1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* Default resets per-vcpu halt_poll_ns . */ 83 unsigned int halt_poll_ns_shrink; 84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 86 87 /* 88 * Ordering of locks: 89 * 90 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 91 */ 92 93 DEFINE_SPINLOCK(kvm_lock); 94 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 95 LIST_HEAD(vm_list); 96 97 static cpumask_var_t cpus_hardware_enabled; 98 static int kvm_usage_count; 99 static atomic_t hardware_enable_failed; 100 101 struct kmem_cache *kvm_vcpu_cache; 102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 103 104 static __read_mostly struct preempt_ops kvm_preempt_ops; 105 106 struct dentry *kvm_debugfs_dir; 107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 108 109 static int kvm_debugfs_num_entries; 110 static const struct file_operations *stat_fops_per_vm[]; 111 112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 113 unsigned long arg); 114 #ifdef CONFIG_KVM_COMPAT 115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 116 unsigned long arg); 117 #endif 118 static int hardware_enable_all(void); 119 static void hardware_disable_all(void); 120 121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 122 123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 125 126 __visible bool kvm_rebooting; 127 EXPORT_SYMBOL_GPL(kvm_rebooting); 128 129 static bool largepages_enabled = true; 130 131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 132 { 133 if (pfn_valid(pfn)) 134 return PageReserved(pfn_to_page(pfn)); 135 136 return true; 137 } 138 139 /* 140 * Switches to specified vcpu, until a matching vcpu_put() 141 */ 142 int vcpu_load(struct kvm_vcpu *vcpu) 143 { 144 int cpu; 145 146 if (mutex_lock_killable(&vcpu->mutex)) 147 return -EINTR; 148 cpu = get_cpu(); 149 preempt_notifier_register(&vcpu->preempt_notifier); 150 kvm_arch_vcpu_load(vcpu, cpu); 151 put_cpu(); 152 return 0; 153 } 154 EXPORT_SYMBOL_GPL(vcpu_load); 155 156 void vcpu_put(struct kvm_vcpu *vcpu) 157 { 158 preempt_disable(); 159 kvm_arch_vcpu_put(vcpu); 160 preempt_notifier_unregister(&vcpu->preempt_notifier); 161 preempt_enable(); 162 mutex_unlock(&vcpu->mutex); 163 } 164 EXPORT_SYMBOL_GPL(vcpu_put); 165 166 static void ack_flush(void *_completed) 167 { 168 } 169 170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 171 { 172 int i, cpu, me; 173 cpumask_var_t cpus; 174 bool called = true; 175 struct kvm_vcpu *vcpu; 176 177 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 178 179 me = get_cpu(); 180 kvm_for_each_vcpu(i, vcpu, kvm) { 181 kvm_make_request(req, vcpu); 182 cpu = vcpu->cpu; 183 184 /* Set ->requests bit before we read ->mode. */ 185 smp_mb__after_atomic(); 186 187 if (cpus != NULL && cpu != -1 && cpu != me && 188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 189 cpumask_set_cpu(cpu, cpus); 190 } 191 if (unlikely(cpus == NULL)) 192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 193 else if (!cpumask_empty(cpus)) 194 smp_call_function_many(cpus, ack_flush, NULL, 1); 195 else 196 called = false; 197 put_cpu(); 198 free_cpumask_var(cpus); 199 return called; 200 } 201 202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 203 void kvm_flush_remote_tlbs(struct kvm *kvm) 204 { 205 /* 206 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 207 * kvm_make_all_cpus_request. 208 */ 209 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 210 211 /* 212 * We want to publish modifications to the page tables before reading 213 * mode. Pairs with a memory barrier in arch-specific code. 214 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 215 * and smp_mb in walk_shadow_page_lockless_begin/end. 216 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 217 * 218 * There is already an smp_mb__after_atomic() before 219 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 220 * barrier here. 221 */ 222 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 223 ++kvm->stat.remote_tlb_flush; 224 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 225 } 226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 227 #endif 228 229 void kvm_reload_remote_mmus(struct kvm *kvm) 230 { 231 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 232 } 233 234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 235 { 236 struct page *page; 237 int r; 238 239 mutex_init(&vcpu->mutex); 240 vcpu->cpu = -1; 241 vcpu->kvm = kvm; 242 vcpu->vcpu_id = id; 243 vcpu->pid = NULL; 244 init_swait_queue_head(&vcpu->wq); 245 kvm_async_pf_vcpu_init(vcpu); 246 247 vcpu->pre_pcpu = -1; 248 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 249 250 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 251 if (!page) { 252 r = -ENOMEM; 253 goto fail; 254 } 255 vcpu->run = page_address(page); 256 257 kvm_vcpu_set_in_spin_loop(vcpu, false); 258 kvm_vcpu_set_dy_eligible(vcpu, false); 259 vcpu->preempted = false; 260 261 r = kvm_arch_vcpu_init(vcpu); 262 if (r < 0) 263 goto fail_free_run; 264 return 0; 265 266 fail_free_run: 267 free_page((unsigned long)vcpu->run); 268 fail: 269 return r; 270 } 271 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 272 273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 274 { 275 put_pid(vcpu->pid); 276 kvm_arch_vcpu_uninit(vcpu); 277 free_page((unsigned long)vcpu->run); 278 } 279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 280 281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 283 { 284 return container_of(mn, struct kvm, mmu_notifier); 285 } 286 287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 288 struct mm_struct *mm, 289 unsigned long address) 290 { 291 struct kvm *kvm = mmu_notifier_to_kvm(mn); 292 int need_tlb_flush, idx; 293 294 /* 295 * When ->invalidate_page runs, the linux pte has been zapped 296 * already but the page is still allocated until 297 * ->invalidate_page returns. So if we increase the sequence 298 * here the kvm page fault will notice if the spte can't be 299 * established because the page is going to be freed. If 300 * instead the kvm page fault establishes the spte before 301 * ->invalidate_page runs, kvm_unmap_hva will release it 302 * before returning. 303 * 304 * The sequence increase only need to be seen at spin_unlock 305 * time, and not at spin_lock time. 306 * 307 * Increasing the sequence after the spin_unlock would be 308 * unsafe because the kvm page fault could then establish the 309 * pte after kvm_unmap_hva returned, without noticing the page 310 * is going to be freed. 311 */ 312 idx = srcu_read_lock(&kvm->srcu); 313 spin_lock(&kvm->mmu_lock); 314 315 kvm->mmu_notifier_seq++; 316 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 317 /* we've to flush the tlb before the pages can be freed */ 318 if (need_tlb_flush) 319 kvm_flush_remote_tlbs(kvm); 320 321 spin_unlock(&kvm->mmu_lock); 322 323 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 324 325 srcu_read_unlock(&kvm->srcu, idx); 326 } 327 328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 329 struct mm_struct *mm, 330 unsigned long address, 331 pte_t pte) 332 { 333 struct kvm *kvm = mmu_notifier_to_kvm(mn); 334 int idx; 335 336 idx = srcu_read_lock(&kvm->srcu); 337 spin_lock(&kvm->mmu_lock); 338 kvm->mmu_notifier_seq++; 339 kvm_set_spte_hva(kvm, address, pte); 340 spin_unlock(&kvm->mmu_lock); 341 srcu_read_unlock(&kvm->srcu, idx); 342 } 343 344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 345 struct mm_struct *mm, 346 unsigned long start, 347 unsigned long end) 348 { 349 struct kvm *kvm = mmu_notifier_to_kvm(mn); 350 int need_tlb_flush = 0, idx; 351 352 idx = srcu_read_lock(&kvm->srcu); 353 spin_lock(&kvm->mmu_lock); 354 /* 355 * The count increase must become visible at unlock time as no 356 * spte can be established without taking the mmu_lock and 357 * count is also read inside the mmu_lock critical section. 358 */ 359 kvm->mmu_notifier_count++; 360 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 361 need_tlb_flush |= kvm->tlbs_dirty; 362 /* we've to flush the tlb before the pages can be freed */ 363 if (need_tlb_flush) 364 kvm_flush_remote_tlbs(kvm); 365 366 spin_unlock(&kvm->mmu_lock); 367 srcu_read_unlock(&kvm->srcu, idx); 368 } 369 370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 371 struct mm_struct *mm, 372 unsigned long start, 373 unsigned long end) 374 { 375 struct kvm *kvm = mmu_notifier_to_kvm(mn); 376 377 spin_lock(&kvm->mmu_lock); 378 /* 379 * This sequence increase will notify the kvm page fault that 380 * the page that is going to be mapped in the spte could have 381 * been freed. 382 */ 383 kvm->mmu_notifier_seq++; 384 smp_wmb(); 385 /* 386 * The above sequence increase must be visible before the 387 * below count decrease, which is ensured by the smp_wmb above 388 * in conjunction with the smp_rmb in mmu_notifier_retry(). 389 */ 390 kvm->mmu_notifier_count--; 391 spin_unlock(&kvm->mmu_lock); 392 393 BUG_ON(kvm->mmu_notifier_count < 0); 394 } 395 396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 397 struct mm_struct *mm, 398 unsigned long start, 399 unsigned long end) 400 { 401 struct kvm *kvm = mmu_notifier_to_kvm(mn); 402 int young, idx; 403 404 idx = srcu_read_lock(&kvm->srcu); 405 spin_lock(&kvm->mmu_lock); 406 407 young = kvm_age_hva(kvm, start, end); 408 if (young) 409 kvm_flush_remote_tlbs(kvm); 410 411 spin_unlock(&kvm->mmu_lock); 412 srcu_read_unlock(&kvm->srcu, idx); 413 414 return young; 415 } 416 417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 418 struct mm_struct *mm, 419 unsigned long start, 420 unsigned long end) 421 { 422 struct kvm *kvm = mmu_notifier_to_kvm(mn); 423 int young, idx; 424 425 idx = srcu_read_lock(&kvm->srcu); 426 spin_lock(&kvm->mmu_lock); 427 /* 428 * Even though we do not flush TLB, this will still adversely 429 * affect performance on pre-Haswell Intel EPT, where there is 430 * no EPT Access Bit to clear so that we have to tear down EPT 431 * tables instead. If we find this unacceptable, we can always 432 * add a parameter to kvm_age_hva so that it effectively doesn't 433 * do anything on clear_young. 434 * 435 * Also note that currently we never issue secondary TLB flushes 436 * from clear_young, leaving this job up to the regular system 437 * cadence. If we find this inaccurate, we might come up with a 438 * more sophisticated heuristic later. 439 */ 440 young = kvm_age_hva(kvm, start, end); 441 spin_unlock(&kvm->mmu_lock); 442 srcu_read_unlock(&kvm->srcu, idx); 443 444 return young; 445 } 446 447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 448 struct mm_struct *mm, 449 unsigned long address) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 young = kvm_test_age_hva(kvm, address); 457 spin_unlock(&kvm->mmu_lock); 458 srcu_read_unlock(&kvm->srcu, idx); 459 460 return young; 461 } 462 463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 464 struct mm_struct *mm) 465 { 466 struct kvm *kvm = mmu_notifier_to_kvm(mn); 467 int idx; 468 469 idx = srcu_read_lock(&kvm->srcu); 470 kvm_arch_flush_shadow_all(kvm); 471 srcu_read_unlock(&kvm->srcu, idx); 472 } 473 474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 475 .invalidate_page = kvm_mmu_notifier_invalidate_page, 476 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 477 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 478 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 479 .clear_young = kvm_mmu_notifier_clear_young, 480 .test_young = kvm_mmu_notifier_test_young, 481 .change_pte = kvm_mmu_notifier_change_pte, 482 .release = kvm_mmu_notifier_release, 483 }; 484 485 static int kvm_init_mmu_notifier(struct kvm *kvm) 486 { 487 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 488 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 489 } 490 491 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 492 493 static int kvm_init_mmu_notifier(struct kvm *kvm) 494 { 495 return 0; 496 } 497 498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 499 500 static struct kvm_memslots *kvm_alloc_memslots(void) 501 { 502 int i; 503 struct kvm_memslots *slots; 504 505 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 506 if (!slots) 507 return NULL; 508 509 /* 510 * Init kvm generation close to the maximum to easily test the 511 * code of handling generation number wrap-around. 512 */ 513 slots->generation = -150; 514 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 515 slots->id_to_index[i] = slots->memslots[i].id = i; 516 517 return slots; 518 } 519 520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 521 { 522 if (!memslot->dirty_bitmap) 523 return; 524 525 kvfree(memslot->dirty_bitmap); 526 memslot->dirty_bitmap = NULL; 527 } 528 529 /* 530 * Free any memory in @free but not in @dont. 531 */ 532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 533 struct kvm_memory_slot *dont) 534 { 535 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 536 kvm_destroy_dirty_bitmap(free); 537 538 kvm_arch_free_memslot(kvm, free, dont); 539 540 free->npages = 0; 541 } 542 543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 544 { 545 struct kvm_memory_slot *memslot; 546 547 if (!slots) 548 return; 549 550 kvm_for_each_memslot(memslot, slots) 551 kvm_free_memslot(kvm, memslot, NULL); 552 553 kvfree(slots); 554 } 555 556 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 557 { 558 int i; 559 560 if (!kvm->debugfs_dentry) 561 return; 562 563 debugfs_remove_recursive(kvm->debugfs_dentry); 564 565 if (kvm->debugfs_stat_data) { 566 for (i = 0; i < kvm_debugfs_num_entries; i++) 567 kfree(kvm->debugfs_stat_data[i]); 568 kfree(kvm->debugfs_stat_data); 569 } 570 } 571 572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 573 { 574 char dir_name[ITOA_MAX_LEN * 2]; 575 struct kvm_stat_data *stat_data; 576 struct kvm_stats_debugfs_item *p; 577 578 if (!debugfs_initialized()) 579 return 0; 580 581 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 582 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 583 kvm_debugfs_dir); 584 if (!kvm->debugfs_dentry) 585 return -ENOMEM; 586 587 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 588 sizeof(*kvm->debugfs_stat_data), 589 GFP_KERNEL); 590 if (!kvm->debugfs_stat_data) 591 return -ENOMEM; 592 593 for (p = debugfs_entries; p->name; p++) { 594 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 595 if (!stat_data) 596 return -ENOMEM; 597 598 stat_data->kvm = kvm; 599 stat_data->offset = p->offset; 600 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 601 if (!debugfs_create_file(p->name, 0644, 602 kvm->debugfs_dentry, 603 stat_data, 604 stat_fops_per_vm[p->kind])) 605 return -ENOMEM; 606 } 607 return 0; 608 } 609 610 static struct kvm *kvm_create_vm(unsigned long type) 611 { 612 int r, i; 613 struct kvm *kvm = kvm_arch_alloc_vm(); 614 615 if (!kvm) 616 return ERR_PTR(-ENOMEM); 617 618 spin_lock_init(&kvm->mmu_lock); 619 atomic_inc(¤t->mm->mm_count); 620 kvm->mm = current->mm; 621 kvm_eventfd_init(kvm); 622 mutex_init(&kvm->lock); 623 mutex_init(&kvm->irq_lock); 624 mutex_init(&kvm->slots_lock); 625 atomic_set(&kvm->users_count, 1); 626 INIT_LIST_HEAD(&kvm->devices); 627 628 r = kvm_arch_init_vm(kvm, type); 629 if (r) 630 goto out_err_no_disable; 631 632 r = hardware_enable_all(); 633 if (r) 634 goto out_err_no_disable; 635 636 #ifdef CONFIG_HAVE_KVM_IRQFD 637 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 638 #endif 639 640 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 641 642 r = -ENOMEM; 643 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 644 kvm->memslots[i] = kvm_alloc_memslots(); 645 if (!kvm->memslots[i]) 646 goto out_err_no_srcu; 647 } 648 649 if (init_srcu_struct(&kvm->srcu)) 650 goto out_err_no_srcu; 651 if (init_srcu_struct(&kvm->irq_srcu)) 652 goto out_err_no_irq_srcu; 653 for (i = 0; i < KVM_NR_BUSES; i++) { 654 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 655 GFP_KERNEL); 656 if (!kvm->buses[i]) 657 goto out_err; 658 } 659 660 r = kvm_init_mmu_notifier(kvm); 661 if (r) 662 goto out_err; 663 664 spin_lock(&kvm_lock); 665 list_add(&kvm->vm_list, &vm_list); 666 spin_unlock(&kvm_lock); 667 668 preempt_notifier_inc(); 669 670 return kvm; 671 672 out_err: 673 cleanup_srcu_struct(&kvm->irq_srcu); 674 out_err_no_irq_srcu: 675 cleanup_srcu_struct(&kvm->srcu); 676 out_err_no_srcu: 677 hardware_disable_all(); 678 out_err_no_disable: 679 for (i = 0; i < KVM_NR_BUSES; i++) 680 kfree(kvm->buses[i]); 681 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 682 kvm_free_memslots(kvm, kvm->memslots[i]); 683 kvm_arch_free_vm(kvm); 684 mmdrop(current->mm); 685 return ERR_PTR(r); 686 } 687 688 /* 689 * Avoid using vmalloc for a small buffer. 690 * Should not be used when the size is statically known. 691 */ 692 void *kvm_kvzalloc(unsigned long size) 693 { 694 if (size > PAGE_SIZE) 695 return vzalloc(size); 696 else 697 return kzalloc(size, GFP_KERNEL); 698 } 699 700 static void kvm_destroy_devices(struct kvm *kvm) 701 { 702 struct kvm_device *dev, *tmp; 703 704 /* 705 * We do not need to take the kvm->lock here, because nobody else 706 * has a reference to the struct kvm at this point and therefore 707 * cannot access the devices list anyhow. 708 */ 709 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 710 list_del(&dev->vm_node); 711 dev->ops->destroy(dev); 712 } 713 } 714 715 static void kvm_destroy_vm(struct kvm *kvm) 716 { 717 int i; 718 struct mm_struct *mm = kvm->mm; 719 720 kvm_destroy_vm_debugfs(kvm); 721 kvm_arch_sync_events(kvm); 722 spin_lock(&kvm_lock); 723 list_del(&kvm->vm_list); 724 spin_unlock(&kvm_lock); 725 kvm_free_irq_routing(kvm); 726 for (i = 0; i < KVM_NR_BUSES; i++) 727 kvm_io_bus_destroy(kvm->buses[i]); 728 kvm_coalesced_mmio_free(kvm); 729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 730 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 731 #else 732 kvm_arch_flush_shadow_all(kvm); 733 #endif 734 kvm_arch_destroy_vm(kvm); 735 kvm_destroy_devices(kvm); 736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 737 kvm_free_memslots(kvm, kvm->memslots[i]); 738 cleanup_srcu_struct(&kvm->irq_srcu); 739 cleanup_srcu_struct(&kvm->srcu); 740 kvm_arch_free_vm(kvm); 741 preempt_notifier_dec(); 742 hardware_disable_all(); 743 mmdrop(mm); 744 } 745 746 void kvm_get_kvm(struct kvm *kvm) 747 { 748 atomic_inc(&kvm->users_count); 749 } 750 EXPORT_SYMBOL_GPL(kvm_get_kvm); 751 752 void kvm_put_kvm(struct kvm *kvm) 753 { 754 if (atomic_dec_and_test(&kvm->users_count)) 755 kvm_destroy_vm(kvm); 756 } 757 EXPORT_SYMBOL_GPL(kvm_put_kvm); 758 759 760 static int kvm_vm_release(struct inode *inode, struct file *filp) 761 { 762 struct kvm *kvm = filp->private_data; 763 764 kvm_irqfd_release(kvm); 765 766 kvm_put_kvm(kvm); 767 return 0; 768 } 769 770 /* 771 * Allocation size is twice as large as the actual dirty bitmap size. 772 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 773 */ 774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 775 { 776 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 777 778 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 779 if (!memslot->dirty_bitmap) 780 return -ENOMEM; 781 782 return 0; 783 } 784 785 /* 786 * Insert memslot and re-sort memslots based on their GFN, 787 * so binary search could be used to lookup GFN. 788 * Sorting algorithm takes advantage of having initially 789 * sorted array and known changed memslot position. 790 */ 791 static void update_memslots(struct kvm_memslots *slots, 792 struct kvm_memory_slot *new) 793 { 794 int id = new->id; 795 int i = slots->id_to_index[id]; 796 struct kvm_memory_slot *mslots = slots->memslots; 797 798 WARN_ON(mslots[i].id != id); 799 if (!new->npages) { 800 WARN_ON(!mslots[i].npages); 801 if (mslots[i].npages) 802 slots->used_slots--; 803 } else { 804 if (!mslots[i].npages) 805 slots->used_slots++; 806 } 807 808 while (i < KVM_MEM_SLOTS_NUM - 1 && 809 new->base_gfn <= mslots[i + 1].base_gfn) { 810 if (!mslots[i + 1].npages) 811 break; 812 mslots[i] = mslots[i + 1]; 813 slots->id_to_index[mslots[i].id] = i; 814 i++; 815 } 816 817 /* 818 * The ">=" is needed when creating a slot with base_gfn == 0, 819 * so that it moves before all those with base_gfn == npages == 0. 820 * 821 * On the other hand, if new->npages is zero, the above loop has 822 * already left i pointing to the beginning of the empty part of 823 * mslots, and the ">=" would move the hole backwards in this 824 * case---which is wrong. So skip the loop when deleting a slot. 825 */ 826 if (new->npages) { 827 while (i > 0 && 828 new->base_gfn >= mslots[i - 1].base_gfn) { 829 mslots[i] = mslots[i - 1]; 830 slots->id_to_index[mslots[i].id] = i; 831 i--; 832 } 833 } else 834 WARN_ON_ONCE(i != slots->used_slots); 835 836 mslots[i] = *new; 837 slots->id_to_index[mslots[i].id] = i; 838 } 839 840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 841 { 842 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 843 844 #ifdef __KVM_HAVE_READONLY_MEM 845 valid_flags |= KVM_MEM_READONLY; 846 #endif 847 848 if (mem->flags & ~valid_flags) 849 return -EINVAL; 850 851 return 0; 852 } 853 854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 855 int as_id, struct kvm_memslots *slots) 856 { 857 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 858 859 /* 860 * Set the low bit in the generation, which disables SPTE caching 861 * until the end of synchronize_srcu_expedited. 862 */ 863 WARN_ON(old_memslots->generation & 1); 864 slots->generation = old_memslots->generation + 1; 865 866 rcu_assign_pointer(kvm->memslots[as_id], slots); 867 synchronize_srcu_expedited(&kvm->srcu); 868 869 /* 870 * Increment the new memslot generation a second time. This prevents 871 * vm exits that race with memslot updates from caching a memslot 872 * generation that will (potentially) be valid forever. 873 */ 874 slots->generation++; 875 876 kvm_arch_memslots_updated(kvm, slots); 877 878 return old_memslots; 879 } 880 881 /* 882 * Allocate some memory and give it an address in the guest physical address 883 * space. 884 * 885 * Discontiguous memory is allowed, mostly for framebuffers. 886 * 887 * Must be called holding kvm->slots_lock for write. 888 */ 889 int __kvm_set_memory_region(struct kvm *kvm, 890 const struct kvm_userspace_memory_region *mem) 891 { 892 int r; 893 gfn_t base_gfn; 894 unsigned long npages; 895 struct kvm_memory_slot *slot; 896 struct kvm_memory_slot old, new; 897 struct kvm_memslots *slots = NULL, *old_memslots; 898 int as_id, id; 899 enum kvm_mr_change change; 900 901 r = check_memory_region_flags(mem); 902 if (r) 903 goto out; 904 905 r = -EINVAL; 906 as_id = mem->slot >> 16; 907 id = (u16)mem->slot; 908 909 /* General sanity checks */ 910 if (mem->memory_size & (PAGE_SIZE - 1)) 911 goto out; 912 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 913 goto out; 914 /* We can read the guest memory with __xxx_user() later on. */ 915 if ((id < KVM_USER_MEM_SLOTS) && 916 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 917 !access_ok(VERIFY_WRITE, 918 (void __user *)(unsigned long)mem->userspace_addr, 919 mem->memory_size))) 920 goto out; 921 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 922 goto out; 923 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 924 goto out; 925 926 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 927 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 928 npages = mem->memory_size >> PAGE_SHIFT; 929 930 if (npages > KVM_MEM_MAX_NR_PAGES) 931 goto out; 932 933 new = old = *slot; 934 935 new.id = id; 936 new.base_gfn = base_gfn; 937 new.npages = npages; 938 new.flags = mem->flags; 939 940 if (npages) { 941 if (!old.npages) 942 change = KVM_MR_CREATE; 943 else { /* Modify an existing slot. */ 944 if ((mem->userspace_addr != old.userspace_addr) || 945 (npages != old.npages) || 946 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 947 goto out; 948 949 if (base_gfn != old.base_gfn) 950 change = KVM_MR_MOVE; 951 else if (new.flags != old.flags) 952 change = KVM_MR_FLAGS_ONLY; 953 else { /* Nothing to change. */ 954 r = 0; 955 goto out; 956 } 957 } 958 } else { 959 if (!old.npages) 960 goto out; 961 962 change = KVM_MR_DELETE; 963 new.base_gfn = 0; 964 new.flags = 0; 965 } 966 967 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 968 /* Check for overlaps */ 969 r = -EEXIST; 970 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 971 if ((slot->id >= KVM_USER_MEM_SLOTS) || 972 (slot->id == id)) 973 continue; 974 if (!((base_gfn + npages <= slot->base_gfn) || 975 (base_gfn >= slot->base_gfn + slot->npages))) 976 goto out; 977 } 978 } 979 980 /* Free page dirty bitmap if unneeded */ 981 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 982 new.dirty_bitmap = NULL; 983 984 r = -ENOMEM; 985 if (change == KVM_MR_CREATE) { 986 new.userspace_addr = mem->userspace_addr; 987 988 if (kvm_arch_create_memslot(kvm, &new, npages)) 989 goto out_free; 990 } 991 992 /* Allocate page dirty bitmap if needed */ 993 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 994 if (kvm_create_dirty_bitmap(&new) < 0) 995 goto out_free; 996 } 997 998 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 999 if (!slots) 1000 goto out_free; 1001 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1002 1003 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1004 slot = id_to_memslot(slots, id); 1005 slot->flags |= KVM_MEMSLOT_INVALID; 1006 1007 old_memslots = install_new_memslots(kvm, as_id, slots); 1008 1009 /* slot was deleted or moved, clear iommu mapping */ 1010 kvm_iommu_unmap_pages(kvm, &old); 1011 /* From this point no new shadow pages pointing to a deleted, 1012 * or moved, memslot will be created. 1013 * 1014 * validation of sp->gfn happens in: 1015 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1016 * - kvm_is_visible_gfn (mmu_check_roots) 1017 */ 1018 kvm_arch_flush_shadow_memslot(kvm, slot); 1019 1020 /* 1021 * We can re-use the old_memslots from above, the only difference 1022 * from the currently installed memslots is the invalid flag. This 1023 * will get overwritten by update_memslots anyway. 1024 */ 1025 slots = old_memslots; 1026 } 1027 1028 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1029 if (r) 1030 goto out_slots; 1031 1032 /* actual memory is freed via old in kvm_free_memslot below */ 1033 if (change == KVM_MR_DELETE) { 1034 new.dirty_bitmap = NULL; 1035 memset(&new.arch, 0, sizeof(new.arch)); 1036 } 1037 1038 update_memslots(slots, &new); 1039 old_memslots = install_new_memslots(kvm, as_id, slots); 1040 1041 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1042 1043 kvm_free_memslot(kvm, &old, &new); 1044 kvfree(old_memslots); 1045 1046 /* 1047 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1048 * un-mapped and re-mapped if their base changes. Since base change 1049 * unmapping is handled above with slot deletion, mapping alone is 1050 * needed here. Anything else the iommu might care about for existing 1051 * slots (size changes, userspace addr changes and read-only flag 1052 * changes) is disallowed above, so any other attribute changes getting 1053 * here can be skipped. 1054 */ 1055 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1056 r = kvm_iommu_map_pages(kvm, &new); 1057 return r; 1058 } 1059 1060 return 0; 1061 1062 out_slots: 1063 kvfree(slots); 1064 out_free: 1065 kvm_free_memslot(kvm, &new, &old); 1066 out: 1067 return r; 1068 } 1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1070 1071 int kvm_set_memory_region(struct kvm *kvm, 1072 const struct kvm_userspace_memory_region *mem) 1073 { 1074 int r; 1075 1076 mutex_lock(&kvm->slots_lock); 1077 r = __kvm_set_memory_region(kvm, mem); 1078 mutex_unlock(&kvm->slots_lock); 1079 return r; 1080 } 1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1082 1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1084 struct kvm_userspace_memory_region *mem) 1085 { 1086 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1087 return -EINVAL; 1088 1089 return kvm_set_memory_region(kvm, mem); 1090 } 1091 1092 int kvm_get_dirty_log(struct kvm *kvm, 1093 struct kvm_dirty_log *log, int *is_dirty) 1094 { 1095 struct kvm_memslots *slots; 1096 struct kvm_memory_slot *memslot; 1097 int r, i, as_id, id; 1098 unsigned long n; 1099 unsigned long any = 0; 1100 1101 r = -EINVAL; 1102 as_id = log->slot >> 16; 1103 id = (u16)log->slot; 1104 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1105 goto out; 1106 1107 slots = __kvm_memslots(kvm, as_id); 1108 memslot = id_to_memslot(slots, id); 1109 r = -ENOENT; 1110 if (!memslot->dirty_bitmap) 1111 goto out; 1112 1113 n = kvm_dirty_bitmap_bytes(memslot); 1114 1115 for (i = 0; !any && i < n/sizeof(long); ++i) 1116 any = memslot->dirty_bitmap[i]; 1117 1118 r = -EFAULT; 1119 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1120 goto out; 1121 1122 if (any) 1123 *is_dirty = 1; 1124 1125 r = 0; 1126 out: 1127 return r; 1128 } 1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1130 1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1132 /** 1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1134 * are dirty write protect them for next write. 1135 * @kvm: pointer to kvm instance 1136 * @log: slot id and address to which we copy the log 1137 * @is_dirty: flag set if any page is dirty 1138 * 1139 * We need to keep it in mind that VCPU threads can write to the bitmap 1140 * concurrently. So, to avoid losing track of dirty pages we keep the 1141 * following order: 1142 * 1143 * 1. Take a snapshot of the bit and clear it if needed. 1144 * 2. Write protect the corresponding page. 1145 * 3. Copy the snapshot to the userspace. 1146 * 4. Upon return caller flushes TLB's if needed. 1147 * 1148 * Between 2 and 4, the guest may write to the page using the remaining TLB 1149 * entry. This is not a problem because the page is reported dirty using 1150 * the snapshot taken before and step 4 ensures that writes done after 1151 * exiting to userspace will be logged for the next call. 1152 * 1153 */ 1154 int kvm_get_dirty_log_protect(struct kvm *kvm, 1155 struct kvm_dirty_log *log, bool *is_dirty) 1156 { 1157 struct kvm_memslots *slots; 1158 struct kvm_memory_slot *memslot; 1159 int r, i, as_id, id; 1160 unsigned long n; 1161 unsigned long *dirty_bitmap; 1162 unsigned long *dirty_bitmap_buffer; 1163 1164 r = -EINVAL; 1165 as_id = log->slot >> 16; 1166 id = (u16)log->slot; 1167 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1168 goto out; 1169 1170 slots = __kvm_memslots(kvm, as_id); 1171 memslot = id_to_memslot(slots, id); 1172 1173 dirty_bitmap = memslot->dirty_bitmap; 1174 r = -ENOENT; 1175 if (!dirty_bitmap) 1176 goto out; 1177 1178 n = kvm_dirty_bitmap_bytes(memslot); 1179 1180 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1181 memset(dirty_bitmap_buffer, 0, n); 1182 1183 spin_lock(&kvm->mmu_lock); 1184 *is_dirty = false; 1185 for (i = 0; i < n / sizeof(long); i++) { 1186 unsigned long mask; 1187 gfn_t offset; 1188 1189 if (!dirty_bitmap[i]) 1190 continue; 1191 1192 *is_dirty = true; 1193 1194 mask = xchg(&dirty_bitmap[i], 0); 1195 dirty_bitmap_buffer[i] = mask; 1196 1197 if (mask) { 1198 offset = i * BITS_PER_LONG; 1199 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1200 offset, mask); 1201 } 1202 } 1203 1204 spin_unlock(&kvm->mmu_lock); 1205 1206 r = -EFAULT; 1207 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1208 goto out; 1209 1210 r = 0; 1211 out: 1212 return r; 1213 } 1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1215 #endif 1216 1217 bool kvm_largepages_enabled(void) 1218 { 1219 return largepages_enabled; 1220 } 1221 1222 void kvm_disable_largepages(void) 1223 { 1224 largepages_enabled = false; 1225 } 1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1227 1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1229 { 1230 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1231 } 1232 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1233 1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1235 { 1236 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1237 } 1238 1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1240 { 1241 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1242 1243 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1244 memslot->flags & KVM_MEMSLOT_INVALID) 1245 return false; 1246 1247 return true; 1248 } 1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1250 1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1252 { 1253 struct vm_area_struct *vma; 1254 unsigned long addr, size; 1255 1256 size = PAGE_SIZE; 1257 1258 addr = gfn_to_hva(kvm, gfn); 1259 if (kvm_is_error_hva(addr)) 1260 return PAGE_SIZE; 1261 1262 down_read(¤t->mm->mmap_sem); 1263 vma = find_vma(current->mm, addr); 1264 if (!vma) 1265 goto out; 1266 1267 size = vma_kernel_pagesize(vma); 1268 1269 out: 1270 up_read(¤t->mm->mmap_sem); 1271 1272 return size; 1273 } 1274 1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1276 { 1277 return slot->flags & KVM_MEM_READONLY; 1278 } 1279 1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1281 gfn_t *nr_pages, bool write) 1282 { 1283 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1284 return KVM_HVA_ERR_BAD; 1285 1286 if (memslot_is_readonly(slot) && write) 1287 return KVM_HVA_ERR_RO_BAD; 1288 1289 if (nr_pages) 1290 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1291 1292 return __gfn_to_hva_memslot(slot, gfn); 1293 } 1294 1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1296 gfn_t *nr_pages) 1297 { 1298 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1299 } 1300 1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1302 gfn_t gfn) 1303 { 1304 return gfn_to_hva_many(slot, gfn, NULL); 1305 } 1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1307 1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1309 { 1310 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1311 } 1312 EXPORT_SYMBOL_GPL(gfn_to_hva); 1313 1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1315 { 1316 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1317 } 1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1319 1320 /* 1321 * If writable is set to false, the hva returned by this function is only 1322 * allowed to be read. 1323 */ 1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1325 gfn_t gfn, bool *writable) 1326 { 1327 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1328 1329 if (!kvm_is_error_hva(hva) && writable) 1330 *writable = !memslot_is_readonly(slot); 1331 1332 return hva; 1333 } 1334 1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1336 { 1337 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1338 1339 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1340 } 1341 1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1343 { 1344 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1345 1346 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1347 } 1348 1349 static int get_user_page_nowait(unsigned long start, int write, 1350 struct page **page) 1351 { 1352 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1353 1354 if (write) 1355 flags |= FOLL_WRITE; 1356 1357 return get_user_pages(start, 1, flags, page, NULL); 1358 } 1359 1360 static inline int check_user_page_hwpoison(unsigned long addr) 1361 { 1362 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1363 1364 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1365 return rc == -EHWPOISON; 1366 } 1367 1368 /* 1369 * The atomic path to get the writable pfn which will be stored in @pfn, 1370 * true indicates success, otherwise false is returned. 1371 */ 1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1373 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1374 { 1375 struct page *page[1]; 1376 int npages; 1377 1378 if (!(async || atomic)) 1379 return false; 1380 1381 /* 1382 * Fast pin a writable pfn only if it is a write fault request 1383 * or the caller allows to map a writable pfn for a read fault 1384 * request. 1385 */ 1386 if (!(write_fault || writable)) 1387 return false; 1388 1389 npages = __get_user_pages_fast(addr, 1, 1, page); 1390 if (npages == 1) { 1391 *pfn = page_to_pfn(page[0]); 1392 1393 if (writable) 1394 *writable = true; 1395 return true; 1396 } 1397 1398 return false; 1399 } 1400 1401 /* 1402 * The slow path to get the pfn of the specified host virtual address, 1403 * 1 indicates success, -errno is returned if error is detected. 1404 */ 1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1406 bool *writable, kvm_pfn_t *pfn) 1407 { 1408 struct page *page[1]; 1409 int npages = 0; 1410 1411 might_sleep(); 1412 1413 if (writable) 1414 *writable = write_fault; 1415 1416 if (async) { 1417 down_read(¤t->mm->mmap_sem); 1418 npages = get_user_page_nowait(addr, write_fault, page); 1419 up_read(¤t->mm->mmap_sem); 1420 } else { 1421 unsigned int flags = FOLL_HWPOISON; 1422 1423 if (write_fault) 1424 flags |= FOLL_WRITE; 1425 1426 npages = get_user_pages_unlocked(addr, 1, page, flags); 1427 } 1428 if (npages != 1) 1429 return npages; 1430 1431 /* map read fault as writable if possible */ 1432 if (unlikely(!write_fault) && writable) { 1433 struct page *wpage[1]; 1434 1435 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1436 if (npages == 1) { 1437 *writable = true; 1438 put_page(page[0]); 1439 page[0] = wpage[0]; 1440 } 1441 1442 npages = 1; 1443 } 1444 *pfn = page_to_pfn(page[0]); 1445 return npages; 1446 } 1447 1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1449 { 1450 if (unlikely(!(vma->vm_flags & VM_READ))) 1451 return false; 1452 1453 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1454 return false; 1455 1456 return true; 1457 } 1458 1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1460 unsigned long addr, bool *async, 1461 bool write_fault, kvm_pfn_t *p_pfn) 1462 { 1463 unsigned long pfn; 1464 int r; 1465 1466 r = follow_pfn(vma, addr, &pfn); 1467 if (r) { 1468 /* 1469 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1470 * not call the fault handler, so do it here. 1471 */ 1472 bool unlocked = false; 1473 r = fixup_user_fault(current, current->mm, addr, 1474 (write_fault ? FAULT_FLAG_WRITE : 0), 1475 &unlocked); 1476 if (unlocked) 1477 return -EAGAIN; 1478 if (r) 1479 return r; 1480 1481 r = follow_pfn(vma, addr, &pfn); 1482 if (r) 1483 return r; 1484 1485 } 1486 1487 1488 /* 1489 * Get a reference here because callers of *hva_to_pfn* and 1490 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1491 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1492 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1493 * simply do nothing for reserved pfns. 1494 * 1495 * Whoever called remap_pfn_range is also going to call e.g. 1496 * unmap_mapping_range before the underlying pages are freed, 1497 * causing a call to our MMU notifier. 1498 */ 1499 kvm_get_pfn(pfn); 1500 1501 *p_pfn = pfn; 1502 return 0; 1503 } 1504 1505 /* 1506 * Pin guest page in memory and return its pfn. 1507 * @addr: host virtual address which maps memory to the guest 1508 * @atomic: whether this function can sleep 1509 * @async: whether this function need to wait IO complete if the 1510 * host page is not in the memory 1511 * @write_fault: whether we should get a writable host page 1512 * @writable: whether it allows to map a writable host page for !@write_fault 1513 * 1514 * The function will map a writable host page for these two cases: 1515 * 1): @write_fault = true 1516 * 2): @write_fault = false && @writable, @writable will tell the caller 1517 * whether the mapping is writable. 1518 */ 1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1520 bool write_fault, bool *writable) 1521 { 1522 struct vm_area_struct *vma; 1523 kvm_pfn_t pfn = 0; 1524 int npages, r; 1525 1526 /* we can do it either atomically or asynchronously, not both */ 1527 BUG_ON(atomic && async); 1528 1529 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1530 return pfn; 1531 1532 if (atomic) 1533 return KVM_PFN_ERR_FAULT; 1534 1535 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1536 if (npages == 1) 1537 return pfn; 1538 1539 down_read(¤t->mm->mmap_sem); 1540 if (npages == -EHWPOISON || 1541 (!async && check_user_page_hwpoison(addr))) { 1542 pfn = KVM_PFN_ERR_HWPOISON; 1543 goto exit; 1544 } 1545 1546 retry: 1547 vma = find_vma_intersection(current->mm, addr, addr + 1); 1548 1549 if (vma == NULL) 1550 pfn = KVM_PFN_ERR_FAULT; 1551 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1552 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1553 if (r == -EAGAIN) 1554 goto retry; 1555 if (r < 0) 1556 pfn = KVM_PFN_ERR_FAULT; 1557 } else { 1558 if (async && vma_is_valid(vma, write_fault)) 1559 *async = true; 1560 pfn = KVM_PFN_ERR_FAULT; 1561 } 1562 exit: 1563 up_read(¤t->mm->mmap_sem); 1564 return pfn; 1565 } 1566 1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1568 bool atomic, bool *async, bool write_fault, 1569 bool *writable) 1570 { 1571 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1572 1573 if (addr == KVM_HVA_ERR_RO_BAD) { 1574 if (writable) 1575 *writable = false; 1576 return KVM_PFN_ERR_RO_FAULT; 1577 } 1578 1579 if (kvm_is_error_hva(addr)) { 1580 if (writable) 1581 *writable = false; 1582 return KVM_PFN_NOSLOT; 1583 } 1584 1585 /* Do not map writable pfn in the readonly memslot. */ 1586 if (writable && memslot_is_readonly(slot)) { 1587 *writable = false; 1588 writable = NULL; 1589 } 1590 1591 return hva_to_pfn(addr, atomic, async, write_fault, 1592 writable); 1593 } 1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1595 1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1597 bool *writable) 1598 { 1599 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1600 write_fault, writable); 1601 } 1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1603 1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1605 { 1606 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1607 } 1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1609 1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1611 { 1612 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1613 } 1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1615 1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1617 { 1618 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1619 } 1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1621 1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1623 { 1624 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1625 } 1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1627 1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1629 { 1630 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1631 } 1632 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1633 1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1635 { 1636 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1637 } 1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1639 1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1641 struct page **pages, int nr_pages) 1642 { 1643 unsigned long addr; 1644 gfn_t entry; 1645 1646 addr = gfn_to_hva_many(slot, gfn, &entry); 1647 if (kvm_is_error_hva(addr)) 1648 return -1; 1649 1650 if (entry < nr_pages) 1651 return 0; 1652 1653 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1654 } 1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1656 1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1658 { 1659 if (is_error_noslot_pfn(pfn)) 1660 return KVM_ERR_PTR_BAD_PAGE; 1661 1662 if (kvm_is_reserved_pfn(pfn)) { 1663 WARN_ON(1); 1664 return KVM_ERR_PTR_BAD_PAGE; 1665 } 1666 1667 return pfn_to_page(pfn); 1668 } 1669 1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1671 { 1672 kvm_pfn_t pfn; 1673 1674 pfn = gfn_to_pfn(kvm, gfn); 1675 1676 return kvm_pfn_to_page(pfn); 1677 } 1678 EXPORT_SYMBOL_GPL(gfn_to_page); 1679 1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1681 { 1682 kvm_pfn_t pfn; 1683 1684 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1685 1686 return kvm_pfn_to_page(pfn); 1687 } 1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1689 1690 void kvm_release_page_clean(struct page *page) 1691 { 1692 WARN_ON(is_error_page(page)); 1693 1694 kvm_release_pfn_clean(page_to_pfn(page)); 1695 } 1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1697 1698 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1699 { 1700 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1701 put_page(pfn_to_page(pfn)); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1704 1705 void kvm_release_page_dirty(struct page *page) 1706 { 1707 WARN_ON(is_error_page(page)); 1708 1709 kvm_release_pfn_dirty(page_to_pfn(page)); 1710 } 1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1712 1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1714 { 1715 kvm_set_pfn_dirty(pfn); 1716 kvm_release_pfn_clean(pfn); 1717 } 1718 1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1720 { 1721 if (!kvm_is_reserved_pfn(pfn)) { 1722 struct page *page = pfn_to_page(pfn); 1723 1724 if (!PageReserved(page)) 1725 SetPageDirty(page); 1726 } 1727 } 1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1729 1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1731 { 1732 if (!kvm_is_reserved_pfn(pfn)) 1733 mark_page_accessed(pfn_to_page(pfn)); 1734 } 1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1736 1737 void kvm_get_pfn(kvm_pfn_t pfn) 1738 { 1739 if (!kvm_is_reserved_pfn(pfn)) 1740 get_page(pfn_to_page(pfn)); 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1743 1744 static int next_segment(unsigned long len, int offset) 1745 { 1746 if (len > PAGE_SIZE - offset) 1747 return PAGE_SIZE - offset; 1748 else 1749 return len; 1750 } 1751 1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1753 void *data, int offset, int len) 1754 { 1755 int r; 1756 unsigned long addr; 1757 1758 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1759 if (kvm_is_error_hva(addr)) 1760 return -EFAULT; 1761 r = __copy_from_user(data, (void __user *)addr + offset, len); 1762 if (r) 1763 return -EFAULT; 1764 return 0; 1765 } 1766 1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1768 int len) 1769 { 1770 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1771 1772 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1773 } 1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1775 1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1777 int offset, int len) 1778 { 1779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1780 1781 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1782 } 1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1784 1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1786 { 1787 gfn_t gfn = gpa >> PAGE_SHIFT; 1788 int seg; 1789 int offset = offset_in_page(gpa); 1790 int ret; 1791 1792 while ((seg = next_segment(len, offset)) != 0) { 1793 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1794 if (ret < 0) 1795 return ret; 1796 offset = 0; 1797 len -= seg; 1798 data += seg; 1799 ++gfn; 1800 } 1801 return 0; 1802 } 1803 EXPORT_SYMBOL_GPL(kvm_read_guest); 1804 1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1806 { 1807 gfn_t gfn = gpa >> PAGE_SHIFT; 1808 int seg; 1809 int offset = offset_in_page(gpa); 1810 int ret; 1811 1812 while ((seg = next_segment(len, offset)) != 0) { 1813 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1814 if (ret < 0) 1815 return ret; 1816 offset = 0; 1817 len -= seg; 1818 data += seg; 1819 ++gfn; 1820 } 1821 return 0; 1822 } 1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1824 1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1826 void *data, int offset, unsigned long len) 1827 { 1828 int r; 1829 unsigned long addr; 1830 1831 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1832 if (kvm_is_error_hva(addr)) 1833 return -EFAULT; 1834 pagefault_disable(); 1835 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1836 pagefault_enable(); 1837 if (r) 1838 return -EFAULT; 1839 return 0; 1840 } 1841 1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1843 unsigned long len) 1844 { 1845 gfn_t gfn = gpa >> PAGE_SHIFT; 1846 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1847 int offset = offset_in_page(gpa); 1848 1849 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1850 } 1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1852 1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1854 void *data, unsigned long len) 1855 { 1856 gfn_t gfn = gpa >> PAGE_SHIFT; 1857 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1858 int offset = offset_in_page(gpa); 1859 1860 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1861 } 1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1863 1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1865 const void *data, int offset, int len) 1866 { 1867 int r; 1868 unsigned long addr; 1869 1870 addr = gfn_to_hva_memslot(memslot, gfn); 1871 if (kvm_is_error_hva(addr)) 1872 return -EFAULT; 1873 r = __copy_to_user((void __user *)addr + offset, data, len); 1874 if (r) 1875 return -EFAULT; 1876 mark_page_dirty_in_slot(memslot, gfn); 1877 return 0; 1878 } 1879 1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1881 const void *data, int offset, int len) 1882 { 1883 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1884 1885 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1886 } 1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1888 1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1890 const void *data, int offset, int len) 1891 { 1892 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1893 1894 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1895 } 1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1897 1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1899 unsigned long len) 1900 { 1901 gfn_t gfn = gpa >> PAGE_SHIFT; 1902 int seg; 1903 int offset = offset_in_page(gpa); 1904 int ret; 1905 1906 while ((seg = next_segment(len, offset)) != 0) { 1907 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1908 if (ret < 0) 1909 return ret; 1910 offset = 0; 1911 len -= seg; 1912 data += seg; 1913 ++gfn; 1914 } 1915 return 0; 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_write_guest); 1918 1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1920 unsigned long len) 1921 { 1922 gfn_t gfn = gpa >> PAGE_SHIFT; 1923 int seg; 1924 int offset = offset_in_page(gpa); 1925 int ret; 1926 1927 while ((seg = next_segment(len, offset)) != 0) { 1928 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1929 if (ret < 0) 1930 return ret; 1931 offset = 0; 1932 len -= seg; 1933 data += seg; 1934 ++gfn; 1935 } 1936 return 0; 1937 } 1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1939 1940 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1941 gpa_t gpa, unsigned long len) 1942 { 1943 struct kvm_memslots *slots = kvm_memslots(kvm); 1944 int offset = offset_in_page(gpa); 1945 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1946 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1947 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1948 gfn_t nr_pages_avail; 1949 1950 ghc->gpa = gpa; 1951 ghc->generation = slots->generation; 1952 ghc->len = len; 1953 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1954 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1955 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1956 ghc->hva += offset; 1957 } else { 1958 /* 1959 * If the requested region crosses two memslots, we still 1960 * verify that the entire region is valid here. 1961 */ 1962 while (start_gfn <= end_gfn) { 1963 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1964 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1965 &nr_pages_avail); 1966 if (kvm_is_error_hva(ghc->hva)) 1967 return -EFAULT; 1968 start_gfn += nr_pages_avail; 1969 } 1970 /* Use the slow path for cross page reads and writes. */ 1971 ghc->memslot = NULL; 1972 } 1973 return 0; 1974 } 1975 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1976 1977 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1978 void *data, int offset, unsigned long len) 1979 { 1980 struct kvm_memslots *slots = kvm_memslots(kvm); 1981 int r; 1982 gpa_t gpa = ghc->gpa + offset; 1983 1984 BUG_ON(len + offset > ghc->len); 1985 1986 if (slots->generation != ghc->generation) 1987 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1988 1989 if (unlikely(!ghc->memslot)) 1990 return kvm_write_guest(kvm, gpa, data, len); 1991 1992 if (kvm_is_error_hva(ghc->hva)) 1993 return -EFAULT; 1994 1995 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1996 if (r) 1997 return -EFAULT; 1998 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1999 2000 return 0; 2001 } 2002 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2003 2004 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2005 void *data, unsigned long len) 2006 { 2007 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2008 } 2009 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2010 2011 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2012 void *data, unsigned long len) 2013 { 2014 struct kvm_memslots *slots = kvm_memslots(kvm); 2015 int r; 2016 2017 BUG_ON(len > ghc->len); 2018 2019 if (slots->generation != ghc->generation) 2020 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 2021 2022 if (unlikely(!ghc->memslot)) 2023 return kvm_read_guest(kvm, ghc->gpa, data, len); 2024 2025 if (kvm_is_error_hva(ghc->hva)) 2026 return -EFAULT; 2027 2028 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2029 if (r) 2030 return -EFAULT; 2031 2032 return 0; 2033 } 2034 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2035 2036 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2037 { 2038 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2039 2040 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2041 } 2042 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2043 2044 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2045 { 2046 gfn_t gfn = gpa >> PAGE_SHIFT; 2047 int seg; 2048 int offset = offset_in_page(gpa); 2049 int ret; 2050 2051 while ((seg = next_segment(len, offset)) != 0) { 2052 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2053 if (ret < 0) 2054 return ret; 2055 offset = 0; 2056 len -= seg; 2057 ++gfn; 2058 } 2059 return 0; 2060 } 2061 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2062 2063 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2064 gfn_t gfn) 2065 { 2066 if (memslot && memslot->dirty_bitmap) { 2067 unsigned long rel_gfn = gfn - memslot->base_gfn; 2068 2069 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2070 } 2071 } 2072 2073 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2074 { 2075 struct kvm_memory_slot *memslot; 2076 2077 memslot = gfn_to_memslot(kvm, gfn); 2078 mark_page_dirty_in_slot(memslot, gfn); 2079 } 2080 EXPORT_SYMBOL_GPL(mark_page_dirty); 2081 2082 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2083 { 2084 struct kvm_memory_slot *memslot; 2085 2086 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2087 mark_page_dirty_in_slot(memslot, gfn); 2088 } 2089 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2090 2091 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2092 { 2093 unsigned int old, val, grow; 2094 2095 old = val = vcpu->halt_poll_ns; 2096 grow = READ_ONCE(halt_poll_ns_grow); 2097 /* 10us base */ 2098 if (val == 0 && grow) 2099 val = 10000; 2100 else 2101 val *= grow; 2102 2103 if (val > halt_poll_ns) 2104 val = halt_poll_ns; 2105 2106 vcpu->halt_poll_ns = val; 2107 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2108 } 2109 2110 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2111 { 2112 unsigned int old, val, shrink; 2113 2114 old = val = vcpu->halt_poll_ns; 2115 shrink = READ_ONCE(halt_poll_ns_shrink); 2116 if (shrink == 0) 2117 val = 0; 2118 else 2119 val /= shrink; 2120 2121 vcpu->halt_poll_ns = val; 2122 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2123 } 2124 2125 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2126 { 2127 if (kvm_arch_vcpu_runnable(vcpu)) { 2128 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2129 return -EINTR; 2130 } 2131 if (kvm_cpu_has_pending_timer(vcpu)) 2132 return -EINTR; 2133 if (signal_pending(current)) 2134 return -EINTR; 2135 2136 return 0; 2137 } 2138 2139 /* 2140 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2141 */ 2142 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2143 { 2144 ktime_t start, cur; 2145 DECLARE_SWAITQUEUE(wait); 2146 bool waited = false; 2147 u64 block_ns; 2148 2149 start = cur = ktime_get(); 2150 if (vcpu->halt_poll_ns) { 2151 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2152 2153 ++vcpu->stat.halt_attempted_poll; 2154 do { 2155 /* 2156 * This sets KVM_REQ_UNHALT if an interrupt 2157 * arrives. 2158 */ 2159 if (kvm_vcpu_check_block(vcpu) < 0) { 2160 ++vcpu->stat.halt_successful_poll; 2161 if (!vcpu_valid_wakeup(vcpu)) 2162 ++vcpu->stat.halt_poll_invalid; 2163 goto out; 2164 } 2165 cur = ktime_get(); 2166 } while (single_task_running() && ktime_before(cur, stop)); 2167 } 2168 2169 kvm_arch_vcpu_blocking(vcpu); 2170 2171 for (;;) { 2172 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2173 2174 if (kvm_vcpu_check_block(vcpu) < 0) 2175 break; 2176 2177 waited = true; 2178 schedule(); 2179 } 2180 2181 finish_swait(&vcpu->wq, &wait); 2182 cur = ktime_get(); 2183 2184 kvm_arch_vcpu_unblocking(vcpu); 2185 out: 2186 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2187 2188 if (!vcpu_valid_wakeup(vcpu)) 2189 shrink_halt_poll_ns(vcpu); 2190 else if (halt_poll_ns) { 2191 if (block_ns <= vcpu->halt_poll_ns) 2192 ; 2193 /* we had a long block, shrink polling */ 2194 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2195 shrink_halt_poll_ns(vcpu); 2196 /* we had a short halt and our poll time is too small */ 2197 else if (vcpu->halt_poll_ns < halt_poll_ns && 2198 block_ns < halt_poll_ns) 2199 grow_halt_poll_ns(vcpu); 2200 } else 2201 vcpu->halt_poll_ns = 0; 2202 2203 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2204 kvm_arch_vcpu_block_finish(vcpu); 2205 } 2206 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2207 2208 #ifndef CONFIG_S390 2209 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2210 { 2211 struct swait_queue_head *wqp; 2212 2213 wqp = kvm_arch_vcpu_wq(vcpu); 2214 if (swait_active(wqp)) { 2215 swake_up(wqp); 2216 ++vcpu->stat.halt_wakeup; 2217 } 2218 2219 } 2220 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2221 2222 /* 2223 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2224 */ 2225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2226 { 2227 int me; 2228 int cpu = vcpu->cpu; 2229 2230 kvm_vcpu_wake_up(vcpu); 2231 me = get_cpu(); 2232 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2233 if (kvm_arch_vcpu_should_kick(vcpu)) 2234 smp_send_reschedule(cpu); 2235 put_cpu(); 2236 } 2237 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2238 #endif /* !CONFIG_S390 */ 2239 2240 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2241 { 2242 struct pid *pid; 2243 struct task_struct *task = NULL; 2244 int ret = 0; 2245 2246 rcu_read_lock(); 2247 pid = rcu_dereference(target->pid); 2248 if (pid) 2249 task = get_pid_task(pid, PIDTYPE_PID); 2250 rcu_read_unlock(); 2251 if (!task) 2252 return ret; 2253 ret = yield_to(task, 1); 2254 put_task_struct(task); 2255 2256 return ret; 2257 } 2258 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2259 2260 /* 2261 * Helper that checks whether a VCPU is eligible for directed yield. 2262 * Most eligible candidate to yield is decided by following heuristics: 2263 * 2264 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2265 * (preempted lock holder), indicated by @in_spin_loop. 2266 * Set at the beiginning and cleared at the end of interception/PLE handler. 2267 * 2268 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2269 * chance last time (mostly it has become eligible now since we have probably 2270 * yielded to lockholder in last iteration. This is done by toggling 2271 * @dy_eligible each time a VCPU checked for eligibility.) 2272 * 2273 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2274 * to preempted lock-holder could result in wrong VCPU selection and CPU 2275 * burning. Giving priority for a potential lock-holder increases lock 2276 * progress. 2277 * 2278 * Since algorithm is based on heuristics, accessing another VCPU data without 2279 * locking does not harm. It may result in trying to yield to same VCPU, fail 2280 * and continue with next VCPU and so on. 2281 */ 2282 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2283 { 2284 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2285 bool eligible; 2286 2287 eligible = !vcpu->spin_loop.in_spin_loop || 2288 vcpu->spin_loop.dy_eligible; 2289 2290 if (vcpu->spin_loop.in_spin_loop) 2291 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2292 2293 return eligible; 2294 #else 2295 return true; 2296 #endif 2297 } 2298 2299 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2300 { 2301 struct kvm *kvm = me->kvm; 2302 struct kvm_vcpu *vcpu; 2303 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2304 int yielded = 0; 2305 int try = 3; 2306 int pass; 2307 int i; 2308 2309 kvm_vcpu_set_in_spin_loop(me, true); 2310 /* 2311 * We boost the priority of a VCPU that is runnable but not 2312 * currently running, because it got preempted by something 2313 * else and called schedule in __vcpu_run. Hopefully that 2314 * VCPU is holding the lock that we need and will release it. 2315 * We approximate round-robin by starting at the last boosted VCPU. 2316 */ 2317 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2318 kvm_for_each_vcpu(i, vcpu, kvm) { 2319 if (!pass && i <= last_boosted_vcpu) { 2320 i = last_boosted_vcpu; 2321 continue; 2322 } else if (pass && i > last_boosted_vcpu) 2323 break; 2324 if (!ACCESS_ONCE(vcpu->preempted)) 2325 continue; 2326 if (vcpu == me) 2327 continue; 2328 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2329 continue; 2330 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2331 continue; 2332 2333 yielded = kvm_vcpu_yield_to(vcpu); 2334 if (yielded > 0) { 2335 kvm->last_boosted_vcpu = i; 2336 break; 2337 } else if (yielded < 0) { 2338 try--; 2339 if (!try) 2340 break; 2341 } 2342 } 2343 } 2344 kvm_vcpu_set_in_spin_loop(me, false); 2345 2346 /* Ensure vcpu is not eligible during next spinloop */ 2347 kvm_vcpu_set_dy_eligible(me, false); 2348 } 2349 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2350 2351 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2352 { 2353 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2354 struct page *page; 2355 2356 if (vmf->pgoff == 0) 2357 page = virt_to_page(vcpu->run); 2358 #ifdef CONFIG_X86 2359 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2360 page = virt_to_page(vcpu->arch.pio_data); 2361 #endif 2362 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2363 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2364 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2365 #endif 2366 else 2367 return kvm_arch_vcpu_fault(vcpu, vmf); 2368 get_page(page); 2369 vmf->page = page; 2370 return 0; 2371 } 2372 2373 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2374 .fault = kvm_vcpu_fault, 2375 }; 2376 2377 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2378 { 2379 vma->vm_ops = &kvm_vcpu_vm_ops; 2380 return 0; 2381 } 2382 2383 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2384 { 2385 struct kvm_vcpu *vcpu = filp->private_data; 2386 2387 debugfs_remove_recursive(vcpu->debugfs_dentry); 2388 kvm_put_kvm(vcpu->kvm); 2389 return 0; 2390 } 2391 2392 static struct file_operations kvm_vcpu_fops = { 2393 .release = kvm_vcpu_release, 2394 .unlocked_ioctl = kvm_vcpu_ioctl, 2395 #ifdef CONFIG_KVM_COMPAT 2396 .compat_ioctl = kvm_vcpu_compat_ioctl, 2397 #endif 2398 .mmap = kvm_vcpu_mmap, 2399 .llseek = noop_llseek, 2400 }; 2401 2402 /* 2403 * Allocates an inode for the vcpu. 2404 */ 2405 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2406 { 2407 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2408 } 2409 2410 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2411 { 2412 char dir_name[ITOA_MAX_LEN * 2]; 2413 int ret; 2414 2415 if (!kvm_arch_has_vcpu_debugfs()) 2416 return 0; 2417 2418 if (!debugfs_initialized()) 2419 return 0; 2420 2421 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2422 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2423 vcpu->kvm->debugfs_dentry); 2424 if (!vcpu->debugfs_dentry) 2425 return -ENOMEM; 2426 2427 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2428 if (ret < 0) { 2429 debugfs_remove_recursive(vcpu->debugfs_dentry); 2430 return ret; 2431 } 2432 2433 return 0; 2434 } 2435 2436 /* 2437 * Creates some virtual cpus. Good luck creating more than one. 2438 */ 2439 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2440 { 2441 int r; 2442 struct kvm_vcpu *vcpu; 2443 2444 if (id >= KVM_MAX_VCPU_ID) 2445 return -EINVAL; 2446 2447 mutex_lock(&kvm->lock); 2448 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2449 mutex_unlock(&kvm->lock); 2450 return -EINVAL; 2451 } 2452 2453 kvm->created_vcpus++; 2454 mutex_unlock(&kvm->lock); 2455 2456 vcpu = kvm_arch_vcpu_create(kvm, id); 2457 if (IS_ERR(vcpu)) { 2458 r = PTR_ERR(vcpu); 2459 goto vcpu_decrement; 2460 } 2461 2462 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2463 2464 r = kvm_arch_vcpu_setup(vcpu); 2465 if (r) 2466 goto vcpu_destroy; 2467 2468 r = kvm_create_vcpu_debugfs(vcpu); 2469 if (r) 2470 goto vcpu_destroy; 2471 2472 mutex_lock(&kvm->lock); 2473 if (kvm_get_vcpu_by_id(kvm, id)) { 2474 r = -EEXIST; 2475 goto unlock_vcpu_destroy; 2476 } 2477 2478 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2479 2480 /* Now it's all set up, let userspace reach it */ 2481 kvm_get_kvm(kvm); 2482 r = create_vcpu_fd(vcpu); 2483 if (r < 0) { 2484 kvm_put_kvm(kvm); 2485 goto unlock_vcpu_destroy; 2486 } 2487 2488 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2489 2490 /* 2491 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2492 * before kvm->online_vcpu's incremented value. 2493 */ 2494 smp_wmb(); 2495 atomic_inc(&kvm->online_vcpus); 2496 2497 mutex_unlock(&kvm->lock); 2498 kvm_arch_vcpu_postcreate(vcpu); 2499 return r; 2500 2501 unlock_vcpu_destroy: 2502 mutex_unlock(&kvm->lock); 2503 debugfs_remove_recursive(vcpu->debugfs_dentry); 2504 vcpu_destroy: 2505 kvm_arch_vcpu_destroy(vcpu); 2506 vcpu_decrement: 2507 mutex_lock(&kvm->lock); 2508 kvm->created_vcpus--; 2509 mutex_unlock(&kvm->lock); 2510 return r; 2511 } 2512 2513 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2514 { 2515 if (sigset) { 2516 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2517 vcpu->sigset_active = 1; 2518 vcpu->sigset = *sigset; 2519 } else 2520 vcpu->sigset_active = 0; 2521 return 0; 2522 } 2523 2524 static long kvm_vcpu_ioctl(struct file *filp, 2525 unsigned int ioctl, unsigned long arg) 2526 { 2527 struct kvm_vcpu *vcpu = filp->private_data; 2528 void __user *argp = (void __user *)arg; 2529 int r; 2530 struct kvm_fpu *fpu = NULL; 2531 struct kvm_sregs *kvm_sregs = NULL; 2532 2533 if (vcpu->kvm->mm != current->mm) 2534 return -EIO; 2535 2536 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2537 return -EINVAL; 2538 2539 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2540 /* 2541 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2542 * so vcpu_load() would break it. 2543 */ 2544 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2545 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2546 #endif 2547 2548 2549 r = vcpu_load(vcpu); 2550 if (r) 2551 return r; 2552 switch (ioctl) { 2553 case KVM_RUN: 2554 r = -EINVAL; 2555 if (arg) 2556 goto out; 2557 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2558 /* The thread running this VCPU changed. */ 2559 struct pid *oldpid = vcpu->pid; 2560 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2561 2562 rcu_assign_pointer(vcpu->pid, newpid); 2563 if (oldpid) 2564 synchronize_rcu(); 2565 put_pid(oldpid); 2566 } 2567 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2568 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2569 break; 2570 case KVM_GET_REGS: { 2571 struct kvm_regs *kvm_regs; 2572 2573 r = -ENOMEM; 2574 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2575 if (!kvm_regs) 2576 goto out; 2577 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2578 if (r) 2579 goto out_free1; 2580 r = -EFAULT; 2581 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2582 goto out_free1; 2583 r = 0; 2584 out_free1: 2585 kfree(kvm_regs); 2586 break; 2587 } 2588 case KVM_SET_REGS: { 2589 struct kvm_regs *kvm_regs; 2590 2591 r = -ENOMEM; 2592 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2593 if (IS_ERR(kvm_regs)) { 2594 r = PTR_ERR(kvm_regs); 2595 goto out; 2596 } 2597 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2598 kfree(kvm_regs); 2599 break; 2600 } 2601 case KVM_GET_SREGS: { 2602 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2603 r = -ENOMEM; 2604 if (!kvm_sregs) 2605 goto out; 2606 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2607 if (r) 2608 goto out; 2609 r = -EFAULT; 2610 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2611 goto out; 2612 r = 0; 2613 break; 2614 } 2615 case KVM_SET_SREGS: { 2616 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2617 if (IS_ERR(kvm_sregs)) { 2618 r = PTR_ERR(kvm_sregs); 2619 kvm_sregs = NULL; 2620 goto out; 2621 } 2622 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2623 break; 2624 } 2625 case KVM_GET_MP_STATE: { 2626 struct kvm_mp_state mp_state; 2627 2628 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2629 if (r) 2630 goto out; 2631 r = -EFAULT; 2632 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2633 goto out; 2634 r = 0; 2635 break; 2636 } 2637 case KVM_SET_MP_STATE: { 2638 struct kvm_mp_state mp_state; 2639 2640 r = -EFAULT; 2641 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2642 goto out; 2643 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2644 break; 2645 } 2646 case KVM_TRANSLATE: { 2647 struct kvm_translation tr; 2648 2649 r = -EFAULT; 2650 if (copy_from_user(&tr, argp, sizeof(tr))) 2651 goto out; 2652 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2653 if (r) 2654 goto out; 2655 r = -EFAULT; 2656 if (copy_to_user(argp, &tr, sizeof(tr))) 2657 goto out; 2658 r = 0; 2659 break; 2660 } 2661 case KVM_SET_GUEST_DEBUG: { 2662 struct kvm_guest_debug dbg; 2663 2664 r = -EFAULT; 2665 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2666 goto out; 2667 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2668 break; 2669 } 2670 case KVM_SET_SIGNAL_MASK: { 2671 struct kvm_signal_mask __user *sigmask_arg = argp; 2672 struct kvm_signal_mask kvm_sigmask; 2673 sigset_t sigset, *p; 2674 2675 p = NULL; 2676 if (argp) { 2677 r = -EFAULT; 2678 if (copy_from_user(&kvm_sigmask, argp, 2679 sizeof(kvm_sigmask))) 2680 goto out; 2681 r = -EINVAL; 2682 if (kvm_sigmask.len != sizeof(sigset)) 2683 goto out; 2684 r = -EFAULT; 2685 if (copy_from_user(&sigset, sigmask_arg->sigset, 2686 sizeof(sigset))) 2687 goto out; 2688 p = &sigset; 2689 } 2690 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2691 break; 2692 } 2693 case KVM_GET_FPU: { 2694 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2695 r = -ENOMEM; 2696 if (!fpu) 2697 goto out; 2698 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2699 if (r) 2700 goto out; 2701 r = -EFAULT; 2702 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2703 goto out; 2704 r = 0; 2705 break; 2706 } 2707 case KVM_SET_FPU: { 2708 fpu = memdup_user(argp, sizeof(*fpu)); 2709 if (IS_ERR(fpu)) { 2710 r = PTR_ERR(fpu); 2711 fpu = NULL; 2712 goto out; 2713 } 2714 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2715 break; 2716 } 2717 default: 2718 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2719 } 2720 out: 2721 vcpu_put(vcpu); 2722 kfree(fpu); 2723 kfree(kvm_sregs); 2724 return r; 2725 } 2726 2727 #ifdef CONFIG_KVM_COMPAT 2728 static long kvm_vcpu_compat_ioctl(struct file *filp, 2729 unsigned int ioctl, unsigned long arg) 2730 { 2731 struct kvm_vcpu *vcpu = filp->private_data; 2732 void __user *argp = compat_ptr(arg); 2733 int r; 2734 2735 if (vcpu->kvm->mm != current->mm) 2736 return -EIO; 2737 2738 switch (ioctl) { 2739 case KVM_SET_SIGNAL_MASK: { 2740 struct kvm_signal_mask __user *sigmask_arg = argp; 2741 struct kvm_signal_mask kvm_sigmask; 2742 compat_sigset_t csigset; 2743 sigset_t sigset; 2744 2745 if (argp) { 2746 r = -EFAULT; 2747 if (copy_from_user(&kvm_sigmask, argp, 2748 sizeof(kvm_sigmask))) 2749 goto out; 2750 r = -EINVAL; 2751 if (kvm_sigmask.len != sizeof(csigset)) 2752 goto out; 2753 r = -EFAULT; 2754 if (copy_from_user(&csigset, sigmask_arg->sigset, 2755 sizeof(csigset))) 2756 goto out; 2757 sigset_from_compat(&sigset, &csigset); 2758 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2759 } else 2760 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2761 break; 2762 } 2763 default: 2764 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2765 } 2766 2767 out: 2768 return r; 2769 } 2770 #endif 2771 2772 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2773 int (*accessor)(struct kvm_device *dev, 2774 struct kvm_device_attr *attr), 2775 unsigned long arg) 2776 { 2777 struct kvm_device_attr attr; 2778 2779 if (!accessor) 2780 return -EPERM; 2781 2782 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2783 return -EFAULT; 2784 2785 return accessor(dev, &attr); 2786 } 2787 2788 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2789 unsigned long arg) 2790 { 2791 struct kvm_device *dev = filp->private_data; 2792 2793 switch (ioctl) { 2794 case KVM_SET_DEVICE_ATTR: 2795 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2796 case KVM_GET_DEVICE_ATTR: 2797 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2798 case KVM_HAS_DEVICE_ATTR: 2799 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2800 default: 2801 if (dev->ops->ioctl) 2802 return dev->ops->ioctl(dev, ioctl, arg); 2803 2804 return -ENOTTY; 2805 } 2806 } 2807 2808 static int kvm_device_release(struct inode *inode, struct file *filp) 2809 { 2810 struct kvm_device *dev = filp->private_data; 2811 struct kvm *kvm = dev->kvm; 2812 2813 kvm_put_kvm(kvm); 2814 return 0; 2815 } 2816 2817 static const struct file_operations kvm_device_fops = { 2818 .unlocked_ioctl = kvm_device_ioctl, 2819 #ifdef CONFIG_KVM_COMPAT 2820 .compat_ioctl = kvm_device_ioctl, 2821 #endif 2822 .release = kvm_device_release, 2823 }; 2824 2825 struct kvm_device *kvm_device_from_filp(struct file *filp) 2826 { 2827 if (filp->f_op != &kvm_device_fops) 2828 return NULL; 2829 2830 return filp->private_data; 2831 } 2832 2833 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2834 #ifdef CONFIG_KVM_MPIC 2835 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2836 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2837 #endif 2838 2839 #ifdef CONFIG_KVM_XICS 2840 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2841 #endif 2842 }; 2843 2844 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2845 { 2846 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2847 return -ENOSPC; 2848 2849 if (kvm_device_ops_table[type] != NULL) 2850 return -EEXIST; 2851 2852 kvm_device_ops_table[type] = ops; 2853 return 0; 2854 } 2855 2856 void kvm_unregister_device_ops(u32 type) 2857 { 2858 if (kvm_device_ops_table[type] != NULL) 2859 kvm_device_ops_table[type] = NULL; 2860 } 2861 2862 static int kvm_ioctl_create_device(struct kvm *kvm, 2863 struct kvm_create_device *cd) 2864 { 2865 struct kvm_device_ops *ops = NULL; 2866 struct kvm_device *dev; 2867 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2868 int ret; 2869 2870 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2871 return -ENODEV; 2872 2873 ops = kvm_device_ops_table[cd->type]; 2874 if (ops == NULL) 2875 return -ENODEV; 2876 2877 if (test) 2878 return 0; 2879 2880 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2881 if (!dev) 2882 return -ENOMEM; 2883 2884 dev->ops = ops; 2885 dev->kvm = kvm; 2886 2887 mutex_lock(&kvm->lock); 2888 ret = ops->create(dev, cd->type); 2889 if (ret < 0) { 2890 mutex_unlock(&kvm->lock); 2891 kfree(dev); 2892 return ret; 2893 } 2894 list_add(&dev->vm_node, &kvm->devices); 2895 mutex_unlock(&kvm->lock); 2896 2897 if (ops->init) 2898 ops->init(dev); 2899 2900 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2901 if (ret < 0) { 2902 mutex_lock(&kvm->lock); 2903 list_del(&dev->vm_node); 2904 mutex_unlock(&kvm->lock); 2905 ops->destroy(dev); 2906 return ret; 2907 } 2908 2909 kvm_get_kvm(kvm); 2910 cd->fd = ret; 2911 return 0; 2912 } 2913 2914 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2915 { 2916 switch (arg) { 2917 case KVM_CAP_USER_MEMORY: 2918 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2919 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2920 case KVM_CAP_INTERNAL_ERROR_DATA: 2921 #ifdef CONFIG_HAVE_KVM_MSI 2922 case KVM_CAP_SIGNAL_MSI: 2923 #endif 2924 #ifdef CONFIG_HAVE_KVM_IRQFD 2925 case KVM_CAP_IRQFD: 2926 case KVM_CAP_IRQFD_RESAMPLE: 2927 #endif 2928 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2929 case KVM_CAP_CHECK_EXTENSION_VM: 2930 return 1; 2931 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2932 case KVM_CAP_IRQ_ROUTING: 2933 return KVM_MAX_IRQ_ROUTES; 2934 #endif 2935 #if KVM_ADDRESS_SPACE_NUM > 1 2936 case KVM_CAP_MULTI_ADDRESS_SPACE: 2937 return KVM_ADDRESS_SPACE_NUM; 2938 #endif 2939 case KVM_CAP_MAX_VCPU_ID: 2940 return KVM_MAX_VCPU_ID; 2941 default: 2942 break; 2943 } 2944 return kvm_vm_ioctl_check_extension(kvm, arg); 2945 } 2946 2947 static long kvm_vm_ioctl(struct file *filp, 2948 unsigned int ioctl, unsigned long arg) 2949 { 2950 struct kvm *kvm = filp->private_data; 2951 void __user *argp = (void __user *)arg; 2952 int r; 2953 2954 if (kvm->mm != current->mm) 2955 return -EIO; 2956 switch (ioctl) { 2957 case KVM_CREATE_VCPU: 2958 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2959 break; 2960 case KVM_SET_USER_MEMORY_REGION: { 2961 struct kvm_userspace_memory_region kvm_userspace_mem; 2962 2963 r = -EFAULT; 2964 if (copy_from_user(&kvm_userspace_mem, argp, 2965 sizeof(kvm_userspace_mem))) 2966 goto out; 2967 2968 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2969 break; 2970 } 2971 case KVM_GET_DIRTY_LOG: { 2972 struct kvm_dirty_log log; 2973 2974 r = -EFAULT; 2975 if (copy_from_user(&log, argp, sizeof(log))) 2976 goto out; 2977 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2978 break; 2979 } 2980 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2981 case KVM_REGISTER_COALESCED_MMIO: { 2982 struct kvm_coalesced_mmio_zone zone; 2983 2984 r = -EFAULT; 2985 if (copy_from_user(&zone, argp, sizeof(zone))) 2986 goto out; 2987 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2988 break; 2989 } 2990 case KVM_UNREGISTER_COALESCED_MMIO: { 2991 struct kvm_coalesced_mmio_zone zone; 2992 2993 r = -EFAULT; 2994 if (copy_from_user(&zone, argp, sizeof(zone))) 2995 goto out; 2996 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2997 break; 2998 } 2999 #endif 3000 case KVM_IRQFD: { 3001 struct kvm_irqfd data; 3002 3003 r = -EFAULT; 3004 if (copy_from_user(&data, argp, sizeof(data))) 3005 goto out; 3006 r = kvm_irqfd(kvm, &data); 3007 break; 3008 } 3009 case KVM_IOEVENTFD: { 3010 struct kvm_ioeventfd data; 3011 3012 r = -EFAULT; 3013 if (copy_from_user(&data, argp, sizeof(data))) 3014 goto out; 3015 r = kvm_ioeventfd(kvm, &data); 3016 break; 3017 } 3018 #ifdef CONFIG_HAVE_KVM_MSI 3019 case KVM_SIGNAL_MSI: { 3020 struct kvm_msi msi; 3021 3022 r = -EFAULT; 3023 if (copy_from_user(&msi, argp, sizeof(msi))) 3024 goto out; 3025 r = kvm_send_userspace_msi(kvm, &msi); 3026 break; 3027 } 3028 #endif 3029 #ifdef __KVM_HAVE_IRQ_LINE 3030 case KVM_IRQ_LINE_STATUS: 3031 case KVM_IRQ_LINE: { 3032 struct kvm_irq_level irq_event; 3033 3034 r = -EFAULT; 3035 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3036 goto out; 3037 3038 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3039 ioctl == KVM_IRQ_LINE_STATUS); 3040 if (r) 3041 goto out; 3042 3043 r = -EFAULT; 3044 if (ioctl == KVM_IRQ_LINE_STATUS) { 3045 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3046 goto out; 3047 } 3048 3049 r = 0; 3050 break; 3051 } 3052 #endif 3053 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3054 case KVM_SET_GSI_ROUTING: { 3055 struct kvm_irq_routing routing; 3056 struct kvm_irq_routing __user *urouting; 3057 struct kvm_irq_routing_entry *entries = NULL; 3058 3059 r = -EFAULT; 3060 if (copy_from_user(&routing, argp, sizeof(routing))) 3061 goto out; 3062 r = -EINVAL; 3063 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3064 goto out; 3065 if (routing.flags) 3066 goto out; 3067 if (routing.nr) { 3068 r = -ENOMEM; 3069 entries = vmalloc(routing.nr * sizeof(*entries)); 3070 if (!entries) 3071 goto out; 3072 r = -EFAULT; 3073 urouting = argp; 3074 if (copy_from_user(entries, urouting->entries, 3075 routing.nr * sizeof(*entries))) 3076 goto out_free_irq_routing; 3077 } 3078 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3079 routing.flags); 3080 out_free_irq_routing: 3081 vfree(entries); 3082 break; 3083 } 3084 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3085 case KVM_CREATE_DEVICE: { 3086 struct kvm_create_device cd; 3087 3088 r = -EFAULT; 3089 if (copy_from_user(&cd, argp, sizeof(cd))) 3090 goto out; 3091 3092 r = kvm_ioctl_create_device(kvm, &cd); 3093 if (r) 3094 goto out; 3095 3096 r = -EFAULT; 3097 if (copy_to_user(argp, &cd, sizeof(cd))) 3098 goto out; 3099 3100 r = 0; 3101 break; 3102 } 3103 case KVM_CHECK_EXTENSION: 3104 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3105 break; 3106 default: 3107 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3108 } 3109 out: 3110 return r; 3111 } 3112 3113 #ifdef CONFIG_KVM_COMPAT 3114 struct compat_kvm_dirty_log { 3115 __u32 slot; 3116 __u32 padding1; 3117 union { 3118 compat_uptr_t dirty_bitmap; /* one bit per page */ 3119 __u64 padding2; 3120 }; 3121 }; 3122 3123 static long kvm_vm_compat_ioctl(struct file *filp, 3124 unsigned int ioctl, unsigned long arg) 3125 { 3126 struct kvm *kvm = filp->private_data; 3127 int r; 3128 3129 if (kvm->mm != current->mm) 3130 return -EIO; 3131 switch (ioctl) { 3132 case KVM_GET_DIRTY_LOG: { 3133 struct compat_kvm_dirty_log compat_log; 3134 struct kvm_dirty_log log; 3135 3136 r = -EFAULT; 3137 if (copy_from_user(&compat_log, (void __user *)arg, 3138 sizeof(compat_log))) 3139 goto out; 3140 log.slot = compat_log.slot; 3141 log.padding1 = compat_log.padding1; 3142 log.padding2 = compat_log.padding2; 3143 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3144 3145 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3146 break; 3147 } 3148 default: 3149 r = kvm_vm_ioctl(filp, ioctl, arg); 3150 } 3151 3152 out: 3153 return r; 3154 } 3155 #endif 3156 3157 static struct file_operations kvm_vm_fops = { 3158 .release = kvm_vm_release, 3159 .unlocked_ioctl = kvm_vm_ioctl, 3160 #ifdef CONFIG_KVM_COMPAT 3161 .compat_ioctl = kvm_vm_compat_ioctl, 3162 #endif 3163 .llseek = noop_llseek, 3164 }; 3165 3166 static int kvm_dev_ioctl_create_vm(unsigned long type) 3167 { 3168 int r; 3169 struct kvm *kvm; 3170 struct file *file; 3171 3172 kvm = kvm_create_vm(type); 3173 if (IS_ERR(kvm)) 3174 return PTR_ERR(kvm); 3175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3176 r = kvm_coalesced_mmio_init(kvm); 3177 if (r < 0) { 3178 kvm_put_kvm(kvm); 3179 return r; 3180 } 3181 #endif 3182 r = get_unused_fd_flags(O_CLOEXEC); 3183 if (r < 0) { 3184 kvm_put_kvm(kvm); 3185 return r; 3186 } 3187 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3188 if (IS_ERR(file)) { 3189 put_unused_fd(r); 3190 kvm_put_kvm(kvm); 3191 return PTR_ERR(file); 3192 } 3193 3194 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3195 put_unused_fd(r); 3196 fput(file); 3197 return -ENOMEM; 3198 } 3199 3200 fd_install(r, file); 3201 return r; 3202 } 3203 3204 static long kvm_dev_ioctl(struct file *filp, 3205 unsigned int ioctl, unsigned long arg) 3206 { 3207 long r = -EINVAL; 3208 3209 switch (ioctl) { 3210 case KVM_GET_API_VERSION: 3211 if (arg) 3212 goto out; 3213 r = KVM_API_VERSION; 3214 break; 3215 case KVM_CREATE_VM: 3216 r = kvm_dev_ioctl_create_vm(arg); 3217 break; 3218 case KVM_CHECK_EXTENSION: 3219 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3220 break; 3221 case KVM_GET_VCPU_MMAP_SIZE: 3222 if (arg) 3223 goto out; 3224 r = PAGE_SIZE; /* struct kvm_run */ 3225 #ifdef CONFIG_X86 3226 r += PAGE_SIZE; /* pio data page */ 3227 #endif 3228 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3229 r += PAGE_SIZE; /* coalesced mmio ring page */ 3230 #endif 3231 break; 3232 case KVM_TRACE_ENABLE: 3233 case KVM_TRACE_PAUSE: 3234 case KVM_TRACE_DISABLE: 3235 r = -EOPNOTSUPP; 3236 break; 3237 default: 3238 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3239 } 3240 out: 3241 return r; 3242 } 3243 3244 static struct file_operations kvm_chardev_ops = { 3245 .unlocked_ioctl = kvm_dev_ioctl, 3246 .compat_ioctl = kvm_dev_ioctl, 3247 .llseek = noop_llseek, 3248 }; 3249 3250 static struct miscdevice kvm_dev = { 3251 KVM_MINOR, 3252 "kvm", 3253 &kvm_chardev_ops, 3254 }; 3255 3256 static void hardware_enable_nolock(void *junk) 3257 { 3258 int cpu = raw_smp_processor_id(); 3259 int r; 3260 3261 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3262 return; 3263 3264 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3265 3266 r = kvm_arch_hardware_enable(); 3267 3268 if (r) { 3269 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3270 atomic_inc(&hardware_enable_failed); 3271 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3272 } 3273 } 3274 3275 static int kvm_starting_cpu(unsigned int cpu) 3276 { 3277 raw_spin_lock(&kvm_count_lock); 3278 if (kvm_usage_count) 3279 hardware_enable_nolock(NULL); 3280 raw_spin_unlock(&kvm_count_lock); 3281 return 0; 3282 } 3283 3284 static void hardware_disable_nolock(void *junk) 3285 { 3286 int cpu = raw_smp_processor_id(); 3287 3288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3289 return; 3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3291 kvm_arch_hardware_disable(); 3292 } 3293 3294 static int kvm_dying_cpu(unsigned int cpu) 3295 { 3296 raw_spin_lock(&kvm_count_lock); 3297 if (kvm_usage_count) 3298 hardware_disable_nolock(NULL); 3299 raw_spin_unlock(&kvm_count_lock); 3300 return 0; 3301 } 3302 3303 static void hardware_disable_all_nolock(void) 3304 { 3305 BUG_ON(!kvm_usage_count); 3306 3307 kvm_usage_count--; 3308 if (!kvm_usage_count) 3309 on_each_cpu(hardware_disable_nolock, NULL, 1); 3310 } 3311 3312 static void hardware_disable_all(void) 3313 { 3314 raw_spin_lock(&kvm_count_lock); 3315 hardware_disable_all_nolock(); 3316 raw_spin_unlock(&kvm_count_lock); 3317 } 3318 3319 static int hardware_enable_all(void) 3320 { 3321 int r = 0; 3322 3323 raw_spin_lock(&kvm_count_lock); 3324 3325 kvm_usage_count++; 3326 if (kvm_usage_count == 1) { 3327 atomic_set(&hardware_enable_failed, 0); 3328 on_each_cpu(hardware_enable_nolock, NULL, 1); 3329 3330 if (atomic_read(&hardware_enable_failed)) { 3331 hardware_disable_all_nolock(); 3332 r = -EBUSY; 3333 } 3334 } 3335 3336 raw_spin_unlock(&kvm_count_lock); 3337 3338 return r; 3339 } 3340 3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3342 void *v) 3343 { 3344 /* 3345 * Some (well, at least mine) BIOSes hang on reboot if 3346 * in vmx root mode. 3347 * 3348 * And Intel TXT required VMX off for all cpu when system shutdown. 3349 */ 3350 pr_info("kvm: exiting hardware virtualization\n"); 3351 kvm_rebooting = true; 3352 on_each_cpu(hardware_disable_nolock, NULL, 1); 3353 return NOTIFY_OK; 3354 } 3355 3356 static struct notifier_block kvm_reboot_notifier = { 3357 .notifier_call = kvm_reboot, 3358 .priority = 0, 3359 }; 3360 3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3362 { 3363 int i; 3364 3365 for (i = 0; i < bus->dev_count; i++) { 3366 struct kvm_io_device *pos = bus->range[i].dev; 3367 3368 kvm_iodevice_destructor(pos); 3369 } 3370 kfree(bus); 3371 } 3372 3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3374 const struct kvm_io_range *r2) 3375 { 3376 gpa_t addr1 = r1->addr; 3377 gpa_t addr2 = r2->addr; 3378 3379 if (addr1 < addr2) 3380 return -1; 3381 3382 /* If r2->len == 0, match the exact address. If r2->len != 0, 3383 * accept any overlapping write. Any order is acceptable for 3384 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3385 * we process all of them. 3386 */ 3387 if (r2->len) { 3388 addr1 += r1->len; 3389 addr2 += r2->len; 3390 } 3391 3392 if (addr1 > addr2) 3393 return 1; 3394 3395 return 0; 3396 } 3397 3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3399 { 3400 return kvm_io_bus_cmp(p1, p2); 3401 } 3402 3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3404 gpa_t addr, int len) 3405 { 3406 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3407 .addr = addr, 3408 .len = len, 3409 .dev = dev, 3410 }; 3411 3412 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3413 kvm_io_bus_sort_cmp, NULL); 3414 3415 return 0; 3416 } 3417 3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3419 gpa_t addr, int len) 3420 { 3421 struct kvm_io_range *range, key; 3422 int off; 3423 3424 key = (struct kvm_io_range) { 3425 .addr = addr, 3426 .len = len, 3427 }; 3428 3429 range = bsearch(&key, bus->range, bus->dev_count, 3430 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3431 if (range == NULL) 3432 return -ENOENT; 3433 3434 off = range - bus->range; 3435 3436 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3437 off--; 3438 3439 return off; 3440 } 3441 3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3443 struct kvm_io_range *range, const void *val) 3444 { 3445 int idx; 3446 3447 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3448 if (idx < 0) 3449 return -EOPNOTSUPP; 3450 3451 while (idx < bus->dev_count && 3452 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3453 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3454 range->len, val)) 3455 return idx; 3456 idx++; 3457 } 3458 3459 return -EOPNOTSUPP; 3460 } 3461 3462 /* kvm_io_bus_write - called under kvm->slots_lock */ 3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3464 int len, const void *val) 3465 { 3466 struct kvm_io_bus *bus; 3467 struct kvm_io_range range; 3468 int r; 3469 3470 range = (struct kvm_io_range) { 3471 .addr = addr, 3472 .len = len, 3473 }; 3474 3475 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3476 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3477 return r < 0 ? r : 0; 3478 } 3479 3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3482 gpa_t addr, int len, const void *val, long cookie) 3483 { 3484 struct kvm_io_bus *bus; 3485 struct kvm_io_range range; 3486 3487 range = (struct kvm_io_range) { 3488 .addr = addr, 3489 .len = len, 3490 }; 3491 3492 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3493 3494 /* First try the device referenced by cookie. */ 3495 if ((cookie >= 0) && (cookie < bus->dev_count) && 3496 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3497 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3498 val)) 3499 return cookie; 3500 3501 /* 3502 * cookie contained garbage; fall back to search and return the 3503 * correct cookie value. 3504 */ 3505 return __kvm_io_bus_write(vcpu, bus, &range, val); 3506 } 3507 3508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3509 struct kvm_io_range *range, void *val) 3510 { 3511 int idx; 3512 3513 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3514 if (idx < 0) 3515 return -EOPNOTSUPP; 3516 3517 while (idx < bus->dev_count && 3518 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3519 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3520 range->len, val)) 3521 return idx; 3522 idx++; 3523 } 3524 3525 return -EOPNOTSUPP; 3526 } 3527 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3528 3529 /* kvm_io_bus_read - called under kvm->slots_lock */ 3530 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3531 int len, void *val) 3532 { 3533 struct kvm_io_bus *bus; 3534 struct kvm_io_range range; 3535 int r; 3536 3537 range = (struct kvm_io_range) { 3538 .addr = addr, 3539 .len = len, 3540 }; 3541 3542 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3543 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3544 return r < 0 ? r : 0; 3545 } 3546 3547 3548 /* Caller must hold slots_lock. */ 3549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3550 int len, struct kvm_io_device *dev) 3551 { 3552 struct kvm_io_bus *new_bus, *bus; 3553 3554 bus = kvm->buses[bus_idx]; 3555 /* exclude ioeventfd which is limited by maximum fd */ 3556 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3557 return -ENOSPC; 3558 3559 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3560 sizeof(struct kvm_io_range)), GFP_KERNEL); 3561 if (!new_bus) 3562 return -ENOMEM; 3563 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3564 sizeof(struct kvm_io_range))); 3565 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3566 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3567 synchronize_srcu_expedited(&kvm->srcu); 3568 kfree(bus); 3569 3570 return 0; 3571 } 3572 3573 /* Caller must hold slots_lock. */ 3574 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3575 struct kvm_io_device *dev) 3576 { 3577 int i, r; 3578 struct kvm_io_bus *new_bus, *bus; 3579 3580 bus = kvm->buses[bus_idx]; 3581 r = -ENOENT; 3582 for (i = 0; i < bus->dev_count; i++) 3583 if (bus->range[i].dev == dev) { 3584 r = 0; 3585 break; 3586 } 3587 3588 if (r) 3589 return r; 3590 3591 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3592 sizeof(struct kvm_io_range)), GFP_KERNEL); 3593 if (!new_bus) 3594 return -ENOMEM; 3595 3596 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3597 new_bus->dev_count--; 3598 memcpy(new_bus->range + i, bus->range + i + 1, 3599 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3600 3601 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3602 synchronize_srcu_expedited(&kvm->srcu); 3603 kfree(bus); 3604 return r; 3605 } 3606 3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3608 gpa_t addr) 3609 { 3610 struct kvm_io_bus *bus; 3611 int dev_idx, srcu_idx; 3612 struct kvm_io_device *iodev = NULL; 3613 3614 srcu_idx = srcu_read_lock(&kvm->srcu); 3615 3616 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3617 3618 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3619 if (dev_idx < 0) 3620 goto out_unlock; 3621 3622 iodev = bus->range[dev_idx].dev; 3623 3624 out_unlock: 3625 srcu_read_unlock(&kvm->srcu, srcu_idx); 3626 3627 return iodev; 3628 } 3629 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3630 3631 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3632 int (*get)(void *, u64 *), int (*set)(void *, u64), 3633 const char *fmt) 3634 { 3635 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3636 inode->i_private; 3637 3638 /* The debugfs files are a reference to the kvm struct which 3639 * is still valid when kvm_destroy_vm is called. 3640 * To avoid the race between open and the removal of the debugfs 3641 * directory we test against the users count. 3642 */ 3643 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0)) 3644 return -ENOENT; 3645 3646 if (simple_attr_open(inode, file, get, set, fmt)) { 3647 kvm_put_kvm(stat_data->kvm); 3648 return -ENOMEM; 3649 } 3650 3651 return 0; 3652 } 3653 3654 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3655 { 3656 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3657 inode->i_private; 3658 3659 simple_attr_release(inode, file); 3660 kvm_put_kvm(stat_data->kvm); 3661 3662 return 0; 3663 } 3664 3665 static int vm_stat_get_per_vm(void *data, u64 *val) 3666 { 3667 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3668 3669 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3670 3671 return 0; 3672 } 3673 3674 static int vm_stat_clear_per_vm(void *data, u64 val) 3675 { 3676 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3677 3678 if (val) 3679 return -EINVAL; 3680 3681 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3682 3683 return 0; 3684 } 3685 3686 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3687 { 3688 __simple_attr_check_format("%llu\n", 0ull); 3689 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3690 vm_stat_clear_per_vm, "%llu\n"); 3691 } 3692 3693 static const struct file_operations vm_stat_get_per_vm_fops = { 3694 .owner = THIS_MODULE, 3695 .open = vm_stat_get_per_vm_open, 3696 .release = kvm_debugfs_release, 3697 .read = simple_attr_read, 3698 .write = simple_attr_write, 3699 .llseek = generic_file_llseek, 3700 }; 3701 3702 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3703 { 3704 int i; 3705 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3706 struct kvm_vcpu *vcpu; 3707 3708 *val = 0; 3709 3710 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3711 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3712 3713 return 0; 3714 } 3715 3716 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3717 { 3718 int i; 3719 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3720 struct kvm_vcpu *vcpu; 3721 3722 if (val) 3723 return -EINVAL; 3724 3725 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3726 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3727 3728 return 0; 3729 } 3730 3731 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3732 { 3733 __simple_attr_check_format("%llu\n", 0ull); 3734 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3735 vcpu_stat_clear_per_vm, "%llu\n"); 3736 } 3737 3738 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3739 .owner = THIS_MODULE, 3740 .open = vcpu_stat_get_per_vm_open, 3741 .release = kvm_debugfs_release, 3742 .read = simple_attr_read, 3743 .write = simple_attr_write, 3744 .llseek = generic_file_llseek, 3745 }; 3746 3747 static const struct file_operations *stat_fops_per_vm[] = { 3748 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3749 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3750 }; 3751 3752 static int vm_stat_get(void *_offset, u64 *val) 3753 { 3754 unsigned offset = (long)_offset; 3755 struct kvm *kvm; 3756 struct kvm_stat_data stat_tmp = {.offset = offset}; 3757 u64 tmp_val; 3758 3759 *val = 0; 3760 spin_lock(&kvm_lock); 3761 list_for_each_entry(kvm, &vm_list, vm_list) { 3762 stat_tmp.kvm = kvm; 3763 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3764 *val += tmp_val; 3765 } 3766 spin_unlock(&kvm_lock); 3767 return 0; 3768 } 3769 3770 static int vm_stat_clear(void *_offset, u64 val) 3771 { 3772 unsigned offset = (long)_offset; 3773 struct kvm *kvm; 3774 struct kvm_stat_data stat_tmp = {.offset = offset}; 3775 3776 if (val) 3777 return -EINVAL; 3778 3779 spin_lock(&kvm_lock); 3780 list_for_each_entry(kvm, &vm_list, vm_list) { 3781 stat_tmp.kvm = kvm; 3782 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3783 } 3784 spin_unlock(&kvm_lock); 3785 3786 return 0; 3787 } 3788 3789 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3790 3791 static int vcpu_stat_get(void *_offset, u64 *val) 3792 { 3793 unsigned offset = (long)_offset; 3794 struct kvm *kvm; 3795 struct kvm_stat_data stat_tmp = {.offset = offset}; 3796 u64 tmp_val; 3797 3798 *val = 0; 3799 spin_lock(&kvm_lock); 3800 list_for_each_entry(kvm, &vm_list, vm_list) { 3801 stat_tmp.kvm = kvm; 3802 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3803 *val += tmp_val; 3804 } 3805 spin_unlock(&kvm_lock); 3806 return 0; 3807 } 3808 3809 static int vcpu_stat_clear(void *_offset, u64 val) 3810 { 3811 unsigned offset = (long)_offset; 3812 struct kvm *kvm; 3813 struct kvm_stat_data stat_tmp = {.offset = offset}; 3814 3815 if (val) 3816 return -EINVAL; 3817 3818 spin_lock(&kvm_lock); 3819 list_for_each_entry(kvm, &vm_list, vm_list) { 3820 stat_tmp.kvm = kvm; 3821 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3822 } 3823 spin_unlock(&kvm_lock); 3824 3825 return 0; 3826 } 3827 3828 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3829 "%llu\n"); 3830 3831 static const struct file_operations *stat_fops[] = { 3832 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3833 [KVM_STAT_VM] = &vm_stat_fops, 3834 }; 3835 3836 static int kvm_init_debug(void) 3837 { 3838 int r = -EEXIST; 3839 struct kvm_stats_debugfs_item *p; 3840 3841 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3842 if (kvm_debugfs_dir == NULL) 3843 goto out; 3844 3845 kvm_debugfs_num_entries = 0; 3846 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3847 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3848 (void *)(long)p->offset, 3849 stat_fops[p->kind])) 3850 goto out_dir; 3851 } 3852 3853 return 0; 3854 3855 out_dir: 3856 debugfs_remove_recursive(kvm_debugfs_dir); 3857 out: 3858 return r; 3859 } 3860 3861 static int kvm_suspend(void) 3862 { 3863 if (kvm_usage_count) 3864 hardware_disable_nolock(NULL); 3865 return 0; 3866 } 3867 3868 static void kvm_resume(void) 3869 { 3870 if (kvm_usage_count) { 3871 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3872 hardware_enable_nolock(NULL); 3873 } 3874 } 3875 3876 static struct syscore_ops kvm_syscore_ops = { 3877 .suspend = kvm_suspend, 3878 .resume = kvm_resume, 3879 }; 3880 3881 static inline 3882 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3883 { 3884 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3885 } 3886 3887 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3888 { 3889 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3890 3891 if (vcpu->preempted) 3892 vcpu->preempted = false; 3893 3894 kvm_arch_sched_in(vcpu, cpu); 3895 3896 kvm_arch_vcpu_load(vcpu, cpu); 3897 } 3898 3899 static void kvm_sched_out(struct preempt_notifier *pn, 3900 struct task_struct *next) 3901 { 3902 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3903 3904 if (current->state == TASK_RUNNING) 3905 vcpu->preempted = true; 3906 kvm_arch_vcpu_put(vcpu); 3907 } 3908 3909 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3910 struct module *module) 3911 { 3912 int r; 3913 int cpu; 3914 3915 r = kvm_arch_init(opaque); 3916 if (r) 3917 goto out_fail; 3918 3919 /* 3920 * kvm_arch_init makes sure there's at most one caller 3921 * for architectures that support multiple implementations, 3922 * like intel and amd on x86. 3923 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3924 * conflicts in case kvm is already setup for another implementation. 3925 */ 3926 r = kvm_irqfd_init(); 3927 if (r) 3928 goto out_irqfd; 3929 3930 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3931 r = -ENOMEM; 3932 goto out_free_0; 3933 } 3934 3935 r = kvm_arch_hardware_setup(); 3936 if (r < 0) 3937 goto out_free_0a; 3938 3939 for_each_online_cpu(cpu) { 3940 smp_call_function_single(cpu, 3941 kvm_arch_check_processor_compat, 3942 &r, 1); 3943 if (r < 0) 3944 goto out_free_1; 3945 } 3946 3947 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING", 3948 kvm_starting_cpu, kvm_dying_cpu); 3949 if (r) 3950 goto out_free_2; 3951 register_reboot_notifier(&kvm_reboot_notifier); 3952 3953 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3954 if (!vcpu_align) 3955 vcpu_align = __alignof__(struct kvm_vcpu); 3956 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3957 0, NULL); 3958 if (!kvm_vcpu_cache) { 3959 r = -ENOMEM; 3960 goto out_free_3; 3961 } 3962 3963 r = kvm_async_pf_init(); 3964 if (r) 3965 goto out_free; 3966 3967 kvm_chardev_ops.owner = module; 3968 kvm_vm_fops.owner = module; 3969 kvm_vcpu_fops.owner = module; 3970 3971 r = misc_register(&kvm_dev); 3972 if (r) { 3973 pr_err("kvm: misc device register failed\n"); 3974 goto out_unreg; 3975 } 3976 3977 register_syscore_ops(&kvm_syscore_ops); 3978 3979 kvm_preempt_ops.sched_in = kvm_sched_in; 3980 kvm_preempt_ops.sched_out = kvm_sched_out; 3981 3982 r = kvm_init_debug(); 3983 if (r) { 3984 pr_err("kvm: create debugfs files failed\n"); 3985 goto out_undebugfs; 3986 } 3987 3988 r = kvm_vfio_ops_init(); 3989 WARN_ON(r); 3990 3991 return 0; 3992 3993 out_undebugfs: 3994 unregister_syscore_ops(&kvm_syscore_ops); 3995 misc_deregister(&kvm_dev); 3996 out_unreg: 3997 kvm_async_pf_deinit(); 3998 out_free: 3999 kmem_cache_destroy(kvm_vcpu_cache); 4000 out_free_3: 4001 unregister_reboot_notifier(&kvm_reboot_notifier); 4002 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4003 out_free_2: 4004 out_free_1: 4005 kvm_arch_hardware_unsetup(); 4006 out_free_0a: 4007 free_cpumask_var(cpus_hardware_enabled); 4008 out_free_0: 4009 kvm_irqfd_exit(); 4010 out_irqfd: 4011 kvm_arch_exit(); 4012 out_fail: 4013 return r; 4014 } 4015 EXPORT_SYMBOL_GPL(kvm_init); 4016 4017 void kvm_exit(void) 4018 { 4019 debugfs_remove_recursive(kvm_debugfs_dir); 4020 misc_deregister(&kvm_dev); 4021 kmem_cache_destroy(kvm_vcpu_cache); 4022 kvm_async_pf_deinit(); 4023 unregister_syscore_ops(&kvm_syscore_ops); 4024 unregister_reboot_notifier(&kvm_reboot_notifier); 4025 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4026 on_each_cpu(hardware_disable_nolock, NULL, 1); 4027 kvm_arch_hardware_unsetup(); 4028 kvm_arch_exit(); 4029 kvm_irqfd_exit(); 4030 free_cpumask_var(cpus_hardware_enabled); 4031 kvm_vfio_ops_exit(); 4032 } 4033 EXPORT_SYMBOL_GPL(kvm_exit); 4034