1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 gfp_flags |= mc->gfp_zero; 405 406 if (mc->kmem_cache) 407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 408 else 409 return (void *)__get_free_page(gfp_flags); 410 } 411 412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 413 { 414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 415 void *obj; 416 417 if (mc->nobjs >= min) 418 return 0; 419 420 if (unlikely(!mc->objects)) { 421 if (WARN_ON_ONCE(!capacity)) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 588 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 589 node; \ 590 node = interval_tree_iter_next(node, start, last)) \ 591 592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 593 const struct kvm_mmu_notifier_range *range) 594 { 595 struct kvm_mmu_notifier_return r = { 596 .ret = false, 597 .found_memslot = false, 598 }; 599 struct kvm_gfn_range gfn_range; 600 struct kvm_memory_slot *slot; 601 struct kvm_memslots *slots; 602 int i, idx; 603 604 if (WARN_ON_ONCE(range->end <= range->start)) 605 return r; 606 607 /* A null handler is allowed if and only if on_lock() is provided. */ 608 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 609 IS_KVM_NULL_FN(range->handler))) 610 return r; 611 612 idx = srcu_read_lock(&kvm->srcu); 613 614 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 615 struct interval_tree_node *node; 616 617 slots = __kvm_memslots(kvm, i); 618 kvm_for_each_memslot_in_hva_range(node, slots, 619 range->start, range->end - 1) { 620 unsigned long hva_start, hva_end; 621 622 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 623 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 624 hva_end = min_t(unsigned long, range->end, 625 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 626 627 /* 628 * To optimize for the likely case where the address 629 * range is covered by zero or one memslots, don't 630 * bother making these conditional (to avoid writes on 631 * the second or later invocation of the handler). 632 */ 633 gfn_range.arg = range->arg; 634 gfn_range.may_block = range->may_block; 635 636 /* 637 * {gfn(page) | page intersects with [hva_start, hva_end)} = 638 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 639 */ 640 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 641 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 642 gfn_range.slot = slot; 643 644 if (!r.found_memslot) { 645 r.found_memslot = true; 646 KVM_MMU_LOCK(kvm); 647 if (!IS_KVM_NULL_FN(range->on_lock)) 648 range->on_lock(kvm); 649 650 if (IS_KVM_NULL_FN(range->handler)) 651 break; 652 } 653 r.ret |= range->handler(kvm, &gfn_range); 654 } 655 } 656 657 if (range->flush_on_ret && r.ret) 658 kvm_flush_remote_tlbs(kvm); 659 660 if (r.found_memslot) 661 KVM_MMU_UNLOCK(kvm); 662 663 srcu_read_unlock(&kvm->srcu, idx); 664 665 return r; 666 } 667 668 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 669 unsigned long start, 670 unsigned long end, 671 gfn_handler_t handler) 672 { 673 struct kvm *kvm = mmu_notifier_to_kvm(mn); 674 const struct kvm_mmu_notifier_range range = { 675 .start = start, 676 .end = end, 677 .handler = handler, 678 .on_lock = (void *)kvm_null_fn, 679 .flush_on_ret = true, 680 .may_block = false, 681 }; 682 683 return __kvm_handle_hva_range(kvm, &range).ret; 684 } 685 686 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 687 unsigned long start, 688 unsigned long end, 689 gfn_handler_t handler) 690 { 691 struct kvm *kvm = mmu_notifier_to_kvm(mn); 692 const struct kvm_mmu_notifier_range range = { 693 .start = start, 694 .end = end, 695 .handler = handler, 696 .on_lock = (void *)kvm_null_fn, 697 .flush_on_ret = false, 698 .may_block = false, 699 }; 700 701 return __kvm_handle_hva_range(kvm, &range).ret; 702 } 703 704 void kvm_mmu_invalidate_begin(struct kvm *kvm) 705 { 706 lockdep_assert_held_write(&kvm->mmu_lock); 707 /* 708 * The count increase must become visible at unlock time as no 709 * spte can be established without taking the mmu_lock and 710 * count is also read inside the mmu_lock critical section. 711 */ 712 kvm->mmu_invalidate_in_progress++; 713 714 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 715 kvm->mmu_invalidate_range_start = INVALID_GPA; 716 kvm->mmu_invalidate_range_end = INVALID_GPA; 717 } 718 } 719 720 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 721 { 722 lockdep_assert_held_write(&kvm->mmu_lock); 723 724 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 725 726 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 727 kvm->mmu_invalidate_range_start = start; 728 kvm->mmu_invalidate_range_end = end; 729 } else { 730 /* 731 * Fully tracking multiple concurrent ranges has diminishing 732 * returns. Keep things simple and just find the minimal range 733 * which includes the current and new ranges. As there won't be 734 * enough information to subtract a range after its invalidate 735 * completes, any ranges invalidated concurrently will 736 * accumulate and persist until all outstanding invalidates 737 * complete. 738 */ 739 kvm->mmu_invalidate_range_start = 740 min(kvm->mmu_invalidate_range_start, start); 741 kvm->mmu_invalidate_range_end = 742 max(kvm->mmu_invalidate_range_end, end); 743 } 744 } 745 746 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 747 { 748 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 749 return kvm_unmap_gfn_range(kvm, range); 750 } 751 752 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 753 const struct mmu_notifier_range *range) 754 { 755 struct kvm *kvm = mmu_notifier_to_kvm(mn); 756 const struct kvm_mmu_notifier_range hva_range = { 757 .start = range->start, 758 .end = range->end, 759 .handler = kvm_mmu_unmap_gfn_range, 760 .on_lock = kvm_mmu_invalidate_begin, 761 .flush_on_ret = true, 762 .may_block = mmu_notifier_range_blockable(range), 763 }; 764 765 trace_kvm_unmap_hva_range(range->start, range->end); 766 767 /* 768 * Prevent memslot modification between range_start() and range_end() 769 * so that conditionally locking provides the same result in both 770 * functions. Without that guarantee, the mmu_invalidate_in_progress 771 * adjustments will be imbalanced. 772 * 773 * Pairs with the decrement in range_end(). 774 */ 775 spin_lock(&kvm->mn_invalidate_lock); 776 kvm->mn_active_invalidate_count++; 777 spin_unlock(&kvm->mn_invalidate_lock); 778 779 /* 780 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 781 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 782 * each cache's lock. There are relatively few caches in existence at 783 * any given time, and the caches themselves can check for hva overlap, 784 * i.e. don't need to rely on memslot overlap checks for performance. 785 * Because this runs without holding mmu_lock, the pfn caches must use 786 * mn_active_invalidate_count (see above) instead of 787 * mmu_invalidate_in_progress. 788 */ 789 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 790 hva_range.may_block); 791 792 /* 793 * If one or more memslots were found and thus zapped, notify arch code 794 * that guest memory has been reclaimed. This needs to be done *after* 795 * dropping mmu_lock, as x86's reclaim path is slooooow. 796 */ 797 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 798 kvm_arch_guest_memory_reclaimed(kvm); 799 800 return 0; 801 } 802 803 void kvm_mmu_invalidate_end(struct kvm *kvm) 804 { 805 lockdep_assert_held_write(&kvm->mmu_lock); 806 807 /* 808 * This sequence increase will notify the kvm page fault that 809 * the page that is going to be mapped in the spte could have 810 * been freed. 811 */ 812 kvm->mmu_invalidate_seq++; 813 smp_wmb(); 814 /* 815 * The above sequence increase must be visible before the 816 * below count decrease, which is ensured by the smp_wmb above 817 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 818 */ 819 kvm->mmu_invalidate_in_progress--; 820 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 821 822 /* 823 * Assert that at least one range was added between start() and end(). 824 * Not adding a range isn't fatal, but it is a KVM bug. 825 */ 826 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 827 } 828 829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 830 const struct mmu_notifier_range *range) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 const struct kvm_mmu_notifier_range hva_range = { 834 .start = range->start, 835 .end = range->end, 836 .handler = (void *)kvm_null_fn, 837 .on_lock = kvm_mmu_invalidate_end, 838 .flush_on_ret = false, 839 .may_block = mmu_notifier_range_blockable(range), 840 }; 841 bool wake; 842 843 __kvm_handle_hva_range(kvm, &hva_range); 844 845 /* Pairs with the increment in range_start(). */ 846 spin_lock(&kvm->mn_invalidate_lock); 847 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 848 --kvm->mn_active_invalidate_count; 849 wake = !kvm->mn_active_invalidate_count; 850 spin_unlock(&kvm->mn_invalidate_lock); 851 852 /* 853 * There can only be one waiter, since the wait happens under 854 * slots_lock. 855 */ 856 if (wake) 857 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 858 } 859 860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 861 struct mm_struct *mm, 862 unsigned long start, 863 unsigned long end) 864 { 865 trace_kvm_age_hva(start, end); 866 867 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 868 } 869 870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 871 struct mm_struct *mm, 872 unsigned long start, 873 unsigned long end) 874 { 875 trace_kvm_age_hva(start, end); 876 877 /* 878 * Even though we do not flush TLB, this will still adversely 879 * affect performance on pre-Haswell Intel EPT, where there is 880 * no EPT Access Bit to clear so that we have to tear down EPT 881 * tables instead. If we find this unacceptable, we can always 882 * add a parameter to kvm_age_hva so that it effectively doesn't 883 * do anything on clear_young. 884 * 885 * Also note that currently we never issue secondary TLB flushes 886 * from clear_young, leaving this job up to the regular system 887 * cadence. If we find this inaccurate, we might come up with a 888 * more sophisticated heuristic later. 889 */ 890 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 891 } 892 893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 894 struct mm_struct *mm, 895 unsigned long address) 896 { 897 trace_kvm_test_age_hva(address); 898 899 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 900 kvm_test_age_gfn); 901 } 902 903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 904 struct mm_struct *mm) 905 { 906 struct kvm *kvm = mmu_notifier_to_kvm(mn); 907 int idx; 908 909 idx = srcu_read_lock(&kvm->srcu); 910 kvm_flush_shadow_all(kvm); 911 srcu_read_unlock(&kvm->srcu, idx); 912 } 913 914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 915 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 916 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 917 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 918 .clear_young = kvm_mmu_notifier_clear_young, 919 .test_young = kvm_mmu_notifier_test_young, 920 .release = kvm_mmu_notifier_release, 921 }; 922 923 static int kvm_init_mmu_notifier(struct kvm *kvm) 924 { 925 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 926 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 927 } 928 929 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 930 931 static int kvm_init_mmu_notifier(struct kvm *kvm) 932 { 933 return 0; 934 } 935 936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 937 938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 939 static int kvm_pm_notifier_call(struct notifier_block *bl, 940 unsigned long state, 941 void *unused) 942 { 943 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 944 945 return kvm_arch_pm_notifier(kvm, state); 946 } 947 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 951 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 952 kvm->pm_notifier.priority = INT_MAX; 953 register_pm_notifier(&kvm->pm_notifier); 954 } 955 956 static void kvm_destroy_pm_notifier(struct kvm *kvm) 957 { 958 unregister_pm_notifier(&kvm->pm_notifier); 959 } 960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 961 static void kvm_init_pm_notifier(struct kvm *kvm) 962 { 963 } 964 965 static void kvm_destroy_pm_notifier(struct kvm *kvm) 966 { 967 } 968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 969 970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 971 { 972 if (!memslot->dirty_bitmap) 973 return; 974 975 kvfree(memslot->dirty_bitmap); 976 memslot->dirty_bitmap = NULL; 977 } 978 979 /* This does not remove the slot from struct kvm_memslots data structures */ 980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 981 { 982 if (slot->flags & KVM_MEM_GUEST_MEMFD) 983 kvm_gmem_unbind(slot); 984 985 kvm_destroy_dirty_bitmap(slot); 986 987 kvm_arch_free_memslot(kvm, slot); 988 989 kfree(slot); 990 } 991 992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 993 { 994 struct hlist_node *idnode; 995 struct kvm_memory_slot *memslot; 996 int bkt; 997 998 /* 999 * The same memslot objects live in both active and inactive sets, 1000 * arbitrarily free using index '1' so the second invocation of this 1001 * function isn't operating over a structure with dangling pointers 1002 * (even though this function isn't actually touching them). 1003 */ 1004 if (!slots->node_idx) 1005 return; 1006 1007 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1008 kvm_free_memslot(kvm, memslot); 1009 } 1010 1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1012 { 1013 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1014 case KVM_STATS_TYPE_INSTANT: 1015 return 0444; 1016 case KVM_STATS_TYPE_CUMULATIVE: 1017 case KVM_STATS_TYPE_PEAK: 1018 default: 1019 return 0644; 1020 } 1021 } 1022 1023 1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1025 { 1026 int i; 1027 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1028 kvm_vcpu_stats_header.num_desc; 1029 1030 if (IS_ERR(kvm->debugfs_dentry)) 1031 return; 1032 1033 debugfs_remove_recursive(kvm->debugfs_dentry); 1034 1035 if (kvm->debugfs_stat_data) { 1036 for (i = 0; i < kvm_debugfs_num_entries; i++) 1037 kfree(kvm->debugfs_stat_data[i]); 1038 kfree(kvm->debugfs_stat_data); 1039 } 1040 } 1041 1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1043 { 1044 static DEFINE_MUTEX(kvm_debugfs_lock); 1045 struct dentry *dent; 1046 char dir_name[ITOA_MAX_LEN * 2]; 1047 struct kvm_stat_data *stat_data; 1048 const struct _kvm_stats_desc *pdesc; 1049 int i, ret = -ENOMEM; 1050 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1051 kvm_vcpu_stats_header.num_desc; 1052 1053 if (!debugfs_initialized()) 1054 return 0; 1055 1056 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1057 mutex_lock(&kvm_debugfs_lock); 1058 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1059 if (dent) { 1060 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1061 dput(dent); 1062 mutex_unlock(&kvm_debugfs_lock); 1063 return 0; 1064 } 1065 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1066 mutex_unlock(&kvm_debugfs_lock); 1067 if (IS_ERR(dent)) 1068 return 0; 1069 1070 kvm->debugfs_dentry = dent; 1071 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1072 sizeof(*kvm->debugfs_stat_data), 1073 GFP_KERNEL_ACCOUNT); 1074 if (!kvm->debugfs_stat_data) 1075 goto out_err; 1076 1077 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1078 pdesc = &kvm_vm_stats_desc[i]; 1079 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1080 if (!stat_data) 1081 goto out_err; 1082 1083 stat_data->kvm = kvm; 1084 stat_data->desc = pdesc; 1085 stat_data->kind = KVM_STAT_VM; 1086 kvm->debugfs_stat_data[i] = stat_data; 1087 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1088 kvm->debugfs_dentry, stat_data, 1089 &stat_fops_per_vm); 1090 } 1091 1092 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1093 pdesc = &kvm_vcpu_stats_desc[i]; 1094 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1095 if (!stat_data) 1096 goto out_err; 1097 1098 stat_data->kvm = kvm; 1099 stat_data->desc = pdesc; 1100 stat_data->kind = KVM_STAT_VCPU; 1101 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1102 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1103 kvm->debugfs_dentry, stat_data, 1104 &stat_fops_per_vm); 1105 } 1106 1107 kvm_arch_create_vm_debugfs(kvm); 1108 return 0; 1109 out_err: 1110 kvm_destroy_vm_debugfs(kvm); 1111 return ret; 1112 } 1113 1114 /* 1115 * Called after the VM is otherwise initialized, but just before adding it to 1116 * the vm_list. 1117 */ 1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1119 { 1120 return 0; 1121 } 1122 1123 /* 1124 * Called just after removing the VM from the vm_list, but before doing any 1125 * other destruction. 1126 */ 1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1128 { 1129 } 1130 1131 /* 1132 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1133 * be setup already, so we can create arch-specific debugfs entries under it. 1134 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1135 * a per-arch destroy interface is not needed. 1136 */ 1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1138 { 1139 } 1140 1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1142 { 1143 struct kvm *kvm = kvm_arch_alloc_vm(); 1144 struct kvm_memslots *slots; 1145 int r = -ENOMEM; 1146 int i, j; 1147 1148 if (!kvm) 1149 return ERR_PTR(-ENOMEM); 1150 1151 KVM_MMU_LOCK_INIT(kvm); 1152 mmgrab(current->mm); 1153 kvm->mm = current->mm; 1154 kvm_eventfd_init(kvm); 1155 mutex_init(&kvm->lock); 1156 mutex_init(&kvm->irq_lock); 1157 mutex_init(&kvm->slots_lock); 1158 mutex_init(&kvm->slots_arch_lock); 1159 spin_lock_init(&kvm->mn_invalidate_lock); 1160 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1161 xa_init(&kvm->vcpu_array); 1162 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1163 xa_init(&kvm->mem_attr_array); 1164 #endif 1165 1166 INIT_LIST_HEAD(&kvm->gpc_list); 1167 spin_lock_init(&kvm->gpc_lock); 1168 1169 INIT_LIST_HEAD(&kvm->devices); 1170 kvm->max_vcpus = KVM_MAX_VCPUS; 1171 1172 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1173 1174 /* 1175 * Force subsequent debugfs file creations to fail if the VM directory 1176 * is not created (by kvm_create_vm_debugfs()). 1177 */ 1178 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1179 1180 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1181 task_pid_nr(current)); 1182 1183 if (init_srcu_struct(&kvm->srcu)) 1184 goto out_err_no_srcu; 1185 if (init_srcu_struct(&kvm->irq_srcu)) 1186 goto out_err_no_irq_srcu; 1187 1188 refcount_set(&kvm->users_count, 1); 1189 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1190 for (j = 0; j < 2; j++) { 1191 slots = &kvm->__memslots[i][j]; 1192 1193 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1194 slots->hva_tree = RB_ROOT_CACHED; 1195 slots->gfn_tree = RB_ROOT; 1196 hash_init(slots->id_hash); 1197 slots->node_idx = j; 1198 1199 /* Generations must be different for each address space. */ 1200 slots->generation = i; 1201 } 1202 1203 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1204 } 1205 1206 for (i = 0; i < KVM_NR_BUSES; i++) { 1207 rcu_assign_pointer(kvm->buses[i], 1208 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1209 if (!kvm->buses[i]) 1210 goto out_err_no_arch_destroy_vm; 1211 } 1212 1213 r = kvm_arch_init_vm(kvm, type); 1214 if (r) 1215 goto out_err_no_arch_destroy_vm; 1216 1217 r = hardware_enable_all(); 1218 if (r) 1219 goto out_err_no_disable; 1220 1221 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1222 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1223 #endif 1224 1225 r = kvm_init_mmu_notifier(kvm); 1226 if (r) 1227 goto out_err_no_mmu_notifier; 1228 1229 r = kvm_coalesced_mmio_init(kvm); 1230 if (r < 0) 1231 goto out_no_coalesced_mmio; 1232 1233 r = kvm_create_vm_debugfs(kvm, fdname); 1234 if (r) 1235 goto out_err_no_debugfs; 1236 1237 r = kvm_arch_post_init_vm(kvm); 1238 if (r) 1239 goto out_err; 1240 1241 mutex_lock(&kvm_lock); 1242 list_add(&kvm->vm_list, &vm_list); 1243 mutex_unlock(&kvm_lock); 1244 1245 preempt_notifier_inc(); 1246 kvm_init_pm_notifier(kvm); 1247 1248 return kvm; 1249 1250 out_err: 1251 kvm_destroy_vm_debugfs(kvm); 1252 out_err_no_debugfs: 1253 kvm_coalesced_mmio_free(kvm); 1254 out_no_coalesced_mmio: 1255 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1256 if (kvm->mmu_notifier.ops) 1257 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1258 #endif 1259 out_err_no_mmu_notifier: 1260 hardware_disable_all(); 1261 out_err_no_disable: 1262 kvm_arch_destroy_vm(kvm); 1263 out_err_no_arch_destroy_vm: 1264 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1265 for (i = 0; i < KVM_NR_BUSES; i++) 1266 kfree(kvm_get_bus(kvm, i)); 1267 cleanup_srcu_struct(&kvm->irq_srcu); 1268 out_err_no_irq_srcu: 1269 cleanup_srcu_struct(&kvm->srcu); 1270 out_err_no_srcu: 1271 kvm_arch_free_vm(kvm); 1272 mmdrop(current->mm); 1273 return ERR_PTR(r); 1274 } 1275 1276 static void kvm_destroy_devices(struct kvm *kvm) 1277 { 1278 struct kvm_device *dev, *tmp; 1279 1280 /* 1281 * We do not need to take the kvm->lock here, because nobody else 1282 * has a reference to the struct kvm at this point and therefore 1283 * cannot access the devices list anyhow. 1284 */ 1285 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1286 list_del(&dev->vm_node); 1287 dev->ops->destroy(dev); 1288 } 1289 } 1290 1291 static void kvm_destroy_vm(struct kvm *kvm) 1292 { 1293 int i; 1294 struct mm_struct *mm = kvm->mm; 1295 1296 kvm_destroy_pm_notifier(kvm); 1297 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1298 kvm_destroy_vm_debugfs(kvm); 1299 kvm_arch_sync_events(kvm); 1300 mutex_lock(&kvm_lock); 1301 list_del(&kvm->vm_list); 1302 mutex_unlock(&kvm_lock); 1303 kvm_arch_pre_destroy_vm(kvm); 1304 1305 kvm_free_irq_routing(kvm); 1306 for (i = 0; i < KVM_NR_BUSES; i++) { 1307 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1308 1309 if (bus) 1310 kvm_io_bus_destroy(bus); 1311 kvm->buses[i] = NULL; 1312 } 1313 kvm_coalesced_mmio_free(kvm); 1314 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1315 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1316 /* 1317 * At this point, pending calls to invalidate_range_start() 1318 * have completed but no more MMU notifiers will run, so 1319 * mn_active_invalidate_count may remain unbalanced. 1320 * No threads can be waiting in kvm_swap_active_memslots() as the 1321 * last reference on KVM has been dropped, but freeing 1322 * memslots would deadlock without this manual intervention. 1323 * 1324 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1325 * notifier between a start() and end(), then there shouldn't be any 1326 * in-progress invalidations. 1327 */ 1328 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1329 if (kvm->mn_active_invalidate_count) 1330 kvm->mn_active_invalidate_count = 0; 1331 else 1332 WARN_ON(kvm->mmu_invalidate_in_progress); 1333 #else 1334 kvm_flush_shadow_all(kvm); 1335 #endif 1336 kvm_arch_destroy_vm(kvm); 1337 kvm_destroy_devices(kvm); 1338 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1339 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1340 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1341 } 1342 cleanup_srcu_struct(&kvm->irq_srcu); 1343 cleanup_srcu_struct(&kvm->srcu); 1344 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1345 xa_destroy(&kvm->mem_attr_array); 1346 #endif 1347 kvm_arch_free_vm(kvm); 1348 preempt_notifier_dec(); 1349 hardware_disable_all(); 1350 mmdrop(mm); 1351 } 1352 1353 void kvm_get_kvm(struct kvm *kvm) 1354 { 1355 refcount_inc(&kvm->users_count); 1356 } 1357 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1358 1359 /* 1360 * Make sure the vm is not during destruction, which is a safe version of 1361 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1362 */ 1363 bool kvm_get_kvm_safe(struct kvm *kvm) 1364 { 1365 return refcount_inc_not_zero(&kvm->users_count); 1366 } 1367 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1368 1369 void kvm_put_kvm(struct kvm *kvm) 1370 { 1371 if (refcount_dec_and_test(&kvm->users_count)) 1372 kvm_destroy_vm(kvm); 1373 } 1374 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1375 1376 /* 1377 * Used to put a reference that was taken on behalf of an object associated 1378 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1379 * of the new file descriptor fails and the reference cannot be transferred to 1380 * its final owner. In such cases, the caller is still actively using @kvm and 1381 * will fail miserably if the refcount unexpectedly hits zero. 1382 */ 1383 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1384 { 1385 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1386 } 1387 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1388 1389 static int kvm_vm_release(struct inode *inode, struct file *filp) 1390 { 1391 struct kvm *kvm = filp->private_data; 1392 1393 kvm_irqfd_release(kvm); 1394 1395 kvm_put_kvm(kvm); 1396 return 0; 1397 } 1398 1399 /* 1400 * Allocation size is twice as large as the actual dirty bitmap size. 1401 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1402 */ 1403 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1404 { 1405 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1406 1407 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1408 if (!memslot->dirty_bitmap) 1409 return -ENOMEM; 1410 1411 return 0; 1412 } 1413 1414 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1415 { 1416 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1417 int node_idx_inactive = active->node_idx ^ 1; 1418 1419 return &kvm->__memslots[as_id][node_idx_inactive]; 1420 } 1421 1422 /* 1423 * Helper to get the address space ID when one of memslot pointers may be NULL. 1424 * This also serves as a sanity that at least one of the pointers is non-NULL, 1425 * and that their address space IDs don't diverge. 1426 */ 1427 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1428 struct kvm_memory_slot *b) 1429 { 1430 if (WARN_ON_ONCE(!a && !b)) 1431 return 0; 1432 1433 if (!a) 1434 return b->as_id; 1435 if (!b) 1436 return a->as_id; 1437 1438 WARN_ON_ONCE(a->as_id != b->as_id); 1439 return a->as_id; 1440 } 1441 1442 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1443 struct kvm_memory_slot *slot) 1444 { 1445 struct rb_root *gfn_tree = &slots->gfn_tree; 1446 struct rb_node **node, *parent; 1447 int idx = slots->node_idx; 1448 1449 parent = NULL; 1450 for (node = &gfn_tree->rb_node; *node; ) { 1451 struct kvm_memory_slot *tmp; 1452 1453 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1454 parent = *node; 1455 if (slot->base_gfn < tmp->base_gfn) 1456 node = &(*node)->rb_left; 1457 else if (slot->base_gfn > tmp->base_gfn) 1458 node = &(*node)->rb_right; 1459 else 1460 BUG(); 1461 } 1462 1463 rb_link_node(&slot->gfn_node[idx], parent, node); 1464 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1465 } 1466 1467 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1468 struct kvm_memory_slot *slot) 1469 { 1470 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1471 } 1472 1473 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1474 struct kvm_memory_slot *old, 1475 struct kvm_memory_slot *new) 1476 { 1477 int idx = slots->node_idx; 1478 1479 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1480 1481 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1482 &slots->gfn_tree); 1483 } 1484 1485 /* 1486 * Replace @old with @new in the inactive memslots. 1487 * 1488 * With NULL @old this simply adds @new. 1489 * With NULL @new this simply removes @old. 1490 * 1491 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1492 * appropriately. 1493 */ 1494 static void kvm_replace_memslot(struct kvm *kvm, 1495 struct kvm_memory_slot *old, 1496 struct kvm_memory_slot *new) 1497 { 1498 int as_id = kvm_memslots_get_as_id(old, new); 1499 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1500 int idx = slots->node_idx; 1501 1502 if (old) { 1503 hash_del(&old->id_node[idx]); 1504 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1505 1506 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1507 atomic_long_set(&slots->last_used_slot, (long)new); 1508 1509 if (!new) { 1510 kvm_erase_gfn_node(slots, old); 1511 return; 1512 } 1513 } 1514 1515 /* 1516 * Initialize @new's hva range. Do this even when replacing an @old 1517 * slot, kvm_copy_memslot() deliberately does not touch node data. 1518 */ 1519 new->hva_node[idx].start = new->userspace_addr; 1520 new->hva_node[idx].last = new->userspace_addr + 1521 (new->npages << PAGE_SHIFT) - 1; 1522 1523 /* 1524 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1525 * hva_node needs to be swapped with remove+insert even though hva can't 1526 * change when replacing an existing slot. 1527 */ 1528 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1529 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1530 1531 /* 1532 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1533 * switch the node in the gfn tree instead of removing the old and 1534 * inserting the new as two separate operations. Replacement is a 1535 * single O(1) operation versus two O(log(n)) operations for 1536 * remove+insert. 1537 */ 1538 if (old && old->base_gfn == new->base_gfn) { 1539 kvm_replace_gfn_node(slots, old, new); 1540 } else { 1541 if (old) 1542 kvm_erase_gfn_node(slots, old); 1543 kvm_insert_gfn_node(slots, new); 1544 } 1545 } 1546 1547 /* 1548 * Flags that do not access any of the extra space of struct 1549 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1550 * only allows these. 1551 */ 1552 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1553 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1554 1555 static int check_memory_region_flags(struct kvm *kvm, 1556 const struct kvm_userspace_memory_region2 *mem) 1557 { 1558 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1559 1560 if (kvm_arch_has_private_mem(kvm)) 1561 valid_flags |= KVM_MEM_GUEST_MEMFD; 1562 1563 /* Dirty logging private memory is not currently supported. */ 1564 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1565 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1566 1567 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1568 /* 1569 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1570 * read-only memslots have emulated MMIO, not page fault, semantics, 1571 * and KVM doesn't allow emulated MMIO for private memory. 1572 */ 1573 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1574 valid_flags |= KVM_MEM_READONLY; 1575 #endif 1576 1577 if (mem->flags & ~valid_flags) 1578 return -EINVAL; 1579 1580 return 0; 1581 } 1582 1583 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1584 { 1585 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1586 1587 /* Grab the generation from the activate memslots. */ 1588 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1589 1590 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1591 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1592 1593 /* 1594 * Do not store the new memslots while there are invalidations in 1595 * progress, otherwise the locking in invalidate_range_start and 1596 * invalidate_range_end will be unbalanced. 1597 */ 1598 spin_lock(&kvm->mn_invalidate_lock); 1599 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1600 while (kvm->mn_active_invalidate_count) { 1601 set_current_state(TASK_UNINTERRUPTIBLE); 1602 spin_unlock(&kvm->mn_invalidate_lock); 1603 schedule(); 1604 spin_lock(&kvm->mn_invalidate_lock); 1605 } 1606 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1607 rcu_assign_pointer(kvm->memslots[as_id], slots); 1608 spin_unlock(&kvm->mn_invalidate_lock); 1609 1610 /* 1611 * Acquired in kvm_set_memslot. Must be released before synchronize 1612 * SRCU below in order to avoid deadlock with another thread 1613 * acquiring the slots_arch_lock in an srcu critical section. 1614 */ 1615 mutex_unlock(&kvm->slots_arch_lock); 1616 1617 synchronize_srcu_expedited(&kvm->srcu); 1618 1619 /* 1620 * Increment the new memslot generation a second time, dropping the 1621 * update in-progress flag and incrementing the generation based on 1622 * the number of address spaces. This provides a unique and easily 1623 * identifiable generation number while the memslots are in flux. 1624 */ 1625 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1626 1627 /* 1628 * Generations must be unique even across address spaces. We do not need 1629 * a global counter for that, instead the generation space is evenly split 1630 * across address spaces. For example, with two address spaces, address 1631 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1632 * use generations 1, 3, 5, ... 1633 */ 1634 gen += kvm_arch_nr_memslot_as_ids(kvm); 1635 1636 kvm_arch_memslots_updated(kvm, gen); 1637 1638 slots->generation = gen; 1639 } 1640 1641 static int kvm_prepare_memory_region(struct kvm *kvm, 1642 const struct kvm_memory_slot *old, 1643 struct kvm_memory_slot *new, 1644 enum kvm_mr_change change) 1645 { 1646 int r; 1647 1648 /* 1649 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1650 * will be freed on "commit". If logging is enabled in both old and 1651 * new, reuse the existing bitmap. If logging is enabled only in the 1652 * new and KVM isn't using a ring buffer, allocate and initialize a 1653 * new bitmap. 1654 */ 1655 if (change != KVM_MR_DELETE) { 1656 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1657 new->dirty_bitmap = NULL; 1658 else if (old && old->dirty_bitmap) 1659 new->dirty_bitmap = old->dirty_bitmap; 1660 else if (kvm_use_dirty_bitmap(kvm)) { 1661 r = kvm_alloc_dirty_bitmap(new); 1662 if (r) 1663 return r; 1664 1665 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1666 bitmap_set(new->dirty_bitmap, 0, new->npages); 1667 } 1668 } 1669 1670 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1671 1672 /* Free the bitmap on failure if it was allocated above. */ 1673 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1674 kvm_destroy_dirty_bitmap(new); 1675 1676 return r; 1677 } 1678 1679 static void kvm_commit_memory_region(struct kvm *kvm, 1680 struct kvm_memory_slot *old, 1681 const struct kvm_memory_slot *new, 1682 enum kvm_mr_change change) 1683 { 1684 int old_flags = old ? old->flags : 0; 1685 int new_flags = new ? new->flags : 0; 1686 /* 1687 * Update the total number of memslot pages before calling the arch 1688 * hook so that architectures can consume the result directly. 1689 */ 1690 if (change == KVM_MR_DELETE) 1691 kvm->nr_memslot_pages -= old->npages; 1692 else if (change == KVM_MR_CREATE) 1693 kvm->nr_memslot_pages += new->npages; 1694 1695 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1696 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1697 atomic_set(&kvm->nr_memslots_dirty_logging, 1698 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1699 } 1700 1701 kvm_arch_commit_memory_region(kvm, old, new, change); 1702 1703 switch (change) { 1704 case KVM_MR_CREATE: 1705 /* Nothing more to do. */ 1706 break; 1707 case KVM_MR_DELETE: 1708 /* Free the old memslot and all its metadata. */ 1709 kvm_free_memslot(kvm, old); 1710 break; 1711 case KVM_MR_MOVE: 1712 case KVM_MR_FLAGS_ONLY: 1713 /* 1714 * Free the dirty bitmap as needed; the below check encompasses 1715 * both the flags and whether a ring buffer is being used) 1716 */ 1717 if (old->dirty_bitmap && !new->dirty_bitmap) 1718 kvm_destroy_dirty_bitmap(old); 1719 1720 /* 1721 * The final quirk. Free the detached, old slot, but only its 1722 * memory, not any metadata. Metadata, including arch specific 1723 * data, may be reused by @new. 1724 */ 1725 kfree(old); 1726 break; 1727 default: 1728 BUG(); 1729 } 1730 } 1731 1732 /* 1733 * Activate @new, which must be installed in the inactive slots by the caller, 1734 * by swapping the active slots and then propagating @new to @old once @old is 1735 * unreachable and can be safely modified. 1736 * 1737 * With NULL @old this simply adds @new to @active (while swapping the sets). 1738 * With NULL @new this simply removes @old from @active and frees it 1739 * (while also swapping the sets). 1740 */ 1741 static void kvm_activate_memslot(struct kvm *kvm, 1742 struct kvm_memory_slot *old, 1743 struct kvm_memory_slot *new) 1744 { 1745 int as_id = kvm_memslots_get_as_id(old, new); 1746 1747 kvm_swap_active_memslots(kvm, as_id); 1748 1749 /* Propagate the new memslot to the now inactive memslots. */ 1750 kvm_replace_memslot(kvm, old, new); 1751 } 1752 1753 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1754 const struct kvm_memory_slot *src) 1755 { 1756 dest->base_gfn = src->base_gfn; 1757 dest->npages = src->npages; 1758 dest->dirty_bitmap = src->dirty_bitmap; 1759 dest->arch = src->arch; 1760 dest->userspace_addr = src->userspace_addr; 1761 dest->flags = src->flags; 1762 dest->id = src->id; 1763 dest->as_id = src->as_id; 1764 } 1765 1766 static void kvm_invalidate_memslot(struct kvm *kvm, 1767 struct kvm_memory_slot *old, 1768 struct kvm_memory_slot *invalid_slot) 1769 { 1770 /* 1771 * Mark the current slot INVALID. As with all memslot modifications, 1772 * this must be done on an unreachable slot to avoid modifying the 1773 * current slot in the active tree. 1774 */ 1775 kvm_copy_memslot(invalid_slot, old); 1776 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1777 kvm_replace_memslot(kvm, old, invalid_slot); 1778 1779 /* 1780 * Activate the slot that is now marked INVALID, but don't propagate 1781 * the slot to the now inactive slots. The slot is either going to be 1782 * deleted or recreated as a new slot. 1783 */ 1784 kvm_swap_active_memslots(kvm, old->as_id); 1785 1786 /* 1787 * From this point no new shadow pages pointing to a deleted, or moved, 1788 * memslot will be created. Validation of sp->gfn happens in: 1789 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1790 * - kvm_is_visible_gfn (mmu_check_root) 1791 */ 1792 kvm_arch_flush_shadow_memslot(kvm, old); 1793 kvm_arch_guest_memory_reclaimed(kvm); 1794 1795 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1796 mutex_lock(&kvm->slots_arch_lock); 1797 1798 /* 1799 * Copy the arch-specific field of the newly-installed slot back to the 1800 * old slot as the arch data could have changed between releasing 1801 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1802 * above. Writers are required to retrieve memslots *after* acquiring 1803 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1804 */ 1805 old->arch = invalid_slot->arch; 1806 } 1807 1808 static void kvm_create_memslot(struct kvm *kvm, 1809 struct kvm_memory_slot *new) 1810 { 1811 /* Add the new memslot to the inactive set and activate. */ 1812 kvm_replace_memslot(kvm, NULL, new); 1813 kvm_activate_memslot(kvm, NULL, new); 1814 } 1815 1816 static void kvm_delete_memslot(struct kvm *kvm, 1817 struct kvm_memory_slot *old, 1818 struct kvm_memory_slot *invalid_slot) 1819 { 1820 /* 1821 * Remove the old memslot (in the inactive memslots) by passing NULL as 1822 * the "new" slot, and for the invalid version in the active slots. 1823 */ 1824 kvm_replace_memslot(kvm, old, NULL); 1825 kvm_activate_memslot(kvm, invalid_slot, NULL); 1826 } 1827 1828 static void kvm_move_memslot(struct kvm *kvm, 1829 struct kvm_memory_slot *old, 1830 struct kvm_memory_slot *new, 1831 struct kvm_memory_slot *invalid_slot) 1832 { 1833 /* 1834 * Replace the old memslot in the inactive slots, and then swap slots 1835 * and replace the current INVALID with the new as well. 1836 */ 1837 kvm_replace_memslot(kvm, old, new); 1838 kvm_activate_memslot(kvm, invalid_slot, new); 1839 } 1840 1841 static void kvm_update_flags_memslot(struct kvm *kvm, 1842 struct kvm_memory_slot *old, 1843 struct kvm_memory_slot *new) 1844 { 1845 /* 1846 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1847 * an intermediate step. Instead, the old memslot is simply replaced 1848 * with a new, updated copy in both memslot sets. 1849 */ 1850 kvm_replace_memslot(kvm, old, new); 1851 kvm_activate_memslot(kvm, old, new); 1852 } 1853 1854 static int kvm_set_memslot(struct kvm *kvm, 1855 struct kvm_memory_slot *old, 1856 struct kvm_memory_slot *new, 1857 enum kvm_mr_change change) 1858 { 1859 struct kvm_memory_slot *invalid_slot; 1860 int r; 1861 1862 /* 1863 * Released in kvm_swap_active_memslots(). 1864 * 1865 * Must be held from before the current memslots are copied until after 1866 * the new memslots are installed with rcu_assign_pointer, then 1867 * released before the synchronize srcu in kvm_swap_active_memslots(). 1868 * 1869 * When modifying memslots outside of the slots_lock, must be held 1870 * before reading the pointer to the current memslots until after all 1871 * changes to those memslots are complete. 1872 * 1873 * These rules ensure that installing new memslots does not lose 1874 * changes made to the previous memslots. 1875 */ 1876 mutex_lock(&kvm->slots_arch_lock); 1877 1878 /* 1879 * Invalidate the old slot if it's being deleted or moved. This is 1880 * done prior to actually deleting/moving the memslot to allow vCPUs to 1881 * continue running by ensuring there are no mappings or shadow pages 1882 * for the memslot when it is deleted/moved. Without pre-invalidation 1883 * (and without a lock), a window would exist between effecting the 1884 * delete/move and committing the changes in arch code where KVM or a 1885 * guest could access a non-existent memslot. 1886 * 1887 * Modifications are done on a temporary, unreachable slot. The old 1888 * slot needs to be preserved in case a later step fails and the 1889 * invalidation needs to be reverted. 1890 */ 1891 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1892 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1893 if (!invalid_slot) { 1894 mutex_unlock(&kvm->slots_arch_lock); 1895 return -ENOMEM; 1896 } 1897 kvm_invalidate_memslot(kvm, old, invalid_slot); 1898 } 1899 1900 r = kvm_prepare_memory_region(kvm, old, new, change); 1901 if (r) { 1902 /* 1903 * For DELETE/MOVE, revert the above INVALID change. No 1904 * modifications required since the original slot was preserved 1905 * in the inactive slots. Changing the active memslots also 1906 * release slots_arch_lock. 1907 */ 1908 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1909 kvm_activate_memslot(kvm, invalid_slot, old); 1910 kfree(invalid_slot); 1911 } else { 1912 mutex_unlock(&kvm->slots_arch_lock); 1913 } 1914 return r; 1915 } 1916 1917 /* 1918 * For DELETE and MOVE, the working slot is now active as the INVALID 1919 * version of the old slot. MOVE is particularly special as it reuses 1920 * the old slot and returns a copy of the old slot (in working_slot). 1921 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1922 * old slot is detached but otherwise preserved. 1923 */ 1924 if (change == KVM_MR_CREATE) 1925 kvm_create_memslot(kvm, new); 1926 else if (change == KVM_MR_DELETE) 1927 kvm_delete_memslot(kvm, old, invalid_slot); 1928 else if (change == KVM_MR_MOVE) 1929 kvm_move_memslot(kvm, old, new, invalid_slot); 1930 else if (change == KVM_MR_FLAGS_ONLY) 1931 kvm_update_flags_memslot(kvm, old, new); 1932 else 1933 BUG(); 1934 1935 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1936 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1937 kfree(invalid_slot); 1938 1939 /* 1940 * No need to refresh new->arch, changes after dropping slots_arch_lock 1941 * will directly hit the final, active memslot. Architectures are 1942 * responsible for knowing that new->arch may be stale. 1943 */ 1944 kvm_commit_memory_region(kvm, old, new, change); 1945 1946 return 0; 1947 } 1948 1949 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1950 gfn_t start, gfn_t end) 1951 { 1952 struct kvm_memslot_iter iter; 1953 1954 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1955 if (iter.slot->id != id) 1956 return true; 1957 } 1958 1959 return false; 1960 } 1961 1962 /* 1963 * Allocate some memory and give it an address in the guest physical address 1964 * space. 1965 * 1966 * Discontiguous memory is allowed, mostly for framebuffers. 1967 * 1968 * Must be called holding kvm->slots_lock for write. 1969 */ 1970 int __kvm_set_memory_region(struct kvm *kvm, 1971 const struct kvm_userspace_memory_region2 *mem) 1972 { 1973 struct kvm_memory_slot *old, *new; 1974 struct kvm_memslots *slots; 1975 enum kvm_mr_change change; 1976 unsigned long npages; 1977 gfn_t base_gfn; 1978 int as_id, id; 1979 int r; 1980 1981 r = check_memory_region_flags(kvm, mem); 1982 if (r) 1983 return r; 1984 1985 as_id = mem->slot >> 16; 1986 id = (u16)mem->slot; 1987 1988 /* General sanity checks */ 1989 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1990 (mem->memory_size != (unsigned long)mem->memory_size)) 1991 return -EINVAL; 1992 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1993 return -EINVAL; 1994 /* We can read the guest memory with __xxx_user() later on. */ 1995 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1996 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1997 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1998 mem->memory_size)) 1999 return -EINVAL; 2000 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2001 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2002 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2003 return -EINVAL; 2004 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2005 return -EINVAL; 2006 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2007 return -EINVAL; 2008 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2009 return -EINVAL; 2010 2011 slots = __kvm_memslots(kvm, as_id); 2012 2013 /* 2014 * Note, the old memslot (and the pointer itself!) may be invalidated 2015 * and/or destroyed by kvm_set_memslot(). 2016 */ 2017 old = id_to_memslot(slots, id); 2018 2019 if (!mem->memory_size) { 2020 if (!old || !old->npages) 2021 return -EINVAL; 2022 2023 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2024 return -EIO; 2025 2026 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2027 } 2028 2029 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2030 npages = (mem->memory_size >> PAGE_SHIFT); 2031 2032 if (!old || !old->npages) { 2033 change = KVM_MR_CREATE; 2034 2035 /* 2036 * To simplify KVM internals, the total number of pages across 2037 * all memslots must fit in an unsigned long. 2038 */ 2039 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2040 return -EINVAL; 2041 } else { /* Modify an existing slot. */ 2042 /* Private memslots are immutable, they can only be deleted. */ 2043 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2044 return -EINVAL; 2045 if ((mem->userspace_addr != old->userspace_addr) || 2046 (npages != old->npages) || 2047 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2048 return -EINVAL; 2049 2050 if (base_gfn != old->base_gfn) 2051 change = KVM_MR_MOVE; 2052 else if (mem->flags != old->flags) 2053 change = KVM_MR_FLAGS_ONLY; 2054 else /* Nothing to change. */ 2055 return 0; 2056 } 2057 2058 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2059 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2060 return -EEXIST; 2061 2062 /* Allocate a slot that will persist in the memslot. */ 2063 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2064 if (!new) 2065 return -ENOMEM; 2066 2067 new->as_id = as_id; 2068 new->id = id; 2069 new->base_gfn = base_gfn; 2070 new->npages = npages; 2071 new->flags = mem->flags; 2072 new->userspace_addr = mem->userspace_addr; 2073 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2074 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2075 if (r) 2076 goto out; 2077 } 2078 2079 r = kvm_set_memslot(kvm, old, new, change); 2080 if (r) 2081 goto out_unbind; 2082 2083 return 0; 2084 2085 out_unbind: 2086 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2087 kvm_gmem_unbind(new); 2088 out: 2089 kfree(new); 2090 return r; 2091 } 2092 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2093 2094 int kvm_set_memory_region(struct kvm *kvm, 2095 const struct kvm_userspace_memory_region2 *mem) 2096 { 2097 int r; 2098 2099 mutex_lock(&kvm->slots_lock); 2100 r = __kvm_set_memory_region(kvm, mem); 2101 mutex_unlock(&kvm->slots_lock); 2102 return r; 2103 } 2104 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2105 2106 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2107 struct kvm_userspace_memory_region2 *mem) 2108 { 2109 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2110 return -EINVAL; 2111 2112 return kvm_set_memory_region(kvm, mem); 2113 } 2114 2115 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2116 /** 2117 * kvm_get_dirty_log - get a snapshot of dirty pages 2118 * @kvm: pointer to kvm instance 2119 * @log: slot id and address to which we copy the log 2120 * @is_dirty: set to '1' if any dirty pages were found 2121 * @memslot: set to the associated memslot, always valid on success 2122 */ 2123 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2124 int *is_dirty, struct kvm_memory_slot **memslot) 2125 { 2126 struct kvm_memslots *slots; 2127 int i, as_id, id; 2128 unsigned long n; 2129 unsigned long any = 0; 2130 2131 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2132 if (!kvm_use_dirty_bitmap(kvm)) 2133 return -ENXIO; 2134 2135 *memslot = NULL; 2136 *is_dirty = 0; 2137 2138 as_id = log->slot >> 16; 2139 id = (u16)log->slot; 2140 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2141 return -EINVAL; 2142 2143 slots = __kvm_memslots(kvm, as_id); 2144 *memslot = id_to_memslot(slots, id); 2145 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2146 return -ENOENT; 2147 2148 kvm_arch_sync_dirty_log(kvm, *memslot); 2149 2150 n = kvm_dirty_bitmap_bytes(*memslot); 2151 2152 for (i = 0; !any && i < n/sizeof(long); ++i) 2153 any = (*memslot)->dirty_bitmap[i]; 2154 2155 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2156 return -EFAULT; 2157 2158 if (any) 2159 *is_dirty = 1; 2160 return 0; 2161 } 2162 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2163 2164 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2165 /** 2166 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2167 * and reenable dirty page tracking for the corresponding pages. 2168 * @kvm: pointer to kvm instance 2169 * @log: slot id and address to which we copy the log 2170 * 2171 * We need to keep it in mind that VCPU threads can write to the bitmap 2172 * concurrently. So, to avoid losing track of dirty pages we keep the 2173 * following order: 2174 * 2175 * 1. Take a snapshot of the bit and clear it if needed. 2176 * 2. Write protect the corresponding page. 2177 * 3. Copy the snapshot to the userspace. 2178 * 4. Upon return caller flushes TLB's if needed. 2179 * 2180 * Between 2 and 4, the guest may write to the page using the remaining TLB 2181 * entry. This is not a problem because the page is reported dirty using 2182 * the snapshot taken before and step 4 ensures that writes done after 2183 * exiting to userspace will be logged for the next call. 2184 * 2185 */ 2186 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2187 { 2188 struct kvm_memslots *slots; 2189 struct kvm_memory_slot *memslot; 2190 int i, as_id, id; 2191 unsigned long n; 2192 unsigned long *dirty_bitmap; 2193 unsigned long *dirty_bitmap_buffer; 2194 bool flush; 2195 2196 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2197 if (!kvm_use_dirty_bitmap(kvm)) 2198 return -ENXIO; 2199 2200 as_id = log->slot >> 16; 2201 id = (u16)log->slot; 2202 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2203 return -EINVAL; 2204 2205 slots = __kvm_memslots(kvm, as_id); 2206 memslot = id_to_memslot(slots, id); 2207 if (!memslot || !memslot->dirty_bitmap) 2208 return -ENOENT; 2209 2210 dirty_bitmap = memslot->dirty_bitmap; 2211 2212 kvm_arch_sync_dirty_log(kvm, memslot); 2213 2214 n = kvm_dirty_bitmap_bytes(memslot); 2215 flush = false; 2216 if (kvm->manual_dirty_log_protect) { 2217 /* 2218 * Unlike kvm_get_dirty_log, we always return false in *flush, 2219 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2220 * is some code duplication between this function and 2221 * kvm_get_dirty_log, but hopefully all architecture 2222 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2223 * can be eliminated. 2224 */ 2225 dirty_bitmap_buffer = dirty_bitmap; 2226 } else { 2227 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2228 memset(dirty_bitmap_buffer, 0, n); 2229 2230 KVM_MMU_LOCK(kvm); 2231 for (i = 0; i < n / sizeof(long); i++) { 2232 unsigned long mask; 2233 gfn_t offset; 2234 2235 if (!dirty_bitmap[i]) 2236 continue; 2237 2238 flush = true; 2239 mask = xchg(&dirty_bitmap[i], 0); 2240 dirty_bitmap_buffer[i] = mask; 2241 2242 offset = i * BITS_PER_LONG; 2243 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2244 offset, mask); 2245 } 2246 KVM_MMU_UNLOCK(kvm); 2247 } 2248 2249 if (flush) 2250 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2251 2252 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2253 return -EFAULT; 2254 return 0; 2255 } 2256 2257 2258 /** 2259 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2260 * @kvm: kvm instance 2261 * @log: slot id and address to which we copy the log 2262 * 2263 * Steps 1-4 below provide general overview of dirty page logging. See 2264 * kvm_get_dirty_log_protect() function description for additional details. 2265 * 2266 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2267 * always flush the TLB (step 4) even if previous step failed and the dirty 2268 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2269 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2270 * writes will be marked dirty for next log read. 2271 * 2272 * 1. Take a snapshot of the bit and clear it if needed. 2273 * 2. Write protect the corresponding page. 2274 * 3. Copy the snapshot to the userspace. 2275 * 4. Flush TLB's if needed. 2276 */ 2277 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2278 struct kvm_dirty_log *log) 2279 { 2280 int r; 2281 2282 mutex_lock(&kvm->slots_lock); 2283 2284 r = kvm_get_dirty_log_protect(kvm, log); 2285 2286 mutex_unlock(&kvm->slots_lock); 2287 return r; 2288 } 2289 2290 /** 2291 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2292 * and reenable dirty page tracking for the corresponding pages. 2293 * @kvm: pointer to kvm instance 2294 * @log: slot id and address from which to fetch the bitmap of dirty pages 2295 */ 2296 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2297 struct kvm_clear_dirty_log *log) 2298 { 2299 struct kvm_memslots *slots; 2300 struct kvm_memory_slot *memslot; 2301 int as_id, id; 2302 gfn_t offset; 2303 unsigned long i, n; 2304 unsigned long *dirty_bitmap; 2305 unsigned long *dirty_bitmap_buffer; 2306 bool flush; 2307 2308 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2309 if (!kvm_use_dirty_bitmap(kvm)) 2310 return -ENXIO; 2311 2312 as_id = log->slot >> 16; 2313 id = (u16)log->slot; 2314 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2315 return -EINVAL; 2316 2317 if (log->first_page & 63) 2318 return -EINVAL; 2319 2320 slots = __kvm_memslots(kvm, as_id); 2321 memslot = id_to_memslot(slots, id); 2322 if (!memslot || !memslot->dirty_bitmap) 2323 return -ENOENT; 2324 2325 dirty_bitmap = memslot->dirty_bitmap; 2326 2327 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2328 2329 if (log->first_page > memslot->npages || 2330 log->num_pages > memslot->npages - log->first_page || 2331 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2332 return -EINVAL; 2333 2334 kvm_arch_sync_dirty_log(kvm, memslot); 2335 2336 flush = false; 2337 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2338 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2339 return -EFAULT; 2340 2341 KVM_MMU_LOCK(kvm); 2342 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2343 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2344 i++, offset += BITS_PER_LONG) { 2345 unsigned long mask = *dirty_bitmap_buffer++; 2346 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2347 if (!mask) 2348 continue; 2349 2350 mask &= atomic_long_fetch_andnot(mask, p); 2351 2352 /* 2353 * mask contains the bits that really have been cleared. This 2354 * never includes any bits beyond the length of the memslot (if 2355 * the length is not aligned to 64 pages), therefore it is not 2356 * a problem if userspace sets them in log->dirty_bitmap. 2357 */ 2358 if (mask) { 2359 flush = true; 2360 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2361 offset, mask); 2362 } 2363 } 2364 KVM_MMU_UNLOCK(kvm); 2365 2366 if (flush) 2367 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2368 2369 return 0; 2370 } 2371 2372 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2373 struct kvm_clear_dirty_log *log) 2374 { 2375 int r; 2376 2377 mutex_lock(&kvm->slots_lock); 2378 2379 r = kvm_clear_dirty_log_protect(kvm, log); 2380 2381 mutex_unlock(&kvm->slots_lock); 2382 return r; 2383 } 2384 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2385 2386 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2387 /* 2388 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2389 * matching @attrs. 2390 */ 2391 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2392 unsigned long attrs) 2393 { 2394 XA_STATE(xas, &kvm->mem_attr_array, start); 2395 unsigned long index; 2396 bool has_attrs; 2397 void *entry; 2398 2399 rcu_read_lock(); 2400 2401 if (!attrs) { 2402 has_attrs = !xas_find(&xas, end - 1); 2403 goto out; 2404 } 2405 2406 has_attrs = true; 2407 for (index = start; index < end; index++) { 2408 do { 2409 entry = xas_next(&xas); 2410 } while (xas_retry(&xas, entry)); 2411 2412 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2413 has_attrs = false; 2414 break; 2415 } 2416 } 2417 2418 out: 2419 rcu_read_unlock(); 2420 return has_attrs; 2421 } 2422 2423 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2424 { 2425 if (!kvm || kvm_arch_has_private_mem(kvm)) 2426 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2427 2428 return 0; 2429 } 2430 2431 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2432 struct kvm_mmu_notifier_range *range) 2433 { 2434 struct kvm_gfn_range gfn_range; 2435 struct kvm_memory_slot *slot; 2436 struct kvm_memslots *slots; 2437 struct kvm_memslot_iter iter; 2438 bool found_memslot = false; 2439 bool ret = false; 2440 int i; 2441 2442 gfn_range.arg = range->arg; 2443 gfn_range.may_block = range->may_block; 2444 2445 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2446 slots = __kvm_memslots(kvm, i); 2447 2448 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2449 slot = iter.slot; 2450 gfn_range.slot = slot; 2451 2452 gfn_range.start = max(range->start, slot->base_gfn); 2453 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2454 if (gfn_range.start >= gfn_range.end) 2455 continue; 2456 2457 if (!found_memslot) { 2458 found_memslot = true; 2459 KVM_MMU_LOCK(kvm); 2460 if (!IS_KVM_NULL_FN(range->on_lock)) 2461 range->on_lock(kvm); 2462 } 2463 2464 ret |= range->handler(kvm, &gfn_range); 2465 } 2466 } 2467 2468 if (range->flush_on_ret && ret) 2469 kvm_flush_remote_tlbs(kvm); 2470 2471 if (found_memslot) 2472 KVM_MMU_UNLOCK(kvm); 2473 } 2474 2475 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2476 struct kvm_gfn_range *range) 2477 { 2478 /* 2479 * Unconditionally add the range to the invalidation set, regardless of 2480 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2481 * if KVM supports RWX attributes in the future and the attributes are 2482 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2483 * adding the range allows KVM to require that MMU invalidations add at 2484 * least one range between begin() and end(), e.g. allows KVM to detect 2485 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2486 * but it's not obvious that allowing new mappings while the attributes 2487 * are in flux is desirable or worth the complexity. 2488 */ 2489 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2490 2491 return kvm_arch_pre_set_memory_attributes(kvm, range); 2492 } 2493 2494 /* Set @attributes for the gfn range [@start, @end). */ 2495 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2496 unsigned long attributes) 2497 { 2498 struct kvm_mmu_notifier_range pre_set_range = { 2499 .start = start, 2500 .end = end, 2501 .handler = kvm_pre_set_memory_attributes, 2502 .on_lock = kvm_mmu_invalidate_begin, 2503 .flush_on_ret = true, 2504 .may_block = true, 2505 }; 2506 struct kvm_mmu_notifier_range post_set_range = { 2507 .start = start, 2508 .end = end, 2509 .arg.attributes = attributes, 2510 .handler = kvm_arch_post_set_memory_attributes, 2511 .on_lock = kvm_mmu_invalidate_end, 2512 .may_block = true, 2513 }; 2514 unsigned long i; 2515 void *entry; 2516 int r = 0; 2517 2518 entry = attributes ? xa_mk_value(attributes) : NULL; 2519 2520 mutex_lock(&kvm->slots_lock); 2521 2522 /* Nothing to do if the entire range as the desired attributes. */ 2523 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2524 goto out_unlock; 2525 2526 /* 2527 * Reserve memory ahead of time to avoid having to deal with failures 2528 * partway through setting the new attributes. 2529 */ 2530 for (i = start; i < end; i++) { 2531 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2532 if (r) 2533 goto out_unlock; 2534 } 2535 2536 kvm_handle_gfn_range(kvm, &pre_set_range); 2537 2538 for (i = start; i < end; i++) { 2539 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2540 GFP_KERNEL_ACCOUNT)); 2541 KVM_BUG_ON(r, kvm); 2542 } 2543 2544 kvm_handle_gfn_range(kvm, &post_set_range); 2545 2546 out_unlock: 2547 mutex_unlock(&kvm->slots_lock); 2548 2549 return r; 2550 } 2551 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2552 struct kvm_memory_attributes *attrs) 2553 { 2554 gfn_t start, end; 2555 2556 /* flags is currently not used. */ 2557 if (attrs->flags) 2558 return -EINVAL; 2559 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2560 return -EINVAL; 2561 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2562 return -EINVAL; 2563 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2564 return -EINVAL; 2565 2566 start = attrs->address >> PAGE_SHIFT; 2567 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2568 2569 /* 2570 * xarray tracks data using "unsigned long", and as a result so does 2571 * KVM. For simplicity, supports generic attributes only on 64-bit 2572 * architectures. 2573 */ 2574 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2575 2576 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2577 } 2578 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2579 2580 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2581 { 2582 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2583 } 2584 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2585 2586 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2587 { 2588 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2589 u64 gen = slots->generation; 2590 struct kvm_memory_slot *slot; 2591 2592 /* 2593 * This also protects against using a memslot from a different address space, 2594 * since different address spaces have different generation numbers. 2595 */ 2596 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2597 vcpu->last_used_slot = NULL; 2598 vcpu->last_used_slot_gen = gen; 2599 } 2600 2601 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2602 if (slot) 2603 return slot; 2604 2605 /* 2606 * Fall back to searching all memslots. We purposely use 2607 * search_memslots() instead of __gfn_to_memslot() to avoid 2608 * thrashing the VM-wide last_used_slot in kvm_memslots. 2609 */ 2610 slot = search_memslots(slots, gfn, false); 2611 if (slot) { 2612 vcpu->last_used_slot = slot; 2613 return slot; 2614 } 2615 2616 return NULL; 2617 } 2618 2619 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2620 { 2621 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2622 2623 return kvm_is_visible_memslot(memslot); 2624 } 2625 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2626 2627 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2628 { 2629 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2630 2631 return kvm_is_visible_memslot(memslot); 2632 } 2633 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2634 2635 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2636 { 2637 struct vm_area_struct *vma; 2638 unsigned long addr, size; 2639 2640 size = PAGE_SIZE; 2641 2642 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2643 if (kvm_is_error_hva(addr)) 2644 return PAGE_SIZE; 2645 2646 mmap_read_lock(current->mm); 2647 vma = find_vma(current->mm, addr); 2648 if (!vma) 2649 goto out; 2650 2651 size = vma_kernel_pagesize(vma); 2652 2653 out: 2654 mmap_read_unlock(current->mm); 2655 2656 return size; 2657 } 2658 2659 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2660 { 2661 return slot->flags & KVM_MEM_READONLY; 2662 } 2663 2664 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2665 gfn_t *nr_pages, bool write) 2666 { 2667 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2668 return KVM_HVA_ERR_BAD; 2669 2670 if (memslot_is_readonly(slot) && write) 2671 return KVM_HVA_ERR_RO_BAD; 2672 2673 if (nr_pages) 2674 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2675 2676 return __gfn_to_hva_memslot(slot, gfn); 2677 } 2678 2679 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2680 gfn_t *nr_pages) 2681 { 2682 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2683 } 2684 2685 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2686 gfn_t gfn) 2687 { 2688 return gfn_to_hva_many(slot, gfn, NULL); 2689 } 2690 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2691 2692 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2693 { 2694 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2695 } 2696 EXPORT_SYMBOL_GPL(gfn_to_hva); 2697 2698 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2699 { 2700 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2701 } 2702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2703 2704 /* 2705 * Return the hva of a @gfn and the R/W attribute if possible. 2706 * 2707 * @slot: the kvm_memory_slot which contains @gfn 2708 * @gfn: the gfn to be translated 2709 * @writable: used to return the read/write attribute of the @slot if the hva 2710 * is valid and @writable is not NULL 2711 */ 2712 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2713 gfn_t gfn, bool *writable) 2714 { 2715 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2716 2717 if (!kvm_is_error_hva(hva) && writable) 2718 *writable = !memslot_is_readonly(slot); 2719 2720 return hva; 2721 } 2722 2723 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2724 { 2725 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2726 2727 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2728 } 2729 2730 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2731 { 2732 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2733 2734 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2735 } 2736 2737 static inline int check_user_page_hwpoison(unsigned long addr) 2738 { 2739 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2740 2741 rc = get_user_pages(addr, 1, flags, NULL); 2742 return rc == -EHWPOISON; 2743 } 2744 2745 /* 2746 * The fast path to get the writable pfn which will be stored in @pfn, 2747 * true indicates success, otherwise false is returned. It's also the 2748 * only part that runs if we can in atomic context. 2749 */ 2750 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2751 bool *writable, kvm_pfn_t *pfn) 2752 { 2753 struct page *page[1]; 2754 2755 /* 2756 * Fast pin a writable pfn only if it is a write fault request 2757 * or the caller allows to map a writable pfn for a read fault 2758 * request. 2759 */ 2760 if (!(write_fault || writable)) 2761 return false; 2762 2763 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2764 *pfn = page_to_pfn(page[0]); 2765 2766 if (writable) 2767 *writable = true; 2768 return true; 2769 } 2770 2771 return false; 2772 } 2773 2774 /* 2775 * The slow path to get the pfn of the specified host virtual address, 2776 * 1 indicates success, -errno is returned if error is detected. 2777 */ 2778 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2779 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2780 { 2781 /* 2782 * When a VCPU accesses a page that is not mapped into the secondary 2783 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2784 * make progress. We always want to honor NUMA hinting faults in that 2785 * case, because GUP usage corresponds to memory accesses from the VCPU. 2786 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2787 * mapped into the secondary MMU and gets accessed by a VCPU. 2788 * 2789 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2790 * implicitly honor NUMA hinting faults and don't need this flag. 2791 */ 2792 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2793 struct page *page; 2794 int npages; 2795 2796 might_sleep(); 2797 2798 if (writable) 2799 *writable = write_fault; 2800 2801 if (write_fault) 2802 flags |= FOLL_WRITE; 2803 if (async) 2804 flags |= FOLL_NOWAIT; 2805 if (interruptible) 2806 flags |= FOLL_INTERRUPTIBLE; 2807 2808 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2809 if (npages != 1) 2810 return npages; 2811 2812 /* map read fault as writable if possible */ 2813 if (unlikely(!write_fault) && writable) { 2814 struct page *wpage; 2815 2816 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2817 *writable = true; 2818 put_page(page); 2819 page = wpage; 2820 } 2821 } 2822 *pfn = page_to_pfn(page); 2823 return npages; 2824 } 2825 2826 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2827 { 2828 if (unlikely(!(vma->vm_flags & VM_READ))) 2829 return false; 2830 2831 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2832 return false; 2833 2834 return true; 2835 } 2836 2837 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2838 { 2839 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2840 2841 if (!page) 2842 return 1; 2843 2844 return get_page_unless_zero(page); 2845 } 2846 2847 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2848 unsigned long addr, bool write_fault, 2849 bool *writable, kvm_pfn_t *p_pfn) 2850 { 2851 kvm_pfn_t pfn; 2852 pte_t *ptep; 2853 pte_t pte; 2854 spinlock_t *ptl; 2855 int r; 2856 2857 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2858 if (r) { 2859 /* 2860 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2861 * not call the fault handler, so do it here. 2862 */ 2863 bool unlocked = false; 2864 r = fixup_user_fault(current->mm, addr, 2865 (write_fault ? FAULT_FLAG_WRITE : 0), 2866 &unlocked); 2867 if (unlocked) 2868 return -EAGAIN; 2869 if (r) 2870 return r; 2871 2872 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2873 if (r) 2874 return r; 2875 } 2876 2877 pte = ptep_get(ptep); 2878 2879 if (write_fault && !pte_write(pte)) { 2880 pfn = KVM_PFN_ERR_RO_FAULT; 2881 goto out; 2882 } 2883 2884 if (writable) 2885 *writable = pte_write(pte); 2886 pfn = pte_pfn(pte); 2887 2888 /* 2889 * Get a reference here because callers of *hva_to_pfn* and 2890 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2891 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2892 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2893 * simply do nothing for reserved pfns. 2894 * 2895 * Whoever called remap_pfn_range is also going to call e.g. 2896 * unmap_mapping_range before the underlying pages are freed, 2897 * causing a call to our MMU notifier. 2898 * 2899 * Certain IO or PFNMAP mappings can be backed with valid 2900 * struct pages, but be allocated without refcounting e.g., 2901 * tail pages of non-compound higher order allocations, which 2902 * would then underflow the refcount when the caller does the 2903 * required put_page. Don't allow those pages here. 2904 */ 2905 if (!kvm_try_get_pfn(pfn)) 2906 r = -EFAULT; 2907 2908 out: 2909 pte_unmap_unlock(ptep, ptl); 2910 *p_pfn = pfn; 2911 2912 return r; 2913 } 2914 2915 /* 2916 * Pin guest page in memory and return its pfn. 2917 * @addr: host virtual address which maps memory to the guest 2918 * @atomic: whether this function can sleep 2919 * @interruptible: whether the process can be interrupted by non-fatal signals 2920 * @async: whether this function need to wait IO complete if the 2921 * host page is not in the memory 2922 * @write_fault: whether we should get a writable host page 2923 * @writable: whether it allows to map a writable host page for !@write_fault 2924 * 2925 * The function will map a writable host page for these two cases: 2926 * 1): @write_fault = true 2927 * 2): @write_fault = false && @writable, @writable will tell the caller 2928 * whether the mapping is writable. 2929 */ 2930 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2931 bool *async, bool write_fault, bool *writable) 2932 { 2933 struct vm_area_struct *vma; 2934 kvm_pfn_t pfn; 2935 int npages, r; 2936 2937 /* we can do it either atomically or asynchronously, not both */ 2938 BUG_ON(atomic && async); 2939 2940 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2941 return pfn; 2942 2943 if (atomic) 2944 return KVM_PFN_ERR_FAULT; 2945 2946 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2947 writable, &pfn); 2948 if (npages == 1) 2949 return pfn; 2950 if (npages == -EINTR) 2951 return KVM_PFN_ERR_SIGPENDING; 2952 2953 mmap_read_lock(current->mm); 2954 if (npages == -EHWPOISON || 2955 (!async && check_user_page_hwpoison(addr))) { 2956 pfn = KVM_PFN_ERR_HWPOISON; 2957 goto exit; 2958 } 2959 2960 retry: 2961 vma = vma_lookup(current->mm, addr); 2962 2963 if (vma == NULL) 2964 pfn = KVM_PFN_ERR_FAULT; 2965 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2966 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2967 if (r == -EAGAIN) 2968 goto retry; 2969 if (r < 0) 2970 pfn = KVM_PFN_ERR_FAULT; 2971 } else { 2972 if (async && vma_is_valid(vma, write_fault)) 2973 *async = true; 2974 pfn = KVM_PFN_ERR_FAULT; 2975 } 2976 exit: 2977 mmap_read_unlock(current->mm); 2978 return pfn; 2979 } 2980 2981 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2982 bool atomic, bool interruptible, bool *async, 2983 bool write_fault, bool *writable, hva_t *hva) 2984 { 2985 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2986 2987 if (hva) 2988 *hva = addr; 2989 2990 if (addr == KVM_HVA_ERR_RO_BAD) { 2991 if (writable) 2992 *writable = false; 2993 return KVM_PFN_ERR_RO_FAULT; 2994 } 2995 2996 if (kvm_is_error_hva(addr)) { 2997 if (writable) 2998 *writable = false; 2999 return KVM_PFN_NOSLOT; 3000 } 3001 3002 /* Do not map writable pfn in the readonly memslot. */ 3003 if (writable && memslot_is_readonly(slot)) { 3004 *writable = false; 3005 writable = NULL; 3006 } 3007 3008 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3009 writable); 3010 } 3011 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3012 3013 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3014 bool *writable) 3015 { 3016 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3017 NULL, write_fault, writable, NULL); 3018 } 3019 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3020 3021 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3022 { 3023 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3024 NULL, NULL); 3025 } 3026 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3027 3028 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3029 { 3030 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3031 NULL, NULL); 3032 } 3033 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3034 3035 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3036 { 3037 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3038 } 3039 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3040 3041 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3042 { 3043 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3044 } 3045 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3046 3047 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3048 { 3049 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3050 } 3051 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3052 3053 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3054 struct page **pages, int nr_pages) 3055 { 3056 unsigned long addr; 3057 gfn_t entry = 0; 3058 3059 addr = gfn_to_hva_many(slot, gfn, &entry); 3060 if (kvm_is_error_hva(addr)) 3061 return -1; 3062 3063 if (entry < nr_pages) 3064 return 0; 3065 3066 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3067 } 3068 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3069 3070 /* 3071 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3072 * backed by 'struct page'. A valid example is if the backing memslot is 3073 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3074 * been elevated by gfn_to_pfn(). 3075 */ 3076 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3077 { 3078 struct page *page; 3079 kvm_pfn_t pfn; 3080 3081 pfn = gfn_to_pfn(kvm, gfn); 3082 3083 if (is_error_noslot_pfn(pfn)) 3084 return KVM_ERR_PTR_BAD_PAGE; 3085 3086 page = kvm_pfn_to_refcounted_page(pfn); 3087 if (!page) 3088 return KVM_ERR_PTR_BAD_PAGE; 3089 3090 return page; 3091 } 3092 EXPORT_SYMBOL_GPL(gfn_to_page); 3093 3094 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3095 { 3096 if (dirty) 3097 kvm_release_pfn_dirty(pfn); 3098 else 3099 kvm_release_pfn_clean(pfn); 3100 } 3101 3102 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3103 { 3104 kvm_pfn_t pfn; 3105 void *hva = NULL; 3106 struct page *page = KVM_UNMAPPED_PAGE; 3107 3108 if (!map) 3109 return -EINVAL; 3110 3111 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3112 if (is_error_noslot_pfn(pfn)) 3113 return -EINVAL; 3114 3115 if (pfn_valid(pfn)) { 3116 page = pfn_to_page(pfn); 3117 hva = kmap(page); 3118 #ifdef CONFIG_HAS_IOMEM 3119 } else { 3120 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3121 #endif 3122 } 3123 3124 if (!hva) 3125 return -EFAULT; 3126 3127 map->page = page; 3128 map->hva = hva; 3129 map->pfn = pfn; 3130 map->gfn = gfn; 3131 3132 return 0; 3133 } 3134 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3135 3136 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3137 { 3138 if (!map) 3139 return; 3140 3141 if (!map->hva) 3142 return; 3143 3144 if (map->page != KVM_UNMAPPED_PAGE) 3145 kunmap(map->page); 3146 #ifdef CONFIG_HAS_IOMEM 3147 else 3148 memunmap(map->hva); 3149 #endif 3150 3151 if (dirty) 3152 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3153 3154 kvm_release_pfn(map->pfn, dirty); 3155 3156 map->hva = NULL; 3157 map->page = NULL; 3158 } 3159 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3160 3161 static bool kvm_is_ad_tracked_page(struct page *page) 3162 { 3163 /* 3164 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3165 * touched (e.g. set dirty) except by its owner". 3166 */ 3167 return !PageReserved(page); 3168 } 3169 3170 static void kvm_set_page_dirty(struct page *page) 3171 { 3172 if (kvm_is_ad_tracked_page(page)) 3173 SetPageDirty(page); 3174 } 3175 3176 static void kvm_set_page_accessed(struct page *page) 3177 { 3178 if (kvm_is_ad_tracked_page(page)) 3179 mark_page_accessed(page); 3180 } 3181 3182 void kvm_release_page_clean(struct page *page) 3183 { 3184 WARN_ON(is_error_page(page)); 3185 3186 kvm_set_page_accessed(page); 3187 put_page(page); 3188 } 3189 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3190 3191 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3192 { 3193 struct page *page; 3194 3195 if (is_error_noslot_pfn(pfn)) 3196 return; 3197 3198 page = kvm_pfn_to_refcounted_page(pfn); 3199 if (!page) 3200 return; 3201 3202 kvm_release_page_clean(page); 3203 } 3204 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3205 3206 void kvm_release_page_dirty(struct page *page) 3207 { 3208 WARN_ON(is_error_page(page)); 3209 3210 kvm_set_page_dirty(page); 3211 kvm_release_page_clean(page); 3212 } 3213 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3214 3215 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3216 { 3217 struct page *page; 3218 3219 if (is_error_noslot_pfn(pfn)) 3220 return; 3221 3222 page = kvm_pfn_to_refcounted_page(pfn); 3223 if (!page) 3224 return; 3225 3226 kvm_release_page_dirty(page); 3227 } 3228 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3229 3230 /* 3231 * Note, checking for an error/noslot pfn is the caller's responsibility when 3232 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3233 * "set" helpers are not to be used when the pfn might point at garbage. 3234 */ 3235 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3236 { 3237 if (WARN_ON(is_error_noslot_pfn(pfn))) 3238 return; 3239 3240 if (pfn_valid(pfn)) 3241 kvm_set_page_dirty(pfn_to_page(pfn)); 3242 } 3243 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3244 3245 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3246 { 3247 if (WARN_ON(is_error_noslot_pfn(pfn))) 3248 return; 3249 3250 if (pfn_valid(pfn)) 3251 kvm_set_page_accessed(pfn_to_page(pfn)); 3252 } 3253 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3254 3255 static int next_segment(unsigned long len, int offset) 3256 { 3257 if (len > PAGE_SIZE - offset) 3258 return PAGE_SIZE - offset; 3259 else 3260 return len; 3261 } 3262 3263 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3264 void *data, int offset, int len) 3265 { 3266 int r; 3267 unsigned long addr; 3268 3269 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3270 if (kvm_is_error_hva(addr)) 3271 return -EFAULT; 3272 r = __copy_from_user(data, (void __user *)addr + offset, len); 3273 if (r) 3274 return -EFAULT; 3275 return 0; 3276 } 3277 3278 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3279 int len) 3280 { 3281 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3282 3283 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3284 } 3285 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3286 3287 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3288 int offset, int len) 3289 { 3290 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3291 3292 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3293 } 3294 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3295 3296 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3297 { 3298 gfn_t gfn = gpa >> PAGE_SHIFT; 3299 int seg; 3300 int offset = offset_in_page(gpa); 3301 int ret; 3302 3303 while ((seg = next_segment(len, offset)) != 0) { 3304 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3305 if (ret < 0) 3306 return ret; 3307 offset = 0; 3308 len -= seg; 3309 data += seg; 3310 ++gfn; 3311 } 3312 return 0; 3313 } 3314 EXPORT_SYMBOL_GPL(kvm_read_guest); 3315 3316 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3317 { 3318 gfn_t gfn = gpa >> PAGE_SHIFT; 3319 int seg; 3320 int offset = offset_in_page(gpa); 3321 int ret; 3322 3323 while ((seg = next_segment(len, offset)) != 0) { 3324 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3325 if (ret < 0) 3326 return ret; 3327 offset = 0; 3328 len -= seg; 3329 data += seg; 3330 ++gfn; 3331 } 3332 return 0; 3333 } 3334 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3335 3336 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3337 void *data, int offset, unsigned long len) 3338 { 3339 int r; 3340 unsigned long addr; 3341 3342 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3343 if (kvm_is_error_hva(addr)) 3344 return -EFAULT; 3345 pagefault_disable(); 3346 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3347 pagefault_enable(); 3348 if (r) 3349 return -EFAULT; 3350 return 0; 3351 } 3352 3353 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3354 void *data, unsigned long len) 3355 { 3356 gfn_t gfn = gpa >> PAGE_SHIFT; 3357 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3358 int offset = offset_in_page(gpa); 3359 3360 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3361 } 3362 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3363 3364 static int __kvm_write_guest_page(struct kvm *kvm, 3365 struct kvm_memory_slot *memslot, gfn_t gfn, 3366 const void *data, int offset, int len) 3367 { 3368 int r; 3369 unsigned long addr; 3370 3371 addr = gfn_to_hva_memslot(memslot, gfn); 3372 if (kvm_is_error_hva(addr)) 3373 return -EFAULT; 3374 r = __copy_to_user((void __user *)addr + offset, data, len); 3375 if (r) 3376 return -EFAULT; 3377 mark_page_dirty_in_slot(kvm, memslot, gfn); 3378 return 0; 3379 } 3380 3381 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3382 const void *data, int offset, int len) 3383 { 3384 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3385 3386 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3387 } 3388 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3389 3390 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3391 const void *data, int offset, int len) 3392 { 3393 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3394 3395 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3396 } 3397 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3398 3399 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3400 unsigned long len) 3401 { 3402 gfn_t gfn = gpa >> PAGE_SHIFT; 3403 int seg; 3404 int offset = offset_in_page(gpa); 3405 int ret; 3406 3407 while ((seg = next_segment(len, offset)) != 0) { 3408 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3409 if (ret < 0) 3410 return ret; 3411 offset = 0; 3412 len -= seg; 3413 data += seg; 3414 ++gfn; 3415 } 3416 return 0; 3417 } 3418 EXPORT_SYMBOL_GPL(kvm_write_guest); 3419 3420 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3421 unsigned long len) 3422 { 3423 gfn_t gfn = gpa >> PAGE_SHIFT; 3424 int seg; 3425 int offset = offset_in_page(gpa); 3426 int ret; 3427 3428 while ((seg = next_segment(len, offset)) != 0) { 3429 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3430 if (ret < 0) 3431 return ret; 3432 offset = 0; 3433 len -= seg; 3434 data += seg; 3435 ++gfn; 3436 } 3437 return 0; 3438 } 3439 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3440 3441 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3442 struct gfn_to_hva_cache *ghc, 3443 gpa_t gpa, unsigned long len) 3444 { 3445 int offset = offset_in_page(gpa); 3446 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3447 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3448 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3449 gfn_t nr_pages_avail; 3450 3451 /* Update ghc->generation before performing any error checks. */ 3452 ghc->generation = slots->generation; 3453 3454 if (start_gfn > end_gfn) { 3455 ghc->hva = KVM_HVA_ERR_BAD; 3456 return -EINVAL; 3457 } 3458 3459 /* 3460 * If the requested region crosses two memslots, we still 3461 * verify that the entire region is valid here. 3462 */ 3463 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3464 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3465 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3466 &nr_pages_avail); 3467 if (kvm_is_error_hva(ghc->hva)) 3468 return -EFAULT; 3469 } 3470 3471 /* Use the slow path for cross page reads and writes. */ 3472 if (nr_pages_needed == 1) 3473 ghc->hva += offset; 3474 else 3475 ghc->memslot = NULL; 3476 3477 ghc->gpa = gpa; 3478 ghc->len = len; 3479 return 0; 3480 } 3481 3482 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3483 gpa_t gpa, unsigned long len) 3484 { 3485 struct kvm_memslots *slots = kvm_memslots(kvm); 3486 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3487 } 3488 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3489 3490 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3491 void *data, unsigned int offset, 3492 unsigned long len) 3493 { 3494 struct kvm_memslots *slots = kvm_memslots(kvm); 3495 int r; 3496 gpa_t gpa = ghc->gpa + offset; 3497 3498 if (WARN_ON_ONCE(len + offset > ghc->len)) 3499 return -EINVAL; 3500 3501 if (slots->generation != ghc->generation) { 3502 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3503 return -EFAULT; 3504 } 3505 3506 if (kvm_is_error_hva(ghc->hva)) 3507 return -EFAULT; 3508 3509 if (unlikely(!ghc->memslot)) 3510 return kvm_write_guest(kvm, gpa, data, len); 3511 3512 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3513 if (r) 3514 return -EFAULT; 3515 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3516 3517 return 0; 3518 } 3519 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3520 3521 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3522 void *data, unsigned long len) 3523 { 3524 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3525 } 3526 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3527 3528 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3529 void *data, unsigned int offset, 3530 unsigned long len) 3531 { 3532 struct kvm_memslots *slots = kvm_memslots(kvm); 3533 int r; 3534 gpa_t gpa = ghc->gpa + offset; 3535 3536 if (WARN_ON_ONCE(len + offset > ghc->len)) 3537 return -EINVAL; 3538 3539 if (slots->generation != ghc->generation) { 3540 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3541 return -EFAULT; 3542 } 3543 3544 if (kvm_is_error_hva(ghc->hva)) 3545 return -EFAULT; 3546 3547 if (unlikely(!ghc->memslot)) 3548 return kvm_read_guest(kvm, gpa, data, len); 3549 3550 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3551 if (r) 3552 return -EFAULT; 3553 3554 return 0; 3555 } 3556 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3557 3558 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3559 void *data, unsigned long len) 3560 { 3561 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3562 } 3563 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3564 3565 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3566 { 3567 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3568 gfn_t gfn = gpa >> PAGE_SHIFT; 3569 int seg; 3570 int offset = offset_in_page(gpa); 3571 int ret; 3572 3573 while ((seg = next_segment(len, offset)) != 0) { 3574 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3575 if (ret < 0) 3576 return ret; 3577 offset = 0; 3578 len -= seg; 3579 ++gfn; 3580 } 3581 return 0; 3582 } 3583 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3584 3585 void mark_page_dirty_in_slot(struct kvm *kvm, 3586 const struct kvm_memory_slot *memslot, 3587 gfn_t gfn) 3588 { 3589 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3590 3591 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3592 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3593 return; 3594 3595 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3596 #endif 3597 3598 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3599 unsigned long rel_gfn = gfn - memslot->base_gfn; 3600 u32 slot = (memslot->as_id << 16) | memslot->id; 3601 3602 if (kvm->dirty_ring_size && vcpu) 3603 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3604 else if (memslot->dirty_bitmap) 3605 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3606 } 3607 } 3608 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3609 3610 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3611 { 3612 struct kvm_memory_slot *memslot; 3613 3614 memslot = gfn_to_memslot(kvm, gfn); 3615 mark_page_dirty_in_slot(kvm, memslot, gfn); 3616 } 3617 EXPORT_SYMBOL_GPL(mark_page_dirty); 3618 3619 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3620 { 3621 struct kvm_memory_slot *memslot; 3622 3623 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3624 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3625 } 3626 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3627 3628 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3629 { 3630 if (!vcpu->sigset_active) 3631 return; 3632 3633 /* 3634 * This does a lockless modification of ->real_blocked, which is fine 3635 * because, only current can change ->real_blocked and all readers of 3636 * ->real_blocked don't care as long ->real_blocked is always a subset 3637 * of ->blocked. 3638 */ 3639 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3640 } 3641 3642 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3643 { 3644 if (!vcpu->sigset_active) 3645 return; 3646 3647 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3648 sigemptyset(¤t->real_blocked); 3649 } 3650 3651 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3652 { 3653 unsigned int old, val, grow, grow_start; 3654 3655 old = val = vcpu->halt_poll_ns; 3656 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3657 grow = READ_ONCE(halt_poll_ns_grow); 3658 if (!grow) 3659 goto out; 3660 3661 val *= grow; 3662 if (val < grow_start) 3663 val = grow_start; 3664 3665 vcpu->halt_poll_ns = val; 3666 out: 3667 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3668 } 3669 3670 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3671 { 3672 unsigned int old, val, shrink, grow_start; 3673 3674 old = val = vcpu->halt_poll_ns; 3675 shrink = READ_ONCE(halt_poll_ns_shrink); 3676 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3677 if (shrink == 0) 3678 val = 0; 3679 else 3680 val /= shrink; 3681 3682 if (val < grow_start) 3683 val = 0; 3684 3685 vcpu->halt_poll_ns = val; 3686 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3687 } 3688 3689 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3690 { 3691 int ret = -EINTR; 3692 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3693 3694 if (kvm_arch_vcpu_runnable(vcpu)) 3695 goto out; 3696 if (kvm_cpu_has_pending_timer(vcpu)) 3697 goto out; 3698 if (signal_pending(current)) 3699 goto out; 3700 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3701 goto out; 3702 3703 ret = 0; 3704 out: 3705 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3706 return ret; 3707 } 3708 3709 /* 3710 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3711 * pending. This is mostly used when halting a vCPU, but may also be used 3712 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3713 */ 3714 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3715 { 3716 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3717 bool waited = false; 3718 3719 vcpu->stat.generic.blocking = 1; 3720 3721 preempt_disable(); 3722 kvm_arch_vcpu_blocking(vcpu); 3723 prepare_to_rcuwait(wait); 3724 preempt_enable(); 3725 3726 for (;;) { 3727 set_current_state(TASK_INTERRUPTIBLE); 3728 3729 if (kvm_vcpu_check_block(vcpu) < 0) 3730 break; 3731 3732 waited = true; 3733 schedule(); 3734 } 3735 3736 preempt_disable(); 3737 finish_rcuwait(wait); 3738 kvm_arch_vcpu_unblocking(vcpu); 3739 preempt_enable(); 3740 3741 vcpu->stat.generic.blocking = 0; 3742 3743 return waited; 3744 } 3745 3746 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3747 ktime_t end, bool success) 3748 { 3749 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3750 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3751 3752 ++vcpu->stat.generic.halt_attempted_poll; 3753 3754 if (success) { 3755 ++vcpu->stat.generic.halt_successful_poll; 3756 3757 if (!vcpu_valid_wakeup(vcpu)) 3758 ++vcpu->stat.generic.halt_poll_invalid; 3759 3760 stats->halt_poll_success_ns += poll_ns; 3761 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3762 } else { 3763 stats->halt_poll_fail_ns += poll_ns; 3764 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3765 } 3766 } 3767 3768 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3769 { 3770 struct kvm *kvm = vcpu->kvm; 3771 3772 if (kvm->override_halt_poll_ns) { 3773 /* 3774 * Ensure kvm->max_halt_poll_ns is not read before 3775 * kvm->override_halt_poll_ns. 3776 * 3777 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3778 */ 3779 smp_rmb(); 3780 return READ_ONCE(kvm->max_halt_poll_ns); 3781 } 3782 3783 return READ_ONCE(halt_poll_ns); 3784 } 3785 3786 /* 3787 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3788 * polling is enabled, busy wait for a short time before blocking to avoid the 3789 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3790 * is halted. 3791 */ 3792 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3793 { 3794 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3795 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3796 ktime_t start, cur, poll_end; 3797 bool waited = false; 3798 bool do_halt_poll; 3799 u64 halt_ns; 3800 3801 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3802 vcpu->halt_poll_ns = max_halt_poll_ns; 3803 3804 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3805 3806 start = cur = poll_end = ktime_get(); 3807 if (do_halt_poll) { 3808 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3809 3810 do { 3811 if (kvm_vcpu_check_block(vcpu) < 0) 3812 goto out; 3813 cpu_relax(); 3814 poll_end = cur = ktime_get(); 3815 } while (kvm_vcpu_can_poll(cur, stop)); 3816 } 3817 3818 waited = kvm_vcpu_block(vcpu); 3819 3820 cur = ktime_get(); 3821 if (waited) { 3822 vcpu->stat.generic.halt_wait_ns += 3823 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3824 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3825 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3826 } 3827 out: 3828 /* The total time the vCPU was "halted", including polling time. */ 3829 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3830 3831 /* 3832 * Note, halt-polling is considered successful so long as the vCPU was 3833 * never actually scheduled out, i.e. even if the wake event arrived 3834 * after of the halt-polling loop itself, but before the full wait. 3835 */ 3836 if (do_halt_poll) 3837 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3838 3839 if (halt_poll_allowed) { 3840 /* Recompute the max halt poll time in case it changed. */ 3841 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3842 3843 if (!vcpu_valid_wakeup(vcpu)) { 3844 shrink_halt_poll_ns(vcpu); 3845 } else if (max_halt_poll_ns) { 3846 if (halt_ns <= vcpu->halt_poll_ns) 3847 ; 3848 /* we had a long block, shrink polling */ 3849 else if (vcpu->halt_poll_ns && 3850 halt_ns > max_halt_poll_ns) 3851 shrink_halt_poll_ns(vcpu); 3852 /* we had a short halt and our poll time is too small */ 3853 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3854 halt_ns < max_halt_poll_ns) 3855 grow_halt_poll_ns(vcpu); 3856 } else { 3857 vcpu->halt_poll_ns = 0; 3858 } 3859 } 3860 3861 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3862 } 3863 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3864 3865 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3866 { 3867 if (__kvm_vcpu_wake_up(vcpu)) { 3868 WRITE_ONCE(vcpu->ready, true); 3869 ++vcpu->stat.generic.halt_wakeup; 3870 return true; 3871 } 3872 3873 return false; 3874 } 3875 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3876 3877 #ifndef CONFIG_S390 3878 /* 3879 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3880 */ 3881 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3882 { 3883 int me, cpu; 3884 3885 if (kvm_vcpu_wake_up(vcpu)) 3886 return; 3887 3888 me = get_cpu(); 3889 /* 3890 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3891 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3892 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3893 * within the vCPU thread itself. 3894 */ 3895 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3896 if (vcpu->mode == IN_GUEST_MODE) 3897 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3898 goto out; 3899 } 3900 3901 /* 3902 * Note, the vCPU could get migrated to a different pCPU at any point 3903 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3904 * IPI to the previous pCPU. But, that's ok because the purpose of the 3905 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3906 * vCPU also requires it to leave IN_GUEST_MODE. 3907 */ 3908 if (kvm_arch_vcpu_should_kick(vcpu)) { 3909 cpu = READ_ONCE(vcpu->cpu); 3910 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3911 smp_send_reschedule(cpu); 3912 } 3913 out: 3914 put_cpu(); 3915 } 3916 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3917 #endif /* !CONFIG_S390 */ 3918 3919 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3920 { 3921 struct pid *pid; 3922 struct task_struct *task = NULL; 3923 int ret = 0; 3924 3925 rcu_read_lock(); 3926 pid = rcu_dereference(target->pid); 3927 if (pid) 3928 task = get_pid_task(pid, PIDTYPE_PID); 3929 rcu_read_unlock(); 3930 if (!task) 3931 return ret; 3932 ret = yield_to(task, 1); 3933 put_task_struct(task); 3934 3935 return ret; 3936 } 3937 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3938 3939 /* 3940 * Helper that checks whether a VCPU is eligible for directed yield. 3941 * Most eligible candidate to yield is decided by following heuristics: 3942 * 3943 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3944 * (preempted lock holder), indicated by @in_spin_loop. 3945 * Set at the beginning and cleared at the end of interception/PLE handler. 3946 * 3947 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3948 * chance last time (mostly it has become eligible now since we have probably 3949 * yielded to lockholder in last iteration. This is done by toggling 3950 * @dy_eligible each time a VCPU checked for eligibility.) 3951 * 3952 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3953 * to preempted lock-holder could result in wrong VCPU selection and CPU 3954 * burning. Giving priority for a potential lock-holder increases lock 3955 * progress. 3956 * 3957 * Since algorithm is based on heuristics, accessing another VCPU data without 3958 * locking does not harm. It may result in trying to yield to same VCPU, fail 3959 * and continue with next VCPU and so on. 3960 */ 3961 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3962 { 3963 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3964 bool eligible; 3965 3966 eligible = !vcpu->spin_loop.in_spin_loop || 3967 vcpu->spin_loop.dy_eligible; 3968 3969 if (vcpu->spin_loop.in_spin_loop) 3970 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3971 3972 return eligible; 3973 #else 3974 return true; 3975 #endif 3976 } 3977 3978 /* 3979 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3980 * a vcpu_load/vcpu_put pair. However, for most architectures 3981 * kvm_arch_vcpu_runnable does not require vcpu_load. 3982 */ 3983 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3984 { 3985 return kvm_arch_vcpu_runnable(vcpu); 3986 } 3987 3988 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3989 { 3990 if (kvm_arch_dy_runnable(vcpu)) 3991 return true; 3992 3993 #ifdef CONFIG_KVM_ASYNC_PF 3994 if (!list_empty_careful(&vcpu->async_pf.done)) 3995 return true; 3996 #endif 3997 3998 return false; 3999 } 4000 4001 /* 4002 * By default, simply query the target vCPU's current mode when checking if a 4003 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4004 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4005 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4006 * directly for cross-vCPU checks is functionally correct and accurate. 4007 */ 4008 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4009 { 4010 return kvm_arch_vcpu_in_kernel(vcpu); 4011 } 4012 4013 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4014 { 4015 return false; 4016 } 4017 4018 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4019 { 4020 struct kvm *kvm = me->kvm; 4021 struct kvm_vcpu *vcpu; 4022 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4023 unsigned long i; 4024 int yielded = 0; 4025 int try = 3; 4026 int pass; 4027 4028 kvm_vcpu_set_in_spin_loop(me, true); 4029 /* 4030 * We boost the priority of a VCPU that is runnable but not 4031 * currently running, because it got preempted by something 4032 * else and called schedule in __vcpu_run. Hopefully that 4033 * VCPU is holding the lock that we need and will release it. 4034 * We approximate round-robin by starting at the last boosted VCPU. 4035 */ 4036 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4037 kvm_for_each_vcpu(i, vcpu, kvm) { 4038 if (!pass && i <= last_boosted_vcpu) { 4039 i = last_boosted_vcpu; 4040 continue; 4041 } else if (pass && i > last_boosted_vcpu) 4042 break; 4043 if (!READ_ONCE(vcpu->ready)) 4044 continue; 4045 if (vcpu == me) 4046 continue; 4047 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4048 continue; 4049 4050 /* 4051 * Treat the target vCPU as being in-kernel if it has a 4052 * pending interrupt, as the vCPU trying to yield may 4053 * be spinning waiting on IPI delivery, i.e. the target 4054 * vCPU is in-kernel for the purposes of directed yield. 4055 */ 4056 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4057 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4058 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4059 continue; 4060 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4061 continue; 4062 4063 yielded = kvm_vcpu_yield_to(vcpu); 4064 if (yielded > 0) { 4065 kvm->last_boosted_vcpu = i; 4066 break; 4067 } else if (yielded < 0) { 4068 try--; 4069 if (!try) 4070 break; 4071 } 4072 } 4073 } 4074 kvm_vcpu_set_in_spin_loop(me, false); 4075 4076 /* Ensure vcpu is not eligible during next spinloop */ 4077 kvm_vcpu_set_dy_eligible(me, false); 4078 } 4079 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4080 4081 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4082 { 4083 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4084 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4085 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4086 kvm->dirty_ring_size / PAGE_SIZE); 4087 #else 4088 return false; 4089 #endif 4090 } 4091 4092 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4093 { 4094 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4095 struct page *page; 4096 4097 if (vmf->pgoff == 0) 4098 page = virt_to_page(vcpu->run); 4099 #ifdef CONFIG_X86 4100 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4101 page = virt_to_page(vcpu->arch.pio_data); 4102 #endif 4103 #ifdef CONFIG_KVM_MMIO 4104 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4105 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4106 #endif 4107 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4108 page = kvm_dirty_ring_get_page( 4109 &vcpu->dirty_ring, 4110 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4111 else 4112 return kvm_arch_vcpu_fault(vcpu, vmf); 4113 get_page(page); 4114 vmf->page = page; 4115 return 0; 4116 } 4117 4118 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4119 .fault = kvm_vcpu_fault, 4120 }; 4121 4122 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4123 { 4124 struct kvm_vcpu *vcpu = file->private_data; 4125 unsigned long pages = vma_pages(vma); 4126 4127 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4128 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4129 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4130 return -EINVAL; 4131 4132 vma->vm_ops = &kvm_vcpu_vm_ops; 4133 return 0; 4134 } 4135 4136 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4137 { 4138 struct kvm_vcpu *vcpu = filp->private_data; 4139 4140 kvm_put_kvm(vcpu->kvm); 4141 return 0; 4142 } 4143 4144 static struct file_operations kvm_vcpu_fops = { 4145 .release = kvm_vcpu_release, 4146 .unlocked_ioctl = kvm_vcpu_ioctl, 4147 .mmap = kvm_vcpu_mmap, 4148 .llseek = noop_llseek, 4149 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4150 }; 4151 4152 /* 4153 * Allocates an inode for the vcpu. 4154 */ 4155 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4156 { 4157 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4158 4159 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4160 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4161 } 4162 4163 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4164 static int vcpu_get_pid(void *data, u64 *val) 4165 { 4166 struct kvm_vcpu *vcpu = data; 4167 4168 rcu_read_lock(); 4169 *val = pid_nr(rcu_dereference(vcpu->pid)); 4170 rcu_read_unlock(); 4171 return 0; 4172 } 4173 4174 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4175 4176 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4177 { 4178 struct dentry *debugfs_dentry; 4179 char dir_name[ITOA_MAX_LEN * 2]; 4180 4181 if (!debugfs_initialized()) 4182 return; 4183 4184 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4185 debugfs_dentry = debugfs_create_dir(dir_name, 4186 vcpu->kvm->debugfs_dentry); 4187 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4188 &vcpu_get_pid_fops); 4189 4190 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4191 } 4192 #endif 4193 4194 /* 4195 * Creates some virtual cpus. Good luck creating more than one. 4196 */ 4197 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4198 { 4199 int r; 4200 struct kvm_vcpu *vcpu; 4201 struct page *page; 4202 4203 if (id >= KVM_MAX_VCPU_IDS) 4204 return -EINVAL; 4205 4206 mutex_lock(&kvm->lock); 4207 if (kvm->created_vcpus >= kvm->max_vcpus) { 4208 mutex_unlock(&kvm->lock); 4209 return -EINVAL; 4210 } 4211 4212 r = kvm_arch_vcpu_precreate(kvm, id); 4213 if (r) { 4214 mutex_unlock(&kvm->lock); 4215 return r; 4216 } 4217 4218 kvm->created_vcpus++; 4219 mutex_unlock(&kvm->lock); 4220 4221 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4222 if (!vcpu) { 4223 r = -ENOMEM; 4224 goto vcpu_decrement; 4225 } 4226 4227 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4228 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4229 if (!page) { 4230 r = -ENOMEM; 4231 goto vcpu_free; 4232 } 4233 vcpu->run = page_address(page); 4234 4235 kvm_vcpu_init(vcpu, kvm, id); 4236 4237 r = kvm_arch_vcpu_create(vcpu); 4238 if (r) 4239 goto vcpu_free_run_page; 4240 4241 if (kvm->dirty_ring_size) { 4242 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4243 id, kvm->dirty_ring_size); 4244 if (r) 4245 goto arch_vcpu_destroy; 4246 } 4247 4248 mutex_lock(&kvm->lock); 4249 4250 #ifdef CONFIG_LOCKDEP 4251 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4252 mutex_lock(&vcpu->mutex); 4253 mutex_unlock(&vcpu->mutex); 4254 #endif 4255 4256 if (kvm_get_vcpu_by_id(kvm, id)) { 4257 r = -EEXIST; 4258 goto unlock_vcpu_destroy; 4259 } 4260 4261 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4262 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4263 if (r) 4264 goto unlock_vcpu_destroy; 4265 4266 /* Now it's all set up, let userspace reach it */ 4267 kvm_get_kvm(kvm); 4268 r = create_vcpu_fd(vcpu); 4269 if (r < 0) 4270 goto kvm_put_xa_release; 4271 4272 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4273 r = -EINVAL; 4274 goto kvm_put_xa_release; 4275 } 4276 4277 /* 4278 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4279 * pointer before kvm->online_vcpu's incremented value. 4280 */ 4281 smp_wmb(); 4282 atomic_inc(&kvm->online_vcpus); 4283 4284 mutex_unlock(&kvm->lock); 4285 kvm_arch_vcpu_postcreate(vcpu); 4286 kvm_create_vcpu_debugfs(vcpu); 4287 return r; 4288 4289 kvm_put_xa_release: 4290 kvm_put_kvm_no_destroy(kvm); 4291 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4292 unlock_vcpu_destroy: 4293 mutex_unlock(&kvm->lock); 4294 kvm_dirty_ring_free(&vcpu->dirty_ring); 4295 arch_vcpu_destroy: 4296 kvm_arch_vcpu_destroy(vcpu); 4297 vcpu_free_run_page: 4298 free_page((unsigned long)vcpu->run); 4299 vcpu_free: 4300 kmem_cache_free(kvm_vcpu_cache, vcpu); 4301 vcpu_decrement: 4302 mutex_lock(&kvm->lock); 4303 kvm->created_vcpus--; 4304 mutex_unlock(&kvm->lock); 4305 return r; 4306 } 4307 4308 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4309 { 4310 if (sigset) { 4311 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4312 vcpu->sigset_active = 1; 4313 vcpu->sigset = *sigset; 4314 } else 4315 vcpu->sigset_active = 0; 4316 return 0; 4317 } 4318 4319 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4320 size_t size, loff_t *offset) 4321 { 4322 struct kvm_vcpu *vcpu = file->private_data; 4323 4324 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4325 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4326 sizeof(vcpu->stat), user_buffer, size, offset); 4327 } 4328 4329 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4330 { 4331 struct kvm_vcpu *vcpu = file->private_data; 4332 4333 kvm_put_kvm(vcpu->kvm); 4334 return 0; 4335 } 4336 4337 static const struct file_operations kvm_vcpu_stats_fops = { 4338 .owner = THIS_MODULE, 4339 .read = kvm_vcpu_stats_read, 4340 .release = kvm_vcpu_stats_release, 4341 .llseek = noop_llseek, 4342 }; 4343 4344 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4345 { 4346 int fd; 4347 struct file *file; 4348 char name[15 + ITOA_MAX_LEN + 1]; 4349 4350 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4351 4352 fd = get_unused_fd_flags(O_CLOEXEC); 4353 if (fd < 0) 4354 return fd; 4355 4356 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4357 if (IS_ERR(file)) { 4358 put_unused_fd(fd); 4359 return PTR_ERR(file); 4360 } 4361 4362 kvm_get_kvm(vcpu->kvm); 4363 4364 file->f_mode |= FMODE_PREAD; 4365 fd_install(fd, file); 4366 4367 return fd; 4368 } 4369 4370 static long kvm_vcpu_ioctl(struct file *filp, 4371 unsigned int ioctl, unsigned long arg) 4372 { 4373 struct kvm_vcpu *vcpu = filp->private_data; 4374 void __user *argp = (void __user *)arg; 4375 int r; 4376 struct kvm_fpu *fpu = NULL; 4377 struct kvm_sregs *kvm_sregs = NULL; 4378 4379 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4380 return -EIO; 4381 4382 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4383 return -EINVAL; 4384 4385 /* 4386 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4387 * execution; mutex_lock() would break them. 4388 */ 4389 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4390 if (r != -ENOIOCTLCMD) 4391 return r; 4392 4393 if (mutex_lock_killable(&vcpu->mutex)) 4394 return -EINTR; 4395 switch (ioctl) { 4396 case KVM_RUN: { 4397 struct pid *oldpid; 4398 r = -EINVAL; 4399 if (arg) 4400 goto out; 4401 oldpid = rcu_access_pointer(vcpu->pid); 4402 if (unlikely(oldpid != task_pid(current))) { 4403 /* The thread running this VCPU changed. */ 4404 struct pid *newpid; 4405 4406 r = kvm_arch_vcpu_run_pid_change(vcpu); 4407 if (r) 4408 break; 4409 4410 newpid = get_task_pid(current, PIDTYPE_PID); 4411 rcu_assign_pointer(vcpu->pid, newpid); 4412 if (oldpid) 4413 synchronize_rcu(); 4414 put_pid(oldpid); 4415 } 4416 r = kvm_arch_vcpu_ioctl_run(vcpu); 4417 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4418 break; 4419 } 4420 case KVM_GET_REGS: { 4421 struct kvm_regs *kvm_regs; 4422 4423 r = -ENOMEM; 4424 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4425 if (!kvm_regs) 4426 goto out; 4427 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4428 if (r) 4429 goto out_free1; 4430 r = -EFAULT; 4431 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4432 goto out_free1; 4433 r = 0; 4434 out_free1: 4435 kfree(kvm_regs); 4436 break; 4437 } 4438 case KVM_SET_REGS: { 4439 struct kvm_regs *kvm_regs; 4440 4441 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4442 if (IS_ERR(kvm_regs)) { 4443 r = PTR_ERR(kvm_regs); 4444 goto out; 4445 } 4446 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4447 kfree(kvm_regs); 4448 break; 4449 } 4450 case KVM_GET_SREGS: { 4451 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4452 GFP_KERNEL_ACCOUNT); 4453 r = -ENOMEM; 4454 if (!kvm_sregs) 4455 goto out; 4456 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4457 if (r) 4458 goto out; 4459 r = -EFAULT; 4460 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4461 goto out; 4462 r = 0; 4463 break; 4464 } 4465 case KVM_SET_SREGS: { 4466 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4467 if (IS_ERR(kvm_sregs)) { 4468 r = PTR_ERR(kvm_sregs); 4469 kvm_sregs = NULL; 4470 goto out; 4471 } 4472 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4473 break; 4474 } 4475 case KVM_GET_MP_STATE: { 4476 struct kvm_mp_state mp_state; 4477 4478 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4479 if (r) 4480 goto out; 4481 r = -EFAULT; 4482 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4483 goto out; 4484 r = 0; 4485 break; 4486 } 4487 case KVM_SET_MP_STATE: { 4488 struct kvm_mp_state mp_state; 4489 4490 r = -EFAULT; 4491 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4492 goto out; 4493 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4494 break; 4495 } 4496 case KVM_TRANSLATE: { 4497 struct kvm_translation tr; 4498 4499 r = -EFAULT; 4500 if (copy_from_user(&tr, argp, sizeof(tr))) 4501 goto out; 4502 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4503 if (r) 4504 goto out; 4505 r = -EFAULT; 4506 if (copy_to_user(argp, &tr, sizeof(tr))) 4507 goto out; 4508 r = 0; 4509 break; 4510 } 4511 case KVM_SET_GUEST_DEBUG: { 4512 struct kvm_guest_debug dbg; 4513 4514 r = -EFAULT; 4515 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4516 goto out; 4517 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4518 break; 4519 } 4520 case KVM_SET_SIGNAL_MASK: { 4521 struct kvm_signal_mask __user *sigmask_arg = argp; 4522 struct kvm_signal_mask kvm_sigmask; 4523 sigset_t sigset, *p; 4524 4525 p = NULL; 4526 if (argp) { 4527 r = -EFAULT; 4528 if (copy_from_user(&kvm_sigmask, argp, 4529 sizeof(kvm_sigmask))) 4530 goto out; 4531 r = -EINVAL; 4532 if (kvm_sigmask.len != sizeof(sigset)) 4533 goto out; 4534 r = -EFAULT; 4535 if (copy_from_user(&sigset, sigmask_arg->sigset, 4536 sizeof(sigset))) 4537 goto out; 4538 p = &sigset; 4539 } 4540 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4541 break; 4542 } 4543 case KVM_GET_FPU: { 4544 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4545 r = -ENOMEM; 4546 if (!fpu) 4547 goto out; 4548 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4549 if (r) 4550 goto out; 4551 r = -EFAULT; 4552 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4553 goto out; 4554 r = 0; 4555 break; 4556 } 4557 case KVM_SET_FPU: { 4558 fpu = memdup_user(argp, sizeof(*fpu)); 4559 if (IS_ERR(fpu)) { 4560 r = PTR_ERR(fpu); 4561 fpu = NULL; 4562 goto out; 4563 } 4564 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4565 break; 4566 } 4567 case KVM_GET_STATS_FD: { 4568 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4569 break; 4570 } 4571 default: 4572 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4573 } 4574 out: 4575 mutex_unlock(&vcpu->mutex); 4576 kfree(fpu); 4577 kfree(kvm_sregs); 4578 return r; 4579 } 4580 4581 #ifdef CONFIG_KVM_COMPAT 4582 static long kvm_vcpu_compat_ioctl(struct file *filp, 4583 unsigned int ioctl, unsigned long arg) 4584 { 4585 struct kvm_vcpu *vcpu = filp->private_data; 4586 void __user *argp = compat_ptr(arg); 4587 int r; 4588 4589 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4590 return -EIO; 4591 4592 switch (ioctl) { 4593 case KVM_SET_SIGNAL_MASK: { 4594 struct kvm_signal_mask __user *sigmask_arg = argp; 4595 struct kvm_signal_mask kvm_sigmask; 4596 sigset_t sigset; 4597 4598 if (argp) { 4599 r = -EFAULT; 4600 if (copy_from_user(&kvm_sigmask, argp, 4601 sizeof(kvm_sigmask))) 4602 goto out; 4603 r = -EINVAL; 4604 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4605 goto out; 4606 r = -EFAULT; 4607 if (get_compat_sigset(&sigset, 4608 (compat_sigset_t __user *)sigmask_arg->sigset)) 4609 goto out; 4610 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4611 } else 4612 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4613 break; 4614 } 4615 default: 4616 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4617 } 4618 4619 out: 4620 return r; 4621 } 4622 #endif 4623 4624 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4625 { 4626 struct kvm_device *dev = filp->private_data; 4627 4628 if (dev->ops->mmap) 4629 return dev->ops->mmap(dev, vma); 4630 4631 return -ENODEV; 4632 } 4633 4634 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4635 int (*accessor)(struct kvm_device *dev, 4636 struct kvm_device_attr *attr), 4637 unsigned long arg) 4638 { 4639 struct kvm_device_attr attr; 4640 4641 if (!accessor) 4642 return -EPERM; 4643 4644 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4645 return -EFAULT; 4646 4647 return accessor(dev, &attr); 4648 } 4649 4650 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4651 unsigned long arg) 4652 { 4653 struct kvm_device *dev = filp->private_data; 4654 4655 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4656 return -EIO; 4657 4658 switch (ioctl) { 4659 case KVM_SET_DEVICE_ATTR: 4660 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4661 case KVM_GET_DEVICE_ATTR: 4662 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4663 case KVM_HAS_DEVICE_ATTR: 4664 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4665 default: 4666 if (dev->ops->ioctl) 4667 return dev->ops->ioctl(dev, ioctl, arg); 4668 4669 return -ENOTTY; 4670 } 4671 } 4672 4673 static int kvm_device_release(struct inode *inode, struct file *filp) 4674 { 4675 struct kvm_device *dev = filp->private_data; 4676 struct kvm *kvm = dev->kvm; 4677 4678 if (dev->ops->release) { 4679 mutex_lock(&kvm->lock); 4680 list_del(&dev->vm_node); 4681 dev->ops->release(dev); 4682 mutex_unlock(&kvm->lock); 4683 } 4684 4685 kvm_put_kvm(kvm); 4686 return 0; 4687 } 4688 4689 static struct file_operations kvm_device_fops = { 4690 .unlocked_ioctl = kvm_device_ioctl, 4691 .release = kvm_device_release, 4692 KVM_COMPAT(kvm_device_ioctl), 4693 .mmap = kvm_device_mmap, 4694 }; 4695 4696 struct kvm_device *kvm_device_from_filp(struct file *filp) 4697 { 4698 if (filp->f_op != &kvm_device_fops) 4699 return NULL; 4700 4701 return filp->private_data; 4702 } 4703 4704 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4705 #ifdef CONFIG_KVM_MPIC 4706 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4707 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4708 #endif 4709 }; 4710 4711 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4712 { 4713 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4714 return -ENOSPC; 4715 4716 if (kvm_device_ops_table[type] != NULL) 4717 return -EEXIST; 4718 4719 kvm_device_ops_table[type] = ops; 4720 return 0; 4721 } 4722 4723 void kvm_unregister_device_ops(u32 type) 4724 { 4725 if (kvm_device_ops_table[type] != NULL) 4726 kvm_device_ops_table[type] = NULL; 4727 } 4728 4729 static int kvm_ioctl_create_device(struct kvm *kvm, 4730 struct kvm_create_device *cd) 4731 { 4732 const struct kvm_device_ops *ops; 4733 struct kvm_device *dev; 4734 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4735 int type; 4736 int ret; 4737 4738 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4739 return -ENODEV; 4740 4741 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4742 ops = kvm_device_ops_table[type]; 4743 if (ops == NULL) 4744 return -ENODEV; 4745 4746 if (test) 4747 return 0; 4748 4749 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4750 if (!dev) 4751 return -ENOMEM; 4752 4753 dev->ops = ops; 4754 dev->kvm = kvm; 4755 4756 mutex_lock(&kvm->lock); 4757 ret = ops->create(dev, type); 4758 if (ret < 0) { 4759 mutex_unlock(&kvm->lock); 4760 kfree(dev); 4761 return ret; 4762 } 4763 list_add(&dev->vm_node, &kvm->devices); 4764 mutex_unlock(&kvm->lock); 4765 4766 if (ops->init) 4767 ops->init(dev); 4768 4769 kvm_get_kvm(kvm); 4770 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4771 if (ret < 0) { 4772 kvm_put_kvm_no_destroy(kvm); 4773 mutex_lock(&kvm->lock); 4774 list_del(&dev->vm_node); 4775 if (ops->release) 4776 ops->release(dev); 4777 mutex_unlock(&kvm->lock); 4778 if (ops->destroy) 4779 ops->destroy(dev); 4780 return ret; 4781 } 4782 4783 cd->fd = ret; 4784 return 0; 4785 } 4786 4787 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4788 { 4789 switch (arg) { 4790 case KVM_CAP_USER_MEMORY: 4791 case KVM_CAP_USER_MEMORY2: 4792 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4793 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4794 case KVM_CAP_INTERNAL_ERROR_DATA: 4795 #ifdef CONFIG_HAVE_KVM_MSI 4796 case KVM_CAP_SIGNAL_MSI: 4797 #endif 4798 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4799 case KVM_CAP_IRQFD: 4800 #endif 4801 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4802 case KVM_CAP_CHECK_EXTENSION_VM: 4803 case KVM_CAP_ENABLE_CAP_VM: 4804 case KVM_CAP_HALT_POLL: 4805 return 1; 4806 #ifdef CONFIG_KVM_MMIO 4807 case KVM_CAP_COALESCED_MMIO: 4808 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4809 case KVM_CAP_COALESCED_PIO: 4810 return 1; 4811 #endif 4812 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4813 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4814 return KVM_DIRTY_LOG_MANUAL_CAPS; 4815 #endif 4816 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4817 case KVM_CAP_IRQ_ROUTING: 4818 return KVM_MAX_IRQ_ROUTES; 4819 #endif 4820 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4821 case KVM_CAP_MULTI_ADDRESS_SPACE: 4822 if (kvm) 4823 return kvm_arch_nr_memslot_as_ids(kvm); 4824 return KVM_MAX_NR_ADDRESS_SPACES; 4825 #endif 4826 case KVM_CAP_NR_MEMSLOTS: 4827 return KVM_USER_MEM_SLOTS; 4828 case KVM_CAP_DIRTY_LOG_RING: 4829 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4830 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4831 #else 4832 return 0; 4833 #endif 4834 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4835 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4836 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4837 #else 4838 return 0; 4839 #endif 4840 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4841 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4842 #endif 4843 case KVM_CAP_BINARY_STATS_FD: 4844 case KVM_CAP_SYSTEM_EVENT_DATA: 4845 case KVM_CAP_DEVICE_CTRL: 4846 return 1; 4847 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4848 case KVM_CAP_MEMORY_ATTRIBUTES: 4849 return kvm_supported_mem_attributes(kvm); 4850 #endif 4851 #ifdef CONFIG_KVM_PRIVATE_MEM 4852 case KVM_CAP_GUEST_MEMFD: 4853 return !kvm || kvm_arch_has_private_mem(kvm); 4854 #endif 4855 default: 4856 break; 4857 } 4858 return kvm_vm_ioctl_check_extension(kvm, arg); 4859 } 4860 4861 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4862 { 4863 int r; 4864 4865 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4866 return -EINVAL; 4867 4868 /* the size should be power of 2 */ 4869 if (!size || (size & (size - 1))) 4870 return -EINVAL; 4871 4872 /* Should be bigger to keep the reserved entries, or a page */ 4873 if (size < kvm_dirty_ring_get_rsvd_entries() * 4874 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4875 return -EINVAL; 4876 4877 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4878 sizeof(struct kvm_dirty_gfn)) 4879 return -E2BIG; 4880 4881 /* We only allow it to set once */ 4882 if (kvm->dirty_ring_size) 4883 return -EINVAL; 4884 4885 mutex_lock(&kvm->lock); 4886 4887 if (kvm->created_vcpus) { 4888 /* We don't allow to change this value after vcpu created */ 4889 r = -EINVAL; 4890 } else { 4891 kvm->dirty_ring_size = size; 4892 r = 0; 4893 } 4894 4895 mutex_unlock(&kvm->lock); 4896 return r; 4897 } 4898 4899 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4900 { 4901 unsigned long i; 4902 struct kvm_vcpu *vcpu; 4903 int cleared = 0; 4904 4905 if (!kvm->dirty_ring_size) 4906 return -EINVAL; 4907 4908 mutex_lock(&kvm->slots_lock); 4909 4910 kvm_for_each_vcpu(i, vcpu, kvm) 4911 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4912 4913 mutex_unlock(&kvm->slots_lock); 4914 4915 if (cleared) 4916 kvm_flush_remote_tlbs(kvm); 4917 4918 return cleared; 4919 } 4920 4921 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4922 struct kvm_enable_cap *cap) 4923 { 4924 return -EINVAL; 4925 } 4926 4927 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4928 { 4929 int i; 4930 4931 lockdep_assert_held(&kvm->slots_lock); 4932 4933 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4934 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4935 return false; 4936 } 4937 4938 return true; 4939 } 4940 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4941 4942 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4943 struct kvm_enable_cap *cap) 4944 { 4945 switch (cap->cap) { 4946 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4947 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4948 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4949 4950 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4951 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4952 4953 if (cap->flags || (cap->args[0] & ~allowed_options)) 4954 return -EINVAL; 4955 kvm->manual_dirty_log_protect = cap->args[0]; 4956 return 0; 4957 } 4958 #endif 4959 case KVM_CAP_HALT_POLL: { 4960 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4961 return -EINVAL; 4962 4963 kvm->max_halt_poll_ns = cap->args[0]; 4964 4965 /* 4966 * Ensure kvm->override_halt_poll_ns does not become visible 4967 * before kvm->max_halt_poll_ns. 4968 * 4969 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4970 */ 4971 smp_wmb(); 4972 kvm->override_halt_poll_ns = true; 4973 4974 return 0; 4975 } 4976 case KVM_CAP_DIRTY_LOG_RING: 4977 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4978 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4979 return -EINVAL; 4980 4981 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4982 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4983 int r = -EINVAL; 4984 4985 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4986 !kvm->dirty_ring_size || cap->flags) 4987 return r; 4988 4989 mutex_lock(&kvm->slots_lock); 4990 4991 /* 4992 * For simplicity, allow enabling ring+bitmap if and only if 4993 * there are no memslots, e.g. to ensure all memslots allocate 4994 * a bitmap after the capability is enabled. 4995 */ 4996 if (kvm_are_all_memslots_empty(kvm)) { 4997 kvm->dirty_ring_with_bitmap = true; 4998 r = 0; 4999 } 5000 5001 mutex_unlock(&kvm->slots_lock); 5002 5003 return r; 5004 } 5005 default: 5006 return kvm_vm_ioctl_enable_cap(kvm, cap); 5007 } 5008 } 5009 5010 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5011 size_t size, loff_t *offset) 5012 { 5013 struct kvm *kvm = file->private_data; 5014 5015 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5016 &kvm_vm_stats_desc[0], &kvm->stat, 5017 sizeof(kvm->stat), user_buffer, size, offset); 5018 } 5019 5020 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5021 { 5022 struct kvm *kvm = file->private_data; 5023 5024 kvm_put_kvm(kvm); 5025 return 0; 5026 } 5027 5028 static const struct file_operations kvm_vm_stats_fops = { 5029 .owner = THIS_MODULE, 5030 .read = kvm_vm_stats_read, 5031 .release = kvm_vm_stats_release, 5032 .llseek = noop_llseek, 5033 }; 5034 5035 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5036 { 5037 int fd; 5038 struct file *file; 5039 5040 fd = get_unused_fd_flags(O_CLOEXEC); 5041 if (fd < 0) 5042 return fd; 5043 5044 file = anon_inode_getfile("kvm-vm-stats", 5045 &kvm_vm_stats_fops, kvm, O_RDONLY); 5046 if (IS_ERR(file)) { 5047 put_unused_fd(fd); 5048 return PTR_ERR(file); 5049 } 5050 5051 kvm_get_kvm(kvm); 5052 5053 file->f_mode |= FMODE_PREAD; 5054 fd_install(fd, file); 5055 5056 return fd; 5057 } 5058 5059 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5060 do { \ 5061 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5062 offsetof(struct kvm_userspace_memory_region2, field)); \ 5063 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5064 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5065 } while (0) 5066 5067 static long kvm_vm_ioctl(struct file *filp, 5068 unsigned int ioctl, unsigned long arg) 5069 { 5070 struct kvm *kvm = filp->private_data; 5071 void __user *argp = (void __user *)arg; 5072 int r; 5073 5074 if (kvm->mm != current->mm || kvm->vm_dead) 5075 return -EIO; 5076 switch (ioctl) { 5077 case KVM_CREATE_VCPU: 5078 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5079 break; 5080 case KVM_ENABLE_CAP: { 5081 struct kvm_enable_cap cap; 5082 5083 r = -EFAULT; 5084 if (copy_from_user(&cap, argp, sizeof(cap))) 5085 goto out; 5086 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5087 break; 5088 } 5089 case KVM_SET_USER_MEMORY_REGION2: 5090 case KVM_SET_USER_MEMORY_REGION: { 5091 struct kvm_userspace_memory_region2 mem; 5092 unsigned long size; 5093 5094 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5095 /* 5096 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5097 * accessed, but avoid leaking kernel memory in case of a bug. 5098 */ 5099 memset(&mem, 0, sizeof(mem)); 5100 size = sizeof(struct kvm_userspace_memory_region); 5101 } else { 5102 size = sizeof(struct kvm_userspace_memory_region2); 5103 } 5104 5105 /* Ensure the common parts of the two structs are identical. */ 5106 SANITY_CHECK_MEM_REGION_FIELD(slot); 5107 SANITY_CHECK_MEM_REGION_FIELD(flags); 5108 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5109 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5110 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5111 5112 r = -EFAULT; 5113 if (copy_from_user(&mem, argp, size)) 5114 goto out; 5115 5116 r = -EINVAL; 5117 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5118 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5119 goto out; 5120 5121 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5122 break; 5123 } 5124 case KVM_GET_DIRTY_LOG: { 5125 struct kvm_dirty_log log; 5126 5127 r = -EFAULT; 5128 if (copy_from_user(&log, argp, sizeof(log))) 5129 goto out; 5130 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5131 break; 5132 } 5133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5134 case KVM_CLEAR_DIRTY_LOG: { 5135 struct kvm_clear_dirty_log log; 5136 5137 r = -EFAULT; 5138 if (copy_from_user(&log, argp, sizeof(log))) 5139 goto out; 5140 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5141 break; 5142 } 5143 #endif 5144 #ifdef CONFIG_KVM_MMIO 5145 case KVM_REGISTER_COALESCED_MMIO: { 5146 struct kvm_coalesced_mmio_zone zone; 5147 5148 r = -EFAULT; 5149 if (copy_from_user(&zone, argp, sizeof(zone))) 5150 goto out; 5151 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5152 break; 5153 } 5154 case KVM_UNREGISTER_COALESCED_MMIO: { 5155 struct kvm_coalesced_mmio_zone zone; 5156 5157 r = -EFAULT; 5158 if (copy_from_user(&zone, argp, sizeof(zone))) 5159 goto out; 5160 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5161 break; 5162 } 5163 #endif 5164 case KVM_IRQFD: { 5165 struct kvm_irqfd data; 5166 5167 r = -EFAULT; 5168 if (copy_from_user(&data, argp, sizeof(data))) 5169 goto out; 5170 r = kvm_irqfd(kvm, &data); 5171 break; 5172 } 5173 case KVM_IOEVENTFD: { 5174 struct kvm_ioeventfd data; 5175 5176 r = -EFAULT; 5177 if (copy_from_user(&data, argp, sizeof(data))) 5178 goto out; 5179 r = kvm_ioeventfd(kvm, &data); 5180 break; 5181 } 5182 #ifdef CONFIG_HAVE_KVM_MSI 5183 case KVM_SIGNAL_MSI: { 5184 struct kvm_msi msi; 5185 5186 r = -EFAULT; 5187 if (copy_from_user(&msi, argp, sizeof(msi))) 5188 goto out; 5189 r = kvm_send_userspace_msi(kvm, &msi); 5190 break; 5191 } 5192 #endif 5193 #ifdef __KVM_HAVE_IRQ_LINE 5194 case KVM_IRQ_LINE_STATUS: 5195 case KVM_IRQ_LINE: { 5196 struct kvm_irq_level irq_event; 5197 5198 r = -EFAULT; 5199 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5200 goto out; 5201 5202 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5203 ioctl == KVM_IRQ_LINE_STATUS); 5204 if (r) 5205 goto out; 5206 5207 r = -EFAULT; 5208 if (ioctl == KVM_IRQ_LINE_STATUS) { 5209 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5210 goto out; 5211 } 5212 5213 r = 0; 5214 break; 5215 } 5216 #endif 5217 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5218 case KVM_SET_GSI_ROUTING: { 5219 struct kvm_irq_routing routing; 5220 struct kvm_irq_routing __user *urouting; 5221 struct kvm_irq_routing_entry *entries = NULL; 5222 5223 r = -EFAULT; 5224 if (copy_from_user(&routing, argp, sizeof(routing))) 5225 goto out; 5226 r = -EINVAL; 5227 if (!kvm_arch_can_set_irq_routing(kvm)) 5228 goto out; 5229 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5230 goto out; 5231 if (routing.flags) 5232 goto out; 5233 if (routing.nr) { 5234 urouting = argp; 5235 entries = vmemdup_array_user(urouting->entries, 5236 routing.nr, sizeof(*entries)); 5237 if (IS_ERR(entries)) { 5238 r = PTR_ERR(entries); 5239 goto out; 5240 } 5241 } 5242 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5243 routing.flags); 5244 kvfree(entries); 5245 break; 5246 } 5247 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5248 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5249 case KVM_SET_MEMORY_ATTRIBUTES: { 5250 struct kvm_memory_attributes attrs; 5251 5252 r = -EFAULT; 5253 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5254 goto out; 5255 5256 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5257 break; 5258 } 5259 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5260 case KVM_CREATE_DEVICE: { 5261 struct kvm_create_device cd; 5262 5263 r = -EFAULT; 5264 if (copy_from_user(&cd, argp, sizeof(cd))) 5265 goto out; 5266 5267 r = kvm_ioctl_create_device(kvm, &cd); 5268 if (r) 5269 goto out; 5270 5271 r = -EFAULT; 5272 if (copy_to_user(argp, &cd, sizeof(cd))) 5273 goto out; 5274 5275 r = 0; 5276 break; 5277 } 5278 case KVM_CHECK_EXTENSION: 5279 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5280 break; 5281 case KVM_RESET_DIRTY_RINGS: 5282 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5283 break; 5284 case KVM_GET_STATS_FD: 5285 r = kvm_vm_ioctl_get_stats_fd(kvm); 5286 break; 5287 #ifdef CONFIG_KVM_PRIVATE_MEM 5288 case KVM_CREATE_GUEST_MEMFD: { 5289 struct kvm_create_guest_memfd guest_memfd; 5290 5291 r = -EFAULT; 5292 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5293 goto out; 5294 5295 r = kvm_gmem_create(kvm, &guest_memfd); 5296 break; 5297 } 5298 #endif 5299 default: 5300 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5301 } 5302 out: 5303 return r; 5304 } 5305 5306 #ifdef CONFIG_KVM_COMPAT 5307 struct compat_kvm_dirty_log { 5308 __u32 slot; 5309 __u32 padding1; 5310 union { 5311 compat_uptr_t dirty_bitmap; /* one bit per page */ 5312 __u64 padding2; 5313 }; 5314 }; 5315 5316 struct compat_kvm_clear_dirty_log { 5317 __u32 slot; 5318 __u32 num_pages; 5319 __u64 first_page; 5320 union { 5321 compat_uptr_t dirty_bitmap; /* one bit per page */ 5322 __u64 padding2; 5323 }; 5324 }; 5325 5326 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5327 unsigned long arg) 5328 { 5329 return -ENOTTY; 5330 } 5331 5332 static long kvm_vm_compat_ioctl(struct file *filp, 5333 unsigned int ioctl, unsigned long arg) 5334 { 5335 struct kvm *kvm = filp->private_data; 5336 int r; 5337 5338 if (kvm->mm != current->mm || kvm->vm_dead) 5339 return -EIO; 5340 5341 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5342 if (r != -ENOTTY) 5343 return r; 5344 5345 switch (ioctl) { 5346 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5347 case KVM_CLEAR_DIRTY_LOG: { 5348 struct compat_kvm_clear_dirty_log compat_log; 5349 struct kvm_clear_dirty_log log; 5350 5351 if (copy_from_user(&compat_log, (void __user *)arg, 5352 sizeof(compat_log))) 5353 return -EFAULT; 5354 log.slot = compat_log.slot; 5355 log.num_pages = compat_log.num_pages; 5356 log.first_page = compat_log.first_page; 5357 log.padding2 = compat_log.padding2; 5358 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5359 5360 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5361 break; 5362 } 5363 #endif 5364 case KVM_GET_DIRTY_LOG: { 5365 struct compat_kvm_dirty_log compat_log; 5366 struct kvm_dirty_log log; 5367 5368 if (copy_from_user(&compat_log, (void __user *)arg, 5369 sizeof(compat_log))) 5370 return -EFAULT; 5371 log.slot = compat_log.slot; 5372 log.padding1 = compat_log.padding1; 5373 log.padding2 = compat_log.padding2; 5374 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5375 5376 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5377 break; 5378 } 5379 default: 5380 r = kvm_vm_ioctl(filp, ioctl, arg); 5381 } 5382 return r; 5383 } 5384 #endif 5385 5386 static struct file_operations kvm_vm_fops = { 5387 .release = kvm_vm_release, 5388 .unlocked_ioctl = kvm_vm_ioctl, 5389 .llseek = noop_llseek, 5390 KVM_COMPAT(kvm_vm_compat_ioctl), 5391 }; 5392 5393 bool file_is_kvm(struct file *file) 5394 { 5395 return file && file->f_op == &kvm_vm_fops; 5396 } 5397 EXPORT_SYMBOL_GPL(file_is_kvm); 5398 5399 static int kvm_dev_ioctl_create_vm(unsigned long type) 5400 { 5401 char fdname[ITOA_MAX_LEN + 1]; 5402 int r, fd; 5403 struct kvm *kvm; 5404 struct file *file; 5405 5406 fd = get_unused_fd_flags(O_CLOEXEC); 5407 if (fd < 0) 5408 return fd; 5409 5410 snprintf(fdname, sizeof(fdname), "%d", fd); 5411 5412 kvm = kvm_create_vm(type, fdname); 5413 if (IS_ERR(kvm)) { 5414 r = PTR_ERR(kvm); 5415 goto put_fd; 5416 } 5417 5418 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5419 if (IS_ERR(file)) { 5420 r = PTR_ERR(file); 5421 goto put_kvm; 5422 } 5423 5424 /* 5425 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5426 * already set, with ->release() being kvm_vm_release(). In error 5427 * cases it will be called by the final fput(file) and will take 5428 * care of doing kvm_put_kvm(kvm). 5429 */ 5430 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5431 5432 fd_install(fd, file); 5433 return fd; 5434 5435 put_kvm: 5436 kvm_put_kvm(kvm); 5437 put_fd: 5438 put_unused_fd(fd); 5439 return r; 5440 } 5441 5442 static long kvm_dev_ioctl(struct file *filp, 5443 unsigned int ioctl, unsigned long arg) 5444 { 5445 int r = -EINVAL; 5446 5447 switch (ioctl) { 5448 case KVM_GET_API_VERSION: 5449 if (arg) 5450 goto out; 5451 r = KVM_API_VERSION; 5452 break; 5453 case KVM_CREATE_VM: 5454 r = kvm_dev_ioctl_create_vm(arg); 5455 break; 5456 case KVM_CHECK_EXTENSION: 5457 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5458 break; 5459 case KVM_GET_VCPU_MMAP_SIZE: 5460 if (arg) 5461 goto out; 5462 r = PAGE_SIZE; /* struct kvm_run */ 5463 #ifdef CONFIG_X86 5464 r += PAGE_SIZE; /* pio data page */ 5465 #endif 5466 #ifdef CONFIG_KVM_MMIO 5467 r += PAGE_SIZE; /* coalesced mmio ring page */ 5468 #endif 5469 break; 5470 default: 5471 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5472 } 5473 out: 5474 return r; 5475 } 5476 5477 static struct file_operations kvm_chardev_ops = { 5478 .unlocked_ioctl = kvm_dev_ioctl, 5479 .llseek = noop_llseek, 5480 KVM_COMPAT(kvm_dev_ioctl), 5481 }; 5482 5483 static struct miscdevice kvm_dev = { 5484 KVM_MINOR, 5485 "kvm", 5486 &kvm_chardev_ops, 5487 }; 5488 5489 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5490 __visible bool kvm_rebooting; 5491 EXPORT_SYMBOL_GPL(kvm_rebooting); 5492 5493 static DEFINE_PER_CPU(bool, hardware_enabled); 5494 static int kvm_usage_count; 5495 5496 static int __hardware_enable_nolock(void) 5497 { 5498 if (__this_cpu_read(hardware_enabled)) 5499 return 0; 5500 5501 if (kvm_arch_hardware_enable()) { 5502 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5503 raw_smp_processor_id()); 5504 return -EIO; 5505 } 5506 5507 __this_cpu_write(hardware_enabled, true); 5508 return 0; 5509 } 5510 5511 static void hardware_enable_nolock(void *failed) 5512 { 5513 if (__hardware_enable_nolock()) 5514 atomic_inc(failed); 5515 } 5516 5517 static int kvm_online_cpu(unsigned int cpu) 5518 { 5519 int ret = 0; 5520 5521 /* 5522 * Abort the CPU online process if hardware virtualization cannot 5523 * be enabled. Otherwise running VMs would encounter unrecoverable 5524 * errors when scheduled to this CPU. 5525 */ 5526 mutex_lock(&kvm_lock); 5527 if (kvm_usage_count) 5528 ret = __hardware_enable_nolock(); 5529 mutex_unlock(&kvm_lock); 5530 return ret; 5531 } 5532 5533 static void hardware_disable_nolock(void *junk) 5534 { 5535 /* 5536 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5537 * hardware, not just CPUs that successfully enabled hardware! 5538 */ 5539 if (!__this_cpu_read(hardware_enabled)) 5540 return; 5541 5542 kvm_arch_hardware_disable(); 5543 5544 __this_cpu_write(hardware_enabled, false); 5545 } 5546 5547 static int kvm_offline_cpu(unsigned int cpu) 5548 { 5549 mutex_lock(&kvm_lock); 5550 if (kvm_usage_count) 5551 hardware_disable_nolock(NULL); 5552 mutex_unlock(&kvm_lock); 5553 return 0; 5554 } 5555 5556 static void hardware_disable_all_nolock(void) 5557 { 5558 BUG_ON(!kvm_usage_count); 5559 5560 kvm_usage_count--; 5561 if (!kvm_usage_count) 5562 on_each_cpu(hardware_disable_nolock, NULL, 1); 5563 } 5564 5565 static void hardware_disable_all(void) 5566 { 5567 cpus_read_lock(); 5568 mutex_lock(&kvm_lock); 5569 hardware_disable_all_nolock(); 5570 mutex_unlock(&kvm_lock); 5571 cpus_read_unlock(); 5572 } 5573 5574 static int hardware_enable_all(void) 5575 { 5576 atomic_t failed = ATOMIC_INIT(0); 5577 int r; 5578 5579 /* 5580 * Do not enable hardware virtualization if the system is going down. 5581 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5582 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5583 * after kvm_reboot() is called. Note, this relies on system_state 5584 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5585 * hook instead of registering a dedicated reboot notifier (the latter 5586 * runs before system_state is updated). 5587 */ 5588 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5589 system_state == SYSTEM_RESTART) 5590 return -EBUSY; 5591 5592 /* 5593 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5594 * is called, and so on_each_cpu() between them includes the CPU that 5595 * is being onlined. As a result, hardware_enable_nolock() may get 5596 * invoked before kvm_online_cpu(), which also enables hardware if the 5597 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5598 * enable hardware multiple times. 5599 */ 5600 cpus_read_lock(); 5601 mutex_lock(&kvm_lock); 5602 5603 r = 0; 5604 5605 kvm_usage_count++; 5606 if (kvm_usage_count == 1) { 5607 on_each_cpu(hardware_enable_nolock, &failed, 1); 5608 5609 if (atomic_read(&failed)) { 5610 hardware_disable_all_nolock(); 5611 r = -EBUSY; 5612 } 5613 } 5614 5615 mutex_unlock(&kvm_lock); 5616 cpus_read_unlock(); 5617 5618 return r; 5619 } 5620 5621 static void kvm_shutdown(void) 5622 { 5623 /* 5624 * Disable hardware virtualization and set kvm_rebooting to indicate 5625 * that KVM has asynchronously disabled hardware virtualization, i.e. 5626 * that relevant errors and exceptions aren't entirely unexpected. 5627 * Some flavors of hardware virtualization need to be disabled before 5628 * transferring control to firmware (to perform shutdown/reboot), e.g. 5629 * on x86, virtualization can block INIT interrupts, which are used by 5630 * firmware to pull APs back under firmware control. Note, this path 5631 * is used for both shutdown and reboot scenarios, i.e. neither name is 5632 * 100% comprehensive. 5633 */ 5634 pr_info("kvm: exiting hardware virtualization\n"); 5635 kvm_rebooting = true; 5636 on_each_cpu(hardware_disable_nolock, NULL, 1); 5637 } 5638 5639 static int kvm_suspend(void) 5640 { 5641 /* 5642 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5643 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5644 * is stable. Assert that kvm_lock is not held to ensure the system 5645 * isn't suspended while KVM is enabling hardware. Hardware enabling 5646 * can be preempted, but the task cannot be frozen until it has dropped 5647 * all locks (userspace tasks are frozen via a fake signal). 5648 */ 5649 lockdep_assert_not_held(&kvm_lock); 5650 lockdep_assert_irqs_disabled(); 5651 5652 if (kvm_usage_count) 5653 hardware_disable_nolock(NULL); 5654 return 0; 5655 } 5656 5657 static void kvm_resume(void) 5658 { 5659 lockdep_assert_not_held(&kvm_lock); 5660 lockdep_assert_irqs_disabled(); 5661 5662 if (kvm_usage_count) 5663 WARN_ON_ONCE(__hardware_enable_nolock()); 5664 } 5665 5666 static struct syscore_ops kvm_syscore_ops = { 5667 .suspend = kvm_suspend, 5668 .resume = kvm_resume, 5669 .shutdown = kvm_shutdown, 5670 }; 5671 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5672 static int hardware_enable_all(void) 5673 { 5674 return 0; 5675 } 5676 5677 static void hardware_disable_all(void) 5678 { 5679 5680 } 5681 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5682 5683 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5684 { 5685 if (dev->ops->destructor) 5686 dev->ops->destructor(dev); 5687 } 5688 5689 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5690 { 5691 int i; 5692 5693 for (i = 0; i < bus->dev_count; i++) { 5694 struct kvm_io_device *pos = bus->range[i].dev; 5695 5696 kvm_iodevice_destructor(pos); 5697 } 5698 kfree(bus); 5699 } 5700 5701 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5702 const struct kvm_io_range *r2) 5703 { 5704 gpa_t addr1 = r1->addr; 5705 gpa_t addr2 = r2->addr; 5706 5707 if (addr1 < addr2) 5708 return -1; 5709 5710 /* If r2->len == 0, match the exact address. If r2->len != 0, 5711 * accept any overlapping write. Any order is acceptable for 5712 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5713 * we process all of them. 5714 */ 5715 if (r2->len) { 5716 addr1 += r1->len; 5717 addr2 += r2->len; 5718 } 5719 5720 if (addr1 > addr2) 5721 return 1; 5722 5723 return 0; 5724 } 5725 5726 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5727 { 5728 return kvm_io_bus_cmp(p1, p2); 5729 } 5730 5731 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5732 gpa_t addr, int len) 5733 { 5734 struct kvm_io_range *range, key; 5735 int off; 5736 5737 key = (struct kvm_io_range) { 5738 .addr = addr, 5739 .len = len, 5740 }; 5741 5742 range = bsearch(&key, bus->range, bus->dev_count, 5743 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5744 if (range == NULL) 5745 return -ENOENT; 5746 5747 off = range - bus->range; 5748 5749 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5750 off--; 5751 5752 return off; 5753 } 5754 5755 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5756 struct kvm_io_range *range, const void *val) 5757 { 5758 int idx; 5759 5760 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5761 if (idx < 0) 5762 return -EOPNOTSUPP; 5763 5764 while (idx < bus->dev_count && 5765 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5766 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5767 range->len, val)) 5768 return idx; 5769 idx++; 5770 } 5771 5772 return -EOPNOTSUPP; 5773 } 5774 5775 /* kvm_io_bus_write - called under kvm->slots_lock */ 5776 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5777 int len, const void *val) 5778 { 5779 struct kvm_io_bus *bus; 5780 struct kvm_io_range range; 5781 int r; 5782 5783 range = (struct kvm_io_range) { 5784 .addr = addr, 5785 .len = len, 5786 }; 5787 5788 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5789 if (!bus) 5790 return -ENOMEM; 5791 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5792 return r < 0 ? r : 0; 5793 } 5794 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5795 5796 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5797 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5798 gpa_t addr, int len, const void *val, long cookie) 5799 { 5800 struct kvm_io_bus *bus; 5801 struct kvm_io_range range; 5802 5803 range = (struct kvm_io_range) { 5804 .addr = addr, 5805 .len = len, 5806 }; 5807 5808 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5809 if (!bus) 5810 return -ENOMEM; 5811 5812 /* First try the device referenced by cookie. */ 5813 if ((cookie >= 0) && (cookie < bus->dev_count) && 5814 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5815 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5816 val)) 5817 return cookie; 5818 5819 /* 5820 * cookie contained garbage; fall back to search and return the 5821 * correct cookie value. 5822 */ 5823 return __kvm_io_bus_write(vcpu, bus, &range, val); 5824 } 5825 5826 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5827 struct kvm_io_range *range, void *val) 5828 { 5829 int idx; 5830 5831 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5832 if (idx < 0) 5833 return -EOPNOTSUPP; 5834 5835 while (idx < bus->dev_count && 5836 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5837 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5838 range->len, val)) 5839 return idx; 5840 idx++; 5841 } 5842 5843 return -EOPNOTSUPP; 5844 } 5845 5846 /* kvm_io_bus_read - called under kvm->slots_lock */ 5847 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5848 int len, void *val) 5849 { 5850 struct kvm_io_bus *bus; 5851 struct kvm_io_range range; 5852 int r; 5853 5854 range = (struct kvm_io_range) { 5855 .addr = addr, 5856 .len = len, 5857 }; 5858 5859 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5860 if (!bus) 5861 return -ENOMEM; 5862 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5863 return r < 0 ? r : 0; 5864 } 5865 5866 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5867 int len, struct kvm_io_device *dev) 5868 { 5869 int i; 5870 struct kvm_io_bus *new_bus, *bus; 5871 struct kvm_io_range range; 5872 5873 lockdep_assert_held(&kvm->slots_lock); 5874 5875 bus = kvm_get_bus(kvm, bus_idx); 5876 if (!bus) 5877 return -ENOMEM; 5878 5879 /* exclude ioeventfd which is limited by maximum fd */ 5880 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5881 return -ENOSPC; 5882 5883 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5884 GFP_KERNEL_ACCOUNT); 5885 if (!new_bus) 5886 return -ENOMEM; 5887 5888 range = (struct kvm_io_range) { 5889 .addr = addr, 5890 .len = len, 5891 .dev = dev, 5892 }; 5893 5894 for (i = 0; i < bus->dev_count; i++) 5895 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5896 break; 5897 5898 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5899 new_bus->dev_count++; 5900 new_bus->range[i] = range; 5901 memcpy(new_bus->range + i + 1, bus->range + i, 5902 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5903 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5904 synchronize_srcu_expedited(&kvm->srcu); 5905 kfree(bus); 5906 5907 return 0; 5908 } 5909 5910 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5911 struct kvm_io_device *dev) 5912 { 5913 int i; 5914 struct kvm_io_bus *new_bus, *bus; 5915 5916 lockdep_assert_held(&kvm->slots_lock); 5917 5918 bus = kvm_get_bus(kvm, bus_idx); 5919 if (!bus) 5920 return 0; 5921 5922 for (i = 0; i < bus->dev_count; i++) { 5923 if (bus->range[i].dev == dev) { 5924 break; 5925 } 5926 } 5927 5928 if (i == bus->dev_count) 5929 return 0; 5930 5931 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5932 GFP_KERNEL_ACCOUNT); 5933 if (new_bus) { 5934 memcpy(new_bus, bus, struct_size(bus, range, i)); 5935 new_bus->dev_count--; 5936 memcpy(new_bus->range + i, bus->range + i + 1, 5937 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5938 } 5939 5940 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5941 synchronize_srcu_expedited(&kvm->srcu); 5942 5943 /* 5944 * If NULL bus is installed, destroy the old bus, including all the 5945 * attached devices. Otherwise, destroy the caller's device only. 5946 */ 5947 if (!new_bus) { 5948 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5949 kvm_io_bus_destroy(bus); 5950 return -ENOMEM; 5951 } 5952 5953 kvm_iodevice_destructor(dev); 5954 kfree(bus); 5955 return 0; 5956 } 5957 5958 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5959 gpa_t addr) 5960 { 5961 struct kvm_io_bus *bus; 5962 int dev_idx, srcu_idx; 5963 struct kvm_io_device *iodev = NULL; 5964 5965 srcu_idx = srcu_read_lock(&kvm->srcu); 5966 5967 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5968 if (!bus) 5969 goto out_unlock; 5970 5971 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5972 if (dev_idx < 0) 5973 goto out_unlock; 5974 5975 iodev = bus->range[dev_idx].dev; 5976 5977 out_unlock: 5978 srcu_read_unlock(&kvm->srcu, srcu_idx); 5979 5980 return iodev; 5981 } 5982 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5983 5984 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5985 int (*get)(void *, u64 *), int (*set)(void *, u64), 5986 const char *fmt) 5987 { 5988 int ret; 5989 struct kvm_stat_data *stat_data = inode->i_private; 5990 5991 /* 5992 * The debugfs files are a reference to the kvm struct which 5993 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5994 * avoids the race between open and the removal of the debugfs directory. 5995 */ 5996 if (!kvm_get_kvm_safe(stat_data->kvm)) 5997 return -ENOENT; 5998 5999 ret = simple_attr_open(inode, file, get, 6000 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6001 ? set : NULL, fmt); 6002 if (ret) 6003 kvm_put_kvm(stat_data->kvm); 6004 6005 return ret; 6006 } 6007 6008 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6009 { 6010 struct kvm_stat_data *stat_data = inode->i_private; 6011 6012 simple_attr_release(inode, file); 6013 kvm_put_kvm(stat_data->kvm); 6014 6015 return 0; 6016 } 6017 6018 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6019 { 6020 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6021 6022 return 0; 6023 } 6024 6025 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6026 { 6027 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6028 6029 return 0; 6030 } 6031 6032 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6033 { 6034 unsigned long i; 6035 struct kvm_vcpu *vcpu; 6036 6037 *val = 0; 6038 6039 kvm_for_each_vcpu(i, vcpu, kvm) 6040 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6041 6042 return 0; 6043 } 6044 6045 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6046 { 6047 unsigned long i; 6048 struct kvm_vcpu *vcpu; 6049 6050 kvm_for_each_vcpu(i, vcpu, kvm) 6051 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6052 6053 return 0; 6054 } 6055 6056 static int kvm_stat_data_get(void *data, u64 *val) 6057 { 6058 int r = -EFAULT; 6059 struct kvm_stat_data *stat_data = data; 6060 6061 switch (stat_data->kind) { 6062 case KVM_STAT_VM: 6063 r = kvm_get_stat_per_vm(stat_data->kvm, 6064 stat_data->desc->desc.offset, val); 6065 break; 6066 case KVM_STAT_VCPU: 6067 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6068 stat_data->desc->desc.offset, val); 6069 break; 6070 } 6071 6072 return r; 6073 } 6074 6075 static int kvm_stat_data_clear(void *data, u64 val) 6076 { 6077 int r = -EFAULT; 6078 struct kvm_stat_data *stat_data = data; 6079 6080 if (val) 6081 return -EINVAL; 6082 6083 switch (stat_data->kind) { 6084 case KVM_STAT_VM: 6085 r = kvm_clear_stat_per_vm(stat_data->kvm, 6086 stat_data->desc->desc.offset); 6087 break; 6088 case KVM_STAT_VCPU: 6089 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6090 stat_data->desc->desc.offset); 6091 break; 6092 } 6093 6094 return r; 6095 } 6096 6097 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6098 { 6099 __simple_attr_check_format("%llu\n", 0ull); 6100 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6101 kvm_stat_data_clear, "%llu\n"); 6102 } 6103 6104 static const struct file_operations stat_fops_per_vm = { 6105 .owner = THIS_MODULE, 6106 .open = kvm_stat_data_open, 6107 .release = kvm_debugfs_release, 6108 .read = simple_attr_read, 6109 .write = simple_attr_write, 6110 .llseek = no_llseek, 6111 }; 6112 6113 static int vm_stat_get(void *_offset, u64 *val) 6114 { 6115 unsigned offset = (long)_offset; 6116 struct kvm *kvm; 6117 u64 tmp_val; 6118 6119 *val = 0; 6120 mutex_lock(&kvm_lock); 6121 list_for_each_entry(kvm, &vm_list, vm_list) { 6122 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6123 *val += tmp_val; 6124 } 6125 mutex_unlock(&kvm_lock); 6126 return 0; 6127 } 6128 6129 static int vm_stat_clear(void *_offset, u64 val) 6130 { 6131 unsigned offset = (long)_offset; 6132 struct kvm *kvm; 6133 6134 if (val) 6135 return -EINVAL; 6136 6137 mutex_lock(&kvm_lock); 6138 list_for_each_entry(kvm, &vm_list, vm_list) { 6139 kvm_clear_stat_per_vm(kvm, offset); 6140 } 6141 mutex_unlock(&kvm_lock); 6142 6143 return 0; 6144 } 6145 6146 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6147 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6148 6149 static int vcpu_stat_get(void *_offset, u64 *val) 6150 { 6151 unsigned offset = (long)_offset; 6152 struct kvm *kvm; 6153 u64 tmp_val; 6154 6155 *val = 0; 6156 mutex_lock(&kvm_lock); 6157 list_for_each_entry(kvm, &vm_list, vm_list) { 6158 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6159 *val += tmp_val; 6160 } 6161 mutex_unlock(&kvm_lock); 6162 return 0; 6163 } 6164 6165 static int vcpu_stat_clear(void *_offset, u64 val) 6166 { 6167 unsigned offset = (long)_offset; 6168 struct kvm *kvm; 6169 6170 if (val) 6171 return -EINVAL; 6172 6173 mutex_lock(&kvm_lock); 6174 list_for_each_entry(kvm, &vm_list, vm_list) { 6175 kvm_clear_stat_per_vcpu(kvm, offset); 6176 } 6177 mutex_unlock(&kvm_lock); 6178 6179 return 0; 6180 } 6181 6182 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6183 "%llu\n"); 6184 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6185 6186 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6187 { 6188 struct kobj_uevent_env *env; 6189 unsigned long long created, active; 6190 6191 if (!kvm_dev.this_device || !kvm) 6192 return; 6193 6194 mutex_lock(&kvm_lock); 6195 if (type == KVM_EVENT_CREATE_VM) { 6196 kvm_createvm_count++; 6197 kvm_active_vms++; 6198 } else if (type == KVM_EVENT_DESTROY_VM) { 6199 kvm_active_vms--; 6200 } 6201 created = kvm_createvm_count; 6202 active = kvm_active_vms; 6203 mutex_unlock(&kvm_lock); 6204 6205 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6206 if (!env) 6207 return; 6208 6209 add_uevent_var(env, "CREATED=%llu", created); 6210 add_uevent_var(env, "COUNT=%llu", active); 6211 6212 if (type == KVM_EVENT_CREATE_VM) { 6213 add_uevent_var(env, "EVENT=create"); 6214 kvm->userspace_pid = task_pid_nr(current); 6215 } else if (type == KVM_EVENT_DESTROY_VM) { 6216 add_uevent_var(env, "EVENT=destroy"); 6217 } 6218 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6219 6220 if (!IS_ERR(kvm->debugfs_dentry)) { 6221 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6222 6223 if (p) { 6224 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6225 if (!IS_ERR(tmp)) 6226 add_uevent_var(env, "STATS_PATH=%s", tmp); 6227 kfree(p); 6228 } 6229 } 6230 /* no need for checks, since we are adding at most only 5 keys */ 6231 env->envp[env->envp_idx++] = NULL; 6232 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6233 kfree(env); 6234 } 6235 6236 static void kvm_init_debug(void) 6237 { 6238 const struct file_operations *fops; 6239 const struct _kvm_stats_desc *pdesc; 6240 int i; 6241 6242 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6243 6244 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6245 pdesc = &kvm_vm_stats_desc[i]; 6246 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6247 fops = &vm_stat_fops; 6248 else 6249 fops = &vm_stat_readonly_fops; 6250 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6251 kvm_debugfs_dir, 6252 (void *)(long)pdesc->desc.offset, fops); 6253 } 6254 6255 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6256 pdesc = &kvm_vcpu_stats_desc[i]; 6257 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6258 fops = &vcpu_stat_fops; 6259 else 6260 fops = &vcpu_stat_readonly_fops; 6261 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6262 kvm_debugfs_dir, 6263 (void *)(long)pdesc->desc.offset, fops); 6264 } 6265 } 6266 6267 static inline 6268 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6269 { 6270 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6271 } 6272 6273 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6274 { 6275 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6276 6277 WRITE_ONCE(vcpu->preempted, false); 6278 WRITE_ONCE(vcpu->ready, false); 6279 6280 __this_cpu_write(kvm_running_vcpu, vcpu); 6281 kvm_arch_sched_in(vcpu, cpu); 6282 kvm_arch_vcpu_load(vcpu, cpu); 6283 } 6284 6285 static void kvm_sched_out(struct preempt_notifier *pn, 6286 struct task_struct *next) 6287 { 6288 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6289 6290 if (current->on_rq) { 6291 WRITE_ONCE(vcpu->preempted, true); 6292 WRITE_ONCE(vcpu->ready, true); 6293 } 6294 kvm_arch_vcpu_put(vcpu); 6295 __this_cpu_write(kvm_running_vcpu, NULL); 6296 } 6297 6298 /** 6299 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6300 * 6301 * We can disable preemption locally around accessing the per-CPU variable, 6302 * and use the resolved vcpu pointer after enabling preemption again, 6303 * because even if the current thread is migrated to another CPU, reading 6304 * the per-CPU value later will give us the same value as we update the 6305 * per-CPU variable in the preempt notifier handlers. 6306 */ 6307 struct kvm_vcpu *kvm_get_running_vcpu(void) 6308 { 6309 struct kvm_vcpu *vcpu; 6310 6311 preempt_disable(); 6312 vcpu = __this_cpu_read(kvm_running_vcpu); 6313 preempt_enable(); 6314 6315 return vcpu; 6316 } 6317 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6318 6319 /** 6320 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6321 */ 6322 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6323 { 6324 return &kvm_running_vcpu; 6325 } 6326 6327 #ifdef CONFIG_GUEST_PERF_EVENTS 6328 static unsigned int kvm_guest_state(void) 6329 { 6330 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6331 unsigned int state; 6332 6333 if (!kvm_arch_pmi_in_guest(vcpu)) 6334 return 0; 6335 6336 state = PERF_GUEST_ACTIVE; 6337 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6338 state |= PERF_GUEST_USER; 6339 6340 return state; 6341 } 6342 6343 static unsigned long kvm_guest_get_ip(void) 6344 { 6345 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6346 6347 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6348 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6349 return 0; 6350 6351 return kvm_arch_vcpu_get_ip(vcpu); 6352 } 6353 6354 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6355 .state = kvm_guest_state, 6356 .get_ip = kvm_guest_get_ip, 6357 .handle_intel_pt_intr = NULL, 6358 }; 6359 6360 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6361 { 6362 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6363 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6364 } 6365 void kvm_unregister_perf_callbacks(void) 6366 { 6367 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6368 } 6369 #endif 6370 6371 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6372 { 6373 int r; 6374 int cpu; 6375 6376 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6377 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6378 kvm_online_cpu, kvm_offline_cpu); 6379 if (r) 6380 return r; 6381 6382 register_syscore_ops(&kvm_syscore_ops); 6383 #endif 6384 6385 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6386 if (!vcpu_align) 6387 vcpu_align = __alignof__(struct kvm_vcpu); 6388 kvm_vcpu_cache = 6389 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6390 SLAB_ACCOUNT, 6391 offsetof(struct kvm_vcpu, arch), 6392 offsetofend(struct kvm_vcpu, stats_id) 6393 - offsetof(struct kvm_vcpu, arch), 6394 NULL); 6395 if (!kvm_vcpu_cache) { 6396 r = -ENOMEM; 6397 goto err_vcpu_cache; 6398 } 6399 6400 for_each_possible_cpu(cpu) { 6401 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6402 GFP_KERNEL, cpu_to_node(cpu))) { 6403 r = -ENOMEM; 6404 goto err_cpu_kick_mask; 6405 } 6406 } 6407 6408 r = kvm_irqfd_init(); 6409 if (r) 6410 goto err_irqfd; 6411 6412 r = kvm_async_pf_init(); 6413 if (r) 6414 goto err_async_pf; 6415 6416 kvm_chardev_ops.owner = module; 6417 kvm_vm_fops.owner = module; 6418 kvm_vcpu_fops.owner = module; 6419 kvm_device_fops.owner = module; 6420 6421 kvm_preempt_ops.sched_in = kvm_sched_in; 6422 kvm_preempt_ops.sched_out = kvm_sched_out; 6423 6424 kvm_init_debug(); 6425 6426 r = kvm_vfio_ops_init(); 6427 if (WARN_ON_ONCE(r)) 6428 goto err_vfio; 6429 6430 kvm_gmem_init(module); 6431 6432 /* 6433 * Registration _must_ be the very last thing done, as this exposes 6434 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6435 */ 6436 r = misc_register(&kvm_dev); 6437 if (r) { 6438 pr_err("kvm: misc device register failed\n"); 6439 goto err_register; 6440 } 6441 6442 return 0; 6443 6444 err_register: 6445 kvm_vfio_ops_exit(); 6446 err_vfio: 6447 kvm_async_pf_deinit(); 6448 err_async_pf: 6449 kvm_irqfd_exit(); 6450 err_irqfd: 6451 err_cpu_kick_mask: 6452 for_each_possible_cpu(cpu) 6453 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6454 kmem_cache_destroy(kvm_vcpu_cache); 6455 err_vcpu_cache: 6456 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6457 unregister_syscore_ops(&kvm_syscore_ops); 6458 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6459 #endif 6460 return r; 6461 } 6462 EXPORT_SYMBOL_GPL(kvm_init); 6463 6464 void kvm_exit(void) 6465 { 6466 int cpu; 6467 6468 /* 6469 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6470 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6471 * to KVM while the module is being stopped. 6472 */ 6473 misc_deregister(&kvm_dev); 6474 6475 debugfs_remove_recursive(kvm_debugfs_dir); 6476 for_each_possible_cpu(cpu) 6477 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6478 kmem_cache_destroy(kvm_vcpu_cache); 6479 kvm_vfio_ops_exit(); 6480 kvm_async_pf_deinit(); 6481 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6482 unregister_syscore_ops(&kvm_syscore_ops); 6483 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6484 #endif 6485 kvm_irqfd_exit(); 6486 } 6487 EXPORT_SYMBOL_GPL(kvm_exit); 6488 6489 struct kvm_vm_worker_thread_context { 6490 struct kvm *kvm; 6491 struct task_struct *parent; 6492 struct completion init_done; 6493 kvm_vm_thread_fn_t thread_fn; 6494 uintptr_t data; 6495 int err; 6496 }; 6497 6498 static int kvm_vm_worker_thread(void *context) 6499 { 6500 /* 6501 * The init_context is allocated on the stack of the parent thread, so 6502 * we have to locally copy anything that is needed beyond initialization 6503 */ 6504 struct kvm_vm_worker_thread_context *init_context = context; 6505 struct task_struct *parent; 6506 struct kvm *kvm = init_context->kvm; 6507 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6508 uintptr_t data = init_context->data; 6509 int err; 6510 6511 err = kthread_park(current); 6512 /* kthread_park(current) is never supposed to return an error */ 6513 WARN_ON(err != 0); 6514 if (err) 6515 goto init_complete; 6516 6517 err = cgroup_attach_task_all(init_context->parent, current); 6518 if (err) { 6519 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6520 __func__, err); 6521 goto init_complete; 6522 } 6523 6524 set_user_nice(current, task_nice(init_context->parent)); 6525 6526 init_complete: 6527 init_context->err = err; 6528 complete(&init_context->init_done); 6529 init_context = NULL; 6530 6531 if (err) 6532 goto out; 6533 6534 /* Wait to be woken up by the spawner before proceeding. */ 6535 kthread_parkme(); 6536 6537 if (!kthread_should_stop()) 6538 err = thread_fn(kvm, data); 6539 6540 out: 6541 /* 6542 * Move kthread back to its original cgroup to prevent it lingering in 6543 * the cgroup of the VM process, after the latter finishes its 6544 * execution. 6545 * 6546 * kthread_stop() waits on the 'exited' completion condition which is 6547 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6548 * kthread is removed from the cgroup in the cgroup_exit() which is 6549 * called after the exit_mm(). This causes the kthread_stop() to return 6550 * before the kthread actually quits the cgroup. 6551 */ 6552 rcu_read_lock(); 6553 parent = rcu_dereference(current->real_parent); 6554 get_task_struct(parent); 6555 rcu_read_unlock(); 6556 cgroup_attach_task_all(parent, current); 6557 put_task_struct(parent); 6558 6559 return err; 6560 } 6561 6562 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6563 uintptr_t data, const char *name, 6564 struct task_struct **thread_ptr) 6565 { 6566 struct kvm_vm_worker_thread_context init_context = {}; 6567 struct task_struct *thread; 6568 6569 *thread_ptr = NULL; 6570 init_context.kvm = kvm; 6571 init_context.parent = current; 6572 init_context.thread_fn = thread_fn; 6573 init_context.data = data; 6574 init_completion(&init_context.init_done); 6575 6576 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6577 "%s-%d", name, task_pid_nr(current)); 6578 if (IS_ERR(thread)) 6579 return PTR_ERR(thread); 6580 6581 /* kthread_run is never supposed to return NULL */ 6582 WARN_ON(thread == NULL); 6583 6584 wait_for_completion(&init_context.init_done); 6585 6586 if (!init_context.err) 6587 *thread_ptr = thread; 6588 6589 return init_context.err; 6590 } 6591