1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 315 { 316 struct kvm_vcpu *vcpu; 317 struct cpumask *cpus; 318 unsigned long i; 319 bool called; 320 int me; 321 322 me = get_cpu(); 323 324 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 325 cpumask_clear(cpus); 326 327 kvm_for_each_vcpu(i, vcpu, kvm) 328 kvm_make_vcpu_request(vcpu, req, cpus, me); 329 330 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 331 put_cpu(); 332 333 return called; 334 } 335 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 336 337 void kvm_flush_remote_tlbs(struct kvm *kvm) 338 { 339 ++kvm->stat.generic.remote_tlb_flush_requests; 340 341 /* 342 * We want to publish modifications to the page tables before reading 343 * mode. Pairs with a memory barrier in arch-specific code. 344 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 345 * and smp_mb in walk_shadow_page_lockless_begin/end. 346 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 347 * 348 * There is already an smp_mb__after_atomic() before 349 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 350 * barrier here. 351 */ 352 if (!kvm_arch_flush_remote_tlbs(kvm) 353 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 354 ++kvm->stat.generic.remote_tlb_flush; 355 } 356 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 357 358 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 359 { 360 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 361 return; 362 363 /* 364 * Fall back to a flushing entire TLBs if the architecture range-based 365 * TLB invalidation is unsupported or can't be performed for whatever 366 * reason. 367 */ 368 kvm_flush_remote_tlbs(kvm); 369 } 370 371 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 372 const struct kvm_memory_slot *memslot) 373 { 374 /* 375 * All current use cases for flushing the TLBs for a specific memslot 376 * are related to dirty logging, and many do the TLB flush out of 377 * mmu_lock. The interaction between the various operations on memslot 378 * must be serialized by slots_locks to ensure the TLB flush from one 379 * operation is observed by any other operation on the same memslot. 380 */ 381 lockdep_assert_held(&kvm->slots_lock); 382 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 383 } 384 385 static void kvm_flush_shadow_all(struct kvm *kvm) 386 { 387 kvm_arch_flush_shadow_all(kvm); 388 kvm_arch_guest_memory_reclaimed(kvm); 389 } 390 391 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 392 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 393 gfp_t gfp_flags) 394 { 395 void *page; 396 397 gfp_flags |= mc->gfp_zero; 398 399 if (mc->kmem_cache) 400 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 401 402 page = (void *)__get_free_page(gfp_flags); 403 if (page && mc->init_value) 404 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 405 return page; 406 } 407 408 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 409 { 410 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 411 void *obj; 412 413 if (mc->nobjs >= min) 414 return 0; 415 416 if (unlikely(!mc->objects)) { 417 if (WARN_ON_ONCE(!capacity)) 418 return -EIO; 419 420 /* 421 * Custom init values can be used only for page allocations, 422 * and obviously conflict with __GFP_ZERO. 423 */ 424 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 425 return -EIO; 426 427 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 428 if (!mc->objects) 429 return -ENOMEM; 430 431 mc->capacity = capacity; 432 } 433 434 /* It is illegal to request a different capacity across topups. */ 435 if (WARN_ON_ONCE(mc->capacity != capacity)) 436 return -EIO; 437 438 while (mc->nobjs < mc->capacity) { 439 obj = mmu_memory_cache_alloc_obj(mc, gfp); 440 if (!obj) 441 return mc->nobjs >= min ? 0 : -ENOMEM; 442 mc->objects[mc->nobjs++] = obj; 443 } 444 return 0; 445 } 446 447 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 448 { 449 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 450 } 451 452 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 453 { 454 return mc->nobjs; 455 } 456 457 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 458 { 459 while (mc->nobjs) { 460 if (mc->kmem_cache) 461 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 462 else 463 free_page((unsigned long)mc->objects[--mc->nobjs]); 464 } 465 466 kvfree(mc->objects); 467 468 mc->objects = NULL; 469 mc->capacity = 0; 470 } 471 472 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 473 { 474 void *p; 475 476 if (WARN_ON(!mc->nobjs)) 477 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 478 else 479 p = mc->objects[--mc->nobjs]; 480 BUG_ON(!p); 481 return p; 482 } 483 #endif 484 485 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 486 { 487 mutex_init(&vcpu->mutex); 488 vcpu->cpu = -1; 489 vcpu->kvm = kvm; 490 vcpu->vcpu_id = id; 491 vcpu->pid = NULL; 492 #ifndef __KVM_HAVE_ARCH_WQP 493 rcuwait_init(&vcpu->wait); 494 #endif 495 kvm_async_pf_vcpu_init(vcpu); 496 497 kvm_vcpu_set_in_spin_loop(vcpu, false); 498 kvm_vcpu_set_dy_eligible(vcpu, false); 499 vcpu->preempted = false; 500 vcpu->ready = false; 501 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 502 vcpu->last_used_slot = NULL; 503 504 /* Fill the stats id string for the vcpu */ 505 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 506 task_pid_nr(current), id); 507 } 508 509 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 510 { 511 kvm_arch_vcpu_destroy(vcpu); 512 kvm_dirty_ring_free(&vcpu->dirty_ring); 513 514 /* 515 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 516 * the vcpu->pid pointer, and at destruction time all file descriptors 517 * are already gone. 518 */ 519 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 520 521 free_page((unsigned long)vcpu->run); 522 kmem_cache_free(kvm_vcpu_cache, vcpu); 523 } 524 525 void kvm_destroy_vcpus(struct kvm *kvm) 526 { 527 unsigned long i; 528 struct kvm_vcpu *vcpu; 529 530 kvm_for_each_vcpu(i, vcpu, kvm) { 531 kvm_vcpu_destroy(vcpu); 532 xa_erase(&kvm->vcpu_array, i); 533 } 534 535 atomic_set(&kvm->online_vcpus, 0); 536 } 537 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 538 539 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 540 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 541 { 542 return container_of(mn, struct kvm, mmu_notifier); 543 } 544 545 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 546 547 typedef void (*on_lock_fn_t)(struct kvm *kvm); 548 549 struct kvm_mmu_notifier_range { 550 /* 551 * 64-bit addresses, as KVM notifiers can operate on host virtual 552 * addresses (unsigned long) and guest physical addresses (64-bit). 553 */ 554 u64 start; 555 u64 end; 556 union kvm_mmu_notifier_arg arg; 557 gfn_handler_t handler; 558 on_lock_fn_t on_lock; 559 bool flush_on_ret; 560 bool may_block; 561 }; 562 563 /* 564 * The inner-most helper returns a tuple containing the return value from the 565 * arch- and action-specific handler, plus a flag indicating whether or not at 566 * least one memslot was found, i.e. if the handler found guest memory. 567 * 568 * Note, most notifiers are averse to booleans, so even though KVM tracks the 569 * return from arch code as a bool, outer helpers will cast it to an int. :-( 570 */ 571 typedef struct kvm_mmu_notifier_return { 572 bool ret; 573 bool found_memslot; 574 } kvm_mn_ret_t; 575 576 /* 577 * Use a dedicated stub instead of NULL to indicate that there is no callback 578 * function/handler. The compiler technically can't guarantee that a real 579 * function will have a non-zero address, and so it will generate code to 580 * check for !NULL, whereas comparing against a stub will be elided at compile 581 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 582 */ 583 static void kvm_null_fn(void) 584 { 585 586 } 587 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 588 589 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 590 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 591 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 592 node; \ 593 node = interval_tree_iter_next(node, start, last)) \ 594 595 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 596 const struct kvm_mmu_notifier_range *range) 597 { 598 struct kvm_mmu_notifier_return r = { 599 .ret = false, 600 .found_memslot = false, 601 }; 602 struct kvm_gfn_range gfn_range; 603 struct kvm_memory_slot *slot; 604 struct kvm_memslots *slots; 605 int i, idx; 606 607 if (WARN_ON_ONCE(range->end <= range->start)) 608 return r; 609 610 /* A null handler is allowed if and only if on_lock() is provided. */ 611 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 612 IS_KVM_NULL_FN(range->handler))) 613 return r; 614 615 idx = srcu_read_lock(&kvm->srcu); 616 617 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 618 struct interval_tree_node *node; 619 620 slots = __kvm_memslots(kvm, i); 621 kvm_for_each_memslot_in_hva_range(node, slots, 622 range->start, range->end - 1) { 623 unsigned long hva_start, hva_end; 624 625 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 626 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 627 hva_end = min_t(unsigned long, range->end, 628 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 629 630 /* 631 * To optimize for the likely case where the address 632 * range is covered by zero or one memslots, don't 633 * bother making these conditional (to avoid writes on 634 * the second or later invocation of the handler). 635 */ 636 gfn_range.arg = range->arg; 637 gfn_range.may_block = range->may_block; 638 639 /* 640 * {gfn(page) | page intersects with [hva_start, hva_end)} = 641 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 642 */ 643 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 644 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 645 gfn_range.slot = slot; 646 647 if (!r.found_memslot) { 648 r.found_memslot = true; 649 KVM_MMU_LOCK(kvm); 650 if (!IS_KVM_NULL_FN(range->on_lock)) 651 range->on_lock(kvm); 652 653 if (IS_KVM_NULL_FN(range->handler)) 654 break; 655 } 656 r.ret |= range->handler(kvm, &gfn_range); 657 } 658 } 659 660 if (range->flush_on_ret && r.ret) 661 kvm_flush_remote_tlbs(kvm); 662 663 if (r.found_memslot) 664 KVM_MMU_UNLOCK(kvm); 665 666 srcu_read_unlock(&kvm->srcu, idx); 667 668 return r; 669 } 670 671 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 672 unsigned long start, 673 unsigned long end, 674 gfn_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_mmu_notifier_range range = { 678 .start = start, 679 .end = end, 680 .handler = handler, 681 .on_lock = (void *)kvm_null_fn, 682 .flush_on_ret = true, 683 .may_block = false, 684 }; 685 686 return __kvm_handle_hva_range(kvm, &range).ret; 687 } 688 689 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 690 unsigned long start, 691 unsigned long end, 692 gfn_handler_t handler) 693 { 694 struct kvm *kvm = mmu_notifier_to_kvm(mn); 695 const struct kvm_mmu_notifier_range range = { 696 .start = start, 697 .end = end, 698 .handler = handler, 699 .on_lock = (void *)kvm_null_fn, 700 .flush_on_ret = false, 701 .may_block = false, 702 }; 703 704 return __kvm_handle_hva_range(kvm, &range).ret; 705 } 706 707 void kvm_mmu_invalidate_begin(struct kvm *kvm) 708 { 709 lockdep_assert_held_write(&kvm->mmu_lock); 710 /* 711 * The count increase must become visible at unlock time as no 712 * spte can be established without taking the mmu_lock and 713 * count is also read inside the mmu_lock critical section. 714 */ 715 kvm->mmu_invalidate_in_progress++; 716 717 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 718 kvm->mmu_invalidate_range_start = INVALID_GPA; 719 kvm->mmu_invalidate_range_end = INVALID_GPA; 720 } 721 } 722 723 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 724 { 725 lockdep_assert_held_write(&kvm->mmu_lock); 726 727 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 728 729 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 730 kvm->mmu_invalidate_range_start = start; 731 kvm->mmu_invalidate_range_end = end; 732 } else { 733 /* 734 * Fully tracking multiple concurrent ranges has diminishing 735 * returns. Keep things simple and just find the minimal range 736 * which includes the current and new ranges. As there won't be 737 * enough information to subtract a range after its invalidate 738 * completes, any ranges invalidated concurrently will 739 * accumulate and persist until all outstanding invalidates 740 * complete. 741 */ 742 kvm->mmu_invalidate_range_start = 743 min(kvm->mmu_invalidate_range_start, start); 744 kvm->mmu_invalidate_range_end = 745 max(kvm->mmu_invalidate_range_end, end); 746 } 747 } 748 749 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 750 { 751 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 752 return kvm_unmap_gfn_range(kvm, range); 753 } 754 755 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 756 const struct mmu_notifier_range *range) 757 { 758 struct kvm *kvm = mmu_notifier_to_kvm(mn); 759 const struct kvm_mmu_notifier_range hva_range = { 760 .start = range->start, 761 .end = range->end, 762 .handler = kvm_mmu_unmap_gfn_range, 763 .on_lock = kvm_mmu_invalidate_begin, 764 .flush_on_ret = true, 765 .may_block = mmu_notifier_range_blockable(range), 766 }; 767 768 trace_kvm_unmap_hva_range(range->start, range->end); 769 770 /* 771 * Prevent memslot modification between range_start() and range_end() 772 * so that conditionally locking provides the same result in both 773 * functions. Without that guarantee, the mmu_invalidate_in_progress 774 * adjustments will be imbalanced. 775 * 776 * Pairs with the decrement in range_end(). 777 */ 778 spin_lock(&kvm->mn_invalidate_lock); 779 kvm->mn_active_invalidate_count++; 780 spin_unlock(&kvm->mn_invalidate_lock); 781 782 /* 783 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 784 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 785 * each cache's lock. There are relatively few caches in existence at 786 * any given time, and the caches themselves can check for hva overlap, 787 * i.e. don't need to rely on memslot overlap checks for performance. 788 * Because this runs without holding mmu_lock, the pfn caches must use 789 * mn_active_invalidate_count (see above) instead of 790 * mmu_invalidate_in_progress. 791 */ 792 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 793 794 /* 795 * If one or more memslots were found and thus zapped, notify arch code 796 * that guest memory has been reclaimed. This needs to be done *after* 797 * dropping mmu_lock, as x86's reclaim path is slooooow. 798 */ 799 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 800 kvm_arch_guest_memory_reclaimed(kvm); 801 802 return 0; 803 } 804 805 void kvm_mmu_invalidate_end(struct kvm *kvm) 806 { 807 lockdep_assert_held_write(&kvm->mmu_lock); 808 809 /* 810 * This sequence increase will notify the kvm page fault that 811 * the page that is going to be mapped in the spte could have 812 * been freed. 813 */ 814 kvm->mmu_invalidate_seq++; 815 smp_wmb(); 816 /* 817 * The above sequence increase must be visible before the 818 * below count decrease, which is ensured by the smp_wmb above 819 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 820 */ 821 kvm->mmu_invalidate_in_progress--; 822 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 823 824 /* 825 * Assert that at least one range was added between start() and end(). 826 * Not adding a range isn't fatal, but it is a KVM bug. 827 */ 828 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 829 } 830 831 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 832 const struct mmu_notifier_range *range) 833 { 834 struct kvm *kvm = mmu_notifier_to_kvm(mn); 835 const struct kvm_mmu_notifier_range hva_range = { 836 .start = range->start, 837 .end = range->end, 838 .handler = (void *)kvm_null_fn, 839 .on_lock = kvm_mmu_invalidate_end, 840 .flush_on_ret = false, 841 .may_block = mmu_notifier_range_blockable(range), 842 }; 843 bool wake; 844 845 __kvm_handle_hva_range(kvm, &hva_range); 846 847 /* Pairs with the increment in range_start(). */ 848 spin_lock(&kvm->mn_invalidate_lock); 849 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 850 --kvm->mn_active_invalidate_count; 851 wake = !kvm->mn_active_invalidate_count; 852 spin_unlock(&kvm->mn_invalidate_lock); 853 854 /* 855 * There can only be one waiter, since the wait happens under 856 * slots_lock. 857 */ 858 if (wake) 859 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 860 } 861 862 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 863 struct mm_struct *mm, 864 unsigned long start, 865 unsigned long end) 866 { 867 trace_kvm_age_hva(start, end); 868 869 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 870 } 871 872 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 873 struct mm_struct *mm, 874 unsigned long start, 875 unsigned long end) 876 { 877 trace_kvm_age_hva(start, end); 878 879 /* 880 * Even though we do not flush TLB, this will still adversely 881 * affect performance on pre-Haswell Intel EPT, where there is 882 * no EPT Access Bit to clear so that we have to tear down EPT 883 * tables instead. If we find this unacceptable, we can always 884 * add a parameter to kvm_age_hva so that it effectively doesn't 885 * do anything on clear_young. 886 * 887 * Also note that currently we never issue secondary TLB flushes 888 * from clear_young, leaving this job up to the regular system 889 * cadence. If we find this inaccurate, we might come up with a 890 * more sophisticated heuristic later. 891 */ 892 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 893 } 894 895 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 896 struct mm_struct *mm, 897 unsigned long address) 898 { 899 trace_kvm_test_age_hva(address); 900 901 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 902 kvm_test_age_gfn); 903 } 904 905 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 906 struct mm_struct *mm) 907 { 908 struct kvm *kvm = mmu_notifier_to_kvm(mn); 909 int idx; 910 911 idx = srcu_read_lock(&kvm->srcu); 912 kvm_flush_shadow_all(kvm); 913 srcu_read_unlock(&kvm->srcu, idx); 914 } 915 916 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 917 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 918 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 919 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 920 .clear_young = kvm_mmu_notifier_clear_young, 921 .test_young = kvm_mmu_notifier_test_young, 922 .release = kvm_mmu_notifier_release, 923 }; 924 925 static int kvm_init_mmu_notifier(struct kvm *kvm) 926 { 927 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 928 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 929 } 930 931 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 932 933 static int kvm_init_mmu_notifier(struct kvm *kvm) 934 { 935 return 0; 936 } 937 938 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 939 940 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 941 static int kvm_pm_notifier_call(struct notifier_block *bl, 942 unsigned long state, 943 void *unused) 944 { 945 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 946 947 return kvm_arch_pm_notifier(kvm, state); 948 } 949 950 static void kvm_init_pm_notifier(struct kvm *kvm) 951 { 952 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 953 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 954 kvm->pm_notifier.priority = INT_MAX; 955 register_pm_notifier(&kvm->pm_notifier); 956 } 957 958 static void kvm_destroy_pm_notifier(struct kvm *kvm) 959 { 960 unregister_pm_notifier(&kvm->pm_notifier); 961 } 962 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 963 static void kvm_init_pm_notifier(struct kvm *kvm) 964 { 965 } 966 967 static void kvm_destroy_pm_notifier(struct kvm *kvm) 968 { 969 } 970 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 971 972 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 973 { 974 if (!memslot->dirty_bitmap) 975 return; 976 977 vfree(memslot->dirty_bitmap); 978 memslot->dirty_bitmap = NULL; 979 } 980 981 /* This does not remove the slot from struct kvm_memslots data structures */ 982 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 983 { 984 if (slot->flags & KVM_MEM_GUEST_MEMFD) 985 kvm_gmem_unbind(slot); 986 987 kvm_destroy_dirty_bitmap(slot); 988 989 kvm_arch_free_memslot(kvm, slot); 990 991 kfree(slot); 992 } 993 994 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 995 { 996 struct hlist_node *idnode; 997 struct kvm_memory_slot *memslot; 998 int bkt; 999 1000 /* 1001 * The same memslot objects live in both active and inactive sets, 1002 * arbitrarily free using index '1' so the second invocation of this 1003 * function isn't operating over a structure with dangling pointers 1004 * (even though this function isn't actually touching them). 1005 */ 1006 if (!slots->node_idx) 1007 return; 1008 1009 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1010 kvm_free_memslot(kvm, memslot); 1011 } 1012 1013 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1014 { 1015 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1016 case KVM_STATS_TYPE_INSTANT: 1017 return 0444; 1018 case KVM_STATS_TYPE_CUMULATIVE: 1019 case KVM_STATS_TYPE_PEAK: 1020 default: 1021 return 0644; 1022 } 1023 } 1024 1025 1026 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1027 { 1028 int i; 1029 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1030 kvm_vcpu_stats_header.num_desc; 1031 1032 if (IS_ERR(kvm->debugfs_dentry)) 1033 return; 1034 1035 debugfs_remove_recursive(kvm->debugfs_dentry); 1036 1037 if (kvm->debugfs_stat_data) { 1038 for (i = 0; i < kvm_debugfs_num_entries; i++) 1039 kfree(kvm->debugfs_stat_data[i]); 1040 kfree(kvm->debugfs_stat_data); 1041 } 1042 } 1043 1044 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1045 { 1046 static DEFINE_MUTEX(kvm_debugfs_lock); 1047 struct dentry *dent; 1048 char dir_name[ITOA_MAX_LEN * 2]; 1049 struct kvm_stat_data *stat_data; 1050 const struct _kvm_stats_desc *pdesc; 1051 int i, ret = -ENOMEM; 1052 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1053 kvm_vcpu_stats_header.num_desc; 1054 1055 if (!debugfs_initialized()) 1056 return 0; 1057 1058 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1059 mutex_lock(&kvm_debugfs_lock); 1060 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1061 if (dent) { 1062 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1063 dput(dent); 1064 mutex_unlock(&kvm_debugfs_lock); 1065 return 0; 1066 } 1067 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1068 mutex_unlock(&kvm_debugfs_lock); 1069 if (IS_ERR(dent)) 1070 return 0; 1071 1072 kvm->debugfs_dentry = dent; 1073 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1074 sizeof(*kvm->debugfs_stat_data), 1075 GFP_KERNEL_ACCOUNT); 1076 if (!kvm->debugfs_stat_data) 1077 goto out_err; 1078 1079 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1080 pdesc = &kvm_vm_stats_desc[i]; 1081 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1082 if (!stat_data) 1083 goto out_err; 1084 1085 stat_data->kvm = kvm; 1086 stat_data->desc = pdesc; 1087 stat_data->kind = KVM_STAT_VM; 1088 kvm->debugfs_stat_data[i] = stat_data; 1089 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1090 kvm->debugfs_dentry, stat_data, 1091 &stat_fops_per_vm); 1092 } 1093 1094 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1095 pdesc = &kvm_vcpu_stats_desc[i]; 1096 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1097 if (!stat_data) 1098 goto out_err; 1099 1100 stat_data->kvm = kvm; 1101 stat_data->desc = pdesc; 1102 stat_data->kind = KVM_STAT_VCPU; 1103 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1104 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1105 kvm->debugfs_dentry, stat_data, 1106 &stat_fops_per_vm); 1107 } 1108 1109 kvm_arch_create_vm_debugfs(kvm); 1110 return 0; 1111 out_err: 1112 kvm_destroy_vm_debugfs(kvm); 1113 return ret; 1114 } 1115 1116 /* 1117 * Called after the VM is otherwise initialized, but just before adding it to 1118 * the vm_list. 1119 */ 1120 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1121 { 1122 return 0; 1123 } 1124 1125 /* 1126 * Called just after removing the VM from the vm_list, but before doing any 1127 * other destruction. 1128 */ 1129 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1130 { 1131 } 1132 1133 /* 1134 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1135 * be setup already, so we can create arch-specific debugfs entries under it. 1136 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1137 * a per-arch destroy interface is not needed. 1138 */ 1139 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1140 { 1141 } 1142 1143 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1144 { 1145 struct kvm *kvm = kvm_arch_alloc_vm(); 1146 struct kvm_memslots *slots; 1147 int r = -ENOMEM; 1148 int i, j; 1149 1150 if (!kvm) 1151 return ERR_PTR(-ENOMEM); 1152 1153 KVM_MMU_LOCK_INIT(kvm); 1154 mmgrab(current->mm); 1155 kvm->mm = current->mm; 1156 kvm_eventfd_init(kvm); 1157 mutex_init(&kvm->lock); 1158 mutex_init(&kvm->irq_lock); 1159 mutex_init(&kvm->slots_lock); 1160 mutex_init(&kvm->slots_arch_lock); 1161 spin_lock_init(&kvm->mn_invalidate_lock); 1162 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1163 xa_init(&kvm->vcpu_array); 1164 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1165 xa_init(&kvm->mem_attr_array); 1166 #endif 1167 1168 INIT_LIST_HEAD(&kvm->gpc_list); 1169 spin_lock_init(&kvm->gpc_lock); 1170 1171 INIT_LIST_HEAD(&kvm->devices); 1172 kvm->max_vcpus = KVM_MAX_VCPUS; 1173 1174 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1175 1176 /* 1177 * Force subsequent debugfs file creations to fail if the VM directory 1178 * is not created (by kvm_create_vm_debugfs()). 1179 */ 1180 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1181 1182 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1183 task_pid_nr(current)); 1184 1185 if (init_srcu_struct(&kvm->srcu)) 1186 goto out_err_no_srcu; 1187 if (init_srcu_struct(&kvm->irq_srcu)) 1188 goto out_err_no_irq_srcu; 1189 1190 refcount_set(&kvm->users_count, 1); 1191 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1192 for (j = 0; j < 2; j++) { 1193 slots = &kvm->__memslots[i][j]; 1194 1195 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1196 slots->hva_tree = RB_ROOT_CACHED; 1197 slots->gfn_tree = RB_ROOT; 1198 hash_init(slots->id_hash); 1199 slots->node_idx = j; 1200 1201 /* Generations must be different for each address space. */ 1202 slots->generation = i; 1203 } 1204 1205 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1206 } 1207 1208 for (i = 0; i < KVM_NR_BUSES; i++) { 1209 rcu_assign_pointer(kvm->buses[i], 1210 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1211 if (!kvm->buses[i]) 1212 goto out_err_no_arch_destroy_vm; 1213 } 1214 1215 r = kvm_arch_init_vm(kvm, type); 1216 if (r) 1217 goto out_err_no_arch_destroy_vm; 1218 1219 r = hardware_enable_all(); 1220 if (r) 1221 goto out_err_no_disable; 1222 1223 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1224 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1225 #endif 1226 1227 r = kvm_init_mmu_notifier(kvm); 1228 if (r) 1229 goto out_err_no_mmu_notifier; 1230 1231 r = kvm_coalesced_mmio_init(kvm); 1232 if (r < 0) 1233 goto out_no_coalesced_mmio; 1234 1235 r = kvm_create_vm_debugfs(kvm, fdname); 1236 if (r) 1237 goto out_err_no_debugfs; 1238 1239 r = kvm_arch_post_init_vm(kvm); 1240 if (r) 1241 goto out_err; 1242 1243 mutex_lock(&kvm_lock); 1244 list_add(&kvm->vm_list, &vm_list); 1245 mutex_unlock(&kvm_lock); 1246 1247 preempt_notifier_inc(); 1248 kvm_init_pm_notifier(kvm); 1249 1250 return kvm; 1251 1252 out_err: 1253 kvm_destroy_vm_debugfs(kvm); 1254 out_err_no_debugfs: 1255 kvm_coalesced_mmio_free(kvm); 1256 out_no_coalesced_mmio: 1257 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1258 if (kvm->mmu_notifier.ops) 1259 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1260 #endif 1261 out_err_no_mmu_notifier: 1262 hardware_disable_all(); 1263 out_err_no_disable: 1264 kvm_arch_destroy_vm(kvm); 1265 out_err_no_arch_destroy_vm: 1266 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1267 for (i = 0; i < KVM_NR_BUSES; i++) 1268 kfree(kvm_get_bus(kvm, i)); 1269 cleanup_srcu_struct(&kvm->irq_srcu); 1270 out_err_no_irq_srcu: 1271 cleanup_srcu_struct(&kvm->srcu); 1272 out_err_no_srcu: 1273 kvm_arch_free_vm(kvm); 1274 mmdrop(current->mm); 1275 return ERR_PTR(r); 1276 } 1277 1278 static void kvm_destroy_devices(struct kvm *kvm) 1279 { 1280 struct kvm_device *dev, *tmp; 1281 1282 /* 1283 * We do not need to take the kvm->lock here, because nobody else 1284 * has a reference to the struct kvm at this point and therefore 1285 * cannot access the devices list anyhow. 1286 * 1287 * The device list is generally managed as an rculist, but list_del() 1288 * is used intentionally here. If a bug in KVM introduced a reader that 1289 * was not backed by a reference on the kvm struct, the hope is that 1290 * it'd consume the poisoned forward pointer instead of suffering a 1291 * use-after-free, even though this cannot be guaranteed. 1292 */ 1293 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1294 list_del(&dev->vm_node); 1295 dev->ops->destroy(dev); 1296 } 1297 } 1298 1299 static void kvm_destroy_vm(struct kvm *kvm) 1300 { 1301 int i; 1302 struct mm_struct *mm = kvm->mm; 1303 1304 kvm_destroy_pm_notifier(kvm); 1305 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1306 kvm_destroy_vm_debugfs(kvm); 1307 kvm_arch_sync_events(kvm); 1308 mutex_lock(&kvm_lock); 1309 list_del(&kvm->vm_list); 1310 mutex_unlock(&kvm_lock); 1311 kvm_arch_pre_destroy_vm(kvm); 1312 1313 kvm_free_irq_routing(kvm); 1314 for (i = 0; i < KVM_NR_BUSES; i++) { 1315 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1316 1317 if (bus) 1318 kvm_io_bus_destroy(bus); 1319 kvm->buses[i] = NULL; 1320 } 1321 kvm_coalesced_mmio_free(kvm); 1322 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1323 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1324 /* 1325 * At this point, pending calls to invalidate_range_start() 1326 * have completed but no more MMU notifiers will run, so 1327 * mn_active_invalidate_count may remain unbalanced. 1328 * No threads can be waiting in kvm_swap_active_memslots() as the 1329 * last reference on KVM has been dropped, but freeing 1330 * memslots would deadlock without this manual intervention. 1331 * 1332 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1333 * notifier between a start() and end(), then there shouldn't be any 1334 * in-progress invalidations. 1335 */ 1336 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1337 if (kvm->mn_active_invalidate_count) 1338 kvm->mn_active_invalidate_count = 0; 1339 else 1340 WARN_ON(kvm->mmu_invalidate_in_progress); 1341 #else 1342 kvm_flush_shadow_all(kvm); 1343 #endif 1344 kvm_arch_destroy_vm(kvm); 1345 kvm_destroy_devices(kvm); 1346 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1347 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1348 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1349 } 1350 cleanup_srcu_struct(&kvm->irq_srcu); 1351 cleanup_srcu_struct(&kvm->srcu); 1352 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1353 xa_destroy(&kvm->mem_attr_array); 1354 #endif 1355 kvm_arch_free_vm(kvm); 1356 preempt_notifier_dec(); 1357 hardware_disable_all(); 1358 mmdrop(mm); 1359 } 1360 1361 void kvm_get_kvm(struct kvm *kvm) 1362 { 1363 refcount_inc(&kvm->users_count); 1364 } 1365 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1366 1367 /* 1368 * Make sure the vm is not during destruction, which is a safe version of 1369 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1370 */ 1371 bool kvm_get_kvm_safe(struct kvm *kvm) 1372 { 1373 return refcount_inc_not_zero(&kvm->users_count); 1374 } 1375 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1376 1377 void kvm_put_kvm(struct kvm *kvm) 1378 { 1379 if (refcount_dec_and_test(&kvm->users_count)) 1380 kvm_destroy_vm(kvm); 1381 } 1382 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1383 1384 /* 1385 * Used to put a reference that was taken on behalf of an object associated 1386 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1387 * of the new file descriptor fails and the reference cannot be transferred to 1388 * its final owner. In such cases, the caller is still actively using @kvm and 1389 * will fail miserably if the refcount unexpectedly hits zero. 1390 */ 1391 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1392 { 1393 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1394 } 1395 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1396 1397 static int kvm_vm_release(struct inode *inode, struct file *filp) 1398 { 1399 struct kvm *kvm = filp->private_data; 1400 1401 kvm_irqfd_release(kvm); 1402 1403 kvm_put_kvm(kvm); 1404 return 0; 1405 } 1406 1407 /* 1408 * Allocation size is twice as large as the actual dirty bitmap size. 1409 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1410 */ 1411 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1412 { 1413 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1414 1415 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1416 if (!memslot->dirty_bitmap) 1417 return -ENOMEM; 1418 1419 return 0; 1420 } 1421 1422 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1423 { 1424 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1425 int node_idx_inactive = active->node_idx ^ 1; 1426 1427 return &kvm->__memslots[as_id][node_idx_inactive]; 1428 } 1429 1430 /* 1431 * Helper to get the address space ID when one of memslot pointers may be NULL. 1432 * This also serves as a sanity that at least one of the pointers is non-NULL, 1433 * and that their address space IDs don't diverge. 1434 */ 1435 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1436 struct kvm_memory_slot *b) 1437 { 1438 if (WARN_ON_ONCE(!a && !b)) 1439 return 0; 1440 1441 if (!a) 1442 return b->as_id; 1443 if (!b) 1444 return a->as_id; 1445 1446 WARN_ON_ONCE(a->as_id != b->as_id); 1447 return a->as_id; 1448 } 1449 1450 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1451 struct kvm_memory_slot *slot) 1452 { 1453 struct rb_root *gfn_tree = &slots->gfn_tree; 1454 struct rb_node **node, *parent; 1455 int idx = slots->node_idx; 1456 1457 parent = NULL; 1458 for (node = &gfn_tree->rb_node; *node; ) { 1459 struct kvm_memory_slot *tmp; 1460 1461 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1462 parent = *node; 1463 if (slot->base_gfn < tmp->base_gfn) 1464 node = &(*node)->rb_left; 1465 else if (slot->base_gfn > tmp->base_gfn) 1466 node = &(*node)->rb_right; 1467 else 1468 BUG(); 1469 } 1470 1471 rb_link_node(&slot->gfn_node[idx], parent, node); 1472 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1473 } 1474 1475 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1476 struct kvm_memory_slot *slot) 1477 { 1478 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1479 } 1480 1481 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1482 struct kvm_memory_slot *old, 1483 struct kvm_memory_slot *new) 1484 { 1485 int idx = slots->node_idx; 1486 1487 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1488 1489 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1490 &slots->gfn_tree); 1491 } 1492 1493 /* 1494 * Replace @old with @new in the inactive memslots. 1495 * 1496 * With NULL @old this simply adds @new. 1497 * With NULL @new this simply removes @old. 1498 * 1499 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1500 * appropriately. 1501 */ 1502 static void kvm_replace_memslot(struct kvm *kvm, 1503 struct kvm_memory_slot *old, 1504 struct kvm_memory_slot *new) 1505 { 1506 int as_id = kvm_memslots_get_as_id(old, new); 1507 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1508 int idx = slots->node_idx; 1509 1510 if (old) { 1511 hash_del(&old->id_node[idx]); 1512 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1513 1514 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1515 atomic_long_set(&slots->last_used_slot, (long)new); 1516 1517 if (!new) { 1518 kvm_erase_gfn_node(slots, old); 1519 return; 1520 } 1521 } 1522 1523 /* 1524 * Initialize @new's hva range. Do this even when replacing an @old 1525 * slot, kvm_copy_memslot() deliberately does not touch node data. 1526 */ 1527 new->hva_node[idx].start = new->userspace_addr; 1528 new->hva_node[idx].last = new->userspace_addr + 1529 (new->npages << PAGE_SHIFT) - 1; 1530 1531 /* 1532 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1533 * hva_node needs to be swapped with remove+insert even though hva can't 1534 * change when replacing an existing slot. 1535 */ 1536 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1537 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1538 1539 /* 1540 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1541 * switch the node in the gfn tree instead of removing the old and 1542 * inserting the new as two separate operations. Replacement is a 1543 * single O(1) operation versus two O(log(n)) operations for 1544 * remove+insert. 1545 */ 1546 if (old && old->base_gfn == new->base_gfn) { 1547 kvm_replace_gfn_node(slots, old, new); 1548 } else { 1549 if (old) 1550 kvm_erase_gfn_node(slots, old); 1551 kvm_insert_gfn_node(slots, new); 1552 } 1553 } 1554 1555 /* 1556 * Flags that do not access any of the extra space of struct 1557 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1558 * only allows these. 1559 */ 1560 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1561 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1562 1563 static int check_memory_region_flags(struct kvm *kvm, 1564 const struct kvm_userspace_memory_region2 *mem) 1565 { 1566 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1567 1568 if (kvm_arch_has_private_mem(kvm)) 1569 valid_flags |= KVM_MEM_GUEST_MEMFD; 1570 1571 /* Dirty logging private memory is not currently supported. */ 1572 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1573 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1574 1575 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1576 /* 1577 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1578 * read-only memslots have emulated MMIO, not page fault, semantics, 1579 * and KVM doesn't allow emulated MMIO for private memory. 1580 */ 1581 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1582 valid_flags |= KVM_MEM_READONLY; 1583 #endif 1584 1585 if (mem->flags & ~valid_flags) 1586 return -EINVAL; 1587 1588 return 0; 1589 } 1590 1591 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1592 { 1593 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1594 1595 /* Grab the generation from the activate memslots. */ 1596 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1597 1598 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1599 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1600 1601 /* 1602 * Do not store the new memslots while there are invalidations in 1603 * progress, otherwise the locking in invalidate_range_start and 1604 * invalidate_range_end will be unbalanced. 1605 */ 1606 spin_lock(&kvm->mn_invalidate_lock); 1607 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1608 while (kvm->mn_active_invalidate_count) { 1609 set_current_state(TASK_UNINTERRUPTIBLE); 1610 spin_unlock(&kvm->mn_invalidate_lock); 1611 schedule(); 1612 spin_lock(&kvm->mn_invalidate_lock); 1613 } 1614 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1615 rcu_assign_pointer(kvm->memslots[as_id], slots); 1616 spin_unlock(&kvm->mn_invalidate_lock); 1617 1618 /* 1619 * Acquired in kvm_set_memslot. Must be released before synchronize 1620 * SRCU below in order to avoid deadlock with another thread 1621 * acquiring the slots_arch_lock in an srcu critical section. 1622 */ 1623 mutex_unlock(&kvm->slots_arch_lock); 1624 1625 synchronize_srcu_expedited(&kvm->srcu); 1626 1627 /* 1628 * Increment the new memslot generation a second time, dropping the 1629 * update in-progress flag and incrementing the generation based on 1630 * the number of address spaces. This provides a unique and easily 1631 * identifiable generation number while the memslots are in flux. 1632 */ 1633 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1634 1635 /* 1636 * Generations must be unique even across address spaces. We do not need 1637 * a global counter for that, instead the generation space is evenly split 1638 * across address spaces. For example, with two address spaces, address 1639 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1640 * use generations 1, 3, 5, ... 1641 */ 1642 gen += kvm_arch_nr_memslot_as_ids(kvm); 1643 1644 kvm_arch_memslots_updated(kvm, gen); 1645 1646 slots->generation = gen; 1647 } 1648 1649 static int kvm_prepare_memory_region(struct kvm *kvm, 1650 const struct kvm_memory_slot *old, 1651 struct kvm_memory_slot *new, 1652 enum kvm_mr_change change) 1653 { 1654 int r; 1655 1656 /* 1657 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1658 * will be freed on "commit". If logging is enabled in both old and 1659 * new, reuse the existing bitmap. If logging is enabled only in the 1660 * new and KVM isn't using a ring buffer, allocate and initialize a 1661 * new bitmap. 1662 */ 1663 if (change != KVM_MR_DELETE) { 1664 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1665 new->dirty_bitmap = NULL; 1666 else if (old && old->dirty_bitmap) 1667 new->dirty_bitmap = old->dirty_bitmap; 1668 else if (kvm_use_dirty_bitmap(kvm)) { 1669 r = kvm_alloc_dirty_bitmap(new); 1670 if (r) 1671 return r; 1672 1673 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1674 bitmap_set(new->dirty_bitmap, 0, new->npages); 1675 } 1676 } 1677 1678 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1679 1680 /* Free the bitmap on failure if it was allocated above. */ 1681 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1682 kvm_destroy_dirty_bitmap(new); 1683 1684 return r; 1685 } 1686 1687 static void kvm_commit_memory_region(struct kvm *kvm, 1688 struct kvm_memory_slot *old, 1689 const struct kvm_memory_slot *new, 1690 enum kvm_mr_change change) 1691 { 1692 int old_flags = old ? old->flags : 0; 1693 int new_flags = new ? new->flags : 0; 1694 /* 1695 * Update the total number of memslot pages before calling the arch 1696 * hook so that architectures can consume the result directly. 1697 */ 1698 if (change == KVM_MR_DELETE) 1699 kvm->nr_memslot_pages -= old->npages; 1700 else if (change == KVM_MR_CREATE) 1701 kvm->nr_memslot_pages += new->npages; 1702 1703 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1704 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1705 atomic_set(&kvm->nr_memslots_dirty_logging, 1706 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1707 } 1708 1709 kvm_arch_commit_memory_region(kvm, old, new, change); 1710 1711 switch (change) { 1712 case KVM_MR_CREATE: 1713 /* Nothing more to do. */ 1714 break; 1715 case KVM_MR_DELETE: 1716 /* Free the old memslot and all its metadata. */ 1717 kvm_free_memslot(kvm, old); 1718 break; 1719 case KVM_MR_MOVE: 1720 case KVM_MR_FLAGS_ONLY: 1721 /* 1722 * Free the dirty bitmap as needed; the below check encompasses 1723 * both the flags and whether a ring buffer is being used) 1724 */ 1725 if (old->dirty_bitmap && !new->dirty_bitmap) 1726 kvm_destroy_dirty_bitmap(old); 1727 1728 /* 1729 * The final quirk. Free the detached, old slot, but only its 1730 * memory, not any metadata. Metadata, including arch specific 1731 * data, may be reused by @new. 1732 */ 1733 kfree(old); 1734 break; 1735 default: 1736 BUG(); 1737 } 1738 } 1739 1740 /* 1741 * Activate @new, which must be installed in the inactive slots by the caller, 1742 * by swapping the active slots and then propagating @new to @old once @old is 1743 * unreachable and can be safely modified. 1744 * 1745 * With NULL @old this simply adds @new to @active (while swapping the sets). 1746 * With NULL @new this simply removes @old from @active and frees it 1747 * (while also swapping the sets). 1748 */ 1749 static void kvm_activate_memslot(struct kvm *kvm, 1750 struct kvm_memory_slot *old, 1751 struct kvm_memory_slot *new) 1752 { 1753 int as_id = kvm_memslots_get_as_id(old, new); 1754 1755 kvm_swap_active_memslots(kvm, as_id); 1756 1757 /* Propagate the new memslot to the now inactive memslots. */ 1758 kvm_replace_memslot(kvm, old, new); 1759 } 1760 1761 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1762 const struct kvm_memory_slot *src) 1763 { 1764 dest->base_gfn = src->base_gfn; 1765 dest->npages = src->npages; 1766 dest->dirty_bitmap = src->dirty_bitmap; 1767 dest->arch = src->arch; 1768 dest->userspace_addr = src->userspace_addr; 1769 dest->flags = src->flags; 1770 dest->id = src->id; 1771 dest->as_id = src->as_id; 1772 } 1773 1774 static void kvm_invalidate_memslot(struct kvm *kvm, 1775 struct kvm_memory_slot *old, 1776 struct kvm_memory_slot *invalid_slot) 1777 { 1778 /* 1779 * Mark the current slot INVALID. As with all memslot modifications, 1780 * this must be done on an unreachable slot to avoid modifying the 1781 * current slot in the active tree. 1782 */ 1783 kvm_copy_memslot(invalid_slot, old); 1784 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1785 kvm_replace_memslot(kvm, old, invalid_slot); 1786 1787 /* 1788 * Activate the slot that is now marked INVALID, but don't propagate 1789 * the slot to the now inactive slots. The slot is either going to be 1790 * deleted or recreated as a new slot. 1791 */ 1792 kvm_swap_active_memslots(kvm, old->as_id); 1793 1794 /* 1795 * From this point no new shadow pages pointing to a deleted, or moved, 1796 * memslot will be created. Validation of sp->gfn happens in: 1797 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1798 * - kvm_is_visible_gfn (mmu_check_root) 1799 */ 1800 kvm_arch_flush_shadow_memslot(kvm, old); 1801 kvm_arch_guest_memory_reclaimed(kvm); 1802 1803 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1804 mutex_lock(&kvm->slots_arch_lock); 1805 1806 /* 1807 * Copy the arch-specific field of the newly-installed slot back to the 1808 * old slot as the arch data could have changed between releasing 1809 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1810 * above. Writers are required to retrieve memslots *after* acquiring 1811 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1812 */ 1813 old->arch = invalid_slot->arch; 1814 } 1815 1816 static void kvm_create_memslot(struct kvm *kvm, 1817 struct kvm_memory_slot *new) 1818 { 1819 /* Add the new memslot to the inactive set and activate. */ 1820 kvm_replace_memslot(kvm, NULL, new); 1821 kvm_activate_memslot(kvm, NULL, new); 1822 } 1823 1824 static void kvm_delete_memslot(struct kvm *kvm, 1825 struct kvm_memory_slot *old, 1826 struct kvm_memory_slot *invalid_slot) 1827 { 1828 /* 1829 * Remove the old memslot (in the inactive memslots) by passing NULL as 1830 * the "new" slot, and for the invalid version in the active slots. 1831 */ 1832 kvm_replace_memslot(kvm, old, NULL); 1833 kvm_activate_memslot(kvm, invalid_slot, NULL); 1834 } 1835 1836 static void kvm_move_memslot(struct kvm *kvm, 1837 struct kvm_memory_slot *old, 1838 struct kvm_memory_slot *new, 1839 struct kvm_memory_slot *invalid_slot) 1840 { 1841 /* 1842 * Replace the old memslot in the inactive slots, and then swap slots 1843 * and replace the current INVALID with the new as well. 1844 */ 1845 kvm_replace_memslot(kvm, old, new); 1846 kvm_activate_memslot(kvm, invalid_slot, new); 1847 } 1848 1849 static void kvm_update_flags_memslot(struct kvm *kvm, 1850 struct kvm_memory_slot *old, 1851 struct kvm_memory_slot *new) 1852 { 1853 /* 1854 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1855 * an intermediate step. Instead, the old memslot is simply replaced 1856 * with a new, updated copy in both memslot sets. 1857 */ 1858 kvm_replace_memslot(kvm, old, new); 1859 kvm_activate_memslot(kvm, old, new); 1860 } 1861 1862 static int kvm_set_memslot(struct kvm *kvm, 1863 struct kvm_memory_slot *old, 1864 struct kvm_memory_slot *new, 1865 enum kvm_mr_change change) 1866 { 1867 struct kvm_memory_slot *invalid_slot; 1868 int r; 1869 1870 /* 1871 * Released in kvm_swap_active_memslots(). 1872 * 1873 * Must be held from before the current memslots are copied until after 1874 * the new memslots are installed with rcu_assign_pointer, then 1875 * released before the synchronize srcu in kvm_swap_active_memslots(). 1876 * 1877 * When modifying memslots outside of the slots_lock, must be held 1878 * before reading the pointer to the current memslots until after all 1879 * changes to those memslots are complete. 1880 * 1881 * These rules ensure that installing new memslots does not lose 1882 * changes made to the previous memslots. 1883 */ 1884 mutex_lock(&kvm->slots_arch_lock); 1885 1886 /* 1887 * Invalidate the old slot if it's being deleted or moved. This is 1888 * done prior to actually deleting/moving the memslot to allow vCPUs to 1889 * continue running by ensuring there are no mappings or shadow pages 1890 * for the memslot when it is deleted/moved. Without pre-invalidation 1891 * (and without a lock), a window would exist between effecting the 1892 * delete/move and committing the changes in arch code where KVM or a 1893 * guest could access a non-existent memslot. 1894 * 1895 * Modifications are done on a temporary, unreachable slot. The old 1896 * slot needs to be preserved in case a later step fails and the 1897 * invalidation needs to be reverted. 1898 */ 1899 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1900 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1901 if (!invalid_slot) { 1902 mutex_unlock(&kvm->slots_arch_lock); 1903 return -ENOMEM; 1904 } 1905 kvm_invalidate_memslot(kvm, old, invalid_slot); 1906 } 1907 1908 r = kvm_prepare_memory_region(kvm, old, new, change); 1909 if (r) { 1910 /* 1911 * For DELETE/MOVE, revert the above INVALID change. No 1912 * modifications required since the original slot was preserved 1913 * in the inactive slots. Changing the active memslots also 1914 * release slots_arch_lock. 1915 */ 1916 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1917 kvm_activate_memslot(kvm, invalid_slot, old); 1918 kfree(invalid_slot); 1919 } else { 1920 mutex_unlock(&kvm->slots_arch_lock); 1921 } 1922 return r; 1923 } 1924 1925 /* 1926 * For DELETE and MOVE, the working slot is now active as the INVALID 1927 * version of the old slot. MOVE is particularly special as it reuses 1928 * the old slot and returns a copy of the old slot (in working_slot). 1929 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1930 * old slot is detached but otherwise preserved. 1931 */ 1932 if (change == KVM_MR_CREATE) 1933 kvm_create_memslot(kvm, new); 1934 else if (change == KVM_MR_DELETE) 1935 kvm_delete_memslot(kvm, old, invalid_slot); 1936 else if (change == KVM_MR_MOVE) 1937 kvm_move_memslot(kvm, old, new, invalid_slot); 1938 else if (change == KVM_MR_FLAGS_ONLY) 1939 kvm_update_flags_memslot(kvm, old, new); 1940 else 1941 BUG(); 1942 1943 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1944 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1945 kfree(invalid_slot); 1946 1947 /* 1948 * No need to refresh new->arch, changes after dropping slots_arch_lock 1949 * will directly hit the final, active memslot. Architectures are 1950 * responsible for knowing that new->arch may be stale. 1951 */ 1952 kvm_commit_memory_region(kvm, old, new, change); 1953 1954 return 0; 1955 } 1956 1957 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1958 gfn_t start, gfn_t end) 1959 { 1960 struct kvm_memslot_iter iter; 1961 1962 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1963 if (iter.slot->id != id) 1964 return true; 1965 } 1966 1967 return false; 1968 } 1969 1970 /* 1971 * Allocate some memory and give it an address in the guest physical address 1972 * space. 1973 * 1974 * Discontiguous memory is allowed, mostly for framebuffers. 1975 * 1976 * Must be called holding kvm->slots_lock for write. 1977 */ 1978 int __kvm_set_memory_region(struct kvm *kvm, 1979 const struct kvm_userspace_memory_region2 *mem) 1980 { 1981 struct kvm_memory_slot *old, *new; 1982 struct kvm_memslots *slots; 1983 enum kvm_mr_change change; 1984 unsigned long npages; 1985 gfn_t base_gfn; 1986 int as_id, id; 1987 int r; 1988 1989 r = check_memory_region_flags(kvm, mem); 1990 if (r) 1991 return r; 1992 1993 as_id = mem->slot >> 16; 1994 id = (u16)mem->slot; 1995 1996 /* General sanity checks */ 1997 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1998 (mem->memory_size != (unsigned long)mem->memory_size)) 1999 return -EINVAL; 2000 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2001 return -EINVAL; 2002 /* We can read the guest memory with __xxx_user() later on. */ 2003 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2004 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2005 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2006 mem->memory_size)) 2007 return -EINVAL; 2008 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2009 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2010 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2011 return -EINVAL; 2012 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2013 return -EINVAL; 2014 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2015 return -EINVAL; 2016 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2017 return -EINVAL; 2018 2019 slots = __kvm_memslots(kvm, as_id); 2020 2021 /* 2022 * Note, the old memslot (and the pointer itself!) may be invalidated 2023 * and/or destroyed by kvm_set_memslot(). 2024 */ 2025 old = id_to_memslot(slots, id); 2026 2027 if (!mem->memory_size) { 2028 if (!old || !old->npages) 2029 return -EINVAL; 2030 2031 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2032 return -EIO; 2033 2034 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2035 } 2036 2037 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2038 npages = (mem->memory_size >> PAGE_SHIFT); 2039 2040 if (!old || !old->npages) { 2041 change = KVM_MR_CREATE; 2042 2043 /* 2044 * To simplify KVM internals, the total number of pages across 2045 * all memslots must fit in an unsigned long. 2046 */ 2047 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2048 return -EINVAL; 2049 } else { /* Modify an existing slot. */ 2050 /* Private memslots are immutable, they can only be deleted. */ 2051 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2052 return -EINVAL; 2053 if ((mem->userspace_addr != old->userspace_addr) || 2054 (npages != old->npages) || 2055 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2056 return -EINVAL; 2057 2058 if (base_gfn != old->base_gfn) 2059 change = KVM_MR_MOVE; 2060 else if (mem->flags != old->flags) 2061 change = KVM_MR_FLAGS_ONLY; 2062 else /* Nothing to change. */ 2063 return 0; 2064 } 2065 2066 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2067 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2068 return -EEXIST; 2069 2070 /* Allocate a slot that will persist in the memslot. */ 2071 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2072 if (!new) 2073 return -ENOMEM; 2074 2075 new->as_id = as_id; 2076 new->id = id; 2077 new->base_gfn = base_gfn; 2078 new->npages = npages; 2079 new->flags = mem->flags; 2080 new->userspace_addr = mem->userspace_addr; 2081 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2082 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2083 if (r) 2084 goto out; 2085 } 2086 2087 r = kvm_set_memslot(kvm, old, new, change); 2088 if (r) 2089 goto out_unbind; 2090 2091 return 0; 2092 2093 out_unbind: 2094 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2095 kvm_gmem_unbind(new); 2096 out: 2097 kfree(new); 2098 return r; 2099 } 2100 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2101 2102 int kvm_set_memory_region(struct kvm *kvm, 2103 const struct kvm_userspace_memory_region2 *mem) 2104 { 2105 int r; 2106 2107 mutex_lock(&kvm->slots_lock); 2108 r = __kvm_set_memory_region(kvm, mem); 2109 mutex_unlock(&kvm->slots_lock); 2110 return r; 2111 } 2112 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2113 2114 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2115 struct kvm_userspace_memory_region2 *mem) 2116 { 2117 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2118 return -EINVAL; 2119 2120 return kvm_set_memory_region(kvm, mem); 2121 } 2122 2123 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2124 /** 2125 * kvm_get_dirty_log - get a snapshot of dirty pages 2126 * @kvm: pointer to kvm instance 2127 * @log: slot id and address to which we copy the log 2128 * @is_dirty: set to '1' if any dirty pages were found 2129 * @memslot: set to the associated memslot, always valid on success 2130 */ 2131 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2132 int *is_dirty, struct kvm_memory_slot **memslot) 2133 { 2134 struct kvm_memslots *slots; 2135 int i, as_id, id; 2136 unsigned long n; 2137 unsigned long any = 0; 2138 2139 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2140 if (!kvm_use_dirty_bitmap(kvm)) 2141 return -ENXIO; 2142 2143 *memslot = NULL; 2144 *is_dirty = 0; 2145 2146 as_id = log->slot >> 16; 2147 id = (u16)log->slot; 2148 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2149 return -EINVAL; 2150 2151 slots = __kvm_memslots(kvm, as_id); 2152 *memslot = id_to_memslot(slots, id); 2153 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2154 return -ENOENT; 2155 2156 kvm_arch_sync_dirty_log(kvm, *memslot); 2157 2158 n = kvm_dirty_bitmap_bytes(*memslot); 2159 2160 for (i = 0; !any && i < n/sizeof(long); ++i) 2161 any = (*memslot)->dirty_bitmap[i]; 2162 2163 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2164 return -EFAULT; 2165 2166 if (any) 2167 *is_dirty = 1; 2168 return 0; 2169 } 2170 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2171 2172 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2173 /** 2174 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2175 * and reenable dirty page tracking for the corresponding pages. 2176 * @kvm: pointer to kvm instance 2177 * @log: slot id and address to which we copy the log 2178 * 2179 * We need to keep it in mind that VCPU threads can write to the bitmap 2180 * concurrently. So, to avoid losing track of dirty pages we keep the 2181 * following order: 2182 * 2183 * 1. Take a snapshot of the bit and clear it if needed. 2184 * 2. Write protect the corresponding page. 2185 * 3. Copy the snapshot to the userspace. 2186 * 4. Upon return caller flushes TLB's if needed. 2187 * 2188 * Between 2 and 4, the guest may write to the page using the remaining TLB 2189 * entry. This is not a problem because the page is reported dirty using 2190 * the snapshot taken before and step 4 ensures that writes done after 2191 * exiting to userspace will be logged for the next call. 2192 * 2193 */ 2194 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2195 { 2196 struct kvm_memslots *slots; 2197 struct kvm_memory_slot *memslot; 2198 int i, as_id, id; 2199 unsigned long n; 2200 unsigned long *dirty_bitmap; 2201 unsigned long *dirty_bitmap_buffer; 2202 bool flush; 2203 2204 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2205 if (!kvm_use_dirty_bitmap(kvm)) 2206 return -ENXIO; 2207 2208 as_id = log->slot >> 16; 2209 id = (u16)log->slot; 2210 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2211 return -EINVAL; 2212 2213 slots = __kvm_memslots(kvm, as_id); 2214 memslot = id_to_memslot(slots, id); 2215 if (!memslot || !memslot->dirty_bitmap) 2216 return -ENOENT; 2217 2218 dirty_bitmap = memslot->dirty_bitmap; 2219 2220 kvm_arch_sync_dirty_log(kvm, memslot); 2221 2222 n = kvm_dirty_bitmap_bytes(memslot); 2223 flush = false; 2224 if (kvm->manual_dirty_log_protect) { 2225 /* 2226 * Unlike kvm_get_dirty_log, we always return false in *flush, 2227 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2228 * is some code duplication between this function and 2229 * kvm_get_dirty_log, but hopefully all architecture 2230 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2231 * can be eliminated. 2232 */ 2233 dirty_bitmap_buffer = dirty_bitmap; 2234 } else { 2235 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2236 memset(dirty_bitmap_buffer, 0, n); 2237 2238 KVM_MMU_LOCK(kvm); 2239 for (i = 0; i < n / sizeof(long); i++) { 2240 unsigned long mask; 2241 gfn_t offset; 2242 2243 if (!dirty_bitmap[i]) 2244 continue; 2245 2246 flush = true; 2247 mask = xchg(&dirty_bitmap[i], 0); 2248 dirty_bitmap_buffer[i] = mask; 2249 2250 offset = i * BITS_PER_LONG; 2251 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2252 offset, mask); 2253 } 2254 KVM_MMU_UNLOCK(kvm); 2255 } 2256 2257 if (flush) 2258 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2259 2260 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2261 return -EFAULT; 2262 return 0; 2263 } 2264 2265 2266 /** 2267 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2268 * @kvm: kvm instance 2269 * @log: slot id and address to which we copy the log 2270 * 2271 * Steps 1-4 below provide general overview of dirty page logging. See 2272 * kvm_get_dirty_log_protect() function description for additional details. 2273 * 2274 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2275 * always flush the TLB (step 4) even if previous step failed and the dirty 2276 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2277 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2278 * writes will be marked dirty for next log read. 2279 * 2280 * 1. Take a snapshot of the bit and clear it if needed. 2281 * 2. Write protect the corresponding page. 2282 * 3. Copy the snapshot to the userspace. 2283 * 4. Flush TLB's if needed. 2284 */ 2285 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2286 struct kvm_dirty_log *log) 2287 { 2288 int r; 2289 2290 mutex_lock(&kvm->slots_lock); 2291 2292 r = kvm_get_dirty_log_protect(kvm, log); 2293 2294 mutex_unlock(&kvm->slots_lock); 2295 return r; 2296 } 2297 2298 /** 2299 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2300 * and reenable dirty page tracking for the corresponding pages. 2301 * @kvm: pointer to kvm instance 2302 * @log: slot id and address from which to fetch the bitmap of dirty pages 2303 */ 2304 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2305 struct kvm_clear_dirty_log *log) 2306 { 2307 struct kvm_memslots *slots; 2308 struct kvm_memory_slot *memslot; 2309 int as_id, id; 2310 gfn_t offset; 2311 unsigned long i, n; 2312 unsigned long *dirty_bitmap; 2313 unsigned long *dirty_bitmap_buffer; 2314 bool flush; 2315 2316 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2317 if (!kvm_use_dirty_bitmap(kvm)) 2318 return -ENXIO; 2319 2320 as_id = log->slot >> 16; 2321 id = (u16)log->slot; 2322 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2323 return -EINVAL; 2324 2325 if (log->first_page & 63) 2326 return -EINVAL; 2327 2328 slots = __kvm_memslots(kvm, as_id); 2329 memslot = id_to_memslot(slots, id); 2330 if (!memslot || !memslot->dirty_bitmap) 2331 return -ENOENT; 2332 2333 dirty_bitmap = memslot->dirty_bitmap; 2334 2335 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2336 2337 if (log->first_page > memslot->npages || 2338 log->num_pages > memslot->npages - log->first_page || 2339 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2340 return -EINVAL; 2341 2342 kvm_arch_sync_dirty_log(kvm, memslot); 2343 2344 flush = false; 2345 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2346 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2347 return -EFAULT; 2348 2349 KVM_MMU_LOCK(kvm); 2350 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2351 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2352 i++, offset += BITS_PER_LONG) { 2353 unsigned long mask = *dirty_bitmap_buffer++; 2354 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2355 if (!mask) 2356 continue; 2357 2358 mask &= atomic_long_fetch_andnot(mask, p); 2359 2360 /* 2361 * mask contains the bits that really have been cleared. This 2362 * never includes any bits beyond the length of the memslot (if 2363 * the length is not aligned to 64 pages), therefore it is not 2364 * a problem if userspace sets them in log->dirty_bitmap. 2365 */ 2366 if (mask) { 2367 flush = true; 2368 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2369 offset, mask); 2370 } 2371 } 2372 KVM_MMU_UNLOCK(kvm); 2373 2374 if (flush) 2375 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2376 2377 return 0; 2378 } 2379 2380 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2381 struct kvm_clear_dirty_log *log) 2382 { 2383 int r; 2384 2385 mutex_lock(&kvm->slots_lock); 2386 2387 r = kvm_clear_dirty_log_protect(kvm, log); 2388 2389 mutex_unlock(&kvm->slots_lock); 2390 return r; 2391 } 2392 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2393 2394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2395 /* 2396 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2397 * matching @attrs. 2398 */ 2399 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2400 unsigned long attrs) 2401 { 2402 XA_STATE(xas, &kvm->mem_attr_array, start); 2403 unsigned long index; 2404 bool has_attrs; 2405 void *entry; 2406 2407 rcu_read_lock(); 2408 2409 if (!attrs) { 2410 has_attrs = !xas_find(&xas, end - 1); 2411 goto out; 2412 } 2413 2414 has_attrs = true; 2415 for (index = start; index < end; index++) { 2416 do { 2417 entry = xas_next(&xas); 2418 } while (xas_retry(&xas, entry)); 2419 2420 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2421 has_attrs = false; 2422 break; 2423 } 2424 } 2425 2426 out: 2427 rcu_read_unlock(); 2428 return has_attrs; 2429 } 2430 2431 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2432 { 2433 if (!kvm || kvm_arch_has_private_mem(kvm)) 2434 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2435 2436 return 0; 2437 } 2438 2439 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2440 struct kvm_mmu_notifier_range *range) 2441 { 2442 struct kvm_gfn_range gfn_range; 2443 struct kvm_memory_slot *slot; 2444 struct kvm_memslots *slots; 2445 struct kvm_memslot_iter iter; 2446 bool found_memslot = false; 2447 bool ret = false; 2448 int i; 2449 2450 gfn_range.arg = range->arg; 2451 gfn_range.may_block = range->may_block; 2452 2453 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2454 slots = __kvm_memslots(kvm, i); 2455 2456 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2457 slot = iter.slot; 2458 gfn_range.slot = slot; 2459 2460 gfn_range.start = max(range->start, slot->base_gfn); 2461 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2462 if (gfn_range.start >= gfn_range.end) 2463 continue; 2464 2465 if (!found_memslot) { 2466 found_memslot = true; 2467 KVM_MMU_LOCK(kvm); 2468 if (!IS_KVM_NULL_FN(range->on_lock)) 2469 range->on_lock(kvm); 2470 } 2471 2472 ret |= range->handler(kvm, &gfn_range); 2473 } 2474 } 2475 2476 if (range->flush_on_ret && ret) 2477 kvm_flush_remote_tlbs(kvm); 2478 2479 if (found_memslot) 2480 KVM_MMU_UNLOCK(kvm); 2481 } 2482 2483 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2484 struct kvm_gfn_range *range) 2485 { 2486 /* 2487 * Unconditionally add the range to the invalidation set, regardless of 2488 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2489 * if KVM supports RWX attributes in the future and the attributes are 2490 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2491 * adding the range allows KVM to require that MMU invalidations add at 2492 * least one range between begin() and end(), e.g. allows KVM to detect 2493 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2494 * but it's not obvious that allowing new mappings while the attributes 2495 * are in flux is desirable or worth the complexity. 2496 */ 2497 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2498 2499 return kvm_arch_pre_set_memory_attributes(kvm, range); 2500 } 2501 2502 /* Set @attributes for the gfn range [@start, @end). */ 2503 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2504 unsigned long attributes) 2505 { 2506 struct kvm_mmu_notifier_range pre_set_range = { 2507 .start = start, 2508 .end = end, 2509 .handler = kvm_pre_set_memory_attributes, 2510 .on_lock = kvm_mmu_invalidate_begin, 2511 .flush_on_ret = true, 2512 .may_block = true, 2513 }; 2514 struct kvm_mmu_notifier_range post_set_range = { 2515 .start = start, 2516 .end = end, 2517 .arg.attributes = attributes, 2518 .handler = kvm_arch_post_set_memory_attributes, 2519 .on_lock = kvm_mmu_invalidate_end, 2520 .may_block = true, 2521 }; 2522 unsigned long i; 2523 void *entry; 2524 int r = 0; 2525 2526 entry = attributes ? xa_mk_value(attributes) : NULL; 2527 2528 mutex_lock(&kvm->slots_lock); 2529 2530 /* Nothing to do if the entire range as the desired attributes. */ 2531 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2532 goto out_unlock; 2533 2534 /* 2535 * Reserve memory ahead of time to avoid having to deal with failures 2536 * partway through setting the new attributes. 2537 */ 2538 for (i = start; i < end; i++) { 2539 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2540 if (r) 2541 goto out_unlock; 2542 } 2543 2544 kvm_handle_gfn_range(kvm, &pre_set_range); 2545 2546 for (i = start; i < end; i++) { 2547 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2548 GFP_KERNEL_ACCOUNT)); 2549 KVM_BUG_ON(r, kvm); 2550 } 2551 2552 kvm_handle_gfn_range(kvm, &post_set_range); 2553 2554 out_unlock: 2555 mutex_unlock(&kvm->slots_lock); 2556 2557 return r; 2558 } 2559 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2560 struct kvm_memory_attributes *attrs) 2561 { 2562 gfn_t start, end; 2563 2564 /* flags is currently not used. */ 2565 if (attrs->flags) 2566 return -EINVAL; 2567 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2568 return -EINVAL; 2569 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2570 return -EINVAL; 2571 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2572 return -EINVAL; 2573 2574 start = attrs->address >> PAGE_SHIFT; 2575 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2576 2577 /* 2578 * xarray tracks data using "unsigned long", and as a result so does 2579 * KVM. For simplicity, supports generic attributes only on 64-bit 2580 * architectures. 2581 */ 2582 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2583 2584 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2585 } 2586 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2587 2588 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2589 { 2590 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2591 } 2592 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2593 2594 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2595 { 2596 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2597 u64 gen = slots->generation; 2598 struct kvm_memory_slot *slot; 2599 2600 /* 2601 * This also protects against using a memslot from a different address space, 2602 * since different address spaces have different generation numbers. 2603 */ 2604 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2605 vcpu->last_used_slot = NULL; 2606 vcpu->last_used_slot_gen = gen; 2607 } 2608 2609 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2610 if (slot) 2611 return slot; 2612 2613 /* 2614 * Fall back to searching all memslots. We purposely use 2615 * search_memslots() instead of __gfn_to_memslot() to avoid 2616 * thrashing the VM-wide last_used_slot in kvm_memslots. 2617 */ 2618 slot = search_memslots(slots, gfn, false); 2619 if (slot) { 2620 vcpu->last_used_slot = slot; 2621 return slot; 2622 } 2623 2624 return NULL; 2625 } 2626 2627 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2628 { 2629 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2630 2631 return kvm_is_visible_memslot(memslot); 2632 } 2633 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2634 2635 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2636 { 2637 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2638 2639 return kvm_is_visible_memslot(memslot); 2640 } 2641 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2642 2643 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2644 { 2645 struct vm_area_struct *vma; 2646 unsigned long addr, size; 2647 2648 size = PAGE_SIZE; 2649 2650 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2651 if (kvm_is_error_hva(addr)) 2652 return PAGE_SIZE; 2653 2654 mmap_read_lock(current->mm); 2655 vma = find_vma(current->mm, addr); 2656 if (!vma) 2657 goto out; 2658 2659 size = vma_kernel_pagesize(vma); 2660 2661 out: 2662 mmap_read_unlock(current->mm); 2663 2664 return size; 2665 } 2666 2667 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2668 { 2669 return slot->flags & KVM_MEM_READONLY; 2670 } 2671 2672 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2673 gfn_t *nr_pages, bool write) 2674 { 2675 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2676 return KVM_HVA_ERR_BAD; 2677 2678 if (memslot_is_readonly(slot) && write) 2679 return KVM_HVA_ERR_RO_BAD; 2680 2681 if (nr_pages) 2682 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2683 2684 return __gfn_to_hva_memslot(slot, gfn); 2685 } 2686 2687 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2688 gfn_t *nr_pages) 2689 { 2690 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2691 } 2692 2693 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2694 gfn_t gfn) 2695 { 2696 return gfn_to_hva_many(slot, gfn, NULL); 2697 } 2698 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2699 2700 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2701 { 2702 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2703 } 2704 EXPORT_SYMBOL_GPL(gfn_to_hva); 2705 2706 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2707 { 2708 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2709 } 2710 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2711 2712 /* 2713 * Return the hva of a @gfn and the R/W attribute if possible. 2714 * 2715 * @slot: the kvm_memory_slot which contains @gfn 2716 * @gfn: the gfn to be translated 2717 * @writable: used to return the read/write attribute of the @slot if the hva 2718 * is valid and @writable is not NULL 2719 */ 2720 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2721 gfn_t gfn, bool *writable) 2722 { 2723 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2724 2725 if (!kvm_is_error_hva(hva) && writable) 2726 *writable = !memslot_is_readonly(slot); 2727 2728 return hva; 2729 } 2730 2731 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2732 { 2733 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2734 2735 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2736 } 2737 2738 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2739 { 2740 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2741 2742 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2743 } 2744 2745 static inline int check_user_page_hwpoison(unsigned long addr) 2746 { 2747 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2748 2749 rc = get_user_pages(addr, 1, flags, NULL); 2750 return rc == -EHWPOISON; 2751 } 2752 2753 /* 2754 * The fast path to get the writable pfn which will be stored in @pfn, 2755 * true indicates success, otherwise false is returned. It's also the 2756 * only part that runs if we can in atomic context. 2757 */ 2758 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2759 bool *writable, kvm_pfn_t *pfn) 2760 { 2761 struct page *page[1]; 2762 2763 /* 2764 * Fast pin a writable pfn only if it is a write fault request 2765 * or the caller allows to map a writable pfn for a read fault 2766 * request. 2767 */ 2768 if (!(write_fault || writable)) 2769 return false; 2770 2771 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2772 *pfn = page_to_pfn(page[0]); 2773 2774 if (writable) 2775 *writable = true; 2776 return true; 2777 } 2778 2779 return false; 2780 } 2781 2782 /* 2783 * The slow path to get the pfn of the specified host virtual address, 2784 * 1 indicates success, -errno is returned if error is detected. 2785 */ 2786 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2787 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2788 { 2789 /* 2790 * When a VCPU accesses a page that is not mapped into the secondary 2791 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2792 * make progress. We always want to honor NUMA hinting faults in that 2793 * case, because GUP usage corresponds to memory accesses from the VCPU. 2794 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2795 * mapped into the secondary MMU and gets accessed by a VCPU. 2796 * 2797 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2798 * implicitly honor NUMA hinting faults and don't need this flag. 2799 */ 2800 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2801 struct page *page; 2802 int npages; 2803 2804 might_sleep(); 2805 2806 if (writable) 2807 *writable = write_fault; 2808 2809 if (write_fault) 2810 flags |= FOLL_WRITE; 2811 if (async) 2812 flags |= FOLL_NOWAIT; 2813 if (interruptible) 2814 flags |= FOLL_INTERRUPTIBLE; 2815 2816 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2817 if (npages != 1) 2818 return npages; 2819 2820 /* map read fault as writable if possible */ 2821 if (unlikely(!write_fault) && writable) { 2822 struct page *wpage; 2823 2824 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2825 *writable = true; 2826 put_page(page); 2827 page = wpage; 2828 } 2829 } 2830 *pfn = page_to_pfn(page); 2831 return npages; 2832 } 2833 2834 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2835 { 2836 if (unlikely(!(vma->vm_flags & VM_READ))) 2837 return false; 2838 2839 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2840 return false; 2841 2842 return true; 2843 } 2844 2845 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2846 { 2847 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2848 2849 if (!page) 2850 return 1; 2851 2852 return get_page_unless_zero(page); 2853 } 2854 2855 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2856 unsigned long addr, bool write_fault, 2857 bool *writable, kvm_pfn_t *p_pfn) 2858 { 2859 kvm_pfn_t pfn; 2860 pte_t *ptep; 2861 pte_t pte; 2862 spinlock_t *ptl; 2863 int r; 2864 2865 r = follow_pte(vma, addr, &ptep, &ptl); 2866 if (r) { 2867 /* 2868 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2869 * not call the fault handler, so do it here. 2870 */ 2871 bool unlocked = false; 2872 r = fixup_user_fault(current->mm, addr, 2873 (write_fault ? FAULT_FLAG_WRITE : 0), 2874 &unlocked); 2875 if (unlocked) 2876 return -EAGAIN; 2877 if (r) 2878 return r; 2879 2880 r = follow_pte(vma, addr, &ptep, &ptl); 2881 if (r) 2882 return r; 2883 } 2884 2885 pte = ptep_get(ptep); 2886 2887 if (write_fault && !pte_write(pte)) { 2888 pfn = KVM_PFN_ERR_RO_FAULT; 2889 goto out; 2890 } 2891 2892 if (writable) 2893 *writable = pte_write(pte); 2894 pfn = pte_pfn(pte); 2895 2896 /* 2897 * Get a reference here because callers of *hva_to_pfn* and 2898 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2899 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2900 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2901 * simply do nothing for reserved pfns. 2902 * 2903 * Whoever called remap_pfn_range is also going to call e.g. 2904 * unmap_mapping_range before the underlying pages are freed, 2905 * causing a call to our MMU notifier. 2906 * 2907 * Certain IO or PFNMAP mappings can be backed with valid 2908 * struct pages, but be allocated without refcounting e.g., 2909 * tail pages of non-compound higher order allocations, which 2910 * would then underflow the refcount when the caller does the 2911 * required put_page. Don't allow those pages here. 2912 */ 2913 if (!kvm_try_get_pfn(pfn)) 2914 r = -EFAULT; 2915 2916 out: 2917 pte_unmap_unlock(ptep, ptl); 2918 *p_pfn = pfn; 2919 2920 return r; 2921 } 2922 2923 /* 2924 * Pin guest page in memory and return its pfn. 2925 * @addr: host virtual address which maps memory to the guest 2926 * @atomic: whether this function is forbidden from sleeping 2927 * @interruptible: whether the process can be interrupted by non-fatal signals 2928 * @async: whether this function need to wait IO complete if the 2929 * host page is not in the memory 2930 * @write_fault: whether we should get a writable host page 2931 * @writable: whether it allows to map a writable host page for !@write_fault 2932 * 2933 * The function will map a writable host page for these two cases: 2934 * 1): @write_fault = true 2935 * 2): @write_fault = false && @writable, @writable will tell the caller 2936 * whether the mapping is writable. 2937 */ 2938 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2939 bool *async, bool write_fault, bool *writable) 2940 { 2941 struct vm_area_struct *vma; 2942 kvm_pfn_t pfn; 2943 int npages, r; 2944 2945 /* we can do it either atomically or asynchronously, not both */ 2946 BUG_ON(atomic && async); 2947 2948 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2949 return pfn; 2950 2951 if (atomic) 2952 return KVM_PFN_ERR_FAULT; 2953 2954 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2955 writable, &pfn); 2956 if (npages == 1) 2957 return pfn; 2958 if (npages == -EINTR) 2959 return KVM_PFN_ERR_SIGPENDING; 2960 2961 mmap_read_lock(current->mm); 2962 if (npages == -EHWPOISON || 2963 (!async && check_user_page_hwpoison(addr))) { 2964 pfn = KVM_PFN_ERR_HWPOISON; 2965 goto exit; 2966 } 2967 2968 retry: 2969 vma = vma_lookup(current->mm, addr); 2970 2971 if (vma == NULL) 2972 pfn = KVM_PFN_ERR_FAULT; 2973 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2974 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2975 if (r == -EAGAIN) 2976 goto retry; 2977 if (r < 0) 2978 pfn = KVM_PFN_ERR_FAULT; 2979 } else { 2980 if (async && vma_is_valid(vma, write_fault)) 2981 *async = true; 2982 pfn = KVM_PFN_ERR_FAULT; 2983 } 2984 exit: 2985 mmap_read_unlock(current->mm); 2986 return pfn; 2987 } 2988 2989 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2990 bool atomic, bool interruptible, bool *async, 2991 bool write_fault, bool *writable, hva_t *hva) 2992 { 2993 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2994 2995 if (hva) 2996 *hva = addr; 2997 2998 if (kvm_is_error_hva(addr)) { 2999 if (writable) 3000 *writable = false; 3001 3002 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT : 3003 KVM_PFN_NOSLOT; 3004 } 3005 3006 /* Do not map writable pfn in the readonly memslot. */ 3007 if (writable && memslot_is_readonly(slot)) { 3008 *writable = false; 3009 writable = NULL; 3010 } 3011 3012 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3013 writable); 3014 } 3015 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3016 3017 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3018 bool *writable) 3019 { 3020 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3021 NULL, write_fault, writable, NULL); 3022 } 3023 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3024 3025 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3026 { 3027 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3028 NULL, NULL); 3029 } 3030 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3031 3032 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3033 { 3034 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3035 NULL, NULL); 3036 } 3037 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3038 3039 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3040 { 3041 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3042 } 3043 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3044 3045 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3046 { 3047 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3048 } 3049 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3050 3051 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3052 { 3053 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3054 } 3055 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3056 3057 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3058 struct page **pages, int nr_pages) 3059 { 3060 unsigned long addr; 3061 gfn_t entry = 0; 3062 3063 addr = gfn_to_hva_many(slot, gfn, &entry); 3064 if (kvm_is_error_hva(addr)) 3065 return -1; 3066 3067 if (entry < nr_pages) 3068 return 0; 3069 3070 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3071 } 3072 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3073 3074 /* 3075 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3076 * backed by 'struct page'. A valid example is if the backing memslot is 3077 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3078 * been elevated by gfn_to_pfn(). 3079 */ 3080 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3081 { 3082 struct page *page; 3083 kvm_pfn_t pfn; 3084 3085 pfn = gfn_to_pfn(kvm, gfn); 3086 3087 if (is_error_noslot_pfn(pfn)) 3088 return KVM_ERR_PTR_BAD_PAGE; 3089 3090 page = kvm_pfn_to_refcounted_page(pfn); 3091 if (!page) 3092 return KVM_ERR_PTR_BAD_PAGE; 3093 3094 return page; 3095 } 3096 EXPORT_SYMBOL_GPL(gfn_to_page); 3097 3098 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3099 { 3100 if (dirty) 3101 kvm_release_pfn_dirty(pfn); 3102 else 3103 kvm_release_pfn_clean(pfn); 3104 } 3105 3106 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3107 { 3108 kvm_pfn_t pfn; 3109 void *hva = NULL; 3110 struct page *page = KVM_UNMAPPED_PAGE; 3111 3112 if (!map) 3113 return -EINVAL; 3114 3115 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3116 if (is_error_noslot_pfn(pfn)) 3117 return -EINVAL; 3118 3119 if (pfn_valid(pfn)) { 3120 page = pfn_to_page(pfn); 3121 hva = kmap(page); 3122 #ifdef CONFIG_HAS_IOMEM 3123 } else { 3124 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3125 #endif 3126 } 3127 3128 if (!hva) 3129 return -EFAULT; 3130 3131 map->page = page; 3132 map->hva = hva; 3133 map->pfn = pfn; 3134 map->gfn = gfn; 3135 3136 return 0; 3137 } 3138 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3139 3140 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3141 { 3142 if (!map) 3143 return; 3144 3145 if (!map->hva) 3146 return; 3147 3148 if (map->page != KVM_UNMAPPED_PAGE) 3149 kunmap(map->page); 3150 #ifdef CONFIG_HAS_IOMEM 3151 else 3152 memunmap(map->hva); 3153 #endif 3154 3155 if (dirty) 3156 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3157 3158 kvm_release_pfn(map->pfn, dirty); 3159 3160 map->hva = NULL; 3161 map->page = NULL; 3162 } 3163 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3164 3165 static bool kvm_is_ad_tracked_page(struct page *page) 3166 { 3167 /* 3168 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3169 * touched (e.g. set dirty) except by its owner". 3170 */ 3171 return !PageReserved(page); 3172 } 3173 3174 static void kvm_set_page_dirty(struct page *page) 3175 { 3176 if (kvm_is_ad_tracked_page(page)) 3177 SetPageDirty(page); 3178 } 3179 3180 static void kvm_set_page_accessed(struct page *page) 3181 { 3182 if (kvm_is_ad_tracked_page(page)) 3183 mark_page_accessed(page); 3184 } 3185 3186 void kvm_release_page_clean(struct page *page) 3187 { 3188 WARN_ON(is_error_page(page)); 3189 3190 kvm_set_page_accessed(page); 3191 put_page(page); 3192 } 3193 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3194 3195 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3196 { 3197 struct page *page; 3198 3199 if (is_error_noslot_pfn(pfn)) 3200 return; 3201 3202 page = kvm_pfn_to_refcounted_page(pfn); 3203 if (!page) 3204 return; 3205 3206 kvm_release_page_clean(page); 3207 } 3208 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3209 3210 void kvm_release_page_dirty(struct page *page) 3211 { 3212 WARN_ON(is_error_page(page)); 3213 3214 kvm_set_page_dirty(page); 3215 kvm_release_page_clean(page); 3216 } 3217 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3218 3219 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3220 { 3221 struct page *page; 3222 3223 if (is_error_noslot_pfn(pfn)) 3224 return; 3225 3226 page = kvm_pfn_to_refcounted_page(pfn); 3227 if (!page) 3228 return; 3229 3230 kvm_release_page_dirty(page); 3231 } 3232 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3233 3234 /* 3235 * Note, checking for an error/noslot pfn is the caller's responsibility when 3236 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3237 * "set" helpers are not to be used when the pfn might point at garbage. 3238 */ 3239 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3240 { 3241 if (WARN_ON(is_error_noslot_pfn(pfn))) 3242 return; 3243 3244 if (pfn_valid(pfn)) 3245 kvm_set_page_dirty(pfn_to_page(pfn)); 3246 } 3247 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3248 3249 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3250 { 3251 if (WARN_ON(is_error_noslot_pfn(pfn))) 3252 return; 3253 3254 if (pfn_valid(pfn)) 3255 kvm_set_page_accessed(pfn_to_page(pfn)); 3256 } 3257 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3258 3259 static int next_segment(unsigned long len, int offset) 3260 { 3261 if (len > PAGE_SIZE - offset) 3262 return PAGE_SIZE - offset; 3263 else 3264 return len; 3265 } 3266 3267 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3268 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3269 void *data, int offset, int len) 3270 { 3271 int r; 3272 unsigned long addr; 3273 3274 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3275 if (kvm_is_error_hva(addr)) 3276 return -EFAULT; 3277 r = __copy_from_user(data, (void __user *)addr + offset, len); 3278 if (r) 3279 return -EFAULT; 3280 return 0; 3281 } 3282 3283 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3284 int len) 3285 { 3286 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3287 3288 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3289 } 3290 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3291 3292 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3293 int offset, int len) 3294 { 3295 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3296 3297 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3298 } 3299 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3300 3301 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3302 { 3303 gfn_t gfn = gpa >> PAGE_SHIFT; 3304 int seg; 3305 int offset = offset_in_page(gpa); 3306 int ret; 3307 3308 while ((seg = next_segment(len, offset)) != 0) { 3309 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3310 if (ret < 0) 3311 return ret; 3312 offset = 0; 3313 len -= seg; 3314 data += seg; 3315 ++gfn; 3316 } 3317 return 0; 3318 } 3319 EXPORT_SYMBOL_GPL(kvm_read_guest); 3320 3321 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3322 { 3323 gfn_t gfn = gpa >> PAGE_SHIFT; 3324 int seg; 3325 int offset = offset_in_page(gpa); 3326 int ret; 3327 3328 while ((seg = next_segment(len, offset)) != 0) { 3329 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3330 if (ret < 0) 3331 return ret; 3332 offset = 0; 3333 len -= seg; 3334 data += seg; 3335 ++gfn; 3336 } 3337 return 0; 3338 } 3339 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3340 3341 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3342 void *data, int offset, unsigned long len) 3343 { 3344 int r; 3345 unsigned long addr; 3346 3347 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3348 if (kvm_is_error_hva(addr)) 3349 return -EFAULT; 3350 pagefault_disable(); 3351 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3352 pagefault_enable(); 3353 if (r) 3354 return -EFAULT; 3355 return 0; 3356 } 3357 3358 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3359 void *data, unsigned long len) 3360 { 3361 gfn_t gfn = gpa >> PAGE_SHIFT; 3362 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3363 int offset = offset_in_page(gpa); 3364 3365 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3366 } 3367 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3368 3369 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3370 static int __kvm_write_guest_page(struct kvm *kvm, 3371 struct kvm_memory_slot *memslot, gfn_t gfn, 3372 const void *data, int offset, int len) 3373 { 3374 int r; 3375 unsigned long addr; 3376 3377 addr = gfn_to_hva_memslot(memslot, gfn); 3378 if (kvm_is_error_hva(addr)) 3379 return -EFAULT; 3380 r = __copy_to_user((void __user *)addr + offset, data, len); 3381 if (r) 3382 return -EFAULT; 3383 mark_page_dirty_in_slot(kvm, memslot, gfn); 3384 return 0; 3385 } 3386 3387 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3388 const void *data, int offset, int len) 3389 { 3390 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3391 3392 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3393 } 3394 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3395 3396 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3397 const void *data, int offset, int len) 3398 { 3399 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3400 3401 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3402 } 3403 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3404 3405 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3406 unsigned long len) 3407 { 3408 gfn_t gfn = gpa >> PAGE_SHIFT; 3409 int seg; 3410 int offset = offset_in_page(gpa); 3411 int ret; 3412 3413 while ((seg = next_segment(len, offset)) != 0) { 3414 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3415 if (ret < 0) 3416 return ret; 3417 offset = 0; 3418 len -= seg; 3419 data += seg; 3420 ++gfn; 3421 } 3422 return 0; 3423 } 3424 EXPORT_SYMBOL_GPL(kvm_write_guest); 3425 3426 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3427 unsigned long len) 3428 { 3429 gfn_t gfn = gpa >> PAGE_SHIFT; 3430 int seg; 3431 int offset = offset_in_page(gpa); 3432 int ret; 3433 3434 while ((seg = next_segment(len, offset)) != 0) { 3435 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3436 if (ret < 0) 3437 return ret; 3438 offset = 0; 3439 len -= seg; 3440 data += seg; 3441 ++gfn; 3442 } 3443 return 0; 3444 } 3445 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3446 3447 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3448 struct gfn_to_hva_cache *ghc, 3449 gpa_t gpa, unsigned long len) 3450 { 3451 int offset = offset_in_page(gpa); 3452 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3453 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3454 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3455 gfn_t nr_pages_avail; 3456 3457 /* Update ghc->generation before performing any error checks. */ 3458 ghc->generation = slots->generation; 3459 3460 if (start_gfn > end_gfn) { 3461 ghc->hva = KVM_HVA_ERR_BAD; 3462 return -EINVAL; 3463 } 3464 3465 /* 3466 * If the requested region crosses two memslots, we still 3467 * verify that the entire region is valid here. 3468 */ 3469 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3470 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3471 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3472 &nr_pages_avail); 3473 if (kvm_is_error_hva(ghc->hva)) 3474 return -EFAULT; 3475 } 3476 3477 /* Use the slow path for cross page reads and writes. */ 3478 if (nr_pages_needed == 1) 3479 ghc->hva += offset; 3480 else 3481 ghc->memslot = NULL; 3482 3483 ghc->gpa = gpa; 3484 ghc->len = len; 3485 return 0; 3486 } 3487 3488 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3489 gpa_t gpa, unsigned long len) 3490 { 3491 struct kvm_memslots *slots = kvm_memslots(kvm); 3492 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3493 } 3494 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3495 3496 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3497 void *data, unsigned int offset, 3498 unsigned long len) 3499 { 3500 struct kvm_memslots *slots = kvm_memslots(kvm); 3501 int r; 3502 gpa_t gpa = ghc->gpa + offset; 3503 3504 if (WARN_ON_ONCE(len + offset > ghc->len)) 3505 return -EINVAL; 3506 3507 if (slots->generation != ghc->generation) { 3508 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3509 return -EFAULT; 3510 } 3511 3512 if (kvm_is_error_hva(ghc->hva)) 3513 return -EFAULT; 3514 3515 if (unlikely(!ghc->memslot)) 3516 return kvm_write_guest(kvm, gpa, data, len); 3517 3518 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3519 if (r) 3520 return -EFAULT; 3521 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3522 3523 return 0; 3524 } 3525 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3526 3527 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3528 void *data, unsigned long len) 3529 { 3530 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3531 } 3532 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3533 3534 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3535 void *data, unsigned int offset, 3536 unsigned long len) 3537 { 3538 struct kvm_memslots *slots = kvm_memslots(kvm); 3539 int r; 3540 gpa_t gpa = ghc->gpa + offset; 3541 3542 if (WARN_ON_ONCE(len + offset > ghc->len)) 3543 return -EINVAL; 3544 3545 if (slots->generation != ghc->generation) { 3546 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3547 return -EFAULT; 3548 } 3549 3550 if (kvm_is_error_hva(ghc->hva)) 3551 return -EFAULT; 3552 3553 if (unlikely(!ghc->memslot)) 3554 return kvm_read_guest(kvm, gpa, data, len); 3555 3556 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3557 if (r) 3558 return -EFAULT; 3559 3560 return 0; 3561 } 3562 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3563 3564 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3565 void *data, unsigned long len) 3566 { 3567 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3568 } 3569 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3570 3571 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3572 { 3573 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3574 gfn_t gfn = gpa >> PAGE_SHIFT; 3575 int seg; 3576 int offset = offset_in_page(gpa); 3577 int ret; 3578 3579 while ((seg = next_segment(len, offset)) != 0) { 3580 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3581 if (ret < 0) 3582 return ret; 3583 offset = 0; 3584 len -= seg; 3585 ++gfn; 3586 } 3587 return 0; 3588 } 3589 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3590 3591 void mark_page_dirty_in_slot(struct kvm *kvm, 3592 const struct kvm_memory_slot *memslot, 3593 gfn_t gfn) 3594 { 3595 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3596 3597 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3598 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3599 return; 3600 3601 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3602 #endif 3603 3604 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3605 unsigned long rel_gfn = gfn - memslot->base_gfn; 3606 u32 slot = (memslot->as_id << 16) | memslot->id; 3607 3608 if (kvm->dirty_ring_size && vcpu) 3609 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3610 else if (memslot->dirty_bitmap) 3611 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3612 } 3613 } 3614 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3615 3616 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3617 { 3618 struct kvm_memory_slot *memslot; 3619 3620 memslot = gfn_to_memslot(kvm, gfn); 3621 mark_page_dirty_in_slot(kvm, memslot, gfn); 3622 } 3623 EXPORT_SYMBOL_GPL(mark_page_dirty); 3624 3625 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3626 { 3627 struct kvm_memory_slot *memslot; 3628 3629 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3630 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3631 } 3632 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3633 3634 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3635 { 3636 if (!vcpu->sigset_active) 3637 return; 3638 3639 /* 3640 * This does a lockless modification of ->real_blocked, which is fine 3641 * because, only current can change ->real_blocked and all readers of 3642 * ->real_blocked don't care as long ->real_blocked is always a subset 3643 * of ->blocked. 3644 */ 3645 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3646 } 3647 3648 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3649 { 3650 if (!vcpu->sigset_active) 3651 return; 3652 3653 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3654 sigemptyset(¤t->real_blocked); 3655 } 3656 3657 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3658 { 3659 unsigned int old, val, grow, grow_start; 3660 3661 old = val = vcpu->halt_poll_ns; 3662 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3663 grow = READ_ONCE(halt_poll_ns_grow); 3664 if (!grow) 3665 goto out; 3666 3667 val *= grow; 3668 if (val < grow_start) 3669 val = grow_start; 3670 3671 vcpu->halt_poll_ns = val; 3672 out: 3673 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3674 } 3675 3676 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3677 { 3678 unsigned int old, val, shrink, grow_start; 3679 3680 old = val = vcpu->halt_poll_ns; 3681 shrink = READ_ONCE(halt_poll_ns_shrink); 3682 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3683 if (shrink == 0) 3684 val = 0; 3685 else 3686 val /= shrink; 3687 3688 if (val < grow_start) 3689 val = 0; 3690 3691 vcpu->halt_poll_ns = val; 3692 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3693 } 3694 3695 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3696 { 3697 int ret = -EINTR; 3698 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3699 3700 if (kvm_arch_vcpu_runnable(vcpu)) 3701 goto out; 3702 if (kvm_cpu_has_pending_timer(vcpu)) 3703 goto out; 3704 if (signal_pending(current)) 3705 goto out; 3706 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3707 goto out; 3708 3709 ret = 0; 3710 out: 3711 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3712 return ret; 3713 } 3714 3715 /* 3716 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3717 * pending. This is mostly used when halting a vCPU, but may also be used 3718 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3719 */ 3720 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3721 { 3722 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3723 bool waited = false; 3724 3725 vcpu->stat.generic.blocking = 1; 3726 3727 preempt_disable(); 3728 kvm_arch_vcpu_blocking(vcpu); 3729 prepare_to_rcuwait(wait); 3730 preempt_enable(); 3731 3732 for (;;) { 3733 set_current_state(TASK_INTERRUPTIBLE); 3734 3735 if (kvm_vcpu_check_block(vcpu) < 0) 3736 break; 3737 3738 waited = true; 3739 schedule(); 3740 } 3741 3742 preempt_disable(); 3743 finish_rcuwait(wait); 3744 kvm_arch_vcpu_unblocking(vcpu); 3745 preempt_enable(); 3746 3747 vcpu->stat.generic.blocking = 0; 3748 3749 return waited; 3750 } 3751 3752 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3753 ktime_t end, bool success) 3754 { 3755 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3756 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3757 3758 ++vcpu->stat.generic.halt_attempted_poll; 3759 3760 if (success) { 3761 ++vcpu->stat.generic.halt_successful_poll; 3762 3763 if (!vcpu_valid_wakeup(vcpu)) 3764 ++vcpu->stat.generic.halt_poll_invalid; 3765 3766 stats->halt_poll_success_ns += poll_ns; 3767 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3768 } else { 3769 stats->halt_poll_fail_ns += poll_ns; 3770 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3771 } 3772 } 3773 3774 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3775 { 3776 struct kvm *kvm = vcpu->kvm; 3777 3778 if (kvm->override_halt_poll_ns) { 3779 /* 3780 * Ensure kvm->max_halt_poll_ns is not read before 3781 * kvm->override_halt_poll_ns. 3782 * 3783 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3784 */ 3785 smp_rmb(); 3786 return READ_ONCE(kvm->max_halt_poll_ns); 3787 } 3788 3789 return READ_ONCE(halt_poll_ns); 3790 } 3791 3792 /* 3793 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3794 * polling is enabled, busy wait for a short time before blocking to avoid the 3795 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3796 * is halted. 3797 */ 3798 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3799 { 3800 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3801 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3802 ktime_t start, cur, poll_end; 3803 bool waited = false; 3804 bool do_halt_poll; 3805 u64 halt_ns; 3806 3807 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3808 vcpu->halt_poll_ns = max_halt_poll_ns; 3809 3810 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3811 3812 start = cur = poll_end = ktime_get(); 3813 if (do_halt_poll) { 3814 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3815 3816 do { 3817 if (kvm_vcpu_check_block(vcpu) < 0) 3818 goto out; 3819 cpu_relax(); 3820 poll_end = cur = ktime_get(); 3821 } while (kvm_vcpu_can_poll(cur, stop)); 3822 } 3823 3824 waited = kvm_vcpu_block(vcpu); 3825 3826 cur = ktime_get(); 3827 if (waited) { 3828 vcpu->stat.generic.halt_wait_ns += 3829 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3830 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3831 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3832 } 3833 out: 3834 /* The total time the vCPU was "halted", including polling time. */ 3835 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3836 3837 /* 3838 * Note, halt-polling is considered successful so long as the vCPU was 3839 * never actually scheduled out, i.e. even if the wake event arrived 3840 * after of the halt-polling loop itself, but before the full wait. 3841 */ 3842 if (do_halt_poll) 3843 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3844 3845 if (halt_poll_allowed) { 3846 /* Recompute the max halt poll time in case it changed. */ 3847 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3848 3849 if (!vcpu_valid_wakeup(vcpu)) { 3850 shrink_halt_poll_ns(vcpu); 3851 } else if (max_halt_poll_ns) { 3852 if (halt_ns <= vcpu->halt_poll_ns) 3853 ; 3854 /* we had a long block, shrink polling */ 3855 else if (vcpu->halt_poll_ns && 3856 halt_ns > max_halt_poll_ns) 3857 shrink_halt_poll_ns(vcpu); 3858 /* we had a short halt and our poll time is too small */ 3859 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3860 halt_ns < max_halt_poll_ns) 3861 grow_halt_poll_ns(vcpu); 3862 } else { 3863 vcpu->halt_poll_ns = 0; 3864 } 3865 } 3866 3867 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3868 } 3869 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3870 3871 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3872 { 3873 if (__kvm_vcpu_wake_up(vcpu)) { 3874 WRITE_ONCE(vcpu->ready, true); 3875 ++vcpu->stat.generic.halt_wakeup; 3876 return true; 3877 } 3878 3879 return false; 3880 } 3881 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3882 3883 #ifndef CONFIG_S390 3884 /* 3885 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3886 */ 3887 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3888 { 3889 int me, cpu; 3890 3891 if (kvm_vcpu_wake_up(vcpu)) 3892 return; 3893 3894 me = get_cpu(); 3895 /* 3896 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3897 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3898 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3899 * within the vCPU thread itself. 3900 */ 3901 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3902 if (vcpu->mode == IN_GUEST_MODE) 3903 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3904 goto out; 3905 } 3906 3907 /* 3908 * Note, the vCPU could get migrated to a different pCPU at any point 3909 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3910 * IPI to the previous pCPU. But, that's ok because the purpose of the 3911 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3912 * vCPU also requires it to leave IN_GUEST_MODE. 3913 */ 3914 if (kvm_arch_vcpu_should_kick(vcpu)) { 3915 cpu = READ_ONCE(vcpu->cpu); 3916 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3917 smp_send_reschedule(cpu); 3918 } 3919 out: 3920 put_cpu(); 3921 } 3922 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3923 #endif /* !CONFIG_S390 */ 3924 3925 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3926 { 3927 struct pid *pid; 3928 struct task_struct *task = NULL; 3929 int ret = 0; 3930 3931 rcu_read_lock(); 3932 pid = rcu_dereference(target->pid); 3933 if (pid) 3934 task = get_pid_task(pid, PIDTYPE_PID); 3935 rcu_read_unlock(); 3936 if (!task) 3937 return ret; 3938 ret = yield_to(task, 1); 3939 put_task_struct(task); 3940 3941 return ret; 3942 } 3943 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3944 3945 /* 3946 * Helper that checks whether a VCPU is eligible for directed yield. 3947 * Most eligible candidate to yield is decided by following heuristics: 3948 * 3949 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3950 * (preempted lock holder), indicated by @in_spin_loop. 3951 * Set at the beginning and cleared at the end of interception/PLE handler. 3952 * 3953 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3954 * chance last time (mostly it has become eligible now since we have probably 3955 * yielded to lockholder in last iteration. This is done by toggling 3956 * @dy_eligible each time a VCPU checked for eligibility.) 3957 * 3958 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3959 * to preempted lock-holder could result in wrong VCPU selection and CPU 3960 * burning. Giving priority for a potential lock-holder increases lock 3961 * progress. 3962 * 3963 * Since algorithm is based on heuristics, accessing another VCPU data without 3964 * locking does not harm. It may result in trying to yield to same VCPU, fail 3965 * and continue with next VCPU and so on. 3966 */ 3967 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3968 { 3969 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3970 bool eligible; 3971 3972 eligible = !vcpu->spin_loop.in_spin_loop || 3973 vcpu->spin_loop.dy_eligible; 3974 3975 if (vcpu->spin_loop.in_spin_loop) 3976 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3977 3978 return eligible; 3979 #else 3980 return true; 3981 #endif 3982 } 3983 3984 /* 3985 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3986 * a vcpu_load/vcpu_put pair. However, for most architectures 3987 * kvm_arch_vcpu_runnable does not require vcpu_load. 3988 */ 3989 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3990 { 3991 return kvm_arch_vcpu_runnable(vcpu); 3992 } 3993 3994 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3995 { 3996 if (kvm_arch_dy_runnable(vcpu)) 3997 return true; 3998 3999 #ifdef CONFIG_KVM_ASYNC_PF 4000 if (!list_empty_careful(&vcpu->async_pf.done)) 4001 return true; 4002 #endif 4003 4004 return false; 4005 } 4006 4007 /* 4008 * By default, simply query the target vCPU's current mode when checking if a 4009 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4010 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4011 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4012 * directly for cross-vCPU checks is functionally correct and accurate. 4013 */ 4014 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4015 { 4016 return kvm_arch_vcpu_in_kernel(vcpu); 4017 } 4018 4019 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4020 { 4021 return false; 4022 } 4023 4024 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4025 { 4026 struct kvm *kvm = me->kvm; 4027 struct kvm_vcpu *vcpu; 4028 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4029 unsigned long i; 4030 int yielded = 0; 4031 int try = 3; 4032 int pass; 4033 4034 kvm_vcpu_set_in_spin_loop(me, true); 4035 /* 4036 * We boost the priority of a VCPU that is runnable but not 4037 * currently running, because it got preempted by something 4038 * else and called schedule in __vcpu_run. Hopefully that 4039 * VCPU is holding the lock that we need and will release it. 4040 * We approximate round-robin by starting at the last boosted VCPU. 4041 */ 4042 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4043 kvm_for_each_vcpu(i, vcpu, kvm) { 4044 if (!pass && i <= last_boosted_vcpu) { 4045 i = last_boosted_vcpu; 4046 continue; 4047 } else if (pass && i > last_boosted_vcpu) 4048 break; 4049 if (!READ_ONCE(vcpu->ready)) 4050 continue; 4051 if (vcpu == me) 4052 continue; 4053 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4054 continue; 4055 4056 /* 4057 * Treat the target vCPU as being in-kernel if it has a 4058 * pending interrupt, as the vCPU trying to yield may 4059 * be spinning waiting on IPI delivery, i.e. the target 4060 * vCPU is in-kernel for the purposes of directed yield. 4061 */ 4062 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4063 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4064 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4065 continue; 4066 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4067 continue; 4068 4069 yielded = kvm_vcpu_yield_to(vcpu); 4070 if (yielded > 0) { 4071 kvm->last_boosted_vcpu = i; 4072 break; 4073 } else if (yielded < 0) { 4074 try--; 4075 if (!try) 4076 break; 4077 } 4078 } 4079 } 4080 kvm_vcpu_set_in_spin_loop(me, false); 4081 4082 /* Ensure vcpu is not eligible during next spinloop */ 4083 kvm_vcpu_set_dy_eligible(me, false); 4084 } 4085 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4086 4087 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4088 { 4089 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4090 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4091 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4092 kvm->dirty_ring_size / PAGE_SIZE); 4093 #else 4094 return false; 4095 #endif 4096 } 4097 4098 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4099 { 4100 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4101 struct page *page; 4102 4103 if (vmf->pgoff == 0) 4104 page = virt_to_page(vcpu->run); 4105 #ifdef CONFIG_X86 4106 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4107 page = virt_to_page(vcpu->arch.pio_data); 4108 #endif 4109 #ifdef CONFIG_KVM_MMIO 4110 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4111 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4112 #endif 4113 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4114 page = kvm_dirty_ring_get_page( 4115 &vcpu->dirty_ring, 4116 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4117 else 4118 return kvm_arch_vcpu_fault(vcpu, vmf); 4119 get_page(page); 4120 vmf->page = page; 4121 return 0; 4122 } 4123 4124 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4125 .fault = kvm_vcpu_fault, 4126 }; 4127 4128 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4129 { 4130 struct kvm_vcpu *vcpu = file->private_data; 4131 unsigned long pages = vma_pages(vma); 4132 4133 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4134 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4135 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4136 return -EINVAL; 4137 4138 vma->vm_ops = &kvm_vcpu_vm_ops; 4139 return 0; 4140 } 4141 4142 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4143 { 4144 struct kvm_vcpu *vcpu = filp->private_data; 4145 4146 kvm_put_kvm(vcpu->kvm); 4147 return 0; 4148 } 4149 4150 static struct file_operations kvm_vcpu_fops = { 4151 .release = kvm_vcpu_release, 4152 .unlocked_ioctl = kvm_vcpu_ioctl, 4153 .mmap = kvm_vcpu_mmap, 4154 .llseek = noop_llseek, 4155 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4156 }; 4157 4158 /* 4159 * Allocates an inode for the vcpu. 4160 */ 4161 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4162 { 4163 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4164 4165 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4166 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4167 } 4168 4169 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4170 static int vcpu_get_pid(void *data, u64 *val) 4171 { 4172 struct kvm_vcpu *vcpu = data; 4173 4174 rcu_read_lock(); 4175 *val = pid_nr(rcu_dereference(vcpu->pid)); 4176 rcu_read_unlock(); 4177 return 0; 4178 } 4179 4180 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4181 4182 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4183 { 4184 struct dentry *debugfs_dentry; 4185 char dir_name[ITOA_MAX_LEN * 2]; 4186 4187 if (!debugfs_initialized()) 4188 return; 4189 4190 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4191 debugfs_dentry = debugfs_create_dir(dir_name, 4192 vcpu->kvm->debugfs_dentry); 4193 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4194 &vcpu_get_pid_fops); 4195 4196 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4197 } 4198 #endif 4199 4200 /* 4201 * Creates some virtual cpus. Good luck creating more than one. 4202 */ 4203 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4204 { 4205 int r; 4206 struct kvm_vcpu *vcpu; 4207 struct page *page; 4208 4209 if (id >= KVM_MAX_VCPU_IDS) 4210 return -EINVAL; 4211 4212 mutex_lock(&kvm->lock); 4213 if (kvm->created_vcpus >= kvm->max_vcpus) { 4214 mutex_unlock(&kvm->lock); 4215 return -EINVAL; 4216 } 4217 4218 r = kvm_arch_vcpu_precreate(kvm, id); 4219 if (r) { 4220 mutex_unlock(&kvm->lock); 4221 return r; 4222 } 4223 4224 kvm->created_vcpus++; 4225 mutex_unlock(&kvm->lock); 4226 4227 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4228 if (!vcpu) { 4229 r = -ENOMEM; 4230 goto vcpu_decrement; 4231 } 4232 4233 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4234 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4235 if (!page) { 4236 r = -ENOMEM; 4237 goto vcpu_free; 4238 } 4239 vcpu->run = page_address(page); 4240 4241 kvm_vcpu_init(vcpu, kvm, id); 4242 4243 r = kvm_arch_vcpu_create(vcpu); 4244 if (r) 4245 goto vcpu_free_run_page; 4246 4247 if (kvm->dirty_ring_size) { 4248 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4249 id, kvm->dirty_ring_size); 4250 if (r) 4251 goto arch_vcpu_destroy; 4252 } 4253 4254 mutex_lock(&kvm->lock); 4255 4256 #ifdef CONFIG_LOCKDEP 4257 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4258 mutex_lock(&vcpu->mutex); 4259 mutex_unlock(&vcpu->mutex); 4260 #endif 4261 4262 if (kvm_get_vcpu_by_id(kvm, id)) { 4263 r = -EEXIST; 4264 goto unlock_vcpu_destroy; 4265 } 4266 4267 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4268 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4269 if (r) 4270 goto unlock_vcpu_destroy; 4271 4272 /* Now it's all set up, let userspace reach it */ 4273 kvm_get_kvm(kvm); 4274 r = create_vcpu_fd(vcpu); 4275 if (r < 0) 4276 goto kvm_put_xa_release; 4277 4278 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4279 r = -EINVAL; 4280 goto kvm_put_xa_release; 4281 } 4282 4283 /* 4284 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4285 * pointer before kvm->online_vcpu's incremented value. 4286 */ 4287 smp_wmb(); 4288 atomic_inc(&kvm->online_vcpus); 4289 4290 mutex_unlock(&kvm->lock); 4291 kvm_arch_vcpu_postcreate(vcpu); 4292 kvm_create_vcpu_debugfs(vcpu); 4293 return r; 4294 4295 kvm_put_xa_release: 4296 kvm_put_kvm_no_destroy(kvm); 4297 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4298 unlock_vcpu_destroy: 4299 mutex_unlock(&kvm->lock); 4300 kvm_dirty_ring_free(&vcpu->dirty_ring); 4301 arch_vcpu_destroy: 4302 kvm_arch_vcpu_destroy(vcpu); 4303 vcpu_free_run_page: 4304 free_page((unsigned long)vcpu->run); 4305 vcpu_free: 4306 kmem_cache_free(kvm_vcpu_cache, vcpu); 4307 vcpu_decrement: 4308 mutex_lock(&kvm->lock); 4309 kvm->created_vcpus--; 4310 mutex_unlock(&kvm->lock); 4311 return r; 4312 } 4313 4314 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4315 { 4316 if (sigset) { 4317 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4318 vcpu->sigset_active = 1; 4319 vcpu->sigset = *sigset; 4320 } else 4321 vcpu->sigset_active = 0; 4322 return 0; 4323 } 4324 4325 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4326 size_t size, loff_t *offset) 4327 { 4328 struct kvm_vcpu *vcpu = file->private_data; 4329 4330 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4331 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4332 sizeof(vcpu->stat), user_buffer, size, offset); 4333 } 4334 4335 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4336 { 4337 struct kvm_vcpu *vcpu = file->private_data; 4338 4339 kvm_put_kvm(vcpu->kvm); 4340 return 0; 4341 } 4342 4343 static const struct file_operations kvm_vcpu_stats_fops = { 4344 .owner = THIS_MODULE, 4345 .read = kvm_vcpu_stats_read, 4346 .release = kvm_vcpu_stats_release, 4347 .llseek = noop_llseek, 4348 }; 4349 4350 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4351 { 4352 int fd; 4353 struct file *file; 4354 char name[15 + ITOA_MAX_LEN + 1]; 4355 4356 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4357 4358 fd = get_unused_fd_flags(O_CLOEXEC); 4359 if (fd < 0) 4360 return fd; 4361 4362 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4363 if (IS_ERR(file)) { 4364 put_unused_fd(fd); 4365 return PTR_ERR(file); 4366 } 4367 4368 kvm_get_kvm(vcpu->kvm); 4369 4370 file->f_mode |= FMODE_PREAD; 4371 fd_install(fd, file); 4372 4373 return fd; 4374 } 4375 4376 static long kvm_vcpu_ioctl(struct file *filp, 4377 unsigned int ioctl, unsigned long arg) 4378 { 4379 struct kvm_vcpu *vcpu = filp->private_data; 4380 void __user *argp = (void __user *)arg; 4381 int r; 4382 struct kvm_fpu *fpu = NULL; 4383 struct kvm_sregs *kvm_sregs = NULL; 4384 4385 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4386 return -EIO; 4387 4388 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4389 return -EINVAL; 4390 4391 /* 4392 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4393 * execution; mutex_lock() would break them. 4394 */ 4395 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4396 if (r != -ENOIOCTLCMD) 4397 return r; 4398 4399 if (mutex_lock_killable(&vcpu->mutex)) 4400 return -EINTR; 4401 switch (ioctl) { 4402 case KVM_RUN: { 4403 struct pid *oldpid; 4404 r = -EINVAL; 4405 if (arg) 4406 goto out; 4407 oldpid = rcu_access_pointer(vcpu->pid); 4408 if (unlikely(oldpid != task_pid(current))) { 4409 /* The thread running this VCPU changed. */ 4410 struct pid *newpid; 4411 4412 r = kvm_arch_vcpu_run_pid_change(vcpu); 4413 if (r) 4414 break; 4415 4416 newpid = get_task_pid(current, PIDTYPE_PID); 4417 rcu_assign_pointer(vcpu->pid, newpid); 4418 if (oldpid) 4419 synchronize_rcu(); 4420 put_pid(oldpid); 4421 } 4422 r = kvm_arch_vcpu_ioctl_run(vcpu); 4423 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4424 break; 4425 } 4426 case KVM_GET_REGS: { 4427 struct kvm_regs *kvm_regs; 4428 4429 r = -ENOMEM; 4430 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4431 if (!kvm_regs) 4432 goto out; 4433 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4434 if (r) 4435 goto out_free1; 4436 r = -EFAULT; 4437 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4438 goto out_free1; 4439 r = 0; 4440 out_free1: 4441 kfree(kvm_regs); 4442 break; 4443 } 4444 case KVM_SET_REGS: { 4445 struct kvm_regs *kvm_regs; 4446 4447 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4448 if (IS_ERR(kvm_regs)) { 4449 r = PTR_ERR(kvm_regs); 4450 goto out; 4451 } 4452 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4453 kfree(kvm_regs); 4454 break; 4455 } 4456 case KVM_GET_SREGS: { 4457 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4458 GFP_KERNEL_ACCOUNT); 4459 r = -ENOMEM; 4460 if (!kvm_sregs) 4461 goto out; 4462 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4463 if (r) 4464 goto out; 4465 r = -EFAULT; 4466 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4467 goto out; 4468 r = 0; 4469 break; 4470 } 4471 case KVM_SET_SREGS: { 4472 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4473 if (IS_ERR(kvm_sregs)) { 4474 r = PTR_ERR(kvm_sregs); 4475 kvm_sregs = NULL; 4476 goto out; 4477 } 4478 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4479 break; 4480 } 4481 case KVM_GET_MP_STATE: { 4482 struct kvm_mp_state mp_state; 4483 4484 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4485 if (r) 4486 goto out; 4487 r = -EFAULT; 4488 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4489 goto out; 4490 r = 0; 4491 break; 4492 } 4493 case KVM_SET_MP_STATE: { 4494 struct kvm_mp_state mp_state; 4495 4496 r = -EFAULT; 4497 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4498 goto out; 4499 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4500 break; 4501 } 4502 case KVM_TRANSLATE: { 4503 struct kvm_translation tr; 4504 4505 r = -EFAULT; 4506 if (copy_from_user(&tr, argp, sizeof(tr))) 4507 goto out; 4508 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4509 if (r) 4510 goto out; 4511 r = -EFAULT; 4512 if (copy_to_user(argp, &tr, sizeof(tr))) 4513 goto out; 4514 r = 0; 4515 break; 4516 } 4517 case KVM_SET_GUEST_DEBUG: { 4518 struct kvm_guest_debug dbg; 4519 4520 r = -EFAULT; 4521 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4522 goto out; 4523 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4524 break; 4525 } 4526 case KVM_SET_SIGNAL_MASK: { 4527 struct kvm_signal_mask __user *sigmask_arg = argp; 4528 struct kvm_signal_mask kvm_sigmask; 4529 sigset_t sigset, *p; 4530 4531 p = NULL; 4532 if (argp) { 4533 r = -EFAULT; 4534 if (copy_from_user(&kvm_sigmask, argp, 4535 sizeof(kvm_sigmask))) 4536 goto out; 4537 r = -EINVAL; 4538 if (kvm_sigmask.len != sizeof(sigset)) 4539 goto out; 4540 r = -EFAULT; 4541 if (copy_from_user(&sigset, sigmask_arg->sigset, 4542 sizeof(sigset))) 4543 goto out; 4544 p = &sigset; 4545 } 4546 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4547 break; 4548 } 4549 case KVM_GET_FPU: { 4550 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4551 r = -ENOMEM; 4552 if (!fpu) 4553 goto out; 4554 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4555 if (r) 4556 goto out; 4557 r = -EFAULT; 4558 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4559 goto out; 4560 r = 0; 4561 break; 4562 } 4563 case KVM_SET_FPU: { 4564 fpu = memdup_user(argp, sizeof(*fpu)); 4565 if (IS_ERR(fpu)) { 4566 r = PTR_ERR(fpu); 4567 fpu = NULL; 4568 goto out; 4569 } 4570 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4571 break; 4572 } 4573 case KVM_GET_STATS_FD: { 4574 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4575 break; 4576 } 4577 default: 4578 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4579 } 4580 out: 4581 mutex_unlock(&vcpu->mutex); 4582 kfree(fpu); 4583 kfree(kvm_sregs); 4584 return r; 4585 } 4586 4587 #ifdef CONFIG_KVM_COMPAT 4588 static long kvm_vcpu_compat_ioctl(struct file *filp, 4589 unsigned int ioctl, unsigned long arg) 4590 { 4591 struct kvm_vcpu *vcpu = filp->private_data; 4592 void __user *argp = compat_ptr(arg); 4593 int r; 4594 4595 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4596 return -EIO; 4597 4598 switch (ioctl) { 4599 case KVM_SET_SIGNAL_MASK: { 4600 struct kvm_signal_mask __user *sigmask_arg = argp; 4601 struct kvm_signal_mask kvm_sigmask; 4602 sigset_t sigset; 4603 4604 if (argp) { 4605 r = -EFAULT; 4606 if (copy_from_user(&kvm_sigmask, argp, 4607 sizeof(kvm_sigmask))) 4608 goto out; 4609 r = -EINVAL; 4610 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4611 goto out; 4612 r = -EFAULT; 4613 if (get_compat_sigset(&sigset, 4614 (compat_sigset_t __user *)sigmask_arg->sigset)) 4615 goto out; 4616 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4617 } else 4618 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4619 break; 4620 } 4621 default: 4622 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4623 } 4624 4625 out: 4626 return r; 4627 } 4628 #endif 4629 4630 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4631 { 4632 struct kvm_device *dev = filp->private_data; 4633 4634 if (dev->ops->mmap) 4635 return dev->ops->mmap(dev, vma); 4636 4637 return -ENODEV; 4638 } 4639 4640 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4641 int (*accessor)(struct kvm_device *dev, 4642 struct kvm_device_attr *attr), 4643 unsigned long arg) 4644 { 4645 struct kvm_device_attr attr; 4646 4647 if (!accessor) 4648 return -EPERM; 4649 4650 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4651 return -EFAULT; 4652 4653 return accessor(dev, &attr); 4654 } 4655 4656 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4657 unsigned long arg) 4658 { 4659 struct kvm_device *dev = filp->private_data; 4660 4661 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4662 return -EIO; 4663 4664 switch (ioctl) { 4665 case KVM_SET_DEVICE_ATTR: 4666 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4667 case KVM_GET_DEVICE_ATTR: 4668 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4669 case KVM_HAS_DEVICE_ATTR: 4670 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4671 default: 4672 if (dev->ops->ioctl) 4673 return dev->ops->ioctl(dev, ioctl, arg); 4674 4675 return -ENOTTY; 4676 } 4677 } 4678 4679 static int kvm_device_release(struct inode *inode, struct file *filp) 4680 { 4681 struct kvm_device *dev = filp->private_data; 4682 struct kvm *kvm = dev->kvm; 4683 4684 if (dev->ops->release) { 4685 mutex_lock(&kvm->lock); 4686 list_del_rcu(&dev->vm_node); 4687 synchronize_rcu(); 4688 dev->ops->release(dev); 4689 mutex_unlock(&kvm->lock); 4690 } 4691 4692 kvm_put_kvm(kvm); 4693 return 0; 4694 } 4695 4696 static struct file_operations kvm_device_fops = { 4697 .unlocked_ioctl = kvm_device_ioctl, 4698 .release = kvm_device_release, 4699 KVM_COMPAT(kvm_device_ioctl), 4700 .mmap = kvm_device_mmap, 4701 }; 4702 4703 struct kvm_device *kvm_device_from_filp(struct file *filp) 4704 { 4705 if (filp->f_op != &kvm_device_fops) 4706 return NULL; 4707 4708 return filp->private_data; 4709 } 4710 4711 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4712 #ifdef CONFIG_KVM_MPIC 4713 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4714 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4715 #endif 4716 }; 4717 4718 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4719 { 4720 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4721 return -ENOSPC; 4722 4723 if (kvm_device_ops_table[type] != NULL) 4724 return -EEXIST; 4725 4726 kvm_device_ops_table[type] = ops; 4727 return 0; 4728 } 4729 4730 void kvm_unregister_device_ops(u32 type) 4731 { 4732 if (kvm_device_ops_table[type] != NULL) 4733 kvm_device_ops_table[type] = NULL; 4734 } 4735 4736 static int kvm_ioctl_create_device(struct kvm *kvm, 4737 struct kvm_create_device *cd) 4738 { 4739 const struct kvm_device_ops *ops; 4740 struct kvm_device *dev; 4741 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4742 int type; 4743 int ret; 4744 4745 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4746 return -ENODEV; 4747 4748 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4749 ops = kvm_device_ops_table[type]; 4750 if (ops == NULL) 4751 return -ENODEV; 4752 4753 if (test) 4754 return 0; 4755 4756 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4757 if (!dev) 4758 return -ENOMEM; 4759 4760 dev->ops = ops; 4761 dev->kvm = kvm; 4762 4763 mutex_lock(&kvm->lock); 4764 ret = ops->create(dev, type); 4765 if (ret < 0) { 4766 mutex_unlock(&kvm->lock); 4767 kfree(dev); 4768 return ret; 4769 } 4770 list_add_rcu(&dev->vm_node, &kvm->devices); 4771 mutex_unlock(&kvm->lock); 4772 4773 if (ops->init) 4774 ops->init(dev); 4775 4776 kvm_get_kvm(kvm); 4777 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4778 if (ret < 0) { 4779 kvm_put_kvm_no_destroy(kvm); 4780 mutex_lock(&kvm->lock); 4781 list_del_rcu(&dev->vm_node); 4782 synchronize_rcu(); 4783 if (ops->release) 4784 ops->release(dev); 4785 mutex_unlock(&kvm->lock); 4786 if (ops->destroy) 4787 ops->destroy(dev); 4788 return ret; 4789 } 4790 4791 cd->fd = ret; 4792 return 0; 4793 } 4794 4795 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4796 { 4797 switch (arg) { 4798 case KVM_CAP_USER_MEMORY: 4799 case KVM_CAP_USER_MEMORY2: 4800 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4801 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4802 case KVM_CAP_INTERNAL_ERROR_DATA: 4803 #ifdef CONFIG_HAVE_KVM_MSI 4804 case KVM_CAP_SIGNAL_MSI: 4805 #endif 4806 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4807 case KVM_CAP_IRQFD: 4808 #endif 4809 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4810 case KVM_CAP_CHECK_EXTENSION_VM: 4811 case KVM_CAP_ENABLE_CAP_VM: 4812 case KVM_CAP_HALT_POLL: 4813 return 1; 4814 #ifdef CONFIG_KVM_MMIO 4815 case KVM_CAP_COALESCED_MMIO: 4816 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4817 case KVM_CAP_COALESCED_PIO: 4818 return 1; 4819 #endif 4820 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4821 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4822 return KVM_DIRTY_LOG_MANUAL_CAPS; 4823 #endif 4824 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4825 case KVM_CAP_IRQ_ROUTING: 4826 return KVM_MAX_IRQ_ROUTES; 4827 #endif 4828 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4829 case KVM_CAP_MULTI_ADDRESS_SPACE: 4830 if (kvm) 4831 return kvm_arch_nr_memslot_as_ids(kvm); 4832 return KVM_MAX_NR_ADDRESS_SPACES; 4833 #endif 4834 case KVM_CAP_NR_MEMSLOTS: 4835 return KVM_USER_MEM_SLOTS; 4836 case KVM_CAP_DIRTY_LOG_RING: 4837 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4838 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4839 #else 4840 return 0; 4841 #endif 4842 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4843 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4844 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4845 #else 4846 return 0; 4847 #endif 4848 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4849 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4850 #endif 4851 case KVM_CAP_BINARY_STATS_FD: 4852 case KVM_CAP_SYSTEM_EVENT_DATA: 4853 case KVM_CAP_DEVICE_CTRL: 4854 return 1; 4855 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4856 case KVM_CAP_MEMORY_ATTRIBUTES: 4857 return kvm_supported_mem_attributes(kvm); 4858 #endif 4859 #ifdef CONFIG_KVM_PRIVATE_MEM 4860 case KVM_CAP_GUEST_MEMFD: 4861 return !kvm || kvm_arch_has_private_mem(kvm); 4862 #endif 4863 default: 4864 break; 4865 } 4866 return kvm_vm_ioctl_check_extension(kvm, arg); 4867 } 4868 4869 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4870 { 4871 int r; 4872 4873 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4874 return -EINVAL; 4875 4876 /* the size should be power of 2 */ 4877 if (!size || (size & (size - 1))) 4878 return -EINVAL; 4879 4880 /* Should be bigger to keep the reserved entries, or a page */ 4881 if (size < kvm_dirty_ring_get_rsvd_entries() * 4882 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4883 return -EINVAL; 4884 4885 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4886 sizeof(struct kvm_dirty_gfn)) 4887 return -E2BIG; 4888 4889 /* We only allow it to set once */ 4890 if (kvm->dirty_ring_size) 4891 return -EINVAL; 4892 4893 mutex_lock(&kvm->lock); 4894 4895 if (kvm->created_vcpus) { 4896 /* We don't allow to change this value after vcpu created */ 4897 r = -EINVAL; 4898 } else { 4899 kvm->dirty_ring_size = size; 4900 r = 0; 4901 } 4902 4903 mutex_unlock(&kvm->lock); 4904 return r; 4905 } 4906 4907 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4908 { 4909 unsigned long i; 4910 struct kvm_vcpu *vcpu; 4911 int cleared = 0; 4912 4913 if (!kvm->dirty_ring_size) 4914 return -EINVAL; 4915 4916 mutex_lock(&kvm->slots_lock); 4917 4918 kvm_for_each_vcpu(i, vcpu, kvm) 4919 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4920 4921 mutex_unlock(&kvm->slots_lock); 4922 4923 if (cleared) 4924 kvm_flush_remote_tlbs(kvm); 4925 4926 return cleared; 4927 } 4928 4929 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4930 struct kvm_enable_cap *cap) 4931 { 4932 return -EINVAL; 4933 } 4934 4935 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4936 { 4937 int i; 4938 4939 lockdep_assert_held(&kvm->slots_lock); 4940 4941 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4942 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4943 return false; 4944 } 4945 4946 return true; 4947 } 4948 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4949 4950 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4951 struct kvm_enable_cap *cap) 4952 { 4953 switch (cap->cap) { 4954 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4955 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4956 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4957 4958 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4959 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4960 4961 if (cap->flags || (cap->args[0] & ~allowed_options)) 4962 return -EINVAL; 4963 kvm->manual_dirty_log_protect = cap->args[0]; 4964 return 0; 4965 } 4966 #endif 4967 case KVM_CAP_HALT_POLL: { 4968 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4969 return -EINVAL; 4970 4971 kvm->max_halt_poll_ns = cap->args[0]; 4972 4973 /* 4974 * Ensure kvm->override_halt_poll_ns does not become visible 4975 * before kvm->max_halt_poll_ns. 4976 * 4977 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4978 */ 4979 smp_wmb(); 4980 kvm->override_halt_poll_ns = true; 4981 4982 return 0; 4983 } 4984 case KVM_CAP_DIRTY_LOG_RING: 4985 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4986 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4987 return -EINVAL; 4988 4989 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4990 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4991 int r = -EINVAL; 4992 4993 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4994 !kvm->dirty_ring_size || cap->flags) 4995 return r; 4996 4997 mutex_lock(&kvm->slots_lock); 4998 4999 /* 5000 * For simplicity, allow enabling ring+bitmap if and only if 5001 * there are no memslots, e.g. to ensure all memslots allocate 5002 * a bitmap after the capability is enabled. 5003 */ 5004 if (kvm_are_all_memslots_empty(kvm)) { 5005 kvm->dirty_ring_with_bitmap = true; 5006 r = 0; 5007 } 5008 5009 mutex_unlock(&kvm->slots_lock); 5010 5011 return r; 5012 } 5013 default: 5014 return kvm_vm_ioctl_enable_cap(kvm, cap); 5015 } 5016 } 5017 5018 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5019 size_t size, loff_t *offset) 5020 { 5021 struct kvm *kvm = file->private_data; 5022 5023 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5024 &kvm_vm_stats_desc[0], &kvm->stat, 5025 sizeof(kvm->stat), user_buffer, size, offset); 5026 } 5027 5028 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5029 { 5030 struct kvm *kvm = file->private_data; 5031 5032 kvm_put_kvm(kvm); 5033 return 0; 5034 } 5035 5036 static const struct file_operations kvm_vm_stats_fops = { 5037 .owner = THIS_MODULE, 5038 .read = kvm_vm_stats_read, 5039 .release = kvm_vm_stats_release, 5040 .llseek = noop_llseek, 5041 }; 5042 5043 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5044 { 5045 int fd; 5046 struct file *file; 5047 5048 fd = get_unused_fd_flags(O_CLOEXEC); 5049 if (fd < 0) 5050 return fd; 5051 5052 file = anon_inode_getfile("kvm-vm-stats", 5053 &kvm_vm_stats_fops, kvm, O_RDONLY); 5054 if (IS_ERR(file)) { 5055 put_unused_fd(fd); 5056 return PTR_ERR(file); 5057 } 5058 5059 kvm_get_kvm(kvm); 5060 5061 file->f_mode |= FMODE_PREAD; 5062 fd_install(fd, file); 5063 5064 return fd; 5065 } 5066 5067 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5068 do { \ 5069 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5070 offsetof(struct kvm_userspace_memory_region2, field)); \ 5071 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5072 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5073 } while (0) 5074 5075 static long kvm_vm_ioctl(struct file *filp, 5076 unsigned int ioctl, unsigned long arg) 5077 { 5078 struct kvm *kvm = filp->private_data; 5079 void __user *argp = (void __user *)arg; 5080 int r; 5081 5082 if (kvm->mm != current->mm || kvm->vm_dead) 5083 return -EIO; 5084 switch (ioctl) { 5085 case KVM_CREATE_VCPU: 5086 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5087 break; 5088 case KVM_ENABLE_CAP: { 5089 struct kvm_enable_cap cap; 5090 5091 r = -EFAULT; 5092 if (copy_from_user(&cap, argp, sizeof(cap))) 5093 goto out; 5094 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5095 break; 5096 } 5097 case KVM_SET_USER_MEMORY_REGION2: 5098 case KVM_SET_USER_MEMORY_REGION: { 5099 struct kvm_userspace_memory_region2 mem; 5100 unsigned long size; 5101 5102 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5103 /* 5104 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5105 * accessed, but avoid leaking kernel memory in case of a bug. 5106 */ 5107 memset(&mem, 0, sizeof(mem)); 5108 size = sizeof(struct kvm_userspace_memory_region); 5109 } else { 5110 size = sizeof(struct kvm_userspace_memory_region2); 5111 } 5112 5113 /* Ensure the common parts of the two structs are identical. */ 5114 SANITY_CHECK_MEM_REGION_FIELD(slot); 5115 SANITY_CHECK_MEM_REGION_FIELD(flags); 5116 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5117 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5118 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5119 5120 r = -EFAULT; 5121 if (copy_from_user(&mem, argp, size)) 5122 goto out; 5123 5124 r = -EINVAL; 5125 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5126 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5127 goto out; 5128 5129 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5130 break; 5131 } 5132 case KVM_GET_DIRTY_LOG: { 5133 struct kvm_dirty_log log; 5134 5135 r = -EFAULT; 5136 if (copy_from_user(&log, argp, sizeof(log))) 5137 goto out; 5138 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5139 break; 5140 } 5141 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5142 case KVM_CLEAR_DIRTY_LOG: { 5143 struct kvm_clear_dirty_log log; 5144 5145 r = -EFAULT; 5146 if (copy_from_user(&log, argp, sizeof(log))) 5147 goto out; 5148 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5149 break; 5150 } 5151 #endif 5152 #ifdef CONFIG_KVM_MMIO 5153 case KVM_REGISTER_COALESCED_MMIO: { 5154 struct kvm_coalesced_mmio_zone zone; 5155 5156 r = -EFAULT; 5157 if (copy_from_user(&zone, argp, sizeof(zone))) 5158 goto out; 5159 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5160 break; 5161 } 5162 case KVM_UNREGISTER_COALESCED_MMIO: { 5163 struct kvm_coalesced_mmio_zone zone; 5164 5165 r = -EFAULT; 5166 if (copy_from_user(&zone, argp, sizeof(zone))) 5167 goto out; 5168 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5169 break; 5170 } 5171 #endif 5172 case KVM_IRQFD: { 5173 struct kvm_irqfd data; 5174 5175 r = -EFAULT; 5176 if (copy_from_user(&data, argp, sizeof(data))) 5177 goto out; 5178 r = kvm_irqfd(kvm, &data); 5179 break; 5180 } 5181 case KVM_IOEVENTFD: { 5182 struct kvm_ioeventfd data; 5183 5184 r = -EFAULT; 5185 if (copy_from_user(&data, argp, sizeof(data))) 5186 goto out; 5187 r = kvm_ioeventfd(kvm, &data); 5188 break; 5189 } 5190 #ifdef CONFIG_HAVE_KVM_MSI 5191 case KVM_SIGNAL_MSI: { 5192 struct kvm_msi msi; 5193 5194 r = -EFAULT; 5195 if (copy_from_user(&msi, argp, sizeof(msi))) 5196 goto out; 5197 r = kvm_send_userspace_msi(kvm, &msi); 5198 break; 5199 } 5200 #endif 5201 #ifdef __KVM_HAVE_IRQ_LINE 5202 case KVM_IRQ_LINE_STATUS: 5203 case KVM_IRQ_LINE: { 5204 struct kvm_irq_level irq_event; 5205 5206 r = -EFAULT; 5207 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5208 goto out; 5209 5210 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5211 ioctl == KVM_IRQ_LINE_STATUS); 5212 if (r) 5213 goto out; 5214 5215 r = -EFAULT; 5216 if (ioctl == KVM_IRQ_LINE_STATUS) { 5217 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5218 goto out; 5219 } 5220 5221 r = 0; 5222 break; 5223 } 5224 #endif 5225 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5226 case KVM_SET_GSI_ROUTING: { 5227 struct kvm_irq_routing routing; 5228 struct kvm_irq_routing __user *urouting; 5229 struct kvm_irq_routing_entry *entries = NULL; 5230 5231 r = -EFAULT; 5232 if (copy_from_user(&routing, argp, sizeof(routing))) 5233 goto out; 5234 r = -EINVAL; 5235 if (!kvm_arch_can_set_irq_routing(kvm)) 5236 goto out; 5237 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5238 goto out; 5239 if (routing.flags) 5240 goto out; 5241 if (routing.nr) { 5242 urouting = argp; 5243 entries = vmemdup_array_user(urouting->entries, 5244 routing.nr, sizeof(*entries)); 5245 if (IS_ERR(entries)) { 5246 r = PTR_ERR(entries); 5247 goto out; 5248 } 5249 } 5250 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5251 routing.flags); 5252 kvfree(entries); 5253 break; 5254 } 5255 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5256 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5257 case KVM_SET_MEMORY_ATTRIBUTES: { 5258 struct kvm_memory_attributes attrs; 5259 5260 r = -EFAULT; 5261 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5262 goto out; 5263 5264 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5265 break; 5266 } 5267 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5268 case KVM_CREATE_DEVICE: { 5269 struct kvm_create_device cd; 5270 5271 r = -EFAULT; 5272 if (copy_from_user(&cd, argp, sizeof(cd))) 5273 goto out; 5274 5275 r = kvm_ioctl_create_device(kvm, &cd); 5276 if (r) 5277 goto out; 5278 5279 r = -EFAULT; 5280 if (copy_to_user(argp, &cd, sizeof(cd))) 5281 goto out; 5282 5283 r = 0; 5284 break; 5285 } 5286 case KVM_CHECK_EXTENSION: 5287 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5288 break; 5289 case KVM_RESET_DIRTY_RINGS: 5290 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5291 break; 5292 case KVM_GET_STATS_FD: 5293 r = kvm_vm_ioctl_get_stats_fd(kvm); 5294 break; 5295 #ifdef CONFIG_KVM_PRIVATE_MEM 5296 case KVM_CREATE_GUEST_MEMFD: { 5297 struct kvm_create_guest_memfd guest_memfd; 5298 5299 r = -EFAULT; 5300 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5301 goto out; 5302 5303 r = kvm_gmem_create(kvm, &guest_memfd); 5304 break; 5305 } 5306 #endif 5307 default: 5308 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5309 } 5310 out: 5311 return r; 5312 } 5313 5314 #ifdef CONFIG_KVM_COMPAT 5315 struct compat_kvm_dirty_log { 5316 __u32 slot; 5317 __u32 padding1; 5318 union { 5319 compat_uptr_t dirty_bitmap; /* one bit per page */ 5320 __u64 padding2; 5321 }; 5322 }; 5323 5324 struct compat_kvm_clear_dirty_log { 5325 __u32 slot; 5326 __u32 num_pages; 5327 __u64 first_page; 5328 union { 5329 compat_uptr_t dirty_bitmap; /* one bit per page */ 5330 __u64 padding2; 5331 }; 5332 }; 5333 5334 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5335 unsigned long arg) 5336 { 5337 return -ENOTTY; 5338 } 5339 5340 static long kvm_vm_compat_ioctl(struct file *filp, 5341 unsigned int ioctl, unsigned long arg) 5342 { 5343 struct kvm *kvm = filp->private_data; 5344 int r; 5345 5346 if (kvm->mm != current->mm || kvm->vm_dead) 5347 return -EIO; 5348 5349 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5350 if (r != -ENOTTY) 5351 return r; 5352 5353 switch (ioctl) { 5354 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5355 case KVM_CLEAR_DIRTY_LOG: { 5356 struct compat_kvm_clear_dirty_log compat_log; 5357 struct kvm_clear_dirty_log log; 5358 5359 if (copy_from_user(&compat_log, (void __user *)arg, 5360 sizeof(compat_log))) 5361 return -EFAULT; 5362 log.slot = compat_log.slot; 5363 log.num_pages = compat_log.num_pages; 5364 log.first_page = compat_log.first_page; 5365 log.padding2 = compat_log.padding2; 5366 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5367 5368 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5369 break; 5370 } 5371 #endif 5372 case KVM_GET_DIRTY_LOG: { 5373 struct compat_kvm_dirty_log compat_log; 5374 struct kvm_dirty_log log; 5375 5376 if (copy_from_user(&compat_log, (void __user *)arg, 5377 sizeof(compat_log))) 5378 return -EFAULT; 5379 log.slot = compat_log.slot; 5380 log.padding1 = compat_log.padding1; 5381 log.padding2 = compat_log.padding2; 5382 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5383 5384 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5385 break; 5386 } 5387 default: 5388 r = kvm_vm_ioctl(filp, ioctl, arg); 5389 } 5390 return r; 5391 } 5392 #endif 5393 5394 static struct file_operations kvm_vm_fops = { 5395 .release = kvm_vm_release, 5396 .unlocked_ioctl = kvm_vm_ioctl, 5397 .llseek = noop_llseek, 5398 KVM_COMPAT(kvm_vm_compat_ioctl), 5399 }; 5400 5401 bool file_is_kvm(struct file *file) 5402 { 5403 return file && file->f_op == &kvm_vm_fops; 5404 } 5405 EXPORT_SYMBOL_GPL(file_is_kvm); 5406 5407 static int kvm_dev_ioctl_create_vm(unsigned long type) 5408 { 5409 char fdname[ITOA_MAX_LEN + 1]; 5410 int r, fd; 5411 struct kvm *kvm; 5412 struct file *file; 5413 5414 fd = get_unused_fd_flags(O_CLOEXEC); 5415 if (fd < 0) 5416 return fd; 5417 5418 snprintf(fdname, sizeof(fdname), "%d", fd); 5419 5420 kvm = kvm_create_vm(type, fdname); 5421 if (IS_ERR(kvm)) { 5422 r = PTR_ERR(kvm); 5423 goto put_fd; 5424 } 5425 5426 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5427 if (IS_ERR(file)) { 5428 r = PTR_ERR(file); 5429 goto put_kvm; 5430 } 5431 5432 /* 5433 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5434 * already set, with ->release() being kvm_vm_release(). In error 5435 * cases it will be called by the final fput(file) and will take 5436 * care of doing kvm_put_kvm(kvm). 5437 */ 5438 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5439 5440 fd_install(fd, file); 5441 return fd; 5442 5443 put_kvm: 5444 kvm_put_kvm(kvm); 5445 put_fd: 5446 put_unused_fd(fd); 5447 return r; 5448 } 5449 5450 static long kvm_dev_ioctl(struct file *filp, 5451 unsigned int ioctl, unsigned long arg) 5452 { 5453 int r = -EINVAL; 5454 5455 switch (ioctl) { 5456 case KVM_GET_API_VERSION: 5457 if (arg) 5458 goto out; 5459 r = KVM_API_VERSION; 5460 break; 5461 case KVM_CREATE_VM: 5462 r = kvm_dev_ioctl_create_vm(arg); 5463 break; 5464 case KVM_CHECK_EXTENSION: 5465 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5466 break; 5467 case KVM_GET_VCPU_MMAP_SIZE: 5468 if (arg) 5469 goto out; 5470 r = PAGE_SIZE; /* struct kvm_run */ 5471 #ifdef CONFIG_X86 5472 r += PAGE_SIZE; /* pio data page */ 5473 #endif 5474 #ifdef CONFIG_KVM_MMIO 5475 r += PAGE_SIZE; /* coalesced mmio ring page */ 5476 #endif 5477 break; 5478 default: 5479 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5480 } 5481 out: 5482 return r; 5483 } 5484 5485 static struct file_operations kvm_chardev_ops = { 5486 .unlocked_ioctl = kvm_dev_ioctl, 5487 .llseek = noop_llseek, 5488 KVM_COMPAT(kvm_dev_ioctl), 5489 }; 5490 5491 static struct miscdevice kvm_dev = { 5492 KVM_MINOR, 5493 "kvm", 5494 &kvm_chardev_ops, 5495 }; 5496 5497 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5498 __visible bool kvm_rebooting; 5499 EXPORT_SYMBOL_GPL(kvm_rebooting); 5500 5501 static DEFINE_PER_CPU(bool, hardware_enabled); 5502 static int kvm_usage_count; 5503 5504 static int __hardware_enable_nolock(void) 5505 { 5506 if (__this_cpu_read(hardware_enabled)) 5507 return 0; 5508 5509 if (kvm_arch_hardware_enable()) { 5510 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5511 raw_smp_processor_id()); 5512 return -EIO; 5513 } 5514 5515 __this_cpu_write(hardware_enabled, true); 5516 return 0; 5517 } 5518 5519 static void hardware_enable_nolock(void *failed) 5520 { 5521 if (__hardware_enable_nolock()) 5522 atomic_inc(failed); 5523 } 5524 5525 static int kvm_online_cpu(unsigned int cpu) 5526 { 5527 int ret = 0; 5528 5529 /* 5530 * Abort the CPU online process if hardware virtualization cannot 5531 * be enabled. Otherwise running VMs would encounter unrecoverable 5532 * errors when scheduled to this CPU. 5533 */ 5534 mutex_lock(&kvm_lock); 5535 if (kvm_usage_count) 5536 ret = __hardware_enable_nolock(); 5537 mutex_unlock(&kvm_lock); 5538 return ret; 5539 } 5540 5541 static void hardware_disable_nolock(void *junk) 5542 { 5543 /* 5544 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5545 * hardware, not just CPUs that successfully enabled hardware! 5546 */ 5547 if (!__this_cpu_read(hardware_enabled)) 5548 return; 5549 5550 kvm_arch_hardware_disable(); 5551 5552 __this_cpu_write(hardware_enabled, false); 5553 } 5554 5555 static int kvm_offline_cpu(unsigned int cpu) 5556 { 5557 mutex_lock(&kvm_lock); 5558 if (kvm_usage_count) 5559 hardware_disable_nolock(NULL); 5560 mutex_unlock(&kvm_lock); 5561 return 0; 5562 } 5563 5564 static void hardware_disable_all_nolock(void) 5565 { 5566 BUG_ON(!kvm_usage_count); 5567 5568 kvm_usage_count--; 5569 if (!kvm_usage_count) 5570 on_each_cpu(hardware_disable_nolock, NULL, 1); 5571 } 5572 5573 static void hardware_disable_all(void) 5574 { 5575 cpus_read_lock(); 5576 mutex_lock(&kvm_lock); 5577 hardware_disable_all_nolock(); 5578 mutex_unlock(&kvm_lock); 5579 cpus_read_unlock(); 5580 } 5581 5582 static int hardware_enable_all(void) 5583 { 5584 atomic_t failed = ATOMIC_INIT(0); 5585 int r; 5586 5587 /* 5588 * Do not enable hardware virtualization if the system is going down. 5589 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5590 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5591 * after kvm_reboot() is called. Note, this relies on system_state 5592 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5593 * hook instead of registering a dedicated reboot notifier (the latter 5594 * runs before system_state is updated). 5595 */ 5596 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5597 system_state == SYSTEM_RESTART) 5598 return -EBUSY; 5599 5600 /* 5601 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5602 * is called, and so on_each_cpu() between them includes the CPU that 5603 * is being onlined. As a result, hardware_enable_nolock() may get 5604 * invoked before kvm_online_cpu(), which also enables hardware if the 5605 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5606 * enable hardware multiple times. 5607 */ 5608 cpus_read_lock(); 5609 mutex_lock(&kvm_lock); 5610 5611 r = 0; 5612 5613 kvm_usage_count++; 5614 if (kvm_usage_count == 1) { 5615 on_each_cpu(hardware_enable_nolock, &failed, 1); 5616 5617 if (atomic_read(&failed)) { 5618 hardware_disable_all_nolock(); 5619 r = -EBUSY; 5620 } 5621 } 5622 5623 mutex_unlock(&kvm_lock); 5624 cpus_read_unlock(); 5625 5626 return r; 5627 } 5628 5629 static void kvm_shutdown(void) 5630 { 5631 /* 5632 * Disable hardware virtualization and set kvm_rebooting to indicate 5633 * that KVM has asynchronously disabled hardware virtualization, i.e. 5634 * that relevant errors and exceptions aren't entirely unexpected. 5635 * Some flavors of hardware virtualization need to be disabled before 5636 * transferring control to firmware (to perform shutdown/reboot), e.g. 5637 * on x86, virtualization can block INIT interrupts, which are used by 5638 * firmware to pull APs back under firmware control. Note, this path 5639 * is used for both shutdown and reboot scenarios, i.e. neither name is 5640 * 100% comprehensive. 5641 */ 5642 pr_info("kvm: exiting hardware virtualization\n"); 5643 kvm_rebooting = true; 5644 on_each_cpu(hardware_disable_nolock, NULL, 1); 5645 } 5646 5647 static int kvm_suspend(void) 5648 { 5649 /* 5650 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5651 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5652 * is stable. Assert that kvm_lock is not held to ensure the system 5653 * isn't suspended while KVM is enabling hardware. Hardware enabling 5654 * can be preempted, but the task cannot be frozen until it has dropped 5655 * all locks (userspace tasks are frozen via a fake signal). 5656 */ 5657 lockdep_assert_not_held(&kvm_lock); 5658 lockdep_assert_irqs_disabled(); 5659 5660 if (kvm_usage_count) 5661 hardware_disable_nolock(NULL); 5662 return 0; 5663 } 5664 5665 static void kvm_resume(void) 5666 { 5667 lockdep_assert_not_held(&kvm_lock); 5668 lockdep_assert_irqs_disabled(); 5669 5670 if (kvm_usage_count) 5671 WARN_ON_ONCE(__hardware_enable_nolock()); 5672 } 5673 5674 static struct syscore_ops kvm_syscore_ops = { 5675 .suspend = kvm_suspend, 5676 .resume = kvm_resume, 5677 .shutdown = kvm_shutdown, 5678 }; 5679 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5680 static int hardware_enable_all(void) 5681 { 5682 return 0; 5683 } 5684 5685 static void hardware_disable_all(void) 5686 { 5687 5688 } 5689 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5690 5691 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5692 { 5693 if (dev->ops->destructor) 5694 dev->ops->destructor(dev); 5695 } 5696 5697 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5698 { 5699 int i; 5700 5701 for (i = 0; i < bus->dev_count; i++) { 5702 struct kvm_io_device *pos = bus->range[i].dev; 5703 5704 kvm_iodevice_destructor(pos); 5705 } 5706 kfree(bus); 5707 } 5708 5709 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5710 const struct kvm_io_range *r2) 5711 { 5712 gpa_t addr1 = r1->addr; 5713 gpa_t addr2 = r2->addr; 5714 5715 if (addr1 < addr2) 5716 return -1; 5717 5718 /* If r2->len == 0, match the exact address. If r2->len != 0, 5719 * accept any overlapping write. Any order is acceptable for 5720 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5721 * we process all of them. 5722 */ 5723 if (r2->len) { 5724 addr1 += r1->len; 5725 addr2 += r2->len; 5726 } 5727 5728 if (addr1 > addr2) 5729 return 1; 5730 5731 return 0; 5732 } 5733 5734 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5735 { 5736 return kvm_io_bus_cmp(p1, p2); 5737 } 5738 5739 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5740 gpa_t addr, int len) 5741 { 5742 struct kvm_io_range *range, key; 5743 int off; 5744 5745 key = (struct kvm_io_range) { 5746 .addr = addr, 5747 .len = len, 5748 }; 5749 5750 range = bsearch(&key, bus->range, bus->dev_count, 5751 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5752 if (range == NULL) 5753 return -ENOENT; 5754 5755 off = range - bus->range; 5756 5757 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5758 off--; 5759 5760 return off; 5761 } 5762 5763 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5764 struct kvm_io_range *range, const void *val) 5765 { 5766 int idx; 5767 5768 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5769 if (idx < 0) 5770 return -EOPNOTSUPP; 5771 5772 while (idx < bus->dev_count && 5773 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5774 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5775 range->len, val)) 5776 return idx; 5777 idx++; 5778 } 5779 5780 return -EOPNOTSUPP; 5781 } 5782 5783 /* kvm_io_bus_write - called under kvm->slots_lock */ 5784 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5785 int len, const void *val) 5786 { 5787 struct kvm_io_bus *bus; 5788 struct kvm_io_range range; 5789 int r; 5790 5791 range = (struct kvm_io_range) { 5792 .addr = addr, 5793 .len = len, 5794 }; 5795 5796 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5797 if (!bus) 5798 return -ENOMEM; 5799 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5800 return r < 0 ? r : 0; 5801 } 5802 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5803 5804 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5805 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5806 gpa_t addr, int len, const void *val, long cookie) 5807 { 5808 struct kvm_io_bus *bus; 5809 struct kvm_io_range range; 5810 5811 range = (struct kvm_io_range) { 5812 .addr = addr, 5813 .len = len, 5814 }; 5815 5816 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5817 if (!bus) 5818 return -ENOMEM; 5819 5820 /* First try the device referenced by cookie. */ 5821 if ((cookie >= 0) && (cookie < bus->dev_count) && 5822 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5823 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5824 val)) 5825 return cookie; 5826 5827 /* 5828 * cookie contained garbage; fall back to search and return the 5829 * correct cookie value. 5830 */ 5831 return __kvm_io_bus_write(vcpu, bus, &range, val); 5832 } 5833 5834 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5835 struct kvm_io_range *range, void *val) 5836 { 5837 int idx; 5838 5839 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5840 if (idx < 0) 5841 return -EOPNOTSUPP; 5842 5843 while (idx < bus->dev_count && 5844 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5845 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5846 range->len, val)) 5847 return idx; 5848 idx++; 5849 } 5850 5851 return -EOPNOTSUPP; 5852 } 5853 5854 /* kvm_io_bus_read - called under kvm->slots_lock */ 5855 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5856 int len, void *val) 5857 { 5858 struct kvm_io_bus *bus; 5859 struct kvm_io_range range; 5860 int r; 5861 5862 range = (struct kvm_io_range) { 5863 .addr = addr, 5864 .len = len, 5865 }; 5866 5867 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5868 if (!bus) 5869 return -ENOMEM; 5870 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5871 return r < 0 ? r : 0; 5872 } 5873 5874 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5875 int len, struct kvm_io_device *dev) 5876 { 5877 int i; 5878 struct kvm_io_bus *new_bus, *bus; 5879 struct kvm_io_range range; 5880 5881 lockdep_assert_held(&kvm->slots_lock); 5882 5883 bus = kvm_get_bus(kvm, bus_idx); 5884 if (!bus) 5885 return -ENOMEM; 5886 5887 /* exclude ioeventfd which is limited by maximum fd */ 5888 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5889 return -ENOSPC; 5890 5891 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5892 GFP_KERNEL_ACCOUNT); 5893 if (!new_bus) 5894 return -ENOMEM; 5895 5896 range = (struct kvm_io_range) { 5897 .addr = addr, 5898 .len = len, 5899 .dev = dev, 5900 }; 5901 5902 for (i = 0; i < bus->dev_count; i++) 5903 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5904 break; 5905 5906 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5907 new_bus->dev_count++; 5908 new_bus->range[i] = range; 5909 memcpy(new_bus->range + i + 1, bus->range + i, 5910 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5911 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5912 synchronize_srcu_expedited(&kvm->srcu); 5913 kfree(bus); 5914 5915 return 0; 5916 } 5917 5918 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5919 struct kvm_io_device *dev) 5920 { 5921 int i; 5922 struct kvm_io_bus *new_bus, *bus; 5923 5924 lockdep_assert_held(&kvm->slots_lock); 5925 5926 bus = kvm_get_bus(kvm, bus_idx); 5927 if (!bus) 5928 return 0; 5929 5930 for (i = 0; i < bus->dev_count; i++) { 5931 if (bus->range[i].dev == dev) { 5932 break; 5933 } 5934 } 5935 5936 if (i == bus->dev_count) 5937 return 0; 5938 5939 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5940 GFP_KERNEL_ACCOUNT); 5941 if (new_bus) { 5942 memcpy(new_bus, bus, struct_size(bus, range, i)); 5943 new_bus->dev_count--; 5944 memcpy(new_bus->range + i, bus->range + i + 1, 5945 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5946 } 5947 5948 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5949 synchronize_srcu_expedited(&kvm->srcu); 5950 5951 /* 5952 * If NULL bus is installed, destroy the old bus, including all the 5953 * attached devices. Otherwise, destroy the caller's device only. 5954 */ 5955 if (!new_bus) { 5956 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5957 kvm_io_bus_destroy(bus); 5958 return -ENOMEM; 5959 } 5960 5961 kvm_iodevice_destructor(dev); 5962 kfree(bus); 5963 return 0; 5964 } 5965 5966 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5967 gpa_t addr) 5968 { 5969 struct kvm_io_bus *bus; 5970 int dev_idx, srcu_idx; 5971 struct kvm_io_device *iodev = NULL; 5972 5973 srcu_idx = srcu_read_lock(&kvm->srcu); 5974 5975 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5976 if (!bus) 5977 goto out_unlock; 5978 5979 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5980 if (dev_idx < 0) 5981 goto out_unlock; 5982 5983 iodev = bus->range[dev_idx].dev; 5984 5985 out_unlock: 5986 srcu_read_unlock(&kvm->srcu, srcu_idx); 5987 5988 return iodev; 5989 } 5990 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5991 5992 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5993 int (*get)(void *, u64 *), int (*set)(void *, u64), 5994 const char *fmt) 5995 { 5996 int ret; 5997 struct kvm_stat_data *stat_data = inode->i_private; 5998 5999 /* 6000 * The debugfs files are a reference to the kvm struct which 6001 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6002 * avoids the race between open and the removal of the debugfs directory. 6003 */ 6004 if (!kvm_get_kvm_safe(stat_data->kvm)) 6005 return -ENOENT; 6006 6007 ret = simple_attr_open(inode, file, get, 6008 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6009 ? set : NULL, fmt); 6010 if (ret) 6011 kvm_put_kvm(stat_data->kvm); 6012 6013 return ret; 6014 } 6015 6016 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6017 { 6018 struct kvm_stat_data *stat_data = inode->i_private; 6019 6020 simple_attr_release(inode, file); 6021 kvm_put_kvm(stat_data->kvm); 6022 6023 return 0; 6024 } 6025 6026 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6027 { 6028 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6029 6030 return 0; 6031 } 6032 6033 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6034 { 6035 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6036 6037 return 0; 6038 } 6039 6040 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6041 { 6042 unsigned long i; 6043 struct kvm_vcpu *vcpu; 6044 6045 *val = 0; 6046 6047 kvm_for_each_vcpu(i, vcpu, kvm) 6048 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6049 6050 return 0; 6051 } 6052 6053 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6054 { 6055 unsigned long i; 6056 struct kvm_vcpu *vcpu; 6057 6058 kvm_for_each_vcpu(i, vcpu, kvm) 6059 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6060 6061 return 0; 6062 } 6063 6064 static int kvm_stat_data_get(void *data, u64 *val) 6065 { 6066 int r = -EFAULT; 6067 struct kvm_stat_data *stat_data = data; 6068 6069 switch (stat_data->kind) { 6070 case KVM_STAT_VM: 6071 r = kvm_get_stat_per_vm(stat_data->kvm, 6072 stat_data->desc->desc.offset, val); 6073 break; 6074 case KVM_STAT_VCPU: 6075 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6076 stat_data->desc->desc.offset, val); 6077 break; 6078 } 6079 6080 return r; 6081 } 6082 6083 static int kvm_stat_data_clear(void *data, u64 val) 6084 { 6085 int r = -EFAULT; 6086 struct kvm_stat_data *stat_data = data; 6087 6088 if (val) 6089 return -EINVAL; 6090 6091 switch (stat_data->kind) { 6092 case KVM_STAT_VM: 6093 r = kvm_clear_stat_per_vm(stat_data->kvm, 6094 stat_data->desc->desc.offset); 6095 break; 6096 case KVM_STAT_VCPU: 6097 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6098 stat_data->desc->desc.offset); 6099 break; 6100 } 6101 6102 return r; 6103 } 6104 6105 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6106 { 6107 __simple_attr_check_format("%llu\n", 0ull); 6108 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6109 kvm_stat_data_clear, "%llu\n"); 6110 } 6111 6112 static const struct file_operations stat_fops_per_vm = { 6113 .owner = THIS_MODULE, 6114 .open = kvm_stat_data_open, 6115 .release = kvm_debugfs_release, 6116 .read = simple_attr_read, 6117 .write = simple_attr_write, 6118 .llseek = no_llseek, 6119 }; 6120 6121 static int vm_stat_get(void *_offset, u64 *val) 6122 { 6123 unsigned offset = (long)_offset; 6124 struct kvm *kvm; 6125 u64 tmp_val; 6126 6127 *val = 0; 6128 mutex_lock(&kvm_lock); 6129 list_for_each_entry(kvm, &vm_list, vm_list) { 6130 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6131 *val += tmp_val; 6132 } 6133 mutex_unlock(&kvm_lock); 6134 return 0; 6135 } 6136 6137 static int vm_stat_clear(void *_offset, u64 val) 6138 { 6139 unsigned offset = (long)_offset; 6140 struct kvm *kvm; 6141 6142 if (val) 6143 return -EINVAL; 6144 6145 mutex_lock(&kvm_lock); 6146 list_for_each_entry(kvm, &vm_list, vm_list) { 6147 kvm_clear_stat_per_vm(kvm, offset); 6148 } 6149 mutex_unlock(&kvm_lock); 6150 6151 return 0; 6152 } 6153 6154 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6155 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6156 6157 static int vcpu_stat_get(void *_offset, u64 *val) 6158 { 6159 unsigned offset = (long)_offset; 6160 struct kvm *kvm; 6161 u64 tmp_val; 6162 6163 *val = 0; 6164 mutex_lock(&kvm_lock); 6165 list_for_each_entry(kvm, &vm_list, vm_list) { 6166 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6167 *val += tmp_val; 6168 } 6169 mutex_unlock(&kvm_lock); 6170 return 0; 6171 } 6172 6173 static int vcpu_stat_clear(void *_offset, u64 val) 6174 { 6175 unsigned offset = (long)_offset; 6176 struct kvm *kvm; 6177 6178 if (val) 6179 return -EINVAL; 6180 6181 mutex_lock(&kvm_lock); 6182 list_for_each_entry(kvm, &vm_list, vm_list) { 6183 kvm_clear_stat_per_vcpu(kvm, offset); 6184 } 6185 mutex_unlock(&kvm_lock); 6186 6187 return 0; 6188 } 6189 6190 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6191 "%llu\n"); 6192 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6193 6194 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6195 { 6196 struct kobj_uevent_env *env; 6197 unsigned long long created, active; 6198 6199 if (!kvm_dev.this_device || !kvm) 6200 return; 6201 6202 mutex_lock(&kvm_lock); 6203 if (type == KVM_EVENT_CREATE_VM) { 6204 kvm_createvm_count++; 6205 kvm_active_vms++; 6206 } else if (type == KVM_EVENT_DESTROY_VM) { 6207 kvm_active_vms--; 6208 } 6209 created = kvm_createvm_count; 6210 active = kvm_active_vms; 6211 mutex_unlock(&kvm_lock); 6212 6213 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6214 if (!env) 6215 return; 6216 6217 add_uevent_var(env, "CREATED=%llu", created); 6218 add_uevent_var(env, "COUNT=%llu", active); 6219 6220 if (type == KVM_EVENT_CREATE_VM) { 6221 add_uevent_var(env, "EVENT=create"); 6222 kvm->userspace_pid = task_pid_nr(current); 6223 } else if (type == KVM_EVENT_DESTROY_VM) { 6224 add_uevent_var(env, "EVENT=destroy"); 6225 } 6226 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6227 6228 if (!IS_ERR(kvm->debugfs_dentry)) { 6229 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6230 6231 if (p) { 6232 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6233 if (!IS_ERR(tmp)) 6234 add_uevent_var(env, "STATS_PATH=%s", tmp); 6235 kfree(p); 6236 } 6237 } 6238 /* no need for checks, since we are adding at most only 5 keys */ 6239 env->envp[env->envp_idx++] = NULL; 6240 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6241 kfree(env); 6242 } 6243 6244 static void kvm_init_debug(void) 6245 { 6246 const struct file_operations *fops; 6247 const struct _kvm_stats_desc *pdesc; 6248 int i; 6249 6250 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6251 6252 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6253 pdesc = &kvm_vm_stats_desc[i]; 6254 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6255 fops = &vm_stat_fops; 6256 else 6257 fops = &vm_stat_readonly_fops; 6258 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6259 kvm_debugfs_dir, 6260 (void *)(long)pdesc->desc.offset, fops); 6261 } 6262 6263 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6264 pdesc = &kvm_vcpu_stats_desc[i]; 6265 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6266 fops = &vcpu_stat_fops; 6267 else 6268 fops = &vcpu_stat_readonly_fops; 6269 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6270 kvm_debugfs_dir, 6271 (void *)(long)pdesc->desc.offset, fops); 6272 } 6273 } 6274 6275 static inline 6276 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6277 { 6278 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6279 } 6280 6281 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6282 { 6283 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6284 6285 WRITE_ONCE(vcpu->preempted, false); 6286 WRITE_ONCE(vcpu->ready, false); 6287 6288 __this_cpu_write(kvm_running_vcpu, vcpu); 6289 kvm_arch_sched_in(vcpu, cpu); 6290 kvm_arch_vcpu_load(vcpu, cpu); 6291 } 6292 6293 static void kvm_sched_out(struct preempt_notifier *pn, 6294 struct task_struct *next) 6295 { 6296 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6297 6298 if (current->on_rq) { 6299 WRITE_ONCE(vcpu->preempted, true); 6300 WRITE_ONCE(vcpu->ready, true); 6301 } 6302 kvm_arch_vcpu_put(vcpu); 6303 __this_cpu_write(kvm_running_vcpu, NULL); 6304 } 6305 6306 /** 6307 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6308 * 6309 * We can disable preemption locally around accessing the per-CPU variable, 6310 * and use the resolved vcpu pointer after enabling preemption again, 6311 * because even if the current thread is migrated to another CPU, reading 6312 * the per-CPU value later will give us the same value as we update the 6313 * per-CPU variable in the preempt notifier handlers. 6314 */ 6315 struct kvm_vcpu *kvm_get_running_vcpu(void) 6316 { 6317 struct kvm_vcpu *vcpu; 6318 6319 preempt_disable(); 6320 vcpu = __this_cpu_read(kvm_running_vcpu); 6321 preempt_enable(); 6322 6323 return vcpu; 6324 } 6325 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6326 6327 /** 6328 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6329 */ 6330 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6331 { 6332 return &kvm_running_vcpu; 6333 } 6334 6335 #ifdef CONFIG_GUEST_PERF_EVENTS 6336 static unsigned int kvm_guest_state(void) 6337 { 6338 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6339 unsigned int state; 6340 6341 if (!kvm_arch_pmi_in_guest(vcpu)) 6342 return 0; 6343 6344 state = PERF_GUEST_ACTIVE; 6345 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6346 state |= PERF_GUEST_USER; 6347 6348 return state; 6349 } 6350 6351 static unsigned long kvm_guest_get_ip(void) 6352 { 6353 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6354 6355 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6356 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6357 return 0; 6358 6359 return kvm_arch_vcpu_get_ip(vcpu); 6360 } 6361 6362 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6363 .state = kvm_guest_state, 6364 .get_ip = kvm_guest_get_ip, 6365 .handle_intel_pt_intr = NULL, 6366 }; 6367 6368 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6369 { 6370 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6371 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6372 } 6373 void kvm_unregister_perf_callbacks(void) 6374 { 6375 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6376 } 6377 #endif 6378 6379 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6380 { 6381 int r; 6382 int cpu; 6383 6384 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6385 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6386 kvm_online_cpu, kvm_offline_cpu); 6387 if (r) 6388 return r; 6389 6390 register_syscore_ops(&kvm_syscore_ops); 6391 #endif 6392 6393 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6394 if (!vcpu_align) 6395 vcpu_align = __alignof__(struct kvm_vcpu); 6396 kvm_vcpu_cache = 6397 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6398 SLAB_ACCOUNT, 6399 offsetof(struct kvm_vcpu, arch), 6400 offsetofend(struct kvm_vcpu, stats_id) 6401 - offsetof(struct kvm_vcpu, arch), 6402 NULL); 6403 if (!kvm_vcpu_cache) { 6404 r = -ENOMEM; 6405 goto err_vcpu_cache; 6406 } 6407 6408 for_each_possible_cpu(cpu) { 6409 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6410 GFP_KERNEL, cpu_to_node(cpu))) { 6411 r = -ENOMEM; 6412 goto err_cpu_kick_mask; 6413 } 6414 } 6415 6416 r = kvm_irqfd_init(); 6417 if (r) 6418 goto err_irqfd; 6419 6420 r = kvm_async_pf_init(); 6421 if (r) 6422 goto err_async_pf; 6423 6424 kvm_chardev_ops.owner = module; 6425 kvm_vm_fops.owner = module; 6426 kvm_vcpu_fops.owner = module; 6427 kvm_device_fops.owner = module; 6428 6429 kvm_preempt_ops.sched_in = kvm_sched_in; 6430 kvm_preempt_ops.sched_out = kvm_sched_out; 6431 6432 kvm_init_debug(); 6433 6434 r = kvm_vfio_ops_init(); 6435 if (WARN_ON_ONCE(r)) 6436 goto err_vfio; 6437 6438 kvm_gmem_init(module); 6439 6440 /* 6441 * Registration _must_ be the very last thing done, as this exposes 6442 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6443 */ 6444 r = misc_register(&kvm_dev); 6445 if (r) { 6446 pr_err("kvm: misc device register failed\n"); 6447 goto err_register; 6448 } 6449 6450 return 0; 6451 6452 err_register: 6453 kvm_vfio_ops_exit(); 6454 err_vfio: 6455 kvm_async_pf_deinit(); 6456 err_async_pf: 6457 kvm_irqfd_exit(); 6458 err_irqfd: 6459 err_cpu_kick_mask: 6460 for_each_possible_cpu(cpu) 6461 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6462 kmem_cache_destroy(kvm_vcpu_cache); 6463 err_vcpu_cache: 6464 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6465 unregister_syscore_ops(&kvm_syscore_ops); 6466 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6467 #endif 6468 return r; 6469 } 6470 EXPORT_SYMBOL_GPL(kvm_init); 6471 6472 void kvm_exit(void) 6473 { 6474 int cpu; 6475 6476 /* 6477 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6478 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6479 * to KVM while the module is being stopped. 6480 */ 6481 misc_deregister(&kvm_dev); 6482 6483 debugfs_remove_recursive(kvm_debugfs_dir); 6484 for_each_possible_cpu(cpu) 6485 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6486 kmem_cache_destroy(kvm_vcpu_cache); 6487 kvm_vfio_ops_exit(); 6488 kvm_async_pf_deinit(); 6489 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6490 unregister_syscore_ops(&kvm_syscore_ops); 6491 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6492 #endif 6493 kvm_irqfd_exit(); 6494 } 6495 EXPORT_SYMBOL_GPL(kvm_exit); 6496 6497 struct kvm_vm_worker_thread_context { 6498 struct kvm *kvm; 6499 struct task_struct *parent; 6500 struct completion init_done; 6501 kvm_vm_thread_fn_t thread_fn; 6502 uintptr_t data; 6503 int err; 6504 }; 6505 6506 static int kvm_vm_worker_thread(void *context) 6507 { 6508 /* 6509 * The init_context is allocated on the stack of the parent thread, so 6510 * we have to locally copy anything that is needed beyond initialization 6511 */ 6512 struct kvm_vm_worker_thread_context *init_context = context; 6513 struct task_struct *parent; 6514 struct kvm *kvm = init_context->kvm; 6515 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6516 uintptr_t data = init_context->data; 6517 int err; 6518 6519 err = kthread_park(current); 6520 /* kthread_park(current) is never supposed to return an error */ 6521 WARN_ON(err != 0); 6522 if (err) 6523 goto init_complete; 6524 6525 err = cgroup_attach_task_all(init_context->parent, current); 6526 if (err) { 6527 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6528 __func__, err); 6529 goto init_complete; 6530 } 6531 6532 set_user_nice(current, task_nice(init_context->parent)); 6533 6534 init_complete: 6535 init_context->err = err; 6536 complete(&init_context->init_done); 6537 init_context = NULL; 6538 6539 if (err) 6540 goto out; 6541 6542 /* Wait to be woken up by the spawner before proceeding. */ 6543 kthread_parkme(); 6544 6545 if (!kthread_should_stop()) 6546 err = thread_fn(kvm, data); 6547 6548 out: 6549 /* 6550 * Move kthread back to its original cgroup to prevent it lingering in 6551 * the cgroup of the VM process, after the latter finishes its 6552 * execution. 6553 * 6554 * kthread_stop() waits on the 'exited' completion condition which is 6555 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6556 * kthread is removed from the cgroup in the cgroup_exit() which is 6557 * called after the exit_mm(). This causes the kthread_stop() to return 6558 * before the kthread actually quits the cgroup. 6559 */ 6560 rcu_read_lock(); 6561 parent = rcu_dereference(current->real_parent); 6562 get_task_struct(parent); 6563 rcu_read_unlock(); 6564 cgroup_attach_task_all(parent, current); 6565 put_task_struct(parent); 6566 6567 return err; 6568 } 6569 6570 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6571 uintptr_t data, const char *name, 6572 struct task_struct **thread_ptr) 6573 { 6574 struct kvm_vm_worker_thread_context init_context = {}; 6575 struct task_struct *thread; 6576 6577 *thread_ptr = NULL; 6578 init_context.kvm = kvm; 6579 init_context.parent = current; 6580 init_context.thread_fn = thread_fn; 6581 init_context.data = data; 6582 init_completion(&init_context.init_done); 6583 6584 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6585 "%s-%d", name, task_pid_nr(current)); 6586 if (IS_ERR(thread)) 6587 return PTR_ERR(thread); 6588 6589 /* kthread_run is never supposed to return NULL */ 6590 WARN_ON(thread == NULL); 6591 6592 wait_for_completion(&init_context.init_done); 6593 6594 if (!init_context.err) 6595 *thread_ptr = thread; 6596 6597 return init_context.err; 6598 } 6599