1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 gfp_flags |= mc->gfp_zero; 405 406 if (mc->kmem_cache) 407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 408 else 409 return (void *)__get_free_page(gfp_flags); 410 } 411 412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 413 { 414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 415 void *obj; 416 417 if (mc->nobjs >= min) 418 return 0; 419 420 if (unlikely(!mc->objects)) { 421 if (WARN_ON_ONCE(!capacity)) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 587 588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 591 node; \ 592 node = interval_tree_iter_next(node, start, last)) \ 593 594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 595 const struct kvm_mmu_notifier_range *range) 596 { 597 struct kvm_mmu_notifier_return r = { 598 .ret = false, 599 .found_memslot = false, 600 }; 601 struct kvm_gfn_range gfn_range; 602 struct kvm_memory_slot *slot; 603 struct kvm_memslots *slots; 604 int i, idx; 605 606 if (WARN_ON_ONCE(range->end <= range->start)) 607 return r; 608 609 /* A null handler is allowed if and only if on_lock() is provided. */ 610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 611 IS_KVM_NULL_FN(range->handler))) 612 return r; 613 614 idx = srcu_read_lock(&kvm->srcu); 615 616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 617 struct interval_tree_node *node; 618 619 slots = __kvm_memslots(kvm, i); 620 kvm_for_each_memslot_in_hva_range(node, slots, 621 range->start, range->end - 1) { 622 unsigned long hva_start, hva_end; 623 624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 626 hva_end = min_t(unsigned long, range->end, 627 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 628 629 /* 630 * To optimize for the likely case where the address 631 * range is covered by zero or one memslots, don't 632 * bother making these conditional (to avoid writes on 633 * the second or later invocation of the handler). 634 */ 635 gfn_range.arg = range->arg; 636 gfn_range.may_block = range->may_block; 637 638 /* 639 * {gfn(page) | page intersects with [hva_start, hva_end)} = 640 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 641 */ 642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 644 gfn_range.slot = slot; 645 646 if (!r.found_memslot) { 647 r.found_memslot = true; 648 KVM_MMU_LOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_lock)) 650 range->on_lock(kvm); 651 652 if (IS_KVM_NULL_FN(range->handler)) 653 break; 654 } 655 r.ret |= range->handler(kvm, &gfn_range); 656 } 657 } 658 659 if (range->flush_on_ret && r.ret) 660 kvm_flush_remote_tlbs(kvm); 661 662 if (r.found_memslot) 663 KVM_MMU_UNLOCK(kvm); 664 665 srcu_read_unlock(&kvm->srcu, idx); 666 667 return r; 668 } 669 670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 union kvm_mmu_notifier_arg arg, 674 gfn_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_mmu_notifier_range range = { 678 .start = start, 679 .end = end, 680 .arg = arg, 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .flush_on_ret = true, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range).ret; 688 } 689 690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 691 unsigned long start, 692 unsigned long end, 693 gfn_handler_t handler) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 const struct kvm_mmu_notifier_range range = { 697 .start = start, 698 .end = end, 699 .handler = handler, 700 .on_lock = (void *)kvm_null_fn, 701 .flush_on_ret = false, 702 .may_block = false, 703 }; 704 705 return __kvm_handle_hva_range(kvm, &range).ret; 706 } 707 708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 709 { 710 /* 711 * Skipping invalid memslots is correct if and only change_pte() is 712 * surrounded by invalidate_range_{start,end}(), which is currently 713 * guaranteed by the primary MMU. If that ever changes, KVM needs to 714 * unmap the memslot instead of skipping the memslot to ensure that KVM 715 * doesn't hold references to the old PFN. 716 */ 717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 718 719 if (range->slot->flags & KVM_MEMSLOT_INVALID) 720 return false; 721 722 return kvm_set_spte_gfn(kvm, range); 723 } 724 725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 726 struct mm_struct *mm, 727 unsigned long address, 728 pte_t pte) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 732 733 trace_kvm_set_spte_hva(address); 734 735 /* 736 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 737 * If mmu_invalidate_in_progress is zero, then no in-progress 738 * invalidations, including this one, found a relevant memslot at 739 * start(); rechecking memslots here is unnecessary. Note, a false 740 * positive (count elevated by a different invalidation) is sub-optimal 741 * but functionally ok. 742 */ 743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 745 return; 746 747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 748 } 749 750 void kvm_mmu_invalidate_begin(struct kvm *kvm) 751 { 752 lockdep_assert_held_write(&kvm->mmu_lock); 753 /* 754 * The count increase must become visible at unlock time as no 755 * spte can be established without taking the mmu_lock and 756 * count is also read inside the mmu_lock critical section. 757 */ 758 kvm->mmu_invalidate_in_progress++; 759 760 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 761 kvm->mmu_invalidate_range_start = INVALID_GPA; 762 kvm->mmu_invalidate_range_end = INVALID_GPA; 763 } 764 } 765 766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 767 { 768 lockdep_assert_held_write(&kvm->mmu_lock); 769 770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 771 772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 773 kvm->mmu_invalidate_range_start = start; 774 kvm->mmu_invalidate_range_end = end; 775 } else { 776 /* 777 * Fully tracking multiple concurrent ranges has diminishing 778 * returns. Keep things simple and just find the minimal range 779 * which includes the current and new ranges. As there won't be 780 * enough information to subtract a range after its invalidate 781 * completes, any ranges invalidated concurrently will 782 * accumulate and persist until all outstanding invalidates 783 * complete. 784 */ 785 kvm->mmu_invalidate_range_start = 786 min(kvm->mmu_invalidate_range_start, start); 787 kvm->mmu_invalidate_range_end = 788 max(kvm->mmu_invalidate_range_end, end); 789 } 790 } 791 792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 793 { 794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 795 return kvm_unmap_gfn_range(kvm, range); 796 } 797 798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 799 const struct mmu_notifier_range *range) 800 { 801 struct kvm *kvm = mmu_notifier_to_kvm(mn); 802 const struct kvm_mmu_notifier_range hva_range = { 803 .start = range->start, 804 .end = range->end, 805 .handler = kvm_mmu_unmap_gfn_range, 806 .on_lock = kvm_mmu_invalidate_begin, 807 .flush_on_ret = true, 808 .may_block = mmu_notifier_range_blockable(range), 809 }; 810 811 trace_kvm_unmap_hva_range(range->start, range->end); 812 813 /* 814 * Prevent memslot modification between range_start() and range_end() 815 * so that conditionally locking provides the same result in both 816 * functions. Without that guarantee, the mmu_invalidate_in_progress 817 * adjustments will be imbalanced. 818 * 819 * Pairs with the decrement in range_end(). 820 */ 821 spin_lock(&kvm->mn_invalidate_lock); 822 kvm->mn_active_invalidate_count++; 823 spin_unlock(&kvm->mn_invalidate_lock); 824 825 /* 826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 828 * each cache's lock. There are relatively few caches in existence at 829 * any given time, and the caches themselves can check for hva overlap, 830 * i.e. don't need to rely on memslot overlap checks for performance. 831 * Because this runs without holding mmu_lock, the pfn caches must use 832 * mn_active_invalidate_count (see above) instead of 833 * mmu_invalidate_in_progress. 834 */ 835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 836 hva_range.may_block); 837 838 /* 839 * If one or more memslots were found and thus zapped, notify arch code 840 * that guest memory has been reclaimed. This needs to be done *after* 841 * dropping mmu_lock, as x86's reclaim path is slooooow. 842 */ 843 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 844 kvm_arch_guest_memory_reclaimed(kvm); 845 846 return 0; 847 } 848 849 void kvm_mmu_invalidate_end(struct kvm *kvm) 850 { 851 lockdep_assert_held_write(&kvm->mmu_lock); 852 853 /* 854 * This sequence increase will notify the kvm page fault that 855 * the page that is going to be mapped in the spte could have 856 * been freed. 857 */ 858 kvm->mmu_invalidate_seq++; 859 smp_wmb(); 860 /* 861 * The above sequence increase must be visible before the 862 * below count decrease, which is ensured by the smp_wmb above 863 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 864 */ 865 kvm->mmu_invalidate_in_progress--; 866 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 867 868 /* 869 * Assert that at least one range was added between start() and end(). 870 * Not adding a range isn't fatal, but it is a KVM bug. 871 */ 872 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 873 } 874 875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 876 const struct mmu_notifier_range *range) 877 { 878 struct kvm *kvm = mmu_notifier_to_kvm(mn); 879 const struct kvm_mmu_notifier_range hva_range = { 880 .start = range->start, 881 .end = range->end, 882 .handler = (void *)kvm_null_fn, 883 .on_lock = kvm_mmu_invalidate_end, 884 .flush_on_ret = false, 885 .may_block = mmu_notifier_range_blockable(range), 886 }; 887 bool wake; 888 889 __kvm_handle_hva_range(kvm, &hva_range); 890 891 /* Pairs with the increment in range_start(). */ 892 spin_lock(&kvm->mn_invalidate_lock); 893 wake = (--kvm->mn_active_invalidate_count == 0); 894 spin_unlock(&kvm->mn_invalidate_lock); 895 896 /* 897 * There can only be one waiter, since the wait happens under 898 * slots_lock. 899 */ 900 if (wake) 901 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 902 } 903 904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 905 struct mm_struct *mm, 906 unsigned long start, 907 unsigned long end) 908 { 909 trace_kvm_age_hva(start, end); 910 911 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 912 kvm_age_gfn); 913 } 914 915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 916 struct mm_struct *mm, 917 unsigned long start, 918 unsigned long end) 919 { 920 trace_kvm_age_hva(start, end); 921 922 /* 923 * Even though we do not flush TLB, this will still adversely 924 * affect performance on pre-Haswell Intel EPT, where there is 925 * no EPT Access Bit to clear so that we have to tear down EPT 926 * tables instead. If we find this unacceptable, we can always 927 * add a parameter to kvm_age_hva so that it effectively doesn't 928 * do anything on clear_young. 929 * 930 * Also note that currently we never issue secondary TLB flushes 931 * from clear_young, leaving this job up to the regular system 932 * cadence. If we find this inaccurate, we might come up with a 933 * more sophisticated heuristic later. 934 */ 935 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 936 } 937 938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 939 struct mm_struct *mm, 940 unsigned long address) 941 { 942 trace_kvm_test_age_hva(address); 943 944 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 945 kvm_test_age_gfn); 946 } 947 948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 949 struct mm_struct *mm) 950 { 951 struct kvm *kvm = mmu_notifier_to_kvm(mn); 952 int idx; 953 954 idx = srcu_read_lock(&kvm->srcu); 955 kvm_flush_shadow_all(kvm); 956 srcu_read_unlock(&kvm->srcu, idx); 957 } 958 959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 960 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 961 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 962 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 963 .clear_young = kvm_mmu_notifier_clear_young, 964 .test_young = kvm_mmu_notifier_test_young, 965 .change_pte = kvm_mmu_notifier_change_pte, 966 .release = kvm_mmu_notifier_release, 967 }; 968 969 static int kvm_init_mmu_notifier(struct kvm *kvm) 970 { 971 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 972 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 973 } 974 975 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 976 977 static int kvm_init_mmu_notifier(struct kvm *kvm) 978 { 979 return 0; 980 } 981 982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 983 984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 985 static int kvm_pm_notifier_call(struct notifier_block *bl, 986 unsigned long state, 987 void *unused) 988 { 989 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 990 991 return kvm_arch_pm_notifier(kvm, state); 992 } 993 994 static void kvm_init_pm_notifier(struct kvm *kvm) 995 { 996 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 997 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 998 kvm->pm_notifier.priority = INT_MAX; 999 register_pm_notifier(&kvm->pm_notifier); 1000 } 1001 1002 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1003 { 1004 unregister_pm_notifier(&kvm->pm_notifier); 1005 } 1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 1007 static void kvm_init_pm_notifier(struct kvm *kvm) 1008 { 1009 } 1010 1011 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1012 { 1013 } 1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 1015 1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 1017 { 1018 if (!memslot->dirty_bitmap) 1019 return; 1020 1021 kvfree(memslot->dirty_bitmap); 1022 memslot->dirty_bitmap = NULL; 1023 } 1024 1025 /* This does not remove the slot from struct kvm_memslots data structures */ 1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1027 { 1028 if (slot->flags & KVM_MEM_GUEST_MEMFD) 1029 kvm_gmem_unbind(slot); 1030 1031 kvm_destroy_dirty_bitmap(slot); 1032 1033 kvm_arch_free_memslot(kvm, slot); 1034 1035 kfree(slot); 1036 } 1037 1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 1039 { 1040 struct hlist_node *idnode; 1041 struct kvm_memory_slot *memslot; 1042 int bkt; 1043 1044 /* 1045 * The same memslot objects live in both active and inactive sets, 1046 * arbitrarily free using index '1' so the second invocation of this 1047 * function isn't operating over a structure with dangling pointers 1048 * (even though this function isn't actually touching them). 1049 */ 1050 if (!slots->node_idx) 1051 return; 1052 1053 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1054 kvm_free_memslot(kvm, memslot); 1055 } 1056 1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1058 { 1059 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1060 case KVM_STATS_TYPE_INSTANT: 1061 return 0444; 1062 case KVM_STATS_TYPE_CUMULATIVE: 1063 case KVM_STATS_TYPE_PEAK: 1064 default: 1065 return 0644; 1066 } 1067 } 1068 1069 1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1071 { 1072 int i; 1073 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1074 kvm_vcpu_stats_header.num_desc; 1075 1076 if (IS_ERR(kvm->debugfs_dentry)) 1077 return; 1078 1079 debugfs_remove_recursive(kvm->debugfs_dentry); 1080 1081 if (kvm->debugfs_stat_data) { 1082 for (i = 0; i < kvm_debugfs_num_entries; i++) 1083 kfree(kvm->debugfs_stat_data[i]); 1084 kfree(kvm->debugfs_stat_data); 1085 } 1086 } 1087 1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1089 { 1090 static DEFINE_MUTEX(kvm_debugfs_lock); 1091 struct dentry *dent; 1092 char dir_name[ITOA_MAX_LEN * 2]; 1093 struct kvm_stat_data *stat_data; 1094 const struct _kvm_stats_desc *pdesc; 1095 int i, ret = -ENOMEM; 1096 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1097 kvm_vcpu_stats_header.num_desc; 1098 1099 if (!debugfs_initialized()) 1100 return 0; 1101 1102 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1103 mutex_lock(&kvm_debugfs_lock); 1104 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1105 if (dent) { 1106 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1107 dput(dent); 1108 mutex_unlock(&kvm_debugfs_lock); 1109 return 0; 1110 } 1111 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1112 mutex_unlock(&kvm_debugfs_lock); 1113 if (IS_ERR(dent)) 1114 return 0; 1115 1116 kvm->debugfs_dentry = dent; 1117 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1118 sizeof(*kvm->debugfs_stat_data), 1119 GFP_KERNEL_ACCOUNT); 1120 if (!kvm->debugfs_stat_data) 1121 goto out_err; 1122 1123 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1124 pdesc = &kvm_vm_stats_desc[i]; 1125 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1126 if (!stat_data) 1127 goto out_err; 1128 1129 stat_data->kvm = kvm; 1130 stat_data->desc = pdesc; 1131 stat_data->kind = KVM_STAT_VM; 1132 kvm->debugfs_stat_data[i] = stat_data; 1133 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1134 kvm->debugfs_dentry, stat_data, 1135 &stat_fops_per_vm); 1136 } 1137 1138 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1139 pdesc = &kvm_vcpu_stats_desc[i]; 1140 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1141 if (!stat_data) 1142 goto out_err; 1143 1144 stat_data->kvm = kvm; 1145 stat_data->desc = pdesc; 1146 stat_data->kind = KVM_STAT_VCPU; 1147 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1148 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1149 kvm->debugfs_dentry, stat_data, 1150 &stat_fops_per_vm); 1151 } 1152 1153 ret = kvm_arch_create_vm_debugfs(kvm); 1154 if (ret) 1155 goto out_err; 1156 1157 return 0; 1158 out_err: 1159 kvm_destroy_vm_debugfs(kvm); 1160 return ret; 1161 } 1162 1163 /* 1164 * Called after the VM is otherwise initialized, but just before adding it to 1165 * the vm_list. 1166 */ 1167 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1168 { 1169 return 0; 1170 } 1171 1172 /* 1173 * Called just after removing the VM from the vm_list, but before doing any 1174 * other destruction. 1175 */ 1176 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1177 { 1178 } 1179 1180 /* 1181 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1182 * be setup already, so we can create arch-specific debugfs entries under it. 1183 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1184 * a per-arch destroy interface is not needed. 1185 */ 1186 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1187 { 1188 return 0; 1189 } 1190 1191 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1192 { 1193 struct kvm *kvm = kvm_arch_alloc_vm(); 1194 struct kvm_memslots *slots; 1195 int r = -ENOMEM; 1196 int i, j; 1197 1198 if (!kvm) 1199 return ERR_PTR(-ENOMEM); 1200 1201 KVM_MMU_LOCK_INIT(kvm); 1202 mmgrab(current->mm); 1203 kvm->mm = current->mm; 1204 kvm_eventfd_init(kvm); 1205 mutex_init(&kvm->lock); 1206 mutex_init(&kvm->irq_lock); 1207 mutex_init(&kvm->slots_lock); 1208 mutex_init(&kvm->slots_arch_lock); 1209 spin_lock_init(&kvm->mn_invalidate_lock); 1210 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1211 xa_init(&kvm->vcpu_array); 1212 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1213 xa_init(&kvm->mem_attr_array); 1214 #endif 1215 1216 INIT_LIST_HEAD(&kvm->gpc_list); 1217 spin_lock_init(&kvm->gpc_lock); 1218 1219 INIT_LIST_HEAD(&kvm->devices); 1220 kvm->max_vcpus = KVM_MAX_VCPUS; 1221 1222 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1223 1224 /* 1225 * Force subsequent debugfs file creations to fail if the VM directory 1226 * is not created (by kvm_create_vm_debugfs()). 1227 */ 1228 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1229 1230 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1231 task_pid_nr(current)); 1232 1233 if (init_srcu_struct(&kvm->srcu)) 1234 goto out_err_no_srcu; 1235 if (init_srcu_struct(&kvm->irq_srcu)) 1236 goto out_err_no_irq_srcu; 1237 1238 refcount_set(&kvm->users_count, 1); 1239 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1240 for (j = 0; j < 2; j++) { 1241 slots = &kvm->__memslots[i][j]; 1242 1243 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1244 slots->hva_tree = RB_ROOT_CACHED; 1245 slots->gfn_tree = RB_ROOT; 1246 hash_init(slots->id_hash); 1247 slots->node_idx = j; 1248 1249 /* Generations must be different for each address space. */ 1250 slots->generation = i; 1251 } 1252 1253 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1254 } 1255 1256 for (i = 0; i < KVM_NR_BUSES; i++) { 1257 rcu_assign_pointer(kvm->buses[i], 1258 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1259 if (!kvm->buses[i]) 1260 goto out_err_no_arch_destroy_vm; 1261 } 1262 1263 r = kvm_arch_init_vm(kvm, type); 1264 if (r) 1265 goto out_err_no_arch_destroy_vm; 1266 1267 r = hardware_enable_all(); 1268 if (r) 1269 goto out_err_no_disable; 1270 1271 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1272 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1273 #endif 1274 1275 r = kvm_init_mmu_notifier(kvm); 1276 if (r) 1277 goto out_err_no_mmu_notifier; 1278 1279 r = kvm_coalesced_mmio_init(kvm); 1280 if (r < 0) 1281 goto out_no_coalesced_mmio; 1282 1283 r = kvm_create_vm_debugfs(kvm, fdname); 1284 if (r) 1285 goto out_err_no_debugfs; 1286 1287 r = kvm_arch_post_init_vm(kvm); 1288 if (r) 1289 goto out_err; 1290 1291 mutex_lock(&kvm_lock); 1292 list_add(&kvm->vm_list, &vm_list); 1293 mutex_unlock(&kvm_lock); 1294 1295 preempt_notifier_inc(); 1296 kvm_init_pm_notifier(kvm); 1297 1298 return kvm; 1299 1300 out_err: 1301 kvm_destroy_vm_debugfs(kvm); 1302 out_err_no_debugfs: 1303 kvm_coalesced_mmio_free(kvm); 1304 out_no_coalesced_mmio: 1305 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1306 if (kvm->mmu_notifier.ops) 1307 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1308 #endif 1309 out_err_no_mmu_notifier: 1310 hardware_disable_all(); 1311 out_err_no_disable: 1312 kvm_arch_destroy_vm(kvm); 1313 out_err_no_arch_destroy_vm: 1314 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1315 for (i = 0; i < KVM_NR_BUSES; i++) 1316 kfree(kvm_get_bus(kvm, i)); 1317 cleanup_srcu_struct(&kvm->irq_srcu); 1318 out_err_no_irq_srcu: 1319 cleanup_srcu_struct(&kvm->srcu); 1320 out_err_no_srcu: 1321 kvm_arch_free_vm(kvm); 1322 mmdrop(current->mm); 1323 return ERR_PTR(r); 1324 } 1325 1326 static void kvm_destroy_devices(struct kvm *kvm) 1327 { 1328 struct kvm_device *dev, *tmp; 1329 1330 /* 1331 * We do not need to take the kvm->lock here, because nobody else 1332 * has a reference to the struct kvm at this point and therefore 1333 * cannot access the devices list anyhow. 1334 */ 1335 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1336 list_del(&dev->vm_node); 1337 dev->ops->destroy(dev); 1338 } 1339 } 1340 1341 static void kvm_destroy_vm(struct kvm *kvm) 1342 { 1343 int i; 1344 struct mm_struct *mm = kvm->mm; 1345 1346 kvm_destroy_pm_notifier(kvm); 1347 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1348 kvm_destroy_vm_debugfs(kvm); 1349 kvm_arch_sync_events(kvm); 1350 mutex_lock(&kvm_lock); 1351 list_del(&kvm->vm_list); 1352 mutex_unlock(&kvm_lock); 1353 kvm_arch_pre_destroy_vm(kvm); 1354 1355 kvm_free_irq_routing(kvm); 1356 for (i = 0; i < KVM_NR_BUSES; i++) { 1357 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1358 1359 if (bus) 1360 kvm_io_bus_destroy(bus); 1361 kvm->buses[i] = NULL; 1362 } 1363 kvm_coalesced_mmio_free(kvm); 1364 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1365 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1366 /* 1367 * At this point, pending calls to invalidate_range_start() 1368 * have completed but no more MMU notifiers will run, so 1369 * mn_active_invalidate_count may remain unbalanced. 1370 * No threads can be waiting in kvm_swap_active_memslots() as the 1371 * last reference on KVM has been dropped, but freeing 1372 * memslots would deadlock without this manual intervention. 1373 * 1374 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1375 * notifier between a start() and end(), then there shouldn't be any 1376 * in-progress invalidations. 1377 */ 1378 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1379 if (kvm->mn_active_invalidate_count) 1380 kvm->mn_active_invalidate_count = 0; 1381 else 1382 WARN_ON(kvm->mmu_invalidate_in_progress); 1383 #else 1384 kvm_flush_shadow_all(kvm); 1385 #endif 1386 kvm_arch_destroy_vm(kvm); 1387 kvm_destroy_devices(kvm); 1388 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1389 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1390 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1391 } 1392 cleanup_srcu_struct(&kvm->irq_srcu); 1393 cleanup_srcu_struct(&kvm->srcu); 1394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1395 xa_destroy(&kvm->mem_attr_array); 1396 #endif 1397 kvm_arch_free_vm(kvm); 1398 preempt_notifier_dec(); 1399 hardware_disable_all(); 1400 mmdrop(mm); 1401 } 1402 1403 void kvm_get_kvm(struct kvm *kvm) 1404 { 1405 refcount_inc(&kvm->users_count); 1406 } 1407 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1408 1409 /* 1410 * Make sure the vm is not during destruction, which is a safe version of 1411 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1412 */ 1413 bool kvm_get_kvm_safe(struct kvm *kvm) 1414 { 1415 return refcount_inc_not_zero(&kvm->users_count); 1416 } 1417 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1418 1419 void kvm_put_kvm(struct kvm *kvm) 1420 { 1421 if (refcount_dec_and_test(&kvm->users_count)) 1422 kvm_destroy_vm(kvm); 1423 } 1424 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1425 1426 /* 1427 * Used to put a reference that was taken on behalf of an object associated 1428 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1429 * of the new file descriptor fails and the reference cannot be transferred to 1430 * its final owner. In such cases, the caller is still actively using @kvm and 1431 * will fail miserably if the refcount unexpectedly hits zero. 1432 */ 1433 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1434 { 1435 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1436 } 1437 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1438 1439 static int kvm_vm_release(struct inode *inode, struct file *filp) 1440 { 1441 struct kvm *kvm = filp->private_data; 1442 1443 kvm_irqfd_release(kvm); 1444 1445 kvm_put_kvm(kvm); 1446 return 0; 1447 } 1448 1449 /* 1450 * Allocation size is twice as large as the actual dirty bitmap size. 1451 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1452 */ 1453 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1454 { 1455 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1456 1457 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1458 if (!memslot->dirty_bitmap) 1459 return -ENOMEM; 1460 1461 return 0; 1462 } 1463 1464 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1465 { 1466 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1467 int node_idx_inactive = active->node_idx ^ 1; 1468 1469 return &kvm->__memslots[as_id][node_idx_inactive]; 1470 } 1471 1472 /* 1473 * Helper to get the address space ID when one of memslot pointers may be NULL. 1474 * This also serves as a sanity that at least one of the pointers is non-NULL, 1475 * and that their address space IDs don't diverge. 1476 */ 1477 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1478 struct kvm_memory_slot *b) 1479 { 1480 if (WARN_ON_ONCE(!a && !b)) 1481 return 0; 1482 1483 if (!a) 1484 return b->as_id; 1485 if (!b) 1486 return a->as_id; 1487 1488 WARN_ON_ONCE(a->as_id != b->as_id); 1489 return a->as_id; 1490 } 1491 1492 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1493 struct kvm_memory_slot *slot) 1494 { 1495 struct rb_root *gfn_tree = &slots->gfn_tree; 1496 struct rb_node **node, *parent; 1497 int idx = slots->node_idx; 1498 1499 parent = NULL; 1500 for (node = &gfn_tree->rb_node; *node; ) { 1501 struct kvm_memory_slot *tmp; 1502 1503 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1504 parent = *node; 1505 if (slot->base_gfn < tmp->base_gfn) 1506 node = &(*node)->rb_left; 1507 else if (slot->base_gfn > tmp->base_gfn) 1508 node = &(*node)->rb_right; 1509 else 1510 BUG(); 1511 } 1512 1513 rb_link_node(&slot->gfn_node[idx], parent, node); 1514 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1515 } 1516 1517 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1518 struct kvm_memory_slot *slot) 1519 { 1520 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1521 } 1522 1523 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1524 struct kvm_memory_slot *old, 1525 struct kvm_memory_slot *new) 1526 { 1527 int idx = slots->node_idx; 1528 1529 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1530 1531 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1532 &slots->gfn_tree); 1533 } 1534 1535 /* 1536 * Replace @old with @new in the inactive memslots. 1537 * 1538 * With NULL @old this simply adds @new. 1539 * With NULL @new this simply removes @old. 1540 * 1541 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1542 * appropriately. 1543 */ 1544 static void kvm_replace_memslot(struct kvm *kvm, 1545 struct kvm_memory_slot *old, 1546 struct kvm_memory_slot *new) 1547 { 1548 int as_id = kvm_memslots_get_as_id(old, new); 1549 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1550 int idx = slots->node_idx; 1551 1552 if (old) { 1553 hash_del(&old->id_node[idx]); 1554 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1555 1556 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1557 atomic_long_set(&slots->last_used_slot, (long)new); 1558 1559 if (!new) { 1560 kvm_erase_gfn_node(slots, old); 1561 return; 1562 } 1563 } 1564 1565 /* 1566 * Initialize @new's hva range. Do this even when replacing an @old 1567 * slot, kvm_copy_memslot() deliberately does not touch node data. 1568 */ 1569 new->hva_node[idx].start = new->userspace_addr; 1570 new->hva_node[idx].last = new->userspace_addr + 1571 (new->npages << PAGE_SHIFT) - 1; 1572 1573 /* 1574 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1575 * hva_node needs to be swapped with remove+insert even though hva can't 1576 * change when replacing an existing slot. 1577 */ 1578 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1579 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1580 1581 /* 1582 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1583 * switch the node in the gfn tree instead of removing the old and 1584 * inserting the new as two separate operations. Replacement is a 1585 * single O(1) operation versus two O(log(n)) operations for 1586 * remove+insert. 1587 */ 1588 if (old && old->base_gfn == new->base_gfn) { 1589 kvm_replace_gfn_node(slots, old, new); 1590 } else { 1591 if (old) 1592 kvm_erase_gfn_node(slots, old); 1593 kvm_insert_gfn_node(slots, new); 1594 } 1595 } 1596 1597 /* 1598 * Flags that do not access any of the extra space of struct 1599 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1600 * only allows these. 1601 */ 1602 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1603 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1604 1605 static int check_memory_region_flags(struct kvm *kvm, 1606 const struct kvm_userspace_memory_region2 *mem) 1607 { 1608 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1609 1610 if (kvm_arch_has_private_mem(kvm)) 1611 valid_flags |= KVM_MEM_GUEST_MEMFD; 1612 1613 /* Dirty logging private memory is not currently supported. */ 1614 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1615 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1616 1617 #ifdef __KVM_HAVE_READONLY_MEM 1618 /* 1619 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1620 * read-only memslots have emulated MMIO, not page fault, semantics, 1621 * and KVM doesn't allow emulated MMIO for private memory. 1622 */ 1623 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1624 valid_flags |= KVM_MEM_READONLY; 1625 #endif 1626 1627 if (mem->flags & ~valid_flags) 1628 return -EINVAL; 1629 1630 return 0; 1631 } 1632 1633 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1634 { 1635 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1636 1637 /* Grab the generation from the activate memslots. */ 1638 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1639 1640 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1641 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1642 1643 /* 1644 * Do not store the new memslots while there are invalidations in 1645 * progress, otherwise the locking in invalidate_range_start and 1646 * invalidate_range_end will be unbalanced. 1647 */ 1648 spin_lock(&kvm->mn_invalidate_lock); 1649 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1650 while (kvm->mn_active_invalidate_count) { 1651 set_current_state(TASK_UNINTERRUPTIBLE); 1652 spin_unlock(&kvm->mn_invalidate_lock); 1653 schedule(); 1654 spin_lock(&kvm->mn_invalidate_lock); 1655 } 1656 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1657 rcu_assign_pointer(kvm->memslots[as_id], slots); 1658 spin_unlock(&kvm->mn_invalidate_lock); 1659 1660 /* 1661 * Acquired in kvm_set_memslot. Must be released before synchronize 1662 * SRCU below in order to avoid deadlock with another thread 1663 * acquiring the slots_arch_lock in an srcu critical section. 1664 */ 1665 mutex_unlock(&kvm->slots_arch_lock); 1666 1667 synchronize_srcu_expedited(&kvm->srcu); 1668 1669 /* 1670 * Increment the new memslot generation a second time, dropping the 1671 * update in-progress flag and incrementing the generation based on 1672 * the number of address spaces. This provides a unique and easily 1673 * identifiable generation number while the memslots are in flux. 1674 */ 1675 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1676 1677 /* 1678 * Generations must be unique even across address spaces. We do not need 1679 * a global counter for that, instead the generation space is evenly split 1680 * across address spaces. For example, with two address spaces, address 1681 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1682 * use generations 1, 3, 5, ... 1683 */ 1684 gen += kvm_arch_nr_memslot_as_ids(kvm); 1685 1686 kvm_arch_memslots_updated(kvm, gen); 1687 1688 slots->generation = gen; 1689 } 1690 1691 static int kvm_prepare_memory_region(struct kvm *kvm, 1692 const struct kvm_memory_slot *old, 1693 struct kvm_memory_slot *new, 1694 enum kvm_mr_change change) 1695 { 1696 int r; 1697 1698 /* 1699 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1700 * will be freed on "commit". If logging is enabled in both old and 1701 * new, reuse the existing bitmap. If logging is enabled only in the 1702 * new and KVM isn't using a ring buffer, allocate and initialize a 1703 * new bitmap. 1704 */ 1705 if (change != KVM_MR_DELETE) { 1706 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1707 new->dirty_bitmap = NULL; 1708 else if (old && old->dirty_bitmap) 1709 new->dirty_bitmap = old->dirty_bitmap; 1710 else if (kvm_use_dirty_bitmap(kvm)) { 1711 r = kvm_alloc_dirty_bitmap(new); 1712 if (r) 1713 return r; 1714 1715 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1716 bitmap_set(new->dirty_bitmap, 0, new->npages); 1717 } 1718 } 1719 1720 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1721 1722 /* Free the bitmap on failure if it was allocated above. */ 1723 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1724 kvm_destroy_dirty_bitmap(new); 1725 1726 return r; 1727 } 1728 1729 static void kvm_commit_memory_region(struct kvm *kvm, 1730 struct kvm_memory_slot *old, 1731 const struct kvm_memory_slot *new, 1732 enum kvm_mr_change change) 1733 { 1734 int old_flags = old ? old->flags : 0; 1735 int new_flags = new ? new->flags : 0; 1736 /* 1737 * Update the total number of memslot pages before calling the arch 1738 * hook so that architectures can consume the result directly. 1739 */ 1740 if (change == KVM_MR_DELETE) 1741 kvm->nr_memslot_pages -= old->npages; 1742 else if (change == KVM_MR_CREATE) 1743 kvm->nr_memslot_pages += new->npages; 1744 1745 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1746 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1747 atomic_set(&kvm->nr_memslots_dirty_logging, 1748 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1749 } 1750 1751 kvm_arch_commit_memory_region(kvm, old, new, change); 1752 1753 switch (change) { 1754 case KVM_MR_CREATE: 1755 /* Nothing more to do. */ 1756 break; 1757 case KVM_MR_DELETE: 1758 /* Free the old memslot and all its metadata. */ 1759 kvm_free_memslot(kvm, old); 1760 break; 1761 case KVM_MR_MOVE: 1762 case KVM_MR_FLAGS_ONLY: 1763 /* 1764 * Free the dirty bitmap as needed; the below check encompasses 1765 * both the flags and whether a ring buffer is being used) 1766 */ 1767 if (old->dirty_bitmap && !new->dirty_bitmap) 1768 kvm_destroy_dirty_bitmap(old); 1769 1770 /* 1771 * The final quirk. Free the detached, old slot, but only its 1772 * memory, not any metadata. Metadata, including arch specific 1773 * data, may be reused by @new. 1774 */ 1775 kfree(old); 1776 break; 1777 default: 1778 BUG(); 1779 } 1780 } 1781 1782 /* 1783 * Activate @new, which must be installed in the inactive slots by the caller, 1784 * by swapping the active slots and then propagating @new to @old once @old is 1785 * unreachable and can be safely modified. 1786 * 1787 * With NULL @old this simply adds @new to @active (while swapping the sets). 1788 * With NULL @new this simply removes @old from @active and frees it 1789 * (while also swapping the sets). 1790 */ 1791 static void kvm_activate_memslot(struct kvm *kvm, 1792 struct kvm_memory_slot *old, 1793 struct kvm_memory_slot *new) 1794 { 1795 int as_id = kvm_memslots_get_as_id(old, new); 1796 1797 kvm_swap_active_memslots(kvm, as_id); 1798 1799 /* Propagate the new memslot to the now inactive memslots. */ 1800 kvm_replace_memslot(kvm, old, new); 1801 } 1802 1803 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1804 const struct kvm_memory_slot *src) 1805 { 1806 dest->base_gfn = src->base_gfn; 1807 dest->npages = src->npages; 1808 dest->dirty_bitmap = src->dirty_bitmap; 1809 dest->arch = src->arch; 1810 dest->userspace_addr = src->userspace_addr; 1811 dest->flags = src->flags; 1812 dest->id = src->id; 1813 dest->as_id = src->as_id; 1814 } 1815 1816 static void kvm_invalidate_memslot(struct kvm *kvm, 1817 struct kvm_memory_slot *old, 1818 struct kvm_memory_slot *invalid_slot) 1819 { 1820 /* 1821 * Mark the current slot INVALID. As with all memslot modifications, 1822 * this must be done on an unreachable slot to avoid modifying the 1823 * current slot in the active tree. 1824 */ 1825 kvm_copy_memslot(invalid_slot, old); 1826 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1827 kvm_replace_memslot(kvm, old, invalid_slot); 1828 1829 /* 1830 * Activate the slot that is now marked INVALID, but don't propagate 1831 * the slot to the now inactive slots. The slot is either going to be 1832 * deleted or recreated as a new slot. 1833 */ 1834 kvm_swap_active_memslots(kvm, old->as_id); 1835 1836 /* 1837 * From this point no new shadow pages pointing to a deleted, or moved, 1838 * memslot will be created. Validation of sp->gfn happens in: 1839 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1840 * - kvm_is_visible_gfn (mmu_check_root) 1841 */ 1842 kvm_arch_flush_shadow_memslot(kvm, old); 1843 kvm_arch_guest_memory_reclaimed(kvm); 1844 1845 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1846 mutex_lock(&kvm->slots_arch_lock); 1847 1848 /* 1849 * Copy the arch-specific field of the newly-installed slot back to the 1850 * old slot as the arch data could have changed between releasing 1851 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1852 * above. Writers are required to retrieve memslots *after* acquiring 1853 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1854 */ 1855 old->arch = invalid_slot->arch; 1856 } 1857 1858 static void kvm_create_memslot(struct kvm *kvm, 1859 struct kvm_memory_slot *new) 1860 { 1861 /* Add the new memslot to the inactive set and activate. */ 1862 kvm_replace_memslot(kvm, NULL, new); 1863 kvm_activate_memslot(kvm, NULL, new); 1864 } 1865 1866 static void kvm_delete_memslot(struct kvm *kvm, 1867 struct kvm_memory_slot *old, 1868 struct kvm_memory_slot *invalid_slot) 1869 { 1870 /* 1871 * Remove the old memslot (in the inactive memslots) by passing NULL as 1872 * the "new" slot, and for the invalid version in the active slots. 1873 */ 1874 kvm_replace_memslot(kvm, old, NULL); 1875 kvm_activate_memslot(kvm, invalid_slot, NULL); 1876 } 1877 1878 static void kvm_move_memslot(struct kvm *kvm, 1879 struct kvm_memory_slot *old, 1880 struct kvm_memory_slot *new, 1881 struct kvm_memory_slot *invalid_slot) 1882 { 1883 /* 1884 * Replace the old memslot in the inactive slots, and then swap slots 1885 * and replace the current INVALID with the new as well. 1886 */ 1887 kvm_replace_memslot(kvm, old, new); 1888 kvm_activate_memslot(kvm, invalid_slot, new); 1889 } 1890 1891 static void kvm_update_flags_memslot(struct kvm *kvm, 1892 struct kvm_memory_slot *old, 1893 struct kvm_memory_slot *new) 1894 { 1895 /* 1896 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1897 * an intermediate step. Instead, the old memslot is simply replaced 1898 * with a new, updated copy in both memslot sets. 1899 */ 1900 kvm_replace_memslot(kvm, old, new); 1901 kvm_activate_memslot(kvm, old, new); 1902 } 1903 1904 static int kvm_set_memslot(struct kvm *kvm, 1905 struct kvm_memory_slot *old, 1906 struct kvm_memory_slot *new, 1907 enum kvm_mr_change change) 1908 { 1909 struct kvm_memory_slot *invalid_slot; 1910 int r; 1911 1912 /* 1913 * Released in kvm_swap_active_memslots(). 1914 * 1915 * Must be held from before the current memslots are copied until after 1916 * the new memslots are installed with rcu_assign_pointer, then 1917 * released before the synchronize srcu in kvm_swap_active_memslots(). 1918 * 1919 * When modifying memslots outside of the slots_lock, must be held 1920 * before reading the pointer to the current memslots until after all 1921 * changes to those memslots are complete. 1922 * 1923 * These rules ensure that installing new memslots does not lose 1924 * changes made to the previous memslots. 1925 */ 1926 mutex_lock(&kvm->slots_arch_lock); 1927 1928 /* 1929 * Invalidate the old slot if it's being deleted or moved. This is 1930 * done prior to actually deleting/moving the memslot to allow vCPUs to 1931 * continue running by ensuring there are no mappings or shadow pages 1932 * for the memslot when it is deleted/moved. Without pre-invalidation 1933 * (and without a lock), a window would exist between effecting the 1934 * delete/move and committing the changes in arch code where KVM or a 1935 * guest could access a non-existent memslot. 1936 * 1937 * Modifications are done on a temporary, unreachable slot. The old 1938 * slot needs to be preserved in case a later step fails and the 1939 * invalidation needs to be reverted. 1940 */ 1941 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1942 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1943 if (!invalid_slot) { 1944 mutex_unlock(&kvm->slots_arch_lock); 1945 return -ENOMEM; 1946 } 1947 kvm_invalidate_memslot(kvm, old, invalid_slot); 1948 } 1949 1950 r = kvm_prepare_memory_region(kvm, old, new, change); 1951 if (r) { 1952 /* 1953 * For DELETE/MOVE, revert the above INVALID change. No 1954 * modifications required since the original slot was preserved 1955 * in the inactive slots. Changing the active memslots also 1956 * release slots_arch_lock. 1957 */ 1958 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1959 kvm_activate_memslot(kvm, invalid_slot, old); 1960 kfree(invalid_slot); 1961 } else { 1962 mutex_unlock(&kvm->slots_arch_lock); 1963 } 1964 return r; 1965 } 1966 1967 /* 1968 * For DELETE and MOVE, the working slot is now active as the INVALID 1969 * version of the old slot. MOVE is particularly special as it reuses 1970 * the old slot and returns a copy of the old slot (in working_slot). 1971 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1972 * old slot is detached but otherwise preserved. 1973 */ 1974 if (change == KVM_MR_CREATE) 1975 kvm_create_memslot(kvm, new); 1976 else if (change == KVM_MR_DELETE) 1977 kvm_delete_memslot(kvm, old, invalid_slot); 1978 else if (change == KVM_MR_MOVE) 1979 kvm_move_memslot(kvm, old, new, invalid_slot); 1980 else if (change == KVM_MR_FLAGS_ONLY) 1981 kvm_update_flags_memslot(kvm, old, new); 1982 else 1983 BUG(); 1984 1985 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1986 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1987 kfree(invalid_slot); 1988 1989 /* 1990 * No need to refresh new->arch, changes after dropping slots_arch_lock 1991 * will directly hit the final, active memslot. Architectures are 1992 * responsible for knowing that new->arch may be stale. 1993 */ 1994 kvm_commit_memory_region(kvm, old, new, change); 1995 1996 return 0; 1997 } 1998 1999 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 2000 gfn_t start, gfn_t end) 2001 { 2002 struct kvm_memslot_iter iter; 2003 2004 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 2005 if (iter.slot->id != id) 2006 return true; 2007 } 2008 2009 return false; 2010 } 2011 2012 /* 2013 * Allocate some memory and give it an address in the guest physical address 2014 * space. 2015 * 2016 * Discontiguous memory is allowed, mostly for framebuffers. 2017 * 2018 * Must be called holding kvm->slots_lock for write. 2019 */ 2020 int __kvm_set_memory_region(struct kvm *kvm, 2021 const struct kvm_userspace_memory_region2 *mem) 2022 { 2023 struct kvm_memory_slot *old, *new; 2024 struct kvm_memslots *slots; 2025 enum kvm_mr_change change; 2026 unsigned long npages; 2027 gfn_t base_gfn; 2028 int as_id, id; 2029 int r; 2030 2031 r = check_memory_region_flags(kvm, mem); 2032 if (r) 2033 return r; 2034 2035 as_id = mem->slot >> 16; 2036 id = (u16)mem->slot; 2037 2038 /* General sanity checks */ 2039 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2040 (mem->memory_size != (unsigned long)mem->memory_size)) 2041 return -EINVAL; 2042 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2043 return -EINVAL; 2044 /* We can read the guest memory with __xxx_user() later on. */ 2045 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2046 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2047 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2048 mem->memory_size)) 2049 return -EINVAL; 2050 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2051 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2052 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2053 return -EINVAL; 2054 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2055 return -EINVAL; 2056 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2057 return -EINVAL; 2058 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2059 return -EINVAL; 2060 2061 slots = __kvm_memslots(kvm, as_id); 2062 2063 /* 2064 * Note, the old memslot (and the pointer itself!) may be invalidated 2065 * and/or destroyed by kvm_set_memslot(). 2066 */ 2067 old = id_to_memslot(slots, id); 2068 2069 if (!mem->memory_size) { 2070 if (!old || !old->npages) 2071 return -EINVAL; 2072 2073 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2074 return -EIO; 2075 2076 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2077 } 2078 2079 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2080 npages = (mem->memory_size >> PAGE_SHIFT); 2081 2082 if (!old || !old->npages) { 2083 change = KVM_MR_CREATE; 2084 2085 /* 2086 * To simplify KVM internals, the total number of pages across 2087 * all memslots must fit in an unsigned long. 2088 */ 2089 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2090 return -EINVAL; 2091 } else { /* Modify an existing slot. */ 2092 /* Private memslots are immutable, they can only be deleted. */ 2093 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2094 return -EINVAL; 2095 if ((mem->userspace_addr != old->userspace_addr) || 2096 (npages != old->npages) || 2097 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2098 return -EINVAL; 2099 2100 if (base_gfn != old->base_gfn) 2101 change = KVM_MR_MOVE; 2102 else if (mem->flags != old->flags) 2103 change = KVM_MR_FLAGS_ONLY; 2104 else /* Nothing to change. */ 2105 return 0; 2106 } 2107 2108 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2109 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2110 return -EEXIST; 2111 2112 /* Allocate a slot that will persist in the memslot. */ 2113 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2114 if (!new) 2115 return -ENOMEM; 2116 2117 new->as_id = as_id; 2118 new->id = id; 2119 new->base_gfn = base_gfn; 2120 new->npages = npages; 2121 new->flags = mem->flags; 2122 new->userspace_addr = mem->userspace_addr; 2123 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2124 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2125 if (r) 2126 goto out; 2127 } 2128 2129 r = kvm_set_memslot(kvm, old, new, change); 2130 if (r) 2131 goto out_unbind; 2132 2133 return 0; 2134 2135 out_unbind: 2136 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2137 kvm_gmem_unbind(new); 2138 out: 2139 kfree(new); 2140 return r; 2141 } 2142 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2143 2144 int kvm_set_memory_region(struct kvm *kvm, 2145 const struct kvm_userspace_memory_region2 *mem) 2146 { 2147 int r; 2148 2149 mutex_lock(&kvm->slots_lock); 2150 r = __kvm_set_memory_region(kvm, mem); 2151 mutex_unlock(&kvm->slots_lock); 2152 return r; 2153 } 2154 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2155 2156 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2157 struct kvm_userspace_memory_region2 *mem) 2158 { 2159 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2160 return -EINVAL; 2161 2162 return kvm_set_memory_region(kvm, mem); 2163 } 2164 2165 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2166 /** 2167 * kvm_get_dirty_log - get a snapshot of dirty pages 2168 * @kvm: pointer to kvm instance 2169 * @log: slot id and address to which we copy the log 2170 * @is_dirty: set to '1' if any dirty pages were found 2171 * @memslot: set to the associated memslot, always valid on success 2172 */ 2173 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2174 int *is_dirty, struct kvm_memory_slot **memslot) 2175 { 2176 struct kvm_memslots *slots; 2177 int i, as_id, id; 2178 unsigned long n; 2179 unsigned long any = 0; 2180 2181 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2182 if (!kvm_use_dirty_bitmap(kvm)) 2183 return -ENXIO; 2184 2185 *memslot = NULL; 2186 *is_dirty = 0; 2187 2188 as_id = log->slot >> 16; 2189 id = (u16)log->slot; 2190 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2191 return -EINVAL; 2192 2193 slots = __kvm_memslots(kvm, as_id); 2194 *memslot = id_to_memslot(slots, id); 2195 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2196 return -ENOENT; 2197 2198 kvm_arch_sync_dirty_log(kvm, *memslot); 2199 2200 n = kvm_dirty_bitmap_bytes(*memslot); 2201 2202 for (i = 0; !any && i < n/sizeof(long); ++i) 2203 any = (*memslot)->dirty_bitmap[i]; 2204 2205 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2206 return -EFAULT; 2207 2208 if (any) 2209 *is_dirty = 1; 2210 return 0; 2211 } 2212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2213 2214 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2215 /** 2216 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2217 * and reenable dirty page tracking for the corresponding pages. 2218 * @kvm: pointer to kvm instance 2219 * @log: slot id and address to which we copy the log 2220 * 2221 * We need to keep it in mind that VCPU threads can write to the bitmap 2222 * concurrently. So, to avoid losing track of dirty pages we keep the 2223 * following order: 2224 * 2225 * 1. Take a snapshot of the bit and clear it if needed. 2226 * 2. Write protect the corresponding page. 2227 * 3. Copy the snapshot to the userspace. 2228 * 4. Upon return caller flushes TLB's if needed. 2229 * 2230 * Between 2 and 4, the guest may write to the page using the remaining TLB 2231 * entry. This is not a problem because the page is reported dirty using 2232 * the snapshot taken before and step 4 ensures that writes done after 2233 * exiting to userspace will be logged for the next call. 2234 * 2235 */ 2236 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2237 { 2238 struct kvm_memslots *slots; 2239 struct kvm_memory_slot *memslot; 2240 int i, as_id, id; 2241 unsigned long n; 2242 unsigned long *dirty_bitmap; 2243 unsigned long *dirty_bitmap_buffer; 2244 bool flush; 2245 2246 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2247 if (!kvm_use_dirty_bitmap(kvm)) 2248 return -ENXIO; 2249 2250 as_id = log->slot >> 16; 2251 id = (u16)log->slot; 2252 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2253 return -EINVAL; 2254 2255 slots = __kvm_memslots(kvm, as_id); 2256 memslot = id_to_memslot(slots, id); 2257 if (!memslot || !memslot->dirty_bitmap) 2258 return -ENOENT; 2259 2260 dirty_bitmap = memslot->dirty_bitmap; 2261 2262 kvm_arch_sync_dirty_log(kvm, memslot); 2263 2264 n = kvm_dirty_bitmap_bytes(memslot); 2265 flush = false; 2266 if (kvm->manual_dirty_log_protect) { 2267 /* 2268 * Unlike kvm_get_dirty_log, we always return false in *flush, 2269 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2270 * is some code duplication between this function and 2271 * kvm_get_dirty_log, but hopefully all architecture 2272 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2273 * can be eliminated. 2274 */ 2275 dirty_bitmap_buffer = dirty_bitmap; 2276 } else { 2277 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2278 memset(dirty_bitmap_buffer, 0, n); 2279 2280 KVM_MMU_LOCK(kvm); 2281 for (i = 0; i < n / sizeof(long); i++) { 2282 unsigned long mask; 2283 gfn_t offset; 2284 2285 if (!dirty_bitmap[i]) 2286 continue; 2287 2288 flush = true; 2289 mask = xchg(&dirty_bitmap[i], 0); 2290 dirty_bitmap_buffer[i] = mask; 2291 2292 offset = i * BITS_PER_LONG; 2293 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2294 offset, mask); 2295 } 2296 KVM_MMU_UNLOCK(kvm); 2297 } 2298 2299 if (flush) 2300 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2301 2302 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2303 return -EFAULT; 2304 return 0; 2305 } 2306 2307 2308 /** 2309 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2310 * @kvm: kvm instance 2311 * @log: slot id and address to which we copy the log 2312 * 2313 * Steps 1-4 below provide general overview of dirty page logging. See 2314 * kvm_get_dirty_log_protect() function description for additional details. 2315 * 2316 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2317 * always flush the TLB (step 4) even if previous step failed and the dirty 2318 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2319 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2320 * writes will be marked dirty for next log read. 2321 * 2322 * 1. Take a snapshot of the bit and clear it if needed. 2323 * 2. Write protect the corresponding page. 2324 * 3. Copy the snapshot to the userspace. 2325 * 4. Flush TLB's if needed. 2326 */ 2327 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2328 struct kvm_dirty_log *log) 2329 { 2330 int r; 2331 2332 mutex_lock(&kvm->slots_lock); 2333 2334 r = kvm_get_dirty_log_protect(kvm, log); 2335 2336 mutex_unlock(&kvm->slots_lock); 2337 return r; 2338 } 2339 2340 /** 2341 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2342 * and reenable dirty page tracking for the corresponding pages. 2343 * @kvm: pointer to kvm instance 2344 * @log: slot id and address from which to fetch the bitmap of dirty pages 2345 */ 2346 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2347 struct kvm_clear_dirty_log *log) 2348 { 2349 struct kvm_memslots *slots; 2350 struct kvm_memory_slot *memslot; 2351 int as_id, id; 2352 gfn_t offset; 2353 unsigned long i, n; 2354 unsigned long *dirty_bitmap; 2355 unsigned long *dirty_bitmap_buffer; 2356 bool flush; 2357 2358 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2359 if (!kvm_use_dirty_bitmap(kvm)) 2360 return -ENXIO; 2361 2362 as_id = log->slot >> 16; 2363 id = (u16)log->slot; 2364 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2365 return -EINVAL; 2366 2367 if (log->first_page & 63) 2368 return -EINVAL; 2369 2370 slots = __kvm_memslots(kvm, as_id); 2371 memslot = id_to_memslot(slots, id); 2372 if (!memslot || !memslot->dirty_bitmap) 2373 return -ENOENT; 2374 2375 dirty_bitmap = memslot->dirty_bitmap; 2376 2377 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2378 2379 if (log->first_page > memslot->npages || 2380 log->num_pages > memslot->npages - log->first_page || 2381 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2382 return -EINVAL; 2383 2384 kvm_arch_sync_dirty_log(kvm, memslot); 2385 2386 flush = false; 2387 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2388 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2389 return -EFAULT; 2390 2391 KVM_MMU_LOCK(kvm); 2392 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2393 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2394 i++, offset += BITS_PER_LONG) { 2395 unsigned long mask = *dirty_bitmap_buffer++; 2396 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2397 if (!mask) 2398 continue; 2399 2400 mask &= atomic_long_fetch_andnot(mask, p); 2401 2402 /* 2403 * mask contains the bits that really have been cleared. This 2404 * never includes any bits beyond the length of the memslot (if 2405 * the length is not aligned to 64 pages), therefore it is not 2406 * a problem if userspace sets them in log->dirty_bitmap. 2407 */ 2408 if (mask) { 2409 flush = true; 2410 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2411 offset, mask); 2412 } 2413 } 2414 KVM_MMU_UNLOCK(kvm); 2415 2416 if (flush) 2417 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2418 2419 return 0; 2420 } 2421 2422 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2423 struct kvm_clear_dirty_log *log) 2424 { 2425 int r; 2426 2427 mutex_lock(&kvm->slots_lock); 2428 2429 r = kvm_clear_dirty_log_protect(kvm, log); 2430 2431 mutex_unlock(&kvm->slots_lock); 2432 return r; 2433 } 2434 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2435 2436 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2437 /* 2438 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2439 * matching @attrs. 2440 */ 2441 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2442 unsigned long attrs) 2443 { 2444 XA_STATE(xas, &kvm->mem_attr_array, start); 2445 unsigned long index; 2446 bool has_attrs; 2447 void *entry; 2448 2449 rcu_read_lock(); 2450 2451 if (!attrs) { 2452 has_attrs = !xas_find(&xas, end - 1); 2453 goto out; 2454 } 2455 2456 has_attrs = true; 2457 for (index = start; index < end; index++) { 2458 do { 2459 entry = xas_next(&xas); 2460 } while (xas_retry(&xas, entry)); 2461 2462 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2463 has_attrs = false; 2464 break; 2465 } 2466 } 2467 2468 out: 2469 rcu_read_unlock(); 2470 return has_attrs; 2471 } 2472 2473 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2474 { 2475 if (!kvm || kvm_arch_has_private_mem(kvm)) 2476 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2477 2478 return 0; 2479 } 2480 2481 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2482 struct kvm_mmu_notifier_range *range) 2483 { 2484 struct kvm_gfn_range gfn_range; 2485 struct kvm_memory_slot *slot; 2486 struct kvm_memslots *slots; 2487 struct kvm_memslot_iter iter; 2488 bool found_memslot = false; 2489 bool ret = false; 2490 int i; 2491 2492 gfn_range.arg = range->arg; 2493 gfn_range.may_block = range->may_block; 2494 2495 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2496 slots = __kvm_memslots(kvm, i); 2497 2498 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2499 slot = iter.slot; 2500 gfn_range.slot = slot; 2501 2502 gfn_range.start = max(range->start, slot->base_gfn); 2503 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2504 if (gfn_range.start >= gfn_range.end) 2505 continue; 2506 2507 if (!found_memslot) { 2508 found_memslot = true; 2509 KVM_MMU_LOCK(kvm); 2510 if (!IS_KVM_NULL_FN(range->on_lock)) 2511 range->on_lock(kvm); 2512 } 2513 2514 ret |= range->handler(kvm, &gfn_range); 2515 } 2516 } 2517 2518 if (range->flush_on_ret && ret) 2519 kvm_flush_remote_tlbs(kvm); 2520 2521 if (found_memslot) 2522 KVM_MMU_UNLOCK(kvm); 2523 } 2524 2525 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2526 struct kvm_gfn_range *range) 2527 { 2528 /* 2529 * Unconditionally add the range to the invalidation set, regardless of 2530 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2531 * if KVM supports RWX attributes in the future and the attributes are 2532 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2533 * adding the range allows KVM to require that MMU invalidations add at 2534 * least one range between begin() and end(), e.g. allows KVM to detect 2535 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2536 * but it's not obvious that allowing new mappings while the attributes 2537 * are in flux is desirable or worth the complexity. 2538 */ 2539 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2540 2541 return kvm_arch_pre_set_memory_attributes(kvm, range); 2542 } 2543 2544 /* Set @attributes for the gfn range [@start, @end). */ 2545 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2546 unsigned long attributes) 2547 { 2548 struct kvm_mmu_notifier_range pre_set_range = { 2549 .start = start, 2550 .end = end, 2551 .handler = kvm_pre_set_memory_attributes, 2552 .on_lock = kvm_mmu_invalidate_begin, 2553 .flush_on_ret = true, 2554 .may_block = true, 2555 }; 2556 struct kvm_mmu_notifier_range post_set_range = { 2557 .start = start, 2558 .end = end, 2559 .arg.attributes = attributes, 2560 .handler = kvm_arch_post_set_memory_attributes, 2561 .on_lock = kvm_mmu_invalidate_end, 2562 .may_block = true, 2563 }; 2564 unsigned long i; 2565 void *entry; 2566 int r = 0; 2567 2568 entry = attributes ? xa_mk_value(attributes) : NULL; 2569 2570 mutex_lock(&kvm->slots_lock); 2571 2572 /* Nothing to do if the entire range as the desired attributes. */ 2573 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2574 goto out_unlock; 2575 2576 /* 2577 * Reserve memory ahead of time to avoid having to deal with failures 2578 * partway through setting the new attributes. 2579 */ 2580 for (i = start; i < end; i++) { 2581 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2582 if (r) 2583 goto out_unlock; 2584 } 2585 2586 kvm_handle_gfn_range(kvm, &pre_set_range); 2587 2588 for (i = start; i < end; i++) { 2589 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2590 GFP_KERNEL_ACCOUNT)); 2591 KVM_BUG_ON(r, kvm); 2592 } 2593 2594 kvm_handle_gfn_range(kvm, &post_set_range); 2595 2596 out_unlock: 2597 mutex_unlock(&kvm->slots_lock); 2598 2599 return r; 2600 } 2601 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2602 struct kvm_memory_attributes *attrs) 2603 { 2604 gfn_t start, end; 2605 2606 /* flags is currently not used. */ 2607 if (attrs->flags) 2608 return -EINVAL; 2609 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2610 return -EINVAL; 2611 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2612 return -EINVAL; 2613 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2614 return -EINVAL; 2615 2616 start = attrs->address >> PAGE_SHIFT; 2617 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2618 2619 /* 2620 * xarray tracks data using "unsigned long", and as a result so does 2621 * KVM. For simplicity, supports generic attributes only on 64-bit 2622 * architectures. 2623 */ 2624 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2625 2626 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2627 } 2628 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2629 2630 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2631 { 2632 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2633 } 2634 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2635 2636 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2637 { 2638 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2639 u64 gen = slots->generation; 2640 struct kvm_memory_slot *slot; 2641 2642 /* 2643 * This also protects against using a memslot from a different address space, 2644 * since different address spaces have different generation numbers. 2645 */ 2646 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2647 vcpu->last_used_slot = NULL; 2648 vcpu->last_used_slot_gen = gen; 2649 } 2650 2651 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2652 if (slot) 2653 return slot; 2654 2655 /* 2656 * Fall back to searching all memslots. We purposely use 2657 * search_memslots() instead of __gfn_to_memslot() to avoid 2658 * thrashing the VM-wide last_used_slot in kvm_memslots. 2659 */ 2660 slot = search_memslots(slots, gfn, false); 2661 if (slot) { 2662 vcpu->last_used_slot = slot; 2663 return slot; 2664 } 2665 2666 return NULL; 2667 } 2668 2669 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2670 { 2671 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2672 2673 return kvm_is_visible_memslot(memslot); 2674 } 2675 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2676 2677 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2678 { 2679 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2680 2681 return kvm_is_visible_memslot(memslot); 2682 } 2683 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2684 2685 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2686 { 2687 struct vm_area_struct *vma; 2688 unsigned long addr, size; 2689 2690 size = PAGE_SIZE; 2691 2692 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2693 if (kvm_is_error_hva(addr)) 2694 return PAGE_SIZE; 2695 2696 mmap_read_lock(current->mm); 2697 vma = find_vma(current->mm, addr); 2698 if (!vma) 2699 goto out; 2700 2701 size = vma_kernel_pagesize(vma); 2702 2703 out: 2704 mmap_read_unlock(current->mm); 2705 2706 return size; 2707 } 2708 2709 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2710 { 2711 return slot->flags & KVM_MEM_READONLY; 2712 } 2713 2714 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2715 gfn_t *nr_pages, bool write) 2716 { 2717 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2718 return KVM_HVA_ERR_BAD; 2719 2720 if (memslot_is_readonly(slot) && write) 2721 return KVM_HVA_ERR_RO_BAD; 2722 2723 if (nr_pages) 2724 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2725 2726 return __gfn_to_hva_memslot(slot, gfn); 2727 } 2728 2729 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2730 gfn_t *nr_pages) 2731 { 2732 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2733 } 2734 2735 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2736 gfn_t gfn) 2737 { 2738 return gfn_to_hva_many(slot, gfn, NULL); 2739 } 2740 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2741 2742 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2743 { 2744 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2745 } 2746 EXPORT_SYMBOL_GPL(gfn_to_hva); 2747 2748 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2749 { 2750 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2751 } 2752 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2753 2754 /* 2755 * Return the hva of a @gfn and the R/W attribute if possible. 2756 * 2757 * @slot: the kvm_memory_slot which contains @gfn 2758 * @gfn: the gfn to be translated 2759 * @writable: used to return the read/write attribute of the @slot if the hva 2760 * is valid and @writable is not NULL 2761 */ 2762 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2763 gfn_t gfn, bool *writable) 2764 { 2765 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2766 2767 if (!kvm_is_error_hva(hva) && writable) 2768 *writable = !memslot_is_readonly(slot); 2769 2770 return hva; 2771 } 2772 2773 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2774 { 2775 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2776 2777 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2778 } 2779 2780 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2781 { 2782 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2783 2784 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2785 } 2786 2787 static inline int check_user_page_hwpoison(unsigned long addr) 2788 { 2789 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2790 2791 rc = get_user_pages(addr, 1, flags, NULL); 2792 return rc == -EHWPOISON; 2793 } 2794 2795 /* 2796 * The fast path to get the writable pfn which will be stored in @pfn, 2797 * true indicates success, otherwise false is returned. It's also the 2798 * only part that runs if we can in atomic context. 2799 */ 2800 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2801 bool *writable, kvm_pfn_t *pfn) 2802 { 2803 struct page *page[1]; 2804 2805 /* 2806 * Fast pin a writable pfn only if it is a write fault request 2807 * or the caller allows to map a writable pfn for a read fault 2808 * request. 2809 */ 2810 if (!(write_fault || writable)) 2811 return false; 2812 2813 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2814 *pfn = page_to_pfn(page[0]); 2815 2816 if (writable) 2817 *writable = true; 2818 return true; 2819 } 2820 2821 return false; 2822 } 2823 2824 /* 2825 * The slow path to get the pfn of the specified host virtual address, 2826 * 1 indicates success, -errno is returned if error is detected. 2827 */ 2828 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2829 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2830 { 2831 /* 2832 * When a VCPU accesses a page that is not mapped into the secondary 2833 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2834 * make progress. We always want to honor NUMA hinting faults in that 2835 * case, because GUP usage corresponds to memory accesses from the VCPU. 2836 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2837 * mapped into the secondary MMU and gets accessed by a VCPU. 2838 * 2839 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2840 * implicitly honor NUMA hinting faults and don't need this flag. 2841 */ 2842 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2843 struct page *page; 2844 int npages; 2845 2846 might_sleep(); 2847 2848 if (writable) 2849 *writable = write_fault; 2850 2851 if (write_fault) 2852 flags |= FOLL_WRITE; 2853 if (async) 2854 flags |= FOLL_NOWAIT; 2855 if (interruptible) 2856 flags |= FOLL_INTERRUPTIBLE; 2857 2858 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2859 if (npages != 1) 2860 return npages; 2861 2862 /* map read fault as writable if possible */ 2863 if (unlikely(!write_fault) && writable) { 2864 struct page *wpage; 2865 2866 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2867 *writable = true; 2868 put_page(page); 2869 page = wpage; 2870 } 2871 } 2872 *pfn = page_to_pfn(page); 2873 return npages; 2874 } 2875 2876 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2877 { 2878 if (unlikely(!(vma->vm_flags & VM_READ))) 2879 return false; 2880 2881 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2882 return false; 2883 2884 return true; 2885 } 2886 2887 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2888 { 2889 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2890 2891 if (!page) 2892 return 1; 2893 2894 return get_page_unless_zero(page); 2895 } 2896 2897 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2898 unsigned long addr, bool write_fault, 2899 bool *writable, kvm_pfn_t *p_pfn) 2900 { 2901 kvm_pfn_t pfn; 2902 pte_t *ptep; 2903 pte_t pte; 2904 spinlock_t *ptl; 2905 int r; 2906 2907 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2908 if (r) { 2909 /* 2910 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2911 * not call the fault handler, so do it here. 2912 */ 2913 bool unlocked = false; 2914 r = fixup_user_fault(current->mm, addr, 2915 (write_fault ? FAULT_FLAG_WRITE : 0), 2916 &unlocked); 2917 if (unlocked) 2918 return -EAGAIN; 2919 if (r) 2920 return r; 2921 2922 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2923 if (r) 2924 return r; 2925 } 2926 2927 pte = ptep_get(ptep); 2928 2929 if (write_fault && !pte_write(pte)) { 2930 pfn = KVM_PFN_ERR_RO_FAULT; 2931 goto out; 2932 } 2933 2934 if (writable) 2935 *writable = pte_write(pte); 2936 pfn = pte_pfn(pte); 2937 2938 /* 2939 * Get a reference here because callers of *hva_to_pfn* and 2940 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2941 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2942 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2943 * simply do nothing for reserved pfns. 2944 * 2945 * Whoever called remap_pfn_range is also going to call e.g. 2946 * unmap_mapping_range before the underlying pages are freed, 2947 * causing a call to our MMU notifier. 2948 * 2949 * Certain IO or PFNMAP mappings can be backed with valid 2950 * struct pages, but be allocated without refcounting e.g., 2951 * tail pages of non-compound higher order allocations, which 2952 * would then underflow the refcount when the caller does the 2953 * required put_page. Don't allow those pages here. 2954 */ 2955 if (!kvm_try_get_pfn(pfn)) 2956 r = -EFAULT; 2957 2958 out: 2959 pte_unmap_unlock(ptep, ptl); 2960 *p_pfn = pfn; 2961 2962 return r; 2963 } 2964 2965 /* 2966 * Pin guest page in memory and return its pfn. 2967 * @addr: host virtual address which maps memory to the guest 2968 * @atomic: whether this function can sleep 2969 * @interruptible: whether the process can be interrupted by non-fatal signals 2970 * @async: whether this function need to wait IO complete if the 2971 * host page is not in the memory 2972 * @write_fault: whether we should get a writable host page 2973 * @writable: whether it allows to map a writable host page for !@write_fault 2974 * 2975 * The function will map a writable host page for these two cases: 2976 * 1): @write_fault = true 2977 * 2): @write_fault = false && @writable, @writable will tell the caller 2978 * whether the mapping is writable. 2979 */ 2980 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2981 bool *async, bool write_fault, bool *writable) 2982 { 2983 struct vm_area_struct *vma; 2984 kvm_pfn_t pfn; 2985 int npages, r; 2986 2987 /* we can do it either atomically or asynchronously, not both */ 2988 BUG_ON(atomic && async); 2989 2990 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2991 return pfn; 2992 2993 if (atomic) 2994 return KVM_PFN_ERR_FAULT; 2995 2996 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2997 writable, &pfn); 2998 if (npages == 1) 2999 return pfn; 3000 if (npages == -EINTR) 3001 return KVM_PFN_ERR_SIGPENDING; 3002 3003 mmap_read_lock(current->mm); 3004 if (npages == -EHWPOISON || 3005 (!async && check_user_page_hwpoison(addr))) { 3006 pfn = KVM_PFN_ERR_HWPOISON; 3007 goto exit; 3008 } 3009 3010 retry: 3011 vma = vma_lookup(current->mm, addr); 3012 3013 if (vma == NULL) 3014 pfn = KVM_PFN_ERR_FAULT; 3015 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3016 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 3017 if (r == -EAGAIN) 3018 goto retry; 3019 if (r < 0) 3020 pfn = KVM_PFN_ERR_FAULT; 3021 } else { 3022 if (async && vma_is_valid(vma, write_fault)) 3023 *async = true; 3024 pfn = KVM_PFN_ERR_FAULT; 3025 } 3026 exit: 3027 mmap_read_unlock(current->mm); 3028 return pfn; 3029 } 3030 3031 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 3032 bool atomic, bool interruptible, bool *async, 3033 bool write_fault, bool *writable, hva_t *hva) 3034 { 3035 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 3036 3037 if (hva) 3038 *hva = addr; 3039 3040 if (addr == KVM_HVA_ERR_RO_BAD) { 3041 if (writable) 3042 *writable = false; 3043 return KVM_PFN_ERR_RO_FAULT; 3044 } 3045 3046 if (kvm_is_error_hva(addr)) { 3047 if (writable) 3048 *writable = false; 3049 return KVM_PFN_NOSLOT; 3050 } 3051 3052 /* Do not map writable pfn in the readonly memslot. */ 3053 if (writable && memslot_is_readonly(slot)) { 3054 *writable = false; 3055 writable = NULL; 3056 } 3057 3058 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3059 writable); 3060 } 3061 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3062 3063 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3064 bool *writable) 3065 { 3066 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3067 NULL, write_fault, writable, NULL); 3068 } 3069 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3070 3071 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3072 { 3073 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3074 NULL, NULL); 3075 } 3076 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3077 3078 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3079 { 3080 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3081 NULL, NULL); 3082 } 3083 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3084 3085 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3086 { 3087 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3088 } 3089 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3090 3091 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3092 { 3093 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3094 } 3095 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3096 3097 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3098 { 3099 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3100 } 3101 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3102 3103 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3104 struct page **pages, int nr_pages) 3105 { 3106 unsigned long addr; 3107 gfn_t entry = 0; 3108 3109 addr = gfn_to_hva_many(slot, gfn, &entry); 3110 if (kvm_is_error_hva(addr)) 3111 return -1; 3112 3113 if (entry < nr_pages) 3114 return 0; 3115 3116 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3117 } 3118 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3119 3120 /* 3121 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3122 * backed by 'struct page'. A valid example is if the backing memslot is 3123 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3124 * been elevated by gfn_to_pfn(). 3125 */ 3126 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3127 { 3128 struct page *page; 3129 kvm_pfn_t pfn; 3130 3131 pfn = gfn_to_pfn(kvm, gfn); 3132 3133 if (is_error_noslot_pfn(pfn)) 3134 return KVM_ERR_PTR_BAD_PAGE; 3135 3136 page = kvm_pfn_to_refcounted_page(pfn); 3137 if (!page) 3138 return KVM_ERR_PTR_BAD_PAGE; 3139 3140 return page; 3141 } 3142 EXPORT_SYMBOL_GPL(gfn_to_page); 3143 3144 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3145 { 3146 if (dirty) 3147 kvm_release_pfn_dirty(pfn); 3148 else 3149 kvm_release_pfn_clean(pfn); 3150 } 3151 3152 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3153 { 3154 kvm_pfn_t pfn; 3155 void *hva = NULL; 3156 struct page *page = KVM_UNMAPPED_PAGE; 3157 3158 if (!map) 3159 return -EINVAL; 3160 3161 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3162 if (is_error_noslot_pfn(pfn)) 3163 return -EINVAL; 3164 3165 if (pfn_valid(pfn)) { 3166 page = pfn_to_page(pfn); 3167 hva = kmap(page); 3168 #ifdef CONFIG_HAS_IOMEM 3169 } else { 3170 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3171 #endif 3172 } 3173 3174 if (!hva) 3175 return -EFAULT; 3176 3177 map->page = page; 3178 map->hva = hva; 3179 map->pfn = pfn; 3180 map->gfn = gfn; 3181 3182 return 0; 3183 } 3184 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3185 3186 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3187 { 3188 if (!map) 3189 return; 3190 3191 if (!map->hva) 3192 return; 3193 3194 if (map->page != KVM_UNMAPPED_PAGE) 3195 kunmap(map->page); 3196 #ifdef CONFIG_HAS_IOMEM 3197 else 3198 memunmap(map->hva); 3199 #endif 3200 3201 if (dirty) 3202 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3203 3204 kvm_release_pfn(map->pfn, dirty); 3205 3206 map->hva = NULL; 3207 map->page = NULL; 3208 } 3209 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3210 3211 static bool kvm_is_ad_tracked_page(struct page *page) 3212 { 3213 /* 3214 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3215 * touched (e.g. set dirty) except by its owner". 3216 */ 3217 return !PageReserved(page); 3218 } 3219 3220 static void kvm_set_page_dirty(struct page *page) 3221 { 3222 if (kvm_is_ad_tracked_page(page)) 3223 SetPageDirty(page); 3224 } 3225 3226 static void kvm_set_page_accessed(struct page *page) 3227 { 3228 if (kvm_is_ad_tracked_page(page)) 3229 mark_page_accessed(page); 3230 } 3231 3232 void kvm_release_page_clean(struct page *page) 3233 { 3234 WARN_ON(is_error_page(page)); 3235 3236 kvm_set_page_accessed(page); 3237 put_page(page); 3238 } 3239 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3240 3241 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3242 { 3243 struct page *page; 3244 3245 if (is_error_noslot_pfn(pfn)) 3246 return; 3247 3248 page = kvm_pfn_to_refcounted_page(pfn); 3249 if (!page) 3250 return; 3251 3252 kvm_release_page_clean(page); 3253 } 3254 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3255 3256 void kvm_release_page_dirty(struct page *page) 3257 { 3258 WARN_ON(is_error_page(page)); 3259 3260 kvm_set_page_dirty(page); 3261 kvm_release_page_clean(page); 3262 } 3263 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3264 3265 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3266 { 3267 struct page *page; 3268 3269 if (is_error_noslot_pfn(pfn)) 3270 return; 3271 3272 page = kvm_pfn_to_refcounted_page(pfn); 3273 if (!page) 3274 return; 3275 3276 kvm_release_page_dirty(page); 3277 } 3278 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3279 3280 /* 3281 * Note, checking for an error/noslot pfn is the caller's responsibility when 3282 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3283 * "set" helpers are not to be used when the pfn might point at garbage. 3284 */ 3285 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3286 { 3287 if (WARN_ON(is_error_noslot_pfn(pfn))) 3288 return; 3289 3290 if (pfn_valid(pfn)) 3291 kvm_set_page_dirty(pfn_to_page(pfn)); 3292 } 3293 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3294 3295 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3296 { 3297 if (WARN_ON(is_error_noslot_pfn(pfn))) 3298 return; 3299 3300 if (pfn_valid(pfn)) 3301 kvm_set_page_accessed(pfn_to_page(pfn)); 3302 } 3303 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3304 3305 static int next_segment(unsigned long len, int offset) 3306 { 3307 if (len > PAGE_SIZE - offset) 3308 return PAGE_SIZE - offset; 3309 else 3310 return len; 3311 } 3312 3313 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3314 void *data, int offset, int len) 3315 { 3316 int r; 3317 unsigned long addr; 3318 3319 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3320 if (kvm_is_error_hva(addr)) 3321 return -EFAULT; 3322 r = __copy_from_user(data, (void __user *)addr + offset, len); 3323 if (r) 3324 return -EFAULT; 3325 return 0; 3326 } 3327 3328 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3329 int len) 3330 { 3331 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3332 3333 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3334 } 3335 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3336 3337 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3338 int offset, int len) 3339 { 3340 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3341 3342 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3343 } 3344 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3345 3346 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3347 { 3348 gfn_t gfn = gpa >> PAGE_SHIFT; 3349 int seg; 3350 int offset = offset_in_page(gpa); 3351 int ret; 3352 3353 while ((seg = next_segment(len, offset)) != 0) { 3354 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3355 if (ret < 0) 3356 return ret; 3357 offset = 0; 3358 len -= seg; 3359 data += seg; 3360 ++gfn; 3361 } 3362 return 0; 3363 } 3364 EXPORT_SYMBOL_GPL(kvm_read_guest); 3365 3366 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3367 { 3368 gfn_t gfn = gpa >> PAGE_SHIFT; 3369 int seg; 3370 int offset = offset_in_page(gpa); 3371 int ret; 3372 3373 while ((seg = next_segment(len, offset)) != 0) { 3374 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3375 if (ret < 0) 3376 return ret; 3377 offset = 0; 3378 len -= seg; 3379 data += seg; 3380 ++gfn; 3381 } 3382 return 0; 3383 } 3384 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3385 3386 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3387 void *data, int offset, unsigned long len) 3388 { 3389 int r; 3390 unsigned long addr; 3391 3392 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3393 if (kvm_is_error_hva(addr)) 3394 return -EFAULT; 3395 pagefault_disable(); 3396 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3397 pagefault_enable(); 3398 if (r) 3399 return -EFAULT; 3400 return 0; 3401 } 3402 3403 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3404 void *data, unsigned long len) 3405 { 3406 gfn_t gfn = gpa >> PAGE_SHIFT; 3407 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3408 int offset = offset_in_page(gpa); 3409 3410 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3411 } 3412 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3413 3414 static int __kvm_write_guest_page(struct kvm *kvm, 3415 struct kvm_memory_slot *memslot, gfn_t gfn, 3416 const void *data, int offset, int len) 3417 { 3418 int r; 3419 unsigned long addr; 3420 3421 addr = gfn_to_hva_memslot(memslot, gfn); 3422 if (kvm_is_error_hva(addr)) 3423 return -EFAULT; 3424 r = __copy_to_user((void __user *)addr + offset, data, len); 3425 if (r) 3426 return -EFAULT; 3427 mark_page_dirty_in_slot(kvm, memslot, gfn); 3428 return 0; 3429 } 3430 3431 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3432 const void *data, int offset, int len) 3433 { 3434 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3435 3436 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3437 } 3438 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3439 3440 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3441 const void *data, int offset, int len) 3442 { 3443 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3444 3445 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3446 } 3447 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3448 3449 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3450 unsigned long len) 3451 { 3452 gfn_t gfn = gpa >> PAGE_SHIFT; 3453 int seg; 3454 int offset = offset_in_page(gpa); 3455 int ret; 3456 3457 while ((seg = next_segment(len, offset)) != 0) { 3458 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3459 if (ret < 0) 3460 return ret; 3461 offset = 0; 3462 len -= seg; 3463 data += seg; 3464 ++gfn; 3465 } 3466 return 0; 3467 } 3468 EXPORT_SYMBOL_GPL(kvm_write_guest); 3469 3470 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3471 unsigned long len) 3472 { 3473 gfn_t gfn = gpa >> PAGE_SHIFT; 3474 int seg; 3475 int offset = offset_in_page(gpa); 3476 int ret; 3477 3478 while ((seg = next_segment(len, offset)) != 0) { 3479 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3480 if (ret < 0) 3481 return ret; 3482 offset = 0; 3483 len -= seg; 3484 data += seg; 3485 ++gfn; 3486 } 3487 return 0; 3488 } 3489 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3490 3491 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3492 struct gfn_to_hva_cache *ghc, 3493 gpa_t gpa, unsigned long len) 3494 { 3495 int offset = offset_in_page(gpa); 3496 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3497 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3498 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3499 gfn_t nr_pages_avail; 3500 3501 /* Update ghc->generation before performing any error checks. */ 3502 ghc->generation = slots->generation; 3503 3504 if (start_gfn > end_gfn) { 3505 ghc->hva = KVM_HVA_ERR_BAD; 3506 return -EINVAL; 3507 } 3508 3509 /* 3510 * If the requested region crosses two memslots, we still 3511 * verify that the entire region is valid here. 3512 */ 3513 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3514 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3515 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3516 &nr_pages_avail); 3517 if (kvm_is_error_hva(ghc->hva)) 3518 return -EFAULT; 3519 } 3520 3521 /* Use the slow path for cross page reads and writes. */ 3522 if (nr_pages_needed == 1) 3523 ghc->hva += offset; 3524 else 3525 ghc->memslot = NULL; 3526 3527 ghc->gpa = gpa; 3528 ghc->len = len; 3529 return 0; 3530 } 3531 3532 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3533 gpa_t gpa, unsigned long len) 3534 { 3535 struct kvm_memslots *slots = kvm_memslots(kvm); 3536 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3537 } 3538 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3539 3540 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3541 void *data, unsigned int offset, 3542 unsigned long len) 3543 { 3544 struct kvm_memslots *slots = kvm_memslots(kvm); 3545 int r; 3546 gpa_t gpa = ghc->gpa + offset; 3547 3548 if (WARN_ON_ONCE(len + offset > ghc->len)) 3549 return -EINVAL; 3550 3551 if (slots->generation != ghc->generation) { 3552 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3553 return -EFAULT; 3554 } 3555 3556 if (kvm_is_error_hva(ghc->hva)) 3557 return -EFAULT; 3558 3559 if (unlikely(!ghc->memslot)) 3560 return kvm_write_guest(kvm, gpa, data, len); 3561 3562 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3563 if (r) 3564 return -EFAULT; 3565 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3566 3567 return 0; 3568 } 3569 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3570 3571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3572 void *data, unsigned long len) 3573 { 3574 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3575 } 3576 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3577 3578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3579 void *data, unsigned int offset, 3580 unsigned long len) 3581 { 3582 struct kvm_memslots *slots = kvm_memslots(kvm); 3583 int r; 3584 gpa_t gpa = ghc->gpa + offset; 3585 3586 if (WARN_ON_ONCE(len + offset > ghc->len)) 3587 return -EINVAL; 3588 3589 if (slots->generation != ghc->generation) { 3590 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3591 return -EFAULT; 3592 } 3593 3594 if (kvm_is_error_hva(ghc->hva)) 3595 return -EFAULT; 3596 3597 if (unlikely(!ghc->memslot)) 3598 return kvm_read_guest(kvm, gpa, data, len); 3599 3600 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3601 if (r) 3602 return -EFAULT; 3603 3604 return 0; 3605 } 3606 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3607 3608 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3609 void *data, unsigned long len) 3610 { 3611 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3612 } 3613 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3614 3615 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3616 { 3617 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3618 gfn_t gfn = gpa >> PAGE_SHIFT; 3619 int seg; 3620 int offset = offset_in_page(gpa); 3621 int ret; 3622 3623 while ((seg = next_segment(len, offset)) != 0) { 3624 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3625 if (ret < 0) 3626 return ret; 3627 offset = 0; 3628 len -= seg; 3629 ++gfn; 3630 } 3631 return 0; 3632 } 3633 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3634 3635 void mark_page_dirty_in_slot(struct kvm *kvm, 3636 const struct kvm_memory_slot *memslot, 3637 gfn_t gfn) 3638 { 3639 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3640 3641 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3642 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3643 return; 3644 3645 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3646 #endif 3647 3648 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3649 unsigned long rel_gfn = gfn - memslot->base_gfn; 3650 u32 slot = (memslot->as_id << 16) | memslot->id; 3651 3652 if (kvm->dirty_ring_size && vcpu) 3653 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3654 else if (memslot->dirty_bitmap) 3655 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3656 } 3657 } 3658 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3659 3660 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3661 { 3662 struct kvm_memory_slot *memslot; 3663 3664 memslot = gfn_to_memslot(kvm, gfn); 3665 mark_page_dirty_in_slot(kvm, memslot, gfn); 3666 } 3667 EXPORT_SYMBOL_GPL(mark_page_dirty); 3668 3669 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3670 { 3671 struct kvm_memory_slot *memslot; 3672 3673 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3674 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3675 } 3676 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3677 3678 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3679 { 3680 if (!vcpu->sigset_active) 3681 return; 3682 3683 /* 3684 * This does a lockless modification of ->real_blocked, which is fine 3685 * because, only current can change ->real_blocked and all readers of 3686 * ->real_blocked don't care as long ->real_blocked is always a subset 3687 * of ->blocked. 3688 */ 3689 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3690 } 3691 3692 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3693 { 3694 if (!vcpu->sigset_active) 3695 return; 3696 3697 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3698 sigemptyset(¤t->real_blocked); 3699 } 3700 3701 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3702 { 3703 unsigned int old, val, grow, grow_start; 3704 3705 old = val = vcpu->halt_poll_ns; 3706 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3707 grow = READ_ONCE(halt_poll_ns_grow); 3708 if (!grow) 3709 goto out; 3710 3711 val *= grow; 3712 if (val < grow_start) 3713 val = grow_start; 3714 3715 vcpu->halt_poll_ns = val; 3716 out: 3717 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3718 } 3719 3720 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3721 { 3722 unsigned int old, val, shrink, grow_start; 3723 3724 old = val = vcpu->halt_poll_ns; 3725 shrink = READ_ONCE(halt_poll_ns_shrink); 3726 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3727 if (shrink == 0) 3728 val = 0; 3729 else 3730 val /= shrink; 3731 3732 if (val < grow_start) 3733 val = 0; 3734 3735 vcpu->halt_poll_ns = val; 3736 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3737 } 3738 3739 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3740 { 3741 int ret = -EINTR; 3742 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3743 3744 if (kvm_arch_vcpu_runnable(vcpu)) 3745 goto out; 3746 if (kvm_cpu_has_pending_timer(vcpu)) 3747 goto out; 3748 if (signal_pending(current)) 3749 goto out; 3750 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3751 goto out; 3752 3753 ret = 0; 3754 out: 3755 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3756 return ret; 3757 } 3758 3759 /* 3760 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3761 * pending. This is mostly used when halting a vCPU, but may also be used 3762 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3763 */ 3764 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3765 { 3766 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3767 bool waited = false; 3768 3769 vcpu->stat.generic.blocking = 1; 3770 3771 preempt_disable(); 3772 kvm_arch_vcpu_blocking(vcpu); 3773 prepare_to_rcuwait(wait); 3774 preempt_enable(); 3775 3776 for (;;) { 3777 set_current_state(TASK_INTERRUPTIBLE); 3778 3779 if (kvm_vcpu_check_block(vcpu) < 0) 3780 break; 3781 3782 waited = true; 3783 schedule(); 3784 } 3785 3786 preempt_disable(); 3787 finish_rcuwait(wait); 3788 kvm_arch_vcpu_unblocking(vcpu); 3789 preempt_enable(); 3790 3791 vcpu->stat.generic.blocking = 0; 3792 3793 return waited; 3794 } 3795 3796 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3797 ktime_t end, bool success) 3798 { 3799 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3800 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3801 3802 ++vcpu->stat.generic.halt_attempted_poll; 3803 3804 if (success) { 3805 ++vcpu->stat.generic.halt_successful_poll; 3806 3807 if (!vcpu_valid_wakeup(vcpu)) 3808 ++vcpu->stat.generic.halt_poll_invalid; 3809 3810 stats->halt_poll_success_ns += poll_ns; 3811 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3812 } else { 3813 stats->halt_poll_fail_ns += poll_ns; 3814 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3815 } 3816 } 3817 3818 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3819 { 3820 struct kvm *kvm = vcpu->kvm; 3821 3822 if (kvm->override_halt_poll_ns) { 3823 /* 3824 * Ensure kvm->max_halt_poll_ns is not read before 3825 * kvm->override_halt_poll_ns. 3826 * 3827 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3828 */ 3829 smp_rmb(); 3830 return READ_ONCE(kvm->max_halt_poll_ns); 3831 } 3832 3833 return READ_ONCE(halt_poll_ns); 3834 } 3835 3836 /* 3837 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3838 * polling is enabled, busy wait for a short time before blocking to avoid the 3839 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3840 * is halted. 3841 */ 3842 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3843 { 3844 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3845 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3846 ktime_t start, cur, poll_end; 3847 bool waited = false; 3848 bool do_halt_poll; 3849 u64 halt_ns; 3850 3851 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3852 vcpu->halt_poll_ns = max_halt_poll_ns; 3853 3854 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3855 3856 start = cur = poll_end = ktime_get(); 3857 if (do_halt_poll) { 3858 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3859 3860 do { 3861 if (kvm_vcpu_check_block(vcpu) < 0) 3862 goto out; 3863 cpu_relax(); 3864 poll_end = cur = ktime_get(); 3865 } while (kvm_vcpu_can_poll(cur, stop)); 3866 } 3867 3868 waited = kvm_vcpu_block(vcpu); 3869 3870 cur = ktime_get(); 3871 if (waited) { 3872 vcpu->stat.generic.halt_wait_ns += 3873 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3874 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3875 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3876 } 3877 out: 3878 /* The total time the vCPU was "halted", including polling time. */ 3879 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3880 3881 /* 3882 * Note, halt-polling is considered successful so long as the vCPU was 3883 * never actually scheduled out, i.e. even if the wake event arrived 3884 * after of the halt-polling loop itself, but before the full wait. 3885 */ 3886 if (do_halt_poll) 3887 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3888 3889 if (halt_poll_allowed) { 3890 /* Recompute the max halt poll time in case it changed. */ 3891 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3892 3893 if (!vcpu_valid_wakeup(vcpu)) { 3894 shrink_halt_poll_ns(vcpu); 3895 } else if (max_halt_poll_ns) { 3896 if (halt_ns <= vcpu->halt_poll_ns) 3897 ; 3898 /* we had a long block, shrink polling */ 3899 else if (vcpu->halt_poll_ns && 3900 halt_ns > max_halt_poll_ns) 3901 shrink_halt_poll_ns(vcpu); 3902 /* we had a short halt and our poll time is too small */ 3903 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3904 halt_ns < max_halt_poll_ns) 3905 grow_halt_poll_ns(vcpu); 3906 } else { 3907 vcpu->halt_poll_ns = 0; 3908 } 3909 } 3910 3911 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3912 } 3913 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3914 3915 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3916 { 3917 if (__kvm_vcpu_wake_up(vcpu)) { 3918 WRITE_ONCE(vcpu->ready, true); 3919 ++vcpu->stat.generic.halt_wakeup; 3920 return true; 3921 } 3922 3923 return false; 3924 } 3925 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3926 3927 #ifndef CONFIG_S390 3928 /* 3929 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3930 */ 3931 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3932 { 3933 int me, cpu; 3934 3935 if (kvm_vcpu_wake_up(vcpu)) 3936 return; 3937 3938 me = get_cpu(); 3939 /* 3940 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3941 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3942 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3943 * within the vCPU thread itself. 3944 */ 3945 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3946 if (vcpu->mode == IN_GUEST_MODE) 3947 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3948 goto out; 3949 } 3950 3951 /* 3952 * Note, the vCPU could get migrated to a different pCPU at any point 3953 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3954 * IPI to the previous pCPU. But, that's ok because the purpose of the 3955 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3956 * vCPU also requires it to leave IN_GUEST_MODE. 3957 */ 3958 if (kvm_arch_vcpu_should_kick(vcpu)) { 3959 cpu = READ_ONCE(vcpu->cpu); 3960 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3961 smp_send_reschedule(cpu); 3962 } 3963 out: 3964 put_cpu(); 3965 } 3966 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3967 #endif /* !CONFIG_S390 */ 3968 3969 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3970 { 3971 struct pid *pid; 3972 struct task_struct *task = NULL; 3973 int ret = 0; 3974 3975 rcu_read_lock(); 3976 pid = rcu_dereference(target->pid); 3977 if (pid) 3978 task = get_pid_task(pid, PIDTYPE_PID); 3979 rcu_read_unlock(); 3980 if (!task) 3981 return ret; 3982 ret = yield_to(task, 1); 3983 put_task_struct(task); 3984 3985 return ret; 3986 } 3987 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3988 3989 /* 3990 * Helper that checks whether a VCPU is eligible for directed yield. 3991 * Most eligible candidate to yield is decided by following heuristics: 3992 * 3993 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3994 * (preempted lock holder), indicated by @in_spin_loop. 3995 * Set at the beginning and cleared at the end of interception/PLE handler. 3996 * 3997 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3998 * chance last time (mostly it has become eligible now since we have probably 3999 * yielded to lockholder in last iteration. This is done by toggling 4000 * @dy_eligible each time a VCPU checked for eligibility.) 4001 * 4002 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 4003 * to preempted lock-holder could result in wrong VCPU selection and CPU 4004 * burning. Giving priority for a potential lock-holder increases lock 4005 * progress. 4006 * 4007 * Since algorithm is based on heuristics, accessing another VCPU data without 4008 * locking does not harm. It may result in trying to yield to same VCPU, fail 4009 * and continue with next VCPU and so on. 4010 */ 4011 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 4012 { 4013 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 4014 bool eligible; 4015 4016 eligible = !vcpu->spin_loop.in_spin_loop || 4017 vcpu->spin_loop.dy_eligible; 4018 4019 if (vcpu->spin_loop.in_spin_loop) 4020 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 4021 4022 return eligible; 4023 #else 4024 return true; 4025 #endif 4026 } 4027 4028 /* 4029 * Unlike kvm_arch_vcpu_runnable, this function is called outside 4030 * a vcpu_load/vcpu_put pair. However, for most architectures 4031 * kvm_arch_vcpu_runnable does not require vcpu_load. 4032 */ 4033 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 4034 { 4035 return kvm_arch_vcpu_runnable(vcpu); 4036 } 4037 4038 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4039 { 4040 if (kvm_arch_dy_runnable(vcpu)) 4041 return true; 4042 4043 #ifdef CONFIG_KVM_ASYNC_PF 4044 if (!list_empty_careful(&vcpu->async_pf.done)) 4045 return true; 4046 #endif 4047 4048 return false; 4049 } 4050 4051 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4052 { 4053 return false; 4054 } 4055 4056 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4057 { 4058 struct kvm *kvm = me->kvm; 4059 struct kvm_vcpu *vcpu; 4060 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4061 unsigned long i; 4062 int yielded = 0; 4063 int try = 3; 4064 int pass; 4065 4066 kvm_vcpu_set_in_spin_loop(me, true); 4067 /* 4068 * We boost the priority of a VCPU that is runnable but not 4069 * currently running, because it got preempted by something 4070 * else and called schedule in __vcpu_run. Hopefully that 4071 * VCPU is holding the lock that we need and will release it. 4072 * We approximate round-robin by starting at the last boosted VCPU. 4073 */ 4074 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4075 kvm_for_each_vcpu(i, vcpu, kvm) { 4076 if (!pass && i <= last_boosted_vcpu) { 4077 i = last_boosted_vcpu; 4078 continue; 4079 } else if (pass && i > last_boosted_vcpu) 4080 break; 4081 if (!READ_ONCE(vcpu->ready)) 4082 continue; 4083 if (vcpu == me) 4084 continue; 4085 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4086 continue; 4087 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4088 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4089 !kvm_arch_vcpu_in_kernel(vcpu)) 4090 continue; 4091 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4092 continue; 4093 4094 yielded = kvm_vcpu_yield_to(vcpu); 4095 if (yielded > 0) { 4096 kvm->last_boosted_vcpu = i; 4097 break; 4098 } else if (yielded < 0) { 4099 try--; 4100 if (!try) 4101 break; 4102 } 4103 } 4104 } 4105 kvm_vcpu_set_in_spin_loop(me, false); 4106 4107 /* Ensure vcpu is not eligible during next spinloop */ 4108 kvm_vcpu_set_dy_eligible(me, false); 4109 } 4110 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4111 4112 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4113 { 4114 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4115 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4116 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4117 kvm->dirty_ring_size / PAGE_SIZE); 4118 #else 4119 return false; 4120 #endif 4121 } 4122 4123 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4124 { 4125 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4126 struct page *page; 4127 4128 if (vmf->pgoff == 0) 4129 page = virt_to_page(vcpu->run); 4130 #ifdef CONFIG_X86 4131 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4132 page = virt_to_page(vcpu->arch.pio_data); 4133 #endif 4134 #ifdef CONFIG_KVM_MMIO 4135 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4136 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4137 #endif 4138 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4139 page = kvm_dirty_ring_get_page( 4140 &vcpu->dirty_ring, 4141 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4142 else 4143 return kvm_arch_vcpu_fault(vcpu, vmf); 4144 get_page(page); 4145 vmf->page = page; 4146 return 0; 4147 } 4148 4149 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4150 .fault = kvm_vcpu_fault, 4151 }; 4152 4153 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4154 { 4155 struct kvm_vcpu *vcpu = file->private_data; 4156 unsigned long pages = vma_pages(vma); 4157 4158 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4159 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4160 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4161 return -EINVAL; 4162 4163 vma->vm_ops = &kvm_vcpu_vm_ops; 4164 return 0; 4165 } 4166 4167 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4168 { 4169 struct kvm_vcpu *vcpu = filp->private_data; 4170 4171 kvm_put_kvm(vcpu->kvm); 4172 return 0; 4173 } 4174 4175 static struct file_operations kvm_vcpu_fops = { 4176 .release = kvm_vcpu_release, 4177 .unlocked_ioctl = kvm_vcpu_ioctl, 4178 .mmap = kvm_vcpu_mmap, 4179 .llseek = noop_llseek, 4180 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4181 }; 4182 4183 /* 4184 * Allocates an inode for the vcpu. 4185 */ 4186 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4187 { 4188 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4189 4190 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4191 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4192 } 4193 4194 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4195 static int vcpu_get_pid(void *data, u64 *val) 4196 { 4197 struct kvm_vcpu *vcpu = data; 4198 4199 rcu_read_lock(); 4200 *val = pid_nr(rcu_dereference(vcpu->pid)); 4201 rcu_read_unlock(); 4202 return 0; 4203 } 4204 4205 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4206 4207 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4208 { 4209 struct dentry *debugfs_dentry; 4210 char dir_name[ITOA_MAX_LEN * 2]; 4211 4212 if (!debugfs_initialized()) 4213 return; 4214 4215 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4216 debugfs_dentry = debugfs_create_dir(dir_name, 4217 vcpu->kvm->debugfs_dentry); 4218 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4219 &vcpu_get_pid_fops); 4220 4221 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4222 } 4223 #endif 4224 4225 /* 4226 * Creates some virtual cpus. Good luck creating more than one. 4227 */ 4228 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4229 { 4230 int r; 4231 struct kvm_vcpu *vcpu; 4232 struct page *page; 4233 4234 if (id >= KVM_MAX_VCPU_IDS) 4235 return -EINVAL; 4236 4237 mutex_lock(&kvm->lock); 4238 if (kvm->created_vcpus >= kvm->max_vcpus) { 4239 mutex_unlock(&kvm->lock); 4240 return -EINVAL; 4241 } 4242 4243 r = kvm_arch_vcpu_precreate(kvm, id); 4244 if (r) { 4245 mutex_unlock(&kvm->lock); 4246 return r; 4247 } 4248 4249 kvm->created_vcpus++; 4250 mutex_unlock(&kvm->lock); 4251 4252 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4253 if (!vcpu) { 4254 r = -ENOMEM; 4255 goto vcpu_decrement; 4256 } 4257 4258 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4259 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4260 if (!page) { 4261 r = -ENOMEM; 4262 goto vcpu_free; 4263 } 4264 vcpu->run = page_address(page); 4265 4266 kvm_vcpu_init(vcpu, kvm, id); 4267 4268 r = kvm_arch_vcpu_create(vcpu); 4269 if (r) 4270 goto vcpu_free_run_page; 4271 4272 if (kvm->dirty_ring_size) { 4273 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4274 id, kvm->dirty_ring_size); 4275 if (r) 4276 goto arch_vcpu_destroy; 4277 } 4278 4279 mutex_lock(&kvm->lock); 4280 4281 #ifdef CONFIG_LOCKDEP 4282 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4283 mutex_lock(&vcpu->mutex); 4284 mutex_unlock(&vcpu->mutex); 4285 #endif 4286 4287 if (kvm_get_vcpu_by_id(kvm, id)) { 4288 r = -EEXIST; 4289 goto unlock_vcpu_destroy; 4290 } 4291 4292 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4293 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4294 if (r) 4295 goto unlock_vcpu_destroy; 4296 4297 /* Now it's all set up, let userspace reach it */ 4298 kvm_get_kvm(kvm); 4299 r = create_vcpu_fd(vcpu); 4300 if (r < 0) 4301 goto kvm_put_xa_release; 4302 4303 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4304 r = -EINVAL; 4305 goto kvm_put_xa_release; 4306 } 4307 4308 /* 4309 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4310 * pointer before kvm->online_vcpu's incremented value. 4311 */ 4312 smp_wmb(); 4313 atomic_inc(&kvm->online_vcpus); 4314 4315 mutex_unlock(&kvm->lock); 4316 kvm_arch_vcpu_postcreate(vcpu); 4317 kvm_create_vcpu_debugfs(vcpu); 4318 return r; 4319 4320 kvm_put_xa_release: 4321 kvm_put_kvm_no_destroy(kvm); 4322 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4323 unlock_vcpu_destroy: 4324 mutex_unlock(&kvm->lock); 4325 kvm_dirty_ring_free(&vcpu->dirty_ring); 4326 arch_vcpu_destroy: 4327 kvm_arch_vcpu_destroy(vcpu); 4328 vcpu_free_run_page: 4329 free_page((unsigned long)vcpu->run); 4330 vcpu_free: 4331 kmem_cache_free(kvm_vcpu_cache, vcpu); 4332 vcpu_decrement: 4333 mutex_lock(&kvm->lock); 4334 kvm->created_vcpus--; 4335 mutex_unlock(&kvm->lock); 4336 return r; 4337 } 4338 4339 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4340 { 4341 if (sigset) { 4342 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4343 vcpu->sigset_active = 1; 4344 vcpu->sigset = *sigset; 4345 } else 4346 vcpu->sigset_active = 0; 4347 return 0; 4348 } 4349 4350 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4351 size_t size, loff_t *offset) 4352 { 4353 struct kvm_vcpu *vcpu = file->private_data; 4354 4355 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4356 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4357 sizeof(vcpu->stat), user_buffer, size, offset); 4358 } 4359 4360 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4361 { 4362 struct kvm_vcpu *vcpu = file->private_data; 4363 4364 kvm_put_kvm(vcpu->kvm); 4365 return 0; 4366 } 4367 4368 static const struct file_operations kvm_vcpu_stats_fops = { 4369 .owner = THIS_MODULE, 4370 .read = kvm_vcpu_stats_read, 4371 .release = kvm_vcpu_stats_release, 4372 .llseek = noop_llseek, 4373 }; 4374 4375 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4376 { 4377 int fd; 4378 struct file *file; 4379 char name[15 + ITOA_MAX_LEN + 1]; 4380 4381 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4382 4383 fd = get_unused_fd_flags(O_CLOEXEC); 4384 if (fd < 0) 4385 return fd; 4386 4387 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4388 if (IS_ERR(file)) { 4389 put_unused_fd(fd); 4390 return PTR_ERR(file); 4391 } 4392 4393 kvm_get_kvm(vcpu->kvm); 4394 4395 file->f_mode |= FMODE_PREAD; 4396 fd_install(fd, file); 4397 4398 return fd; 4399 } 4400 4401 static long kvm_vcpu_ioctl(struct file *filp, 4402 unsigned int ioctl, unsigned long arg) 4403 { 4404 struct kvm_vcpu *vcpu = filp->private_data; 4405 void __user *argp = (void __user *)arg; 4406 int r; 4407 struct kvm_fpu *fpu = NULL; 4408 struct kvm_sregs *kvm_sregs = NULL; 4409 4410 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4411 return -EIO; 4412 4413 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4414 return -EINVAL; 4415 4416 /* 4417 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4418 * execution; mutex_lock() would break them. 4419 */ 4420 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4421 if (r != -ENOIOCTLCMD) 4422 return r; 4423 4424 if (mutex_lock_killable(&vcpu->mutex)) 4425 return -EINTR; 4426 switch (ioctl) { 4427 case KVM_RUN: { 4428 struct pid *oldpid; 4429 r = -EINVAL; 4430 if (arg) 4431 goto out; 4432 oldpid = rcu_access_pointer(vcpu->pid); 4433 if (unlikely(oldpid != task_pid(current))) { 4434 /* The thread running this VCPU changed. */ 4435 struct pid *newpid; 4436 4437 r = kvm_arch_vcpu_run_pid_change(vcpu); 4438 if (r) 4439 break; 4440 4441 newpid = get_task_pid(current, PIDTYPE_PID); 4442 rcu_assign_pointer(vcpu->pid, newpid); 4443 if (oldpid) 4444 synchronize_rcu(); 4445 put_pid(oldpid); 4446 } 4447 r = kvm_arch_vcpu_ioctl_run(vcpu); 4448 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4449 break; 4450 } 4451 case KVM_GET_REGS: { 4452 struct kvm_regs *kvm_regs; 4453 4454 r = -ENOMEM; 4455 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4456 if (!kvm_regs) 4457 goto out; 4458 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4459 if (r) 4460 goto out_free1; 4461 r = -EFAULT; 4462 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4463 goto out_free1; 4464 r = 0; 4465 out_free1: 4466 kfree(kvm_regs); 4467 break; 4468 } 4469 case KVM_SET_REGS: { 4470 struct kvm_regs *kvm_regs; 4471 4472 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4473 if (IS_ERR(kvm_regs)) { 4474 r = PTR_ERR(kvm_regs); 4475 goto out; 4476 } 4477 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4478 kfree(kvm_regs); 4479 break; 4480 } 4481 case KVM_GET_SREGS: { 4482 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4483 GFP_KERNEL_ACCOUNT); 4484 r = -ENOMEM; 4485 if (!kvm_sregs) 4486 goto out; 4487 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4488 if (r) 4489 goto out; 4490 r = -EFAULT; 4491 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4492 goto out; 4493 r = 0; 4494 break; 4495 } 4496 case KVM_SET_SREGS: { 4497 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4498 if (IS_ERR(kvm_sregs)) { 4499 r = PTR_ERR(kvm_sregs); 4500 kvm_sregs = NULL; 4501 goto out; 4502 } 4503 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4504 break; 4505 } 4506 case KVM_GET_MP_STATE: { 4507 struct kvm_mp_state mp_state; 4508 4509 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4510 if (r) 4511 goto out; 4512 r = -EFAULT; 4513 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4514 goto out; 4515 r = 0; 4516 break; 4517 } 4518 case KVM_SET_MP_STATE: { 4519 struct kvm_mp_state mp_state; 4520 4521 r = -EFAULT; 4522 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4523 goto out; 4524 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4525 break; 4526 } 4527 case KVM_TRANSLATE: { 4528 struct kvm_translation tr; 4529 4530 r = -EFAULT; 4531 if (copy_from_user(&tr, argp, sizeof(tr))) 4532 goto out; 4533 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4534 if (r) 4535 goto out; 4536 r = -EFAULT; 4537 if (copy_to_user(argp, &tr, sizeof(tr))) 4538 goto out; 4539 r = 0; 4540 break; 4541 } 4542 case KVM_SET_GUEST_DEBUG: { 4543 struct kvm_guest_debug dbg; 4544 4545 r = -EFAULT; 4546 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4547 goto out; 4548 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4549 break; 4550 } 4551 case KVM_SET_SIGNAL_MASK: { 4552 struct kvm_signal_mask __user *sigmask_arg = argp; 4553 struct kvm_signal_mask kvm_sigmask; 4554 sigset_t sigset, *p; 4555 4556 p = NULL; 4557 if (argp) { 4558 r = -EFAULT; 4559 if (copy_from_user(&kvm_sigmask, argp, 4560 sizeof(kvm_sigmask))) 4561 goto out; 4562 r = -EINVAL; 4563 if (kvm_sigmask.len != sizeof(sigset)) 4564 goto out; 4565 r = -EFAULT; 4566 if (copy_from_user(&sigset, sigmask_arg->sigset, 4567 sizeof(sigset))) 4568 goto out; 4569 p = &sigset; 4570 } 4571 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4572 break; 4573 } 4574 case KVM_GET_FPU: { 4575 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4576 r = -ENOMEM; 4577 if (!fpu) 4578 goto out; 4579 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4580 if (r) 4581 goto out; 4582 r = -EFAULT; 4583 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4584 goto out; 4585 r = 0; 4586 break; 4587 } 4588 case KVM_SET_FPU: { 4589 fpu = memdup_user(argp, sizeof(*fpu)); 4590 if (IS_ERR(fpu)) { 4591 r = PTR_ERR(fpu); 4592 fpu = NULL; 4593 goto out; 4594 } 4595 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4596 break; 4597 } 4598 case KVM_GET_STATS_FD: { 4599 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4600 break; 4601 } 4602 default: 4603 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4604 } 4605 out: 4606 mutex_unlock(&vcpu->mutex); 4607 kfree(fpu); 4608 kfree(kvm_sregs); 4609 return r; 4610 } 4611 4612 #ifdef CONFIG_KVM_COMPAT 4613 static long kvm_vcpu_compat_ioctl(struct file *filp, 4614 unsigned int ioctl, unsigned long arg) 4615 { 4616 struct kvm_vcpu *vcpu = filp->private_data; 4617 void __user *argp = compat_ptr(arg); 4618 int r; 4619 4620 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4621 return -EIO; 4622 4623 switch (ioctl) { 4624 case KVM_SET_SIGNAL_MASK: { 4625 struct kvm_signal_mask __user *sigmask_arg = argp; 4626 struct kvm_signal_mask kvm_sigmask; 4627 sigset_t sigset; 4628 4629 if (argp) { 4630 r = -EFAULT; 4631 if (copy_from_user(&kvm_sigmask, argp, 4632 sizeof(kvm_sigmask))) 4633 goto out; 4634 r = -EINVAL; 4635 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4636 goto out; 4637 r = -EFAULT; 4638 if (get_compat_sigset(&sigset, 4639 (compat_sigset_t __user *)sigmask_arg->sigset)) 4640 goto out; 4641 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4642 } else 4643 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4644 break; 4645 } 4646 default: 4647 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4648 } 4649 4650 out: 4651 return r; 4652 } 4653 #endif 4654 4655 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4656 { 4657 struct kvm_device *dev = filp->private_data; 4658 4659 if (dev->ops->mmap) 4660 return dev->ops->mmap(dev, vma); 4661 4662 return -ENODEV; 4663 } 4664 4665 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4666 int (*accessor)(struct kvm_device *dev, 4667 struct kvm_device_attr *attr), 4668 unsigned long arg) 4669 { 4670 struct kvm_device_attr attr; 4671 4672 if (!accessor) 4673 return -EPERM; 4674 4675 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4676 return -EFAULT; 4677 4678 return accessor(dev, &attr); 4679 } 4680 4681 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4682 unsigned long arg) 4683 { 4684 struct kvm_device *dev = filp->private_data; 4685 4686 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4687 return -EIO; 4688 4689 switch (ioctl) { 4690 case KVM_SET_DEVICE_ATTR: 4691 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4692 case KVM_GET_DEVICE_ATTR: 4693 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4694 case KVM_HAS_DEVICE_ATTR: 4695 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4696 default: 4697 if (dev->ops->ioctl) 4698 return dev->ops->ioctl(dev, ioctl, arg); 4699 4700 return -ENOTTY; 4701 } 4702 } 4703 4704 static int kvm_device_release(struct inode *inode, struct file *filp) 4705 { 4706 struct kvm_device *dev = filp->private_data; 4707 struct kvm *kvm = dev->kvm; 4708 4709 if (dev->ops->release) { 4710 mutex_lock(&kvm->lock); 4711 list_del(&dev->vm_node); 4712 dev->ops->release(dev); 4713 mutex_unlock(&kvm->lock); 4714 } 4715 4716 kvm_put_kvm(kvm); 4717 return 0; 4718 } 4719 4720 static struct file_operations kvm_device_fops = { 4721 .unlocked_ioctl = kvm_device_ioctl, 4722 .release = kvm_device_release, 4723 KVM_COMPAT(kvm_device_ioctl), 4724 .mmap = kvm_device_mmap, 4725 }; 4726 4727 struct kvm_device *kvm_device_from_filp(struct file *filp) 4728 { 4729 if (filp->f_op != &kvm_device_fops) 4730 return NULL; 4731 4732 return filp->private_data; 4733 } 4734 4735 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4736 #ifdef CONFIG_KVM_MPIC 4737 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4738 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4739 #endif 4740 }; 4741 4742 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4743 { 4744 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4745 return -ENOSPC; 4746 4747 if (kvm_device_ops_table[type] != NULL) 4748 return -EEXIST; 4749 4750 kvm_device_ops_table[type] = ops; 4751 return 0; 4752 } 4753 4754 void kvm_unregister_device_ops(u32 type) 4755 { 4756 if (kvm_device_ops_table[type] != NULL) 4757 kvm_device_ops_table[type] = NULL; 4758 } 4759 4760 static int kvm_ioctl_create_device(struct kvm *kvm, 4761 struct kvm_create_device *cd) 4762 { 4763 const struct kvm_device_ops *ops; 4764 struct kvm_device *dev; 4765 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4766 int type; 4767 int ret; 4768 4769 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4770 return -ENODEV; 4771 4772 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4773 ops = kvm_device_ops_table[type]; 4774 if (ops == NULL) 4775 return -ENODEV; 4776 4777 if (test) 4778 return 0; 4779 4780 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4781 if (!dev) 4782 return -ENOMEM; 4783 4784 dev->ops = ops; 4785 dev->kvm = kvm; 4786 4787 mutex_lock(&kvm->lock); 4788 ret = ops->create(dev, type); 4789 if (ret < 0) { 4790 mutex_unlock(&kvm->lock); 4791 kfree(dev); 4792 return ret; 4793 } 4794 list_add(&dev->vm_node, &kvm->devices); 4795 mutex_unlock(&kvm->lock); 4796 4797 if (ops->init) 4798 ops->init(dev); 4799 4800 kvm_get_kvm(kvm); 4801 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4802 if (ret < 0) { 4803 kvm_put_kvm_no_destroy(kvm); 4804 mutex_lock(&kvm->lock); 4805 list_del(&dev->vm_node); 4806 if (ops->release) 4807 ops->release(dev); 4808 mutex_unlock(&kvm->lock); 4809 if (ops->destroy) 4810 ops->destroy(dev); 4811 return ret; 4812 } 4813 4814 cd->fd = ret; 4815 return 0; 4816 } 4817 4818 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4819 { 4820 switch (arg) { 4821 case KVM_CAP_USER_MEMORY: 4822 case KVM_CAP_USER_MEMORY2: 4823 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4824 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4825 case KVM_CAP_INTERNAL_ERROR_DATA: 4826 #ifdef CONFIG_HAVE_KVM_MSI 4827 case KVM_CAP_SIGNAL_MSI: 4828 #endif 4829 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4830 case KVM_CAP_IRQFD: 4831 #endif 4832 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4833 case KVM_CAP_CHECK_EXTENSION_VM: 4834 case KVM_CAP_ENABLE_CAP_VM: 4835 case KVM_CAP_HALT_POLL: 4836 return 1; 4837 #ifdef CONFIG_KVM_MMIO 4838 case KVM_CAP_COALESCED_MMIO: 4839 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4840 case KVM_CAP_COALESCED_PIO: 4841 return 1; 4842 #endif 4843 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4844 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4845 return KVM_DIRTY_LOG_MANUAL_CAPS; 4846 #endif 4847 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4848 case KVM_CAP_IRQ_ROUTING: 4849 return KVM_MAX_IRQ_ROUTES; 4850 #endif 4851 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4852 case KVM_CAP_MULTI_ADDRESS_SPACE: 4853 if (kvm) 4854 return kvm_arch_nr_memslot_as_ids(kvm); 4855 return KVM_MAX_NR_ADDRESS_SPACES; 4856 #endif 4857 case KVM_CAP_NR_MEMSLOTS: 4858 return KVM_USER_MEM_SLOTS; 4859 case KVM_CAP_DIRTY_LOG_RING: 4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4861 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4862 #else 4863 return 0; 4864 #endif 4865 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4866 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4867 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4868 #else 4869 return 0; 4870 #endif 4871 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4872 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4873 #endif 4874 case KVM_CAP_BINARY_STATS_FD: 4875 case KVM_CAP_SYSTEM_EVENT_DATA: 4876 case KVM_CAP_DEVICE_CTRL: 4877 return 1; 4878 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4879 case KVM_CAP_MEMORY_ATTRIBUTES: 4880 return kvm_supported_mem_attributes(kvm); 4881 #endif 4882 #ifdef CONFIG_KVM_PRIVATE_MEM 4883 case KVM_CAP_GUEST_MEMFD: 4884 return !kvm || kvm_arch_has_private_mem(kvm); 4885 #endif 4886 default: 4887 break; 4888 } 4889 return kvm_vm_ioctl_check_extension(kvm, arg); 4890 } 4891 4892 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4893 { 4894 int r; 4895 4896 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4897 return -EINVAL; 4898 4899 /* the size should be power of 2 */ 4900 if (!size || (size & (size - 1))) 4901 return -EINVAL; 4902 4903 /* Should be bigger to keep the reserved entries, or a page */ 4904 if (size < kvm_dirty_ring_get_rsvd_entries() * 4905 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4906 return -EINVAL; 4907 4908 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4909 sizeof(struct kvm_dirty_gfn)) 4910 return -E2BIG; 4911 4912 /* We only allow it to set once */ 4913 if (kvm->dirty_ring_size) 4914 return -EINVAL; 4915 4916 mutex_lock(&kvm->lock); 4917 4918 if (kvm->created_vcpus) { 4919 /* We don't allow to change this value after vcpu created */ 4920 r = -EINVAL; 4921 } else { 4922 kvm->dirty_ring_size = size; 4923 r = 0; 4924 } 4925 4926 mutex_unlock(&kvm->lock); 4927 return r; 4928 } 4929 4930 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4931 { 4932 unsigned long i; 4933 struct kvm_vcpu *vcpu; 4934 int cleared = 0; 4935 4936 if (!kvm->dirty_ring_size) 4937 return -EINVAL; 4938 4939 mutex_lock(&kvm->slots_lock); 4940 4941 kvm_for_each_vcpu(i, vcpu, kvm) 4942 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4943 4944 mutex_unlock(&kvm->slots_lock); 4945 4946 if (cleared) 4947 kvm_flush_remote_tlbs(kvm); 4948 4949 return cleared; 4950 } 4951 4952 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4953 struct kvm_enable_cap *cap) 4954 { 4955 return -EINVAL; 4956 } 4957 4958 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4959 { 4960 int i; 4961 4962 lockdep_assert_held(&kvm->slots_lock); 4963 4964 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4965 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4966 return false; 4967 } 4968 4969 return true; 4970 } 4971 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4972 4973 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4974 struct kvm_enable_cap *cap) 4975 { 4976 switch (cap->cap) { 4977 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4978 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4979 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4980 4981 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4982 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4983 4984 if (cap->flags || (cap->args[0] & ~allowed_options)) 4985 return -EINVAL; 4986 kvm->manual_dirty_log_protect = cap->args[0]; 4987 return 0; 4988 } 4989 #endif 4990 case KVM_CAP_HALT_POLL: { 4991 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4992 return -EINVAL; 4993 4994 kvm->max_halt_poll_ns = cap->args[0]; 4995 4996 /* 4997 * Ensure kvm->override_halt_poll_ns does not become visible 4998 * before kvm->max_halt_poll_ns. 4999 * 5000 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5001 */ 5002 smp_wmb(); 5003 kvm->override_halt_poll_ns = true; 5004 5005 return 0; 5006 } 5007 case KVM_CAP_DIRTY_LOG_RING: 5008 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5009 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5010 return -EINVAL; 5011 5012 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5013 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5014 int r = -EINVAL; 5015 5016 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5017 !kvm->dirty_ring_size || cap->flags) 5018 return r; 5019 5020 mutex_lock(&kvm->slots_lock); 5021 5022 /* 5023 * For simplicity, allow enabling ring+bitmap if and only if 5024 * there are no memslots, e.g. to ensure all memslots allocate 5025 * a bitmap after the capability is enabled. 5026 */ 5027 if (kvm_are_all_memslots_empty(kvm)) { 5028 kvm->dirty_ring_with_bitmap = true; 5029 r = 0; 5030 } 5031 5032 mutex_unlock(&kvm->slots_lock); 5033 5034 return r; 5035 } 5036 default: 5037 return kvm_vm_ioctl_enable_cap(kvm, cap); 5038 } 5039 } 5040 5041 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5042 size_t size, loff_t *offset) 5043 { 5044 struct kvm *kvm = file->private_data; 5045 5046 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5047 &kvm_vm_stats_desc[0], &kvm->stat, 5048 sizeof(kvm->stat), user_buffer, size, offset); 5049 } 5050 5051 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5052 { 5053 struct kvm *kvm = file->private_data; 5054 5055 kvm_put_kvm(kvm); 5056 return 0; 5057 } 5058 5059 static const struct file_operations kvm_vm_stats_fops = { 5060 .owner = THIS_MODULE, 5061 .read = kvm_vm_stats_read, 5062 .release = kvm_vm_stats_release, 5063 .llseek = noop_llseek, 5064 }; 5065 5066 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5067 { 5068 int fd; 5069 struct file *file; 5070 5071 fd = get_unused_fd_flags(O_CLOEXEC); 5072 if (fd < 0) 5073 return fd; 5074 5075 file = anon_inode_getfile("kvm-vm-stats", 5076 &kvm_vm_stats_fops, kvm, O_RDONLY); 5077 if (IS_ERR(file)) { 5078 put_unused_fd(fd); 5079 return PTR_ERR(file); 5080 } 5081 5082 kvm_get_kvm(kvm); 5083 5084 file->f_mode |= FMODE_PREAD; 5085 fd_install(fd, file); 5086 5087 return fd; 5088 } 5089 5090 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5091 do { \ 5092 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5093 offsetof(struct kvm_userspace_memory_region2, field)); \ 5094 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5095 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5096 } while (0) 5097 5098 static long kvm_vm_ioctl(struct file *filp, 5099 unsigned int ioctl, unsigned long arg) 5100 { 5101 struct kvm *kvm = filp->private_data; 5102 void __user *argp = (void __user *)arg; 5103 int r; 5104 5105 if (kvm->mm != current->mm || kvm->vm_dead) 5106 return -EIO; 5107 switch (ioctl) { 5108 case KVM_CREATE_VCPU: 5109 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5110 break; 5111 case KVM_ENABLE_CAP: { 5112 struct kvm_enable_cap cap; 5113 5114 r = -EFAULT; 5115 if (copy_from_user(&cap, argp, sizeof(cap))) 5116 goto out; 5117 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5118 break; 5119 } 5120 case KVM_SET_USER_MEMORY_REGION2: 5121 case KVM_SET_USER_MEMORY_REGION: { 5122 struct kvm_userspace_memory_region2 mem; 5123 unsigned long size; 5124 5125 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5126 /* 5127 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5128 * accessed, but avoid leaking kernel memory in case of a bug. 5129 */ 5130 memset(&mem, 0, sizeof(mem)); 5131 size = sizeof(struct kvm_userspace_memory_region); 5132 } else { 5133 size = sizeof(struct kvm_userspace_memory_region2); 5134 } 5135 5136 /* Ensure the common parts of the two structs are identical. */ 5137 SANITY_CHECK_MEM_REGION_FIELD(slot); 5138 SANITY_CHECK_MEM_REGION_FIELD(flags); 5139 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5140 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5141 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5142 5143 r = -EFAULT; 5144 if (copy_from_user(&mem, argp, size)) 5145 goto out; 5146 5147 r = -EINVAL; 5148 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5149 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5150 goto out; 5151 5152 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5153 break; 5154 } 5155 case KVM_GET_DIRTY_LOG: { 5156 struct kvm_dirty_log log; 5157 5158 r = -EFAULT; 5159 if (copy_from_user(&log, argp, sizeof(log))) 5160 goto out; 5161 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5162 break; 5163 } 5164 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5165 case KVM_CLEAR_DIRTY_LOG: { 5166 struct kvm_clear_dirty_log log; 5167 5168 r = -EFAULT; 5169 if (copy_from_user(&log, argp, sizeof(log))) 5170 goto out; 5171 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5172 break; 5173 } 5174 #endif 5175 #ifdef CONFIG_KVM_MMIO 5176 case KVM_REGISTER_COALESCED_MMIO: { 5177 struct kvm_coalesced_mmio_zone zone; 5178 5179 r = -EFAULT; 5180 if (copy_from_user(&zone, argp, sizeof(zone))) 5181 goto out; 5182 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5183 break; 5184 } 5185 case KVM_UNREGISTER_COALESCED_MMIO: { 5186 struct kvm_coalesced_mmio_zone zone; 5187 5188 r = -EFAULT; 5189 if (copy_from_user(&zone, argp, sizeof(zone))) 5190 goto out; 5191 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5192 break; 5193 } 5194 #endif 5195 case KVM_IRQFD: { 5196 struct kvm_irqfd data; 5197 5198 r = -EFAULT; 5199 if (copy_from_user(&data, argp, sizeof(data))) 5200 goto out; 5201 r = kvm_irqfd(kvm, &data); 5202 break; 5203 } 5204 case KVM_IOEVENTFD: { 5205 struct kvm_ioeventfd data; 5206 5207 r = -EFAULT; 5208 if (copy_from_user(&data, argp, sizeof(data))) 5209 goto out; 5210 r = kvm_ioeventfd(kvm, &data); 5211 break; 5212 } 5213 #ifdef CONFIG_HAVE_KVM_MSI 5214 case KVM_SIGNAL_MSI: { 5215 struct kvm_msi msi; 5216 5217 r = -EFAULT; 5218 if (copy_from_user(&msi, argp, sizeof(msi))) 5219 goto out; 5220 r = kvm_send_userspace_msi(kvm, &msi); 5221 break; 5222 } 5223 #endif 5224 #ifdef __KVM_HAVE_IRQ_LINE 5225 case KVM_IRQ_LINE_STATUS: 5226 case KVM_IRQ_LINE: { 5227 struct kvm_irq_level irq_event; 5228 5229 r = -EFAULT; 5230 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5231 goto out; 5232 5233 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5234 ioctl == KVM_IRQ_LINE_STATUS); 5235 if (r) 5236 goto out; 5237 5238 r = -EFAULT; 5239 if (ioctl == KVM_IRQ_LINE_STATUS) { 5240 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5241 goto out; 5242 } 5243 5244 r = 0; 5245 break; 5246 } 5247 #endif 5248 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5249 case KVM_SET_GSI_ROUTING: { 5250 struct kvm_irq_routing routing; 5251 struct kvm_irq_routing __user *urouting; 5252 struct kvm_irq_routing_entry *entries = NULL; 5253 5254 r = -EFAULT; 5255 if (copy_from_user(&routing, argp, sizeof(routing))) 5256 goto out; 5257 r = -EINVAL; 5258 if (!kvm_arch_can_set_irq_routing(kvm)) 5259 goto out; 5260 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5261 goto out; 5262 if (routing.flags) 5263 goto out; 5264 if (routing.nr) { 5265 urouting = argp; 5266 entries = vmemdup_array_user(urouting->entries, 5267 routing.nr, sizeof(*entries)); 5268 if (IS_ERR(entries)) { 5269 r = PTR_ERR(entries); 5270 goto out; 5271 } 5272 } 5273 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5274 routing.flags); 5275 kvfree(entries); 5276 break; 5277 } 5278 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5279 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5280 case KVM_SET_MEMORY_ATTRIBUTES: { 5281 struct kvm_memory_attributes attrs; 5282 5283 r = -EFAULT; 5284 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5285 goto out; 5286 5287 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5288 break; 5289 } 5290 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5291 case KVM_CREATE_DEVICE: { 5292 struct kvm_create_device cd; 5293 5294 r = -EFAULT; 5295 if (copy_from_user(&cd, argp, sizeof(cd))) 5296 goto out; 5297 5298 r = kvm_ioctl_create_device(kvm, &cd); 5299 if (r) 5300 goto out; 5301 5302 r = -EFAULT; 5303 if (copy_to_user(argp, &cd, sizeof(cd))) 5304 goto out; 5305 5306 r = 0; 5307 break; 5308 } 5309 case KVM_CHECK_EXTENSION: 5310 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5311 break; 5312 case KVM_RESET_DIRTY_RINGS: 5313 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5314 break; 5315 case KVM_GET_STATS_FD: 5316 r = kvm_vm_ioctl_get_stats_fd(kvm); 5317 break; 5318 #ifdef CONFIG_KVM_PRIVATE_MEM 5319 case KVM_CREATE_GUEST_MEMFD: { 5320 struct kvm_create_guest_memfd guest_memfd; 5321 5322 r = -EFAULT; 5323 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5324 goto out; 5325 5326 r = kvm_gmem_create(kvm, &guest_memfd); 5327 break; 5328 } 5329 #endif 5330 default: 5331 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5332 } 5333 out: 5334 return r; 5335 } 5336 5337 #ifdef CONFIG_KVM_COMPAT 5338 struct compat_kvm_dirty_log { 5339 __u32 slot; 5340 __u32 padding1; 5341 union { 5342 compat_uptr_t dirty_bitmap; /* one bit per page */ 5343 __u64 padding2; 5344 }; 5345 }; 5346 5347 struct compat_kvm_clear_dirty_log { 5348 __u32 slot; 5349 __u32 num_pages; 5350 __u64 first_page; 5351 union { 5352 compat_uptr_t dirty_bitmap; /* one bit per page */ 5353 __u64 padding2; 5354 }; 5355 }; 5356 5357 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5358 unsigned long arg) 5359 { 5360 return -ENOTTY; 5361 } 5362 5363 static long kvm_vm_compat_ioctl(struct file *filp, 5364 unsigned int ioctl, unsigned long arg) 5365 { 5366 struct kvm *kvm = filp->private_data; 5367 int r; 5368 5369 if (kvm->mm != current->mm || kvm->vm_dead) 5370 return -EIO; 5371 5372 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5373 if (r != -ENOTTY) 5374 return r; 5375 5376 switch (ioctl) { 5377 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5378 case KVM_CLEAR_DIRTY_LOG: { 5379 struct compat_kvm_clear_dirty_log compat_log; 5380 struct kvm_clear_dirty_log log; 5381 5382 if (copy_from_user(&compat_log, (void __user *)arg, 5383 sizeof(compat_log))) 5384 return -EFAULT; 5385 log.slot = compat_log.slot; 5386 log.num_pages = compat_log.num_pages; 5387 log.first_page = compat_log.first_page; 5388 log.padding2 = compat_log.padding2; 5389 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5390 5391 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5392 break; 5393 } 5394 #endif 5395 case KVM_GET_DIRTY_LOG: { 5396 struct compat_kvm_dirty_log compat_log; 5397 struct kvm_dirty_log log; 5398 5399 if (copy_from_user(&compat_log, (void __user *)arg, 5400 sizeof(compat_log))) 5401 return -EFAULT; 5402 log.slot = compat_log.slot; 5403 log.padding1 = compat_log.padding1; 5404 log.padding2 = compat_log.padding2; 5405 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5406 5407 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5408 break; 5409 } 5410 default: 5411 r = kvm_vm_ioctl(filp, ioctl, arg); 5412 } 5413 return r; 5414 } 5415 #endif 5416 5417 static struct file_operations kvm_vm_fops = { 5418 .release = kvm_vm_release, 5419 .unlocked_ioctl = kvm_vm_ioctl, 5420 .llseek = noop_llseek, 5421 KVM_COMPAT(kvm_vm_compat_ioctl), 5422 }; 5423 5424 bool file_is_kvm(struct file *file) 5425 { 5426 return file && file->f_op == &kvm_vm_fops; 5427 } 5428 EXPORT_SYMBOL_GPL(file_is_kvm); 5429 5430 static int kvm_dev_ioctl_create_vm(unsigned long type) 5431 { 5432 char fdname[ITOA_MAX_LEN + 1]; 5433 int r, fd; 5434 struct kvm *kvm; 5435 struct file *file; 5436 5437 fd = get_unused_fd_flags(O_CLOEXEC); 5438 if (fd < 0) 5439 return fd; 5440 5441 snprintf(fdname, sizeof(fdname), "%d", fd); 5442 5443 kvm = kvm_create_vm(type, fdname); 5444 if (IS_ERR(kvm)) { 5445 r = PTR_ERR(kvm); 5446 goto put_fd; 5447 } 5448 5449 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5450 if (IS_ERR(file)) { 5451 r = PTR_ERR(file); 5452 goto put_kvm; 5453 } 5454 5455 /* 5456 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5457 * already set, with ->release() being kvm_vm_release(). In error 5458 * cases it will be called by the final fput(file) and will take 5459 * care of doing kvm_put_kvm(kvm). 5460 */ 5461 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5462 5463 fd_install(fd, file); 5464 return fd; 5465 5466 put_kvm: 5467 kvm_put_kvm(kvm); 5468 put_fd: 5469 put_unused_fd(fd); 5470 return r; 5471 } 5472 5473 static long kvm_dev_ioctl(struct file *filp, 5474 unsigned int ioctl, unsigned long arg) 5475 { 5476 int r = -EINVAL; 5477 5478 switch (ioctl) { 5479 case KVM_GET_API_VERSION: 5480 if (arg) 5481 goto out; 5482 r = KVM_API_VERSION; 5483 break; 5484 case KVM_CREATE_VM: 5485 r = kvm_dev_ioctl_create_vm(arg); 5486 break; 5487 case KVM_CHECK_EXTENSION: 5488 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5489 break; 5490 case KVM_GET_VCPU_MMAP_SIZE: 5491 if (arg) 5492 goto out; 5493 r = PAGE_SIZE; /* struct kvm_run */ 5494 #ifdef CONFIG_X86 5495 r += PAGE_SIZE; /* pio data page */ 5496 #endif 5497 #ifdef CONFIG_KVM_MMIO 5498 r += PAGE_SIZE; /* coalesced mmio ring page */ 5499 #endif 5500 break; 5501 default: 5502 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5503 } 5504 out: 5505 return r; 5506 } 5507 5508 static struct file_operations kvm_chardev_ops = { 5509 .unlocked_ioctl = kvm_dev_ioctl, 5510 .llseek = noop_llseek, 5511 KVM_COMPAT(kvm_dev_ioctl), 5512 }; 5513 5514 static struct miscdevice kvm_dev = { 5515 KVM_MINOR, 5516 "kvm", 5517 &kvm_chardev_ops, 5518 }; 5519 5520 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5521 __visible bool kvm_rebooting; 5522 EXPORT_SYMBOL_GPL(kvm_rebooting); 5523 5524 static DEFINE_PER_CPU(bool, hardware_enabled); 5525 static int kvm_usage_count; 5526 5527 static int __hardware_enable_nolock(void) 5528 { 5529 if (__this_cpu_read(hardware_enabled)) 5530 return 0; 5531 5532 if (kvm_arch_hardware_enable()) { 5533 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5534 raw_smp_processor_id()); 5535 return -EIO; 5536 } 5537 5538 __this_cpu_write(hardware_enabled, true); 5539 return 0; 5540 } 5541 5542 static void hardware_enable_nolock(void *failed) 5543 { 5544 if (__hardware_enable_nolock()) 5545 atomic_inc(failed); 5546 } 5547 5548 static int kvm_online_cpu(unsigned int cpu) 5549 { 5550 int ret = 0; 5551 5552 /* 5553 * Abort the CPU online process if hardware virtualization cannot 5554 * be enabled. Otherwise running VMs would encounter unrecoverable 5555 * errors when scheduled to this CPU. 5556 */ 5557 mutex_lock(&kvm_lock); 5558 if (kvm_usage_count) 5559 ret = __hardware_enable_nolock(); 5560 mutex_unlock(&kvm_lock); 5561 return ret; 5562 } 5563 5564 static void hardware_disable_nolock(void *junk) 5565 { 5566 /* 5567 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5568 * hardware, not just CPUs that successfully enabled hardware! 5569 */ 5570 if (!__this_cpu_read(hardware_enabled)) 5571 return; 5572 5573 kvm_arch_hardware_disable(); 5574 5575 __this_cpu_write(hardware_enabled, false); 5576 } 5577 5578 static int kvm_offline_cpu(unsigned int cpu) 5579 { 5580 mutex_lock(&kvm_lock); 5581 if (kvm_usage_count) 5582 hardware_disable_nolock(NULL); 5583 mutex_unlock(&kvm_lock); 5584 return 0; 5585 } 5586 5587 static void hardware_disable_all_nolock(void) 5588 { 5589 BUG_ON(!kvm_usage_count); 5590 5591 kvm_usage_count--; 5592 if (!kvm_usage_count) 5593 on_each_cpu(hardware_disable_nolock, NULL, 1); 5594 } 5595 5596 static void hardware_disable_all(void) 5597 { 5598 cpus_read_lock(); 5599 mutex_lock(&kvm_lock); 5600 hardware_disable_all_nolock(); 5601 mutex_unlock(&kvm_lock); 5602 cpus_read_unlock(); 5603 } 5604 5605 static int hardware_enable_all(void) 5606 { 5607 atomic_t failed = ATOMIC_INIT(0); 5608 int r; 5609 5610 /* 5611 * Do not enable hardware virtualization if the system is going down. 5612 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5613 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5614 * after kvm_reboot() is called. Note, this relies on system_state 5615 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5616 * hook instead of registering a dedicated reboot notifier (the latter 5617 * runs before system_state is updated). 5618 */ 5619 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5620 system_state == SYSTEM_RESTART) 5621 return -EBUSY; 5622 5623 /* 5624 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5625 * is called, and so on_each_cpu() between them includes the CPU that 5626 * is being onlined. As a result, hardware_enable_nolock() may get 5627 * invoked before kvm_online_cpu(), which also enables hardware if the 5628 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5629 * enable hardware multiple times. 5630 */ 5631 cpus_read_lock(); 5632 mutex_lock(&kvm_lock); 5633 5634 r = 0; 5635 5636 kvm_usage_count++; 5637 if (kvm_usage_count == 1) { 5638 on_each_cpu(hardware_enable_nolock, &failed, 1); 5639 5640 if (atomic_read(&failed)) { 5641 hardware_disable_all_nolock(); 5642 r = -EBUSY; 5643 } 5644 } 5645 5646 mutex_unlock(&kvm_lock); 5647 cpus_read_unlock(); 5648 5649 return r; 5650 } 5651 5652 static void kvm_shutdown(void) 5653 { 5654 /* 5655 * Disable hardware virtualization and set kvm_rebooting to indicate 5656 * that KVM has asynchronously disabled hardware virtualization, i.e. 5657 * that relevant errors and exceptions aren't entirely unexpected. 5658 * Some flavors of hardware virtualization need to be disabled before 5659 * transferring control to firmware (to perform shutdown/reboot), e.g. 5660 * on x86, virtualization can block INIT interrupts, which are used by 5661 * firmware to pull APs back under firmware control. Note, this path 5662 * is used for both shutdown and reboot scenarios, i.e. neither name is 5663 * 100% comprehensive. 5664 */ 5665 pr_info("kvm: exiting hardware virtualization\n"); 5666 kvm_rebooting = true; 5667 on_each_cpu(hardware_disable_nolock, NULL, 1); 5668 } 5669 5670 static int kvm_suspend(void) 5671 { 5672 /* 5673 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5674 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5675 * is stable. Assert that kvm_lock is not held to ensure the system 5676 * isn't suspended while KVM is enabling hardware. Hardware enabling 5677 * can be preempted, but the task cannot be frozen until it has dropped 5678 * all locks (userspace tasks are frozen via a fake signal). 5679 */ 5680 lockdep_assert_not_held(&kvm_lock); 5681 lockdep_assert_irqs_disabled(); 5682 5683 if (kvm_usage_count) 5684 hardware_disable_nolock(NULL); 5685 return 0; 5686 } 5687 5688 static void kvm_resume(void) 5689 { 5690 lockdep_assert_not_held(&kvm_lock); 5691 lockdep_assert_irqs_disabled(); 5692 5693 if (kvm_usage_count) 5694 WARN_ON_ONCE(__hardware_enable_nolock()); 5695 } 5696 5697 static struct syscore_ops kvm_syscore_ops = { 5698 .suspend = kvm_suspend, 5699 .resume = kvm_resume, 5700 .shutdown = kvm_shutdown, 5701 }; 5702 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5703 static int hardware_enable_all(void) 5704 { 5705 return 0; 5706 } 5707 5708 static void hardware_disable_all(void) 5709 { 5710 5711 } 5712 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5713 5714 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5715 { 5716 if (dev->ops->destructor) 5717 dev->ops->destructor(dev); 5718 } 5719 5720 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5721 { 5722 int i; 5723 5724 for (i = 0; i < bus->dev_count; i++) { 5725 struct kvm_io_device *pos = bus->range[i].dev; 5726 5727 kvm_iodevice_destructor(pos); 5728 } 5729 kfree(bus); 5730 } 5731 5732 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5733 const struct kvm_io_range *r2) 5734 { 5735 gpa_t addr1 = r1->addr; 5736 gpa_t addr2 = r2->addr; 5737 5738 if (addr1 < addr2) 5739 return -1; 5740 5741 /* If r2->len == 0, match the exact address. If r2->len != 0, 5742 * accept any overlapping write. Any order is acceptable for 5743 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5744 * we process all of them. 5745 */ 5746 if (r2->len) { 5747 addr1 += r1->len; 5748 addr2 += r2->len; 5749 } 5750 5751 if (addr1 > addr2) 5752 return 1; 5753 5754 return 0; 5755 } 5756 5757 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5758 { 5759 return kvm_io_bus_cmp(p1, p2); 5760 } 5761 5762 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5763 gpa_t addr, int len) 5764 { 5765 struct kvm_io_range *range, key; 5766 int off; 5767 5768 key = (struct kvm_io_range) { 5769 .addr = addr, 5770 .len = len, 5771 }; 5772 5773 range = bsearch(&key, bus->range, bus->dev_count, 5774 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5775 if (range == NULL) 5776 return -ENOENT; 5777 5778 off = range - bus->range; 5779 5780 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5781 off--; 5782 5783 return off; 5784 } 5785 5786 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5787 struct kvm_io_range *range, const void *val) 5788 { 5789 int idx; 5790 5791 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5792 if (idx < 0) 5793 return -EOPNOTSUPP; 5794 5795 while (idx < bus->dev_count && 5796 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5797 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5798 range->len, val)) 5799 return idx; 5800 idx++; 5801 } 5802 5803 return -EOPNOTSUPP; 5804 } 5805 5806 /* kvm_io_bus_write - called under kvm->slots_lock */ 5807 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5808 int len, const void *val) 5809 { 5810 struct kvm_io_bus *bus; 5811 struct kvm_io_range range; 5812 int r; 5813 5814 range = (struct kvm_io_range) { 5815 .addr = addr, 5816 .len = len, 5817 }; 5818 5819 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5820 if (!bus) 5821 return -ENOMEM; 5822 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5823 return r < 0 ? r : 0; 5824 } 5825 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5826 5827 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5828 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5829 gpa_t addr, int len, const void *val, long cookie) 5830 { 5831 struct kvm_io_bus *bus; 5832 struct kvm_io_range range; 5833 5834 range = (struct kvm_io_range) { 5835 .addr = addr, 5836 .len = len, 5837 }; 5838 5839 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5840 if (!bus) 5841 return -ENOMEM; 5842 5843 /* First try the device referenced by cookie. */ 5844 if ((cookie >= 0) && (cookie < bus->dev_count) && 5845 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5846 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5847 val)) 5848 return cookie; 5849 5850 /* 5851 * cookie contained garbage; fall back to search and return the 5852 * correct cookie value. 5853 */ 5854 return __kvm_io_bus_write(vcpu, bus, &range, val); 5855 } 5856 5857 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5858 struct kvm_io_range *range, void *val) 5859 { 5860 int idx; 5861 5862 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5863 if (idx < 0) 5864 return -EOPNOTSUPP; 5865 5866 while (idx < bus->dev_count && 5867 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5868 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5869 range->len, val)) 5870 return idx; 5871 idx++; 5872 } 5873 5874 return -EOPNOTSUPP; 5875 } 5876 5877 /* kvm_io_bus_read - called under kvm->slots_lock */ 5878 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5879 int len, void *val) 5880 { 5881 struct kvm_io_bus *bus; 5882 struct kvm_io_range range; 5883 int r; 5884 5885 range = (struct kvm_io_range) { 5886 .addr = addr, 5887 .len = len, 5888 }; 5889 5890 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5891 if (!bus) 5892 return -ENOMEM; 5893 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5894 return r < 0 ? r : 0; 5895 } 5896 5897 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5898 int len, struct kvm_io_device *dev) 5899 { 5900 int i; 5901 struct kvm_io_bus *new_bus, *bus; 5902 struct kvm_io_range range; 5903 5904 lockdep_assert_held(&kvm->slots_lock); 5905 5906 bus = kvm_get_bus(kvm, bus_idx); 5907 if (!bus) 5908 return -ENOMEM; 5909 5910 /* exclude ioeventfd which is limited by maximum fd */ 5911 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5912 return -ENOSPC; 5913 5914 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5915 GFP_KERNEL_ACCOUNT); 5916 if (!new_bus) 5917 return -ENOMEM; 5918 5919 range = (struct kvm_io_range) { 5920 .addr = addr, 5921 .len = len, 5922 .dev = dev, 5923 }; 5924 5925 for (i = 0; i < bus->dev_count; i++) 5926 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5927 break; 5928 5929 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5930 new_bus->dev_count++; 5931 new_bus->range[i] = range; 5932 memcpy(new_bus->range + i + 1, bus->range + i, 5933 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5934 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5935 synchronize_srcu_expedited(&kvm->srcu); 5936 kfree(bus); 5937 5938 return 0; 5939 } 5940 5941 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5942 struct kvm_io_device *dev) 5943 { 5944 int i; 5945 struct kvm_io_bus *new_bus, *bus; 5946 5947 lockdep_assert_held(&kvm->slots_lock); 5948 5949 bus = kvm_get_bus(kvm, bus_idx); 5950 if (!bus) 5951 return 0; 5952 5953 for (i = 0; i < bus->dev_count; i++) { 5954 if (bus->range[i].dev == dev) { 5955 break; 5956 } 5957 } 5958 5959 if (i == bus->dev_count) 5960 return 0; 5961 5962 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5963 GFP_KERNEL_ACCOUNT); 5964 if (new_bus) { 5965 memcpy(new_bus, bus, struct_size(bus, range, i)); 5966 new_bus->dev_count--; 5967 memcpy(new_bus->range + i, bus->range + i + 1, 5968 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5969 } 5970 5971 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5972 synchronize_srcu_expedited(&kvm->srcu); 5973 5974 /* 5975 * If NULL bus is installed, destroy the old bus, including all the 5976 * attached devices. Otherwise, destroy the caller's device only. 5977 */ 5978 if (!new_bus) { 5979 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5980 kvm_io_bus_destroy(bus); 5981 return -ENOMEM; 5982 } 5983 5984 kvm_iodevice_destructor(dev); 5985 kfree(bus); 5986 return 0; 5987 } 5988 5989 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5990 gpa_t addr) 5991 { 5992 struct kvm_io_bus *bus; 5993 int dev_idx, srcu_idx; 5994 struct kvm_io_device *iodev = NULL; 5995 5996 srcu_idx = srcu_read_lock(&kvm->srcu); 5997 5998 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5999 if (!bus) 6000 goto out_unlock; 6001 6002 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6003 if (dev_idx < 0) 6004 goto out_unlock; 6005 6006 iodev = bus->range[dev_idx].dev; 6007 6008 out_unlock: 6009 srcu_read_unlock(&kvm->srcu, srcu_idx); 6010 6011 return iodev; 6012 } 6013 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6014 6015 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6016 int (*get)(void *, u64 *), int (*set)(void *, u64), 6017 const char *fmt) 6018 { 6019 int ret; 6020 struct kvm_stat_data *stat_data = inode->i_private; 6021 6022 /* 6023 * The debugfs files are a reference to the kvm struct which 6024 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6025 * avoids the race between open and the removal of the debugfs directory. 6026 */ 6027 if (!kvm_get_kvm_safe(stat_data->kvm)) 6028 return -ENOENT; 6029 6030 ret = simple_attr_open(inode, file, get, 6031 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6032 ? set : NULL, fmt); 6033 if (ret) 6034 kvm_put_kvm(stat_data->kvm); 6035 6036 return ret; 6037 } 6038 6039 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6040 { 6041 struct kvm_stat_data *stat_data = inode->i_private; 6042 6043 simple_attr_release(inode, file); 6044 kvm_put_kvm(stat_data->kvm); 6045 6046 return 0; 6047 } 6048 6049 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6050 { 6051 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6052 6053 return 0; 6054 } 6055 6056 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6057 { 6058 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6059 6060 return 0; 6061 } 6062 6063 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6064 { 6065 unsigned long i; 6066 struct kvm_vcpu *vcpu; 6067 6068 *val = 0; 6069 6070 kvm_for_each_vcpu(i, vcpu, kvm) 6071 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6072 6073 return 0; 6074 } 6075 6076 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6077 { 6078 unsigned long i; 6079 struct kvm_vcpu *vcpu; 6080 6081 kvm_for_each_vcpu(i, vcpu, kvm) 6082 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6083 6084 return 0; 6085 } 6086 6087 static int kvm_stat_data_get(void *data, u64 *val) 6088 { 6089 int r = -EFAULT; 6090 struct kvm_stat_data *stat_data = data; 6091 6092 switch (stat_data->kind) { 6093 case KVM_STAT_VM: 6094 r = kvm_get_stat_per_vm(stat_data->kvm, 6095 stat_data->desc->desc.offset, val); 6096 break; 6097 case KVM_STAT_VCPU: 6098 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6099 stat_data->desc->desc.offset, val); 6100 break; 6101 } 6102 6103 return r; 6104 } 6105 6106 static int kvm_stat_data_clear(void *data, u64 val) 6107 { 6108 int r = -EFAULT; 6109 struct kvm_stat_data *stat_data = data; 6110 6111 if (val) 6112 return -EINVAL; 6113 6114 switch (stat_data->kind) { 6115 case KVM_STAT_VM: 6116 r = kvm_clear_stat_per_vm(stat_data->kvm, 6117 stat_data->desc->desc.offset); 6118 break; 6119 case KVM_STAT_VCPU: 6120 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6121 stat_data->desc->desc.offset); 6122 break; 6123 } 6124 6125 return r; 6126 } 6127 6128 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6129 { 6130 __simple_attr_check_format("%llu\n", 0ull); 6131 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6132 kvm_stat_data_clear, "%llu\n"); 6133 } 6134 6135 static const struct file_operations stat_fops_per_vm = { 6136 .owner = THIS_MODULE, 6137 .open = kvm_stat_data_open, 6138 .release = kvm_debugfs_release, 6139 .read = simple_attr_read, 6140 .write = simple_attr_write, 6141 .llseek = no_llseek, 6142 }; 6143 6144 static int vm_stat_get(void *_offset, u64 *val) 6145 { 6146 unsigned offset = (long)_offset; 6147 struct kvm *kvm; 6148 u64 tmp_val; 6149 6150 *val = 0; 6151 mutex_lock(&kvm_lock); 6152 list_for_each_entry(kvm, &vm_list, vm_list) { 6153 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6154 *val += tmp_val; 6155 } 6156 mutex_unlock(&kvm_lock); 6157 return 0; 6158 } 6159 6160 static int vm_stat_clear(void *_offset, u64 val) 6161 { 6162 unsigned offset = (long)_offset; 6163 struct kvm *kvm; 6164 6165 if (val) 6166 return -EINVAL; 6167 6168 mutex_lock(&kvm_lock); 6169 list_for_each_entry(kvm, &vm_list, vm_list) { 6170 kvm_clear_stat_per_vm(kvm, offset); 6171 } 6172 mutex_unlock(&kvm_lock); 6173 6174 return 0; 6175 } 6176 6177 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6178 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6179 6180 static int vcpu_stat_get(void *_offset, u64 *val) 6181 { 6182 unsigned offset = (long)_offset; 6183 struct kvm *kvm; 6184 u64 tmp_val; 6185 6186 *val = 0; 6187 mutex_lock(&kvm_lock); 6188 list_for_each_entry(kvm, &vm_list, vm_list) { 6189 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6190 *val += tmp_val; 6191 } 6192 mutex_unlock(&kvm_lock); 6193 return 0; 6194 } 6195 6196 static int vcpu_stat_clear(void *_offset, u64 val) 6197 { 6198 unsigned offset = (long)_offset; 6199 struct kvm *kvm; 6200 6201 if (val) 6202 return -EINVAL; 6203 6204 mutex_lock(&kvm_lock); 6205 list_for_each_entry(kvm, &vm_list, vm_list) { 6206 kvm_clear_stat_per_vcpu(kvm, offset); 6207 } 6208 mutex_unlock(&kvm_lock); 6209 6210 return 0; 6211 } 6212 6213 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6214 "%llu\n"); 6215 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6216 6217 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6218 { 6219 struct kobj_uevent_env *env; 6220 unsigned long long created, active; 6221 6222 if (!kvm_dev.this_device || !kvm) 6223 return; 6224 6225 mutex_lock(&kvm_lock); 6226 if (type == KVM_EVENT_CREATE_VM) { 6227 kvm_createvm_count++; 6228 kvm_active_vms++; 6229 } else if (type == KVM_EVENT_DESTROY_VM) { 6230 kvm_active_vms--; 6231 } 6232 created = kvm_createvm_count; 6233 active = kvm_active_vms; 6234 mutex_unlock(&kvm_lock); 6235 6236 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6237 if (!env) 6238 return; 6239 6240 add_uevent_var(env, "CREATED=%llu", created); 6241 add_uevent_var(env, "COUNT=%llu", active); 6242 6243 if (type == KVM_EVENT_CREATE_VM) { 6244 add_uevent_var(env, "EVENT=create"); 6245 kvm->userspace_pid = task_pid_nr(current); 6246 } else if (type == KVM_EVENT_DESTROY_VM) { 6247 add_uevent_var(env, "EVENT=destroy"); 6248 } 6249 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6250 6251 if (!IS_ERR(kvm->debugfs_dentry)) { 6252 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6253 6254 if (p) { 6255 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6256 if (!IS_ERR(tmp)) 6257 add_uevent_var(env, "STATS_PATH=%s", tmp); 6258 kfree(p); 6259 } 6260 } 6261 /* no need for checks, since we are adding at most only 5 keys */ 6262 env->envp[env->envp_idx++] = NULL; 6263 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6264 kfree(env); 6265 } 6266 6267 static void kvm_init_debug(void) 6268 { 6269 const struct file_operations *fops; 6270 const struct _kvm_stats_desc *pdesc; 6271 int i; 6272 6273 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6274 6275 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6276 pdesc = &kvm_vm_stats_desc[i]; 6277 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6278 fops = &vm_stat_fops; 6279 else 6280 fops = &vm_stat_readonly_fops; 6281 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6282 kvm_debugfs_dir, 6283 (void *)(long)pdesc->desc.offset, fops); 6284 } 6285 6286 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6287 pdesc = &kvm_vcpu_stats_desc[i]; 6288 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6289 fops = &vcpu_stat_fops; 6290 else 6291 fops = &vcpu_stat_readonly_fops; 6292 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6293 kvm_debugfs_dir, 6294 (void *)(long)pdesc->desc.offset, fops); 6295 } 6296 } 6297 6298 static inline 6299 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6300 { 6301 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6302 } 6303 6304 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6305 { 6306 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6307 6308 WRITE_ONCE(vcpu->preempted, false); 6309 WRITE_ONCE(vcpu->ready, false); 6310 6311 __this_cpu_write(kvm_running_vcpu, vcpu); 6312 kvm_arch_sched_in(vcpu, cpu); 6313 kvm_arch_vcpu_load(vcpu, cpu); 6314 } 6315 6316 static void kvm_sched_out(struct preempt_notifier *pn, 6317 struct task_struct *next) 6318 { 6319 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6320 6321 if (current->on_rq) { 6322 WRITE_ONCE(vcpu->preempted, true); 6323 WRITE_ONCE(vcpu->ready, true); 6324 } 6325 kvm_arch_vcpu_put(vcpu); 6326 __this_cpu_write(kvm_running_vcpu, NULL); 6327 } 6328 6329 /** 6330 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6331 * 6332 * We can disable preemption locally around accessing the per-CPU variable, 6333 * and use the resolved vcpu pointer after enabling preemption again, 6334 * because even if the current thread is migrated to another CPU, reading 6335 * the per-CPU value later will give us the same value as we update the 6336 * per-CPU variable in the preempt notifier handlers. 6337 */ 6338 struct kvm_vcpu *kvm_get_running_vcpu(void) 6339 { 6340 struct kvm_vcpu *vcpu; 6341 6342 preempt_disable(); 6343 vcpu = __this_cpu_read(kvm_running_vcpu); 6344 preempt_enable(); 6345 6346 return vcpu; 6347 } 6348 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6349 6350 /** 6351 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6352 */ 6353 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6354 { 6355 return &kvm_running_vcpu; 6356 } 6357 6358 #ifdef CONFIG_GUEST_PERF_EVENTS 6359 static unsigned int kvm_guest_state(void) 6360 { 6361 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6362 unsigned int state; 6363 6364 if (!kvm_arch_pmi_in_guest(vcpu)) 6365 return 0; 6366 6367 state = PERF_GUEST_ACTIVE; 6368 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6369 state |= PERF_GUEST_USER; 6370 6371 return state; 6372 } 6373 6374 static unsigned long kvm_guest_get_ip(void) 6375 { 6376 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6377 6378 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6379 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6380 return 0; 6381 6382 return kvm_arch_vcpu_get_ip(vcpu); 6383 } 6384 6385 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6386 .state = kvm_guest_state, 6387 .get_ip = kvm_guest_get_ip, 6388 .handle_intel_pt_intr = NULL, 6389 }; 6390 6391 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6392 { 6393 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6394 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6395 } 6396 void kvm_unregister_perf_callbacks(void) 6397 { 6398 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6399 } 6400 #endif 6401 6402 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6403 { 6404 int r; 6405 int cpu; 6406 6407 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6408 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6409 kvm_online_cpu, kvm_offline_cpu); 6410 if (r) 6411 return r; 6412 6413 register_syscore_ops(&kvm_syscore_ops); 6414 #endif 6415 6416 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6417 if (!vcpu_align) 6418 vcpu_align = __alignof__(struct kvm_vcpu); 6419 kvm_vcpu_cache = 6420 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6421 SLAB_ACCOUNT, 6422 offsetof(struct kvm_vcpu, arch), 6423 offsetofend(struct kvm_vcpu, stats_id) 6424 - offsetof(struct kvm_vcpu, arch), 6425 NULL); 6426 if (!kvm_vcpu_cache) { 6427 r = -ENOMEM; 6428 goto err_vcpu_cache; 6429 } 6430 6431 for_each_possible_cpu(cpu) { 6432 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6433 GFP_KERNEL, cpu_to_node(cpu))) { 6434 r = -ENOMEM; 6435 goto err_cpu_kick_mask; 6436 } 6437 } 6438 6439 r = kvm_irqfd_init(); 6440 if (r) 6441 goto err_irqfd; 6442 6443 r = kvm_async_pf_init(); 6444 if (r) 6445 goto err_async_pf; 6446 6447 kvm_chardev_ops.owner = module; 6448 kvm_vm_fops.owner = module; 6449 kvm_vcpu_fops.owner = module; 6450 kvm_device_fops.owner = module; 6451 6452 kvm_preempt_ops.sched_in = kvm_sched_in; 6453 kvm_preempt_ops.sched_out = kvm_sched_out; 6454 6455 kvm_init_debug(); 6456 6457 r = kvm_vfio_ops_init(); 6458 if (WARN_ON_ONCE(r)) 6459 goto err_vfio; 6460 6461 kvm_gmem_init(module); 6462 6463 /* 6464 * Registration _must_ be the very last thing done, as this exposes 6465 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6466 */ 6467 r = misc_register(&kvm_dev); 6468 if (r) { 6469 pr_err("kvm: misc device register failed\n"); 6470 goto err_register; 6471 } 6472 6473 return 0; 6474 6475 err_register: 6476 kvm_vfio_ops_exit(); 6477 err_vfio: 6478 kvm_async_pf_deinit(); 6479 err_async_pf: 6480 kvm_irqfd_exit(); 6481 err_irqfd: 6482 err_cpu_kick_mask: 6483 for_each_possible_cpu(cpu) 6484 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6485 kmem_cache_destroy(kvm_vcpu_cache); 6486 err_vcpu_cache: 6487 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6488 unregister_syscore_ops(&kvm_syscore_ops); 6489 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6490 #endif 6491 return r; 6492 } 6493 EXPORT_SYMBOL_GPL(kvm_init); 6494 6495 void kvm_exit(void) 6496 { 6497 int cpu; 6498 6499 /* 6500 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6501 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6502 * to KVM while the module is being stopped. 6503 */ 6504 misc_deregister(&kvm_dev); 6505 6506 debugfs_remove_recursive(kvm_debugfs_dir); 6507 for_each_possible_cpu(cpu) 6508 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6509 kmem_cache_destroy(kvm_vcpu_cache); 6510 kvm_vfio_ops_exit(); 6511 kvm_async_pf_deinit(); 6512 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6513 unregister_syscore_ops(&kvm_syscore_ops); 6514 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6515 #endif 6516 kvm_irqfd_exit(); 6517 } 6518 EXPORT_SYMBOL_GPL(kvm_exit); 6519 6520 struct kvm_vm_worker_thread_context { 6521 struct kvm *kvm; 6522 struct task_struct *parent; 6523 struct completion init_done; 6524 kvm_vm_thread_fn_t thread_fn; 6525 uintptr_t data; 6526 int err; 6527 }; 6528 6529 static int kvm_vm_worker_thread(void *context) 6530 { 6531 /* 6532 * The init_context is allocated on the stack of the parent thread, so 6533 * we have to locally copy anything that is needed beyond initialization 6534 */ 6535 struct kvm_vm_worker_thread_context *init_context = context; 6536 struct task_struct *parent; 6537 struct kvm *kvm = init_context->kvm; 6538 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6539 uintptr_t data = init_context->data; 6540 int err; 6541 6542 err = kthread_park(current); 6543 /* kthread_park(current) is never supposed to return an error */ 6544 WARN_ON(err != 0); 6545 if (err) 6546 goto init_complete; 6547 6548 err = cgroup_attach_task_all(init_context->parent, current); 6549 if (err) { 6550 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6551 __func__, err); 6552 goto init_complete; 6553 } 6554 6555 set_user_nice(current, task_nice(init_context->parent)); 6556 6557 init_complete: 6558 init_context->err = err; 6559 complete(&init_context->init_done); 6560 init_context = NULL; 6561 6562 if (err) 6563 goto out; 6564 6565 /* Wait to be woken up by the spawner before proceeding. */ 6566 kthread_parkme(); 6567 6568 if (!kthread_should_stop()) 6569 err = thread_fn(kvm, data); 6570 6571 out: 6572 /* 6573 * Move kthread back to its original cgroup to prevent it lingering in 6574 * the cgroup of the VM process, after the latter finishes its 6575 * execution. 6576 * 6577 * kthread_stop() waits on the 'exited' completion condition which is 6578 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6579 * kthread is removed from the cgroup in the cgroup_exit() which is 6580 * called after the exit_mm(). This causes the kthread_stop() to return 6581 * before the kthread actually quits the cgroup. 6582 */ 6583 rcu_read_lock(); 6584 parent = rcu_dereference(current->real_parent); 6585 get_task_struct(parent); 6586 rcu_read_unlock(); 6587 cgroup_attach_task_all(parent, current); 6588 put_task_struct(parent); 6589 6590 return err; 6591 } 6592 6593 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6594 uintptr_t data, const char *name, 6595 struct task_struct **thread_ptr) 6596 { 6597 struct kvm_vm_worker_thread_context init_context = {}; 6598 struct task_struct *thread; 6599 6600 *thread_ptr = NULL; 6601 init_context.kvm = kvm; 6602 init_context.parent = current; 6603 init_context.thread_fn = thread_fn; 6604 init_context.data = data; 6605 init_completion(&init_context.init_done); 6606 6607 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6608 "%s-%d", name, task_pid_nr(current)); 6609 if (IS_ERR(thread)) 6610 return PTR_ERR(thread); 6611 6612 /* kthread_run is never supposed to return NULL */ 6613 WARN_ON(thread == NULL); 6614 6615 wait_for_completion(&init_context.init_done); 6616 6617 if (!init_context.err) 6618 *thread_ptr = thread; 6619 6620 return init_context.err; 6621 } 6622