xref: /linux/virt/kvm/kvm_main.c (revision 39fee313fdd489480eb2c453535ab73672c39a27)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 				      struct kvm_vcpu *except)
316 {
317 	struct kvm_vcpu *vcpu;
318 	struct cpumask *cpus;
319 	unsigned long i;
320 	bool called;
321 	int me;
322 
323 	me = get_cpu();
324 
325 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 	cpumask_clear(cpus);
327 
328 	kvm_for_each_vcpu(i, vcpu, kvm) {
329 		if (vcpu == except)
330 			continue;
331 		kvm_make_vcpu_request(vcpu, req, cpus, me);
332 	}
333 
334 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 	put_cpu();
336 
337 	return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 	++kvm->stat.generic.remote_tlb_flush_requests;
349 
350 	/*
351 	 * We want to publish modifications to the page tables before reading
352 	 * mode. Pairs with a memory barrier in arch-specific code.
353 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 	 *
357 	 * There is already an smp_mb__after_atomic() before
358 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 	 * barrier here.
360 	 */
361 	if (!kvm_arch_flush_remote_tlbs(kvm)
362 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 		++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 		return;
371 
372 	/*
373 	 * Fall back to a flushing entire TLBs if the architecture range-based
374 	 * TLB invalidation is unsupported or can't be performed for whatever
375 	 * reason.
376 	 */
377 	kvm_flush_remote_tlbs(kvm);
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 				   const struct kvm_memory_slot *memslot)
382 {
383 	/*
384 	 * All current use cases for flushing the TLBs for a specific memslot
385 	 * are related to dirty logging, and many do the TLB flush out of
386 	 * mmu_lock. The interaction between the various operations on memslot
387 	 * must be serialized by slots_locks to ensure the TLB flush from one
388 	 * operation is observed by any other operation on the same memslot.
389 	 */
390 	lockdep_assert_held(&kvm->slots_lock);
391 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 	kvm_arch_flush_shadow_all(kvm);
397 	kvm_arch_guest_memory_reclaimed(kvm);
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 					       gfp_t gfp_flags)
403 {
404 	gfp_flags |= mc->gfp_zero;
405 
406 	if (mc->kmem_cache)
407 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 	else
409 		return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 	void *obj;
416 
417 	if (mc->nobjs >= min)
418 		return 0;
419 
420 	if (unlikely(!mc->objects)) {
421 		if (WARN_ON_ONCE(!capacity))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587 
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
590 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 	     node;							     \
592 	     node = interval_tree_iter_next(node, start, last))	     \
593 
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 							   const struct kvm_mmu_notifier_range *range)
596 {
597 	struct kvm_mmu_notifier_return r = {
598 		.ret = false,
599 		.found_memslot = false,
600 	};
601 	struct kvm_gfn_range gfn_range;
602 	struct kvm_memory_slot *slot;
603 	struct kvm_memslots *slots;
604 	int i, idx;
605 
606 	if (WARN_ON_ONCE(range->end <= range->start))
607 		return r;
608 
609 	/* A null handler is allowed if and only if on_lock() is provided. */
610 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 			 IS_KVM_NULL_FN(range->handler)))
612 		return r;
613 
614 	idx = srcu_read_lock(&kvm->srcu);
615 
616 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 		struct interval_tree_node *node;
618 
619 		slots = __kvm_memslots(kvm, i);
620 		kvm_for_each_memslot_in_hva_range(node, slots,
621 						  range->start, range->end - 1) {
622 			unsigned long hva_start, hva_end;
623 
624 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 			hva_end = min_t(unsigned long, range->end,
627 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628 
629 			/*
630 			 * To optimize for the likely case where the address
631 			 * range is covered by zero or one memslots, don't
632 			 * bother making these conditional (to avoid writes on
633 			 * the second or later invocation of the handler).
634 			 */
635 			gfn_range.arg = range->arg;
636 			gfn_range.may_block = range->may_block;
637 
638 			/*
639 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 			 */
642 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 			gfn_range.slot = slot;
645 
646 			if (!r.found_memslot) {
647 				r.found_memslot = true;
648 				KVM_MMU_LOCK(kvm);
649 				if (!IS_KVM_NULL_FN(range->on_lock))
650 					range->on_lock(kvm);
651 
652 				if (IS_KVM_NULL_FN(range->handler))
653 					break;
654 			}
655 			r.ret |= range->handler(kvm, &gfn_range);
656 		}
657 	}
658 
659 	if (range->flush_on_ret && r.ret)
660 		kvm_flush_remote_tlbs(kvm);
661 
662 	if (r.found_memslot)
663 		KVM_MMU_UNLOCK(kvm);
664 
665 	srcu_read_unlock(&kvm->srcu, idx);
666 
667 	return r;
668 }
669 
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 						unsigned long start,
672 						unsigned long end,
673 						union kvm_mmu_notifier_arg arg,
674 						gfn_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_mmu_notifier_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.arg		= arg,
681 		.handler	= handler,
682 		.on_lock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= true,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689 
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 							 unsigned long start,
692 							 unsigned long end,
693 							 gfn_handler_t handler)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 	const struct kvm_mmu_notifier_range range = {
697 		.start		= start,
698 		.end		= end,
699 		.handler	= handler,
700 		.on_lock	= (void *)kvm_null_fn,
701 		.flush_on_ret	= false,
702 		.may_block	= false,
703 	};
704 
705 	return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707 
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710 	/*
711 	 * Skipping invalid memslots is correct if and only change_pte() is
712 	 * surrounded by invalidate_range_{start,end}(), which is currently
713 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 	 * doesn't hold references to the old PFN.
716 	 */
717 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718 
719 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 		return false;
721 
722 	return kvm_set_spte_gfn(kvm, range);
723 }
724 
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 					struct mm_struct *mm,
727 					unsigned long address,
728 					pte_t pte)
729 {
730 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 	const union kvm_mmu_notifier_arg arg = { .pte = pte };
732 
733 	trace_kvm_set_spte_hva(address);
734 
735 	/*
736 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 	 * If mmu_invalidate_in_progress is zero, then no in-progress
738 	 * invalidations, including this one, found a relevant memslot at
739 	 * start(); rechecking memslots here is unnecessary.  Note, a false
740 	 * positive (count elevated by a different invalidation) is sub-optimal
741 	 * but functionally ok.
742 	 */
743 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 		return;
746 
747 	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749 
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752 	lockdep_assert_held_write(&kvm->mmu_lock);
753 	/*
754 	 * The count increase must become visible at unlock time as no
755 	 * spte can be established without taking the mmu_lock and
756 	 * count is also read inside the mmu_lock critical section.
757 	 */
758 	kvm->mmu_invalidate_in_progress++;
759 
760 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 		kvm->mmu_invalidate_range_start = INVALID_GPA;
762 		kvm->mmu_invalidate_range_end = INVALID_GPA;
763 	}
764 }
765 
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768 	lockdep_assert_held_write(&kvm->mmu_lock);
769 
770 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771 
772 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 		kvm->mmu_invalidate_range_start = start;
774 		kvm->mmu_invalidate_range_end = end;
775 	} else {
776 		/*
777 		 * Fully tracking multiple concurrent ranges has diminishing
778 		 * returns. Keep things simple and just find the minimal range
779 		 * which includes the current and new ranges. As there won't be
780 		 * enough information to subtract a range after its invalidate
781 		 * completes, any ranges invalidated concurrently will
782 		 * accumulate and persist until all outstanding invalidates
783 		 * complete.
784 		 */
785 		kvm->mmu_invalidate_range_start =
786 			min(kvm->mmu_invalidate_range_start, start);
787 		kvm->mmu_invalidate_range_end =
788 			max(kvm->mmu_invalidate_range_end, end);
789 	}
790 }
791 
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 	return kvm_unmap_gfn_range(kvm, range);
796 }
797 
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 					const struct mmu_notifier_range *range)
800 {
801 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 	const struct kvm_mmu_notifier_range hva_range = {
803 		.start		= range->start,
804 		.end		= range->end,
805 		.handler	= kvm_mmu_unmap_gfn_range,
806 		.on_lock	= kvm_mmu_invalidate_begin,
807 		.flush_on_ret	= true,
808 		.may_block	= mmu_notifier_range_blockable(range),
809 	};
810 
811 	trace_kvm_unmap_hva_range(range->start, range->end);
812 
813 	/*
814 	 * Prevent memslot modification between range_start() and range_end()
815 	 * so that conditionally locking provides the same result in both
816 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
817 	 * adjustments will be imbalanced.
818 	 *
819 	 * Pairs with the decrement in range_end().
820 	 */
821 	spin_lock(&kvm->mn_invalidate_lock);
822 	kvm->mn_active_invalidate_count++;
823 	spin_unlock(&kvm->mn_invalidate_lock);
824 
825 	/*
826 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 	 * each cache's lock.  There are relatively few caches in existence at
829 	 * any given time, and the caches themselves can check for hva overlap,
830 	 * i.e. don't need to rely on memslot overlap checks for performance.
831 	 * Because this runs without holding mmu_lock, the pfn caches must use
832 	 * mn_active_invalidate_count (see above) instead of
833 	 * mmu_invalidate_in_progress.
834 	 */
835 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836 					  hva_range.may_block);
837 
838 	/*
839 	 * If one or more memslots were found and thus zapped, notify arch code
840 	 * that guest memory has been reclaimed.  This needs to be done *after*
841 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
842 	 */
843 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844 		kvm_arch_guest_memory_reclaimed(kvm);
845 
846 	return 0;
847 }
848 
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851 	lockdep_assert_held_write(&kvm->mmu_lock);
852 
853 	/*
854 	 * This sequence increase will notify the kvm page fault that
855 	 * the page that is going to be mapped in the spte could have
856 	 * been freed.
857 	 */
858 	kvm->mmu_invalidate_seq++;
859 	smp_wmb();
860 	/*
861 	 * The above sequence increase must be visible before the
862 	 * below count decrease, which is ensured by the smp_wmb above
863 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
864 	 */
865 	kvm->mmu_invalidate_in_progress--;
866 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867 
868 	/*
869 	 * Assert that at least one range was added between start() and end().
870 	 * Not adding a range isn't fatal, but it is a KVM bug.
871 	 */
872 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874 
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876 					const struct mmu_notifier_range *range)
877 {
878 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
879 	const struct kvm_mmu_notifier_range hva_range = {
880 		.start		= range->start,
881 		.end		= range->end,
882 		.handler	= (void *)kvm_null_fn,
883 		.on_lock	= kvm_mmu_invalidate_end,
884 		.flush_on_ret	= false,
885 		.may_block	= mmu_notifier_range_blockable(range),
886 	};
887 	bool wake;
888 
889 	__kvm_handle_hva_range(kvm, &hva_range);
890 
891 	/* Pairs with the increment in range_start(). */
892 	spin_lock(&kvm->mn_invalidate_lock);
893 	wake = (--kvm->mn_active_invalidate_count == 0);
894 	spin_unlock(&kvm->mn_invalidate_lock);
895 
896 	/*
897 	 * There can only be one waiter, since the wait happens under
898 	 * slots_lock.
899 	 */
900 	if (wake)
901 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
902 }
903 
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905 					      struct mm_struct *mm,
906 					      unsigned long start,
907 					      unsigned long end)
908 {
909 	trace_kvm_age_hva(start, end);
910 
911 	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
912 				    kvm_age_gfn);
913 }
914 
915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
916 					struct mm_struct *mm,
917 					unsigned long start,
918 					unsigned long end)
919 {
920 	trace_kvm_age_hva(start, end);
921 
922 	/*
923 	 * Even though we do not flush TLB, this will still adversely
924 	 * affect performance on pre-Haswell Intel EPT, where there is
925 	 * no EPT Access Bit to clear so that we have to tear down EPT
926 	 * tables instead. If we find this unacceptable, we can always
927 	 * add a parameter to kvm_age_hva so that it effectively doesn't
928 	 * do anything on clear_young.
929 	 *
930 	 * Also note that currently we never issue secondary TLB flushes
931 	 * from clear_young, leaving this job up to the regular system
932 	 * cadence. If we find this inaccurate, we might come up with a
933 	 * more sophisticated heuristic later.
934 	 */
935 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
936 }
937 
938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
939 				       struct mm_struct *mm,
940 				       unsigned long address)
941 {
942 	trace_kvm_test_age_hva(address);
943 
944 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
945 					     kvm_test_age_gfn);
946 }
947 
948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
949 				     struct mm_struct *mm)
950 {
951 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
952 	int idx;
953 
954 	idx = srcu_read_lock(&kvm->srcu);
955 	kvm_flush_shadow_all(kvm);
956 	srcu_read_unlock(&kvm->srcu, idx);
957 }
958 
959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
960 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
961 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
962 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
963 	.clear_young		= kvm_mmu_notifier_clear_young,
964 	.test_young		= kvm_mmu_notifier_test_young,
965 	.change_pte		= kvm_mmu_notifier_change_pte,
966 	.release		= kvm_mmu_notifier_release,
967 };
968 
969 static int kvm_init_mmu_notifier(struct kvm *kvm)
970 {
971 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
972 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
973 }
974 
975 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
976 
977 static int kvm_init_mmu_notifier(struct kvm *kvm)
978 {
979 	return 0;
980 }
981 
982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
983 
984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
985 static int kvm_pm_notifier_call(struct notifier_block *bl,
986 				unsigned long state,
987 				void *unused)
988 {
989 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
990 
991 	return kvm_arch_pm_notifier(kvm, state);
992 }
993 
994 static void kvm_init_pm_notifier(struct kvm *kvm)
995 {
996 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
997 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
998 	kvm->pm_notifier.priority = INT_MAX;
999 	register_pm_notifier(&kvm->pm_notifier);
1000 }
1001 
1002 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1003 {
1004 	unregister_pm_notifier(&kvm->pm_notifier);
1005 }
1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1007 static void kvm_init_pm_notifier(struct kvm *kvm)
1008 {
1009 }
1010 
1011 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1012 {
1013 }
1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1015 
1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1017 {
1018 	if (!memslot->dirty_bitmap)
1019 		return;
1020 
1021 	kvfree(memslot->dirty_bitmap);
1022 	memslot->dirty_bitmap = NULL;
1023 }
1024 
1025 /* This does not remove the slot from struct kvm_memslots data structures */
1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1027 {
1028 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
1029 		kvm_gmem_unbind(slot);
1030 
1031 	kvm_destroy_dirty_bitmap(slot);
1032 
1033 	kvm_arch_free_memslot(kvm, slot);
1034 
1035 	kfree(slot);
1036 }
1037 
1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1039 {
1040 	struct hlist_node *idnode;
1041 	struct kvm_memory_slot *memslot;
1042 	int bkt;
1043 
1044 	/*
1045 	 * The same memslot objects live in both active and inactive sets,
1046 	 * arbitrarily free using index '1' so the second invocation of this
1047 	 * function isn't operating over a structure with dangling pointers
1048 	 * (even though this function isn't actually touching them).
1049 	 */
1050 	if (!slots->node_idx)
1051 		return;
1052 
1053 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1054 		kvm_free_memslot(kvm, memslot);
1055 }
1056 
1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1058 {
1059 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1060 	case KVM_STATS_TYPE_INSTANT:
1061 		return 0444;
1062 	case KVM_STATS_TYPE_CUMULATIVE:
1063 	case KVM_STATS_TYPE_PEAK:
1064 	default:
1065 		return 0644;
1066 	}
1067 }
1068 
1069 
1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1071 {
1072 	int i;
1073 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1074 				      kvm_vcpu_stats_header.num_desc;
1075 
1076 	if (IS_ERR(kvm->debugfs_dentry))
1077 		return;
1078 
1079 	debugfs_remove_recursive(kvm->debugfs_dentry);
1080 
1081 	if (kvm->debugfs_stat_data) {
1082 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1083 			kfree(kvm->debugfs_stat_data[i]);
1084 		kfree(kvm->debugfs_stat_data);
1085 	}
1086 }
1087 
1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1089 {
1090 	static DEFINE_MUTEX(kvm_debugfs_lock);
1091 	struct dentry *dent;
1092 	char dir_name[ITOA_MAX_LEN * 2];
1093 	struct kvm_stat_data *stat_data;
1094 	const struct _kvm_stats_desc *pdesc;
1095 	int i, ret = -ENOMEM;
1096 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1097 				      kvm_vcpu_stats_header.num_desc;
1098 
1099 	if (!debugfs_initialized())
1100 		return 0;
1101 
1102 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1103 	mutex_lock(&kvm_debugfs_lock);
1104 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1105 	if (dent) {
1106 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1107 		dput(dent);
1108 		mutex_unlock(&kvm_debugfs_lock);
1109 		return 0;
1110 	}
1111 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1112 	mutex_unlock(&kvm_debugfs_lock);
1113 	if (IS_ERR(dent))
1114 		return 0;
1115 
1116 	kvm->debugfs_dentry = dent;
1117 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1118 					 sizeof(*kvm->debugfs_stat_data),
1119 					 GFP_KERNEL_ACCOUNT);
1120 	if (!kvm->debugfs_stat_data)
1121 		goto out_err;
1122 
1123 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1124 		pdesc = &kvm_vm_stats_desc[i];
1125 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1126 		if (!stat_data)
1127 			goto out_err;
1128 
1129 		stat_data->kvm = kvm;
1130 		stat_data->desc = pdesc;
1131 		stat_data->kind = KVM_STAT_VM;
1132 		kvm->debugfs_stat_data[i] = stat_data;
1133 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1134 				    kvm->debugfs_dentry, stat_data,
1135 				    &stat_fops_per_vm);
1136 	}
1137 
1138 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1139 		pdesc = &kvm_vcpu_stats_desc[i];
1140 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1141 		if (!stat_data)
1142 			goto out_err;
1143 
1144 		stat_data->kvm = kvm;
1145 		stat_data->desc = pdesc;
1146 		stat_data->kind = KVM_STAT_VCPU;
1147 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1148 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1149 				    kvm->debugfs_dentry, stat_data,
1150 				    &stat_fops_per_vm);
1151 	}
1152 
1153 	ret = kvm_arch_create_vm_debugfs(kvm);
1154 	if (ret)
1155 		goto out_err;
1156 
1157 	return 0;
1158 out_err:
1159 	kvm_destroy_vm_debugfs(kvm);
1160 	return ret;
1161 }
1162 
1163 /*
1164  * Called after the VM is otherwise initialized, but just before adding it to
1165  * the vm_list.
1166  */
1167 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1168 {
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Called just after removing the VM from the vm_list, but before doing any
1174  * other destruction.
1175  */
1176 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1177 {
1178 }
1179 
1180 /*
1181  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1182  * be setup already, so we can create arch-specific debugfs entries under it.
1183  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1184  * a per-arch destroy interface is not needed.
1185  */
1186 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1187 {
1188 	return 0;
1189 }
1190 
1191 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1192 {
1193 	struct kvm *kvm = kvm_arch_alloc_vm();
1194 	struct kvm_memslots *slots;
1195 	int r = -ENOMEM;
1196 	int i, j;
1197 
1198 	if (!kvm)
1199 		return ERR_PTR(-ENOMEM);
1200 
1201 	KVM_MMU_LOCK_INIT(kvm);
1202 	mmgrab(current->mm);
1203 	kvm->mm = current->mm;
1204 	kvm_eventfd_init(kvm);
1205 	mutex_init(&kvm->lock);
1206 	mutex_init(&kvm->irq_lock);
1207 	mutex_init(&kvm->slots_lock);
1208 	mutex_init(&kvm->slots_arch_lock);
1209 	spin_lock_init(&kvm->mn_invalidate_lock);
1210 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1211 	xa_init(&kvm->vcpu_array);
1212 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1213 	xa_init(&kvm->mem_attr_array);
1214 #endif
1215 
1216 	INIT_LIST_HEAD(&kvm->gpc_list);
1217 	spin_lock_init(&kvm->gpc_lock);
1218 
1219 	INIT_LIST_HEAD(&kvm->devices);
1220 	kvm->max_vcpus = KVM_MAX_VCPUS;
1221 
1222 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1223 
1224 	/*
1225 	 * Force subsequent debugfs file creations to fail if the VM directory
1226 	 * is not created (by kvm_create_vm_debugfs()).
1227 	 */
1228 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1229 
1230 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1231 		 task_pid_nr(current));
1232 
1233 	if (init_srcu_struct(&kvm->srcu))
1234 		goto out_err_no_srcu;
1235 	if (init_srcu_struct(&kvm->irq_srcu))
1236 		goto out_err_no_irq_srcu;
1237 
1238 	refcount_set(&kvm->users_count, 1);
1239 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1240 		for (j = 0; j < 2; j++) {
1241 			slots = &kvm->__memslots[i][j];
1242 
1243 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1244 			slots->hva_tree = RB_ROOT_CACHED;
1245 			slots->gfn_tree = RB_ROOT;
1246 			hash_init(slots->id_hash);
1247 			slots->node_idx = j;
1248 
1249 			/* Generations must be different for each address space. */
1250 			slots->generation = i;
1251 		}
1252 
1253 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1254 	}
1255 
1256 	for (i = 0; i < KVM_NR_BUSES; i++) {
1257 		rcu_assign_pointer(kvm->buses[i],
1258 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1259 		if (!kvm->buses[i])
1260 			goto out_err_no_arch_destroy_vm;
1261 	}
1262 
1263 	r = kvm_arch_init_vm(kvm, type);
1264 	if (r)
1265 		goto out_err_no_arch_destroy_vm;
1266 
1267 	r = hardware_enable_all();
1268 	if (r)
1269 		goto out_err_no_disable;
1270 
1271 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1272 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1273 #endif
1274 
1275 	r = kvm_init_mmu_notifier(kvm);
1276 	if (r)
1277 		goto out_err_no_mmu_notifier;
1278 
1279 	r = kvm_coalesced_mmio_init(kvm);
1280 	if (r < 0)
1281 		goto out_no_coalesced_mmio;
1282 
1283 	r = kvm_create_vm_debugfs(kvm, fdname);
1284 	if (r)
1285 		goto out_err_no_debugfs;
1286 
1287 	r = kvm_arch_post_init_vm(kvm);
1288 	if (r)
1289 		goto out_err;
1290 
1291 	mutex_lock(&kvm_lock);
1292 	list_add(&kvm->vm_list, &vm_list);
1293 	mutex_unlock(&kvm_lock);
1294 
1295 	preempt_notifier_inc();
1296 	kvm_init_pm_notifier(kvm);
1297 
1298 	return kvm;
1299 
1300 out_err:
1301 	kvm_destroy_vm_debugfs(kvm);
1302 out_err_no_debugfs:
1303 	kvm_coalesced_mmio_free(kvm);
1304 out_no_coalesced_mmio:
1305 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1306 	if (kvm->mmu_notifier.ops)
1307 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1308 #endif
1309 out_err_no_mmu_notifier:
1310 	hardware_disable_all();
1311 out_err_no_disable:
1312 	kvm_arch_destroy_vm(kvm);
1313 out_err_no_arch_destroy_vm:
1314 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1315 	for (i = 0; i < KVM_NR_BUSES; i++)
1316 		kfree(kvm_get_bus(kvm, i));
1317 	cleanup_srcu_struct(&kvm->irq_srcu);
1318 out_err_no_irq_srcu:
1319 	cleanup_srcu_struct(&kvm->srcu);
1320 out_err_no_srcu:
1321 	kvm_arch_free_vm(kvm);
1322 	mmdrop(current->mm);
1323 	return ERR_PTR(r);
1324 }
1325 
1326 static void kvm_destroy_devices(struct kvm *kvm)
1327 {
1328 	struct kvm_device *dev, *tmp;
1329 
1330 	/*
1331 	 * We do not need to take the kvm->lock here, because nobody else
1332 	 * has a reference to the struct kvm at this point and therefore
1333 	 * cannot access the devices list anyhow.
1334 	 */
1335 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1336 		list_del(&dev->vm_node);
1337 		dev->ops->destroy(dev);
1338 	}
1339 }
1340 
1341 static void kvm_destroy_vm(struct kvm *kvm)
1342 {
1343 	int i;
1344 	struct mm_struct *mm = kvm->mm;
1345 
1346 	kvm_destroy_pm_notifier(kvm);
1347 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1348 	kvm_destroy_vm_debugfs(kvm);
1349 	kvm_arch_sync_events(kvm);
1350 	mutex_lock(&kvm_lock);
1351 	list_del(&kvm->vm_list);
1352 	mutex_unlock(&kvm_lock);
1353 	kvm_arch_pre_destroy_vm(kvm);
1354 
1355 	kvm_free_irq_routing(kvm);
1356 	for (i = 0; i < KVM_NR_BUSES; i++) {
1357 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1358 
1359 		if (bus)
1360 			kvm_io_bus_destroy(bus);
1361 		kvm->buses[i] = NULL;
1362 	}
1363 	kvm_coalesced_mmio_free(kvm);
1364 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1365 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1366 	/*
1367 	 * At this point, pending calls to invalidate_range_start()
1368 	 * have completed but no more MMU notifiers will run, so
1369 	 * mn_active_invalidate_count may remain unbalanced.
1370 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1371 	 * last reference on KVM has been dropped, but freeing
1372 	 * memslots would deadlock without this manual intervention.
1373 	 *
1374 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1375 	 * notifier between a start() and end(), then there shouldn't be any
1376 	 * in-progress invalidations.
1377 	 */
1378 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1379 	if (kvm->mn_active_invalidate_count)
1380 		kvm->mn_active_invalidate_count = 0;
1381 	else
1382 		WARN_ON(kvm->mmu_invalidate_in_progress);
1383 #else
1384 	kvm_flush_shadow_all(kvm);
1385 #endif
1386 	kvm_arch_destroy_vm(kvm);
1387 	kvm_destroy_devices(kvm);
1388 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1389 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1390 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1391 	}
1392 	cleanup_srcu_struct(&kvm->irq_srcu);
1393 	cleanup_srcu_struct(&kvm->srcu);
1394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1395 	xa_destroy(&kvm->mem_attr_array);
1396 #endif
1397 	kvm_arch_free_vm(kvm);
1398 	preempt_notifier_dec();
1399 	hardware_disable_all();
1400 	mmdrop(mm);
1401 }
1402 
1403 void kvm_get_kvm(struct kvm *kvm)
1404 {
1405 	refcount_inc(&kvm->users_count);
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1408 
1409 /*
1410  * Make sure the vm is not during destruction, which is a safe version of
1411  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1412  */
1413 bool kvm_get_kvm_safe(struct kvm *kvm)
1414 {
1415 	return refcount_inc_not_zero(&kvm->users_count);
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1418 
1419 void kvm_put_kvm(struct kvm *kvm)
1420 {
1421 	if (refcount_dec_and_test(&kvm->users_count))
1422 		kvm_destroy_vm(kvm);
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1425 
1426 /*
1427  * Used to put a reference that was taken on behalf of an object associated
1428  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1429  * of the new file descriptor fails and the reference cannot be transferred to
1430  * its final owner.  In such cases, the caller is still actively using @kvm and
1431  * will fail miserably if the refcount unexpectedly hits zero.
1432  */
1433 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1434 {
1435 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1436 }
1437 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1438 
1439 static int kvm_vm_release(struct inode *inode, struct file *filp)
1440 {
1441 	struct kvm *kvm = filp->private_data;
1442 
1443 	kvm_irqfd_release(kvm);
1444 
1445 	kvm_put_kvm(kvm);
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Allocation size is twice as large as the actual dirty bitmap size.
1451  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1452  */
1453 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1454 {
1455 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1456 
1457 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1458 	if (!memslot->dirty_bitmap)
1459 		return -ENOMEM;
1460 
1461 	return 0;
1462 }
1463 
1464 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1465 {
1466 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1467 	int node_idx_inactive = active->node_idx ^ 1;
1468 
1469 	return &kvm->__memslots[as_id][node_idx_inactive];
1470 }
1471 
1472 /*
1473  * Helper to get the address space ID when one of memslot pointers may be NULL.
1474  * This also serves as a sanity that at least one of the pointers is non-NULL,
1475  * and that their address space IDs don't diverge.
1476  */
1477 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1478 				  struct kvm_memory_slot *b)
1479 {
1480 	if (WARN_ON_ONCE(!a && !b))
1481 		return 0;
1482 
1483 	if (!a)
1484 		return b->as_id;
1485 	if (!b)
1486 		return a->as_id;
1487 
1488 	WARN_ON_ONCE(a->as_id != b->as_id);
1489 	return a->as_id;
1490 }
1491 
1492 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1493 				struct kvm_memory_slot *slot)
1494 {
1495 	struct rb_root *gfn_tree = &slots->gfn_tree;
1496 	struct rb_node **node, *parent;
1497 	int idx = slots->node_idx;
1498 
1499 	parent = NULL;
1500 	for (node = &gfn_tree->rb_node; *node; ) {
1501 		struct kvm_memory_slot *tmp;
1502 
1503 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1504 		parent = *node;
1505 		if (slot->base_gfn < tmp->base_gfn)
1506 			node = &(*node)->rb_left;
1507 		else if (slot->base_gfn > tmp->base_gfn)
1508 			node = &(*node)->rb_right;
1509 		else
1510 			BUG();
1511 	}
1512 
1513 	rb_link_node(&slot->gfn_node[idx], parent, node);
1514 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1515 }
1516 
1517 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1518 			       struct kvm_memory_slot *slot)
1519 {
1520 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1521 }
1522 
1523 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1524 				 struct kvm_memory_slot *old,
1525 				 struct kvm_memory_slot *new)
1526 {
1527 	int idx = slots->node_idx;
1528 
1529 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1530 
1531 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1532 			&slots->gfn_tree);
1533 }
1534 
1535 /*
1536  * Replace @old with @new in the inactive memslots.
1537  *
1538  * With NULL @old this simply adds @new.
1539  * With NULL @new this simply removes @old.
1540  *
1541  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1542  * appropriately.
1543  */
1544 static void kvm_replace_memslot(struct kvm *kvm,
1545 				struct kvm_memory_slot *old,
1546 				struct kvm_memory_slot *new)
1547 {
1548 	int as_id = kvm_memslots_get_as_id(old, new);
1549 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1550 	int idx = slots->node_idx;
1551 
1552 	if (old) {
1553 		hash_del(&old->id_node[idx]);
1554 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1555 
1556 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1557 			atomic_long_set(&slots->last_used_slot, (long)new);
1558 
1559 		if (!new) {
1560 			kvm_erase_gfn_node(slots, old);
1561 			return;
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * Initialize @new's hva range.  Do this even when replacing an @old
1567 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1568 	 */
1569 	new->hva_node[idx].start = new->userspace_addr;
1570 	new->hva_node[idx].last = new->userspace_addr +
1571 				  (new->npages << PAGE_SHIFT) - 1;
1572 
1573 	/*
1574 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1575 	 * hva_node needs to be swapped with remove+insert even though hva can't
1576 	 * change when replacing an existing slot.
1577 	 */
1578 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1579 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1580 
1581 	/*
1582 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1583 	 * switch the node in the gfn tree instead of removing the old and
1584 	 * inserting the new as two separate operations. Replacement is a
1585 	 * single O(1) operation versus two O(log(n)) operations for
1586 	 * remove+insert.
1587 	 */
1588 	if (old && old->base_gfn == new->base_gfn) {
1589 		kvm_replace_gfn_node(slots, old, new);
1590 	} else {
1591 		if (old)
1592 			kvm_erase_gfn_node(slots, old);
1593 		kvm_insert_gfn_node(slots, new);
1594 	}
1595 }
1596 
1597 /*
1598  * Flags that do not access any of the extra space of struct
1599  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1600  * only allows these.
1601  */
1602 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1603 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1604 
1605 static int check_memory_region_flags(struct kvm *kvm,
1606 				     const struct kvm_userspace_memory_region2 *mem)
1607 {
1608 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1609 
1610 	if (kvm_arch_has_private_mem(kvm))
1611 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1612 
1613 	/* Dirty logging private memory is not currently supported. */
1614 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1615 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1616 
1617 #ifdef __KVM_HAVE_READONLY_MEM
1618 	/*
1619 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1620 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1621 	 * and KVM doesn't allow emulated MMIO for private memory.
1622 	 */
1623 	if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1624 		valid_flags |= KVM_MEM_READONLY;
1625 #endif
1626 
1627 	if (mem->flags & ~valid_flags)
1628 		return -EINVAL;
1629 
1630 	return 0;
1631 }
1632 
1633 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1634 {
1635 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1636 
1637 	/* Grab the generation from the activate memslots. */
1638 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1639 
1640 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1641 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1642 
1643 	/*
1644 	 * Do not store the new memslots while there are invalidations in
1645 	 * progress, otherwise the locking in invalidate_range_start and
1646 	 * invalidate_range_end will be unbalanced.
1647 	 */
1648 	spin_lock(&kvm->mn_invalidate_lock);
1649 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1650 	while (kvm->mn_active_invalidate_count) {
1651 		set_current_state(TASK_UNINTERRUPTIBLE);
1652 		spin_unlock(&kvm->mn_invalidate_lock);
1653 		schedule();
1654 		spin_lock(&kvm->mn_invalidate_lock);
1655 	}
1656 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1657 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1658 	spin_unlock(&kvm->mn_invalidate_lock);
1659 
1660 	/*
1661 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1662 	 * SRCU below in order to avoid deadlock with another thread
1663 	 * acquiring the slots_arch_lock in an srcu critical section.
1664 	 */
1665 	mutex_unlock(&kvm->slots_arch_lock);
1666 
1667 	synchronize_srcu_expedited(&kvm->srcu);
1668 
1669 	/*
1670 	 * Increment the new memslot generation a second time, dropping the
1671 	 * update in-progress flag and incrementing the generation based on
1672 	 * the number of address spaces.  This provides a unique and easily
1673 	 * identifiable generation number while the memslots are in flux.
1674 	 */
1675 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1676 
1677 	/*
1678 	 * Generations must be unique even across address spaces.  We do not need
1679 	 * a global counter for that, instead the generation space is evenly split
1680 	 * across address spaces.  For example, with two address spaces, address
1681 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1682 	 * use generations 1, 3, 5, ...
1683 	 */
1684 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1685 
1686 	kvm_arch_memslots_updated(kvm, gen);
1687 
1688 	slots->generation = gen;
1689 }
1690 
1691 static int kvm_prepare_memory_region(struct kvm *kvm,
1692 				     const struct kvm_memory_slot *old,
1693 				     struct kvm_memory_slot *new,
1694 				     enum kvm_mr_change change)
1695 {
1696 	int r;
1697 
1698 	/*
1699 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1700 	 * will be freed on "commit".  If logging is enabled in both old and
1701 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1702 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1703 	 * new bitmap.
1704 	 */
1705 	if (change != KVM_MR_DELETE) {
1706 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1707 			new->dirty_bitmap = NULL;
1708 		else if (old && old->dirty_bitmap)
1709 			new->dirty_bitmap = old->dirty_bitmap;
1710 		else if (kvm_use_dirty_bitmap(kvm)) {
1711 			r = kvm_alloc_dirty_bitmap(new);
1712 			if (r)
1713 				return r;
1714 
1715 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1716 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1717 		}
1718 	}
1719 
1720 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1721 
1722 	/* Free the bitmap on failure if it was allocated above. */
1723 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1724 		kvm_destroy_dirty_bitmap(new);
1725 
1726 	return r;
1727 }
1728 
1729 static void kvm_commit_memory_region(struct kvm *kvm,
1730 				     struct kvm_memory_slot *old,
1731 				     const struct kvm_memory_slot *new,
1732 				     enum kvm_mr_change change)
1733 {
1734 	int old_flags = old ? old->flags : 0;
1735 	int new_flags = new ? new->flags : 0;
1736 	/*
1737 	 * Update the total number of memslot pages before calling the arch
1738 	 * hook so that architectures can consume the result directly.
1739 	 */
1740 	if (change == KVM_MR_DELETE)
1741 		kvm->nr_memslot_pages -= old->npages;
1742 	else if (change == KVM_MR_CREATE)
1743 		kvm->nr_memslot_pages += new->npages;
1744 
1745 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1746 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1747 		atomic_set(&kvm->nr_memslots_dirty_logging,
1748 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1749 	}
1750 
1751 	kvm_arch_commit_memory_region(kvm, old, new, change);
1752 
1753 	switch (change) {
1754 	case KVM_MR_CREATE:
1755 		/* Nothing more to do. */
1756 		break;
1757 	case KVM_MR_DELETE:
1758 		/* Free the old memslot and all its metadata. */
1759 		kvm_free_memslot(kvm, old);
1760 		break;
1761 	case KVM_MR_MOVE:
1762 	case KVM_MR_FLAGS_ONLY:
1763 		/*
1764 		 * Free the dirty bitmap as needed; the below check encompasses
1765 		 * both the flags and whether a ring buffer is being used)
1766 		 */
1767 		if (old->dirty_bitmap && !new->dirty_bitmap)
1768 			kvm_destroy_dirty_bitmap(old);
1769 
1770 		/*
1771 		 * The final quirk.  Free the detached, old slot, but only its
1772 		 * memory, not any metadata.  Metadata, including arch specific
1773 		 * data, may be reused by @new.
1774 		 */
1775 		kfree(old);
1776 		break;
1777 	default:
1778 		BUG();
1779 	}
1780 }
1781 
1782 /*
1783  * Activate @new, which must be installed in the inactive slots by the caller,
1784  * by swapping the active slots and then propagating @new to @old once @old is
1785  * unreachable and can be safely modified.
1786  *
1787  * With NULL @old this simply adds @new to @active (while swapping the sets).
1788  * With NULL @new this simply removes @old from @active and frees it
1789  * (while also swapping the sets).
1790  */
1791 static void kvm_activate_memslot(struct kvm *kvm,
1792 				 struct kvm_memory_slot *old,
1793 				 struct kvm_memory_slot *new)
1794 {
1795 	int as_id = kvm_memslots_get_as_id(old, new);
1796 
1797 	kvm_swap_active_memslots(kvm, as_id);
1798 
1799 	/* Propagate the new memslot to the now inactive memslots. */
1800 	kvm_replace_memslot(kvm, old, new);
1801 }
1802 
1803 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1804 			     const struct kvm_memory_slot *src)
1805 {
1806 	dest->base_gfn = src->base_gfn;
1807 	dest->npages = src->npages;
1808 	dest->dirty_bitmap = src->dirty_bitmap;
1809 	dest->arch = src->arch;
1810 	dest->userspace_addr = src->userspace_addr;
1811 	dest->flags = src->flags;
1812 	dest->id = src->id;
1813 	dest->as_id = src->as_id;
1814 }
1815 
1816 static void kvm_invalidate_memslot(struct kvm *kvm,
1817 				   struct kvm_memory_slot *old,
1818 				   struct kvm_memory_slot *invalid_slot)
1819 {
1820 	/*
1821 	 * Mark the current slot INVALID.  As with all memslot modifications,
1822 	 * this must be done on an unreachable slot to avoid modifying the
1823 	 * current slot in the active tree.
1824 	 */
1825 	kvm_copy_memslot(invalid_slot, old);
1826 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1827 	kvm_replace_memslot(kvm, old, invalid_slot);
1828 
1829 	/*
1830 	 * Activate the slot that is now marked INVALID, but don't propagate
1831 	 * the slot to the now inactive slots. The slot is either going to be
1832 	 * deleted or recreated as a new slot.
1833 	 */
1834 	kvm_swap_active_memslots(kvm, old->as_id);
1835 
1836 	/*
1837 	 * From this point no new shadow pages pointing to a deleted, or moved,
1838 	 * memslot will be created.  Validation of sp->gfn happens in:
1839 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1840 	 *	- kvm_is_visible_gfn (mmu_check_root)
1841 	 */
1842 	kvm_arch_flush_shadow_memslot(kvm, old);
1843 	kvm_arch_guest_memory_reclaimed(kvm);
1844 
1845 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1846 	mutex_lock(&kvm->slots_arch_lock);
1847 
1848 	/*
1849 	 * Copy the arch-specific field of the newly-installed slot back to the
1850 	 * old slot as the arch data could have changed between releasing
1851 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1852 	 * above.  Writers are required to retrieve memslots *after* acquiring
1853 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1854 	 */
1855 	old->arch = invalid_slot->arch;
1856 }
1857 
1858 static void kvm_create_memslot(struct kvm *kvm,
1859 			       struct kvm_memory_slot *new)
1860 {
1861 	/* Add the new memslot to the inactive set and activate. */
1862 	kvm_replace_memslot(kvm, NULL, new);
1863 	kvm_activate_memslot(kvm, NULL, new);
1864 }
1865 
1866 static void kvm_delete_memslot(struct kvm *kvm,
1867 			       struct kvm_memory_slot *old,
1868 			       struct kvm_memory_slot *invalid_slot)
1869 {
1870 	/*
1871 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1872 	 * the "new" slot, and for the invalid version in the active slots.
1873 	 */
1874 	kvm_replace_memslot(kvm, old, NULL);
1875 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1876 }
1877 
1878 static void kvm_move_memslot(struct kvm *kvm,
1879 			     struct kvm_memory_slot *old,
1880 			     struct kvm_memory_slot *new,
1881 			     struct kvm_memory_slot *invalid_slot)
1882 {
1883 	/*
1884 	 * Replace the old memslot in the inactive slots, and then swap slots
1885 	 * and replace the current INVALID with the new as well.
1886 	 */
1887 	kvm_replace_memslot(kvm, old, new);
1888 	kvm_activate_memslot(kvm, invalid_slot, new);
1889 }
1890 
1891 static void kvm_update_flags_memslot(struct kvm *kvm,
1892 				     struct kvm_memory_slot *old,
1893 				     struct kvm_memory_slot *new)
1894 {
1895 	/*
1896 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1897 	 * an intermediate step. Instead, the old memslot is simply replaced
1898 	 * with a new, updated copy in both memslot sets.
1899 	 */
1900 	kvm_replace_memslot(kvm, old, new);
1901 	kvm_activate_memslot(kvm, old, new);
1902 }
1903 
1904 static int kvm_set_memslot(struct kvm *kvm,
1905 			   struct kvm_memory_slot *old,
1906 			   struct kvm_memory_slot *new,
1907 			   enum kvm_mr_change change)
1908 {
1909 	struct kvm_memory_slot *invalid_slot;
1910 	int r;
1911 
1912 	/*
1913 	 * Released in kvm_swap_active_memslots().
1914 	 *
1915 	 * Must be held from before the current memslots are copied until after
1916 	 * the new memslots are installed with rcu_assign_pointer, then
1917 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1918 	 *
1919 	 * When modifying memslots outside of the slots_lock, must be held
1920 	 * before reading the pointer to the current memslots until after all
1921 	 * changes to those memslots are complete.
1922 	 *
1923 	 * These rules ensure that installing new memslots does not lose
1924 	 * changes made to the previous memslots.
1925 	 */
1926 	mutex_lock(&kvm->slots_arch_lock);
1927 
1928 	/*
1929 	 * Invalidate the old slot if it's being deleted or moved.  This is
1930 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1931 	 * continue running by ensuring there are no mappings or shadow pages
1932 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1933 	 * (and without a lock), a window would exist between effecting the
1934 	 * delete/move and committing the changes in arch code where KVM or a
1935 	 * guest could access a non-existent memslot.
1936 	 *
1937 	 * Modifications are done on a temporary, unreachable slot.  The old
1938 	 * slot needs to be preserved in case a later step fails and the
1939 	 * invalidation needs to be reverted.
1940 	 */
1941 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1942 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1943 		if (!invalid_slot) {
1944 			mutex_unlock(&kvm->slots_arch_lock);
1945 			return -ENOMEM;
1946 		}
1947 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1948 	}
1949 
1950 	r = kvm_prepare_memory_region(kvm, old, new, change);
1951 	if (r) {
1952 		/*
1953 		 * For DELETE/MOVE, revert the above INVALID change.  No
1954 		 * modifications required since the original slot was preserved
1955 		 * in the inactive slots.  Changing the active memslots also
1956 		 * release slots_arch_lock.
1957 		 */
1958 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1959 			kvm_activate_memslot(kvm, invalid_slot, old);
1960 			kfree(invalid_slot);
1961 		} else {
1962 			mutex_unlock(&kvm->slots_arch_lock);
1963 		}
1964 		return r;
1965 	}
1966 
1967 	/*
1968 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1969 	 * version of the old slot.  MOVE is particularly special as it reuses
1970 	 * the old slot and returns a copy of the old slot (in working_slot).
1971 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1972 	 * old slot is detached but otherwise preserved.
1973 	 */
1974 	if (change == KVM_MR_CREATE)
1975 		kvm_create_memslot(kvm, new);
1976 	else if (change == KVM_MR_DELETE)
1977 		kvm_delete_memslot(kvm, old, invalid_slot);
1978 	else if (change == KVM_MR_MOVE)
1979 		kvm_move_memslot(kvm, old, new, invalid_slot);
1980 	else if (change == KVM_MR_FLAGS_ONLY)
1981 		kvm_update_flags_memslot(kvm, old, new);
1982 	else
1983 		BUG();
1984 
1985 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1986 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1987 		kfree(invalid_slot);
1988 
1989 	/*
1990 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1991 	 * will directly hit the final, active memslot.  Architectures are
1992 	 * responsible for knowing that new->arch may be stale.
1993 	 */
1994 	kvm_commit_memory_region(kvm, old, new, change);
1995 
1996 	return 0;
1997 }
1998 
1999 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2000 				      gfn_t start, gfn_t end)
2001 {
2002 	struct kvm_memslot_iter iter;
2003 
2004 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2005 		if (iter.slot->id != id)
2006 			return true;
2007 	}
2008 
2009 	return false;
2010 }
2011 
2012 /*
2013  * Allocate some memory and give it an address in the guest physical address
2014  * space.
2015  *
2016  * Discontiguous memory is allowed, mostly for framebuffers.
2017  *
2018  * Must be called holding kvm->slots_lock for write.
2019  */
2020 int __kvm_set_memory_region(struct kvm *kvm,
2021 			    const struct kvm_userspace_memory_region2 *mem)
2022 {
2023 	struct kvm_memory_slot *old, *new;
2024 	struct kvm_memslots *slots;
2025 	enum kvm_mr_change change;
2026 	unsigned long npages;
2027 	gfn_t base_gfn;
2028 	int as_id, id;
2029 	int r;
2030 
2031 	r = check_memory_region_flags(kvm, mem);
2032 	if (r)
2033 		return r;
2034 
2035 	as_id = mem->slot >> 16;
2036 	id = (u16)mem->slot;
2037 
2038 	/* General sanity checks */
2039 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2040 	    (mem->memory_size != (unsigned long)mem->memory_size))
2041 		return -EINVAL;
2042 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2043 		return -EINVAL;
2044 	/* We can read the guest memory with __xxx_user() later on. */
2045 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2046 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2047 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2048 			mem->memory_size))
2049 		return -EINVAL;
2050 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2051 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2052 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2053 		return -EINVAL;
2054 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2055 		return -EINVAL;
2056 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2057 		return -EINVAL;
2058 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2059 		return -EINVAL;
2060 
2061 	slots = __kvm_memslots(kvm, as_id);
2062 
2063 	/*
2064 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2065 	 * and/or destroyed by kvm_set_memslot().
2066 	 */
2067 	old = id_to_memslot(slots, id);
2068 
2069 	if (!mem->memory_size) {
2070 		if (!old || !old->npages)
2071 			return -EINVAL;
2072 
2073 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2074 			return -EIO;
2075 
2076 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2077 	}
2078 
2079 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2080 	npages = (mem->memory_size >> PAGE_SHIFT);
2081 
2082 	if (!old || !old->npages) {
2083 		change = KVM_MR_CREATE;
2084 
2085 		/*
2086 		 * To simplify KVM internals, the total number of pages across
2087 		 * all memslots must fit in an unsigned long.
2088 		 */
2089 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2090 			return -EINVAL;
2091 	} else { /* Modify an existing slot. */
2092 		/* Private memslots are immutable, they can only be deleted. */
2093 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2094 			return -EINVAL;
2095 		if ((mem->userspace_addr != old->userspace_addr) ||
2096 		    (npages != old->npages) ||
2097 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2098 			return -EINVAL;
2099 
2100 		if (base_gfn != old->base_gfn)
2101 			change = KVM_MR_MOVE;
2102 		else if (mem->flags != old->flags)
2103 			change = KVM_MR_FLAGS_ONLY;
2104 		else /* Nothing to change. */
2105 			return 0;
2106 	}
2107 
2108 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2109 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2110 		return -EEXIST;
2111 
2112 	/* Allocate a slot that will persist in the memslot. */
2113 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2114 	if (!new)
2115 		return -ENOMEM;
2116 
2117 	new->as_id = as_id;
2118 	new->id = id;
2119 	new->base_gfn = base_gfn;
2120 	new->npages = npages;
2121 	new->flags = mem->flags;
2122 	new->userspace_addr = mem->userspace_addr;
2123 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2124 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2125 		if (r)
2126 			goto out;
2127 	}
2128 
2129 	r = kvm_set_memslot(kvm, old, new, change);
2130 	if (r)
2131 		goto out_unbind;
2132 
2133 	return 0;
2134 
2135 out_unbind:
2136 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2137 		kvm_gmem_unbind(new);
2138 out:
2139 	kfree(new);
2140 	return r;
2141 }
2142 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2143 
2144 int kvm_set_memory_region(struct kvm *kvm,
2145 			  const struct kvm_userspace_memory_region2 *mem)
2146 {
2147 	int r;
2148 
2149 	mutex_lock(&kvm->slots_lock);
2150 	r = __kvm_set_memory_region(kvm, mem);
2151 	mutex_unlock(&kvm->slots_lock);
2152 	return r;
2153 }
2154 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2155 
2156 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2157 					  struct kvm_userspace_memory_region2 *mem)
2158 {
2159 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2160 		return -EINVAL;
2161 
2162 	return kvm_set_memory_region(kvm, mem);
2163 }
2164 
2165 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2166 /**
2167  * kvm_get_dirty_log - get a snapshot of dirty pages
2168  * @kvm:	pointer to kvm instance
2169  * @log:	slot id and address to which we copy the log
2170  * @is_dirty:	set to '1' if any dirty pages were found
2171  * @memslot:	set to the associated memslot, always valid on success
2172  */
2173 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2174 		      int *is_dirty, struct kvm_memory_slot **memslot)
2175 {
2176 	struct kvm_memslots *slots;
2177 	int i, as_id, id;
2178 	unsigned long n;
2179 	unsigned long any = 0;
2180 
2181 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2182 	if (!kvm_use_dirty_bitmap(kvm))
2183 		return -ENXIO;
2184 
2185 	*memslot = NULL;
2186 	*is_dirty = 0;
2187 
2188 	as_id = log->slot >> 16;
2189 	id = (u16)log->slot;
2190 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2191 		return -EINVAL;
2192 
2193 	slots = __kvm_memslots(kvm, as_id);
2194 	*memslot = id_to_memslot(slots, id);
2195 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2196 		return -ENOENT;
2197 
2198 	kvm_arch_sync_dirty_log(kvm, *memslot);
2199 
2200 	n = kvm_dirty_bitmap_bytes(*memslot);
2201 
2202 	for (i = 0; !any && i < n/sizeof(long); ++i)
2203 		any = (*memslot)->dirty_bitmap[i];
2204 
2205 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2206 		return -EFAULT;
2207 
2208 	if (any)
2209 		*is_dirty = 1;
2210 	return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2213 
2214 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2215 /**
2216  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2217  *	and reenable dirty page tracking for the corresponding pages.
2218  * @kvm:	pointer to kvm instance
2219  * @log:	slot id and address to which we copy the log
2220  *
2221  * We need to keep it in mind that VCPU threads can write to the bitmap
2222  * concurrently. So, to avoid losing track of dirty pages we keep the
2223  * following order:
2224  *
2225  *    1. Take a snapshot of the bit and clear it if needed.
2226  *    2. Write protect the corresponding page.
2227  *    3. Copy the snapshot to the userspace.
2228  *    4. Upon return caller flushes TLB's if needed.
2229  *
2230  * Between 2 and 4, the guest may write to the page using the remaining TLB
2231  * entry.  This is not a problem because the page is reported dirty using
2232  * the snapshot taken before and step 4 ensures that writes done after
2233  * exiting to userspace will be logged for the next call.
2234  *
2235  */
2236 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2237 {
2238 	struct kvm_memslots *slots;
2239 	struct kvm_memory_slot *memslot;
2240 	int i, as_id, id;
2241 	unsigned long n;
2242 	unsigned long *dirty_bitmap;
2243 	unsigned long *dirty_bitmap_buffer;
2244 	bool flush;
2245 
2246 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2247 	if (!kvm_use_dirty_bitmap(kvm))
2248 		return -ENXIO;
2249 
2250 	as_id = log->slot >> 16;
2251 	id = (u16)log->slot;
2252 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2253 		return -EINVAL;
2254 
2255 	slots = __kvm_memslots(kvm, as_id);
2256 	memslot = id_to_memslot(slots, id);
2257 	if (!memslot || !memslot->dirty_bitmap)
2258 		return -ENOENT;
2259 
2260 	dirty_bitmap = memslot->dirty_bitmap;
2261 
2262 	kvm_arch_sync_dirty_log(kvm, memslot);
2263 
2264 	n = kvm_dirty_bitmap_bytes(memslot);
2265 	flush = false;
2266 	if (kvm->manual_dirty_log_protect) {
2267 		/*
2268 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2269 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2270 		 * is some code duplication between this function and
2271 		 * kvm_get_dirty_log, but hopefully all architecture
2272 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2273 		 * can be eliminated.
2274 		 */
2275 		dirty_bitmap_buffer = dirty_bitmap;
2276 	} else {
2277 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2278 		memset(dirty_bitmap_buffer, 0, n);
2279 
2280 		KVM_MMU_LOCK(kvm);
2281 		for (i = 0; i < n / sizeof(long); i++) {
2282 			unsigned long mask;
2283 			gfn_t offset;
2284 
2285 			if (!dirty_bitmap[i])
2286 				continue;
2287 
2288 			flush = true;
2289 			mask = xchg(&dirty_bitmap[i], 0);
2290 			dirty_bitmap_buffer[i] = mask;
2291 
2292 			offset = i * BITS_PER_LONG;
2293 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294 								offset, mask);
2295 		}
2296 		KVM_MMU_UNLOCK(kvm);
2297 	}
2298 
2299 	if (flush)
2300 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2301 
2302 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2303 		return -EFAULT;
2304 	return 0;
2305 }
2306 
2307 
2308 /**
2309  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2310  * @kvm: kvm instance
2311  * @log: slot id and address to which we copy the log
2312  *
2313  * Steps 1-4 below provide general overview of dirty page logging. See
2314  * kvm_get_dirty_log_protect() function description for additional details.
2315  *
2316  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2317  * always flush the TLB (step 4) even if previous step failed  and the dirty
2318  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2319  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2320  * writes will be marked dirty for next log read.
2321  *
2322  *   1. Take a snapshot of the bit and clear it if needed.
2323  *   2. Write protect the corresponding page.
2324  *   3. Copy the snapshot to the userspace.
2325  *   4. Flush TLB's if needed.
2326  */
2327 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2328 				      struct kvm_dirty_log *log)
2329 {
2330 	int r;
2331 
2332 	mutex_lock(&kvm->slots_lock);
2333 
2334 	r = kvm_get_dirty_log_protect(kvm, log);
2335 
2336 	mutex_unlock(&kvm->slots_lock);
2337 	return r;
2338 }
2339 
2340 /**
2341  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2342  *	and reenable dirty page tracking for the corresponding pages.
2343  * @kvm:	pointer to kvm instance
2344  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2345  */
2346 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2347 				       struct kvm_clear_dirty_log *log)
2348 {
2349 	struct kvm_memslots *slots;
2350 	struct kvm_memory_slot *memslot;
2351 	int as_id, id;
2352 	gfn_t offset;
2353 	unsigned long i, n;
2354 	unsigned long *dirty_bitmap;
2355 	unsigned long *dirty_bitmap_buffer;
2356 	bool flush;
2357 
2358 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2359 	if (!kvm_use_dirty_bitmap(kvm))
2360 		return -ENXIO;
2361 
2362 	as_id = log->slot >> 16;
2363 	id = (u16)log->slot;
2364 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2365 		return -EINVAL;
2366 
2367 	if (log->first_page & 63)
2368 		return -EINVAL;
2369 
2370 	slots = __kvm_memslots(kvm, as_id);
2371 	memslot = id_to_memslot(slots, id);
2372 	if (!memslot || !memslot->dirty_bitmap)
2373 		return -ENOENT;
2374 
2375 	dirty_bitmap = memslot->dirty_bitmap;
2376 
2377 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2378 
2379 	if (log->first_page > memslot->npages ||
2380 	    log->num_pages > memslot->npages - log->first_page ||
2381 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2382 	    return -EINVAL;
2383 
2384 	kvm_arch_sync_dirty_log(kvm, memslot);
2385 
2386 	flush = false;
2387 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2388 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2389 		return -EFAULT;
2390 
2391 	KVM_MMU_LOCK(kvm);
2392 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2393 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2394 	     i++, offset += BITS_PER_LONG) {
2395 		unsigned long mask = *dirty_bitmap_buffer++;
2396 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2397 		if (!mask)
2398 			continue;
2399 
2400 		mask &= atomic_long_fetch_andnot(mask, p);
2401 
2402 		/*
2403 		 * mask contains the bits that really have been cleared.  This
2404 		 * never includes any bits beyond the length of the memslot (if
2405 		 * the length is not aligned to 64 pages), therefore it is not
2406 		 * a problem if userspace sets them in log->dirty_bitmap.
2407 		*/
2408 		if (mask) {
2409 			flush = true;
2410 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2411 								offset, mask);
2412 		}
2413 	}
2414 	KVM_MMU_UNLOCK(kvm);
2415 
2416 	if (flush)
2417 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2418 
2419 	return 0;
2420 }
2421 
2422 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2423 					struct kvm_clear_dirty_log *log)
2424 {
2425 	int r;
2426 
2427 	mutex_lock(&kvm->slots_lock);
2428 
2429 	r = kvm_clear_dirty_log_protect(kvm, log);
2430 
2431 	mutex_unlock(&kvm->slots_lock);
2432 	return r;
2433 }
2434 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2435 
2436 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2437 /*
2438  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2439  * matching @attrs.
2440  */
2441 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2442 				     unsigned long attrs)
2443 {
2444 	XA_STATE(xas, &kvm->mem_attr_array, start);
2445 	unsigned long index;
2446 	bool has_attrs;
2447 	void *entry;
2448 
2449 	rcu_read_lock();
2450 
2451 	if (!attrs) {
2452 		has_attrs = !xas_find(&xas, end - 1);
2453 		goto out;
2454 	}
2455 
2456 	has_attrs = true;
2457 	for (index = start; index < end; index++) {
2458 		do {
2459 			entry = xas_next(&xas);
2460 		} while (xas_retry(&xas, entry));
2461 
2462 		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2463 			has_attrs = false;
2464 			break;
2465 		}
2466 	}
2467 
2468 out:
2469 	rcu_read_unlock();
2470 	return has_attrs;
2471 }
2472 
2473 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2474 {
2475 	if (!kvm || kvm_arch_has_private_mem(kvm))
2476 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2477 
2478 	return 0;
2479 }
2480 
2481 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2482 						 struct kvm_mmu_notifier_range *range)
2483 {
2484 	struct kvm_gfn_range gfn_range;
2485 	struct kvm_memory_slot *slot;
2486 	struct kvm_memslots *slots;
2487 	struct kvm_memslot_iter iter;
2488 	bool found_memslot = false;
2489 	bool ret = false;
2490 	int i;
2491 
2492 	gfn_range.arg = range->arg;
2493 	gfn_range.may_block = range->may_block;
2494 
2495 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2496 		slots = __kvm_memslots(kvm, i);
2497 
2498 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2499 			slot = iter.slot;
2500 			gfn_range.slot = slot;
2501 
2502 			gfn_range.start = max(range->start, slot->base_gfn);
2503 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2504 			if (gfn_range.start >= gfn_range.end)
2505 				continue;
2506 
2507 			if (!found_memslot) {
2508 				found_memslot = true;
2509 				KVM_MMU_LOCK(kvm);
2510 				if (!IS_KVM_NULL_FN(range->on_lock))
2511 					range->on_lock(kvm);
2512 			}
2513 
2514 			ret |= range->handler(kvm, &gfn_range);
2515 		}
2516 	}
2517 
2518 	if (range->flush_on_ret && ret)
2519 		kvm_flush_remote_tlbs(kvm);
2520 
2521 	if (found_memslot)
2522 		KVM_MMU_UNLOCK(kvm);
2523 }
2524 
2525 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2526 					  struct kvm_gfn_range *range)
2527 {
2528 	/*
2529 	 * Unconditionally add the range to the invalidation set, regardless of
2530 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2531 	 * if KVM supports RWX attributes in the future and the attributes are
2532 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2533 	 * adding the range allows KVM to require that MMU invalidations add at
2534 	 * least one range between begin() and end(), e.g. allows KVM to detect
2535 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2536 	 * but it's not obvious that allowing new mappings while the attributes
2537 	 * are in flux is desirable or worth the complexity.
2538 	 */
2539 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2540 
2541 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2542 }
2543 
2544 /* Set @attributes for the gfn range [@start, @end). */
2545 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2546 				     unsigned long attributes)
2547 {
2548 	struct kvm_mmu_notifier_range pre_set_range = {
2549 		.start = start,
2550 		.end = end,
2551 		.handler = kvm_pre_set_memory_attributes,
2552 		.on_lock = kvm_mmu_invalidate_begin,
2553 		.flush_on_ret = true,
2554 		.may_block = true,
2555 	};
2556 	struct kvm_mmu_notifier_range post_set_range = {
2557 		.start = start,
2558 		.end = end,
2559 		.arg.attributes = attributes,
2560 		.handler = kvm_arch_post_set_memory_attributes,
2561 		.on_lock = kvm_mmu_invalidate_end,
2562 		.may_block = true,
2563 	};
2564 	unsigned long i;
2565 	void *entry;
2566 	int r = 0;
2567 
2568 	entry = attributes ? xa_mk_value(attributes) : NULL;
2569 
2570 	mutex_lock(&kvm->slots_lock);
2571 
2572 	/* Nothing to do if the entire range as the desired attributes. */
2573 	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2574 		goto out_unlock;
2575 
2576 	/*
2577 	 * Reserve memory ahead of time to avoid having to deal with failures
2578 	 * partway through setting the new attributes.
2579 	 */
2580 	for (i = start; i < end; i++) {
2581 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2582 		if (r)
2583 			goto out_unlock;
2584 	}
2585 
2586 	kvm_handle_gfn_range(kvm, &pre_set_range);
2587 
2588 	for (i = start; i < end; i++) {
2589 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2590 				    GFP_KERNEL_ACCOUNT));
2591 		KVM_BUG_ON(r, kvm);
2592 	}
2593 
2594 	kvm_handle_gfn_range(kvm, &post_set_range);
2595 
2596 out_unlock:
2597 	mutex_unlock(&kvm->slots_lock);
2598 
2599 	return r;
2600 }
2601 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2602 					   struct kvm_memory_attributes *attrs)
2603 {
2604 	gfn_t start, end;
2605 
2606 	/* flags is currently not used. */
2607 	if (attrs->flags)
2608 		return -EINVAL;
2609 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2610 		return -EINVAL;
2611 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2612 		return -EINVAL;
2613 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2614 		return -EINVAL;
2615 
2616 	start = attrs->address >> PAGE_SHIFT;
2617 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2618 
2619 	/*
2620 	 * xarray tracks data using "unsigned long", and as a result so does
2621 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2622 	 * architectures.
2623 	 */
2624 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2625 
2626 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2627 }
2628 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2629 
2630 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2631 {
2632 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2633 }
2634 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2635 
2636 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2637 {
2638 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2639 	u64 gen = slots->generation;
2640 	struct kvm_memory_slot *slot;
2641 
2642 	/*
2643 	 * This also protects against using a memslot from a different address space,
2644 	 * since different address spaces have different generation numbers.
2645 	 */
2646 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2647 		vcpu->last_used_slot = NULL;
2648 		vcpu->last_used_slot_gen = gen;
2649 	}
2650 
2651 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2652 	if (slot)
2653 		return slot;
2654 
2655 	/*
2656 	 * Fall back to searching all memslots. We purposely use
2657 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2658 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2659 	 */
2660 	slot = search_memslots(slots, gfn, false);
2661 	if (slot) {
2662 		vcpu->last_used_slot = slot;
2663 		return slot;
2664 	}
2665 
2666 	return NULL;
2667 }
2668 
2669 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2670 {
2671 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2672 
2673 	return kvm_is_visible_memslot(memslot);
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2676 
2677 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2678 {
2679 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2680 
2681 	return kvm_is_visible_memslot(memslot);
2682 }
2683 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2684 
2685 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2686 {
2687 	struct vm_area_struct *vma;
2688 	unsigned long addr, size;
2689 
2690 	size = PAGE_SIZE;
2691 
2692 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2693 	if (kvm_is_error_hva(addr))
2694 		return PAGE_SIZE;
2695 
2696 	mmap_read_lock(current->mm);
2697 	vma = find_vma(current->mm, addr);
2698 	if (!vma)
2699 		goto out;
2700 
2701 	size = vma_kernel_pagesize(vma);
2702 
2703 out:
2704 	mmap_read_unlock(current->mm);
2705 
2706 	return size;
2707 }
2708 
2709 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2710 {
2711 	return slot->flags & KVM_MEM_READONLY;
2712 }
2713 
2714 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2715 				       gfn_t *nr_pages, bool write)
2716 {
2717 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2718 		return KVM_HVA_ERR_BAD;
2719 
2720 	if (memslot_is_readonly(slot) && write)
2721 		return KVM_HVA_ERR_RO_BAD;
2722 
2723 	if (nr_pages)
2724 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2725 
2726 	return __gfn_to_hva_memslot(slot, gfn);
2727 }
2728 
2729 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2730 				     gfn_t *nr_pages)
2731 {
2732 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2733 }
2734 
2735 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2736 					gfn_t gfn)
2737 {
2738 	return gfn_to_hva_many(slot, gfn, NULL);
2739 }
2740 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2741 
2742 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2743 {
2744 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2745 }
2746 EXPORT_SYMBOL_GPL(gfn_to_hva);
2747 
2748 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2749 {
2750 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2751 }
2752 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2753 
2754 /*
2755  * Return the hva of a @gfn and the R/W attribute if possible.
2756  *
2757  * @slot: the kvm_memory_slot which contains @gfn
2758  * @gfn: the gfn to be translated
2759  * @writable: used to return the read/write attribute of the @slot if the hva
2760  * is valid and @writable is not NULL
2761  */
2762 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2763 				      gfn_t gfn, bool *writable)
2764 {
2765 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2766 
2767 	if (!kvm_is_error_hva(hva) && writable)
2768 		*writable = !memslot_is_readonly(slot);
2769 
2770 	return hva;
2771 }
2772 
2773 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2774 {
2775 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2776 
2777 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2778 }
2779 
2780 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2781 {
2782 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2783 
2784 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2785 }
2786 
2787 static inline int check_user_page_hwpoison(unsigned long addr)
2788 {
2789 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2790 
2791 	rc = get_user_pages(addr, 1, flags, NULL);
2792 	return rc == -EHWPOISON;
2793 }
2794 
2795 /*
2796  * The fast path to get the writable pfn which will be stored in @pfn,
2797  * true indicates success, otherwise false is returned.  It's also the
2798  * only part that runs if we can in atomic context.
2799  */
2800 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2801 			    bool *writable, kvm_pfn_t *pfn)
2802 {
2803 	struct page *page[1];
2804 
2805 	/*
2806 	 * Fast pin a writable pfn only if it is a write fault request
2807 	 * or the caller allows to map a writable pfn for a read fault
2808 	 * request.
2809 	 */
2810 	if (!(write_fault || writable))
2811 		return false;
2812 
2813 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2814 		*pfn = page_to_pfn(page[0]);
2815 
2816 		if (writable)
2817 			*writable = true;
2818 		return true;
2819 	}
2820 
2821 	return false;
2822 }
2823 
2824 /*
2825  * The slow path to get the pfn of the specified host virtual address,
2826  * 1 indicates success, -errno is returned if error is detected.
2827  */
2828 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2829 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2830 {
2831 	/*
2832 	 * When a VCPU accesses a page that is not mapped into the secondary
2833 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2834 	 * make progress. We always want to honor NUMA hinting faults in that
2835 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2836 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2837 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2838 	 *
2839 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2840 	 * implicitly honor NUMA hinting faults and don't need this flag.
2841 	 */
2842 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2843 	struct page *page;
2844 	int npages;
2845 
2846 	might_sleep();
2847 
2848 	if (writable)
2849 		*writable = write_fault;
2850 
2851 	if (write_fault)
2852 		flags |= FOLL_WRITE;
2853 	if (async)
2854 		flags |= FOLL_NOWAIT;
2855 	if (interruptible)
2856 		flags |= FOLL_INTERRUPTIBLE;
2857 
2858 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2859 	if (npages != 1)
2860 		return npages;
2861 
2862 	/* map read fault as writable if possible */
2863 	if (unlikely(!write_fault) && writable) {
2864 		struct page *wpage;
2865 
2866 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2867 			*writable = true;
2868 			put_page(page);
2869 			page = wpage;
2870 		}
2871 	}
2872 	*pfn = page_to_pfn(page);
2873 	return npages;
2874 }
2875 
2876 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2877 {
2878 	if (unlikely(!(vma->vm_flags & VM_READ)))
2879 		return false;
2880 
2881 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2882 		return false;
2883 
2884 	return true;
2885 }
2886 
2887 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2888 {
2889 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2890 
2891 	if (!page)
2892 		return 1;
2893 
2894 	return get_page_unless_zero(page);
2895 }
2896 
2897 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2898 			       unsigned long addr, bool write_fault,
2899 			       bool *writable, kvm_pfn_t *p_pfn)
2900 {
2901 	kvm_pfn_t pfn;
2902 	pte_t *ptep;
2903 	pte_t pte;
2904 	spinlock_t *ptl;
2905 	int r;
2906 
2907 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2908 	if (r) {
2909 		/*
2910 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2911 		 * not call the fault handler, so do it here.
2912 		 */
2913 		bool unlocked = false;
2914 		r = fixup_user_fault(current->mm, addr,
2915 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2916 				     &unlocked);
2917 		if (unlocked)
2918 			return -EAGAIN;
2919 		if (r)
2920 			return r;
2921 
2922 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2923 		if (r)
2924 			return r;
2925 	}
2926 
2927 	pte = ptep_get(ptep);
2928 
2929 	if (write_fault && !pte_write(pte)) {
2930 		pfn = KVM_PFN_ERR_RO_FAULT;
2931 		goto out;
2932 	}
2933 
2934 	if (writable)
2935 		*writable = pte_write(pte);
2936 	pfn = pte_pfn(pte);
2937 
2938 	/*
2939 	 * Get a reference here because callers of *hva_to_pfn* and
2940 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2941 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2942 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2943 	 * simply do nothing for reserved pfns.
2944 	 *
2945 	 * Whoever called remap_pfn_range is also going to call e.g.
2946 	 * unmap_mapping_range before the underlying pages are freed,
2947 	 * causing a call to our MMU notifier.
2948 	 *
2949 	 * Certain IO or PFNMAP mappings can be backed with valid
2950 	 * struct pages, but be allocated without refcounting e.g.,
2951 	 * tail pages of non-compound higher order allocations, which
2952 	 * would then underflow the refcount when the caller does the
2953 	 * required put_page. Don't allow those pages here.
2954 	 */
2955 	if (!kvm_try_get_pfn(pfn))
2956 		r = -EFAULT;
2957 
2958 out:
2959 	pte_unmap_unlock(ptep, ptl);
2960 	*p_pfn = pfn;
2961 
2962 	return r;
2963 }
2964 
2965 /*
2966  * Pin guest page in memory and return its pfn.
2967  * @addr: host virtual address which maps memory to the guest
2968  * @atomic: whether this function can sleep
2969  * @interruptible: whether the process can be interrupted by non-fatal signals
2970  * @async: whether this function need to wait IO complete if the
2971  *         host page is not in the memory
2972  * @write_fault: whether we should get a writable host page
2973  * @writable: whether it allows to map a writable host page for !@write_fault
2974  *
2975  * The function will map a writable host page for these two cases:
2976  * 1): @write_fault = true
2977  * 2): @write_fault = false && @writable, @writable will tell the caller
2978  *     whether the mapping is writable.
2979  */
2980 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2981 		     bool *async, bool write_fault, bool *writable)
2982 {
2983 	struct vm_area_struct *vma;
2984 	kvm_pfn_t pfn;
2985 	int npages, r;
2986 
2987 	/* we can do it either atomically or asynchronously, not both */
2988 	BUG_ON(atomic && async);
2989 
2990 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2991 		return pfn;
2992 
2993 	if (atomic)
2994 		return KVM_PFN_ERR_FAULT;
2995 
2996 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2997 				 writable, &pfn);
2998 	if (npages == 1)
2999 		return pfn;
3000 	if (npages == -EINTR)
3001 		return KVM_PFN_ERR_SIGPENDING;
3002 
3003 	mmap_read_lock(current->mm);
3004 	if (npages == -EHWPOISON ||
3005 	      (!async && check_user_page_hwpoison(addr))) {
3006 		pfn = KVM_PFN_ERR_HWPOISON;
3007 		goto exit;
3008 	}
3009 
3010 retry:
3011 	vma = vma_lookup(current->mm, addr);
3012 
3013 	if (vma == NULL)
3014 		pfn = KVM_PFN_ERR_FAULT;
3015 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3016 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3017 		if (r == -EAGAIN)
3018 			goto retry;
3019 		if (r < 0)
3020 			pfn = KVM_PFN_ERR_FAULT;
3021 	} else {
3022 		if (async && vma_is_valid(vma, write_fault))
3023 			*async = true;
3024 		pfn = KVM_PFN_ERR_FAULT;
3025 	}
3026 exit:
3027 	mmap_read_unlock(current->mm);
3028 	return pfn;
3029 }
3030 
3031 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3032 			       bool atomic, bool interruptible, bool *async,
3033 			       bool write_fault, bool *writable, hva_t *hva)
3034 {
3035 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3036 
3037 	if (hva)
3038 		*hva = addr;
3039 
3040 	if (addr == KVM_HVA_ERR_RO_BAD) {
3041 		if (writable)
3042 			*writable = false;
3043 		return KVM_PFN_ERR_RO_FAULT;
3044 	}
3045 
3046 	if (kvm_is_error_hva(addr)) {
3047 		if (writable)
3048 			*writable = false;
3049 		return KVM_PFN_NOSLOT;
3050 	}
3051 
3052 	/* Do not map writable pfn in the readonly memslot. */
3053 	if (writable && memslot_is_readonly(slot)) {
3054 		*writable = false;
3055 		writable = NULL;
3056 	}
3057 
3058 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3059 			  writable);
3060 }
3061 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3062 
3063 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3064 		      bool *writable)
3065 {
3066 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3067 				    NULL, write_fault, writable, NULL);
3068 }
3069 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3070 
3071 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3072 {
3073 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3074 				    NULL, NULL);
3075 }
3076 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3077 
3078 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3079 {
3080 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3081 				    NULL, NULL);
3082 }
3083 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3084 
3085 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3086 {
3087 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3088 }
3089 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3090 
3091 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3092 {
3093 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3094 }
3095 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3096 
3097 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3098 {
3099 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3102 
3103 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3104 			    struct page **pages, int nr_pages)
3105 {
3106 	unsigned long addr;
3107 	gfn_t entry = 0;
3108 
3109 	addr = gfn_to_hva_many(slot, gfn, &entry);
3110 	if (kvm_is_error_hva(addr))
3111 		return -1;
3112 
3113 	if (entry < nr_pages)
3114 		return 0;
3115 
3116 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3117 }
3118 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3119 
3120 /*
3121  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3122  * backed by 'struct page'.  A valid example is if the backing memslot is
3123  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3124  * been elevated by gfn_to_pfn().
3125  */
3126 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3127 {
3128 	struct page *page;
3129 	kvm_pfn_t pfn;
3130 
3131 	pfn = gfn_to_pfn(kvm, gfn);
3132 
3133 	if (is_error_noslot_pfn(pfn))
3134 		return KVM_ERR_PTR_BAD_PAGE;
3135 
3136 	page = kvm_pfn_to_refcounted_page(pfn);
3137 	if (!page)
3138 		return KVM_ERR_PTR_BAD_PAGE;
3139 
3140 	return page;
3141 }
3142 EXPORT_SYMBOL_GPL(gfn_to_page);
3143 
3144 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3145 {
3146 	if (dirty)
3147 		kvm_release_pfn_dirty(pfn);
3148 	else
3149 		kvm_release_pfn_clean(pfn);
3150 }
3151 
3152 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3153 {
3154 	kvm_pfn_t pfn;
3155 	void *hva = NULL;
3156 	struct page *page = KVM_UNMAPPED_PAGE;
3157 
3158 	if (!map)
3159 		return -EINVAL;
3160 
3161 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3162 	if (is_error_noslot_pfn(pfn))
3163 		return -EINVAL;
3164 
3165 	if (pfn_valid(pfn)) {
3166 		page = pfn_to_page(pfn);
3167 		hva = kmap(page);
3168 #ifdef CONFIG_HAS_IOMEM
3169 	} else {
3170 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3171 #endif
3172 	}
3173 
3174 	if (!hva)
3175 		return -EFAULT;
3176 
3177 	map->page = page;
3178 	map->hva = hva;
3179 	map->pfn = pfn;
3180 	map->gfn = gfn;
3181 
3182 	return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3185 
3186 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3187 {
3188 	if (!map)
3189 		return;
3190 
3191 	if (!map->hva)
3192 		return;
3193 
3194 	if (map->page != KVM_UNMAPPED_PAGE)
3195 		kunmap(map->page);
3196 #ifdef CONFIG_HAS_IOMEM
3197 	else
3198 		memunmap(map->hva);
3199 #endif
3200 
3201 	if (dirty)
3202 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3203 
3204 	kvm_release_pfn(map->pfn, dirty);
3205 
3206 	map->hva = NULL;
3207 	map->page = NULL;
3208 }
3209 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3210 
3211 static bool kvm_is_ad_tracked_page(struct page *page)
3212 {
3213 	/*
3214 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3215 	 * touched (e.g. set dirty) except by its owner".
3216 	 */
3217 	return !PageReserved(page);
3218 }
3219 
3220 static void kvm_set_page_dirty(struct page *page)
3221 {
3222 	if (kvm_is_ad_tracked_page(page))
3223 		SetPageDirty(page);
3224 }
3225 
3226 static void kvm_set_page_accessed(struct page *page)
3227 {
3228 	if (kvm_is_ad_tracked_page(page))
3229 		mark_page_accessed(page);
3230 }
3231 
3232 void kvm_release_page_clean(struct page *page)
3233 {
3234 	WARN_ON(is_error_page(page));
3235 
3236 	kvm_set_page_accessed(page);
3237 	put_page(page);
3238 }
3239 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3240 
3241 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3242 {
3243 	struct page *page;
3244 
3245 	if (is_error_noslot_pfn(pfn))
3246 		return;
3247 
3248 	page = kvm_pfn_to_refcounted_page(pfn);
3249 	if (!page)
3250 		return;
3251 
3252 	kvm_release_page_clean(page);
3253 }
3254 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3255 
3256 void kvm_release_page_dirty(struct page *page)
3257 {
3258 	WARN_ON(is_error_page(page));
3259 
3260 	kvm_set_page_dirty(page);
3261 	kvm_release_page_clean(page);
3262 }
3263 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3264 
3265 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3266 {
3267 	struct page *page;
3268 
3269 	if (is_error_noslot_pfn(pfn))
3270 		return;
3271 
3272 	page = kvm_pfn_to_refcounted_page(pfn);
3273 	if (!page)
3274 		return;
3275 
3276 	kvm_release_page_dirty(page);
3277 }
3278 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3279 
3280 /*
3281  * Note, checking for an error/noslot pfn is the caller's responsibility when
3282  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3283  * "set" helpers are not to be used when the pfn might point at garbage.
3284  */
3285 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3286 {
3287 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3288 		return;
3289 
3290 	if (pfn_valid(pfn))
3291 		kvm_set_page_dirty(pfn_to_page(pfn));
3292 }
3293 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3294 
3295 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3296 {
3297 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3298 		return;
3299 
3300 	if (pfn_valid(pfn))
3301 		kvm_set_page_accessed(pfn_to_page(pfn));
3302 }
3303 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3304 
3305 static int next_segment(unsigned long len, int offset)
3306 {
3307 	if (len > PAGE_SIZE - offset)
3308 		return PAGE_SIZE - offset;
3309 	else
3310 		return len;
3311 }
3312 
3313 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3314 				 void *data, int offset, int len)
3315 {
3316 	int r;
3317 	unsigned long addr;
3318 
3319 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3320 	if (kvm_is_error_hva(addr))
3321 		return -EFAULT;
3322 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3323 	if (r)
3324 		return -EFAULT;
3325 	return 0;
3326 }
3327 
3328 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3329 			int len)
3330 {
3331 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3332 
3333 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3334 }
3335 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3336 
3337 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3338 			     int offset, int len)
3339 {
3340 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3341 
3342 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3343 }
3344 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3345 
3346 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3347 {
3348 	gfn_t gfn = gpa >> PAGE_SHIFT;
3349 	int seg;
3350 	int offset = offset_in_page(gpa);
3351 	int ret;
3352 
3353 	while ((seg = next_segment(len, offset)) != 0) {
3354 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3355 		if (ret < 0)
3356 			return ret;
3357 		offset = 0;
3358 		len -= seg;
3359 		data += seg;
3360 		++gfn;
3361 	}
3362 	return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(kvm_read_guest);
3365 
3366 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3367 {
3368 	gfn_t gfn = gpa >> PAGE_SHIFT;
3369 	int seg;
3370 	int offset = offset_in_page(gpa);
3371 	int ret;
3372 
3373 	while ((seg = next_segment(len, offset)) != 0) {
3374 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3375 		if (ret < 0)
3376 			return ret;
3377 		offset = 0;
3378 		len -= seg;
3379 		data += seg;
3380 		++gfn;
3381 	}
3382 	return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3385 
3386 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3387 			           void *data, int offset, unsigned long len)
3388 {
3389 	int r;
3390 	unsigned long addr;
3391 
3392 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3393 	if (kvm_is_error_hva(addr))
3394 		return -EFAULT;
3395 	pagefault_disable();
3396 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3397 	pagefault_enable();
3398 	if (r)
3399 		return -EFAULT;
3400 	return 0;
3401 }
3402 
3403 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3404 			       void *data, unsigned long len)
3405 {
3406 	gfn_t gfn = gpa >> PAGE_SHIFT;
3407 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3408 	int offset = offset_in_page(gpa);
3409 
3410 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3411 }
3412 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3413 
3414 static int __kvm_write_guest_page(struct kvm *kvm,
3415 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3416 			          const void *data, int offset, int len)
3417 {
3418 	int r;
3419 	unsigned long addr;
3420 
3421 	addr = gfn_to_hva_memslot(memslot, gfn);
3422 	if (kvm_is_error_hva(addr))
3423 		return -EFAULT;
3424 	r = __copy_to_user((void __user *)addr + offset, data, len);
3425 	if (r)
3426 		return -EFAULT;
3427 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3428 	return 0;
3429 }
3430 
3431 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3432 			 const void *data, int offset, int len)
3433 {
3434 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3435 
3436 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3437 }
3438 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3439 
3440 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3441 			      const void *data, int offset, int len)
3442 {
3443 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3444 
3445 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3446 }
3447 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3448 
3449 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3450 		    unsigned long len)
3451 {
3452 	gfn_t gfn = gpa >> PAGE_SHIFT;
3453 	int seg;
3454 	int offset = offset_in_page(gpa);
3455 	int ret;
3456 
3457 	while ((seg = next_segment(len, offset)) != 0) {
3458 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3459 		if (ret < 0)
3460 			return ret;
3461 		offset = 0;
3462 		len -= seg;
3463 		data += seg;
3464 		++gfn;
3465 	}
3466 	return 0;
3467 }
3468 EXPORT_SYMBOL_GPL(kvm_write_guest);
3469 
3470 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3471 		         unsigned long len)
3472 {
3473 	gfn_t gfn = gpa >> PAGE_SHIFT;
3474 	int seg;
3475 	int offset = offset_in_page(gpa);
3476 	int ret;
3477 
3478 	while ((seg = next_segment(len, offset)) != 0) {
3479 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3480 		if (ret < 0)
3481 			return ret;
3482 		offset = 0;
3483 		len -= seg;
3484 		data += seg;
3485 		++gfn;
3486 	}
3487 	return 0;
3488 }
3489 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3490 
3491 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3492 				       struct gfn_to_hva_cache *ghc,
3493 				       gpa_t gpa, unsigned long len)
3494 {
3495 	int offset = offset_in_page(gpa);
3496 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3497 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3498 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3499 	gfn_t nr_pages_avail;
3500 
3501 	/* Update ghc->generation before performing any error checks. */
3502 	ghc->generation = slots->generation;
3503 
3504 	if (start_gfn > end_gfn) {
3505 		ghc->hva = KVM_HVA_ERR_BAD;
3506 		return -EINVAL;
3507 	}
3508 
3509 	/*
3510 	 * If the requested region crosses two memslots, we still
3511 	 * verify that the entire region is valid here.
3512 	 */
3513 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3514 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3515 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3516 					   &nr_pages_avail);
3517 		if (kvm_is_error_hva(ghc->hva))
3518 			return -EFAULT;
3519 	}
3520 
3521 	/* Use the slow path for cross page reads and writes. */
3522 	if (nr_pages_needed == 1)
3523 		ghc->hva += offset;
3524 	else
3525 		ghc->memslot = NULL;
3526 
3527 	ghc->gpa = gpa;
3528 	ghc->len = len;
3529 	return 0;
3530 }
3531 
3532 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3533 			      gpa_t gpa, unsigned long len)
3534 {
3535 	struct kvm_memslots *slots = kvm_memslots(kvm);
3536 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3537 }
3538 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3539 
3540 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3541 				  void *data, unsigned int offset,
3542 				  unsigned long len)
3543 {
3544 	struct kvm_memslots *slots = kvm_memslots(kvm);
3545 	int r;
3546 	gpa_t gpa = ghc->gpa + offset;
3547 
3548 	if (WARN_ON_ONCE(len + offset > ghc->len))
3549 		return -EINVAL;
3550 
3551 	if (slots->generation != ghc->generation) {
3552 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3553 			return -EFAULT;
3554 	}
3555 
3556 	if (kvm_is_error_hva(ghc->hva))
3557 		return -EFAULT;
3558 
3559 	if (unlikely(!ghc->memslot))
3560 		return kvm_write_guest(kvm, gpa, data, len);
3561 
3562 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3563 	if (r)
3564 		return -EFAULT;
3565 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3566 
3567 	return 0;
3568 }
3569 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3570 
3571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3572 			   void *data, unsigned long len)
3573 {
3574 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3575 }
3576 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3577 
3578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3579 				 void *data, unsigned int offset,
3580 				 unsigned long len)
3581 {
3582 	struct kvm_memslots *slots = kvm_memslots(kvm);
3583 	int r;
3584 	gpa_t gpa = ghc->gpa + offset;
3585 
3586 	if (WARN_ON_ONCE(len + offset > ghc->len))
3587 		return -EINVAL;
3588 
3589 	if (slots->generation != ghc->generation) {
3590 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3591 			return -EFAULT;
3592 	}
3593 
3594 	if (kvm_is_error_hva(ghc->hva))
3595 		return -EFAULT;
3596 
3597 	if (unlikely(!ghc->memslot))
3598 		return kvm_read_guest(kvm, gpa, data, len);
3599 
3600 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3601 	if (r)
3602 		return -EFAULT;
3603 
3604 	return 0;
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3607 
3608 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3609 			  void *data, unsigned long len)
3610 {
3611 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3614 
3615 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3616 {
3617 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3618 	gfn_t gfn = gpa >> PAGE_SHIFT;
3619 	int seg;
3620 	int offset = offset_in_page(gpa);
3621 	int ret;
3622 
3623 	while ((seg = next_segment(len, offset)) != 0) {
3624 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3625 		if (ret < 0)
3626 			return ret;
3627 		offset = 0;
3628 		len -= seg;
3629 		++gfn;
3630 	}
3631 	return 0;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3634 
3635 void mark_page_dirty_in_slot(struct kvm *kvm,
3636 			     const struct kvm_memory_slot *memslot,
3637 		 	     gfn_t gfn)
3638 {
3639 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3640 
3641 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3642 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3643 		return;
3644 
3645 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3646 #endif
3647 
3648 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3649 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3650 		u32 slot = (memslot->as_id << 16) | memslot->id;
3651 
3652 		if (kvm->dirty_ring_size && vcpu)
3653 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3654 		else if (memslot->dirty_bitmap)
3655 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3656 	}
3657 }
3658 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3659 
3660 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3661 {
3662 	struct kvm_memory_slot *memslot;
3663 
3664 	memslot = gfn_to_memslot(kvm, gfn);
3665 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3666 }
3667 EXPORT_SYMBOL_GPL(mark_page_dirty);
3668 
3669 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3670 {
3671 	struct kvm_memory_slot *memslot;
3672 
3673 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3674 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3677 
3678 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3679 {
3680 	if (!vcpu->sigset_active)
3681 		return;
3682 
3683 	/*
3684 	 * This does a lockless modification of ->real_blocked, which is fine
3685 	 * because, only current can change ->real_blocked and all readers of
3686 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3687 	 * of ->blocked.
3688 	 */
3689 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3690 }
3691 
3692 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3693 {
3694 	if (!vcpu->sigset_active)
3695 		return;
3696 
3697 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3698 	sigemptyset(&current->real_blocked);
3699 }
3700 
3701 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3702 {
3703 	unsigned int old, val, grow, grow_start;
3704 
3705 	old = val = vcpu->halt_poll_ns;
3706 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3707 	grow = READ_ONCE(halt_poll_ns_grow);
3708 	if (!grow)
3709 		goto out;
3710 
3711 	val *= grow;
3712 	if (val < grow_start)
3713 		val = grow_start;
3714 
3715 	vcpu->halt_poll_ns = val;
3716 out:
3717 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3718 }
3719 
3720 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3721 {
3722 	unsigned int old, val, shrink, grow_start;
3723 
3724 	old = val = vcpu->halt_poll_ns;
3725 	shrink = READ_ONCE(halt_poll_ns_shrink);
3726 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3727 	if (shrink == 0)
3728 		val = 0;
3729 	else
3730 		val /= shrink;
3731 
3732 	if (val < grow_start)
3733 		val = 0;
3734 
3735 	vcpu->halt_poll_ns = val;
3736 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3737 }
3738 
3739 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3740 {
3741 	int ret = -EINTR;
3742 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3743 
3744 	if (kvm_arch_vcpu_runnable(vcpu))
3745 		goto out;
3746 	if (kvm_cpu_has_pending_timer(vcpu))
3747 		goto out;
3748 	if (signal_pending(current))
3749 		goto out;
3750 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3751 		goto out;
3752 
3753 	ret = 0;
3754 out:
3755 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3756 	return ret;
3757 }
3758 
3759 /*
3760  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3761  * pending.  This is mostly used when halting a vCPU, but may also be used
3762  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3763  */
3764 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3765 {
3766 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3767 	bool waited = false;
3768 
3769 	vcpu->stat.generic.blocking = 1;
3770 
3771 	preempt_disable();
3772 	kvm_arch_vcpu_blocking(vcpu);
3773 	prepare_to_rcuwait(wait);
3774 	preempt_enable();
3775 
3776 	for (;;) {
3777 		set_current_state(TASK_INTERRUPTIBLE);
3778 
3779 		if (kvm_vcpu_check_block(vcpu) < 0)
3780 			break;
3781 
3782 		waited = true;
3783 		schedule();
3784 	}
3785 
3786 	preempt_disable();
3787 	finish_rcuwait(wait);
3788 	kvm_arch_vcpu_unblocking(vcpu);
3789 	preempt_enable();
3790 
3791 	vcpu->stat.generic.blocking = 0;
3792 
3793 	return waited;
3794 }
3795 
3796 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3797 					  ktime_t end, bool success)
3798 {
3799 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3800 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3801 
3802 	++vcpu->stat.generic.halt_attempted_poll;
3803 
3804 	if (success) {
3805 		++vcpu->stat.generic.halt_successful_poll;
3806 
3807 		if (!vcpu_valid_wakeup(vcpu))
3808 			++vcpu->stat.generic.halt_poll_invalid;
3809 
3810 		stats->halt_poll_success_ns += poll_ns;
3811 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3812 	} else {
3813 		stats->halt_poll_fail_ns += poll_ns;
3814 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3815 	}
3816 }
3817 
3818 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3819 {
3820 	struct kvm *kvm = vcpu->kvm;
3821 
3822 	if (kvm->override_halt_poll_ns) {
3823 		/*
3824 		 * Ensure kvm->max_halt_poll_ns is not read before
3825 		 * kvm->override_halt_poll_ns.
3826 		 *
3827 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3828 		 */
3829 		smp_rmb();
3830 		return READ_ONCE(kvm->max_halt_poll_ns);
3831 	}
3832 
3833 	return READ_ONCE(halt_poll_ns);
3834 }
3835 
3836 /*
3837  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3838  * polling is enabled, busy wait for a short time before blocking to avoid the
3839  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3840  * is halted.
3841  */
3842 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3843 {
3844 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3845 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3846 	ktime_t start, cur, poll_end;
3847 	bool waited = false;
3848 	bool do_halt_poll;
3849 	u64 halt_ns;
3850 
3851 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3852 		vcpu->halt_poll_ns = max_halt_poll_ns;
3853 
3854 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3855 
3856 	start = cur = poll_end = ktime_get();
3857 	if (do_halt_poll) {
3858 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3859 
3860 		do {
3861 			if (kvm_vcpu_check_block(vcpu) < 0)
3862 				goto out;
3863 			cpu_relax();
3864 			poll_end = cur = ktime_get();
3865 		} while (kvm_vcpu_can_poll(cur, stop));
3866 	}
3867 
3868 	waited = kvm_vcpu_block(vcpu);
3869 
3870 	cur = ktime_get();
3871 	if (waited) {
3872 		vcpu->stat.generic.halt_wait_ns +=
3873 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3874 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3875 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3876 	}
3877 out:
3878 	/* The total time the vCPU was "halted", including polling time. */
3879 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3880 
3881 	/*
3882 	 * Note, halt-polling is considered successful so long as the vCPU was
3883 	 * never actually scheduled out, i.e. even if the wake event arrived
3884 	 * after of the halt-polling loop itself, but before the full wait.
3885 	 */
3886 	if (do_halt_poll)
3887 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3888 
3889 	if (halt_poll_allowed) {
3890 		/* Recompute the max halt poll time in case it changed. */
3891 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3892 
3893 		if (!vcpu_valid_wakeup(vcpu)) {
3894 			shrink_halt_poll_ns(vcpu);
3895 		} else if (max_halt_poll_ns) {
3896 			if (halt_ns <= vcpu->halt_poll_ns)
3897 				;
3898 			/* we had a long block, shrink polling */
3899 			else if (vcpu->halt_poll_ns &&
3900 				 halt_ns > max_halt_poll_ns)
3901 				shrink_halt_poll_ns(vcpu);
3902 			/* we had a short halt and our poll time is too small */
3903 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3904 				 halt_ns < max_halt_poll_ns)
3905 				grow_halt_poll_ns(vcpu);
3906 		} else {
3907 			vcpu->halt_poll_ns = 0;
3908 		}
3909 	}
3910 
3911 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3912 }
3913 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3914 
3915 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3916 {
3917 	if (__kvm_vcpu_wake_up(vcpu)) {
3918 		WRITE_ONCE(vcpu->ready, true);
3919 		++vcpu->stat.generic.halt_wakeup;
3920 		return true;
3921 	}
3922 
3923 	return false;
3924 }
3925 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3926 
3927 #ifndef CONFIG_S390
3928 /*
3929  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3930  */
3931 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3932 {
3933 	int me, cpu;
3934 
3935 	if (kvm_vcpu_wake_up(vcpu))
3936 		return;
3937 
3938 	me = get_cpu();
3939 	/*
3940 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3941 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3942 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3943 	 * within the vCPU thread itself.
3944 	 */
3945 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3946 		if (vcpu->mode == IN_GUEST_MODE)
3947 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3948 		goto out;
3949 	}
3950 
3951 	/*
3952 	 * Note, the vCPU could get migrated to a different pCPU at any point
3953 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3954 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3955 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3956 	 * vCPU also requires it to leave IN_GUEST_MODE.
3957 	 */
3958 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3959 		cpu = READ_ONCE(vcpu->cpu);
3960 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3961 			smp_send_reschedule(cpu);
3962 	}
3963 out:
3964 	put_cpu();
3965 }
3966 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3967 #endif /* !CONFIG_S390 */
3968 
3969 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3970 {
3971 	struct pid *pid;
3972 	struct task_struct *task = NULL;
3973 	int ret = 0;
3974 
3975 	rcu_read_lock();
3976 	pid = rcu_dereference(target->pid);
3977 	if (pid)
3978 		task = get_pid_task(pid, PIDTYPE_PID);
3979 	rcu_read_unlock();
3980 	if (!task)
3981 		return ret;
3982 	ret = yield_to(task, 1);
3983 	put_task_struct(task);
3984 
3985 	return ret;
3986 }
3987 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3988 
3989 /*
3990  * Helper that checks whether a VCPU is eligible for directed yield.
3991  * Most eligible candidate to yield is decided by following heuristics:
3992  *
3993  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3994  *  (preempted lock holder), indicated by @in_spin_loop.
3995  *  Set at the beginning and cleared at the end of interception/PLE handler.
3996  *
3997  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3998  *  chance last time (mostly it has become eligible now since we have probably
3999  *  yielded to lockholder in last iteration. This is done by toggling
4000  *  @dy_eligible each time a VCPU checked for eligibility.)
4001  *
4002  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4003  *  to preempted lock-holder could result in wrong VCPU selection and CPU
4004  *  burning. Giving priority for a potential lock-holder increases lock
4005  *  progress.
4006  *
4007  *  Since algorithm is based on heuristics, accessing another VCPU data without
4008  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4009  *  and continue with next VCPU and so on.
4010  */
4011 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4012 {
4013 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4014 	bool eligible;
4015 
4016 	eligible = !vcpu->spin_loop.in_spin_loop ||
4017 		    vcpu->spin_loop.dy_eligible;
4018 
4019 	if (vcpu->spin_loop.in_spin_loop)
4020 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4021 
4022 	return eligible;
4023 #else
4024 	return true;
4025 #endif
4026 }
4027 
4028 /*
4029  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4030  * a vcpu_load/vcpu_put pair.  However, for most architectures
4031  * kvm_arch_vcpu_runnable does not require vcpu_load.
4032  */
4033 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4034 {
4035 	return kvm_arch_vcpu_runnable(vcpu);
4036 }
4037 
4038 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4039 {
4040 	if (kvm_arch_dy_runnable(vcpu))
4041 		return true;
4042 
4043 #ifdef CONFIG_KVM_ASYNC_PF
4044 	if (!list_empty_careful(&vcpu->async_pf.done))
4045 		return true;
4046 #endif
4047 
4048 	return false;
4049 }
4050 
4051 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4052 {
4053 	return false;
4054 }
4055 
4056 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4057 {
4058 	struct kvm *kvm = me->kvm;
4059 	struct kvm_vcpu *vcpu;
4060 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4061 	unsigned long i;
4062 	int yielded = 0;
4063 	int try = 3;
4064 	int pass;
4065 
4066 	kvm_vcpu_set_in_spin_loop(me, true);
4067 	/*
4068 	 * We boost the priority of a VCPU that is runnable but not
4069 	 * currently running, because it got preempted by something
4070 	 * else and called schedule in __vcpu_run.  Hopefully that
4071 	 * VCPU is holding the lock that we need and will release it.
4072 	 * We approximate round-robin by starting at the last boosted VCPU.
4073 	 */
4074 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4075 		kvm_for_each_vcpu(i, vcpu, kvm) {
4076 			if (!pass && i <= last_boosted_vcpu) {
4077 				i = last_boosted_vcpu;
4078 				continue;
4079 			} else if (pass && i > last_boosted_vcpu)
4080 				break;
4081 			if (!READ_ONCE(vcpu->ready))
4082 				continue;
4083 			if (vcpu == me)
4084 				continue;
4085 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4086 				continue;
4087 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4088 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4089 			    !kvm_arch_vcpu_in_kernel(vcpu))
4090 				continue;
4091 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4092 				continue;
4093 
4094 			yielded = kvm_vcpu_yield_to(vcpu);
4095 			if (yielded > 0) {
4096 				kvm->last_boosted_vcpu = i;
4097 				break;
4098 			} else if (yielded < 0) {
4099 				try--;
4100 				if (!try)
4101 					break;
4102 			}
4103 		}
4104 	}
4105 	kvm_vcpu_set_in_spin_loop(me, false);
4106 
4107 	/* Ensure vcpu is not eligible during next spinloop */
4108 	kvm_vcpu_set_dy_eligible(me, false);
4109 }
4110 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4111 
4112 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4113 {
4114 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4115 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4116 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4117 	     kvm->dirty_ring_size / PAGE_SIZE);
4118 #else
4119 	return false;
4120 #endif
4121 }
4122 
4123 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4124 {
4125 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4126 	struct page *page;
4127 
4128 	if (vmf->pgoff == 0)
4129 		page = virt_to_page(vcpu->run);
4130 #ifdef CONFIG_X86
4131 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4132 		page = virt_to_page(vcpu->arch.pio_data);
4133 #endif
4134 #ifdef CONFIG_KVM_MMIO
4135 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4136 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4137 #endif
4138 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4139 		page = kvm_dirty_ring_get_page(
4140 		    &vcpu->dirty_ring,
4141 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4142 	else
4143 		return kvm_arch_vcpu_fault(vcpu, vmf);
4144 	get_page(page);
4145 	vmf->page = page;
4146 	return 0;
4147 }
4148 
4149 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4150 	.fault = kvm_vcpu_fault,
4151 };
4152 
4153 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4154 {
4155 	struct kvm_vcpu *vcpu = file->private_data;
4156 	unsigned long pages = vma_pages(vma);
4157 
4158 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4159 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4160 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4161 		return -EINVAL;
4162 
4163 	vma->vm_ops = &kvm_vcpu_vm_ops;
4164 	return 0;
4165 }
4166 
4167 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4168 {
4169 	struct kvm_vcpu *vcpu = filp->private_data;
4170 
4171 	kvm_put_kvm(vcpu->kvm);
4172 	return 0;
4173 }
4174 
4175 static struct file_operations kvm_vcpu_fops = {
4176 	.release        = kvm_vcpu_release,
4177 	.unlocked_ioctl = kvm_vcpu_ioctl,
4178 	.mmap           = kvm_vcpu_mmap,
4179 	.llseek		= noop_llseek,
4180 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4181 };
4182 
4183 /*
4184  * Allocates an inode for the vcpu.
4185  */
4186 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4187 {
4188 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4189 
4190 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4191 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4192 }
4193 
4194 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4195 static int vcpu_get_pid(void *data, u64 *val)
4196 {
4197 	struct kvm_vcpu *vcpu = data;
4198 
4199 	rcu_read_lock();
4200 	*val = pid_nr(rcu_dereference(vcpu->pid));
4201 	rcu_read_unlock();
4202 	return 0;
4203 }
4204 
4205 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4206 
4207 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4208 {
4209 	struct dentry *debugfs_dentry;
4210 	char dir_name[ITOA_MAX_LEN * 2];
4211 
4212 	if (!debugfs_initialized())
4213 		return;
4214 
4215 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4216 	debugfs_dentry = debugfs_create_dir(dir_name,
4217 					    vcpu->kvm->debugfs_dentry);
4218 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4219 			    &vcpu_get_pid_fops);
4220 
4221 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4222 }
4223 #endif
4224 
4225 /*
4226  * Creates some virtual cpus.  Good luck creating more than one.
4227  */
4228 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4229 {
4230 	int r;
4231 	struct kvm_vcpu *vcpu;
4232 	struct page *page;
4233 
4234 	if (id >= KVM_MAX_VCPU_IDS)
4235 		return -EINVAL;
4236 
4237 	mutex_lock(&kvm->lock);
4238 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4239 		mutex_unlock(&kvm->lock);
4240 		return -EINVAL;
4241 	}
4242 
4243 	r = kvm_arch_vcpu_precreate(kvm, id);
4244 	if (r) {
4245 		mutex_unlock(&kvm->lock);
4246 		return r;
4247 	}
4248 
4249 	kvm->created_vcpus++;
4250 	mutex_unlock(&kvm->lock);
4251 
4252 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4253 	if (!vcpu) {
4254 		r = -ENOMEM;
4255 		goto vcpu_decrement;
4256 	}
4257 
4258 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4259 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4260 	if (!page) {
4261 		r = -ENOMEM;
4262 		goto vcpu_free;
4263 	}
4264 	vcpu->run = page_address(page);
4265 
4266 	kvm_vcpu_init(vcpu, kvm, id);
4267 
4268 	r = kvm_arch_vcpu_create(vcpu);
4269 	if (r)
4270 		goto vcpu_free_run_page;
4271 
4272 	if (kvm->dirty_ring_size) {
4273 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4274 					 id, kvm->dirty_ring_size);
4275 		if (r)
4276 			goto arch_vcpu_destroy;
4277 	}
4278 
4279 	mutex_lock(&kvm->lock);
4280 
4281 #ifdef CONFIG_LOCKDEP
4282 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4283 	mutex_lock(&vcpu->mutex);
4284 	mutex_unlock(&vcpu->mutex);
4285 #endif
4286 
4287 	if (kvm_get_vcpu_by_id(kvm, id)) {
4288 		r = -EEXIST;
4289 		goto unlock_vcpu_destroy;
4290 	}
4291 
4292 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4293 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4294 	if (r)
4295 		goto unlock_vcpu_destroy;
4296 
4297 	/* Now it's all set up, let userspace reach it */
4298 	kvm_get_kvm(kvm);
4299 	r = create_vcpu_fd(vcpu);
4300 	if (r < 0)
4301 		goto kvm_put_xa_release;
4302 
4303 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4304 		r = -EINVAL;
4305 		goto kvm_put_xa_release;
4306 	}
4307 
4308 	/*
4309 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4310 	 * pointer before kvm->online_vcpu's incremented value.
4311 	 */
4312 	smp_wmb();
4313 	atomic_inc(&kvm->online_vcpus);
4314 
4315 	mutex_unlock(&kvm->lock);
4316 	kvm_arch_vcpu_postcreate(vcpu);
4317 	kvm_create_vcpu_debugfs(vcpu);
4318 	return r;
4319 
4320 kvm_put_xa_release:
4321 	kvm_put_kvm_no_destroy(kvm);
4322 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4323 unlock_vcpu_destroy:
4324 	mutex_unlock(&kvm->lock);
4325 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4326 arch_vcpu_destroy:
4327 	kvm_arch_vcpu_destroy(vcpu);
4328 vcpu_free_run_page:
4329 	free_page((unsigned long)vcpu->run);
4330 vcpu_free:
4331 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4332 vcpu_decrement:
4333 	mutex_lock(&kvm->lock);
4334 	kvm->created_vcpus--;
4335 	mutex_unlock(&kvm->lock);
4336 	return r;
4337 }
4338 
4339 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4340 {
4341 	if (sigset) {
4342 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4343 		vcpu->sigset_active = 1;
4344 		vcpu->sigset = *sigset;
4345 	} else
4346 		vcpu->sigset_active = 0;
4347 	return 0;
4348 }
4349 
4350 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4351 			      size_t size, loff_t *offset)
4352 {
4353 	struct kvm_vcpu *vcpu = file->private_data;
4354 
4355 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4356 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4357 			sizeof(vcpu->stat), user_buffer, size, offset);
4358 }
4359 
4360 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4361 {
4362 	struct kvm_vcpu *vcpu = file->private_data;
4363 
4364 	kvm_put_kvm(vcpu->kvm);
4365 	return 0;
4366 }
4367 
4368 static const struct file_operations kvm_vcpu_stats_fops = {
4369 	.owner = THIS_MODULE,
4370 	.read = kvm_vcpu_stats_read,
4371 	.release = kvm_vcpu_stats_release,
4372 	.llseek = noop_llseek,
4373 };
4374 
4375 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4376 {
4377 	int fd;
4378 	struct file *file;
4379 	char name[15 + ITOA_MAX_LEN + 1];
4380 
4381 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4382 
4383 	fd = get_unused_fd_flags(O_CLOEXEC);
4384 	if (fd < 0)
4385 		return fd;
4386 
4387 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4388 	if (IS_ERR(file)) {
4389 		put_unused_fd(fd);
4390 		return PTR_ERR(file);
4391 	}
4392 
4393 	kvm_get_kvm(vcpu->kvm);
4394 
4395 	file->f_mode |= FMODE_PREAD;
4396 	fd_install(fd, file);
4397 
4398 	return fd;
4399 }
4400 
4401 static long kvm_vcpu_ioctl(struct file *filp,
4402 			   unsigned int ioctl, unsigned long arg)
4403 {
4404 	struct kvm_vcpu *vcpu = filp->private_data;
4405 	void __user *argp = (void __user *)arg;
4406 	int r;
4407 	struct kvm_fpu *fpu = NULL;
4408 	struct kvm_sregs *kvm_sregs = NULL;
4409 
4410 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4411 		return -EIO;
4412 
4413 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4414 		return -EINVAL;
4415 
4416 	/*
4417 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4418 	 * execution; mutex_lock() would break them.
4419 	 */
4420 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4421 	if (r != -ENOIOCTLCMD)
4422 		return r;
4423 
4424 	if (mutex_lock_killable(&vcpu->mutex))
4425 		return -EINTR;
4426 	switch (ioctl) {
4427 	case KVM_RUN: {
4428 		struct pid *oldpid;
4429 		r = -EINVAL;
4430 		if (arg)
4431 			goto out;
4432 		oldpid = rcu_access_pointer(vcpu->pid);
4433 		if (unlikely(oldpid != task_pid(current))) {
4434 			/* The thread running this VCPU changed. */
4435 			struct pid *newpid;
4436 
4437 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4438 			if (r)
4439 				break;
4440 
4441 			newpid = get_task_pid(current, PIDTYPE_PID);
4442 			rcu_assign_pointer(vcpu->pid, newpid);
4443 			if (oldpid)
4444 				synchronize_rcu();
4445 			put_pid(oldpid);
4446 		}
4447 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4448 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4449 		break;
4450 	}
4451 	case KVM_GET_REGS: {
4452 		struct kvm_regs *kvm_regs;
4453 
4454 		r = -ENOMEM;
4455 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4456 		if (!kvm_regs)
4457 			goto out;
4458 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4459 		if (r)
4460 			goto out_free1;
4461 		r = -EFAULT;
4462 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4463 			goto out_free1;
4464 		r = 0;
4465 out_free1:
4466 		kfree(kvm_regs);
4467 		break;
4468 	}
4469 	case KVM_SET_REGS: {
4470 		struct kvm_regs *kvm_regs;
4471 
4472 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4473 		if (IS_ERR(kvm_regs)) {
4474 			r = PTR_ERR(kvm_regs);
4475 			goto out;
4476 		}
4477 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4478 		kfree(kvm_regs);
4479 		break;
4480 	}
4481 	case KVM_GET_SREGS: {
4482 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4483 				    GFP_KERNEL_ACCOUNT);
4484 		r = -ENOMEM;
4485 		if (!kvm_sregs)
4486 			goto out;
4487 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4488 		if (r)
4489 			goto out;
4490 		r = -EFAULT;
4491 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4492 			goto out;
4493 		r = 0;
4494 		break;
4495 	}
4496 	case KVM_SET_SREGS: {
4497 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4498 		if (IS_ERR(kvm_sregs)) {
4499 			r = PTR_ERR(kvm_sregs);
4500 			kvm_sregs = NULL;
4501 			goto out;
4502 		}
4503 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4504 		break;
4505 	}
4506 	case KVM_GET_MP_STATE: {
4507 		struct kvm_mp_state mp_state;
4508 
4509 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4510 		if (r)
4511 			goto out;
4512 		r = -EFAULT;
4513 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4514 			goto out;
4515 		r = 0;
4516 		break;
4517 	}
4518 	case KVM_SET_MP_STATE: {
4519 		struct kvm_mp_state mp_state;
4520 
4521 		r = -EFAULT;
4522 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4523 			goto out;
4524 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4525 		break;
4526 	}
4527 	case KVM_TRANSLATE: {
4528 		struct kvm_translation tr;
4529 
4530 		r = -EFAULT;
4531 		if (copy_from_user(&tr, argp, sizeof(tr)))
4532 			goto out;
4533 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4534 		if (r)
4535 			goto out;
4536 		r = -EFAULT;
4537 		if (copy_to_user(argp, &tr, sizeof(tr)))
4538 			goto out;
4539 		r = 0;
4540 		break;
4541 	}
4542 	case KVM_SET_GUEST_DEBUG: {
4543 		struct kvm_guest_debug dbg;
4544 
4545 		r = -EFAULT;
4546 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4547 			goto out;
4548 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4549 		break;
4550 	}
4551 	case KVM_SET_SIGNAL_MASK: {
4552 		struct kvm_signal_mask __user *sigmask_arg = argp;
4553 		struct kvm_signal_mask kvm_sigmask;
4554 		sigset_t sigset, *p;
4555 
4556 		p = NULL;
4557 		if (argp) {
4558 			r = -EFAULT;
4559 			if (copy_from_user(&kvm_sigmask, argp,
4560 					   sizeof(kvm_sigmask)))
4561 				goto out;
4562 			r = -EINVAL;
4563 			if (kvm_sigmask.len != sizeof(sigset))
4564 				goto out;
4565 			r = -EFAULT;
4566 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4567 					   sizeof(sigset)))
4568 				goto out;
4569 			p = &sigset;
4570 		}
4571 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4572 		break;
4573 	}
4574 	case KVM_GET_FPU: {
4575 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4576 		r = -ENOMEM;
4577 		if (!fpu)
4578 			goto out;
4579 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4580 		if (r)
4581 			goto out;
4582 		r = -EFAULT;
4583 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4584 			goto out;
4585 		r = 0;
4586 		break;
4587 	}
4588 	case KVM_SET_FPU: {
4589 		fpu = memdup_user(argp, sizeof(*fpu));
4590 		if (IS_ERR(fpu)) {
4591 			r = PTR_ERR(fpu);
4592 			fpu = NULL;
4593 			goto out;
4594 		}
4595 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4596 		break;
4597 	}
4598 	case KVM_GET_STATS_FD: {
4599 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4600 		break;
4601 	}
4602 	default:
4603 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4604 	}
4605 out:
4606 	mutex_unlock(&vcpu->mutex);
4607 	kfree(fpu);
4608 	kfree(kvm_sregs);
4609 	return r;
4610 }
4611 
4612 #ifdef CONFIG_KVM_COMPAT
4613 static long kvm_vcpu_compat_ioctl(struct file *filp,
4614 				  unsigned int ioctl, unsigned long arg)
4615 {
4616 	struct kvm_vcpu *vcpu = filp->private_data;
4617 	void __user *argp = compat_ptr(arg);
4618 	int r;
4619 
4620 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4621 		return -EIO;
4622 
4623 	switch (ioctl) {
4624 	case KVM_SET_SIGNAL_MASK: {
4625 		struct kvm_signal_mask __user *sigmask_arg = argp;
4626 		struct kvm_signal_mask kvm_sigmask;
4627 		sigset_t sigset;
4628 
4629 		if (argp) {
4630 			r = -EFAULT;
4631 			if (copy_from_user(&kvm_sigmask, argp,
4632 					   sizeof(kvm_sigmask)))
4633 				goto out;
4634 			r = -EINVAL;
4635 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4636 				goto out;
4637 			r = -EFAULT;
4638 			if (get_compat_sigset(&sigset,
4639 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4640 				goto out;
4641 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4642 		} else
4643 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4644 		break;
4645 	}
4646 	default:
4647 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4648 	}
4649 
4650 out:
4651 	return r;
4652 }
4653 #endif
4654 
4655 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4656 {
4657 	struct kvm_device *dev = filp->private_data;
4658 
4659 	if (dev->ops->mmap)
4660 		return dev->ops->mmap(dev, vma);
4661 
4662 	return -ENODEV;
4663 }
4664 
4665 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4666 				 int (*accessor)(struct kvm_device *dev,
4667 						 struct kvm_device_attr *attr),
4668 				 unsigned long arg)
4669 {
4670 	struct kvm_device_attr attr;
4671 
4672 	if (!accessor)
4673 		return -EPERM;
4674 
4675 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676 		return -EFAULT;
4677 
4678 	return accessor(dev, &attr);
4679 }
4680 
4681 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4682 			     unsigned long arg)
4683 {
4684 	struct kvm_device *dev = filp->private_data;
4685 
4686 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4687 		return -EIO;
4688 
4689 	switch (ioctl) {
4690 	case KVM_SET_DEVICE_ATTR:
4691 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4692 	case KVM_GET_DEVICE_ATTR:
4693 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4694 	case KVM_HAS_DEVICE_ATTR:
4695 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4696 	default:
4697 		if (dev->ops->ioctl)
4698 			return dev->ops->ioctl(dev, ioctl, arg);
4699 
4700 		return -ENOTTY;
4701 	}
4702 }
4703 
4704 static int kvm_device_release(struct inode *inode, struct file *filp)
4705 {
4706 	struct kvm_device *dev = filp->private_data;
4707 	struct kvm *kvm = dev->kvm;
4708 
4709 	if (dev->ops->release) {
4710 		mutex_lock(&kvm->lock);
4711 		list_del(&dev->vm_node);
4712 		dev->ops->release(dev);
4713 		mutex_unlock(&kvm->lock);
4714 	}
4715 
4716 	kvm_put_kvm(kvm);
4717 	return 0;
4718 }
4719 
4720 static struct file_operations kvm_device_fops = {
4721 	.unlocked_ioctl = kvm_device_ioctl,
4722 	.release = kvm_device_release,
4723 	KVM_COMPAT(kvm_device_ioctl),
4724 	.mmap = kvm_device_mmap,
4725 };
4726 
4727 struct kvm_device *kvm_device_from_filp(struct file *filp)
4728 {
4729 	if (filp->f_op != &kvm_device_fops)
4730 		return NULL;
4731 
4732 	return filp->private_data;
4733 }
4734 
4735 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4736 #ifdef CONFIG_KVM_MPIC
4737 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4738 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4739 #endif
4740 };
4741 
4742 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4743 {
4744 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4745 		return -ENOSPC;
4746 
4747 	if (kvm_device_ops_table[type] != NULL)
4748 		return -EEXIST;
4749 
4750 	kvm_device_ops_table[type] = ops;
4751 	return 0;
4752 }
4753 
4754 void kvm_unregister_device_ops(u32 type)
4755 {
4756 	if (kvm_device_ops_table[type] != NULL)
4757 		kvm_device_ops_table[type] = NULL;
4758 }
4759 
4760 static int kvm_ioctl_create_device(struct kvm *kvm,
4761 				   struct kvm_create_device *cd)
4762 {
4763 	const struct kvm_device_ops *ops;
4764 	struct kvm_device *dev;
4765 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4766 	int type;
4767 	int ret;
4768 
4769 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4770 		return -ENODEV;
4771 
4772 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4773 	ops = kvm_device_ops_table[type];
4774 	if (ops == NULL)
4775 		return -ENODEV;
4776 
4777 	if (test)
4778 		return 0;
4779 
4780 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4781 	if (!dev)
4782 		return -ENOMEM;
4783 
4784 	dev->ops = ops;
4785 	dev->kvm = kvm;
4786 
4787 	mutex_lock(&kvm->lock);
4788 	ret = ops->create(dev, type);
4789 	if (ret < 0) {
4790 		mutex_unlock(&kvm->lock);
4791 		kfree(dev);
4792 		return ret;
4793 	}
4794 	list_add(&dev->vm_node, &kvm->devices);
4795 	mutex_unlock(&kvm->lock);
4796 
4797 	if (ops->init)
4798 		ops->init(dev);
4799 
4800 	kvm_get_kvm(kvm);
4801 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4802 	if (ret < 0) {
4803 		kvm_put_kvm_no_destroy(kvm);
4804 		mutex_lock(&kvm->lock);
4805 		list_del(&dev->vm_node);
4806 		if (ops->release)
4807 			ops->release(dev);
4808 		mutex_unlock(&kvm->lock);
4809 		if (ops->destroy)
4810 			ops->destroy(dev);
4811 		return ret;
4812 	}
4813 
4814 	cd->fd = ret;
4815 	return 0;
4816 }
4817 
4818 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4819 {
4820 	switch (arg) {
4821 	case KVM_CAP_USER_MEMORY:
4822 	case KVM_CAP_USER_MEMORY2:
4823 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4824 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4825 	case KVM_CAP_INTERNAL_ERROR_DATA:
4826 #ifdef CONFIG_HAVE_KVM_MSI
4827 	case KVM_CAP_SIGNAL_MSI:
4828 #endif
4829 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4830 	case KVM_CAP_IRQFD:
4831 #endif
4832 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4833 	case KVM_CAP_CHECK_EXTENSION_VM:
4834 	case KVM_CAP_ENABLE_CAP_VM:
4835 	case KVM_CAP_HALT_POLL:
4836 		return 1;
4837 #ifdef CONFIG_KVM_MMIO
4838 	case KVM_CAP_COALESCED_MMIO:
4839 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4840 	case KVM_CAP_COALESCED_PIO:
4841 		return 1;
4842 #endif
4843 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4844 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4845 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4846 #endif
4847 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4848 	case KVM_CAP_IRQ_ROUTING:
4849 		return KVM_MAX_IRQ_ROUTES;
4850 #endif
4851 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4852 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4853 		if (kvm)
4854 			return kvm_arch_nr_memslot_as_ids(kvm);
4855 		return KVM_MAX_NR_ADDRESS_SPACES;
4856 #endif
4857 	case KVM_CAP_NR_MEMSLOTS:
4858 		return KVM_USER_MEM_SLOTS;
4859 	case KVM_CAP_DIRTY_LOG_RING:
4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4861 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862 #else
4863 		return 0;
4864 #endif
4865 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4866 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4867 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4868 #else
4869 		return 0;
4870 #endif
4871 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4872 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4873 #endif
4874 	case KVM_CAP_BINARY_STATS_FD:
4875 	case KVM_CAP_SYSTEM_EVENT_DATA:
4876 	case KVM_CAP_DEVICE_CTRL:
4877 		return 1;
4878 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4879 	case KVM_CAP_MEMORY_ATTRIBUTES:
4880 		return kvm_supported_mem_attributes(kvm);
4881 #endif
4882 #ifdef CONFIG_KVM_PRIVATE_MEM
4883 	case KVM_CAP_GUEST_MEMFD:
4884 		return !kvm || kvm_arch_has_private_mem(kvm);
4885 #endif
4886 	default:
4887 		break;
4888 	}
4889 	return kvm_vm_ioctl_check_extension(kvm, arg);
4890 }
4891 
4892 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4893 {
4894 	int r;
4895 
4896 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4897 		return -EINVAL;
4898 
4899 	/* the size should be power of 2 */
4900 	if (!size || (size & (size - 1)))
4901 		return -EINVAL;
4902 
4903 	/* Should be bigger to keep the reserved entries, or a page */
4904 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4905 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4906 		return -EINVAL;
4907 
4908 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4909 	    sizeof(struct kvm_dirty_gfn))
4910 		return -E2BIG;
4911 
4912 	/* We only allow it to set once */
4913 	if (kvm->dirty_ring_size)
4914 		return -EINVAL;
4915 
4916 	mutex_lock(&kvm->lock);
4917 
4918 	if (kvm->created_vcpus) {
4919 		/* We don't allow to change this value after vcpu created */
4920 		r = -EINVAL;
4921 	} else {
4922 		kvm->dirty_ring_size = size;
4923 		r = 0;
4924 	}
4925 
4926 	mutex_unlock(&kvm->lock);
4927 	return r;
4928 }
4929 
4930 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4931 {
4932 	unsigned long i;
4933 	struct kvm_vcpu *vcpu;
4934 	int cleared = 0;
4935 
4936 	if (!kvm->dirty_ring_size)
4937 		return -EINVAL;
4938 
4939 	mutex_lock(&kvm->slots_lock);
4940 
4941 	kvm_for_each_vcpu(i, vcpu, kvm)
4942 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4943 
4944 	mutex_unlock(&kvm->slots_lock);
4945 
4946 	if (cleared)
4947 		kvm_flush_remote_tlbs(kvm);
4948 
4949 	return cleared;
4950 }
4951 
4952 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4953 						  struct kvm_enable_cap *cap)
4954 {
4955 	return -EINVAL;
4956 }
4957 
4958 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4959 {
4960 	int i;
4961 
4962 	lockdep_assert_held(&kvm->slots_lock);
4963 
4964 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4965 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4966 			return false;
4967 	}
4968 
4969 	return true;
4970 }
4971 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4972 
4973 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4974 					   struct kvm_enable_cap *cap)
4975 {
4976 	switch (cap->cap) {
4977 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4978 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4979 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4980 
4981 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4982 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4983 
4984 		if (cap->flags || (cap->args[0] & ~allowed_options))
4985 			return -EINVAL;
4986 		kvm->manual_dirty_log_protect = cap->args[0];
4987 		return 0;
4988 	}
4989 #endif
4990 	case KVM_CAP_HALT_POLL: {
4991 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4992 			return -EINVAL;
4993 
4994 		kvm->max_halt_poll_ns = cap->args[0];
4995 
4996 		/*
4997 		 * Ensure kvm->override_halt_poll_ns does not become visible
4998 		 * before kvm->max_halt_poll_ns.
4999 		 *
5000 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5001 		 */
5002 		smp_wmb();
5003 		kvm->override_halt_poll_ns = true;
5004 
5005 		return 0;
5006 	}
5007 	case KVM_CAP_DIRTY_LOG_RING:
5008 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5009 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5010 			return -EINVAL;
5011 
5012 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5013 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5014 		int r = -EINVAL;
5015 
5016 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5017 		    !kvm->dirty_ring_size || cap->flags)
5018 			return r;
5019 
5020 		mutex_lock(&kvm->slots_lock);
5021 
5022 		/*
5023 		 * For simplicity, allow enabling ring+bitmap if and only if
5024 		 * there are no memslots, e.g. to ensure all memslots allocate
5025 		 * a bitmap after the capability is enabled.
5026 		 */
5027 		if (kvm_are_all_memslots_empty(kvm)) {
5028 			kvm->dirty_ring_with_bitmap = true;
5029 			r = 0;
5030 		}
5031 
5032 		mutex_unlock(&kvm->slots_lock);
5033 
5034 		return r;
5035 	}
5036 	default:
5037 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5038 	}
5039 }
5040 
5041 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5042 			      size_t size, loff_t *offset)
5043 {
5044 	struct kvm *kvm = file->private_data;
5045 
5046 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5047 				&kvm_vm_stats_desc[0], &kvm->stat,
5048 				sizeof(kvm->stat), user_buffer, size, offset);
5049 }
5050 
5051 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5052 {
5053 	struct kvm *kvm = file->private_data;
5054 
5055 	kvm_put_kvm(kvm);
5056 	return 0;
5057 }
5058 
5059 static const struct file_operations kvm_vm_stats_fops = {
5060 	.owner = THIS_MODULE,
5061 	.read = kvm_vm_stats_read,
5062 	.release = kvm_vm_stats_release,
5063 	.llseek = noop_llseek,
5064 };
5065 
5066 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5067 {
5068 	int fd;
5069 	struct file *file;
5070 
5071 	fd = get_unused_fd_flags(O_CLOEXEC);
5072 	if (fd < 0)
5073 		return fd;
5074 
5075 	file = anon_inode_getfile("kvm-vm-stats",
5076 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5077 	if (IS_ERR(file)) {
5078 		put_unused_fd(fd);
5079 		return PTR_ERR(file);
5080 	}
5081 
5082 	kvm_get_kvm(kvm);
5083 
5084 	file->f_mode |= FMODE_PREAD;
5085 	fd_install(fd, file);
5086 
5087 	return fd;
5088 }
5089 
5090 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5091 do {										\
5092 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5093 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5094 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5095 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5096 } while (0)
5097 
5098 static long kvm_vm_ioctl(struct file *filp,
5099 			   unsigned int ioctl, unsigned long arg)
5100 {
5101 	struct kvm *kvm = filp->private_data;
5102 	void __user *argp = (void __user *)arg;
5103 	int r;
5104 
5105 	if (kvm->mm != current->mm || kvm->vm_dead)
5106 		return -EIO;
5107 	switch (ioctl) {
5108 	case KVM_CREATE_VCPU:
5109 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5110 		break;
5111 	case KVM_ENABLE_CAP: {
5112 		struct kvm_enable_cap cap;
5113 
5114 		r = -EFAULT;
5115 		if (copy_from_user(&cap, argp, sizeof(cap)))
5116 			goto out;
5117 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5118 		break;
5119 	}
5120 	case KVM_SET_USER_MEMORY_REGION2:
5121 	case KVM_SET_USER_MEMORY_REGION: {
5122 		struct kvm_userspace_memory_region2 mem;
5123 		unsigned long size;
5124 
5125 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5126 			/*
5127 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5128 			 * accessed, but avoid leaking kernel memory in case of a bug.
5129 			 */
5130 			memset(&mem, 0, sizeof(mem));
5131 			size = sizeof(struct kvm_userspace_memory_region);
5132 		} else {
5133 			size = sizeof(struct kvm_userspace_memory_region2);
5134 		}
5135 
5136 		/* Ensure the common parts of the two structs are identical. */
5137 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5138 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5139 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5140 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5141 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5142 
5143 		r = -EFAULT;
5144 		if (copy_from_user(&mem, argp, size))
5145 			goto out;
5146 
5147 		r = -EINVAL;
5148 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5149 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5150 			goto out;
5151 
5152 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5153 		break;
5154 	}
5155 	case KVM_GET_DIRTY_LOG: {
5156 		struct kvm_dirty_log log;
5157 
5158 		r = -EFAULT;
5159 		if (copy_from_user(&log, argp, sizeof(log)))
5160 			goto out;
5161 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5162 		break;
5163 	}
5164 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5165 	case KVM_CLEAR_DIRTY_LOG: {
5166 		struct kvm_clear_dirty_log log;
5167 
5168 		r = -EFAULT;
5169 		if (copy_from_user(&log, argp, sizeof(log)))
5170 			goto out;
5171 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5172 		break;
5173 	}
5174 #endif
5175 #ifdef CONFIG_KVM_MMIO
5176 	case KVM_REGISTER_COALESCED_MMIO: {
5177 		struct kvm_coalesced_mmio_zone zone;
5178 
5179 		r = -EFAULT;
5180 		if (copy_from_user(&zone, argp, sizeof(zone)))
5181 			goto out;
5182 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5183 		break;
5184 	}
5185 	case KVM_UNREGISTER_COALESCED_MMIO: {
5186 		struct kvm_coalesced_mmio_zone zone;
5187 
5188 		r = -EFAULT;
5189 		if (copy_from_user(&zone, argp, sizeof(zone)))
5190 			goto out;
5191 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5192 		break;
5193 	}
5194 #endif
5195 	case KVM_IRQFD: {
5196 		struct kvm_irqfd data;
5197 
5198 		r = -EFAULT;
5199 		if (copy_from_user(&data, argp, sizeof(data)))
5200 			goto out;
5201 		r = kvm_irqfd(kvm, &data);
5202 		break;
5203 	}
5204 	case KVM_IOEVENTFD: {
5205 		struct kvm_ioeventfd data;
5206 
5207 		r = -EFAULT;
5208 		if (copy_from_user(&data, argp, sizeof(data)))
5209 			goto out;
5210 		r = kvm_ioeventfd(kvm, &data);
5211 		break;
5212 	}
5213 #ifdef CONFIG_HAVE_KVM_MSI
5214 	case KVM_SIGNAL_MSI: {
5215 		struct kvm_msi msi;
5216 
5217 		r = -EFAULT;
5218 		if (copy_from_user(&msi, argp, sizeof(msi)))
5219 			goto out;
5220 		r = kvm_send_userspace_msi(kvm, &msi);
5221 		break;
5222 	}
5223 #endif
5224 #ifdef __KVM_HAVE_IRQ_LINE
5225 	case KVM_IRQ_LINE_STATUS:
5226 	case KVM_IRQ_LINE: {
5227 		struct kvm_irq_level irq_event;
5228 
5229 		r = -EFAULT;
5230 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5231 			goto out;
5232 
5233 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5234 					ioctl == KVM_IRQ_LINE_STATUS);
5235 		if (r)
5236 			goto out;
5237 
5238 		r = -EFAULT;
5239 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5240 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5241 				goto out;
5242 		}
5243 
5244 		r = 0;
5245 		break;
5246 	}
5247 #endif
5248 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5249 	case KVM_SET_GSI_ROUTING: {
5250 		struct kvm_irq_routing routing;
5251 		struct kvm_irq_routing __user *urouting;
5252 		struct kvm_irq_routing_entry *entries = NULL;
5253 
5254 		r = -EFAULT;
5255 		if (copy_from_user(&routing, argp, sizeof(routing)))
5256 			goto out;
5257 		r = -EINVAL;
5258 		if (!kvm_arch_can_set_irq_routing(kvm))
5259 			goto out;
5260 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5261 			goto out;
5262 		if (routing.flags)
5263 			goto out;
5264 		if (routing.nr) {
5265 			urouting = argp;
5266 			entries = vmemdup_array_user(urouting->entries,
5267 						     routing.nr, sizeof(*entries));
5268 			if (IS_ERR(entries)) {
5269 				r = PTR_ERR(entries);
5270 				goto out;
5271 			}
5272 		}
5273 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5274 					routing.flags);
5275 		kvfree(entries);
5276 		break;
5277 	}
5278 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5279 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5280 	case KVM_SET_MEMORY_ATTRIBUTES: {
5281 		struct kvm_memory_attributes attrs;
5282 
5283 		r = -EFAULT;
5284 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5285 			goto out;
5286 
5287 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5288 		break;
5289 	}
5290 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5291 	case KVM_CREATE_DEVICE: {
5292 		struct kvm_create_device cd;
5293 
5294 		r = -EFAULT;
5295 		if (copy_from_user(&cd, argp, sizeof(cd)))
5296 			goto out;
5297 
5298 		r = kvm_ioctl_create_device(kvm, &cd);
5299 		if (r)
5300 			goto out;
5301 
5302 		r = -EFAULT;
5303 		if (copy_to_user(argp, &cd, sizeof(cd)))
5304 			goto out;
5305 
5306 		r = 0;
5307 		break;
5308 	}
5309 	case KVM_CHECK_EXTENSION:
5310 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5311 		break;
5312 	case KVM_RESET_DIRTY_RINGS:
5313 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5314 		break;
5315 	case KVM_GET_STATS_FD:
5316 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5317 		break;
5318 #ifdef CONFIG_KVM_PRIVATE_MEM
5319 	case KVM_CREATE_GUEST_MEMFD: {
5320 		struct kvm_create_guest_memfd guest_memfd;
5321 
5322 		r = -EFAULT;
5323 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5324 			goto out;
5325 
5326 		r = kvm_gmem_create(kvm, &guest_memfd);
5327 		break;
5328 	}
5329 #endif
5330 	default:
5331 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5332 	}
5333 out:
5334 	return r;
5335 }
5336 
5337 #ifdef CONFIG_KVM_COMPAT
5338 struct compat_kvm_dirty_log {
5339 	__u32 slot;
5340 	__u32 padding1;
5341 	union {
5342 		compat_uptr_t dirty_bitmap; /* one bit per page */
5343 		__u64 padding2;
5344 	};
5345 };
5346 
5347 struct compat_kvm_clear_dirty_log {
5348 	__u32 slot;
5349 	__u32 num_pages;
5350 	__u64 first_page;
5351 	union {
5352 		compat_uptr_t dirty_bitmap; /* one bit per page */
5353 		__u64 padding2;
5354 	};
5355 };
5356 
5357 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5358 				     unsigned long arg)
5359 {
5360 	return -ENOTTY;
5361 }
5362 
5363 static long kvm_vm_compat_ioctl(struct file *filp,
5364 			   unsigned int ioctl, unsigned long arg)
5365 {
5366 	struct kvm *kvm = filp->private_data;
5367 	int r;
5368 
5369 	if (kvm->mm != current->mm || kvm->vm_dead)
5370 		return -EIO;
5371 
5372 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5373 	if (r != -ENOTTY)
5374 		return r;
5375 
5376 	switch (ioctl) {
5377 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5378 	case KVM_CLEAR_DIRTY_LOG: {
5379 		struct compat_kvm_clear_dirty_log compat_log;
5380 		struct kvm_clear_dirty_log log;
5381 
5382 		if (copy_from_user(&compat_log, (void __user *)arg,
5383 				   sizeof(compat_log)))
5384 			return -EFAULT;
5385 		log.slot	 = compat_log.slot;
5386 		log.num_pages	 = compat_log.num_pages;
5387 		log.first_page	 = compat_log.first_page;
5388 		log.padding2	 = compat_log.padding2;
5389 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5390 
5391 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5392 		break;
5393 	}
5394 #endif
5395 	case KVM_GET_DIRTY_LOG: {
5396 		struct compat_kvm_dirty_log compat_log;
5397 		struct kvm_dirty_log log;
5398 
5399 		if (copy_from_user(&compat_log, (void __user *)arg,
5400 				   sizeof(compat_log)))
5401 			return -EFAULT;
5402 		log.slot	 = compat_log.slot;
5403 		log.padding1	 = compat_log.padding1;
5404 		log.padding2	 = compat_log.padding2;
5405 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406 
5407 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5408 		break;
5409 	}
5410 	default:
5411 		r = kvm_vm_ioctl(filp, ioctl, arg);
5412 	}
5413 	return r;
5414 }
5415 #endif
5416 
5417 static struct file_operations kvm_vm_fops = {
5418 	.release        = kvm_vm_release,
5419 	.unlocked_ioctl = kvm_vm_ioctl,
5420 	.llseek		= noop_llseek,
5421 	KVM_COMPAT(kvm_vm_compat_ioctl),
5422 };
5423 
5424 bool file_is_kvm(struct file *file)
5425 {
5426 	return file && file->f_op == &kvm_vm_fops;
5427 }
5428 EXPORT_SYMBOL_GPL(file_is_kvm);
5429 
5430 static int kvm_dev_ioctl_create_vm(unsigned long type)
5431 {
5432 	char fdname[ITOA_MAX_LEN + 1];
5433 	int r, fd;
5434 	struct kvm *kvm;
5435 	struct file *file;
5436 
5437 	fd = get_unused_fd_flags(O_CLOEXEC);
5438 	if (fd < 0)
5439 		return fd;
5440 
5441 	snprintf(fdname, sizeof(fdname), "%d", fd);
5442 
5443 	kvm = kvm_create_vm(type, fdname);
5444 	if (IS_ERR(kvm)) {
5445 		r = PTR_ERR(kvm);
5446 		goto put_fd;
5447 	}
5448 
5449 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5450 	if (IS_ERR(file)) {
5451 		r = PTR_ERR(file);
5452 		goto put_kvm;
5453 	}
5454 
5455 	/*
5456 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5457 	 * already set, with ->release() being kvm_vm_release().  In error
5458 	 * cases it will be called by the final fput(file) and will take
5459 	 * care of doing kvm_put_kvm(kvm).
5460 	 */
5461 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5462 
5463 	fd_install(fd, file);
5464 	return fd;
5465 
5466 put_kvm:
5467 	kvm_put_kvm(kvm);
5468 put_fd:
5469 	put_unused_fd(fd);
5470 	return r;
5471 }
5472 
5473 static long kvm_dev_ioctl(struct file *filp,
5474 			  unsigned int ioctl, unsigned long arg)
5475 {
5476 	int r = -EINVAL;
5477 
5478 	switch (ioctl) {
5479 	case KVM_GET_API_VERSION:
5480 		if (arg)
5481 			goto out;
5482 		r = KVM_API_VERSION;
5483 		break;
5484 	case KVM_CREATE_VM:
5485 		r = kvm_dev_ioctl_create_vm(arg);
5486 		break;
5487 	case KVM_CHECK_EXTENSION:
5488 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5489 		break;
5490 	case KVM_GET_VCPU_MMAP_SIZE:
5491 		if (arg)
5492 			goto out;
5493 		r = PAGE_SIZE;     /* struct kvm_run */
5494 #ifdef CONFIG_X86
5495 		r += PAGE_SIZE;    /* pio data page */
5496 #endif
5497 #ifdef CONFIG_KVM_MMIO
5498 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5499 #endif
5500 		break;
5501 	default:
5502 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5503 	}
5504 out:
5505 	return r;
5506 }
5507 
5508 static struct file_operations kvm_chardev_ops = {
5509 	.unlocked_ioctl = kvm_dev_ioctl,
5510 	.llseek		= noop_llseek,
5511 	KVM_COMPAT(kvm_dev_ioctl),
5512 };
5513 
5514 static struct miscdevice kvm_dev = {
5515 	KVM_MINOR,
5516 	"kvm",
5517 	&kvm_chardev_ops,
5518 };
5519 
5520 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5521 __visible bool kvm_rebooting;
5522 EXPORT_SYMBOL_GPL(kvm_rebooting);
5523 
5524 static DEFINE_PER_CPU(bool, hardware_enabled);
5525 static int kvm_usage_count;
5526 
5527 static int __hardware_enable_nolock(void)
5528 {
5529 	if (__this_cpu_read(hardware_enabled))
5530 		return 0;
5531 
5532 	if (kvm_arch_hardware_enable()) {
5533 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5534 			raw_smp_processor_id());
5535 		return -EIO;
5536 	}
5537 
5538 	__this_cpu_write(hardware_enabled, true);
5539 	return 0;
5540 }
5541 
5542 static void hardware_enable_nolock(void *failed)
5543 {
5544 	if (__hardware_enable_nolock())
5545 		atomic_inc(failed);
5546 }
5547 
5548 static int kvm_online_cpu(unsigned int cpu)
5549 {
5550 	int ret = 0;
5551 
5552 	/*
5553 	 * Abort the CPU online process if hardware virtualization cannot
5554 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5555 	 * errors when scheduled to this CPU.
5556 	 */
5557 	mutex_lock(&kvm_lock);
5558 	if (kvm_usage_count)
5559 		ret = __hardware_enable_nolock();
5560 	mutex_unlock(&kvm_lock);
5561 	return ret;
5562 }
5563 
5564 static void hardware_disable_nolock(void *junk)
5565 {
5566 	/*
5567 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5568 	 * hardware, not just CPUs that successfully enabled hardware!
5569 	 */
5570 	if (!__this_cpu_read(hardware_enabled))
5571 		return;
5572 
5573 	kvm_arch_hardware_disable();
5574 
5575 	__this_cpu_write(hardware_enabled, false);
5576 }
5577 
5578 static int kvm_offline_cpu(unsigned int cpu)
5579 {
5580 	mutex_lock(&kvm_lock);
5581 	if (kvm_usage_count)
5582 		hardware_disable_nolock(NULL);
5583 	mutex_unlock(&kvm_lock);
5584 	return 0;
5585 }
5586 
5587 static void hardware_disable_all_nolock(void)
5588 {
5589 	BUG_ON(!kvm_usage_count);
5590 
5591 	kvm_usage_count--;
5592 	if (!kvm_usage_count)
5593 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5594 }
5595 
5596 static void hardware_disable_all(void)
5597 {
5598 	cpus_read_lock();
5599 	mutex_lock(&kvm_lock);
5600 	hardware_disable_all_nolock();
5601 	mutex_unlock(&kvm_lock);
5602 	cpus_read_unlock();
5603 }
5604 
5605 static int hardware_enable_all(void)
5606 {
5607 	atomic_t failed = ATOMIC_INIT(0);
5608 	int r;
5609 
5610 	/*
5611 	 * Do not enable hardware virtualization if the system is going down.
5612 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5613 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5614 	 * after kvm_reboot() is called.  Note, this relies on system_state
5615 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5616 	 * hook instead of registering a dedicated reboot notifier (the latter
5617 	 * runs before system_state is updated).
5618 	 */
5619 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5620 	    system_state == SYSTEM_RESTART)
5621 		return -EBUSY;
5622 
5623 	/*
5624 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5625 	 * is called, and so on_each_cpu() between them includes the CPU that
5626 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5627 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5628 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5629 	 * enable hardware multiple times.
5630 	 */
5631 	cpus_read_lock();
5632 	mutex_lock(&kvm_lock);
5633 
5634 	r = 0;
5635 
5636 	kvm_usage_count++;
5637 	if (kvm_usage_count == 1) {
5638 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5639 
5640 		if (atomic_read(&failed)) {
5641 			hardware_disable_all_nolock();
5642 			r = -EBUSY;
5643 		}
5644 	}
5645 
5646 	mutex_unlock(&kvm_lock);
5647 	cpus_read_unlock();
5648 
5649 	return r;
5650 }
5651 
5652 static void kvm_shutdown(void)
5653 {
5654 	/*
5655 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5656 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5657 	 * that relevant errors and exceptions aren't entirely unexpected.
5658 	 * Some flavors of hardware virtualization need to be disabled before
5659 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5660 	 * on x86, virtualization can block INIT interrupts, which are used by
5661 	 * firmware to pull APs back under firmware control.  Note, this path
5662 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5663 	 * 100% comprehensive.
5664 	 */
5665 	pr_info("kvm: exiting hardware virtualization\n");
5666 	kvm_rebooting = true;
5667 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5668 }
5669 
5670 static int kvm_suspend(void)
5671 {
5672 	/*
5673 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5674 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5675 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5676 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5677 	 * can be preempted, but the task cannot be frozen until it has dropped
5678 	 * all locks (userspace tasks are frozen via a fake signal).
5679 	 */
5680 	lockdep_assert_not_held(&kvm_lock);
5681 	lockdep_assert_irqs_disabled();
5682 
5683 	if (kvm_usage_count)
5684 		hardware_disable_nolock(NULL);
5685 	return 0;
5686 }
5687 
5688 static void kvm_resume(void)
5689 {
5690 	lockdep_assert_not_held(&kvm_lock);
5691 	lockdep_assert_irqs_disabled();
5692 
5693 	if (kvm_usage_count)
5694 		WARN_ON_ONCE(__hardware_enable_nolock());
5695 }
5696 
5697 static struct syscore_ops kvm_syscore_ops = {
5698 	.suspend = kvm_suspend,
5699 	.resume = kvm_resume,
5700 	.shutdown = kvm_shutdown,
5701 };
5702 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5703 static int hardware_enable_all(void)
5704 {
5705 	return 0;
5706 }
5707 
5708 static void hardware_disable_all(void)
5709 {
5710 
5711 }
5712 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5713 
5714 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5715 {
5716 	if (dev->ops->destructor)
5717 		dev->ops->destructor(dev);
5718 }
5719 
5720 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5721 {
5722 	int i;
5723 
5724 	for (i = 0; i < bus->dev_count; i++) {
5725 		struct kvm_io_device *pos = bus->range[i].dev;
5726 
5727 		kvm_iodevice_destructor(pos);
5728 	}
5729 	kfree(bus);
5730 }
5731 
5732 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5733 				 const struct kvm_io_range *r2)
5734 {
5735 	gpa_t addr1 = r1->addr;
5736 	gpa_t addr2 = r2->addr;
5737 
5738 	if (addr1 < addr2)
5739 		return -1;
5740 
5741 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5742 	 * accept any overlapping write.  Any order is acceptable for
5743 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5744 	 * we process all of them.
5745 	 */
5746 	if (r2->len) {
5747 		addr1 += r1->len;
5748 		addr2 += r2->len;
5749 	}
5750 
5751 	if (addr1 > addr2)
5752 		return 1;
5753 
5754 	return 0;
5755 }
5756 
5757 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5758 {
5759 	return kvm_io_bus_cmp(p1, p2);
5760 }
5761 
5762 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5763 			     gpa_t addr, int len)
5764 {
5765 	struct kvm_io_range *range, key;
5766 	int off;
5767 
5768 	key = (struct kvm_io_range) {
5769 		.addr = addr,
5770 		.len = len,
5771 	};
5772 
5773 	range = bsearch(&key, bus->range, bus->dev_count,
5774 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5775 	if (range == NULL)
5776 		return -ENOENT;
5777 
5778 	off = range - bus->range;
5779 
5780 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5781 		off--;
5782 
5783 	return off;
5784 }
5785 
5786 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5787 			      struct kvm_io_range *range, const void *val)
5788 {
5789 	int idx;
5790 
5791 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5792 	if (idx < 0)
5793 		return -EOPNOTSUPP;
5794 
5795 	while (idx < bus->dev_count &&
5796 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5797 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5798 					range->len, val))
5799 			return idx;
5800 		idx++;
5801 	}
5802 
5803 	return -EOPNOTSUPP;
5804 }
5805 
5806 /* kvm_io_bus_write - called under kvm->slots_lock */
5807 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5808 		     int len, const void *val)
5809 {
5810 	struct kvm_io_bus *bus;
5811 	struct kvm_io_range range;
5812 	int r;
5813 
5814 	range = (struct kvm_io_range) {
5815 		.addr = addr,
5816 		.len = len,
5817 	};
5818 
5819 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5820 	if (!bus)
5821 		return -ENOMEM;
5822 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5823 	return r < 0 ? r : 0;
5824 }
5825 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5826 
5827 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5828 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5829 			    gpa_t addr, int len, const void *val, long cookie)
5830 {
5831 	struct kvm_io_bus *bus;
5832 	struct kvm_io_range range;
5833 
5834 	range = (struct kvm_io_range) {
5835 		.addr = addr,
5836 		.len = len,
5837 	};
5838 
5839 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5840 	if (!bus)
5841 		return -ENOMEM;
5842 
5843 	/* First try the device referenced by cookie. */
5844 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5845 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5846 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5847 					val))
5848 			return cookie;
5849 
5850 	/*
5851 	 * cookie contained garbage; fall back to search and return the
5852 	 * correct cookie value.
5853 	 */
5854 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5855 }
5856 
5857 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5858 			     struct kvm_io_range *range, void *val)
5859 {
5860 	int idx;
5861 
5862 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5863 	if (idx < 0)
5864 		return -EOPNOTSUPP;
5865 
5866 	while (idx < bus->dev_count &&
5867 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5868 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5869 				       range->len, val))
5870 			return idx;
5871 		idx++;
5872 	}
5873 
5874 	return -EOPNOTSUPP;
5875 }
5876 
5877 /* kvm_io_bus_read - called under kvm->slots_lock */
5878 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5879 		    int len, void *val)
5880 {
5881 	struct kvm_io_bus *bus;
5882 	struct kvm_io_range range;
5883 	int r;
5884 
5885 	range = (struct kvm_io_range) {
5886 		.addr = addr,
5887 		.len = len,
5888 	};
5889 
5890 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5891 	if (!bus)
5892 		return -ENOMEM;
5893 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5894 	return r < 0 ? r : 0;
5895 }
5896 
5897 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5898 			    int len, struct kvm_io_device *dev)
5899 {
5900 	int i;
5901 	struct kvm_io_bus *new_bus, *bus;
5902 	struct kvm_io_range range;
5903 
5904 	lockdep_assert_held(&kvm->slots_lock);
5905 
5906 	bus = kvm_get_bus(kvm, bus_idx);
5907 	if (!bus)
5908 		return -ENOMEM;
5909 
5910 	/* exclude ioeventfd which is limited by maximum fd */
5911 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5912 		return -ENOSPC;
5913 
5914 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5915 			  GFP_KERNEL_ACCOUNT);
5916 	if (!new_bus)
5917 		return -ENOMEM;
5918 
5919 	range = (struct kvm_io_range) {
5920 		.addr = addr,
5921 		.len = len,
5922 		.dev = dev,
5923 	};
5924 
5925 	for (i = 0; i < bus->dev_count; i++)
5926 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5927 			break;
5928 
5929 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5930 	new_bus->dev_count++;
5931 	new_bus->range[i] = range;
5932 	memcpy(new_bus->range + i + 1, bus->range + i,
5933 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5934 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5935 	synchronize_srcu_expedited(&kvm->srcu);
5936 	kfree(bus);
5937 
5938 	return 0;
5939 }
5940 
5941 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5942 			      struct kvm_io_device *dev)
5943 {
5944 	int i;
5945 	struct kvm_io_bus *new_bus, *bus;
5946 
5947 	lockdep_assert_held(&kvm->slots_lock);
5948 
5949 	bus = kvm_get_bus(kvm, bus_idx);
5950 	if (!bus)
5951 		return 0;
5952 
5953 	for (i = 0; i < bus->dev_count; i++) {
5954 		if (bus->range[i].dev == dev) {
5955 			break;
5956 		}
5957 	}
5958 
5959 	if (i == bus->dev_count)
5960 		return 0;
5961 
5962 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5963 			  GFP_KERNEL_ACCOUNT);
5964 	if (new_bus) {
5965 		memcpy(new_bus, bus, struct_size(bus, range, i));
5966 		new_bus->dev_count--;
5967 		memcpy(new_bus->range + i, bus->range + i + 1,
5968 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5969 	}
5970 
5971 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5972 	synchronize_srcu_expedited(&kvm->srcu);
5973 
5974 	/*
5975 	 * If NULL bus is installed, destroy the old bus, including all the
5976 	 * attached devices. Otherwise, destroy the caller's device only.
5977 	 */
5978 	if (!new_bus) {
5979 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5980 		kvm_io_bus_destroy(bus);
5981 		return -ENOMEM;
5982 	}
5983 
5984 	kvm_iodevice_destructor(dev);
5985 	kfree(bus);
5986 	return 0;
5987 }
5988 
5989 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5990 					 gpa_t addr)
5991 {
5992 	struct kvm_io_bus *bus;
5993 	int dev_idx, srcu_idx;
5994 	struct kvm_io_device *iodev = NULL;
5995 
5996 	srcu_idx = srcu_read_lock(&kvm->srcu);
5997 
5998 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5999 	if (!bus)
6000 		goto out_unlock;
6001 
6002 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6003 	if (dev_idx < 0)
6004 		goto out_unlock;
6005 
6006 	iodev = bus->range[dev_idx].dev;
6007 
6008 out_unlock:
6009 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6010 
6011 	return iodev;
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6014 
6015 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6016 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6017 			   const char *fmt)
6018 {
6019 	int ret;
6020 	struct kvm_stat_data *stat_data = inode->i_private;
6021 
6022 	/*
6023 	 * The debugfs files are a reference to the kvm struct which
6024         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6025         * avoids the race between open and the removal of the debugfs directory.
6026 	 */
6027 	if (!kvm_get_kvm_safe(stat_data->kvm))
6028 		return -ENOENT;
6029 
6030 	ret = simple_attr_open(inode, file, get,
6031 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6032 			       ? set : NULL, fmt);
6033 	if (ret)
6034 		kvm_put_kvm(stat_data->kvm);
6035 
6036 	return ret;
6037 }
6038 
6039 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6040 {
6041 	struct kvm_stat_data *stat_data = inode->i_private;
6042 
6043 	simple_attr_release(inode, file);
6044 	kvm_put_kvm(stat_data->kvm);
6045 
6046 	return 0;
6047 }
6048 
6049 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6050 {
6051 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6052 
6053 	return 0;
6054 }
6055 
6056 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6057 {
6058 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6059 
6060 	return 0;
6061 }
6062 
6063 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6064 {
6065 	unsigned long i;
6066 	struct kvm_vcpu *vcpu;
6067 
6068 	*val = 0;
6069 
6070 	kvm_for_each_vcpu(i, vcpu, kvm)
6071 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6072 
6073 	return 0;
6074 }
6075 
6076 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6077 {
6078 	unsigned long i;
6079 	struct kvm_vcpu *vcpu;
6080 
6081 	kvm_for_each_vcpu(i, vcpu, kvm)
6082 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6083 
6084 	return 0;
6085 }
6086 
6087 static int kvm_stat_data_get(void *data, u64 *val)
6088 {
6089 	int r = -EFAULT;
6090 	struct kvm_stat_data *stat_data = data;
6091 
6092 	switch (stat_data->kind) {
6093 	case KVM_STAT_VM:
6094 		r = kvm_get_stat_per_vm(stat_data->kvm,
6095 					stat_data->desc->desc.offset, val);
6096 		break;
6097 	case KVM_STAT_VCPU:
6098 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6099 					  stat_data->desc->desc.offset, val);
6100 		break;
6101 	}
6102 
6103 	return r;
6104 }
6105 
6106 static int kvm_stat_data_clear(void *data, u64 val)
6107 {
6108 	int r = -EFAULT;
6109 	struct kvm_stat_data *stat_data = data;
6110 
6111 	if (val)
6112 		return -EINVAL;
6113 
6114 	switch (stat_data->kind) {
6115 	case KVM_STAT_VM:
6116 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6117 					  stat_data->desc->desc.offset);
6118 		break;
6119 	case KVM_STAT_VCPU:
6120 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6121 					    stat_data->desc->desc.offset);
6122 		break;
6123 	}
6124 
6125 	return r;
6126 }
6127 
6128 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6129 {
6130 	__simple_attr_check_format("%llu\n", 0ull);
6131 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6132 				kvm_stat_data_clear, "%llu\n");
6133 }
6134 
6135 static const struct file_operations stat_fops_per_vm = {
6136 	.owner = THIS_MODULE,
6137 	.open = kvm_stat_data_open,
6138 	.release = kvm_debugfs_release,
6139 	.read = simple_attr_read,
6140 	.write = simple_attr_write,
6141 	.llseek = no_llseek,
6142 };
6143 
6144 static int vm_stat_get(void *_offset, u64 *val)
6145 {
6146 	unsigned offset = (long)_offset;
6147 	struct kvm *kvm;
6148 	u64 tmp_val;
6149 
6150 	*val = 0;
6151 	mutex_lock(&kvm_lock);
6152 	list_for_each_entry(kvm, &vm_list, vm_list) {
6153 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6154 		*val += tmp_val;
6155 	}
6156 	mutex_unlock(&kvm_lock);
6157 	return 0;
6158 }
6159 
6160 static int vm_stat_clear(void *_offset, u64 val)
6161 {
6162 	unsigned offset = (long)_offset;
6163 	struct kvm *kvm;
6164 
6165 	if (val)
6166 		return -EINVAL;
6167 
6168 	mutex_lock(&kvm_lock);
6169 	list_for_each_entry(kvm, &vm_list, vm_list) {
6170 		kvm_clear_stat_per_vm(kvm, offset);
6171 	}
6172 	mutex_unlock(&kvm_lock);
6173 
6174 	return 0;
6175 }
6176 
6177 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6178 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6179 
6180 static int vcpu_stat_get(void *_offset, u64 *val)
6181 {
6182 	unsigned offset = (long)_offset;
6183 	struct kvm *kvm;
6184 	u64 tmp_val;
6185 
6186 	*val = 0;
6187 	mutex_lock(&kvm_lock);
6188 	list_for_each_entry(kvm, &vm_list, vm_list) {
6189 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6190 		*val += tmp_val;
6191 	}
6192 	mutex_unlock(&kvm_lock);
6193 	return 0;
6194 }
6195 
6196 static int vcpu_stat_clear(void *_offset, u64 val)
6197 {
6198 	unsigned offset = (long)_offset;
6199 	struct kvm *kvm;
6200 
6201 	if (val)
6202 		return -EINVAL;
6203 
6204 	mutex_lock(&kvm_lock);
6205 	list_for_each_entry(kvm, &vm_list, vm_list) {
6206 		kvm_clear_stat_per_vcpu(kvm, offset);
6207 	}
6208 	mutex_unlock(&kvm_lock);
6209 
6210 	return 0;
6211 }
6212 
6213 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6214 			"%llu\n");
6215 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6216 
6217 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6218 {
6219 	struct kobj_uevent_env *env;
6220 	unsigned long long created, active;
6221 
6222 	if (!kvm_dev.this_device || !kvm)
6223 		return;
6224 
6225 	mutex_lock(&kvm_lock);
6226 	if (type == KVM_EVENT_CREATE_VM) {
6227 		kvm_createvm_count++;
6228 		kvm_active_vms++;
6229 	} else if (type == KVM_EVENT_DESTROY_VM) {
6230 		kvm_active_vms--;
6231 	}
6232 	created = kvm_createvm_count;
6233 	active = kvm_active_vms;
6234 	mutex_unlock(&kvm_lock);
6235 
6236 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6237 	if (!env)
6238 		return;
6239 
6240 	add_uevent_var(env, "CREATED=%llu", created);
6241 	add_uevent_var(env, "COUNT=%llu", active);
6242 
6243 	if (type == KVM_EVENT_CREATE_VM) {
6244 		add_uevent_var(env, "EVENT=create");
6245 		kvm->userspace_pid = task_pid_nr(current);
6246 	} else if (type == KVM_EVENT_DESTROY_VM) {
6247 		add_uevent_var(env, "EVENT=destroy");
6248 	}
6249 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6250 
6251 	if (!IS_ERR(kvm->debugfs_dentry)) {
6252 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6253 
6254 		if (p) {
6255 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6256 			if (!IS_ERR(tmp))
6257 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6258 			kfree(p);
6259 		}
6260 	}
6261 	/* no need for checks, since we are adding at most only 5 keys */
6262 	env->envp[env->envp_idx++] = NULL;
6263 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6264 	kfree(env);
6265 }
6266 
6267 static void kvm_init_debug(void)
6268 {
6269 	const struct file_operations *fops;
6270 	const struct _kvm_stats_desc *pdesc;
6271 	int i;
6272 
6273 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6274 
6275 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6276 		pdesc = &kvm_vm_stats_desc[i];
6277 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6278 			fops = &vm_stat_fops;
6279 		else
6280 			fops = &vm_stat_readonly_fops;
6281 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6282 				kvm_debugfs_dir,
6283 				(void *)(long)pdesc->desc.offset, fops);
6284 	}
6285 
6286 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6287 		pdesc = &kvm_vcpu_stats_desc[i];
6288 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6289 			fops = &vcpu_stat_fops;
6290 		else
6291 			fops = &vcpu_stat_readonly_fops;
6292 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6293 				kvm_debugfs_dir,
6294 				(void *)(long)pdesc->desc.offset, fops);
6295 	}
6296 }
6297 
6298 static inline
6299 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6300 {
6301 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6302 }
6303 
6304 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6305 {
6306 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6307 
6308 	WRITE_ONCE(vcpu->preempted, false);
6309 	WRITE_ONCE(vcpu->ready, false);
6310 
6311 	__this_cpu_write(kvm_running_vcpu, vcpu);
6312 	kvm_arch_sched_in(vcpu, cpu);
6313 	kvm_arch_vcpu_load(vcpu, cpu);
6314 }
6315 
6316 static void kvm_sched_out(struct preempt_notifier *pn,
6317 			  struct task_struct *next)
6318 {
6319 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6320 
6321 	if (current->on_rq) {
6322 		WRITE_ONCE(vcpu->preempted, true);
6323 		WRITE_ONCE(vcpu->ready, true);
6324 	}
6325 	kvm_arch_vcpu_put(vcpu);
6326 	__this_cpu_write(kvm_running_vcpu, NULL);
6327 }
6328 
6329 /**
6330  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6331  *
6332  * We can disable preemption locally around accessing the per-CPU variable,
6333  * and use the resolved vcpu pointer after enabling preemption again,
6334  * because even if the current thread is migrated to another CPU, reading
6335  * the per-CPU value later will give us the same value as we update the
6336  * per-CPU variable in the preempt notifier handlers.
6337  */
6338 struct kvm_vcpu *kvm_get_running_vcpu(void)
6339 {
6340 	struct kvm_vcpu *vcpu;
6341 
6342 	preempt_disable();
6343 	vcpu = __this_cpu_read(kvm_running_vcpu);
6344 	preempt_enable();
6345 
6346 	return vcpu;
6347 }
6348 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6349 
6350 /**
6351  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6352  */
6353 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6354 {
6355         return &kvm_running_vcpu;
6356 }
6357 
6358 #ifdef CONFIG_GUEST_PERF_EVENTS
6359 static unsigned int kvm_guest_state(void)
6360 {
6361 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6362 	unsigned int state;
6363 
6364 	if (!kvm_arch_pmi_in_guest(vcpu))
6365 		return 0;
6366 
6367 	state = PERF_GUEST_ACTIVE;
6368 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6369 		state |= PERF_GUEST_USER;
6370 
6371 	return state;
6372 }
6373 
6374 static unsigned long kvm_guest_get_ip(void)
6375 {
6376 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6377 
6378 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6379 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6380 		return 0;
6381 
6382 	return kvm_arch_vcpu_get_ip(vcpu);
6383 }
6384 
6385 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6386 	.state			= kvm_guest_state,
6387 	.get_ip			= kvm_guest_get_ip,
6388 	.handle_intel_pt_intr	= NULL,
6389 };
6390 
6391 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6392 {
6393 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6394 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6395 }
6396 void kvm_unregister_perf_callbacks(void)
6397 {
6398 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6399 }
6400 #endif
6401 
6402 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6403 {
6404 	int r;
6405 	int cpu;
6406 
6407 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6408 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6409 				      kvm_online_cpu, kvm_offline_cpu);
6410 	if (r)
6411 		return r;
6412 
6413 	register_syscore_ops(&kvm_syscore_ops);
6414 #endif
6415 
6416 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6417 	if (!vcpu_align)
6418 		vcpu_align = __alignof__(struct kvm_vcpu);
6419 	kvm_vcpu_cache =
6420 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6421 					   SLAB_ACCOUNT,
6422 					   offsetof(struct kvm_vcpu, arch),
6423 					   offsetofend(struct kvm_vcpu, stats_id)
6424 					   - offsetof(struct kvm_vcpu, arch),
6425 					   NULL);
6426 	if (!kvm_vcpu_cache) {
6427 		r = -ENOMEM;
6428 		goto err_vcpu_cache;
6429 	}
6430 
6431 	for_each_possible_cpu(cpu) {
6432 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6433 					    GFP_KERNEL, cpu_to_node(cpu))) {
6434 			r = -ENOMEM;
6435 			goto err_cpu_kick_mask;
6436 		}
6437 	}
6438 
6439 	r = kvm_irqfd_init();
6440 	if (r)
6441 		goto err_irqfd;
6442 
6443 	r = kvm_async_pf_init();
6444 	if (r)
6445 		goto err_async_pf;
6446 
6447 	kvm_chardev_ops.owner = module;
6448 	kvm_vm_fops.owner = module;
6449 	kvm_vcpu_fops.owner = module;
6450 	kvm_device_fops.owner = module;
6451 
6452 	kvm_preempt_ops.sched_in = kvm_sched_in;
6453 	kvm_preempt_ops.sched_out = kvm_sched_out;
6454 
6455 	kvm_init_debug();
6456 
6457 	r = kvm_vfio_ops_init();
6458 	if (WARN_ON_ONCE(r))
6459 		goto err_vfio;
6460 
6461 	kvm_gmem_init(module);
6462 
6463 	/*
6464 	 * Registration _must_ be the very last thing done, as this exposes
6465 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6466 	 */
6467 	r = misc_register(&kvm_dev);
6468 	if (r) {
6469 		pr_err("kvm: misc device register failed\n");
6470 		goto err_register;
6471 	}
6472 
6473 	return 0;
6474 
6475 err_register:
6476 	kvm_vfio_ops_exit();
6477 err_vfio:
6478 	kvm_async_pf_deinit();
6479 err_async_pf:
6480 	kvm_irqfd_exit();
6481 err_irqfd:
6482 err_cpu_kick_mask:
6483 	for_each_possible_cpu(cpu)
6484 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6485 	kmem_cache_destroy(kvm_vcpu_cache);
6486 err_vcpu_cache:
6487 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6488 	unregister_syscore_ops(&kvm_syscore_ops);
6489 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6490 #endif
6491 	return r;
6492 }
6493 EXPORT_SYMBOL_GPL(kvm_init);
6494 
6495 void kvm_exit(void)
6496 {
6497 	int cpu;
6498 
6499 	/*
6500 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6501 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6502 	 * to KVM while the module is being stopped.
6503 	 */
6504 	misc_deregister(&kvm_dev);
6505 
6506 	debugfs_remove_recursive(kvm_debugfs_dir);
6507 	for_each_possible_cpu(cpu)
6508 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6509 	kmem_cache_destroy(kvm_vcpu_cache);
6510 	kvm_vfio_ops_exit();
6511 	kvm_async_pf_deinit();
6512 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6513 	unregister_syscore_ops(&kvm_syscore_ops);
6514 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6515 #endif
6516 	kvm_irqfd_exit();
6517 }
6518 EXPORT_SYMBOL_GPL(kvm_exit);
6519 
6520 struct kvm_vm_worker_thread_context {
6521 	struct kvm *kvm;
6522 	struct task_struct *parent;
6523 	struct completion init_done;
6524 	kvm_vm_thread_fn_t thread_fn;
6525 	uintptr_t data;
6526 	int err;
6527 };
6528 
6529 static int kvm_vm_worker_thread(void *context)
6530 {
6531 	/*
6532 	 * The init_context is allocated on the stack of the parent thread, so
6533 	 * we have to locally copy anything that is needed beyond initialization
6534 	 */
6535 	struct kvm_vm_worker_thread_context *init_context = context;
6536 	struct task_struct *parent;
6537 	struct kvm *kvm = init_context->kvm;
6538 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6539 	uintptr_t data = init_context->data;
6540 	int err;
6541 
6542 	err = kthread_park(current);
6543 	/* kthread_park(current) is never supposed to return an error */
6544 	WARN_ON(err != 0);
6545 	if (err)
6546 		goto init_complete;
6547 
6548 	err = cgroup_attach_task_all(init_context->parent, current);
6549 	if (err) {
6550 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6551 			__func__, err);
6552 		goto init_complete;
6553 	}
6554 
6555 	set_user_nice(current, task_nice(init_context->parent));
6556 
6557 init_complete:
6558 	init_context->err = err;
6559 	complete(&init_context->init_done);
6560 	init_context = NULL;
6561 
6562 	if (err)
6563 		goto out;
6564 
6565 	/* Wait to be woken up by the spawner before proceeding. */
6566 	kthread_parkme();
6567 
6568 	if (!kthread_should_stop())
6569 		err = thread_fn(kvm, data);
6570 
6571 out:
6572 	/*
6573 	 * Move kthread back to its original cgroup to prevent it lingering in
6574 	 * the cgroup of the VM process, after the latter finishes its
6575 	 * execution.
6576 	 *
6577 	 * kthread_stop() waits on the 'exited' completion condition which is
6578 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6579 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6580 	 * called after the exit_mm(). This causes the kthread_stop() to return
6581 	 * before the kthread actually quits the cgroup.
6582 	 */
6583 	rcu_read_lock();
6584 	parent = rcu_dereference(current->real_parent);
6585 	get_task_struct(parent);
6586 	rcu_read_unlock();
6587 	cgroup_attach_task_all(parent, current);
6588 	put_task_struct(parent);
6589 
6590 	return err;
6591 }
6592 
6593 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6594 				uintptr_t data, const char *name,
6595 				struct task_struct **thread_ptr)
6596 {
6597 	struct kvm_vm_worker_thread_context init_context = {};
6598 	struct task_struct *thread;
6599 
6600 	*thread_ptr = NULL;
6601 	init_context.kvm = kvm;
6602 	init_context.parent = current;
6603 	init_context.thread_fn = thread_fn;
6604 	init_context.data = data;
6605 	init_completion(&init_context.init_done);
6606 
6607 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6608 			     "%s-%d", name, task_pid_nr(current));
6609 	if (IS_ERR(thread))
6610 		return PTR_ERR(thread);
6611 
6612 	/* kthread_run is never supposed to return NULL */
6613 	WARN_ON(thread == NULL);
6614 
6615 	wait_for_completion(&init_context.init_done);
6616 
6617 	if (!init_context.err)
6618 		*thread_ptr = thread;
6619 
6620 	return init_context.err;
6621 }
6622