2514 .handler = kvm_pre_set_memory_attributes, 2515 .on_lock = kvm_mmu_invalidate_begin, 2516 .flush_on_ret = true, 2517 .may_block = true, 2518 }; 2519 struct kvm_mmu_notifier_range post_set_range = { 2520 .start = start, 2521 .end = end, 2522 .arg.attributes = attributes, 2523 .handler = kvm_arch_post_set_memory_attributes, 2524 .on_lock = kvm_mmu_invalidate_end, 2525 .may_block = true, 2526 }; 2527 unsigned long i; 2528 void *entry; 2529 int r = 0; 2530 2531 entry = attributes ? xa_mk_value(attributes) : NULL; 2532 2533 mutex_lock(&kvm->slots_lock); 2534 2535 /* Nothing to do if the entire range as the desired attributes. */ 2536 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2537 goto out_unlock; 2538 2539 /* 2540 * Reserve memory ahead of time to avoid having to deal with failures 2541 * partway through setting the new attributes. 2542 */ 2543 for (i = start; i < end; i++) { 2544 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2545 if (r) 2546 goto out_unlock; 2547 } 2548 2549 kvm_handle_gfn_range(kvm, &pre_set_range); 2550 2551 for (i = start; i < end; i++) { 2552 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2553 GFP_KERNEL_ACCOUNT)); 2554 KVM_BUG_ON(r, kvm); 2555 } 2556 2557 kvm_handle_gfn_range(kvm, &post_set_range); 2558 2559 out_unlock: 2560 mutex_unlock(&kvm->slots_lock); 2561 2562 return r; 2563 } 2564 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2565 struct kvm_memory_attributes *attrs) 2566 { 2567 gfn_t start, end; 2568 2569 /* flags is currently not used. */ 2570 if (attrs->flags) 2571 return -EINVAL; 2572 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2573 return -EINVAL; 2574 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2575 return -EINVAL; 2576 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2577 return -EINVAL; 2578 2579 start = attrs->address >> PAGE_SHIFT; 2580 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2581 2582 /* 2583 * xarray tracks data using "unsigned long", and as a result so does 2584 * KVM. For simplicity, supports generic attributes only on 64-bit 2585 * architectures. 2586 */ 2587 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2588 2589 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2590 } 2591 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2592 2593 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2594 { 2595 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2596 } 2597 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2598 2599 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2600 { 2601 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2602 u64 gen = slots->generation; 2603 struct kvm_memory_slot *slot; 2604 2605 /* 2606 * This also protects against using a memslot from a different address space, 2607 * since different address spaces have different generation numbers. 2608 */ 2609 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2610 vcpu->last_used_slot = NULL; 2611 vcpu->last_used_slot_gen = gen; 2612 } 2613 2614 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2615 if (slot) 2616 return slot; 2617 2618 /* 2619 * Fall back to searching all memslots. We purposely use 2620 * search_memslots() instead of __gfn_to_memslot() to avoid 2621 * thrashing the VM-wide last_used_slot in kvm_memslots. 2622 */ 2623 slot = search_memslots(slots, gfn, false); 2624 if (slot) { 2625 vcpu->last_used_slot = slot; 2626 return slot; 2627 } 2628 2629 return NULL; 2630 } 2631 2632 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2633 { 2634 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2635 2636 return kvm_is_visible_memslot(memslot); 2637 } 2638 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2639 2640 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2641 { 2642 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2643 2644 return kvm_is_visible_memslot(memslot); 2645 } 2646 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2647 2648 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2649 { 2650 struct vm_area_struct *vma; 2651 unsigned long addr, size; 2652 2653 size = PAGE_SIZE; 2654 2655 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2656 if (kvm_is_error_hva(addr)) 2657 return PAGE_SIZE; 2658 2659 mmap_read_lock(current->mm); 2660 vma = find_vma(current->mm, addr); 2661 if (!vma) 2662 goto out; 2663 2664 size = vma_kernel_pagesize(vma); 2665 2666 out: 2667 mmap_read_unlock(current->mm); 2668 2669 return size; 2670 } 2671 2672 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2673 { 2674 return slot->flags & KVM_MEM_READONLY; 2675 } 2676 2677 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2678 gfn_t *nr_pages, bool write) 2679 { 2680 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2681 return KVM_HVA_ERR_BAD; 2682 2683 if (memslot_is_readonly(slot) && write) 2684 return KVM_HVA_ERR_RO_BAD; 2685 2686 if (nr_pages) 2687 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2688 2689 return __gfn_to_hva_memslot(slot, gfn); 2690 } 2691 2692 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2693 gfn_t *nr_pages) 2694 { 2695 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2696 } 2697 2698 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2699 gfn_t gfn) 2700 { 2701 return gfn_to_hva_many(slot, gfn, NULL); 2702 } 2703 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2704 2705 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2706 { 2707 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2708 } 2709 EXPORT_SYMBOL_GPL(gfn_to_hva); 2710 2711 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2712 { 2713 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2714 } 2715 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2716 2717 /* 2718 * Return the hva of a @gfn and the R/W attribute if possible. 2719 * 2720 * @slot: the kvm_memory_slot which contains @gfn 2721 * @gfn: the gfn to be translated 2722 * @writable: used to return the read/write attribute of the @slot if the hva 2723 * is valid and @writable is not NULL 2724 */ 2725 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2726 gfn_t gfn, bool *writable) 2727 { 2728 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2729 2730 if (!kvm_is_error_hva(hva) && writable) 2731 *writable = !memslot_is_readonly(slot); 2732 2733 return hva; 2734 } 2735 2736 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2737 { 2738 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2739 2740 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2741 } 2742 2743 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2744 { 2745 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2746 2747 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2748 } 2749 2750 static inline int check_user_page_hwpoison(unsigned long addr) 2751 { 2752 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2753 2754 rc = get_user_pages(addr, 1, flags, NULL); 2755 return rc == -EHWPOISON; 2756 } 2757 2758 /* 2759 * The fast path to get the writable pfn which will be stored in @pfn, 2760 * true indicates success, otherwise false is returned. It's also the 2761 * only part that runs if we can in atomic context. 2762 */ 2763 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2764 bool *writable, kvm_pfn_t *pfn) 2765 { 2766 struct page *page[1]; 2767 2768 /* 2769 * Fast pin a writable pfn only if it is a write fault request 2770 * or the caller allows to map a writable pfn for a read fault 2771 * request. 2772 */ 2773 if (!(write_fault || writable)) 2774 return false; 2775 2776 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2777 *pfn = page_to_pfn(page[0]); 2778 2779 if (writable) 2780 *writable = true; 2781 return true; 2782 } 2783 2784 return false; 2785 } 2786 2787 /* 2788 * The slow path to get the pfn of the specified host virtual address, 2789 * 1 indicates success, -errno is returned if error is detected. 2790 */ 2791 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2792 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2793 { 2794 /* 2795 * When a VCPU accesses a page that is not mapped into the secondary 2796 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2797 * make progress. We always want to honor NUMA hinting faults in that 2798 * case, because GUP usage corresponds to memory accesses from the VCPU. 2799 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2800 * mapped into the secondary MMU and gets accessed by a VCPU. 2801 * 2802 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2803 * implicitly honor NUMA hinting faults and don't need this flag. 2804 */ 2805 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2806 struct page *page; 2807 int npages; 2808 2809 might_sleep(); 2810 2811 if (writable) 2812 *writable = write_fault; 2813 2814 if (write_fault) 2815 flags |= FOLL_WRITE; 2816 if (async) 2817 flags |= FOLL_NOWAIT; 2818 if (interruptible) 2819 flags |= FOLL_INTERRUPTIBLE; 2820 2821 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2822 if (npages != 1) 2823 return npages; 2824 2825 /* map read fault as writable if possible */ 2826 if (unlikely(!write_fault) && writable) { 2827 struct page *wpage; 2828 2829 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2830 *writable = true; 2831 put_page(page); 2832 page = wpage; 2833 } 2834 } 2835 *pfn = page_to_pfn(page); 2836 return npages; 2837 } 2838 2839 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2840 { 2841 if (unlikely(!(vma->vm_flags & VM_READ))) 2842 return false; 2843 2844 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2845 return false; 2846 2847 return true; 2848 } 2849 2850 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2851 { 2852 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2853 2854 if (!page) 2855 return 1; 2856 2857 return get_page_unless_zero(page); 2858 } 2859 2860 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2861 unsigned long addr, bool write_fault, 2862 bool *writable, kvm_pfn_t *p_pfn) 2863 { 2864 kvm_pfn_t pfn; 2865 pte_t *ptep; 2866 pte_t pte; 2867 spinlock_t *ptl; 2868 int r; 2869 2870 r = follow_pte(vma, addr, &ptep, &ptl); 2871 if (r) { 2872 /* 2873 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2874 * not call the fault handler, so do it here. 2875 */ 2876 bool unlocked = false; 2877 r = fixup_user_fault(current->mm, addr, 2878 (write_fault ? FAULT_FLAG_WRITE : 0), 2879 &unlocked); 2880 if (unlocked) 2881 return -EAGAIN; 2882 if (r) 2883 return r; 2884 2885 r = follow_pte(vma, addr, &ptep, &ptl); 2886 if (r) 2887 return r; 2888 } 2889 2890 pte = ptep_get(ptep); 2891 2892 if (write_fault && !pte_write(pte)) { 2893 pfn = KVM_PFN_ERR_RO_FAULT; 2894 goto out; 2895 } 2896 2897 if (writable) 2898 *writable = pte_write(pte); 2899 pfn = pte_pfn(pte); 2900 2901 /* 2902 * Get a reference here because callers of *hva_to_pfn* and 2903 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2904 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2905 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2906 * simply do nothing for reserved pfns. 2907 * 2908 * Whoever called remap_pfn_range is also going to call e.g. 2909 * unmap_mapping_range before the underlying pages are freed, 2910 * causing a call to our MMU notifier. 2911 * 2912 * Certain IO or PFNMAP mappings can be backed with valid 2913 * struct pages, but be allocated without refcounting e.g., 2914 * tail pages of non-compound higher order allocations, which 2915 * would then underflow the refcount when the caller does the 2916 * required put_page. Don't allow those pages here. 2917 */ 2918 if (!kvm_try_get_pfn(pfn)) 2919 r = -EFAULT; 2920 2921 out: 2922 pte_unmap_unlock(ptep, ptl); 2923 *p_pfn = pfn; 2924 2925 return r; 2926 } 2927 2928 /* 2929 * Pin guest page in memory and return its pfn. 2930 * @addr: host virtual address which maps memory to the guest 2931 * @atomic: whether this function is forbidden from sleeping 2932 * @interruptible: whether the process can be interrupted by non-fatal signals 2933 * @async: whether this function need to wait IO complete if the 2934 * host page is not in the memory 2935 * @write_fault: whether we should get a writable host page 2936 * @writable: whether it allows to map a writable host page for !@write_fault 2937 * 2938 * The function will map a writable host page for these two cases: 2939 * 1): @write_fault = true 2940 * 2): @write_fault = false && @writable, @writable will tell the caller 2941 * whether the mapping is writable. 2942 */ 2943 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2944 bool *async, bool write_fault, bool *writable) 2945 { 2946 struct vm_area_struct *vma; 2947 kvm_pfn_t pfn; 2948 int npages, r; 2949 2950 /* we can do it either atomically or asynchronously, not both */ 2951 BUG_ON(atomic && async); 2952 2953 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2954 return pfn; 2955 2956 if (atomic) 2957 return KVM_PFN_ERR_FAULT; 2958 2959 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2960 writable, &pfn); 2961 if (npages == 1) 2962 return pfn; 2963 if (npages == -EINTR) 2964 return KVM_PFN_ERR_SIGPENDING; 2965 2966 mmap_read_lock(current->mm); 2967 if (npages == -EHWPOISON || 2968 (!async && check_user_page_hwpoison(addr))) { 2969 pfn = KVM_PFN_ERR_HWPOISON; 2970 goto exit; 2971 } 2972 2973 retry: 2974 vma = vma_lookup(current->mm, addr); 2975 2976 if (vma == NULL) 2977 pfn = KVM_PFN_ERR_FAULT; 2978 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2979 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2980 if (r == -EAGAIN) 2981 goto retry; 2982 if (r < 0) 2983 pfn = KVM_PFN_ERR_FAULT; 2984 } else { 2985 if (async && vma_is_valid(vma, write_fault)) 2986 *async = true; 2987 pfn = KVM_PFN_ERR_FAULT; 2988 } 2989 exit: 2990 mmap_read_unlock(current->mm); 2991 return pfn; 2992 } 2993 2994 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2995 bool atomic, bool interruptible, bool *async, 2996 bool write_fault, bool *writable, hva_t *hva) 2997 { 2998 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2999 3000 if (hva) 3001 *hva = addr; 3002 3003 if (kvm_is_error_hva(addr)) { 3004 if (writable) 3005 *writable = false; 3006 3007 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT : 3008 KVM_PFN_NOSLOT; 3009 } 3010 3011 /* Do not map writable pfn in the readonly memslot. */ 3012 if (writable && memslot_is_readonly(slot)) { 3013 *writable = false; 3014 writable = NULL; 3015 } 3016 3017 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3018 writable); 3019 } 3020 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3021 3022 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3023 bool *writable) 3024 { 3025 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3026 NULL, write_fault, writable, NULL); 3027 } 3028 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3029 3030 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3031 { 3032 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3033 NULL, NULL); 3034 } 3035 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3036 3037 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3038 { 3039 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3040 NULL, NULL); 3041 } 3042 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3043 3044 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3045 { 3046 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3047 } 3048 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3049 3050 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3051 { 3052 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3053 } 3054 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3055 3056 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3057 { 3058 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3059 } 3060 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3061 3062 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3063 struct page **pages, int nr_pages) 3064 { 3065 unsigned long addr; 3066 gfn_t entry = 0; 3067 3068 addr = gfn_to_hva_many(slot, gfn, &entry); 3069 if (kvm_is_error_hva(addr)) 3070 return -1; 3071 3072 if (entry < nr_pages) 3073 return 0; 3074 3075 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3076 } 3077 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3078 3079 /* 3080 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3081 * backed by 'struct page'. A valid example is if the backing memslot is 3082 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3083 * been elevated by gfn_to_pfn(). 3084 */ 3085 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3086 { 3087 struct page *page; 3088 kvm_pfn_t pfn; 3089 3090 pfn = gfn_to_pfn(kvm, gfn); 3091 3092 if (is_error_noslot_pfn(pfn)) 3093 return KVM_ERR_PTR_BAD_PAGE; 3094 3095 page = kvm_pfn_to_refcounted_page(pfn); 3096 if (!page) 3097 return KVM_ERR_PTR_BAD_PAGE; 3098 3099 return page; 3100 } 3101 EXPORT_SYMBOL_GPL(gfn_to_page); 3102 3103 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3104 { 3105 if (dirty) 3106 kvm_release_pfn_dirty(pfn); 3107 else 3108 kvm_release_pfn_clean(pfn); 3109 } 3110 3111 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3112 { 3113 kvm_pfn_t pfn; 3114 void *hva = NULL; 3115 struct page *page = KVM_UNMAPPED_PAGE; 3116 3117 if (!map) 3118 return -EINVAL; 3119 3120 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3121 if (is_error_noslot_pfn(pfn)) 3122 return -EINVAL; 3123 3124 if (pfn_valid(pfn)) { 3125 page = pfn_to_page(pfn); 3126 hva = kmap(page); 3127 #ifdef CONFIG_HAS_IOMEM 3128 } else { 3129 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3130 #endif 3131 } 3132 3133 if (!hva) 3134 return -EFAULT; 3135 3136 map->page = page; 3137 map->hva = hva; 3138 map->pfn = pfn; 3139 map->gfn = gfn; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3144 3145 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3146 { 3147 if (!map) 3148 return; 3149 3150 if (!map->hva) 3151 return; 3152 3153 if (map->page != KVM_UNMAPPED_PAGE) 3154 kunmap(map->page); 3155 #ifdef CONFIG_HAS_IOMEM 3156 else 3157 memunmap(map->hva); 3158 #endif 3159 3160 if (dirty) 3161 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3162 3163 kvm_release_pfn(map->pfn, dirty); 3164 3165 map->hva = NULL; 3166 map->page = NULL; 3167 } 3168 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3169 3170 static bool kvm_is_ad_tracked_page(struct page *page) 3171 { 3172 /* 3173 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3174 * touched (e.g. set dirty) except by its owner". 3175 */ 3176 return !PageReserved(page); 3177 } 3178 3179 static void kvm_set_page_dirty(struct page *page) 3180 { 3181 if (kvm_is_ad_tracked_page(page)) 3182 SetPageDirty(page); 3183 } 3184 3185 static void kvm_set_page_accessed(struct page *page) 3186 { 3187 if (kvm_is_ad_tracked_page(page)) 3188 mark_page_accessed(page); 3189 } 3190 3191 void kvm_release_page_clean(struct page *page) 3192 { 3193 WARN_ON(is_error_page(page)); 3194 3195 kvm_set_page_accessed(page); 3196 put_page(page); 3197 } 3198 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3199 3200 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3201 { 3202 struct page *page; 3203 3204 if (is_error_noslot_pfn(pfn)) 3205 return; 3206 3207 page = kvm_pfn_to_refcounted_page(pfn); 3208 if (!page) 3209 return; 3210 3211 kvm_release_page_clean(page); 3212 } 3213 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3214 3215 void kvm_release_page_dirty(struct page *page) 3216 { 3217 WARN_ON(is_error_page(page)); 3218 3219 kvm_set_page_dirty(page); 3220 kvm_release_page_clean(page); 3221 } 3222 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3223 3224 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3225 { 3226 struct page *page; 3227 3228 if (is_error_noslot_pfn(pfn)) 3229 return; 3230 3231 page = kvm_pfn_to_refcounted_page(pfn); 3232 if (!page) 3233 return; 3234 3235 kvm_release_page_dirty(page); 3236 } 3237 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3238 3239 /* 3240 * Note, checking for an error/noslot pfn is the caller's responsibility when 3241 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3242 * "set" helpers are not to be used when the pfn might point at garbage. 3243 */ 3244 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3245 { 3246 if (WARN_ON(is_error_noslot_pfn(pfn))) 3247 return; 3248 3249 if (pfn_valid(pfn)) 3250 kvm_set_page_dirty(pfn_to_page(pfn)); 3251 } 3252 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3253 3254 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3255 { 3256 if (WARN_ON(is_error_noslot_pfn(pfn))) 3257 return; 3258 3259 if (pfn_valid(pfn)) 3260 kvm_set_page_accessed(pfn_to_page(pfn)); 3261 } 3262 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3263 3264 static int next_segment(unsigned long len, int offset) 3265 { 3266 if (len > PAGE_SIZE - offset) 3267 return PAGE_SIZE - offset; 3268 else 3269 return len; 3270 } 3271 3272 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3273 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3274 void *data, int offset, int len) 3275 { 3276 int r; 3277 unsigned long addr; 3278 3279 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3280 if (kvm_is_error_hva(addr)) 3281 return -EFAULT; 3282 r = __copy_from_user(data, (void __user *)addr + offset, len); 3283 if (r) 3284 return -EFAULT; 3285 return 0; 3286 } 3287 3288 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3289 int len) 3290 { 3291 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3292 3293 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3294 } 3295 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3296 3297 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3298 int offset, int len) 3299 { 3300 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3301 3302 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3303 } 3304 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3305 3306 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3307 { 3308 gfn_t gfn = gpa >> PAGE_SHIFT; 3309 int seg; 3310 int offset = offset_in_page(gpa); 3311 int ret; 3312 3313 while ((seg = next_segment(len, offset)) != 0) { 3314 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3315 if (ret < 0) 3316 return ret; 3317 offset = 0; 3318 len -= seg; 3319 data += seg; 3320 ++gfn; 3321 } 3322 return 0; 3323 } 3324 EXPORT_SYMBOL_GPL(kvm_read_guest); 3325 3326 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3327 { 3328 gfn_t gfn = gpa >> PAGE_SHIFT; 3329 int seg; 3330 int offset = offset_in_page(gpa); 3331 int ret; 3332 3333 while ((seg = next_segment(len, offset)) != 0) { 3334 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3335 if (ret < 0) 3336 return ret; 3337 offset = 0; 3338 len -= seg; 3339 data += seg; 3340 ++gfn; 3341 } 3342 return 0; 3343 } 3344 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3345 3346 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3347 void *data, int offset, unsigned long len) 3348 { 3349 int r; 3350 unsigned long addr; 3351 3352 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3353 if (kvm_is_error_hva(addr)) 3354 return -EFAULT; 3355 pagefault_disable(); 3356 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3357 pagefault_enable(); 3358 if (r) 3359 return -EFAULT; 3360 return 0; 3361 } 3362 3363 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3364 void *data, unsigned long len) 3365 { 3366 gfn_t gfn = gpa >> PAGE_SHIFT; 3367 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3368 int offset = offset_in_page(gpa); 3369 3370 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3371 } 3372 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3373 3374 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3375 static int __kvm_write_guest_page(struct kvm *kvm, 3376 struct kvm_memory_slot *memslot, gfn_t gfn, 3377 const void *data, int offset, int len) 3378 { 3379 int r; 3380 unsigned long addr; 3381 3382 addr = gfn_to_hva_memslot(memslot, gfn); 3383 if (kvm_is_error_hva(addr)) 3384 return -EFAULT; 3385 r = __copy_to_user((void __user *)addr + offset, data, len); 3386 if (r) 3387 return -EFAULT; 3388 mark_page_dirty_in_slot(kvm, memslot, gfn); 3389 return 0; 3390 } 3391 3392 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3393 const void *data, int offset, int len) 3394 { 3395 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3396 3397 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3398 } 3399 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3400 3401 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3402 const void *data, int offset, int len) 3403 { 3404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3405 3406 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3407 } 3408 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3409 3410 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3411 unsigned long len) 3412 { 3413 gfn_t gfn = gpa >> PAGE_SHIFT; 3414 int seg; 3415 int offset = offset_in_page(gpa); 3416 int ret; 3417 3418 while ((seg = next_segment(len, offset)) != 0) { 3419 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3420 if (ret < 0) 3421 return ret; 3422 offset = 0; 3423 len -= seg; 3424 data += seg; 3425 ++gfn; 3426 } 3427 return 0; 3428 } 3429 EXPORT_SYMBOL_GPL(kvm_write_guest); 3430 3431 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3432 unsigned long len) 3433 { 3434 gfn_t gfn = gpa >> PAGE_SHIFT; 3435 int seg; 3436 int offset = offset_in_page(gpa); 3437 int ret; 3438 3439 while ((seg = next_segment(len, offset)) != 0) { 3440 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3441 if (ret < 0) 3442 return ret; 3443 offset = 0; 3444 len -= seg; 3445 data += seg; 3446 ++gfn; 3447 } 3448 return 0; 3449 } 3450 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3451 3452 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3453 struct gfn_to_hva_cache *ghc, 3454 gpa_t gpa, unsigned long len) 3455 { 3456 int offset = offset_in_page(gpa); 3457 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3458 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3459 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3460 gfn_t nr_pages_avail; 3461 3462 /* Update ghc->generation before performing any error checks. */ 3463 ghc->generation = slots->generation; 3464 3465 if (start_gfn > end_gfn) { 3466 ghc->hva = KVM_HVA_ERR_BAD; 3467 return -EINVAL; 3468 } 3469 3470 /* 3471 * If the requested region crosses two memslots, we still 3472 * verify that the entire region is valid here. 3473 */ 3474 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3475 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3476 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3477 &nr_pages_avail); 3478 if (kvm_is_error_hva(ghc->hva)) 3479 return -EFAULT; 3480 } 3481 3482 /* Use the slow path for cross page reads and writes. */ 3483 if (nr_pages_needed == 1) 3484 ghc->hva += offset; 3485 else 3486 ghc->memslot = NULL; 3487 3488 ghc->gpa = gpa; 3489 ghc->len = len; 3490 return 0; 3491 } 3492 3493 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3494 gpa_t gpa, unsigned long len) 3495 { 3496 struct kvm_memslots *slots = kvm_memslots(kvm); 3497 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3498 } 3499 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3500 3501 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3502 void *data, unsigned int offset, 3503 unsigned long len) 3504 { 3505 struct kvm_memslots *slots = kvm_memslots(kvm); 3506 int r; 3507 gpa_t gpa = ghc->gpa + offset; 3508 3509 if (WARN_ON_ONCE(len + offset > ghc->len)) 3510 return -EINVAL; 3511 3512 if (slots->generation != ghc->generation) { 3513 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3514 return -EFAULT; 3515 } 3516 3517 if (kvm_is_error_hva(ghc->hva)) 3518 return -EFAULT; 3519 3520 if (unlikely(!ghc->memslot)) 3521 return kvm_write_guest(kvm, gpa, data, len); 3522 3523 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3524 if (r) 3525 return -EFAULT; 3526 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3527 3528 return 0; 3529 } 3530 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3531 3532 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3533 void *data, unsigned long len) 3534 { 3535 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3536 } 3537 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3538 3539 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3540 void *data, unsigned int offset, 3541 unsigned long len) 3542 { 3543 struct kvm_memslots *slots = kvm_memslots(kvm); 3544 int r; 3545 gpa_t gpa = ghc->gpa + offset; 3546 3547 if (WARN_ON_ONCE(len + offset > ghc->len)) 3548 return -EINVAL; 3549 3550 if (slots->generation != ghc->generation) { 3551 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3552 return -EFAULT; 3553 } 3554 3555 if (kvm_is_error_hva(ghc->hva)) 3556 return -EFAULT; 3557 3558 if (unlikely(!ghc->memslot)) 3559 return kvm_read_guest(kvm, gpa, data, len); 3560 3561 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3562 if (r) 3563 return -EFAULT; 3564 3565 return 0; 3566 } 3567 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3568 3569 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3570 void *data, unsigned long len) 3571 { 3572 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3573 } 3574 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3575 3576 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3577 { 3578 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3579 gfn_t gfn = gpa >> PAGE_SHIFT; 3580 int seg; 3581 int offset = offset_in_page(gpa); 3582 int ret; 3583 3584 while ((seg = next_segment(len, offset)) != 0) { 3585 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3586 if (ret < 0) 3587 return ret; 3588 offset = 0; 3589 len -= seg; 3590 ++gfn; 3591 } 3592 return 0; 3593 } 3594 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3595 3596 void mark_page_dirty_in_slot(struct kvm *kvm, 3597 const struct kvm_memory_slot *memslot, 3598 gfn_t gfn) 3599 { 3600 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3601 3602 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3603 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3604 return; 3605 3606 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3607 #endif 3608 3609 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3610 unsigned long rel_gfn = gfn - memslot->base_gfn; 3611 u32 slot = (memslot->as_id << 16) | memslot->id; 3612 3613 if (kvm->dirty_ring_size && vcpu) 3614 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3615 else if (memslot->dirty_bitmap) 3616 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3617 } 3618 } 3619 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3620 3621 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3622 { 3623 struct kvm_memory_slot *memslot; 3624 3625 memslot = gfn_to_memslot(kvm, gfn); 3626 mark_page_dirty_in_slot(kvm, memslot, gfn); 3627 } 3628 EXPORT_SYMBOL_GPL(mark_page_dirty); 3629 3630 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3631 { 3632 struct kvm_memory_slot *memslot; 3633 3634 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3635 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3636 } 3637 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3638 3639 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3640 { 3641 if (!vcpu->sigset_active) 3642 return; 3643 3644 /* 3645 * This does a lockless modification of ->real_blocked, which is fine 3646 * because, only current can change ->real_blocked and all readers of 3647 * ->real_blocked don't care as long ->real_blocked is always a subset 3648 * of ->blocked. 3649 */ 3650 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3651 } 3652 3653 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3654 { 3655 if (!vcpu->sigset_active) 3656 return; 3657 3658 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3659 sigemptyset(¤t->real_blocked); 3660 } 3661 3662 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3663 { 3664 unsigned int old, val, grow, grow_start; 3665 3666 old = val = vcpu->halt_poll_ns; 3667 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3668 grow = READ_ONCE(halt_poll_ns_grow); 3669 if (!grow) 3670 goto out; 3671 3672 val *= grow; 3673 if (val < grow_start) 3674 val = grow_start; 3675 3676 vcpu->halt_poll_ns = val; 3677 out: 3678 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3679 } 3680 3681 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3682 { 3683 unsigned int old, val, shrink, grow_start; 3684 3685 old = val = vcpu->halt_poll_ns; 3686 shrink = READ_ONCE(halt_poll_ns_shrink); 3687 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3688 if (shrink == 0) 3689 val = 0; 3690 else 3691 val /= shrink; 3692 3693 if (val < grow_start) 3694 val = 0; 3695 3696 vcpu->halt_poll_ns = val; 3697 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3698 } 3699 3700 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3701 { 3702 int ret = -EINTR; 3703 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3704 3705 if (kvm_arch_vcpu_runnable(vcpu)) 3706 goto out; 3707 if (kvm_cpu_has_pending_timer(vcpu)) 3708 goto out; 3709 if (signal_pending(current)) 3710 goto out; 3711 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3712 goto out; 3713 3714 ret = 0; 3715 out: 3716 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3717 return ret; 3718 } 3719 3720 /* 3721 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3722 * pending. This is mostly used when halting a vCPU, but may also be used 3723 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3724 */ 3725 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3726 { 3727 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3728 bool waited = false; 3729 3730 vcpu->stat.generic.blocking = 1; 3731 3732 preempt_disable(); 3733 kvm_arch_vcpu_blocking(vcpu); 3734 prepare_to_rcuwait(wait); 3735 preempt_enable(); 3736 3737 for (;;) { 3738 set_current_state(TASK_INTERRUPTIBLE); 3739 3740 if (kvm_vcpu_check_block(vcpu) < 0) 3741 break; 3742 3743 waited = true; 3744 schedule(); 3745 } 3746 3747 preempt_disable(); 3748 finish_rcuwait(wait); 3749 kvm_arch_vcpu_unblocking(vcpu); 3750 preempt_enable(); 3751 3752 vcpu->stat.generic.blocking = 0; 3753 3754 return waited; 3755 } 3756 3757 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3758 ktime_t end, bool success) 3759 { 3760 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3761 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3762 3763 ++vcpu->stat.generic.halt_attempted_poll; 3764 3765 if (success) { 3766 ++vcpu->stat.generic.halt_successful_poll; 3767 3768 if (!vcpu_valid_wakeup(vcpu)) 3769 ++vcpu->stat.generic.halt_poll_invalid; 3770 3771 stats->halt_poll_success_ns += poll_ns; 3772 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3773 } else { 3774 stats->halt_poll_fail_ns += poll_ns; 3775 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3776 } 3777 } 3778 3779 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3780 { 3781 struct kvm *kvm = vcpu->kvm; 3782 3783 if (kvm->override_halt_poll_ns) { 3784 /* 3785 * Ensure kvm->max_halt_poll_ns is not read before 3786 * kvm->override_halt_poll_ns. 3787 * 3788 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3789 */ 3790 smp_rmb(); 3791 return READ_ONCE(kvm->max_halt_poll_ns); 3792 } 3793 3794 return READ_ONCE(halt_poll_ns); 3795 } 3796 3797 /* 3798 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3799 * polling is enabled, busy wait for a short time before blocking to avoid the 3800 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3801 * is halted. 3802 */ 3803 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3804 { 3805 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3806 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3807 ktime_t start, cur, poll_end; 3808 bool waited = false; 3809 bool do_halt_poll; 3810 u64 halt_ns; 3811 3812 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3813 vcpu->halt_poll_ns = max_halt_poll_ns; 3814 3815 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3816 3817 start = cur = poll_end = ktime_get(); 3818 if (do_halt_poll) { 3819 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3820 3821 do { 3822 if (kvm_vcpu_check_block(vcpu) < 0) 3823 goto out; 3824 cpu_relax(); 3825 poll_end = cur = ktime_get(); 3826 } while (kvm_vcpu_can_poll(cur, stop)); 3827 } 3828 3829 waited = kvm_vcpu_block(vcpu); 3830 3831 cur = ktime_get(); 3832 if (waited) { 3833 vcpu->stat.generic.halt_wait_ns += 3834 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3835 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3836 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3837 } 3838 out: 3839 /* The total time the vCPU was "halted", including polling time. */ 3840 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3841 3842 /* 3843 * Note, halt-polling is considered successful so long as the vCPU was 3844 * never actually scheduled out, i.e. even if the wake event arrived 3845 * after of the halt-polling loop itself, but before the full wait. 3846 */ 3847 if (do_halt_poll) 3848 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3849 3850 if (halt_poll_allowed) { 3851 /* Recompute the max halt poll time in case it changed. */ 3852 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3853 3854 if (!vcpu_valid_wakeup(vcpu)) { 3855 shrink_halt_poll_ns(vcpu); 3856 } else if (max_halt_poll_ns) { 3857 if (halt_ns <= vcpu->halt_poll_ns) 3858 ; 3859 /* we had a long block, shrink polling */ 3860 else if (vcpu->halt_poll_ns && 3861 halt_ns > max_halt_poll_ns) 3862 shrink_halt_poll_ns(vcpu); 3863 /* we had a short halt and our poll time is too small */ 3864 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3865 halt_ns < max_halt_poll_ns) 3866 grow_halt_poll_ns(vcpu); 3867 } else { 3868 vcpu->halt_poll_ns = 0; 3869 } 3870 } 3871 3872 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3873 } 3874 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3875 3876 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3877 { 3878 if (__kvm_vcpu_wake_up(vcpu)) { 3879 WRITE_ONCE(vcpu->ready, true); 3880 ++vcpu->stat.generic.halt_wakeup; 3881 return true; 3882 } 3883 3884 return false; 3885 } 3886 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3887 3888 #ifndef CONFIG_S390 3889 /* 3890 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3891 */ 3892 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3893 { 3894 int me, cpu; 3895 3896 if (kvm_vcpu_wake_up(vcpu)) 3897 return; 3898 3899 me = get_cpu(); 3900 /* 3901 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3902 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3903 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3904 * within the vCPU thread itself. 3905 */ 3906 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3907 if (vcpu->mode == IN_GUEST_MODE) 3908 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3909 goto out; 3910 } 3911 3912 /* 3913 * Note, the vCPU could get migrated to a different pCPU at any point 3914 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3915 * IPI to the previous pCPU. But, that's ok because the purpose of the 3916 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3917 * vCPU also requires it to leave IN_GUEST_MODE. 3918 */ 3919 if (kvm_arch_vcpu_should_kick(vcpu)) { 3920 cpu = READ_ONCE(vcpu->cpu); 3921 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3922 smp_send_reschedule(cpu); 3923 } 3924 out: 3925 put_cpu(); 3926 } 3927 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3928 #endif /* !CONFIG_S390 */ 3929 3930 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3931 { 3932 struct pid *pid; 3933 struct task_struct *task = NULL; 3934 int ret = 0; 3935 3936 rcu_read_lock(); 3937 pid = rcu_dereference(target->pid); 3938 if (pid) 3939 task = get_pid_task(pid, PIDTYPE_PID); 3940 rcu_read_unlock(); 3941 if (!task) 3942 return ret; 3943 ret = yield_to(task, 1); 3944 put_task_struct(task); 3945 3946 return ret; 3947 } 3948 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3949 3950 /* 3951 * Helper that checks whether a VCPU is eligible for directed yield. 3952 * Most eligible candidate to yield is decided by following heuristics: 3953 * 3954 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3955 * (preempted lock holder), indicated by @in_spin_loop. 3956 * Set at the beginning and cleared at the end of interception/PLE handler. 3957 * 3958 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3959 * chance last time (mostly it has become eligible now since we have probably 3960 * yielded to lockholder in last iteration. This is done by toggling 3961 * @dy_eligible each time a VCPU checked for eligibility.) 3962 * 3963 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3964 * to preempted lock-holder could result in wrong VCPU selection and CPU 3965 * burning. Giving priority for a potential lock-holder increases lock 3966 * progress. 3967 * 3968 * Since algorithm is based on heuristics, accessing another VCPU data without 3969 * locking does not harm. It may result in trying to yield to same VCPU, fail 3970 * and continue with next VCPU and so on. 3971 */ 3972 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3973 { 3974 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3975 bool eligible; 3976 3977 eligible = !vcpu->spin_loop.in_spin_loop || 3978 vcpu->spin_loop.dy_eligible; 3979 3980 if (vcpu->spin_loop.in_spin_loop) 3981 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3982 3983 return eligible; 3984 #else 3985 return true; 3986 #endif 3987 } 3988 3989 /* 3990 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3991 * a vcpu_load/vcpu_put pair. However, for most architectures 3992 * kvm_arch_vcpu_runnable does not require vcpu_load. 3993 */ 3994 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3995 { 3996 return kvm_arch_vcpu_runnable(vcpu); 3997 } 3998 3999 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4000 { 4001 if (kvm_arch_dy_runnable(vcpu)) 4002 return true; 4003 4004 #ifdef CONFIG_KVM_ASYNC_PF 4005 if (!list_empty_careful(&vcpu->async_pf.done)) 4006 return true; 4007 #endif 4008 4009 return false; 4010 } 4011 4012 /* 4013 * By default, simply query the target vCPU's current mode when checking if a 4014 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4015 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4016 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4017 * directly for cross-vCPU checks is functionally correct and accurate. 4018 */ 4019 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4020 { 4021 return kvm_arch_vcpu_in_kernel(vcpu); 4022 } 4023 4024 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4025 { 4026 return false; 4027 } 4028 4029 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4030 { 4031 struct kvm *kvm = me->kvm; 4032 struct kvm_vcpu *vcpu; 4033 int last_boosted_vcpu; 4034 unsigned long i; 4035 int yielded = 0; 4036 int try = 3; 4037 int pass; 4038 4039 last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu); 4040 kvm_vcpu_set_in_spin_loop(me, true); 4041 /* 4042 * We boost the priority of a VCPU that is runnable but not 4043 * currently running, because it got preempted by something 4044 * else and called schedule in __vcpu_run. Hopefully that 4045 * VCPU is holding the lock that we need and will release it. 4046 * We approximate round-robin by starting at the last boosted VCPU. 4047 */ 4048 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4049 kvm_for_each_vcpu(i, vcpu, kvm) { 4050 if (!pass && i <= last_boosted_vcpu) { 4051 i = last_boosted_vcpu; 4052 continue; 4053 } else if (pass && i > last_boosted_vcpu) 4054 break; 4055 if (!READ_ONCE(vcpu->ready)) 4056 continue; 4057 if (vcpu == me) 4058 continue; 4059 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4060 continue; 4061 4062 /* 4063 * Treat the target vCPU as being in-kernel if it has a 4064 * pending interrupt, as the vCPU trying to yield may 4065 * be spinning waiting on IPI delivery, i.e. the target 4066 * vCPU is in-kernel for the purposes of directed yield. 4067 */ 4068 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4069 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4070 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4071 continue; 4072 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4073 continue; 4074 4075 yielded = kvm_vcpu_yield_to(vcpu); 4076 if (yielded > 0) { 4077 WRITE_ONCE(kvm->last_boosted_vcpu, i); 4078 break; 4079 } else if (yielded < 0) { 4080 try--; 4081 if (!try) 4082 break; 4083 } 4084 } 4085 } 4086 kvm_vcpu_set_in_spin_loop(me, false); 4087 4088 /* Ensure vcpu is not eligible during next spinloop */ 4089 kvm_vcpu_set_dy_eligible(me, false); 4090 } 4091 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4092 4093 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4094 { 4095 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4096 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4097 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4098 kvm->dirty_ring_size / PAGE_SIZE); 4099 #else 4100 return false; 4101 #endif 4102 } 4103 4104 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4105 { 4106 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4107 struct page *page; 4108 4109 if (vmf->pgoff == 0) 4110 page = virt_to_page(vcpu->run); 4111 #ifdef CONFIG_X86 4112 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4113 page = virt_to_page(vcpu->arch.pio_data); 4114 #endif 4115 #ifdef CONFIG_KVM_MMIO 4116 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4117 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4118 #endif 4119 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4120 page = kvm_dirty_ring_get_page( 4121 &vcpu->dirty_ring, 4122 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4123 else 4124 return kvm_arch_vcpu_fault(vcpu, vmf); 4125 get_page(page); 4126 vmf->page = page; 4127 return 0; 4128 } 4129 4130 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4131 .fault = kvm_vcpu_fault, 4132 }; 4133 4134 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4135 { 4136 struct kvm_vcpu *vcpu = file->private_data; 4137 unsigned long pages = vma_pages(vma); 4138 4139 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4140 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4141 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4142 return -EINVAL; 4143 4144 vma->vm_ops = &kvm_vcpu_vm_ops; 4145 return 0; 4146 } 4147 4148 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4149 { 4150 struct kvm_vcpu *vcpu = filp->private_data; 4151 4152 kvm_put_kvm(vcpu->kvm); 4153 return 0; 4154 } 4155 4156 static struct file_operations kvm_vcpu_fops = { 4157 .release = kvm_vcpu_release, 4158 .unlocked_ioctl = kvm_vcpu_ioctl, 4159 .mmap = kvm_vcpu_mmap, 4160 .llseek = noop_llseek, 4161 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4162 }; 4163 4164 /* 4165 * Allocates an inode for the vcpu. 4166 */ 4167 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4168 { 4169 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4170 4171 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4172 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4173 } 4174 4175 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4176 static int vcpu_get_pid(void *data, u64 *val) 4177 { 4178 struct kvm_vcpu *vcpu = data; 4179 4180 rcu_read_lock(); 4181 *val = pid_nr(rcu_dereference(vcpu->pid)); 4182 rcu_read_unlock(); 4183 return 0; 4184 } 4185 4186 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4187 4188 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4189 { 4190 struct dentry *debugfs_dentry; 4191 char dir_name[ITOA_MAX_LEN * 2]; 4192 4193 if (!debugfs_initialized()) 4194 return; 4195 4196 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4197 debugfs_dentry = debugfs_create_dir(dir_name, 4198 vcpu->kvm->debugfs_dentry); 4199 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4200 &vcpu_get_pid_fops); 4201 4202 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4203 } 4204 #endif 4205 4206 /* 4207 * Creates some virtual cpus. Good luck creating more than one. 4208 */ 4209 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4210 { 4211 int r; 4212 struct kvm_vcpu *vcpu; 4213 struct page *page; 4214 4215 /* 4216 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4217 * too-large values instead of silently truncating. 4218 * 4219 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4220 * changing the storage type (at the very least, IDs should be tracked 4221 * as unsigned ints). 4222 */ 4223 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4224 if (id >= KVM_MAX_VCPU_IDS) 4225 return -EINVAL; 4226 4227 mutex_lock(&kvm->lock); 4228 if (kvm->created_vcpus >= kvm->max_vcpus) { 4229 mutex_unlock(&kvm->lock); 4230 return -EINVAL; 4231 } 4232 4233 r = kvm_arch_vcpu_precreate(kvm, id); 4234 if (r) { 4235 mutex_unlock(&kvm->lock); 4236 return r; 4237 } 4238 4239 kvm->created_vcpus++; 4240 mutex_unlock(&kvm->lock); 4241 4242 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4243 if (!vcpu) { 4244 r = -ENOMEM; 4245 goto vcpu_decrement; 4246 } 4247 4248 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4249 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4250 if (!page) { 4251 r = -ENOMEM; 4252 goto vcpu_free; 4253 } 4254 vcpu->run = page_address(page); 4255 4256 kvm_vcpu_init(vcpu, kvm, id); 4257 4258 r = kvm_arch_vcpu_create(vcpu); 4259 if (r) 4260 goto vcpu_free_run_page; 4261 4262 if (kvm->dirty_ring_size) { 4263 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4264 id, kvm->dirty_ring_size); 4265 if (r) 4266 goto arch_vcpu_destroy; 4267 } 4268 4269 mutex_lock(&kvm->lock); 4270 4271 #ifdef CONFIG_LOCKDEP 4272 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4273 mutex_lock(&vcpu->mutex); 4274 mutex_unlock(&vcpu->mutex); 4275 #endif 4276 4277 if (kvm_get_vcpu_by_id(kvm, id)) { 4278 r = -EEXIST; 4279 goto unlock_vcpu_destroy; 4280 } 4281 4282 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4283 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4284 if (r) 4285 goto unlock_vcpu_destroy; 4286 4287 /* Now it's all set up, let userspace reach it */ 4288 kvm_get_kvm(kvm); 4289 r = create_vcpu_fd(vcpu); 4290 if (r < 0) 4291 goto kvm_put_xa_release; 4292 4293 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4294 r = -EINVAL; 4295 goto kvm_put_xa_release; 4296 } 4297 4298 /* 4299 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4300 * pointer before kvm->online_vcpu's incremented value. 4301 */ 4302 smp_wmb(); 4303 atomic_inc(&kvm->online_vcpus); 4304 4305 mutex_unlock(&kvm->lock); 4306 kvm_arch_vcpu_postcreate(vcpu); 4307 kvm_create_vcpu_debugfs(vcpu); 4308 return r; 4309 4310 kvm_put_xa_release: 4311 kvm_put_kvm_no_destroy(kvm); 4312 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4313 unlock_vcpu_destroy: 4314 mutex_unlock(&kvm->lock); 4315 kvm_dirty_ring_free(&vcpu->dirty_ring); 4316 arch_vcpu_destroy: 4317 kvm_arch_vcpu_destroy(vcpu); 4318 vcpu_free_run_page: 4319 free_page((unsigned long)vcpu->run); 4320 vcpu_free: 4321 kmem_cache_free(kvm_vcpu_cache, vcpu); 4322 vcpu_decrement: 4323 mutex_lock(&kvm->lock); 4324 kvm->created_vcpus--; 4325 mutex_unlock(&kvm->lock); 4326 return r; 4327 } 4328 4329 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4330 { 4331 if (sigset) { 4332 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4333 vcpu->sigset_active = 1; 4334 vcpu->sigset = *sigset; 4335 } else 4336 vcpu->sigset_active = 0; 4337 return 0; 4338 } 4339 4340 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4341 size_t size, loff_t *offset) 4342 { 4343 struct kvm_vcpu *vcpu = file->private_data; 4344 4345 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4346 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4347 sizeof(vcpu->stat), user_buffer, size, offset); 4348 } 4349 4350 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4351 { 4352 struct kvm_vcpu *vcpu = file->private_data; 4353 4354 kvm_put_kvm(vcpu->kvm); 4355 return 0; 4356 } 4357 4358 static const struct file_operations kvm_vcpu_stats_fops = { 4359 .owner = THIS_MODULE, 4360 .read = kvm_vcpu_stats_read, 4361 .release = kvm_vcpu_stats_release, 4362 .llseek = noop_llseek, 4363 }; 4364 4365 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4366 { 4367 int fd; 4368 struct file *file; 4369 char name[15 + ITOA_MAX_LEN + 1]; 4370 4371 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4372 4373 fd = get_unused_fd_flags(O_CLOEXEC); 4374 if (fd < 0) 4375 return fd; 4376 4377 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4378 if (IS_ERR(file)) { 4379 put_unused_fd(fd); 4380 return PTR_ERR(file); 4381 } 4382 4383 kvm_get_kvm(vcpu->kvm); 4384 4385 file->f_mode |= FMODE_PREAD; 4386 fd_install(fd, file); 4387 4388 return fd; 4389 } 4390 4391 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4392 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4393 struct kvm_pre_fault_memory *range) 4394 { 4395 int idx; 4396 long r; 4397 u64 full_size; 4398 4399 if (range->flags) 4400 return -EINVAL; 4401 4402 if (!PAGE_ALIGNED(range->gpa) || 4403 !PAGE_ALIGNED(range->size) || 4404 range->gpa + range->size <= range->gpa) 4405 return -EINVAL; 4406 4407 vcpu_load(vcpu); 4408 idx = srcu_read_lock(&vcpu->kvm->srcu); 4409 4410 full_size = range->size; 4411 do { 4412 if (signal_pending(current)) { 4413 r = -EINTR; 4414 break; 4415 } 4416 4417 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4418 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4419 break; 4420 4421 if (r < 0) 4422 break; 4423 4424 range->size -= r; 4425 range->gpa += r; 4426 cond_resched(); 4427 } while (range->size); 4428 4429 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4430 vcpu_put(vcpu); 4431 4432 /* Return success if at least one page was mapped successfully. */ 4433 return full_size == range->size ? r : 0; 4434 } 4435 #endif 4436 4437 static long kvm_vcpu_ioctl(struct file *filp, 4438 unsigned int ioctl, unsigned long arg) 4439 { 4440 struct kvm_vcpu *vcpu = filp->private_data; 4441 void __user *argp = (void __user *)arg; 4442 int r; 4443 struct kvm_fpu *fpu = NULL; 4444 struct kvm_sregs *kvm_sregs = NULL; 4445 4446 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4447 return -EIO; 4448 4449 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4450 return -EINVAL; 4451 4452 /* 4453 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4454 * execution; mutex_lock() would break them. 4455 */ 4456 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4457 if (r != -ENOIOCTLCMD) 4458 return r; 4459 4460 if (mutex_lock_killable(&vcpu->mutex)) 4461 return -EINTR; 4462 switch (ioctl) { 4463 case KVM_RUN: { 4464 struct pid *oldpid; 4465 r = -EINVAL; 4466 if (arg) 4467 goto out; 4468 oldpid = rcu_access_pointer(vcpu->pid); 4469 if (unlikely(oldpid != task_pid(current))) { 4470 /* The thread running this VCPU changed. */ 4471 struct pid *newpid; 4472 4473 r = kvm_arch_vcpu_run_pid_change(vcpu); 4474 if (r) 4475 break; 4476 4477 newpid = get_task_pid(current, PIDTYPE_PID); 4478 rcu_assign_pointer(vcpu->pid, newpid); 4479 if (oldpid) 4480 synchronize_rcu(); 4481 put_pid(oldpid); 4482 } 4483 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4484 r = kvm_arch_vcpu_ioctl_run(vcpu); 4485 vcpu->wants_to_run = false; 4486 4487 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4488 break; 4489 } 4490 case KVM_GET_REGS: { 4491 struct kvm_regs *kvm_regs; 4492 4493 r = -ENOMEM; 4494 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4495 if (!kvm_regs) 4496 goto out; 4497 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4498 if (r) 4499 goto out_free1; 4500 r = -EFAULT; 4501 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4502 goto out_free1; 4503 r = 0; 4504 out_free1: 4505 kfree(kvm_regs); 4506 break; 4507 } 4508 case KVM_SET_REGS: { 4509 struct kvm_regs *kvm_regs; 4510 4511 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4512 if (IS_ERR(kvm_regs)) { 4513 r = PTR_ERR(kvm_regs); 4514 goto out; 4515 } 4516 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4517 kfree(kvm_regs); 4518 break; 4519 } 4520 case KVM_GET_SREGS: { 4521 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4522 r = -ENOMEM; 4523 if (!kvm_sregs) 4524 goto out; 4525 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4526 if (r) 4527 goto out; 4528 r = -EFAULT; 4529 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4530 goto out; 4531 r = 0; 4532 break; 4533 } 4534 case KVM_SET_SREGS: { 4535 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4536 if (IS_ERR(kvm_sregs)) { 4537 r = PTR_ERR(kvm_sregs); 4538 kvm_sregs = NULL; 4539 goto out; 4540 } 4541 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4542 break; 4543 } 4544 case KVM_GET_MP_STATE: { 4545 struct kvm_mp_state mp_state; 4546 4547 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4548 if (r) 4549 goto out; 4550 r = -EFAULT; 4551 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4552 goto out; 4553 r = 0; 4554 break; 4555 } 4556 case KVM_SET_MP_STATE: { 4557 struct kvm_mp_state mp_state; 4558 4559 r = -EFAULT; 4560 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4561 goto out; 4562 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4563 break; 4564 } 4565 case KVM_TRANSLATE: { 4566 struct kvm_translation tr; 4567 4568 r = -EFAULT; 4569 if (copy_from_user(&tr, argp, sizeof(tr))) 4570 goto out; 4571 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4572 if (r) 4573 goto out; 4574 r = -EFAULT; 4575 if (copy_to_user(argp, &tr, sizeof(tr))) 4576 goto out; 4577 r = 0; 4578 break; 4579 } 4580 case KVM_SET_GUEST_DEBUG: { 4581 struct kvm_guest_debug dbg; 4582 4583 r = -EFAULT; 4584 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4585 goto out; 4586 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4587 break; 4588 } 4589 case KVM_SET_SIGNAL_MASK: { 4590 struct kvm_signal_mask __user *sigmask_arg = argp; 4591 struct kvm_signal_mask kvm_sigmask; 4592 sigset_t sigset, *p; 4593 4594 p = NULL; 4595 if (argp) { 4596 r = -EFAULT; 4597 if (copy_from_user(&kvm_sigmask, argp, 4598 sizeof(kvm_sigmask))) 4599 goto out; 4600 r = -EINVAL; 4601 if (kvm_sigmask.len != sizeof(sigset)) 4602 goto out; 4603 r = -EFAULT; 4604 if (copy_from_user(&sigset, sigmask_arg->sigset, 4605 sizeof(sigset))) 4606 goto out; 4607 p = &sigset; 4608 } 4609 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4610 break; 4611 } 4612 case KVM_GET_FPU: { 4613 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4614 r = -ENOMEM; 4615 if (!fpu) 4616 goto out; 4617 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4618 if (r) 4619 goto out; 4620 r = -EFAULT; 4621 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4622 goto out; 4623 r = 0; 4624 break; 4625 } 4626 case KVM_SET_FPU: { 4627 fpu = memdup_user(argp, sizeof(*fpu)); 4628 if (IS_ERR(fpu)) { 4629 r = PTR_ERR(fpu); 4630 fpu = NULL; 4631 goto out; 4632 } 4633 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4634 break; 4635 } 4636 case KVM_GET_STATS_FD: { 4637 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4638 break; 4639 } 4640 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4641 case KVM_PRE_FAULT_MEMORY: { 4642 struct kvm_pre_fault_memory range; 4643 4644 r = -EFAULT; 4645 if (copy_from_user(&range, argp, sizeof(range))) 4646 break; 4647 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4648 /* Pass back leftover range. */ 4649 if (copy_to_user(argp, &range, sizeof(range))) 4650 r = -EFAULT; 4651 break; 4652 } 4653 #endif 4654 default: 4655 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4656 } 4657 out: 4658 mutex_unlock(&vcpu->mutex); 4659 kfree(fpu); 4660 kfree(kvm_sregs); 4661 return r; 4662 } 4663 4664 #ifdef CONFIG_KVM_COMPAT 4665 static long kvm_vcpu_compat_ioctl(struct file *filp, 4666 unsigned int ioctl, unsigned long arg) 4667 { 4668 struct kvm_vcpu *vcpu = filp->private_data; 4669 void __user *argp = compat_ptr(arg); 4670 int r; 4671 4672 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4673 return -EIO; 4674 4675 switch (ioctl) { 4676 case KVM_SET_SIGNAL_MASK: { 4677 struct kvm_signal_mask __user *sigmask_arg = argp; 4678 struct kvm_signal_mask kvm_sigmask; 4679 sigset_t sigset; 4680 4681 if (argp) { 4682 r = -EFAULT; 4683 if (copy_from_user(&kvm_sigmask, argp, 4684 sizeof(kvm_sigmask))) 4685 goto out; 4686 r = -EINVAL; 4687 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4688 goto out; 4689 r = -EFAULT; 4690 if (get_compat_sigset(&sigset, 4691 (compat_sigset_t __user *)sigmask_arg->sigset)) 4692 goto out; 4693 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4694 } else 4695 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4696 break; 4697 } 4698 default: 4699 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4700 } 4701 4702 out: 4703 return r; 4704 } 4705 #endif 4706 4707 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4708 { 4709 struct kvm_device *dev = filp->private_data; 4710 4711 if (dev->ops->mmap) 4712 return dev->ops->mmap(dev, vma); 4713 4714 return -ENODEV; 4715 } 4716 4717 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4718 int (*accessor)(struct kvm_device *dev, 4719 struct kvm_device_attr *attr), 4720 unsigned long arg) 4721 { 4722 struct kvm_device_attr attr; 4723 4724 if (!accessor) 4725 return -EPERM; 4726 4727 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4728 return -EFAULT; 4729 4730 return accessor(dev, &attr); 4731 } 4732 4733 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4734 unsigned long arg) 4735 { 4736 struct kvm_device *dev = filp->private_data; 4737 4738 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4739 return -EIO; 4740 4741 switch (ioctl) { 4742 case KVM_SET_DEVICE_ATTR: 4743 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4744 case KVM_GET_DEVICE_ATTR: 4745 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4746 case KVM_HAS_DEVICE_ATTR: 4747 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4748 default: 4749 if (dev->ops->ioctl) 4750 return dev->ops->ioctl(dev, ioctl, arg); 4751 4752 return -ENOTTY; 4753 } 4754 } 4755 4756 static int kvm_device_release(struct inode *inode, struct file *filp) 4757 { 4758 struct kvm_device *dev = filp->private_data; 4759 struct kvm *kvm = dev->kvm; 4760 4761 if (dev->ops->release) { 4762 mutex_lock(&kvm->lock); 4763 list_del_rcu(&dev->vm_node); 4764 synchronize_rcu(); 4765 dev->ops->release(dev); 4766 mutex_unlock(&kvm->lock); 4767 } 4768 4769 kvm_put_kvm(kvm); 4770 return 0; 4771 } 4772 4773 static struct file_operations kvm_device_fops = { 4774 .unlocked_ioctl = kvm_device_ioctl, 4775 .release = kvm_device_release, 4776 KVM_COMPAT(kvm_device_ioctl), 4777 .mmap = kvm_device_mmap, 4778 }; 4779 4780 struct kvm_device *kvm_device_from_filp(struct file *filp) 4781 { 4782 if (filp->f_op != &kvm_device_fops) 4783 return NULL; 4784 4785 return filp->private_data; 4786 } 4787 4788 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4789 #ifdef CONFIG_KVM_MPIC 4790 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4791 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4792 #endif 4793 }; 4794 4795 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4796 { 4797 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4798 return -ENOSPC; 4799 4800 if (kvm_device_ops_table[type] != NULL) 4801 return -EEXIST; 4802 4803 kvm_device_ops_table[type] = ops; 4804 return 0; 4805 } 4806 4807 void kvm_unregister_device_ops(u32 type) 4808 { 4809 if (kvm_device_ops_table[type] != NULL) 4810 kvm_device_ops_table[type] = NULL; 4811 } 4812 4813 static int kvm_ioctl_create_device(struct kvm *kvm, 4814 struct kvm_create_device *cd) 4815 { 4816 const struct kvm_device_ops *ops; 4817 struct kvm_device *dev; 4818 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4819 int type; 4820 int ret; 4821 4822 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4823 return -ENODEV; 4824 4825 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4826 ops = kvm_device_ops_table[type]; 4827 if (ops == NULL) 4828 return -ENODEV; 4829 4830 if (test) 4831 return 0; 4832 4833 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4834 if (!dev) 4835 return -ENOMEM; 4836 4837 dev->ops = ops; 4838 dev->kvm = kvm; 4839 4840 mutex_lock(&kvm->lock); 4841 ret = ops->create(dev, type); 4842 if (ret < 0) { 4843 mutex_unlock(&kvm->lock); 4844 kfree(dev); 4845 return ret; 4846 } 4847 list_add_rcu(&dev->vm_node, &kvm->devices); 4848 mutex_unlock(&kvm->lock); 4849 4850 if (ops->init) 4851 ops->init(dev); 4852 4853 kvm_get_kvm(kvm); 4854 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4855 if (ret < 0) { 4856 kvm_put_kvm_no_destroy(kvm); 4857 mutex_lock(&kvm->lock); 4858 list_del_rcu(&dev->vm_node); 4859 synchronize_rcu(); 4860 if (ops->release) 4861 ops->release(dev); 4862 mutex_unlock(&kvm->lock); 4863 if (ops->destroy) 4864 ops->destroy(dev); 4865 return ret; 4866 } 4867 4868 cd->fd = ret; 4869 return 0; 4870 } 4871 4872 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4873 { 4874 switch (arg) { 4875 case KVM_CAP_USER_MEMORY: 4876 case KVM_CAP_USER_MEMORY2: 4877 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4878 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4879 case KVM_CAP_INTERNAL_ERROR_DATA: 4880 #ifdef CONFIG_HAVE_KVM_MSI 4881 case KVM_CAP_SIGNAL_MSI: 4882 #endif 4883 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4884 case KVM_CAP_IRQFD: 4885 #endif 4886 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4887 case KVM_CAP_CHECK_EXTENSION_VM: 4888 case KVM_CAP_ENABLE_CAP_VM: 4889 case KVM_CAP_HALT_POLL: 4890 return 1; 4891 #ifdef CONFIG_KVM_MMIO 4892 case KVM_CAP_COALESCED_MMIO: 4893 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4894 case KVM_CAP_COALESCED_PIO: 4895 return 1; 4896 #endif 4897 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4898 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4899 return KVM_DIRTY_LOG_MANUAL_CAPS; 4900 #endif 4901 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4902 case KVM_CAP_IRQ_ROUTING: 4903 return KVM_MAX_IRQ_ROUTES; 4904 #endif 4905 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4906 case KVM_CAP_MULTI_ADDRESS_SPACE: 4907 if (kvm) 4908 return kvm_arch_nr_memslot_as_ids(kvm); 4909 return KVM_MAX_NR_ADDRESS_SPACES; 4910 #endif 4911 case KVM_CAP_NR_MEMSLOTS: 4912 return KVM_USER_MEM_SLOTS; 4913 case KVM_CAP_DIRTY_LOG_RING: 4914 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4915 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4916 #else 4917 return 0; 4918 #endif 4919 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4920 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4921 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4922 #else 4923 return 0; 4924 #endif 4925 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4926 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4927 #endif 4928 case KVM_CAP_BINARY_STATS_FD: 4929 case KVM_CAP_SYSTEM_EVENT_DATA: 4930 case KVM_CAP_DEVICE_CTRL: 4931 return 1; 4932 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4933 case KVM_CAP_MEMORY_ATTRIBUTES: 4934 return kvm_supported_mem_attributes(kvm); 4935 #endif 4936 #ifdef CONFIG_KVM_PRIVATE_MEM 4937 case KVM_CAP_GUEST_MEMFD: 4938 return !kvm || kvm_arch_has_private_mem(kvm); 4939 #endif 4940 default: 4941 break; 4942 } 4943 return kvm_vm_ioctl_check_extension(kvm, arg); 4944 } 4945 4946 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4947 { 4948 int r; 4949 4950 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4951 return -EINVAL; 4952 4953 /* the size should be power of 2 */ 4954 if (!size || (size & (size - 1))) 4955 return -EINVAL; 4956 4957 /* Should be bigger to keep the reserved entries, or a page */ 4958 if (size < kvm_dirty_ring_get_rsvd_entries() * 4959 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4960 return -EINVAL; 4961 4962 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4963 sizeof(struct kvm_dirty_gfn)) 4964 return -E2BIG; 4965 4966 /* We only allow it to set once */ 4967 if (kvm->dirty_ring_size) 4968 return -EINVAL; 4969 4970 mutex_lock(&kvm->lock); 4971 4972 if (kvm->created_vcpus) { 4973 /* We don't allow to change this value after vcpu created */ 4974 r = -EINVAL; 4975 } else { 4976 kvm->dirty_ring_size = size; 4977 r = 0; 4978 } 4979 4980 mutex_unlock(&kvm->lock); 4981 return r; 4982 } 4983 4984 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4985 { 4986 unsigned long i; 4987 struct kvm_vcpu *vcpu; 4988 int cleared = 0; 4989 4990 if (!kvm->dirty_ring_size) 4991 return -EINVAL; 4992 4993 mutex_lock(&kvm->slots_lock); 4994 4995 kvm_for_each_vcpu(i, vcpu, kvm) 4996 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4997 4998 mutex_unlock(&kvm->slots_lock); 4999 5000 if (cleared) 5001 kvm_flush_remote_tlbs(kvm); 5002 5003 return cleared; 5004 } 5005 5006 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5007 struct kvm_enable_cap *cap) 5008 { 5009 return -EINVAL; 5010 } 5011 5012 bool kvm_are_all_memslots_empty(struct kvm *kvm) 5013 { 5014 int i; 5015 5016 lockdep_assert_held(&kvm->slots_lock); 5017 5018 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 5019 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 5020 return false; 5021 } 5022 5023 return true; 5024 } 5025 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 5026 5027 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 5028 struct kvm_enable_cap *cap) 5029 { 5030 switch (cap->cap) { 5031 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5032 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5033 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5034 5035 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5036 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5037 5038 if (cap->flags || (cap->args[0] & ~allowed_options)) 5039 return -EINVAL; 5040 kvm->manual_dirty_log_protect = cap->args[0]; 5041 return 0; 5042 } 5043 #endif 5044 case KVM_CAP_HALT_POLL: { 5045 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5046 return -EINVAL; 5047 5048 kvm->max_halt_poll_ns = cap->args[0]; 5049 5050 /* 5051 * Ensure kvm->override_halt_poll_ns does not become visible 5052 * before kvm->max_halt_poll_ns. 5053 * 5054 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5055 */ 5056 smp_wmb(); 5057 kvm->override_halt_poll_ns = true; 5058 5059 return 0; 5060 } 5061 case KVM_CAP_DIRTY_LOG_RING: 5062 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5063 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5064 return -EINVAL; 5065 5066 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5067 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5068 int r = -EINVAL; 5069 5070 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5071 !kvm->dirty_ring_size || cap->flags) 5072 return r; 5073 5074 mutex_lock(&kvm->slots_lock); 5075 5076 /* 5077 * For simplicity, allow enabling ring+bitmap if and only if 5078 * there are no memslots, e.g. to ensure all memslots allocate 5079 * a bitmap after the capability is enabled. 5080 */ 5081 if (kvm_are_all_memslots_empty(kvm)) { 5082 kvm->dirty_ring_with_bitmap = true; 5083 r = 0; 5084 } 5085 5086 mutex_unlock(&kvm->slots_lock); 5087 5088 return r; 5089 } 5090 default: 5091 return kvm_vm_ioctl_enable_cap(kvm, cap); 5092 } 5093 } 5094 5095 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5096 size_t size, loff_t *offset) 5097 { 5098 struct kvm *kvm = file->private_data; 5099 5100 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5101 &kvm_vm_stats_desc[0], &kvm->stat, 5102 sizeof(kvm->stat), user_buffer, size, offset); 5103 } 5104 5105 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5106 { 5107 struct kvm *kvm = file->private_data; 5108 5109 kvm_put_kvm(kvm); 5110 return 0; 5111 } 5112 5113 static const struct file_operations kvm_vm_stats_fops = { 5114 .owner = THIS_MODULE, 5115 .read = kvm_vm_stats_read, 5116 .release = kvm_vm_stats_release, 5117 .llseek = noop_llseek, 5118 }; 5119 5120 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5121 { 5122 int fd; 5123 struct file *file; 5124 5125 fd = get_unused_fd_flags(O_CLOEXEC); 5126 if (fd < 0) 5127 return fd; 5128 5129 file = anon_inode_getfile("kvm-vm-stats", 5130 &kvm_vm_stats_fops, kvm, O_RDONLY); 5131 if (IS_ERR(file)) { 5132 put_unused_fd(fd); 5133 return PTR_ERR(file); 5134 } 5135 5136 kvm_get_kvm(kvm); 5137 5138 file->f_mode |= FMODE_PREAD; 5139 fd_install(fd, file); 5140 5141 return fd; 5142 } 5143 5144 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5145 do { \ 5146 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5147 offsetof(struct kvm_userspace_memory_region2, field)); \ 5148 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5149 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5150 } while (0) 5151 5152 static long kvm_vm_ioctl(struct file *filp, 5153 unsigned int ioctl, unsigned long arg) 5154 { 5155 struct kvm *kvm = filp->private_data; 5156 void __user *argp = (void __user *)arg; 5157 int r; 5158 5159 if (kvm->mm != current->mm || kvm->vm_dead) 5160 return -EIO; 5161 switch (ioctl) { 5162 case KVM_CREATE_VCPU: 5163 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5164 break; 5165 case KVM_ENABLE_CAP: { 5166 struct kvm_enable_cap cap; 5167 5168 r = -EFAULT; 5169 if (copy_from_user(&cap, argp, sizeof(cap))) 5170 goto out; 5171 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5172 break; 5173 } 5174 case KVM_SET_USER_MEMORY_REGION2: 5175 case KVM_SET_USER_MEMORY_REGION: { 5176 struct kvm_userspace_memory_region2 mem; 5177 unsigned long size; 5178 5179 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5180 /* 5181 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5182 * accessed, but avoid leaking kernel memory in case of a bug. 5183 */ 5184 memset(&mem, 0, sizeof(mem)); 5185 size = sizeof(struct kvm_userspace_memory_region); 5186 } else { 5187 size = sizeof(struct kvm_userspace_memory_region2); 5188 } 5189 5190 /* Ensure the common parts of the two structs are identical. */ 5191 SANITY_CHECK_MEM_REGION_FIELD(slot); 5192 SANITY_CHECK_MEM_REGION_FIELD(flags); 5193 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5194 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5195 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5196 5197 r = -EFAULT; 5198 if (copy_from_user(&mem, argp, size)) 5199 goto out; 5200 5201 r = -EINVAL; 5202 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5203 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5204 goto out; 5205 5206 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5207 break; 5208 } 5209 case KVM_GET_DIRTY_LOG: { 5210 struct kvm_dirty_log log; 5211 5212 r = -EFAULT; 5213 if (copy_from_user(&log, argp, sizeof(log))) 5214 goto out; 5215 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5216 break; 5217 } 5218 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5219 case KVM_CLEAR_DIRTY_LOG: { 5220 struct kvm_clear_dirty_log log; 5221 5222 r = -EFAULT; 5223 if (copy_from_user(&log, argp, sizeof(log))) 5224 goto out; 5225 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5226 break; 5227 } 5228 #endif 5229 #ifdef CONFIG_KVM_MMIO 5230 case KVM_REGISTER_COALESCED_MMIO: { 5231 struct kvm_coalesced_mmio_zone zone; 5232 5233 r = -EFAULT; 5234 if (copy_from_user(&zone, argp, sizeof(zone))) 5235 goto out; 5236 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5237 break; 5238 } 5239 case KVM_UNREGISTER_COALESCED_MMIO: { 5240 struct kvm_coalesced_mmio_zone zone; 5241 5242 r = -EFAULT; 5243 if (copy_from_user(&zone, argp, sizeof(zone))) 5244 goto out; 5245 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5246 break; 5247 } 5248 #endif 5249 case KVM_IRQFD: { 5250 struct kvm_irqfd data; 5251 5252 r = -EFAULT; 5253 if (copy_from_user(&data, argp, sizeof(data))) 5254 goto out; 5255 r = kvm_irqfd(kvm, &data); 5256 break; 5257 } 5258 case KVM_IOEVENTFD: { 5259 struct kvm_ioeventfd data; 5260 5261 r = -EFAULT; 5262 if (copy_from_user(&data, argp, sizeof(data))) 5263 goto out; 5264 r = kvm_ioeventfd(kvm, &data); 5265 break; 5266 } 5267 #ifdef CONFIG_HAVE_KVM_MSI 5268 case KVM_SIGNAL_MSI: { 5269 struct kvm_msi msi; 5270 5271 r = -EFAULT; 5272 if (copy_from_user(&msi, argp, sizeof(msi))) 5273 goto out; 5274 r = kvm_send_userspace_msi(kvm, &msi); 5275 break; 5276 } 5277 #endif 5278 #ifdef __KVM_HAVE_IRQ_LINE 5279 case KVM_IRQ_LINE_STATUS: 5280 case KVM_IRQ_LINE: { 5281 struct kvm_irq_level irq_event; 5282 5283 r = -EFAULT; 5284 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5285 goto out; 5286 5287 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5288 ioctl == KVM_IRQ_LINE_STATUS); 5289 if (r) 5290 goto out; 5291 5292 r = -EFAULT; 5293 if (ioctl == KVM_IRQ_LINE_STATUS) { 5294 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5295 goto out; 5296 } 5297 5298 r = 0; 5299 break; 5300 } 5301 #endif 5302 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5303 case KVM_SET_GSI_ROUTING: { 5304 struct kvm_irq_routing routing; 5305 struct kvm_irq_routing __user *urouting; 5306 struct kvm_irq_routing_entry *entries = NULL; 5307 5308 r = -EFAULT; 5309 if (copy_from_user(&routing, argp, sizeof(routing))) 5310 goto out; 5311 r = -EINVAL; 5312 if (!kvm_arch_can_set_irq_routing(kvm)) 5313 goto out; 5314 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5315 goto out; 5316 if (routing.flags) 5317 goto out; 5318 if (routing.nr) { 5319 urouting = argp; 5320 entries = vmemdup_array_user(urouting->entries, 5321 routing.nr, sizeof(*entries)); 5322 if (IS_ERR(entries)) { 5323 r = PTR_ERR(entries); 5324 goto out; 5325 } 5326 } 5327 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5328 routing.flags); 5329 kvfree(entries); 5330 break; 5331 } 5332 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5333 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5334 case KVM_SET_MEMORY_ATTRIBUTES: { 5335 struct kvm_memory_attributes attrs; 5336 5337 r = -EFAULT; 5338 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5339 goto out; 5340 5341 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5342 break; 5343 } 5344 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5345 case KVM_CREATE_DEVICE: { 5346 struct kvm_create_device cd; 5347 5348 r = -EFAULT; 5349 if (copy_from_user(&cd, argp, sizeof(cd))) 5350 goto out; 5351 5352 r = kvm_ioctl_create_device(kvm, &cd); 5353 if (r) 5354 goto out; 5355 5356 r = -EFAULT; 5357 if (copy_to_user(argp, &cd, sizeof(cd))) 5358 goto out; 5359 5360 r = 0; 5361 break; 5362 } 5363 case KVM_CHECK_EXTENSION: 5364 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5365 break; 5366 case KVM_RESET_DIRTY_RINGS: 5367 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5368 break; 5369 case KVM_GET_STATS_FD: 5370 r = kvm_vm_ioctl_get_stats_fd(kvm); 5371 break; 5372 #ifdef CONFIG_KVM_PRIVATE_MEM 5373 case KVM_CREATE_GUEST_MEMFD: { 5374 struct kvm_create_guest_memfd guest_memfd; 5375 5376 r = -EFAULT; 5377 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5378 goto out; 5379 5380 r = kvm_gmem_create(kvm, &guest_memfd); 5381 break; 5382 } 5383 #endif 5384 default: 5385 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5386 } 5387 out: 5388 return r; 5389 } 5390 5391 #ifdef CONFIG_KVM_COMPAT 5392 struct compat_kvm_dirty_log { 5393 __u32 slot; 5394 __u32 padding1; 5395 union { 5396 compat_uptr_t dirty_bitmap; /* one bit per page */ 5397 __u64 padding2; 5398 }; 5399 }; 5400 5401 struct compat_kvm_clear_dirty_log { 5402 __u32 slot; 5403 __u32 num_pages; 5404 __u64 first_page; 5405 union { 5406 compat_uptr_t dirty_bitmap; /* one bit per page */ 5407 __u64 padding2; 5408 }; 5409 }; 5410 5411 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5412 unsigned long arg) 5413 { 5414 return -ENOTTY; 5415 } 5416 5417 static long kvm_vm_compat_ioctl(struct file *filp, 5418 unsigned int ioctl, unsigned long arg) 5419 { 5420 struct kvm *kvm = filp->private_data; 5421 int r; 5422 5423 if (kvm->mm != current->mm || kvm->vm_dead) 5424 return -EIO; 5425 5426 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5427 if (r != -ENOTTY) 5428 return r; 5429 5430 switch (ioctl) { 5431 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5432 case KVM_CLEAR_DIRTY_LOG: { 5433 struct compat_kvm_clear_dirty_log compat_log; 5434 struct kvm_clear_dirty_log log; 5435 5436 if (copy_from_user(&compat_log, (void __user *)arg, 5437 sizeof(compat_log))) 5438 return -EFAULT; 5439 log.slot = compat_log.slot; 5440 log.num_pages = compat_log.num_pages; 5441 log.first_page = compat_log.first_page; 5442 log.padding2 = compat_log.padding2; 5443 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5444 5445 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5446 break; 5447 } 5448 #endif 5449 case KVM_GET_DIRTY_LOG: { 5450 struct compat_kvm_dirty_log compat_log; 5451 struct kvm_dirty_log log; 5452 5453 if (copy_from_user(&compat_log, (void __user *)arg, 5454 sizeof(compat_log))) 5455 return -EFAULT; 5456 log.slot = compat_log.slot; 5457 log.padding1 = compat_log.padding1; 5458 log.padding2 = compat_log.padding2; 5459 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5460 5461 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5462 break; 5463 } 5464 default: 5465 r = kvm_vm_ioctl(filp, ioctl, arg); 5466 } 5467 return r; 5468 } 5469 #endif 5470 5471 static struct file_operations kvm_vm_fops = { 5472 .release = kvm_vm_release, 5473 .unlocked_ioctl = kvm_vm_ioctl, 5474 .llseek = noop_llseek, 5475 KVM_COMPAT(kvm_vm_compat_ioctl), 5476 }; 5477 5478 bool file_is_kvm(struct file *file) 5479 { 5480 return file && file->f_op == &kvm_vm_fops; 5481 } 5482 EXPORT_SYMBOL_GPL(file_is_kvm); 5483 5484 static int kvm_dev_ioctl_create_vm(unsigned long type) 5485 { 5486 char fdname[ITOA_MAX_LEN + 1]; 5487 int r, fd; 5488 struct kvm *kvm; 5489 struct file *file; 5490 5491 fd = get_unused_fd_flags(O_CLOEXEC); 5492 if (fd < 0) 5493 return fd; 5494 5495 snprintf(fdname, sizeof(fdname), "%d", fd); 5496 5497 kvm = kvm_create_vm(type, fdname); 5498 if (IS_ERR(kvm)) { 5499 r = PTR_ERR(kvm); 5500 goto put_fd; 5501 } 5502 5503 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5504 if (IS_ERR(file)) { 5505 r = PTR_ERR(file); 5506 goto put_kvm; 5507 } 5508 5509 /* 5510 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5511 * already set, with ->release() being kvm_vm_release(). In error 5512 * cases it will be called by the final fput(file) and will take 5513 * care of doing kvm_put_kvm(kvm). 5514 */ 5515 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5516 5517 fd_install(fd, file); 5518 return fd; 5519 5520 put_kvm: 5521 kvm_put_kvm(kvm); 5522 put_fd: 5523 put_unused_fd(fd); 5524 return r; 5525 } 5526 5527 static long kvm_dev_ioctl(struct file *filp, 5528 unsigned int ioctl, unsigned long arg) 5529 { 5530 int r = -EINVAL; 5531 5532 switch (ioctl) { 5533 case KVM_GET_API_VERSION: 5534 if (arg) 5535 goto out; 5536 r = KVM_API_VERSION; 5537 break; 5538 case KVM_CREATE_VM: 5539 r = kvm_dev_ioctl_create_vm(arg); 5540 break; 5541 case KVM_CHECK_EXTENSION: 5542 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5543 break; 5544 case KVM_GET_VCPU_MMAP_SIZE: 5545 if (arg) 5546 goto out; 5547 r = PAGE_SIZE; /* struct kvm_run */ 5548 #ifdef CONFIG_X86 5549 r += PAGE_SIZE; /* pio data page */ 5550 #endif 5551 #ifdef CONFIG_KVM_MMIO 5552 r += PAGE_SIZE; /* coalesced mmio ring page */ 5553 #endif 5554 break; 5555 default: 5556 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5557 } 5558 out: 5559 return r; 5560 } 5561 5562 static struct file_operations kvm_chardev_ops = { 5563 .unlocked_ioctl = kvm_dev_ioctl, 5564 .llseek = noop_llseek, 5565 KVM_COMPAT(kvm_dev_ioctl), 5566 }; 5567 5568 static struct miscdevice kvm_dev = { 5569 KVM_MINOR, 5570 "kvm", 5571 &kvm_chardev_ops, 5572 }; 5573 5574 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5575 __visible bool kvm_rebooting; 5576 EXPORT_SYMBOL_GPL(kvm_rebooting); 5577 5578 static DEFINE_PER_CPU(bool, hardware_enabled); 5579 static int kvm_usage_count; 5580 5581 static int __hardware_enable_nolock(void) 5582 { 5583 if (__this_cpu_read(hardware_enabled)) 5584 return 0; 5585 5586 if (kvm_arch_hardware_enable()) { 5587 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5588 raw_smp_processor_id()); 5589 return -EIO; 5590 } 5591 5592 __this_cpu_write(hardware_enabled, true); 5593 return 0; 5594 } 5595 5596 static void hardware_enable_nolock(void *failed) 5597 { 5598 if (__hardware_enable_nolock()) 5599 atomic_inc(failed); 5600 } 5601 5602 static int kvm_online_cpu(unsigned int cpu) 5603 { 5604 int ret = 0; 5605 5606 /* 5607 * Abort the CPU online process if hardware virtualization cannot 5608 * be enabled. Otherwise running VMs would encounter unrecoverable 5609 * errors when scheduled to this CPU. 5610 */ 5611 mutex_lock(&kvm_lock); 5612 if (kvm_usage_count) 5613 ret = __hardware_enable_nolock(); 5614 mutex_unlock(&kvm_lock); 5615 return ret; 5616 } 5617 5618 static void hardware_disable_nolock(void *junk) 5619 { 5620 /* 5621 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5622 * hardware, not just CPUs that successfully enabled hardware! 5623 */ 5624 if (!__this_cpu_read(hardware_enabled)) 5625 return; 5626 5627 kvm_arch_hardware_disable(); 5628 5629 __this_cpu_write(hardware_enabled, false); 5630 } 5631 5632 static int kvm_offline_cpu(unsigned int cpu) 5633 { 5634 mutex_lock(&kvm_lock); 5635 if (kvm_usage_count) 5636 hardware_disable_nolock(NULL); 5637 mutex_unlock(&kvm_lock); 5638 return 0; 5639 } 5640 5641 static void hardware_disable_all_nolock(void) 5642 { 5643 BUG_ON(!kvm_usage_count); 5644 5645 kvm_usage_count--; 5646 if (!kvm_usage_count) 5647 on_each_cpu(hardware_disable_nolock, NULL, 1); 5648 } 5649 5650 static void hardware_disable_all(void) 5651 { 5652 cpus_read_lock(); 5653 mutex_lock(&kvm_lock); 5654 hardware_disable_all_nolock(); 5655 mutex_unlock(&kvm_lock); 5656 cpus_read_unlock(); 5657 } 5658 5659 static int hardware_enable_all(void) 5660 { 5661 atomic_t failed = ATOMIC_INIT(0); 5662 int r; 5663 5664 /* 5665 * Do not enable hardware virtualization if the system is going down. 5666 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5667 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5668 * after kvm_reboot() is called. Note, this relies on system_state 5669 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5670 * hook instead of registering a dedicated reboot notifier (the latter 5671 * runs before system_state is updated). 5672 */ 5673 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5674 system_state == SYSTEM_RESTART) 5675 return -EBUSY; 5676 5677 /* 5678 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5679 * is called, and so on_each_cpu() between them includes the CPU that 5680 * is being onlined. As a result, hardware_enable_nolock() may get 5681 * invoked before kvm_online_cpu(), which also enables hardware if the 5682 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5683 * enable hardware multiple times. 5684 */ 5685 cpus_read_lock(); 5686 mutex_lock(&kvm_lock); 5687 5688 r = 0; 5689 5690 kvm_usage_count++; 5691 if (kvm_usage_count == 1) { 5692 on_each_cpu(hardware_enable_nolock, &failed, 1); 5693 5694 if (atomic_read(&failed)) { 5695 hardware_disable_all_nolock(); 5696 r = -EBUSY; 5697 } 5698 } 5699 5700 mutex_unlock(&kvm_lock); 5701 cpus_read_unlock(); 5702 5703 return r; 5704 } 5705 5706 static void kvm_shutdown(void) 5707 { 5708 /* 5709 * Disable hardware virtualization and set kvm_rebooting to indicate 5710 * that KVM has asynchronously disabled hardware virtualization, i.e. 5711 * that relevant errors and exceptions aren't entirely unexpected. 5712 * Some flavors of hardware virtualization need to be disabled before 5713 * transferring control to firmware (to perform shutdown/reboot), e.g. 5714 * on x86, virtualization can block INIT interrupts, which are used by 5715 * firmware to pull APs back under firmware control. Note, this path 5716 * is used for both shutdown and reboot scenarios, i.e. neither name is 5717 * 100% comprehensive. 5718 */ 5719 pr_info("kvm: exiting hardware virtualization\n"); 5720 kvm_rebooting = true; 5721 on_each_cpu(hardware_disable_nolock, NULL, 1); 5722 } 5723 5724 static int kvm_suspend(void) 5725 { 5726 /* 5727 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5728 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5729 * is stable. Assert that kvm_lock is not held to ensure the system 5730 * isn't suspended while KVM is enabling hardware. Hardware enabling 5731 * can be preempted, but the task cannot be frozen until it has dropped 5732 * all locks (userspace tasks are frozen via a fake signal). 5733 */ 5734 lockdep_assert_not_held(&kvm_lock); 5735 lockdep_assert_irqs_disabled(); 5736 5737 if (kvm_usage_count) 5738 hardware_disable_nolock(NULL); 5739 return 0; 5740 } 5741 5742 static void kvm_resume(void) 5743 { 5744 lockdep_assert_not_held(&kvm_lock); 5745 lockdep_assert_irqs_disabled(); 5746 5747 if (kvm_usage_count) 5748 WARN_ON_ONCE(__hardware_enable_nolock()); 5749 } 5750 5751 static struct syscore_ops kvm_syscore_ops = { 5752 .suspend = kvm_suspend, 5753 .resume = kvm_resume, 5754 .shutdown = kvm_shutdown, 5755 }; 5756 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5757 static int hardware_enable_all(void) 5758 { 5759 return 0; 5760 } 5761 5762 static void hardware_disable_all(void) 5763 { 5764 5765 } 5766 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5767 5768 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5769 { 5770 if (dev->ops->destructor) 5771 dev->ops->destructor(dev); 5772 } 5773 5774 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5775 { 5776 int i; 5777 5778 for (i = 0; i < bus->dev_count; i++) { 5779 struct kvm_io_device *pos = bus->range[i].dev; 5780 5781 kvm_iodevice_destructor(pos); 5782 } 5783 kfree(bus); 5784 } 5785 5786 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5787 const struct kvm_io_range *r2) 5788 { 5789 gpa_t addr1 = r1->addr; 5790 gpa_t addr2 = r2->addr; 5791 5792 if (addr1 < addr2) 5793 return -1; 5794 5795 /* If r2->len == 0, match the exact address. If r2->len != 0, 5796 * accept any overlapping write. Any order is acceptable for 5797 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5798 * we process all of them. 5799 */ 5800 if (r2->len) { 5801 addr1 += r1->len; 5802 addr2 += r2->len; 5803 } 5804 5805 if (addr1 > addr2) 5806 return 1; 5807 5808 return 0; 5809 } 5810 5811 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5812 { 5813 return kvm_io_bus_cmp(p1, p2); 5814 } 5815 5816 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5817 gpa_t addr, int len) 5818 { 5819 struct kvm_io_range *range, key; 5820 int off; 5821 5822 key = (struct kvm_io_range) { 5823 .addr = addr, 5824 .len = len, 5825 }; 5826 5827 range = bsearch(&key, bus->range, bus->dev_count, 5828 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5829 if (range == NULL) 5830 return -ENOENT; 5831 5832 off = range - bus->range; 5833 5834 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5835 off--; 5836 5837 return off; 5838 } 5839 5840 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5841 struct kvm_io_range *range, const void *val) 5842 { 5843 int idx; 5844 5845 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5846 if (idx < 0) 5847 return -EOPNOTSUPP; 5848 5849 while (idx < bus->dev_count && 5850 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5851 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5852 range->len, val)) 5853 return idx; 5854 idx++; 5855 } 5856 5857 return -EOPNOTSUPP; 5858 } 5859 5860 /* kvm_io_bus_write - called under kvm->slots_lock */ 5861 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5862 int len, const void *val) 5863 { 5864 struct kvm_io_bus *bus; 5865 struct kvm_io_range range; 5866 int r; 5867 5868 range = (struct kvm_io_range) { 5869 .addr = addr, 5870 .len = len, 5871 }; 5872 5873 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5874 if (!bus) 5875 return -ENOMEM; 5876 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5877 return r < 0 ? r : 0; 5878 } 5879 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5880 5881 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5882 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5883 gpa_t addr, int len, const void *val, long cookie) 5884 { 5885 struct kvm_io_bus *bus; 5886 struct kvm_io_range range; 5887 5888 range = (struct kvm_io_range) { 5889 .addr = addr, 5890 .len = len, 5891 }; 5892 5893 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5894 if (!bus) 5895 return -ENOMEM; 5896 5897 /* First try the device referenced by cookie. */ 5898 if ((cookie >= 0) && (cookie < bus->dev_count) && 5899 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5900 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5901 val)) 5902 return cookie; 5903 5904 /* 5905 * cookie contained garbage; fall back to search and return the 5906 * correct cookie value. 5907 */ 5908 return __kvm_io_bus_write(vcpu, bus, &range, val); 5909 } 5910 5911 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5912 struct kvm_io_range *range, void *val) 5913 { 5914 int idx; 5915 5916 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5917 if (idx < 0) 5918 return -EOPNOTSUPP; 5919 5920 while (idx < bus->dev_count && 5921 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5922 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5923 range->len, val)) 5924 return idx; 5925 idx++; 5926 } 5927 5928 return -EOPNOTSUPP; 5929 } 5930 5931 /* kvm_io_bus_read - called under kvm->slots_lock */ 5932 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5933 int len, void *val) 5934 { 5935 struct kvm_io_bus *bus; 5936 struct kvm_io_range range; 5937 int r; 5938 5939 range = (struct kvm_io_range) { 5940 .addr = addr, 5941 .len = len, 5942 }; 5943 5944 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5945 if (!bus) 5946 return -ENOMEM; 5947 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5948 return r < 0 ? r : 0; 5949 } 5950 5951 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5952 int len, struct kvm_io_device *dev) 5953 { 5954 int i; 5955 struct kvm_io_bus *new_bus, *bus; 5956 struct kvm_io_range range; 5957 5958 lockdep_assert_held(&kvm->slots_lock); 5959 5960 bus = kvm_get_bus(kvm, bus_idx); 5961 if (!bus) 5962 return -ENOMEM; 5963 5964 /* exclude ioeventfd which is limited by maximum fd */ 5965 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5966 return -ENOSPC; 5967 5968 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5969 GFP_KERNEL_ACCOUNT); 5970 if (!new_bus) 5971 return -ENOMEM; 5972 5973 range = (struct kvm_io_range) { 5974 .addr = addr, 5975 .len = len, 5976 .dev = dev, 5977 }; 5978 5979 for (i = 0; i < bus->dev_count; i++) 5980 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5981 break; 5982 5983 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5984 new_bus->dev_count++; 5985 new_bus->range[i] = range; 5986 memcpy(new_bus->range + i + 1, bus->range + i, 5987 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5988 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5989 synchronize_srcu_expedited(&kvm->srcu); 5990 kfree(bus); 5991 5992 return 0; 5993 } 5994 5995 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5996 struct kvm_io_device *dev) 5997 { 5998 int i; 5999 struct kvm_io_bus *new_bus, *bus; 6000 6001 lockdep_assert_held(&kvm->slots_lock); 6002 6003 bus = kvm_get_bus(kvm, bus_idx); 6004 if (!bus) 6005 return 0; 6006 6007 for (i = 0; i < bus->dev_count; i++) { 6008 if (bus->range[i].dev == dev) { 6009 break; 6010 } 6011 } 6012 6013 if (i == bus->dev_count) 6014 return 0; 6015 6016 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 6017 GFP_KERNEL_ACCOUNT); 6018 if (new_bus) { 6019 memcpy(new_bus, bus, struct_size(bus, range, i)); 6020 new_bus->dev_count--; 6021 memcpy(new_bus->range + i, bus->range + i + 1, 6022 flex_array_size(new_bus, range, new_bus->dev_count - i)); 6023 } 6024 6025 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6026 synchronize_srcu_expedited(&kvm->srcu); 6027 6028 /* 6029 * If NULL bus is installed, destroy the old bus, including all the 6030 * attached devices. Otherwise, destroy the caller's device only. 6031 */ 6032 if (!new_bus) { 6033 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6034 kvm_io_bus_destroy(bus); 6035 return -ENOMEM; 6036 } 6037 6038 kvm_iodevice_destructor(dev); 6039 kfree(bus); 6040 return 0; 6041 } 6042 6043 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6044 gpa_t addr) 6045 { 6046 struct kvm_io_bus *bus; 6047 int dev_idx, srcu_idx; 6048 struct kvm_io_device *iodev = NULL; 6049 6050 srcu_idx = srcu_read_lock(&kvm->srcu); 6051 6052 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 6053 if (!bus) 6054 goto out_unlock; 6055 6056 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6057 if (dev_idx < 0) 6058 goto out_unlock; 6059 6060 iodev = bus->range[dev_idx].dev; 6061 6062 out_unlock: 6063 srcu_read_unlock(&kvm->srcu, srcu_idx); 6064 6065 return iodev; 6066 } 6067 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6068 6069 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6070 int (*get)(void *, u64 *), int (*set)(void *, u64), 6071 const char *fmt) 6072 { 6073 int ret; 6074 struct kvm_stat_data *stat_data = inode->i_private; 6075 6076 /* 6077 * The debugfs files are a reference to the kvm struct which 6078 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6079 * avoids the race between open and the removal of the debugfs directory. 6080 */ 6081 if (!kvm_get_kvm_safe(stat_data->kvm)) 6082 return -ENOENT; 6083 6084 ret = simple_attr_open(inode, file, get, 6085 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6086 ? set : NULL, fmt); 6087 if (ret) 6088 kvm_put_kvm(stat_data->kvm); 6089 6090 return ret; 6091 } 6092 6093 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6094 { 6095 struct kvm_stat_data *stat_data = inode->i_private; 6096 6097 simple_attr_release(inode, file); 6098 kvm_put_kvm(stat_data->kvm); 6099 6100 return 0; 6101 } 6102 6103 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6104 { 6105 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6106 6107 return 0; 6108 } 6109 6110 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6111 { 6112 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6113 6114 return 0; 6115 } 6116 6117 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6118 { 6119 unsigned long i; 6120 struct kvm_vcpu *vcpu; 6121 6122 *val = 0; 6123 6124 kvm_for_each_vcpu(i, vcpu, kvm) 6125 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6126 6127 return 0; 6128 } 6129 6130 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6131 { 6132 unsigned long i; 6133 struct kvm_vcpu *vcpu; 6134 6135 kvm_for_each_vcpu(i, vcpu, kvm) 6136 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6137 6138 return 0; 6139 } 6140 6141 static int kvm_stat_data_get(void *data, u64 *val) 6142 { 6143 int r = -EFAULT; 6144 struct kvm_stat_data *stat_data = data; 6145 6146 switch (stat_data->kind) { 6147 case KVM_STAT_VM: 6148 r = kvm_get_stat_per_vm(stat_data->kvm, 6149 stat_data->desc->desc.offset, val); 6150 break; 6151 case KVM_STAT_VCPU: 6152 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6153 stat_data->desc->desc.offset, val); 6154 break; 6155 } 6156 6157 return r; 6158 } 6159 6160 static int kvm_stat_data_clear(void *data, u64 val) 6161 { 6162 int r = -EFAULT; 6163 struct kvm_stat_data *stat_data = data; 6164 6165 if (val) 6166 return -EINVAL; 6167 6168 switch (stat_data->kind) { 6169 case KVM_STAT_VM: 6170 r = kvm_clear_stat_per_vm(stat_data->kvm, 6171 stat_data->desc->desc.offset); 6172 break; 6173 case KVM_STAT_VCPU: 6174 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6175 stat_data->desc->desc.offset); 6176 break; 6177 } 6178 6179 return r; 6180 } 6181 6182 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6183 { 6184 __simple_attr_check_format("%llu\n", 0ull); 6185 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6186 kvm_stat_data_clear, "%llu\n"); 6187 } 6188 6189 static const struct file_operations stat_fops_per_vm = { 6190 .owner = THIS_MODULE, 6191 .open = kvm_stat_data_open, 6192 .release = kvm_debugfs_release, 6193 .read = simple_attr_read, 6194 .write = simple_attr_write, 6195 .llseek = no_llseek, 6196 }; 6197 6198 static int vm_stat_get(void *_offset, u64 *val) 6199 { 6200 unsigned offset = (long)_offset; 6201 struct kvm *kvm; 6202 u64 tmp_val; 6203 6204 *val = 0; 6205 mutex_lock(&kvm_lock); 6206 list_for_each_entry(kvm, &vm_list, vm_list) { 6207 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6208 *val += tmp_val; 6209 } 6210 mutex_unlock(&kvm_lock); 6211 return 0; 6212 } 6213 6214 static int vm_stat_clear(void *_offset, u64 val) 6215 { 6216 unsigned offset = (long)_offset; 6217 struct kvm *kvm; 6218 6219 if (val) 6220 return -EINVAL; 6221 6222 mutex_lock(&kvm_lock); 6223 list_for_each_entry(kvm, &vm_list, vm_list) { 6224 kvm_clear_stat_per_vm(kvm, offset); 6225 } 6226 mutex_unlock(&kvm_lock); 6227 6228 return 0; 6229 } 6230 6231 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6232 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6233 6234 static int vcpu_stat_get(void *_offset, u64 *val) 6235 { 6236 unsigned offset = (long)_offset; 6237 struct kvm *kvm; 6238 u64 tmp_val; 6239 6240 *val = 0; 6241 mutex_lock(&kvm_lock); 6242 list_for_each_entry(kvm, &vm_list, vm_list) { 6243 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6244 *val += tmp_val; 6245 } 6246 mutex_unlock(&kvm_lock); 6247 return 0; 6248 } 6249 6250 static int vcpu_stat_clear(void *_offset, u64 val) 6251 { 6252 unsigned offset = (long)_offset; 6253 struct kvm *kvm; 6254 6255 if (val) 6256 return -EINVAL; 6257 6258 mutex_lock(&kvm_lock); 6259 list_for_each_entry(kvm, &vm_list, vm_list) { 6260 kvm_clear_stat_per_vcpu(kvm, offset); 6261 } 6262 mutex_unlock(&kvm_lock); 6263 6264 return 0; 6265 } 6266 6267 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6268 "%llu\n"); 6269 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6270 6271 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6272 { 6273 struct kobj_uevent_env *env; 6274 unsigned long long created, active; 6275 6276 if (!kvm_dev.this_device || !kvm) 6277 return; 6278 6279 mutex_lock(&kvm_lock); 6280 if (type == KVM_EVENT_CREATE_VM) { 6281 kvm_createvm_count++; 6282 kvm_active_vms++; 6283 } else if (type == KVM_EVENT_DESTROY_VM) { 6284 kvm_active_vms--; 6285 } 6286 created = kvm_createvm_count; 6287 active = kvm_active_vms; 6288 mutex_unlock(&kvm_lock); 6289 6290 env = kzalloc(sizeof(*env), GFP_KERNEL); 6291 if (!env) 6292 return; 6293 6294 add_uevent_var(env, "CREATED=%llu", created); 6295 add_uevent_var(env, "COUNT=%llu", active); 6296 6297 if (type == KVM_EVENT_CREATE_VM) { 6298 add_uevent_var(env, "EVENT=create"); 6299 kvm->userspace_pid = task_pid_nr(current); 6300 } else if (type == KVM_EVENT_DESTROY_VM) { 6301 add_uevent_var(env, "EVENT=destroy"); 6302 } 6303 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6304 6305 if (!IS_ERR(kvm->debugfs_dentry)) { 6306 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6307 6308 if (p) { 6309 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6310 if (!IS_ERR(tmp)) 6311 add_uevent_var(env, "STATS_PATH=%s", tmp); 6312 kfree(p); 6313 } 6314 } 6315 /* no need for checks, since we are adding at most only 5 keys */ 6316 env->envp[env->envp_idx++] = NULL; 6317 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6318 kfree(env); 6319 } 6320 6321 static void kvm_init_debug(void) 6322 { 6323 const struct file_operations *fops; 6324 const struct _kvm_stats_desc *pdesc; 6325 int i; 6326 6327 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6328 6329 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6330 pdesc = &kvm_vm_stats_desc[i]; 6331 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6332 fops = &vm_stat_fops; 6333 else 6334 fops = &vm_stat_readonly_fops; 6335 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6336 kvm_debugfs_dir, 6337 (void *)(long)pdesc->desc.offset, fops); 6338 } 6339 6340 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6341 pdesc = &kvm_vcpu_stats_desc[i]; 6342 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6343 fops = &vcpu_stat_fops; 6344 else 6345 fops = &vcpu_stat_readonly_fops; 6346 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6347 kvm_debugfs_dir, 6348 (void *)(long)pdesc->desc.offset, fops); 6349 } 6350 } 6351 6352 static inline 6353 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6354 { 6355 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6356 } 6357 6358 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6359 { 6360 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6361 6362 WRITE_ONCE(vcpu->preempted, false); 6363 WRITE_ONCE(vcpu->ready, false); 6364 6365 __this_cpu_write(kvm_running_vcpu, vcpu); 6366 kvm_arch_vcpu_load(vcpu, cpu); 6367 6368 WRITE_ONCE(vcpu->scheduled_out, false); 6369 } 6370 6371 static void kvm_sched_out(struct preempt_notifier *pn, 6372 struct task_struct *next) 6373 { 6374 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6375 6376 WRITE_ONCE(vcpu->scheduled_out, true); 6377 6378 if (current->on_rq && vcpu->wants_to_run) { 6379 WRITE_ONCE(vcpu->preempted, true); 6380 WRITE_ONCE(vcpu->ready, true); 6381 } 6382 kvm_arch_vcpu_put(vcpu); 6383 __this_cpu_write(kvm_running_vcpu, NULL); 6384 } 6385 6386 /** 6387 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6388 * 6389 * We can disable preemption locally around accessing the per-CPU variable, 6390 * and use the resolved vcpu pointer after enabling preemption again, 6391 * because even if the current thread is migrated to another CPU, reading 6392 * the per-CPU value later will give us the same value as we update the 6393 * per-CPU variable in the preempt notifier handlers. 6394 */ 6395 struct kvm_vcpu *kvm_get_running_vcpu(void) 6396 { 6397 struct kvm_vcpu *vcpu; 6398 6399 preempt_disable(); 6400 vcpu = __this_cpu_read(kvm_running_vcpu); 6401 preempt_enable(); 6402 6403 return vcpu; 6404 } 6405 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6406 6407 /** 6408 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6409 */ 6410 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6411 { 6412 return &kvm_running_vcpu; 6413 } 6414 6415 #ifdef CONFIG_GUEST_PERF_EVENTS 6416 static unsigned int kvm_guest_state(void) 6417 { 6418 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6419 unsigned int state; 6420 6421 if (!kvm_arch_pmi_in_guest(vcpu)) 6422 return 0; 6423 6424 state = PERF_GUEST_ACTIVE; 6425 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6426 state |= PERF_GUEST_USER; 6427 6428 return state; 6429 } 6430 6431 static unsigned long kvm_guest_get_ip(void) 6432 { 6433 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6434 6435 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6436 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6437 return 0; 6438 6439 return kvm_arch_vcpu_get_ip(vcpu); 6440 } 6441 6442 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6443 .state = kvm_guest_state, 6444 .get_ip = kvm_guest_get_ip, 6445 .handle_intel_pt_intr = NULL, 6446 }; 6447 6448 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6449 { 6450 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6451 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6452 } 6453 void kvm_unregister_perf_callbacks(void) 6454 { 6455 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6456 } 6457 #endif 6458 6459 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6460 { 6461 int r; 6462 int cpu; 6463 6464 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6465 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6466 kvm_online_cpu, kvm_offline_cpu); 6467 if (r) 6468 return r; 6469 6470 register_syscore_ops(&kvm_syscore_ops); 6471 #endif 6472 6473 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6474 if (!vcpu_align) 6475 vcpu_align = __alignof__(struct kvm_vcpu); 6476 kvm_vcpu_cache = 6477 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6478 SLAB_ACCOUNT, 6479 offsetof(struct kvm_vcpu, arch), 6480 offsetofend(struct kvm_vcpu, stats_id) 6481 - offsetof(struct kvm_vcpu, arch), 6482 NULL); 6483 if (!kvm_vcpu_cache) { 6484 r = -ENOMEM; 6485 goto err_vcpu_cache; 6486 } 6487 6488 for_each_possible_cpu(cpu) { 6489 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6490 GFP_KERNEL, cpu_to_node(cpu))) { 6491 r = -ENOMEM; 6492 goto err_cpu_kick_mask; 6493 } 6494 } 6495 6496 r = kvm_irqfd_init(); 6497 if (r) 6498 goto err_irqfd; 6499 6500 r = kvm_async_pf_init(); 6501 if (r) 6502 goto err_async_pf; 6503 6504 kvm_chardev_ops.owner = module; 6505 kvm_vm_fops.owner = module; 6506 kvm_vcpu_fops.owner = module; 6507 kvm_device_fops.owner = module; 6508 6509 kvm_preempt_ops.sched_in = kvm_sched_in; 6510 kvm_preempt_ops.sched_out = kvm_sched_out; 6511 6512 kvm_init_debug(); 6513 6514 r = kvm_vfio_ops_init(); 6515 if (WARN_ON_ONCE(r)) 6516 goto err_vfio; 6517 6518 kvm_gmem_init(module); 6519 6520 /* 6521 * Registration _must_ be the very last thing done, as this exposes 6522 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6523 */ 6524 r = misc_register(&kvm_dev); 6525 if (r) { 6526 pr_err("kvm: misc device register failed\n"); 6527 goto err_register; 6528 } 6529 6530 return 0; 6531 6532 err_register: 6533 kvm_vfio_ops_exit(); 6534 err_vfio: 6535 kvm_async_pf_deinit(); 6536 err_async_pf: 6537 kvm_irqfd_exit(); 6538 err_irqfd: 6539 err_cpu_kick_mask: 6540 for_each_possible_cpu(cpu) 6541 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6542 kmem_cache_destroy(kvm_vcpu_cache); 6543 err_vcpu_cache: 6544 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6545 unregister_syscore_ops(&kvm_syscore_ops); 6546 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6547 #endif 6548 return r; 6549 } 6550 EXPORT_SYMBOL_GPL(kvm_init); 6551 6552 void kvm_exit(void) 6553 { 6554 int cpu; 6555 6556 /* 6557 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6558 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6559 * to KVM while the module is being stopped. 6560 */ 6561 misc_deregister(&kvm_dev); 6562 6563 debugfs_remove_recursive(kvm_debugfs_dir); 6564 for_each_possible_cpu(cpu) 6565 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6566 kmem_cache_destroy(kvm_vcpu_cache); 6567 kvm_vfio_ops_exit(); 6568 kvm_async_pf_deinit(); 6569 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6570 unregister_syscore_ops(&kvm_syscore_ops); 6571 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6572 #endif 6573 kvm_irqfd_exit(); 6574 } 6575 EXPORT_SYMBOL_GPL(kvm_exit); 6576 6577 struct kvm_vm_worker_thread_context { 6578 struct kvm *kvm; 6579 struct task_struct *parent; 6580 struct completion init_done; 6581 kvm_vm_thread_fn_t thread_fn; 6582 uintptr_t data; 6583 int err; 6584 }; 6585 6586 static int kvm_vm_worker_thread(void *context) 6587 { 6588 /* 6589 * The init_context is allocated on the stack of the parent thread, so 6590 * we have to locally copy anything that is needed beyond initialization 6591 */ 6592 struct kvm_vm_worker_thread_context *init_context = context; 6593 struct task_struct *parent; 6594 struct kvm *kvm = init_context->kvm; 6595 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6596 uintptr_t data = init_context->data; 6597 int err; 6598 6599 err = kthread_park(current); 6600 /* kthread_park(current) is never supposed to return an error */ 6601 WARN_ON(err != 0); 6602 if (err) 6603 goto init_complete; 6604 6605 err = cgroup_attach_task_all(init_context->parent, current); 6606 if (err) { 6607 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6608 __func__, err); 6609 goto init_complete; 6610 } 6611 6612 set_user_nice(current, task_nice(init_context->parent)); 6613 6614 init_complete: 6615 init_context->err = err; 6616 complete(&init_context->init_done); 6617 init_context = NULL; 6618 6619 if (err) 6620 goto out; 6621 6622 /* Wait to be woken up by the spawner before proceeding. */ 6623 kthread_parkme(); 6624 6625 if (!kthread_should_stop()) 6626 err = thread_fn(kvm, data); 6627 6628 out: 6629 /* 6630 * Move kthread back to its original cgroup to prevent it lingering in 6631 * the cgroup of the VM process, after the latter finishes its 6632 * execution. 6633 * 6634 * kthread_stop() waits on the 'exited' completion condition which is 6635 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6636 * kthread is removed from the cgroup in the cgroup_exit() which is 6637 * called after the exit_mm(). This causes the kthread_stop() to return 6638 * before the kthread actually quits the cgroup. 6639 */ 6640 rcu_read_lock(); 6641 parent = rcu_dereference(current->real_parent); 6642 get_task_struct(parent); 6643 rcu_read_unlock(); 6644 cgroup_attach_task_all(parent, current); 6645 put_task_struct(parent); 6646 6647 return err; 6648 } 6649 6650 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6651 uintptr_t data, const char *name, 6652 struct task_struct **thread_ptr) 6653 { 6654 struct kvm_vm_worker_thread_context init_context = {}; 6655 struct task_struct *thread; 6656 6657 *thread_ptr = NULL; 6658 init_context.kvm = kvm; 6659 init_context.parent = current; 6660 init_context.thread_fn = thread_fn; 6661 init_context.data = data; 6662 init_completion(&init_context.init_done); 6663 6664 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6665 "%s-%d", name, task_pid_nr(current)); 6666 if (IS_ERR(thread)) 6667 return PTR_ERR(thread); 6668 6669 /* kthread_run is never supposed to return NULL */ 6670 WARN_ON(thread == NULL); 6671 6672 wait_for_completion(&init_context.init_done); 6673 6674 if (!init_context.err) 6675 *thread_ptr = thread; 6676 6677 return init_context.err; 6678 } 6679