1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * 9 * Authors: 10 * Avi Kivity <avi@qumranet.com> 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * 13 * This work is licensed under the terms of the GNU GPL, version 2. See 14 * the COPYING file in the top-level directory. 15 * 16 */ 17 18 #include "iodev.h" 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/module.h> 23 #include <linux/errno.h> 24 #include <linux/percpu.h> 25 #include <linux/gfp.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/sysdev.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 48 #include <asm/processor.h> 49 #include <asm/io.h> 50 #include <asm/uaccess.h> 51 #include <asm/pgtable.h> 52 53 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 54 #include "coalesced_mmio.h" 55 #endif 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/kvm.h> 59 60 MODULE_AUTHOR("Qumranet"); 61 MODULE_LICENSE("GPL"); 62 63 /* 64 * Ordering of locks: 65 * 66 * kvm->slots_lock --> kvm->lock --> kvm->irq_lock 67 */ 68 69 DEFINE_SPINLOCK(kvm_lock); 70 LIST_HEAD(vm_list); 71 72 static cpumask_var_t cpus_hardware_enabled; 73 static int kvm_usage_count = 0; 74 static atomic_t hardware_enable_failed; 75 76 struct kmem_cache *kvm_vcpu_cache; 77 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 78 79 static __read_mostly struct preempt_ops kvm_preempt_ops; 80 81 struct dentry *kvm_debugfs_dir; 82 83 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 84 unsigned long arg); 85 static int hardware_enable_all(void); 86 static void hardware_disable_all(void); 87 88 static bool kvm_rebooting; 89 90 static bool largepages_enabled = true; 91 92 inline int kvm_is_mmio_pfn(pfn_t pfn) 93 { 94 if (pfn_valid(pfn)) { 95 struct page *page = compound_head(pfn_to_page(pfn)); 96 return PageReserved(page); 97 } 98 99 return true; 100 } 101 102 /* 103 * Switches to specified vcpu, until a matching vcpu_put() 104 */ 105 void vcpu_load(struct kvm_vcpu *vcpu) 106 { 107 int cpu; 108 109 mutex_lock(&vcpu->mutex); 110 cpu = get_cpu(); 111 preempt_notifier_register(&vcpu->preempt_notifier); 112 kvm_arch_vcpu_load(vcpu, cpu); 113 put_cpu(); 114 } 115 116 void vcpu_put(struct kvm_vcpu *vcpu) 117 { 118 preempt_disable(); 119 kvm_arch_vcpu_put(vcpu); 120 preempt_notifier_unregister(&vcpu->preempt_notifier); 121 preempt_enable(); 122 mutex_unlock(&vcpu->mutex); 123 } 124 125 static void ack_flush(void *_completed) 126 { 127 } 128 129 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 130 { 131 int i, cpu, me; 132 cpumask_var_t cpus; 133 bool called = true; 134 struct kvm_vcpu *vcpu; 135 136 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 137 138 spin_lock(&kvm->requests_lock); 139 me = smp_processor_id(); 140 kvm_for_each_vcpu(i, vcpu, kvm) { 141 if (test_and_set_bit(req, &vcpu->requests)) 142 continue; 143 cpu = vcpu->cpu; 144 if (cpus != NULL && cpu != -1 && cpu != me) 145 cpumask_set_cpu(cpu, cpus); 146 } 147 if (unlikely(cpus == NULL)) 148 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 149 else if (!cpumask_empty(cpus)) 150 smp_call_function_many(cpus, ack_flush, NULL, 1); 151 else 152 called = false; 153 spin_unlock(&kvm->requests_lock); 154 free_cpumask_var(cpus); 155 return called; 156 } 157 158 void kvm_flush_remote_tlbs(struct kvm *kvm) 159 { 160 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 161 ++kvm->stat.remote_tlb_flush; 162 } 163 164 void kvm_reload_remote_mmus(struct kvm *kvm) 165 { 166 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 167 } 168 169 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 170 { 171 struct page *page; 172 int r; 173 174 mutex_init(&vcpu->mutex); 175 vcpu->cpu = -1; 176 vcpu->kvm = kvm; 177 vcpu->vcpu_id = id; 178 init_waitqueue_head(&vcpu->wq); 179 180 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 181 if (!page) { 182 r = -ENOMEM; 183 goto fail; 184 } 185 vcpu->run = page_address(page); 186 187 r = kvm_arch_vcpu_init(vcpu); 188 if (r < 0) 189 goto fail_free_run; 190 return 0; 191 192 fail_free_run: 193 free_page((unsigned long)vcpu->run); 194 fail: 195 return r; 196 } 197 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 198 199 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 200 { 201 kvm_arch_vcpu_uninit(vcpu); 202 free_page((unsigned long)vcpu->run); 203 } 204 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 205 206 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 207 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 208 { 209 return container_of(mn, struct kvm, mmu_notifier); 210 } 211 212 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 213 struct mm_struct *mm, 214 unsigned long address) 215 { 216 struct kvm *kvm = mmu_notifier_to_kvm(mn); 217 int need_tlb_flush; 218 219 /* 220 * When ->invalidate_page runs, the linux pte has been zapped 221 * already but the page is still allocated until 222 * ->invalidate_page returns. So if we increase the sequence 223 * here the kvm page fault will notice if the spte can't be 224 * established because the page is going to be freed. If 225 * instead the kvm page fault establishes the spte before 226 * ->invalidate_page runs, kvm_unmap_hva will release it 227 * before returning. 228 * 229 * The sequence increase only need to be seen at spin_unlock 230 * time, and not at spin_lock time. 231 * 232 * Increasing the sequence after the spin_unlock would be 233 * unsafe because the kvm page fault could then establish the 234 * pte after kvm_unmap_hva returned, without noticing the page 235 * is going to be freed. 236 */ 237 spin_lock(&kvm->mmu_lock); 238 kvm->mmu_notifier_seq++; 239 need_tlb_flush = kvm_unmap_hva(kvm, address); 240 spin_unlock(&kvm->mmu_lock); 241 242 /* we've to flush the tlb before the pages can be freed */ 243 if (need_tlb_flush) 244 kvm_flush_remote_tlbs(kvm); 245 246 } 247 248 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 249 struct mm_struct *mm, 250 unsigned long address, 251 pte_t pte) 252 { 253 struct kvm *kvm = mmu_notifier_to_kvm(mn); 254 255 spin_lock(&kvm->mmu_lock); 256 kvm->mmu_notifier_seq++; 257 kvm_set_spte_hva(kvm, address, pte); 258 spin_unlock(&kvm->mmu_lock); 259 } 260 261 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 262 struct mm_struct *mm, 263 unsigned long start, 264 unsigned long end) 265 { 266 struct kvm *kvm = mmu_notifier_to_kvm(mn); 267 int need_tlb_flush = 0; 268 269 spin_lock(&kvm->mmu_lock); 270 /* 271 * The count increase must become visible at unlock time as no 272 * spte can be established without taking the mmu_lock and 273 * count is also read inside the mmu_lock critical section. 274 */ 275 kvm->mmu_notifier_count++; 276 for (; start < end; start += PAGE_SIZE) 277 need_tlb_flush |= kvm_unmap_hva(kvm, start); 278 spin_unlock(&kvm->mmu_lock); 279 280 /* we've to flush the tlb before the pages can be freed */ 281 if (need_tlb_flush) 282 kvm_flush_remote_tlbs(kvm); 283 } 284 285 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 286 struct mm_struct *mm, 287 unsigned long start, 288 unsigned long end) 289 { 290 struct kvm *kvm = mmu_notifier_to_kvm(mn); 291 292 spin_lock(&kvm->mmu_lock); 293 /* 294 * This sequence increase will notify the kvm page fault that 295 * the page that is going to be mapped in the spte could have 296 * been freed. 297 */ 298 kvm->mmu_notifier_seq++; 299 /* 300 * The above sequence increase must be visible before the 301 * below count decrease but both values are read by the kvm 302 * page fault under mmu_lock spinlock so we don't need to add 303 * a smb_wmb() here in between the two. 304 */ 305 kvm->mmu_notifier_count--; 306 spin_unlock(&kvm->mmu_lock); 307 308 BUG_ON(kvm->mmu_notifier_count < 0); 309 } 310 311 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 312 struct mm_struct *mm, 313 unsigned long address) 314 { 315 struct kvm *kvm = mmu_notifier_to_kvm(mn); 316 int young; 317 318 spin_lock(&kvm->mmu_lock); 319 young = kvm_age_hva(kvm, address); 320 spin_unlock(&kvm->mmu_lock); 321 322 if (young) 323 kvm_flush_remote_tlbs(kvm); 324 325 return young; 326 } 327 328 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 329 struct mm_struct *mm) 330 { 331 struct kvm *kvm = mmu_notifier_to_kvm(mn); 332 kvm_arch_flush_shadow(kvm); 333 } 334 335 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 336 .invalidate_page = kvm_mmu_notifier_invalidate_page, 337 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 338 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 339 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 340 .change_pte = kvm_mmu_notifier_change_pte, 341 .release = kvm_mmu_notifier_release, 342 }; 343 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 344 345 static struct kvm *kvm_create_vm(void) 346 { 347 int r = 0; 348 struct kvm *kvm = kvm_arch_create_vm(); 349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 350 struct page *page; 351 #endif 352 353 if (IS_ERR(kvm)) 354 goto out; 355 356 r = hardware_enable_all(); 357 if (r) 358 goto out_err_nodisable; 359 360 #ifdef CONFIG_HAVE_KVM_IRQCHIP 361 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 362 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 363 #endif 364 365 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 366 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 367 if (!page) { 368 r = -ENOMEM; 369 goto out_err; 370 } 371 kvm->coalesced_mmio_ring = 372 (struct kvm_coalesced_mmio_ring *)page_address(page); 373 #endif 374 375 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 376 { 377 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 378 r = mmu_notifier_register(&kvm->mmu_notifier, current->mm); 379 if (r) { 380 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 381 put_page(page); 382 #endif 383 goto out_err; 384 } 385 } 386 #endif 387 388 kvm->mm = current->mm; 389 atomic_inc(&kvm->mm->mm_count); 390 spin_lock_init(&kvm->mmu_lock); 391 spin_lock_init(&kvm->requests_lock); 392 kvm_io_bus_init(&kvm->pio_bus); 393 kvm_eventfd_init(kvm); 394 mutex_init(&kvm->lock); 395 mutex_init(&kvm->irq_lock); 396 kvm_io_bus_init(&kvm->mmio_bus); 397 init_rwsem(&kvm->slots_lock); 398 atomic_set(&kvm->users_count, 1); 399 spin_lock(&kvm_lock); 400 list_add(&kvm->vm_list, &vm_list); 401 spin_unlock(&kvm_lock); 402 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 403 kvm_coalesced_mmio_init(kvm); 404 #endif 405 out: 406 return kvm; 407 408 out_err: 409 hardware_disable_all(); 410 out_err_nodisable: 411 kfree(kvm); 412 return ERR_PTR(r); 413 } 414 415 /* 416 * Free any memory in @free but not in @dont. 417 */ 418 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 419 struct kvm_memory_slot *dont) 420 { 421 int i; 422 423 if (!dont || free->rmap != dont->rmap) 424 vfree(free->rmap); 425 426 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 427 vfree(free->dirty_bitmap); 428 429 430 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 431 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) { 432 vfree(free->lpage_info[i]); 433 free->lpage_info[i] = NULL; 434 } 435 } 436 437 free->npages = 0; 438 free->dirty_bitmap = NULL; 439 free->rmap = NULL; 440 } 441 442 void kvm_free_physmem(struct kvm *kvm) 443 { 444 int i; 445 446 for (i = 0; i < kvm->nmemslots; ++i) 447 kvm_free_physmem_slot(&kvm->memslots[i], NULL); 448 } 449 450 static void kvm_destroy_vm(struct kvm *kvm) 451 { 452 struct mm_struct *mm = kvm->mm; 453 454 kvm_arch_sync_events(kvm); 455 spin_lock(&kvm_lock); 456 list_del(&kvm->vm_list); 457 spin_unlock(&kvm_lock); 458 kvm_free_irq_routing(kvm); 459 kvm_io_bus_destroy(&kvm->pio_bus); 460 kvm_io_bus_destroy(&kvm->mmio_bus); 461 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 462 if (kvm->coalesced_mmio_ring != NULL) 463 free_page((unsigned long)kvm->coalesced_mmio_ring); 464 #endif 465 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 466 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 467 #else 468 kvm_arch_flush_shadow(kvm); 469 #endif 470 kvm_arch_destroy_vm(kvm); 471 hardware_disable_all(); 472 mmdrop(mm); 473 } 474 475 void kvm_get_kvm(struct kvm *kvm) 476 { 477 atomic_inc(&kvm->users_count); 478 } 479 EXPORT_SYMBOL_GPL(kvm_get_kvm); 480 481 void kvm_put_kvm(struct kvm *kvm) 482 { 483 if (atomic_dec_and_test(&kvm->users_count)) 484 kvm_destroy_vm(kvm); 485 } 486 EXPORT_SYMBOL_GPL(kvm_put_kvm); 487 488 489 static int kvm_vm_release(struct inode *inode, struct file *filp) 490 { 491 struct kvm *kvm = filp->private_data; 492 493 kvm_irqfd_release(kvm); 494 495 kvm_put_kvm(kvm); 496 return 0; 497 } 498 499 /* 500 * Allocate some memory and give it an address in the guest physical address 501 * space. 502 * 503 * Discontiguous memory is allowed, mostly for framebuffers. 504 * 505 * Must be called holding mmap_sem for write. 506 */ 507 int __kvm_set_memory_region(struct kvm *kvm, 508 struct kvm_userspace_memory_region *mem, 509 int user_alloc) 510 { 511 int r; 512 gfn_t base_gfn; 513 unsigned long npages; 514 unsigned long i; 515 struct kvm_memory_slot *memslot; 516 struct kvm_memory_slot old, new; 517 518 r = -EINVAL; 519 /* General sanity checks */ 520 if (mem->memory_size & (PAGE_SIZE - 1)) 521 goto out; 522 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 523 goto out; 524 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1))) 525 goto out; 526 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS) 527 goto out; 528 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 529 goto out; 530 531 memslot = &kvm->memslots[mem->slot]; 532 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 533 npages = mem->memory_size >> PAGE_SHIFT; 534 535 if (!npages) 536 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 537 538 new = old = *memslot; 539 540 new.base_gfn = base_gfn; 541 new.npages = npages; 542 new.flags = mem->flags; 543 544 /* Disallow changing a memory slot's size. */ 545 r = -EINVAL; 546 if (npages && old.npages && npages != old.npages) 547 goto out_free; 548 549 /* Check for overlaps */ 550 r = -EEXIST; 551 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 552 struct kvm_memory_slot *s = &kvm->memslots[i]; 553 554 if (s == memslot || !s->npages) 555 continue; 556 if (!((base_gfn + npages <= s->base_gfn) || 557 (base_gfn >= s->base_gfn + s->npages))) 558 goto out_free; 559 } 560 561 /* Free page dirty bitmap if unneeded */ 562 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 563 new.dirty_bitmap = NULL; 564 565 r = -ENOMEM; 566 567 /* Allocate if a slot is being created */ 568 #ifndef CONFIG_S390 569 if (npages && !new.rmap) { 570 new.rmap = vmalloc(npages * sizeof(struct page *)); 571 572 if (!new.rmap) 573 goto out_free; 574 575 memset(new.rmap, 0, npages * sizeof(*new.rmap)); 576 577 new.user_alloc = user_alloc; 578 /* 579 * hva_to_rmmap() serialzies with the mmu_lock and to be 580 * safe it has to ignore memslots with !user_alloc && 581 * !userspace_addr. 582 */ 583 if (user_alloc) 584 new.userspace_addr = mem->userspace_addr; 585 else 586 new.userspace_addr = 0; 587 } 588 if (!npages) 589 goto skip_lpage; 590 591 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 592 unsigned long ugfn; 593 unsigned long j; 594 int lpages; 595 int level = i + 2; 596 597 /* Avoid unused variable warning if no large pages */ 598 (void)level; 599 600 if (new.lpage_info[i]) 601 continue; 602 603 lpages = 1 + (base_gfn + npages - 1) / 604 KVM_PAGES_PER_HPAGE(level); 605 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level); 606 607 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i])); 608 609 if (!new.lpage_info[i]) 610 goto out_free; 611 612 memset(new.lpage_info[i], 0, 613 lpages * sizeof(*new.lpage_info[i])); 614 615 if (base_gfn % KVM_PAGES_PER_HPAGE(level)) 616 new.lpage_info[i][0].write_count = 1; 617 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level)) 618 new.lpage_info[i][lpages - 1].write_count = 1; 619 ugfn = new.userspace_addr >> PAGE_SHIFT; 620 /* 621 * If the gfn and userspace address are not aligned wrt each 622 * other, or if explicitly asked to, disable large page 623 * support for this slot 624 */ 625 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 626 !largepages_enabled) 627 for (j = 0; j < lpages; ++j) 628 new.lpage_info[i][j].write_count = 1; 629 } 630 631 skip_lpage: 632 633 /* Allocate page dirty bitmap if needed */ 634 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 635 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8; 636 637 new.dirty_bitmap = vmalloc(dirty_bytes); 638 if (!new.dirty_bitmap) 639 goto out_free; 640 memset(new.dirty_bitmap, 0, dirty_bytes); 641 if (old.npages) 642 kvm_arch_flush_shadow(kvm); 643 } 644 #else /* not defined CONFIG_S390 */ 645 new.user_alloc = user_alloc; 646 if (user_alloc) 647 new.userspace_addr = mem->userspace_addr; 648 #endif /* not defined CONFIG_S390 */ 649 650 if (!npages) 651 kvm_arch_flush_shadow(kvm); 652 653 spin_lock(&kvm->mmu_lock); 654 if (mem->slot >= kvm->nmemslots) 655 kvm->nmemslots = mem->slot + 1; 656 657 *memslot = new; 658 spin_unlock(&kvm->mmu_lock); 659 660 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc); 661 if (r) { 662 spin_lock(&kvm->mmu_lock); 663 *memslot = old; 664 spin_unlock(&kvm->mmu_lock); 665 goto out_free; 666 } 667 668 kvm_free_physmem_slot(&old, npages ? &new : NULL); 669 /* Slot deletion case: we have to update the current slot */ 670 spin_lock(&kvm->mmu_lock); 671 if (!npages) 672 *memslot = old; 673 spin_unlock(&kvm->mmu_lock); 674 #ifdef CONFIG_DMAR 675 /* map the pages in iommu page table */ 676 r = kvm_iommu_map_pages(kvm, base_gfn, npages); 677 if (r) 678 goto out; 679 #endif 680 return 0; 681 682 out_free: 683 kvm_free_physmem_slot(&new, &old); 684 out: 685 return r; 686 687 } 688 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 689 690 int kvm_set_memory_region(struct kvm *kvm, 691 struct kvm_userspace_memory_region *mem, 692 int user_alloc) 693 { 694 int r; 695 696 down_write(&kvm->slots_lock); 697 r = __kvm_set_memory_region(kvm, mem, user_alloc); 698 up_write(&kvm->slots_lock); 699 return r; 700 } 701 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 702 703 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 704 struct 705 kvm_userspace_memory_region *mem, 706 int user_alloc) 707 { 708 if (mem->slot >= KVM_MEMORY_SLOTS) 709 return -EINVAL; 710 return kvm_set_memory_region(kvm, mem, user_alloc); 711 } 712 713 int kvm_get_dirty_log(struct kvm *kvm, 714 struct kvm_dirty_log *log, int *is_dirty) 715 { 716 struct kvm_memory_slot *memslot; 717 int r, i; 718 int n; 719 unsigned long any = 0; 720 721 r = -EINVAL; 722 if (log->slot >= KVM_MEMORY_SLOTS) 723 goto out; 724 725 memslot = &kvm->memslots[log->slot]; 726 r = -ENOENT; 727 if (!memslot->dirty_bitmap) 728 goto out; 729 730 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; 731 732 for (i = 0; !any && i < n/sizeof(long); ++i) 733 any = memslot->dirty_bitmap[i]; 734 735 r = -EFAULT; 736 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 737 goto out; 738 739 if (any) 740 *is_dirty = 1; 741 742 r = 0; 743 out: 744 return r; 745 } 746 747 void kvm_disable_largepages(void) 748 { 749 largepages_enabled = false; 750 } 751 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 752 753 int is_error_page(struct page *page) 754 { 755 return page == bad_page; 756 } 757 EXPORT_SYMBOL_GPL(is_error_page); 758 759 int is_error_pfn(pfn_t pfn) 760 { 761 return pfn == bad_pfn; 762 } 763 EXPORT_SYMBOL_GPL(is_error_pfn); 764 765 static inline unsigned long bad_hva(void) 766 { 767 return PAGE_OFFSET; 768 } 769 770 int kvm_is_error_hva(unsigned long addr) 771 { 772 return addr == bad_hva(); 773 } 774 EXPORT_SYMBOL_GPL(kvm_is_error_hva); 775 776 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn) 777 { 778 int i; 779 780 for (i = 0; i < kvm->nmemslots; ++i) { 781 struct kvm_memory_slot *memslot = &kvm->memslots[i]; 782 783 if (gfn >= memslot->base_gfn 784 && gfn < memslot->base_gfn + memslot->npages) 785 return memslot; 786 } 787 return NULL; 788 } 789 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased); 790 791 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 792 { 793 gfn = unalias_gfn(kvm, gfn); 794 return gfn_to_memslot_unaliased(kvm, gfn); 795 } 796 797 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 798 { 799 int i; 800 801 gfn = unalias_gfn(kvm, gfn); 802 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 803 struct kvm_memory_slot *memslot = &kvm->memslots[i]; 804 805 if (gfn >= memslot->base_gfn 806 && gfn < memslot->base_gfn + memslot->npages) 807 return 1; 808 } 809 return 0; 810 } 811 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 812 813 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 814 { 815 struct kvm_memory_slot *slot; 816 817 gfn = unalias_gfn(kvm, gfn); 818 slot = gfn_to_memslot_unaliased(kvm, gfn); 819 if (!slot) 820 return bad_hva(); 821 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE); 822 } 823 EXPORT_SYMBOL_GPL(gfn_to_hva); 824 825 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 826 { 827 struct page *page[1]; 828 unsigned long addr; 829 int npages; 830 pfn_t pfn; 831 832 might_sleep(); 833 834 addr = gfn_to_hva(kvm, gfn); 835 if (kvm_is_error_hva(addr)) { 836 get_page(bad_page); 837 return page_to_pfn(bad_page); 838 } 839 840 npages = get_user_pages_fast(addr, 1, 1, page); 841 842 if (unlikely(npages != 1)) { 843 struct vm_area_struct *vma; 844 845 down_read(¤t->mm->mmap_sem); 846 vma = find_vma(current->mm, addr); 847 848 if (vma == NULL || addr < vma->vm_start || 849 !(vma->vm_flags & VM_PFNMAP)) { 850 up_read(¤t->mm->mmap_sem); 851 get_page(bad_page); 852 return page_to_pfn(bad_page); 853 } 854 855 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 856 up_read(¤t->mm->mmap_sem); 857 BUG_ON(!kvm_is_mmio_pfn(pfn)); 858 } else 859 pfn = page_to_pfn(page[0]); 860 861 return pfn; 862 } 863 864 EXPORT_SYMBOL_GPL(gfn_to_pfn); 865 866 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 867 { 868 pfn_t pfn; 869 870 pfn = gfn_to_pfn(kvm, gfn); 871 if (!kvm_is_mmio_pfn(pfn)) 872 return pfn_to_page(pfn); 873 874 WARN_ON(kvm_is_mmio_pfn(pfn)); 875 876 get_page(bad_page); 877 return bad_page; 878 } 879 880 EXPORT_SYMBOL_GPL(gfn_to_page); 881 882 void kvm_release_page_clean(struct page *page) 883 { 884 kvm_release_pfn_clean(page_to_pfn(page)); 885 } 886 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 887 888 void kvm_release_pfn_clean(pfn_t pfn) 889 { 890 if (!kvm_is_mmio_pfn(pfn)) 891 put_page(pfn_to_page(pfn)); 892 } 893 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 894 895 void kvm_release_page_dirty(struct page *page) 896 { 897 kvm_release_pfn_dirty(page_to_pfn(page)); 898 } 899 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 900 901 void kvm_release_pfn_dirty(pfn_t pfn) 902 { 903 kvm_set_pfn_dirty(pfn); 904 kvm_release_pfn_clean(pfn); 905 } 906 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 907 908 void kvm_set_page_dirty(struct page *page) 909 { 910 kvm_set_pfn_dirty(page_to_pfn(page)); 911 } 912 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 913 914 void kvm_set_pfn_dirty(pfn_t pfn) 915 { 916 if (!kvm_is_mmio_pfn(pfn)) { 917 struct page *page = pfn_to_page(pfn); 918 if (!PageReserved(page)) 919 SetPageDirty(page); 920 } 921 } 922 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 923 924 void kvm_set_pfn_accessed(pfn_t pfn) 925 { 926 if (!kvm_is_mmio_pfn(pfn)) 927 mark_page_accessed(pfn_to_page(pfn)); 928 } 929 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 930 931 void kvm_get_pfn(pfn_t pfn) 932 { 933 if (!kvm_is_mmio_pfn(pfn)) 934 get_page(pfn_to_page(pfn)); 935 } 936 EXPORT_SYMBOL_GPL(kvm_get_pfn); 937 938 static int next_segment(unsigned long len, int offset) 939 { 940 if (len > PAGE_SIZE - offset) 941 return PAGE_SIZE - offset; 942 else 943 return len; 944 } 945 946 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 947 int len) 948 { 949 int r; 950 unsigned long addr; 951 952 addr = gfn_to_hva(kvm, gfn); 953 if (kvm_is_error_hva(addr)) 954 return -EFAULT; 955 r = copy_from_user(data, (void __user *)addr + offset, len); 956 if (r) 957 return -EFAULT; 958 return 0; 959 } 960 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 961 962 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 963 { 964 gfn_t gfn = gpa >> PAGE_SHIFT; 965 int seg; 966 int offset = offset_in_page(gpa); 967 int ret; 968 969 while ((seg = next_segment(len, offset)) != 0) { 970 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 971 if (ret < 0) 972 return ret; 973 offset = 0; 974 len -= seg; 975 data += seg; 976 ++gfn; 977 } 978 return 0; 979 } 980 EXPORT_SYMBOL_GPL(kvm_read_guest); 981 982 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 983 unsigned long len) 984 { 985 int r; 986 unsigned long addr; 987 gfn_t gfn = gpa >> PAGE_SHIFT; 988 int offset = offset_in_page(gpa); 989 990 addr = gfn_to_hva(kvm, gfn); 991 if (kvm_is_error_hva(addr)) 992 return -EFAULT; 993 pagefault_disable(); 994 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 995 pagefault_enable(); 996 if (r) 997 return -EFAULT; 998 return 0; 999 } 1000 EXPORT_SYMBOL(kvm_read_guest_atomic); 1001 1002 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1003 int offset, int len) 1004 { 1005 int r; 1006 unsigned long addr; 1007 1008 addr = gfn_to_hva(kvm, gfn); 1009 if (kvm_is_error_hva(addr)) 1010 return -EFAULT; 1011 r = copy_to_user((void __user *)addr + offset, data, len); 1012 if (r) 1013 return -EFAULT; 1014 mark_page_dirty(kvm, gfn); 1015 return 0; 1016 } 1017 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1018 1019 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1020 unsigned long len) 1021 { 1022 gfn_t gfn = gpa >> PAGE_SHIFT; 1023 int seg; 1024 int offset = offset_in_page(gpa); 1025 int ret; 1026 1027 while ((seg = next_segment(len, offset)) != 0) { 1028 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1029 if (ret < 0) 1030 return ret; 1031 offset = 0; 1032 len -= seg; 1033 data += seg; 1034 ++gfn; 1035 } 1036 return 0; 1037 } 1038 1039 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1040 { 1041 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len); 1042 } 1043 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1044 1045 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1046 { 1047 gfn_t gfn = gpa >> PAGE_SHIFT; 1048 int seg; 1049 int offset = offset_in_page(gpa); 1050 int ret; 1051 1052 while ((seg = next_segment(len, offset)) != 0) { 1053 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1054 if (ret < 0) 1055 return ret; 1056 offset = 0; 1057 len -= seg; 1058 ++gfn; 1059 } 1060 return 0; 1061 } 1062 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1063 1064 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1065 { 1066 struct kvm_memory_slot *memslot; 1067 1068 gfn = unalias_gfn(kvm, gfn); 1069 memslot = gfn_to_memslot_unaliased(kvm, gfn); 1070 if (memslot && memslot->dirty_bitmap) { 1071 unsigned long rel_gfn = gfn - memslot->base_gfn; 1072 1073 /* avoid RMW */ 1074 if (!test_bit(rel_gfn, memslot->dirty_bitmap)) 1075 set_bit(rel_gfn, memslot->dirty_bitmap); 1076 } 1077 } 1078 1079 /* 1080 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1081 */ 1082 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1083 { 1084 DEFINE_WAIT(wait); 1085 1086 for (;;) { 1087 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1088 1089 if (kvm_arch_vcpu_runnable(vcpu)) { 1090 set_bit(KVM_REQ_UNHALT, &vcpu->requests); 1091 break; 1092 } 1093 if (kvm_cpu_has_pending_timer(vcpu)) 1094 break; 1095 if (signal_pending(current)) 1096 break; 1097 1098 schedule(); 1099 } 1100 1101 finish_wait(&vcpu->wq, &wait); 1102 } 1103 1104 void kvm_resched(struct kvm_vcpu *vcpu) 1105 { 1106 if (!need_resched()) 1107 return; 1108 cond_resched(); 1109 } 1110 EXPORT_SYMBOL_GPL(kvm_resched); 1111 1112 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu) 1113 { 1114 ktime_t expires; 1115 DEFINE_WAIT(wait); 1116 1117 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1118 1119 /* Sleep for 100 us, and hope lock-holder got scheduled */ 1120 expires = ktime_add_ns(ktime_get(), 100000UL); 1121 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1122 1123 finish_wait(&vcpu->wq, &wait); 1124 } 1125 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1126 1127 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1128 { 1129 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1130 struct page *page; 1131 1132 if (vmf->pgoff == 0) 1133 page = virt_to_page(vcpu->run); 1134 #ifdef CONFIG_X86 1135 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1136 page = virt_to_page(vcpu->arch.pio_data); 1137 #endif 1138 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1139 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1140 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1141 #endif 1142 else 1143 return VM_FAULT_SIGBUS; 1144 get_page(page); 1145 vmf->page = page; 1146 return 0; 1147 } 1148 1149 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1150 .fault = kvm_vcpu_fault, 1151 }; 1152 1153 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1154 { 1155 vma->vm_ops = &kvm_vcpu_vm_ops; 1156 return 0; 1157 } 1158 1159 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1160 { 1161 struct kvm_vcpu *vcpu = filp->private_data; 1162 1163 kvm_put_kvm(vcpu->kvm); 1164 return 0; 1165 } 1166 1167 static struct file_operations kvm_vcpu_fops = { 1168 .release = kvm_vcpu_release, 1169 .unlocked_ioctl = kvm_vcpu_ioctl, 1170 .compat_ioctl = kvm_vcpu_ioctl, 1171 .mmap = kvm_vcpu_mmap, 1172 }; 1173 1174 /* 1175 * Allocates an inode for the vcpu. 1176 */ 1177 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1178 { 1179 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0); 1180 } 1181 1182 /* 1183 * Creates some virtual cpus. Good luck creating more than one. 1184 */ 1185 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1186 { 1187 int r; 1188 struct kvm_vcpu *vcpu, *v; 1189 1190 vcpu = kvm_arch_vcpu_create(kvm, id); 1191 if (IS_ERR(vcpu)) 1192 return PTR_ERR(vcpu); 1193 1194 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1195 1196 r = kvm_arch_vcpu_setup(vcpu); 1197 if (r) 1198 return r; 1199 1200 mutex_lock(&kvm->lock); 1201 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1202 r = -EINVAL; 1203 goto vcpu_destroy; 1204 } 1205 1206 kvm_for_each_vcpu(r, v, kvm) 1207 if (v->vcpu_id == id) { 1208 r = -EEXIST; 1209 goto vcpu_destroy; 1210 } 1211 1212 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1213 1214 /* Now it's all set up, let userspace reach it */ 1215 kvm_get_kvm(kvm); 1216 r = create_vcpu_fd(vcpu); 1217 if (r < 0) { 1218 kvm_put_kvm(kvm); 1219 goto vcpu_destroy; 1220 } 1221 1222 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1223 smp_wmb(); 1224 atomic_inc(&kvm->online_vcpus); 1225 1226 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 1227 if (kvm->bsp_vcpu_id == id) 1228 kvm->bsp_vcpu = vcpu; 1229 #endif 1230 mutex_unlock(&kvm->lock); 1231 return r; 1232 1233 vcpu_destroy: 1234 mutex_unlock(&kvm->lock); 1235 kvm_arch_vcpu_destroy(vcpu); 1236 return r; 1237 } 1238 1239 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1240 { 1241 if (sigset) { 1242 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1243 vcpu->sigset_active = 1; 1244 vcpu->sigset = *sigset; 1245 } else 1246 vcpu->sigset_active = 0; 1247 return 0; 1248 } 1249 1250 static long kvm_vcpu_ioctl(struct file *filp, 1251 unsigned int ioctl, unsigned long arg) 1252 { 1253 struct kvm_vcpu *vcpu = filp->private_data; 1254 void __user *argp = (void __user *)arg; 1255 int r; 1256 struct kvm_fpu *fpu = NULL; 1257 struct kvm_sregs *kvm_sregs = NULL; 1258 1259 if (vcpu->kvm->mm != current->mm) 1260 return -EIO; 1261 switch (ioctl) { 1262 case KVM_RUN: 1263 r = -EINVAL; 1264 if (arg) 1265 goto out; 1266 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1267 break; 1268 case KVM_GET_REGS: { 1269 struct kvm_regs *kvm_regs; 1270 1271 r = -ENOMEM; 1272 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1273 if (!kvm_regs) 1274 goto out; 1275 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1276 if (r) 1277 goto out_free1; 1278 r = -EFAULT; 1279 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 1280 goto out_free1; 1281 r = 0; 1282 out_free1: 1283 kfree(kvm_regs); 1284 break; 1285 } 1286 case KVM_SET_REGS: { 1287 struct kvm_regs *kvm_regs; 1288 1289 r = -ENOMEM; 1290 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1291 if (!kvm_regs) 1292 goto out; 1293 r = -EFAULT; 1294 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs))) 1295 goto out_free2; 1296 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 1297 if (r) 1298 goto out_free2; 1299 r = 0; 1300 out_free2: 1301 kfree(kvm_regs); 1302 break; 1303 } 1304 case KVM_GET_SREGS: { 1305 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1306 r = -ENOMEM; 1307 if (!kvm_sregs) 1308 goto out; 1309 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 1310 if (r) 1311 goto out; 1312 r = -EFAULT; 1313 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 1314 goto out; 1315 r = 0; 1316 break; 1317 } 1318 case KVM_SET_SREGS: { 1319 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1320 r = -ENOMEM; 1321 if (!kvm_sregs) 1322 goto out; 1323 r = -EFAULT; 1324 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs))) 1325 goto out; 1326 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 1327 if (r) 1328 goto out; 1329 r = 0; 1330 break; 1331 } 1332 case KVM_GET_MP_STATE: { 1333 struct kvm_mp_state mp_state; 1334 1335 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 1336 if (r) 1337 goto out; 1338 r = -EFAULT; 1339 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 1340 goto out; 1341 r = 0; 1342 break; 1343 } 1344 case KVM_SET_MP_STATE: { 1345 struct kvm_mp_state mp_state; 1346 1347 r = -EFAULT; 1348 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 1349 goto out; 1350 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 1351 if (r) 1352 goto out; 1353 r = 0; 1354 break; 1355 } 1356 case KVM_TRANSLATE: { 1357 struct kvm_translation tr; 1358 1359 r = -EFAULT; 1360 if (copy_from_user(&tr, argp, sizeof tr)) 1361 goto out; 1362 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 1363 if (r) 1364 goto out; 1365 r = -EFAULT; 1366 if (copy_to_user(argp, &tr, sizeof tr)) 1367 goto out; 1368 r = 0; 1369 break; 1370 } 1371 case KVM_SET_GUEST_DEBUG: { 1372 struct kvm_guest_debug dbg; 1373 1374 r = -EFAULT; 1375 if (copy_from_user(&dbg, argp, sizeof dbg)) 1376 goto out; 1377 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 1378 if (r) 1379 goto out; 1380 r = 0; 1381 break; 1382 } 1383 case KVM_SET_SIGNAL_MASK: { 1384 struct kvm_signal_mask __user *sigmask_arg = argp; 1385 struct kvm_signal_mask kvm_sigmask; 1386 sigset_t sigset, *p; 1387 1388 p = NULL; 1389 if (argp) { 1390 r = -EFAULT; 1391 if (copy_from_user(&kvm_sigmask, argp, 1392 sizeof kvm_sigmask)) 1393 goto out; 1394 r = -EINVAL; 1395 if (kvm_sigmask.len != sizeof sigset) 1396 goto out; 1397 r = -EFAULT; 1398 if (copy_from_user(&sigset, sigmask_arg->sigset, 1399 sizeof sigset)) 1400 goto out; 1401 p = &sigset; 1402 } 1403 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 1404 break; 1405 } 1406 case KVM_GET_FPU: { 1407 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 1408 r = -ENOMEM; 1409 if (!fpu) 1410 goto out; 1411 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 1412 if (r) 1413 goto out; 1414 r = -EFAULT; 1415 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 1416 goto out; 1417 r = 0; 1418 break; 1419 } 1420 case KVM_SET_FPU: { 1421 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 1422 r = -ENOMEM; 1423 if (!fpu) 1424 goto out; 1425 r = -EFAULT; 1426 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu))) 1427 goto out; 1428 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 1429 if (r) 1430 goto out; 1431 r = 0; 1432 break; 1433 } 1434 default: 1435 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1436 } 1437 out: 1438 kfree(fpu); 1439 kfree(kvm_sregs); 1440 return r; 1441 } 1442 1443 static long kvm_vm_ioctl(struct file *filp, 1444 unsigned int ioctl, unsigned long arg) 1445 { 1446 struct kvm *kvm = filp->private_data; 1447 void __user *argp = (void __user *)arg; 1448 int r; 1449 1450 if (kvm->mm != current->mm) 1451 return -EIO; 1452 switch (ioctl) { 1453 case KVM_CREATE_VCPU: 1454 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 1455 if (r < 0) 1456 goto out; 1457 break; 1458 case KVM_SET_USER_MEMORY_REGION: { 1459 struct kvm_userspace_memory_region kvm_userspace_mem; 1460 1461 r = -EFAULT; 1462 if (copy_from_user(&kvm_userspace_mem, argp, 1463 sizeof kvm_userspace_mem)) 1464 goto out; 1465 1466 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); 1467 if (r) 1468 goto out; 1469 break; 1470 } 1471 case KVM_GET_DIRTY_LOG: { 1472 struct kvm_dirty_log log; 1473 1474 r = -EFAULT; 1475 if (copy_from_user(&log, argp, sizeof log)) 1476 goto out; 1477 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 1478 if (r) 1479 goto out; 1480 break; 1481 } 1482 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1483 case KVM_REGISTER_COALESCED_MMIO: { 1484 struct kvm_coalesced_mmio_zone zone; 1485 r = -EFAULT; 1486 if (copy_from_user(&zone, argp, sizeof zone)) 1487 goto out; 1488 r = -ENXIO; 1489 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 1490 if (r) 1491 goto out; 1492 r = 0; 1493 break; 1494 } 1495 case KVM_UNREGISTER_COALESCED_MMIO: { 1496 struct kvm_coalesced_mmio_zone zone; 1497 r = -EFAULT; 1498 if (copy_from_user(&zone, argp, sizeof zone)) 1499 goto out; 1500 r = -ENXIO; 1501 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 1502 if (r) 1503 goto out; 1504 r = 0; 1505 break; 1506 } 1507 #endif 1508 case KVM_IRQFD: { 1509 struct kvm_irqfd data; 1510 1511 r = -EFAULT; 1512 if (copy_from_user(&data, argp, sizeof data)) 1513 goto out; 1514 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags); 1515 break; 1516 } 1517 case KVM_IOEVENTFD: { 1518 struct kvm_ioeventfd data; 1519 1520 r = -EFAULT; 1521 if (copy_from_user(&data, argp, sizeof data)) 1522 goto out; 1523 r = kvm_ioeventfd(kvm, &data); 1524 break; 1525 } 1526 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 1527 case KVM_SET_BOOT_CPU_ID: 1528 r = 0; 1529 mutex_lock(&kvm->lock); 1530 if (atomic_read(&kvm->online_vcpus) != 0) 1531 r = -EBUSY; 1532 else 1533 kvm->bsp_vcpu_id = arg; 1534 mutex_unlock(&kvm->lock); 1535 break; 1536 #endif 1537 default: 1538 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 1539 if (r == -ENOTTY) 1540 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 1541 } 1542 out: 1543 return r; 1544 } 1545 1546 #ifdef CONFIG_COMPAT 1547 struct compat_kvm_dirty_log { 1548 __u32 slot; 1549 __u32 padding1; 1550 union { 1551 compat_uptr_t dirty_bitmap; /* one bit per page */ 1552 __u64 padding2; 1553 }; 1554 }; 1555 1556 static long kvm_vm_compat_ioctl(struct file *filp, 1557 unsigned int ioctl, unsigned long arg) 1558 { 1559 struct kvm *kvm = filp->private_data; 1560 int r; 1561 1562 if (kvm->mm != current->mm) 1563 return -EIO; 1564 switch (ioctl) { 1565 case KVM_GET_DIRTY_LOG: { 1566 struct compat_kvm_dirty_log compat_log; 1567 struct kvm_dirty_log log; 1568 1569 r = -EFAULT; 1570 if (copy_from_user(&compat_log, (void __user *)arg, 1571 sizeof(compat_log))) 1572 goto out; 1573 log.slot = compat_log.slot; 1574 log.padding1 = compat_log.padding1; 1575 log.padding2 = compat_log.padding2; 1576 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 1577 1578 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 1579 if (r) 1580 goto out; 1581 break; 1582 } 1583 default: 1584 r = kvm_vm_ioctl(filp, ioctl, arg); 1585 } 1586 1587 out: 1588 return r; 1589 } 1590 #endif 1591 1592 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1593 { 1594 struct page *page[1]; 1595 unsigned long addr; 1596 int npages; 1597 gfn_t gfn = vmf->pgoff; 1598 struct kvm *kvm = vma->vm_file->private_data; 1599 1600 addr = gfn_to_hva(kvm, gfn); 1601 if (kvm_is_error_hva(addr)) 1602 return VM_FAULT_SIGBUS; 1603 1604 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 1605 NULL); 1606 if (unlikely(npages != 1)) 1607 return VM_FAULT_SIGBUS; 1608 1609 vmf->page = page[0]; 1610 return 0; 1611 } 1612 1613 static const struct vm_operations_struct kvm_vm_vm_ops = { 1614 .fault = kvm_vm_fault, 1615 }; 1616 1617 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 1618 { 1619 vma->vm_ops = &kvm_vm_vm_ops; 1620 return 0; 1621 } 1622 1623 static struct file_operations kvm_vm_fops = { 1624 .release = kvm_vm_release, 1625 .unlocked_ioctl = kvm_vm_ioctl, 1626 #ifdef CONFIG_COMPAT 1627 .compat_ioctl = kvm_vm_compat_ioctl, 1628 #endif 1629 .mmap = kvm_vm_mmap, 1630 }; 1631 1632 static int kvm_dev_ioctl_create_vm(void) 1633 { 1634 int fd; 1635 struct kvm *kvm; 1636 1637 kvm = kvm_create_vm(); 1638 if (IS_ERR(kvm)) 1639 return PTR_ERR(kvm); 1640 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0); 1641 if (fd < 0) 1642 kvm_put_kvm(kvm); 1643 1644 return fd; 1645 } 1646 1647 static long kvm_dev_ioctl_check_extension_generic(long arg) 1648 { 1649 switch (arg) { 1650 case KVM_CAP_USER_MEMORY: 1651 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 1652 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 1653 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 1654 case KVM_CAP_SET_BOOT_CPU_ID: 1655 #endif 1656 case KVM_CAP_INTERNAL_ERROR_DATA: 1657 return 1; 1658 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1659 case KVM_CAP_IRQ_ROUTING: 1660 return KVM_MAX_IRQ_ROUTES; 1661 #endif 1662 default: 1663 break; 1664 } 1665 return kvm_dev_ioctl_check_extension(arg); 1666 } 1667 1668 static long kvm_dev_ioctl(struct file *filp, 1669 unsigned int ioctl, unsigned long arg) 1670 { 1671 long r = -EINVAL; 1672 1673 switch (ioctl) { 1674 case KVM_GET_API_VERSION: 1675 r = -EINVAL; 1676 if (arg) 1677 goto out; 1678 r = KVM_API_VERSION; 1679 break; 1680 case KVM_CREATE_VM: 1681 r = -EINVAL; 1682 if (arg) 1683 goto out; 1684 r = kvm_dev_ioctl_create_vm(); 1685 break; 1686 case KVM_CHECK_EXTENSION: 1687 r = kvm_dev_ioctl_check_extension_generic(arg); 1688 break; 1689 case KVM_GET_VCPU_MMAP_SIZE: 1690 r = -EINVAL; 1691 if (arg) 1692 goto out; 1693 r = PAGE_SIZE; /* struct kvm_run */ 1694 #ifdef CONFIG_X86 1695 r += PAGE_SIZE; /* pio data page */ 1696 #endif 1697 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1698 r += PAGE_SIZE; /* coalesced mmio ring page */ 1699 #endif 1700 break; 1701 case KVM_TRACE_ENABLE: 1702 case KVM_TRACE_PAUSE: 1703 case KVM_TRACE_DISABLE: 1704 r = -EOPNOTSUPP; 1705 break; 1706 default: 1707 return kvm_arch_dev_ioctl(filp, ioctl, arg); 1708 } 1709 out: 1710 return r; 1711 } 1712 1713 static struct file_operations kvm_chardev_ops = { 1714 .unlocked_ioctl = kvm_dev_ioctl, 1715 .compat_ioctl = kvm_dev_ioctl, 1716 }; 1717 1718 static struct miscdevice kvm_dev = { 1719 KVM_MINOR, 1720 "kvm", 1721 &kvm_chardev_ops, 1722 }; 1723 1724 static void hardware_enable(void *junk) 1725 { 1726 int cpu = raw_smp_processor_id(); 1727 int r; 1728 1729 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 1730 return; 1731 1732 cpumask_set_cpu(cpu, cpus_hardware_enabled); 1733 1734 r = kvm_arch_hardware_enable(NULL); 1735 1736 if (r) { 1737 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 1738 atomic_inc(&hardware_enable_failed); 1739 printk(KERN_INFO "kvm: enabling virtualization on " 1740 "CPU%d failed\n", cpu); 1741 } 1742 } 1743 1744 static void hardware_disable(void *junk) 1745 { 1746 int cpu = raw_smp_processor_id(); 1747 1748 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 1749 return; 1750 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 1751 kvm_arch_hardware_disable(NULL); 1752 } 1753 1754 static void hardware_disable_all_nolock(void) 1755 { 1756 BUG_ON(!kvm_usage_count); 1757 1758 kvm_usage_count--; 1759 if (!kvm_usage_count) 1760 on_each_cpu(hardware_disable, NULL, 1); 1761 } 1762 1763 static void hardware_disable_all(void) 1764 { 1765 spin_lock(&kvm_lock); 1766 hardware_disable_all_nolock(); 1767 spin_unlock(&kvm_lock); 1768 } 1769 1770 static int hardware_enable_all(void) 1771 { 1772 int r = 0; 1773 1774 spin_lock(&kvm_lock); 1775 1776 kvm_usage_count++; 1777 if (kvm_usage_count == 1) { 1778 atomic_set(&hardware_enable_failed, 0); 1779 on_each_cpu(hardware_enable, NULL, 1); 1780 1781 if (atomic_read(&hardware_enable_failed)) { 1782 hardware_disable_all_nolock(); 1783 r = -EBUSY; 1784 } 1785 } 1786 1787 spin_unlock(&kvm_lock); 1788 1789 return r; 1790 } 1791 1792 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 1793 void *v) 1794 { 1795 int cpu = (long)v; 1796 1797 if (!kvm_usage_count) 1798 return NOTIFY_OK; 1799 1800 val &= ~CPU_TASKS_FROZEN; 1801 switch (val) { 1802 case CPU_DYING: 1803 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 1804 cpu); 1805 hardware_disable(NULL); 1806 break; 1807 case CPU_UP_CANCELED: 1808 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 1809 cpu); 1810 smp_call_function_single(cpu, hardware_disable, NULL, 1); 1811 break; 1812 case CPU_ONLINE: 1813 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 1814 cpu); 1815 smp_call_function_single(cpu, hardware_enable, NULL, 1); 1816 break; 1817 } 1818 return NOTIFY_OK; 1819 } 1820 1821 1822 asmlinkage void kvm_handle_fault_on_reboot(void) 1823 { 1824 if (kvm_rebooting) 1825 /* spin while reset goes on */ 1826 while (true) 1827 ; 1828 /* Fault while not rebooting. We want the trace. */ 1829 BUG(); 1830 } 1831 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot); 1832 1833 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 1834 void *v) 1835 { 1836 /* 1837 * Some (well, at least mine) BIOSes hang on reboot if 1838 * in vmx root mode. 1839 * 1840 * And Intel TXT required VMX off for all cpu when system shutdown. 1841 */ 1842 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 1843 kvm_rebooting = true; 1844 on_each_cpu(hardware_disable, NULL, 1); 1845 return NOTIFY_OK; 1846 } 1847 1848 static struct notifier_block kvm_reboot_notifier = { 1849 .notifier_call = kvm_reboot, 1850 .priority = 0, 1851 }; 1852 1853 void kvm_io_bus_init(struct kvm_io_bus *bus) 1854 { 1855 memset(bus, 0, sizeof(*bus)); 1856 } 1857 1858 void kvm_io_bus_destroy(struct kvm_io_bus *bus) 1859 { 1860 int i; 1861 1862 for (i = 0; i < bus->dev_count; i++) { 1863 struct kvm_io_device *pos = bus->devs[i]; 1864 1865 kvm_iodevice_destructor(pos); 1866 } 1867 } 1868 1869 /* kvm_io_bus_write - called under kvm->slots_lock */ 1870 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr, 1871 int len, const void *val) 1872 { 1873 int i; 1874 for (i = 0; i < bus->dev_count; i++) 1875 if (!kvm_iodevice_write(bus->devs[i], addr, len, val)) 1876 return 0; 1877 return -EOPNOTSUPP; 1878 } 1879 1880 /* kvm_io_bus_read - called under kvm->slots_lock */ 1881 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val) 1882 { 1883 int i; 1884 for (i = 0; i < bus->dev_count; i++) 1885 if (!kvm_iodevice_read(bus->devs[i], addr, len, val)) 1886 return 0; 1887 return -EOPNOTSUPP; 1888 } 1889 1890 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus, 1891 struct kvm_io_device *dev) 1892 { 1893 int ret; 1894 1895 down_write(&kvm->slots_lock); 1896 ret = __kvm_io_bus_register_dev(bus, dev); 1897 up_write(&kvm->slots_lock); 1898 1899 return ret; 1900 } 1901 1902 /* An unlocked version. Caller must have write lock on slots_lock. */ 1903 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus, 1904 struct kvm_io_device *dev) 1905 { 1906 if (bus->dev_count > NR_IOBUS_DEVS-1) 1907 return -ENOSPC; 1908 1909 bus->devs[bus->dev_count++] = dev; 1910 1911 return 0; 1912 } 1913 1914 void kvm_io_bus_unregister_dev(struct kvm *kvm, 1915 struct kvm_io_bus *bus, 1916 struct kvm_io_device *dev) 1917 { 1918 down_write(&kvm->slots_lock); 1919 __kvm_io_bus_unregister_dev(bus, dev); 1920 up_write(&kvm->slots_lock); 1921 } 1922 1923 /* An unlocked version. Caller must have write lock on slots_lock. */ 1924 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus, 1925 struct kvm_io_device *dev) 1926 { 1927 int i; 1928 1929 for (i = 0; i < bus->dev_count; i++) 1930 if (bus->devs[i] == dev) { 1931 bus->devs[i] = bus->devs[--bus->dev_count]; 1932 break; 1933 } 1934 } 1935 1936 static struct notifier_block kvm_cpu_notifier = { 1937 .notifier_call = kvm_cpu_hotplug, 1938 .priority = 20, /* must be > scheduler priority */ 1939 }; 1940 1941 static int vm_stat_get(void *_offset, u64 *val) 1942 { 1943 unsigned offset = (long)_offset; 1944 struct kvm *kvm; 1945 1946 *val = 0; 1947 spin_lock(&kvm_lock); 1948 list_for_each_entry(kvm, &vm_list, vm_list) 1949 *val += *(u32 *)((void *)kvm + offset); 1950 spin_unlock(&kvm_lock); 1951 return 0; 1952 } 1953 1954 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 1955 1956 static int vcpu_stat_get(void *_offset, u64 *val) 1957 { 1958 unsigned offset = (long)_offset; 1959 struct kvm *kvm; 1960 struct kvm_vcpu *vcpu; 1961 int i; 1962 1963 *val = 0; 1964 spin_lock(&kvm_lock); 1965 list_for_each_entry(kvm, &vm_list, vm_list) 1966 kvm_for_each_vcpu(i, vcpu, kvm) 1967 *val += *(u32 *)((void *)vcpu + offset); 1968 1969 spin_unlock(&kvm_lock); 1970 return 0; 1971 } 1972 1973 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 1974 1975 static const struct file_operations *stat_fops[] = { 1976 [KVM_STAT_VCPU] = &vcpu_stat_fops, 1977 [KVM_STAT_VM] = &vm_stat_fops, 1978 }; 1979 1980 static void kvm_init_debug(void) 1981 { 1982 struct kvm_stats_debugfs_item *p; 1983 1984 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 1985 for (p = debugfs_entries; p->name; ++p) 1986 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 1987 (void *)(long)p->offset, 1988 stat_fops[p->kind]); 1989 } 1990 1991 static void kvm_exit_debug(void) 1992 { 1993 struct kvm_stats_debugfs_item *p; 1994 1995 for (p = debugfs_entries; p->name; ++p) 1996 debugfs_remove(p->dentry); 1997 debugfs_remove(kvm_debugfs_dir); 1998 } 1999 2000 static int kvm_suspend(struct sys_device *dev, pm_message_t state) 2001 { 2002 if (kvm_usage_count) 2003 hardware_disable(NULL); 2004 return 0; 2005 } 2006 2007 static int kvm_resume(struct sys_device *dev) 2008 { 2009 if (kvm_usage_count) 2010 hardware_enable(NULL); 2011 return 0; 2012 } 2013 2014 static struct sysdev_class kvm_sysdev_class = { 2015 .name = "kvm", 2016 .suspend = kvm_suspend, 2017 .resume = kvm_resume, 2018 }; 2019 2020 static struct sys_device kvm_sysdev = { 2021 .id = 0, 2022 .cls = &kvm_sysdev_class, 2023 }; 2024 2025 struct page *bad_page; 2026 pfn_t bad_pfn; 2027 2028 static inline 2029 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 2030 { 2031 return container_of(pn, struct kvm_vcpu, preempt_notifier); 2032 } 2033 2034 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 2035 { 2036 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2037 2038 kvm_arch_vcpu_load(vcpu, cpu); 2039 } 2040 2041 static void kvm_sched_out(struct preempt_notifier *pn, 2042 struct task_struct *next) 2043 { 2044 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2045 2046 kvm_arch_vcpu_put(vcpu); 2047 } 2048 2049 int kvm_init(void *opaque, unsigned int vcpu_size, 2050 struct module *module) 2051 { 2052 int r; 2053 int cpu; 2054 2055 r = kvm_arch_init(opaque); 2056 if (r) 2057 goto out_fail; 2058 2059 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2060 2061 if (bad_page == NULL) { 2062 r = -ENOMEM; 2063 goto out; 2064 } 2065 2066 bad_pfn = page_to_pfn(bad_page); 2067 2068 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 2069 r = -ENOMEM; 2070 goto out_free_0; 2071 } 2072 2073 r = kvm_arch_hardware_setup(); 2074 if (r < 0) 2075 goto out_free_0a; 2076 2077 for_each_online_cpu(cpu) { 2078 smp_call_function_single(cpu, 2079 kvm_arch_check_processor_compat, 2080 &r, 1); 2081 if (r < 0) 2082 goto out_free_1; 2083 } 2084 2085 r = register_cpu_notifier(&kvm_cpu_notifier); 2086 if (r) 2087 goto out_free_2; 2088 register_reboot_notifier(&kvm_reboot_notifier); 2089 2090 r = sysdev_class_register(&kvm_sysdev_class); 2091 if (r) 2092 goto out_free_3; 2093 2094 r = sysdev_register(&kvm_sysdev); 2095 if (r) 2096 goto out_free_4; 2097 2098 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 2099 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, 2100 __alignof__(struct kvm_vcpu), 2101 0, NULL); 2102 if (!kvm_vcpu_cache) { 2103 r = -ENOMEM; 2104 goto out_free_5; 2105 } 2106 2107 kvm_chardev_ops.owner = module; 2108 kvm_vm_fops.owner = module; 2109 kvm_vcpu_fops.owner = module; 2110 2111 r = misc_register(&kvm_dev); 2112 if (r) { 2113 printk(KERN_ERR "kvm: misc device register failed\n"); 2114 goto out_free; 2115 } 2116 2117 kvm_preempt_ops.sched_in = kvm_sched_in; 2118 kvm_preempt_ops.sched_out = kvm_sched_out; 2119 2120 kvm_init_debug(); 2121 2122 return 0; 2123 2124 out_free: 2125 kmem_cache_destroy(kvm_vcpu_cache); 2126 out_free_5: 2127 sysdev_unregister(&kvm_sysdev); 2128 out_free_4: 2129 sysdev_class_unregister(&kvm_sysdev_class); 2130 out_free_3: 2131 unregister_reboot_notifier(&kvm_reboot_notifier); 2132 unregister_cpu_notifier(&kvm_cpu_notifier); 2133 out_free_2: 2134 out_free_1: 2135 kvm_arch_hardware_unsetup(); 2136 out_free_0a: 2137 free_cpumask_var(cpus_hardware_enabled); 2138 out_free_0: 2139 __free_page(bad_page); 2140 out: 2141 kvm_arch_exit(); 2142 out_fail: 2143 return r; 2144 } 2145 EXPORT_SYMBOL_GPL(kvm_init); 2146 2147 void kvm_exit(void) 2148 { 2149 tracepoint_synchronize_unregister(); 2150 kvm_exit_debug(); 2151 misc_deregister(&kvm_dev); 2152 kmem_cache_destroy(kvm_vcpu_cache); 2153 sysdev_unregister(&kvm_sysdev); 2154 sysdev_class_unregister(&kvm_sysdev_class); 2155 unregister_reboot_notifier(&kvm_reboot_notifier); 2156 unregister_cpu_notifier(&kvm_cpu_notifier); 2157 on_each_cpu(hardware_disable, NULL, 1); 2158 kvm_arch_hardware_unsetup(); 2159 kvm_arch_exit(); 2160 free_cpumask_var(cpus_hardware_enabled); 2161 __free_page(bad_page); 2162 } 2163 EXPORT_SYMBOL_GPL(kvm_exit); 2164