xref: /linux/virt/kvm/kvm_main.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138 
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 	if (pfn_valid(pfn))
142 		return PageReserved(pfn_to_page(pfn));
143 
144 	return true;
145 }
146 
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 	int cpu;
153 
154 	if (mutex_lock_killable(&vcpu->mutex))
155 		return -EINTR;
156 	cpu = get_cpu();
157 	preempt_notifier_register(&vcpu->preempt_notifier);
158 	kvm_arch_vcpu_load(vcpu, cpu);
159 	put_cpu();
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163 
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 	preempt_disable();
167 	kvm_arch_vcpu_put(vcpu);
168 	preempt_notifier_unregister(&vcpu->preempt_notifier);
169 	preempt_enable();
170 	mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173 
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178 
179 	/*
180 	 * We need to wait for the VCPU to reenable interrupts and get out of
181 	 * READING_SHADOW_PAGE_TABLES mode.
182 	 */
183 	if (req & KVM_REQUEST_WAIT)
184 		return mode != OUTSIDE_GUEST_MODE;
185 
186 	/*
187 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 	 */
189 	return mode == IN_GUEST_MODE;
190 }
191 
192 static void ack_flush(void *_completed)
193 {
194 }
195 
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 	if (unlikely(!cpus))
199 		cpus = cpu_online_mask;
200 
201 	if (cpumask_empty(cpus))
202 		return false;
203 
204 	smp_call_function_many(cpus, ack_flush, NULL, wait);
205 	return true;
206 }
207 
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 	int i, cpu, me;
211 	cpumask_var_t cpus;
212 	bool called;
213 	struct kvm_vcpu *vcpu;
214 
215 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216 
217 	me = get_cpu();
218 	kvm_for_each_vcpu(i, vcpu, kvm) {
219 		kvm_make_request(req, vcpu);
220 		cpu = vcpu->cpu;
221 
222 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 			continue;
224 
225 		if (cpus != NULL && cpu != -1 && cpu != me &&
226 		    kvm_request_needs_ipi(vcpu, req))
227 			__cpumask_set_cpu(cpu, cpus);
228 	}
229 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 	put_cpu();
231 	free_cpumask_var(cpus);
232 	return called;
233 }
234 
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 	/*
239 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 	 * kvm_make_all_cpus_request.
241 	 */
242 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243 
244 	/*
245 	 * We want to publish modifications to the page tables before reading
246 	 * mode. Pairs with a memory barrier in arch-specific code.
247 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 	 *
251 	 * There is already an smp_mb__after_atomic() before
252 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 	 * barrier here.
254 	 */
255 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 		++kvm->stat.remote_tlb_flush;
257 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261 
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266 
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 	struct page *page;
270 	int r;
271 
272 	mutex_init(&vcpu->mutex);
273 	vcpu->cpu = -1;
274 	vcpu->kvm = kvm;
275 	vcpu->vcpu_id = id;
276 	vcpu->pid = NULL;
277 	init_swait_queue_head(&vcpu->wq);
278 	kvm_async_pf_vcpu_init(vcpu);
279 
280 	vcpu->pre_pcpu = -1;
281 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282 
283 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 	if (!page) {
285 		r = -ENOMEM;
286 		goto fail;
287 	}
288 	vcpu->run = page_address(page);
289 
290 	kvm_vcpu_set_in_spin_loop(vcpu, false);
291 	kvm_vcpu_set_dy_eligible(vcpu, false);
292 	vcpu->preempted = false;
293 
294 	r = kvm_arch_vcpu_init(vcpu);
295 	if (r < 0)
296 		goto fail_free_run;
297 	return 0;
298 
299 fail_free_run:
300 	free_page((unsigned long)vcpu->run);
301 fail:
302 	return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305 
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 	/*
309 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 	 * will change the vcpu->pid pointer and on uninit all file
311 	 * descriptors are already gone.
312 	 */
313 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 	kvm_arch_vcpu_uninit(vcpu);
315 	free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318 
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 	return container_of(mn, struct kvm, mmu_notifier);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
473 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
474 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
475 	.clear_young		= kvm_mmu_notifier_clear_young,
476 	.test_young		= kvm_mmu_notifier_test_young,
477 	.change_pte		= kvm_mmu_notifier_change_pte,
478 	.release		= kvm_mmu_notifier_release,
479 };
480 
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
482 {
483 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
485 }
486 
487 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488 
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491 	return 0;
492 }
493 
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495 
496 static struct kvm_memslots *kvm_alloc_memslots(void)
497 {
498 	int i;
499 	struct kvm_memslots *slots;
500 
501 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
502 	if (!slots)
503 		return NULL;
504 
505 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506 		slots->id_to_index[i] = slots->memslots[i].id = i;
507 
508 	return slots;
509 }
510 
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
512 {
513 	if (!memslot->dirty_bitmap)
514 		return;
515 
516 	kvfree(memslot->dirty_bitmap);
517 	memslot->dirty_bitmap = NULL;
518 }
519 
520 /*
521  * Free any memory in @free but not in @dont.
522  */
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524 			      struct kvm_memory_slot *dont)
525 {
526 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 		kvm_destroy_dirty_bitmap(free);
528 
529 	kvm_arch_free_memslot(kvm, free, dont);
530 
531 	free->npages = 0;
532 }
533 
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
535 {
536 	struct kvm_memory_slot *memslot;
537 
538 	if (!slots)
539 		return;
540 
541 	kvm_for_each_memslot(memslot, slots)
542 		kvm_free_memslot(kvm, memslot, NULL);
543 
544 	kvfree(slots);
545 }
546 
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
548 {
549 	int i;
550 
551 	if (!kvm->debugfs_dentry)
552 		return;
553 
554 	debugfs_remove_recursive(kvm->debugfs_dentry);
555 
556 	if (kvm->debugfs_stat_data) {
557 		for (i = 0; i < kvm_debugfs_num_entries; i++)
558 			kfree(kvm->debugfs_stat_data[i]);
559 		kfree(kvm->debugfs_stat_data);
560 	}
561 }
562 
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
564 {
565 	char dir_name[ITOA_MAX_LEN * 2];
566 	struct kvm_stat_data *stat_data;
567 	struct kvm_stats_debugfs_item *p;
568 
569 	if (!debugfs_initialized())
570 		return 0;
571 
572 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
574 						 kvm_debugfs_dir);
575 	if (!kvm->debugfs_dentry)
576 		return -ENOMEM;
577 
578 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579 					 sizeof(*kvm->debugfs_stat_data),
580 					 GFP_KERNEL);
581 	if (!kvm->debugfs_stat_data)
582 		return -ENOMEM;
583 
584 	for (p = debugfs_entries; p->name; p++) {
585 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
586 		if (!stat_data)
587 			return -ENOMEM;
588 
589 		stat_data->kvm = kvm;
590 		stat_data->offset = p->offset;
591 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592 		if (!debugfs_create_file(p->name, 0644,
593 					 kvm->debugfs_dentry,
594 					 stat_data,
595 					 stat_fops_per_vm[p->kind]))
596 			return -ENOMEM;
597 	}
598 	return 0;
599 }
600 
601 static struct kvm *kvm_create_vm(unsigned long type)
602 {
603 	int r, i;
604 	struct kvm *kvm = kvm_arch_alloc_vm();
605 
606 	if (!kvm)
607 		return ERR_PTR(-ENOMEM);
608 
609 	spin_lock_init(&kvm->mmu_lock);
610 	mmgrab(current->mm);
611 	kvm->mm = current->mm;
612 	kvm_eventfd_init(kvm);
613 	mutex_init(&kvm->lock);
614 	mutex_init(&kvm->irq_lock);
615 	mutex_init(&kvm->slots_lock);
616 	refcount_set(&kvm->users_count, 1);
617 	INIT_LIST_HEAD(&kvm->devices);
618 
619 	r = kvm_arch_init_vm(kvm, type);
620 	if (r)
621 		goto out_err_no_disable;
622 
623 	r = hardware_enable_all();
624 	if (r)
625 		goto out_err_no_disable;
626 
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
629 #endif
630 
631 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
632 
633 	r = -ENOMEM;
634 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635 		struct kvm_memslots *slots = kvm_alloc_memslots();
636 		if (!slots)
637 			goto out_err_no_srcu;
638 		/*
639 		 * Generations must be different for each address space.
640 		 * Init kvm generation close to the maximum to easily test the
641 		 * code of handling generation number wrap-around.
642 		 */
643 		slots->generation = i * 2 - 150;
644 		rcu_assign_pointer(kvm->memslots[i], slots);
645 	}
646 
647 	if (init_srcu_struct(&kvm->srcu))
648 		goto out_err_no_srcu;
649 	if (init_srcu_struct(&kvm->irq_srcu))
650 		goto out_err_no_irq_srcu;
651 	for (i = 0; i < KVM_NR_BUSES; i++) {
652 		rcu_assign_pointer(kvm->buses[i],
653 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
654 		if (!kvm->buses[i])
655 			goto out_err;
656 	}
657 
658 	r = kvm_init_mmu_notifier(kvm);
659 	if (r)
660 		goto out_err;
661 
662 	spin_lock(&kvm_lock);
663 	list_add(&kvm->vm_list, &vm_list);
664 	spin_unlock(&kvm_lock);
665 
666 	preempt_notifier_inc();
667 
668 	return kvm;
669 
670 out_err:
671 	cleanup_srcu_struct(&kvm->irq_srcu);
672 out_err_no_irq_srcu:
673 	cleanup_srcu_struct(&kvm->srcu);
674 out_err_no_srcu:
675 	hardware_disable_all();
676 out_err_no_disable:
677 	for (i = 0; i < KVM_NR_BUSES; i++)
678 		kfree(kvm_get_bus(kvm, i));
679 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
680 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
681 	kvm_arch_free_vm(kvm);
682 	mmdrop(current->mm);
683 	return ERR_PTR(r);
684 }
685 
686 static void kvm_destroy_devices(struct kvm *kvm)
687 {
688 	struct kvm_device *dev, *tmp;
689 
690 	/*
691 	 * We do not need to take the kvm->lock here, because nobody else
692 	 * has a reference to the struct kvm at this point and therefore
693 	 * cannot access the devices list anyhow.
694 	 */
695 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
696 		list_del(&dev->vm_node);
697 		dev->ops->destroy(dev);
698 	}
699 }
700 
701 static void kvm_destroy_vm(struct kvm *kvm)
702 {
703 	int i;
704 	struct mm_struct *mm = kvm->mm;
705 
706 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
707 	kvm_destroy_vm_debugfs(kvm);
708 	kvm_arch_sync_events(kvm);
709 	spin_lock(&kvm_lock);
710 	list_del(&kvm->vm_list);
711 	spin_unlock(&kvm_lock);
712 	kvm_free_irq_routing(kvm);
713 	for (i = 0; i < KVM_NR_BUSES; i++) {
714 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
715 
716 		if (bus)
717 			kvm_io_bus_destroy(bus);
718 		kvm->buses[i] = NULL;
719 	}
720 	kvm_coalesced_mmio_free(kvm);
721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
722 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
723 #else
724 	kvm_arch_flush_shadow_all(kvm);
725 #endif
726 	kvm_arch_destroy_vm(kvm);
727 	kvm_destroy_devices(kvm);
728 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
729 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
730 	cleanup_srcu_struct(&kvm->irq_srcu);
731 	cleanup_srcu_struct(&kvm->srcu);
732 	kvm_arch_free_vm(kvm);
733 	preempt_notifier_dec();
734 	hardware_disable_all();
735 	mmdrop(mm);
736 }
737 
738 void kvm_get_kvm(struct kvm *kvm)
739 {
740 	refcount_inc(&kvm->users_count);
741 }
742 EXPORT_SYMBOL_GPL(kvm_get_kvm);
743 
744 void kvm_put_kvm(struct kvm *kvm)
745 {
746 	if (refcount_dec_and_test(&kvm->users_count))
747 		kvm_destroy_vm(kvm);
748 }
749 EXPORT_SYMBOL_GPL(kvm_put_kvm);
750 
751 
752 static int kvm_vm_release(struct inode *inode, struct file *filp)
753 {
754 	struct kvm *kvm = filp->private_data;
755 
756 	kvm_irqfd_release(kvm);
757 
758 	kvm_put_kvm(kvm);
759 	return 0;
760 }
761 
762 /*
763  * Allocation size is twice as large as the actual dirty bitmap size.
764  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
765  */
766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
767 {
768 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
769 
770 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
771 	if (!memslot->dirty_bitmap)
772 		return -ENOMEM;
773 
774 	return 0;
775 }
776 
777 /*
778  * Insert memslot and re-sort memslots based on their GFN,
779  * so binary search could be used to lookup GFN.
780  * Sorting algorithm takes advantage of having initially
781  * sorted array and known changed memslot position.
782  */
783 static void update_memslots(struct kvm_memslots *slots,
784 			    struct kvm_memory_slot *new)
785 {
786 	int id = new->id;
787 	int i = slots->id_to_index[id];
788 	struct kvm_memory_slot *mslots = slots->memslots;
789 
790 	WARN_ON(mslots[i].id != id);
791 	if (!new->npages) {
792 		WARN_ON(!mslots[i].npages);
793 		if (mslots[i].npages)
794 			slots->used_slots--;
795 	} else {
796 		if (!mslots[i].npages)
797 			slots->used_slots++;
798 	}
799 
800 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
801 	       new->base_gfn <= mslots[i + 1].base_gfn) {
802 		if (!mslots[i + 1].npages)
803 			break;
804 		mslots[i] = mslots[i + 1];
805 		slots->id_to_index[mslots[i].id] = i;
806 		i++;
807 	}
808 
809 	/*
810 	 * The ">=" is needed when creating a slot with base_gfn == 0,
811 	 * so that it moves before all those with base_gfn == npages == 0.
812 	 *
813 	 * On the other hand, if new->npages is zero, the above loop has
814 	 * already left i pointing to the beginning of the empty part of
815 	 * mslots, and the ">=" would move the hole backwards in this
816 	 * case---which is wrong.  So skip the loop when deleting a slot.
817 	 */
818 	if (new->npages) {
819 		while (i > 0 &&
820 		       new->base_gfn >= mslots[i - 1].base_gfn) {
821 			mslots[i] = mslots[i - 1];
822 			slots->id_to_index[mslots[i].id] = i;
823 			i--;
824 		}
825 	} else
826 		WARN_ON_ONCE(i != slots->used_slots);
827 
828 	mslots[i] = *new;
829 	slots->id_to_index[mslots[i].id] = i;
830 }
831 
832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
833 {
834 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
835 
836 #ifdef __KVM_HAVE_READONLY_MEM
837 	valid_flags |= KVM_MEM_READONLY;
838 #endif
839 
840 	if (mem->flags & ~valid_flags)
841 		return -EINVAL;
842 
843 	return 0;
844 }
845 
846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
847 		int as_id, struct kvm_memslots *slots)
848 {
849 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
850 
851 	/*
852 	 * Set the low bit in the generation, which disables SPTE caching
853 	 * until the end of synchronize_srcu_expedited.
854 	 */
855 	WARN_ON(old_memslots->generation & 1);
856 	slots->generation = old_memslots->generation + 1;
857 
858 	rcu_assign_pointer(kvm->memslots[as_id], slots);
859 	synchronize_srcu_expedited(&kvm->srcu);
860 
861 	/*
862 	 * Increment the new memslot generation a second time. This prevents
863 	 * vm exits that race with memslot updates from caching a memslot
864 	 * generation that will (potentially) be valid forever.
865 	 *
866 	 * Generations must be unique even across address spaces.  We do not need
867 	 * a global counter for that, instead the generation space is evenly split
868 	 * across address spaces.  For example, with two address spaces, address
869 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
870 	 * use generations 2, 6, 10, 14, ...
871 	 */
872 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
873 
874 	kvm_arch_memslots_updated(kvm, slots);
875 
876 	return old_memslots;
877 }
878 
879 /*
880  * Allocate some memory and give it an address in the guest physical address
881  * space.
882  *
883  * Discontiguous memory is allowed, mostly for framebuffers.
884  *
885  * Must be called holding kvm->slots_lock for write.
886  */
887 int __kvm_set_memory_region(struct kvm *kvm,
888 			    const struct kvm_userspace_memory_region *mem)
889 {
890 	int r;
891 	gfn_t base_gfn;
892 	unsigned long npages;
893 	struct kvm_memory_slot *slot;
894 	struct kvm_memory_slot old, new;
895 	struct kvm_memslots *slots = NULL, *old_memslots;
896 	int as_id, id;
897 	enum kvm_mr_change change;
898 
899 	r = check_memory_region_flags(mem);
900 	if (r)
901 		goto out;
902 
903 	r = -EINVAL;
904 	as_id = mem->slot >> 16;
905 	id = (u16)mem->slot;
906 
907 	/* General sanity checks */
908 	if (mem->memory_size & (PAGE_SIZE - 1))
909 		goto out;
910 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
911 		goto out;
912 	/* We can read the guest memory with __xxx_user() later on. */
913 	if ((id < KVM_USER_MEM_SLOTS) &&
914 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
915 	     !access_ok(VERIFY_WRITE,
916 			(void __user *)(unsigned long)mem->userspace_addr,
917 			mem->memory_size)))
918 		goto out;
919 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
920 		goto out;
921 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
922 		goto out;
923 
924 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
925 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
926 	npages = mem->memory_size >> PAGE_SHIFT;
927 
928 	if (npages > KVM_MEM_MAX_NR_PAGES)
929 		goto out;
930 
931 	new = old = *slot;
932 
933 	new.id = id;
934 	new.base_gfn = base_gfn;
935 	new.npages = npages;
936 	new.flags = mem->flags;
937 
938 	if (npages) {
939 		if (!old.npages)
940 			change = KVM_MR_CREATE;
941 		else { /* Modify an existing slot. */
942 			if ((mem->userspace_addr != old.userspace_addr) ||
943 			    (npages != old.npages) ||
944 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
945 				goto out;
946 
947 			if (base_gfn != old.base_gfn)
948 				change = KVM_MR_MOVE;
949 			else if (new.flags != old.flags)
950 				change = KVM_MR_FLAGS_ONLY;
951 			else { /* Nothing to change. */
952 				r = 0;
953 				goto out;
954 			}
955 		}
956 	} else {
957 		if (!old.npages)
958 			goto out;
959 
960 		change = KVM_MR_DELETE;
961 		new.base_gfn = 0;
962 		new.flags = 0;
963 	}
964 
965 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
966 		/* Check for overlaps */
967 		r = -EEXIST;
968 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
969 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
970 			    (slot->id == id))
971 				continue;
972 			if (!((base_gfn + npages <= slot->base_gfn) ||
973 			      (base_gfn >= slot->base_gfn + slot->npages)))
974 				goto out;
975 		}
976 	}
977 
978 	/* Free page dirty bitmap if unneeded */
979 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
980 		new.dirty_bitmap = NULL;
981 
982 	r = -ENOMEM;
983 	if (change == KVM_MR_CREATE) {
984 		new.userspace_addr = mem->userspace_addr;
985 
986 		if (kvm_arch_create_memslot(kvm, &new, npages))
987 			goto out_free;
988 	}
989 
990 	/* Allocate page dirty bitmap if needed */
991 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
992 		if (kvm_create_dirty_bitmap(&new) < 0)
993 			goto out_free;
994 	}
995 
996 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
997 	if (!slots)
998 		goto out_free;
999 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1000 
1001 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1002 		slot = id_to_memslot(slots, id);
1003 		slot->flags |= KVM_MEMSLOT_INVALID;
1004 
1005 		old_memslots = install_new_memslots(kvm, as_id, slots);
1006 
1007 		/* From this point no new shadow pages pointing to a deleted,
1008 		 * or moved, memslot will be created.
1009 		 *
1010 		 * validation of sp->gfn happens in:
1011 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1012 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1013 		 */
1014 		kvm_arch_flush_shadow_memslot(kvm, slot);
1015 
1016 		/*
1017 		 * We can re-use the old_memslots from above, the only difference
1018 		 * from the currently installed memslots is the invalid flag.  This
1019 		 * will get overwritten by update_memslots anyway.
1020 		 */
1021 		slots = old_memslots;
1022 	}
1023 
1024 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1025 	if (r)
1026 		goto out_slots;
1027 
1028 	/* actual memory is freed via old in kvm_free_memslot below */
1029 	if (change == KVM_MR_DELETE) {
1030 		new.dirty_bitmap = NULL;
1031 		memset(&new.arch, 0, sizeof(new.arch));
1032 	}
1033 
1034 	update_memslots(slots, &new);
1035 	old_memslots = install_new_memslots(kvm, as_id, slots);
1036 
1037 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1038 
1039 	kvm_free_memslot(kvm, &old, &new);
1040 	kvfree(old_memslots);
1041 	return 0;
1042 
1043 out_slots:
1044 	kvfree(slots);
1045 out_free:
1046 	kvm_free_memslot(kvm, &new, &old);
1047 out:
1048 	return r;
1049 }
1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1051 
1052 int kvm_set_memory_region(struct kvm *kvm,
1053 			  const struct kvm_userspace_memory_region *mem)
1054 {
1055 	int r;
1056 
1057 	mutex_lock(&kvm->slots_lock);
1058 	r = __kvm_set_memory_region(kvm, mem);
1059 	mutex_unlock(&kvm->slots_lock);
1060 	return r;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1063 
1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1065 					  struct kvm_userspace_memory_region *mem)
1066 {
1067 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1068 		return -EINVAL;
1069 
1070 	return kvm_set_memory_region(kvm, mem);
1071 }
1072 
1073 int kvm_get_dirty_log(struct kvm *kvm,
1074 			struct kvm_dirty_log *log, int *is_dirty)
1075 {
1076 	struct kvm_memslots *slots;
1077 	struct kvm_memory_slot *memslot;
1078 	int i, as_id, id;
1079 	unsigned long n;
1080 	unsigned long any = 0;
1081 
1082 	as_id = log->slot >> 16;
1083 	id = (u16)log->slot;
1084 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085 		return -EINVAL;
1086 
1087 	slots = __kvm_memslots(kvm, as_id);
1088 	memslot = id_to_memslot(slots, id);
1089 	if (!memslot->dirty_bitmap)
1090 		return -ENOENT;
1091 
1092 	n = kvm_dirty_bitmap_bytes(memslot);
1093 
1094 	for (i = 0; !any && i < n/sizeof(long); ++i)
1095 		any = memslot->dirty_bitmap[i];
1096 
1097 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1098 		return -EFAULT;
1099 
1100 	if (any)
1101 		*is_dirty = 1;
1102 	return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1105 
1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1107 /**
1108  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1109  *	are dirty write protect them for next write.
1110  * @kvm:	pointer to kvm instance
1111  * @log:	slot id and address to which we copy the log
1112  * @is_dirty:	flag set if any page is dirty
1113  *
1114  * We need to keep it in mind that VCPU threads can write to the bitmap
1115  * concurrently. So, to avoid losing track of dirty pages we keep the
1116  * following order:
1117  *
1118  *    1. Take a snapshot of the bit and clear it if needed.
1119  *    2. Write protect the corresponding page.
1120  *    3. Copy the snapshot to the userspace.
1121  *    4. Upon return caller flushes TLB's if needed.
1122  *
1123  * Between 2 and 4, the guest may write to the page using the remaining TLB
1124  * entry.  This is not a problem because the page is reported dirty using
1125  * the snapshot taken before and step 4 ensures that writes done after
1126  * exiting to userspace will be logged for the next call.
1127  *
1128  */
1129 int kvm_get_dirty_log_protect(struct kvm *kvm,
1130 			struct kvm_dirty_log *log, bool *is_dirty)
1131 {
1132 	struct kvm_memslots *slots;
1133 	struct kvm_memory_slot *memslot;
1134 	int i, as_id, id;
1135 	unsigned long n;
1136 	unsigned long *dirty_bitmap;
1137 	unsigned long *dirty_bitmap_buffer;
1138 
1139 	as_id = log->slot >> 16;
1140 	id = (u16)log->slot;
1141 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1142 		return -EINVAL;
1143 
1144 	slots = __kvm_memslots(kvm, as_id);
1145 	memslot = id_to_memslot(slots, id);
1146 
1147 	dirty_bitmap = memslot->dirty_bitmap;
1148 	if (!dirty_bitmap)
1149 		return -ENOENT;
1150 
1151 	n = kvm_dirty_bitmap_bytes(memslot);
1152 
1153 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1154 	memset(dirty_bitmap_buffer, 0, n);
1155 
1156 	spin_lock(&kvm->mmu_lock);
1157 	*is_dirty = false;
1158 	for (i = 0; i < n / sizeof(long); i++) {
1159 		unsigned long mask;
1160 		gfn_t offset;
1161 
1162 		if (!dirty_bitmap[i])
1163 			continue;
1164 
1165 		*is_dirty = true;
1166 
1167 		mask = xchg(&dirty_bitmap[i], 0);
1168 		dirty_bitmap_buffer[i] = mask;
1169 
1170 		if (mask) {
1171 			offset = i * BITS_PER_LONG;
1172 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1173 								offset, mask);
1174 		}
1175 	}
1176 
1177 	spin_unlock(&kvm->mmu_lock);
1178 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1179 		return -EFAULT;
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1183 #endif
1184 
1185 bool kvm_largepages_enabled(void)
1186 {
1187 	return largepages_enabled;
1188 }
1189 
1190 void kvm_disable_largepages(void)
1191 {
1192 	largepages_enabled = false;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1195 
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1197 {
1198 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1201 
1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1203 {
1204 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1205 }
1206 
1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1208 {
1209 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1210 
1211 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1212 	      memslot->flags & KVM_MEMSLOT_INVALID)
1213 		return false;
1214 
1215 	return true;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1218 
1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1220 {
1221 	struct vm_area_struct *vma;
1222 	unsigned long addr, size;
1223 
1224 	size = PAGE_SIZE;
1225 
1226 	addr = gfn_to_hva(kvm, gfn);
1227 	if (kvm_is_error_hva(addr))
1228 		return PAGE_SIZE;
1229 
1230 	down_read(&current->mm->mmap_sem);
1231 	vma = find_vma(current->mm, addr);
1232 	if (!vma)
1233 		goto out;
1234 
1235 	size = vma_kernel_pagesize(vma);
1236 
1237 out:
1238 	up_read(&current->mm->mmap_sem);
1239 
1240 	return size;
1241 }
1242 
1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1244 {
1245 	return slot->flags & KVM_MEM_READONLY;
1246 }
1247 
1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1249 				       gfn_t *nr_pages, bool write)
1250 {
1251 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1252 		return KVM_HVA_ERR_BAD;
1253 
1254 	if (memslot_is_readonly(slot) && write)
1255 		return KVM_HVA_ERR_RO_BAD;
1256 
1257 	if (nr_pages)
1258 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1259 
1260 	return __gfn_to_hva_memslot(slot, gfn);
1261 }
1262 
1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1264 				     gfn_t *nr_pages)
1265 {
1266 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1267 }
1268 
1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1270 					gfn_t gfn)
1271 {
1272 	return gfn_to_hva_many(slot, gfn, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1275 
1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1277 {
1278 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1279 }
1280 EXPORT_SYMBOL_GPL(gfn_to_hva);
1281 
1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1283 {
1284 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1287 
1288 /*
1289  * If writable is set to false, the hva returned by this function is only
1290  * allowed to be read.
1291  */
1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1293 				      gfn_t gfn, bool *writable)
1294 {
1295 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1296 
1297 	if (!kvm_is_error_hva(hva) && writable)
1298 		*writable = !memslot_is_readonly(slot);
1299 
1300 	return hva;
1301 }
1302 
1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1304 {
1305 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1306 
1307 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1308 }
1309 
1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1311 {
1312 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1313 
1314 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315 }
1316 
1317 static int get_user_page_nowait(unsigned long start, int write,
1318 		struct page **page)
1319 {
1320 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1321 
1322 	if (write)
1323 		flags |= FOLL_WRITE;
1324 
1325 	return get_user_pages(start, 1, flags, page, NULL);
1326 }
1327 
1328 static inline int check_user_page_hwpoison(unsigned long addr)
1329 {
1330 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1331 
1332 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1333 	return rc == -EHWPOISON;
1334 }
1335 
1336 /*
1337  * The atomic path to get the writable pfn which will be stored in @pfn,
1338  * true indicates success, otherwise false is returned.
1339  */
1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1341 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1342 {
1343 	struct page *page[1];
1344 	int npages;
1345 
1346 	if (!(async || atomic))
1347 		return false;
1348 
1349 	/*
1350 	 * Fast pin a writable pfn only if it is a write fault request
1351 	 * or the caller allows to map a writable pfn for a read fault
1352 	 * request.
1353 	 */
1354 	if (!(write_fault || writable))
1355 		return false;
1356 
1357 	npages = __get_user_pages_fast(addr, 1, 1, page);
1358 	if (npages == 1) {
1359 		*pfn = page_to_pfn(page[0]);
1360 
1361 		if (writable)
1362 			*writable = true;
1363 		return true;
1364 	}
1365 
1366 	return false;
1367 }
1368 
1369 /*
1370  * The slow path to get the pfn of the specified host virtual address,
1371  * 1 indicates success, -errno is returned if error is detected.
1372  */
1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1374 			   bool *writable, kvm_pfn_t *pfn)
1375 {
1376 	struct page *page[1];
1377 	int npages = 0;
1378 
1379 	might_sleep();
1380 
1381 	if (writable)
1382 		*writable = write_fault;
1383 
1384 	if (async) {
1385 		down_read(&current->mm->mmap_sem);
1386 		npages = get_user_page_nowait(addr, write_fault, page);
1387 		up_read(&current->mm->mmap_sem);
1388 	} else {
1389 		unsigned int flags = FOLL_HWPOISON;
1390 
1391 		if (write_fault)
1392 			flags |= FOLL_WRITE;
1393 
1394 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1395 	}
1396 	if (npages != 1)
1397 		return npages;
1398 
1399 	/* map read fault as writable if possible */
1400 	if (unlikely(!write_fault) && writable) {
1401 		struct page *wpage[1];
1402 
1403 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1404 		if (npages == 1) {
1405 			*writable = true;
1406 			put_page(page[0]);
1407 			page[0] = wpage[0];
1408 		}
1409 
1410 		npages = 1;
1411 	}
1412 	*pfn = page_to_pfn(page[0]);
1413 	return npages;
1414 }
1415 
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418 	if (unlikely(!(vma->vm_flags & VM_READ)))
1419 		return false;
1420 
1421 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422 		return false;
1423 
1424 	return true;
1425 }
1426 
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428 			       unsigned long addr, bool *async,
1429 			       bool write_fault, kvm_pfn_t *p_pfn)
1430 {
1431 	unsigned long pfn;
1432 	int r;
1433 
1434 	r = follow_pfn(vma, addr, &pfn);
1435 	if (r) {
1436 		/*
1437 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438 		 * not call the fault handler, so do it here.
1439 		 */
1440 		bool unlocked = false;
1441 		r = fixup_user_fault(current, current->mm, addr,
1442 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1443 				     &unlocked);
1444 		if (unlocked)
1445 			return -EAGAIN;
1446 		if (r)
1447 			return r;
1448 
1449 		r = follow_pfn(vma, addr, &pfn);
1450 		if (r)
1451 			return r;
1452 
1453 	}
1454 
1455 
1456 	/*
1457 	 * Get a reference here because callers of *hva_to_pfn* and
1458 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1459 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1460 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1461 	 * simply do nothing for reserved pfns.
1462 	 *
1463 	 * Whoever called remap_pfn_range is also going to call e.g.
1464 	 * unmap_mapping_range before the underlying pages are freed,
1465 	 * causing a call to our MMU notifier.
1466 	 */
1467 	kvm_get_pfn(pfn);
1468 
1469 	*p_pfn = pfn;
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Pin guest page in memory and return its pfn.
1475  * @addr: host virtual address which maps memory to the guest
1476  * @atomic: whether this function can sleep
1477  * @async: whether this function need to wait IO complete if the
1478  *         host page is not in the memory
1479  * @write_fault: whether we should get a writable host page
1480  * @writable: whether it allows to map a writable host page for !@write_fault
1481  *
1482  * The function will map a writable host page for these two cases:
1483  * 1): @write_fault = true
1484  * 2): @write_fault = false && @writable, @writable will tell the caller
1485  *     whether the mapping is writable.
1486  */
1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1488 			bool write_fault, bool *writable)
1489 {
1490 	struct vm_area_struct *vma;
1491 	kvm_pfn_t pfn = 0;
1492 	int npages, r;
1493 
1494 	/* we can do it either atomically or asynchronously, not both */
1495 	BUG_ON(atomic && async);
1496 
1497 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1498 		return pfn;
1499 
1500 	if (atomic)
1501 		return KVM_PFN_ERR_FAULT;
1502 
1503 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1504 	if (npages == 1)
1505 		return pfn;
1506 
1507 	down_read(&current->mm->mmap_sem);
1508 	if (npages == -EHWPOISON ||
1509 	      (!async && check_user_page_hwpoison(addr))) {
1510 		pfn = KVM_PFN_ERR_HWPOISON;
1511 		goto exit;
1512 	}
1513 
1514 retry:
1515 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1516 
1517 	if (vma == NULL)
1518 		pfn = KVM_PFN_ERR_FAULT;
1519 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1520 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1521 		if (r == -EAGAIN)
1522 			goto retry;
1523 		if (r < 0)
1524 			pfn = KVM_PFN_ERR_FAULT;
1525 	} else {
1526 		if (async && vma_is_valid(vma, write_fault))
1527 			*async = true;
1528 		pfn = KVM_PFN_ERR_FAULT;
1529 	}
1530 exit:
1531 	up_read(&current->mm->mmap_sem);
1532 	return pfn;
1533 }
1534 
1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1536 			       bool atomic, bool *async, bool write_fault,
1537 			       bool *writable)
1538 {
1539 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1540 
1541 	if (addr == KVM_HVA_ERR_RO_BAD) {
1542 		if (writable)
1543 			*writable = false;
1544 		return KVM_PFN_ERR_RO_FAULT;
1545 	}
1546 
1547 	if (kvm_is_error_hva(addr)) {
1548 		if (writable)
1549 			*writable = false;
1550 		return KVM_PFN_NOSLOT;
1551 	}
1552 
1553 	/* Do not map writable pfn in the readonly memslot. */
1554 	if (writable && memslot_is_readonly(slot)) {
1555 		*writable = false;
1556 		writable = NULL;
1557 	}
1558 
1559 	return hva_to_pfn(addr, atomic, async, write_fault,
1560 			  writable);
1561 }
1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1563 
1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1565 		      bool *writable)
1566 {
1567 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1568 				    write_fault, writable);
1569 }
1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1571 
1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1573 {
1574 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1575 }
1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1577 
1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1579 {
1580 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1583 
1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1585 {
1586 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1587 }
1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1589 
1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1591 {
1592 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1595 
1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1597 {
1598 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1601 
1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1603 {
1604 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1607 
1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1609 			    struct page **pages, int nr_pages)
1610 {
1611 	unsigned long addr;
1612 	gfn_t entry;
1613 
1614 	addr = gfn_to_hva_many(slot, gfn, &entry);
1615 	if (kvm_is_error_hva(addr))
1616 		return -1;
1617 
1618 	if (entry < nr_pages)
1619 		return 0;
1620 
1621 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1622 }
1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1624 
1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1626 {
1627 	if (is_error_noslot_pfn(pfn))
1628 		return KVM_ERR_PTR_BAD_PAGE;
1629 
1630 	if (kvm_is_reserved_pfn(pfn)) {
1631 		WARN_ON(1);
1632 		return KVM_ERR_PTR_BAD_PAGE;
1633 	}
1634 
1635 	return pfn_to_page(pfn);
1636 }
1637 
1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1639 {
1640 	kvm_pfn_t pfn;
1641 
1642 	pfn = gfn_to_pfn(kvm, gfn);
1643 
1644 	return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(gfn_to_page);
1647 
1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1649 {
1650 	kvm_pfn_t pfn;
1651 
1652 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1653 
1654 	return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1657 
1658 void kvm_release_page_clean(struct page *page)
1659 {
1660 	WARN_ON(is_error_page(page));
1661 
1662 	kvm_release_pfn_clean(page_to_pfn(page));
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1665 
1666 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1667 {
1668 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1669 		put_page(pfn_to_page(pfn));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1672 
1673 void kvm_release_page_dirty(struct page *page)
1674 {
1675 	WARN_ON(is_error_page(page));
1676 
1677 	kvm_release_pfn_dirty(page_to_pfn(page));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1680 
1681 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1682 {
1683 	kvm_set_pfn_dirty(pfn);
1684 	kvm_release_pfn_clean(pfn);
1685 }
1686 
1687 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1688 {
1689 	if (!kvm_is_reserved_pfn(pfn)) {
1690 		struct page *page = pfn_to_page(pfn);
1691 
1692 		if (!PageReserved(page))
1693 			SetPageDirty(page);
1694 	}
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1697 
1698 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1699 {
1700 	if (!kvm_is_reserved_pfn(pfn))
1701 		mark_page_accessed(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1704 
1705 void kvm_get_pfn(kvm_pfn_t pfn)
1706 {
1707 	if (!kvm_is_reserved_pfn(pfn))
1708 		get_page(pfn_to_page(pfn));
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1711 
1712 static int next_segment(unsigned long len, int offset)
1713 {
1714 	if (len > PAGE_SIZE - offset)
1715 		return PAGE_SIZE - offset;
1716 	else
1717 		return len;
1718 }
1719 
1720 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1721 				 void *data, int offset, int len)
1722 {
1723 	int r;
1724 	unsigned long addr;
1725 
1726 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1727 	if (kvm_is_error_hva(addr))
1728 		return -EFAULT;
1729 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1730 	if (r)
1731 		return -EFAULT;
1732 	return 0;
1733 }
1734 
1735 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1736 			int len)
1737 {
1738 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1739 
1740 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1743 
1744 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1745 			     int offset, int len)
1746 {
1747 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1748 
1749 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1752 
1753 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1754 {
1755 	gfn_t gfn = gpa >> PAGE_SHIFT;
1756 	int seg;
1757 	int offset = offset_in_page(gpa);
1758 	int ret;
1759 
1760 	while ((seg = next_segment(len, offset)) != 0) {
1761 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1762 		if (ret < 0)
1763 			return ret;
1764 		offset = 0;
1765 		len -= seg;
1766 		data += seg;
1767 		++gfn;
1768 	}
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_read_guest);
1772 
1773 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1774 {
1775 	gfn_t gfn = gpa >> PAGE_SHIFT;
1776 	int seg;
1777 	int offset = offset_in_page(gpa);
1778 	int ret;
1779 
1780 	while ((seg = next_segment(len, offset)) != 0) {
1781 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1782 		if (ret < 0)
1783 			return ret;
1784 		offset = 0;
1785 		len -= seg;
1786 		data += seg;
1787 		++gfn;
1788 	}
1789 	return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1792 
1793 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1794 			           void *data, int offset, unsigned long len)
1795 {
1796 	int r;
1797 	unsigned long addr;
1798 
1799 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1800 	if (kvm_is_error_hva(addr))
1801 		return -EFAULT;
1802 	pagefault_disable();
1803 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1804 	pagefault_enable();
1805 	if (r)
1806 		return -EFAULT;
1807 	return 0;
1808 }
1809 
1810 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1811 			  unsigned long len)
1812 {
1813 	gfn_t gfn = gpa >> PAGE_SHIFT;
1814 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1815 	int offset = offset_in_page(gpa);
1816 
1817 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1818 }
1819 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1820 
1821 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1822 			       void *data, unsigned long len)
1823 {
1824 	gfn_t gfn = gpa >> PAGE_SHIFT;
1825 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1826 	int offset = offset_in_page(gpa);
1827 
1828 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1831 
1832 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1833 			          const void *data, int offset, int len)
1834 {
1835 	int r;
1836 	unsigned long addr;
1837 
1838 	addr = gfn_to_hva_memslot(memslot, gfn);
1839 	if (kvm_is_error_hva(addr))
1840 		return -EFAULT;
1841 	r = __copy_to_user((void __user *)addr + offset, data, len);
1842 	if (r)
1843 		return -EFAULT;
1844 	mark_page_dirty_in_slot(memslot, gfn);
1845 	return 0;
1846 }
1847 
1848 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1849 			 const void *data, int offset, int len)
1850 {
1851 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1852 
1853 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1856 
1857 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1858 			      const void *data, int offset, int len)
1859 {
1860 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1861 
1862 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1865 
1866 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1867 		    unsigned long len)
1868 {
1869 	gfn_t gfn = gpa >> PAGE_SHIFT;
1870 	int seg;
1871 	int offset = offset_in_page(gpa);
1872 	int ret;
1873 
1874 	while ((seg = next_segment(len, offset)) != 0) {
1875 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1876 		if (ret < 0)
1877 			return ret;
1878 		offset = 0;
1879 		len -= seg;
1880 		data += seg;
1881 		++gfn;
1882 	}
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_write_guest);
1886 
1887 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1888 		         unsigned long len)
1889 {
1890 	gfn_t gfn = gpa >> PAGE_SHIFT;
1891 	int seg;
1892 	int offset = offset_in_page(gpa);
1893 	int ret;
1894 
1895 	while ((seg = next_segment(len, offset)) != 0) {
1896 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1897 		if (ret < 0)
1898 			return ret;
1899 		offset = 0;
1900 		len -= seg;
1901 		data += seg;
1902 		++gfn;
1903 	}
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1907 
1908 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1909 				       struct gfn_to_hva_cache *ghc,
1910 				       gpa_t gpa, unsigned long len)
1911 {
1912 	int offset = offset_in_page(gpa);
1913 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1914 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1915 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1916 	gfn_t nr_pages_avail;
1917 
1918 	ghc->gpa = gpa;
1919 	ghc->generation = slots->generation;
1920 	ghc->len = len;
1921 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1922 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1923 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1924 		ghc->hva += offset;
1925 	} else {
1926 		/*
1927 		 * If the requested region crosses two memslots, we still
1928 		 * verify that the entire region is valid here.
1929 		 */
1930 		while (start_gfn <= end_gfn) {
1931 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1932 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1933 						   &nr_pages_avail);
1934 			if (kvm_is_error_hva(ghc->hva))
1935 				return -EFAULT;
1936 			start_gfn += nr_pages_avail;
1937 		}
1938 		/* Use the slow path for cross page reads and writes. */
1939 		ghc->memslot = NULL;
1940 	}
1941 	return 0;
1942 }
1943 
1944 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1945 			      gpa_t gpa, unsigned long len)
1946 {
1947 	struct kvm_memslots *slots = kvm_memslots(kvm);
1948 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1951 
1952 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1953 			   void *data, int offset, unsigned long len)
1954 {
1955 	struct kvm_memslots *slots = kvm_memslots(kvm);
1956 	int r;
1957 	gpa_t gpa = ghc->gpa + offset;
1958 
1959 	BUG_ON(len + offset > ghc->len);
1960 
1961 	if (slots->generation != ghc->generation)
1962 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1963 
1964 	if (unlikely(!ghc->memslot))
1965 		return kvm_write_guest(kvm, gpa, data, len);
1966 
1967 	if (kvm_is_error_hva(ghc->hva))
1968 		return -EFAULT;
1969 
1970 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1971 	if (r)
1972 		return -EFAULT;
1973 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1974 
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1978 
1979 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1980 			   void *data, unsigned long len)
1981 {
1982 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1985 
1986 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987 			   void *data, unsigned long len)
1988 {
1989 	struct kvm_memslots *slots = kvm_memslots(kvm);
1990 	int r;
1991 
1992 	BUG_ON(len > ghc->len);
1993 
1994 	if (slots->generation != ghc->generation)
1995 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1996 
1997 	if (unlikely(!ghc->memslot))
1998 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1999 
2000 	if (kvm_is_error_hva(ghc->hva))
2001 		return -EFAULT;
2002 
2003 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2004 	if (r)
2005 		return -EFAULT;
2006 
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2010 
2011 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2012 {
2013 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2014 
2015 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2016 }
2017 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2018 
2019 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2020 {
2021 	gfn_t gfn = gpa >> PAGE_SHIFT;
2022 	int seg;
2023 	int offset = offset_in_page(gpa);
2024 	int ret;
2025 
2026 	while ((seg = next_segment(len, offset)) != 0) {
2027 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2028 		if (ret < 0)
2029 			return ret;
2030 		offset = 0;
2031 		len -= seg;
2032 		++gfn;
2033 	}
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2037 
2038 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2039 				    gfn_t gfn)
2040 {
2041 	if (memslot && memslot->dirty_bitmap) {
2042 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2043 
2044 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2045 	}
2046 }
2047 
2048 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2049 {
2050 	struct kvm_memory_slot *memslot;
2051 
2052 	memslot = gfn_to_memslot(kvm, gfn);
2053 	mark_page_dirty_in_slot(memslot, gfn);
2054 }
2055 EXPORT_SYMBOL_GPL(mark_page_dirty);
2056 
2057 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2058 {
2059 	struct kvm_memory_slot *memslot;
2060 
2061 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2062 	mark_page_dirty_in_slot(memslot, gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2065 
2066 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2067 {
2068 	unsigned int old, val, grow;
2069 
2070 	old = val = vcpu->halt_poll_ns;
2071 	grow = READ_ONCE(halt_poll_ns_grow);
2072 	/* 10us base */
2073 	if (val == 0 && grow)
2074 		val = 10000;
2075 	else
2076 		val *= grow;
2077 
2078 	if (val > halt_poll_ns)
2079 		val = halt_poll_ns;
2080 
2081 	vcpu->halt_poll_ns = val;
2082 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2083 }
2084 
2085 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2086 {
2087 	unsigned int old, val, shrink;
2088 
2089 	old = val = vcpu->halt_poll_ns;
2090 	shrink = READ_ONCE(halt_poll_ns_shrink);
2091 	if (shrink == 0)
2092 		val = 0;
2093 	else
2094 		val /= shrink;
2095 
2096 	vcpu->halt_poll_ns = val;
2097 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2098 }
2099 
2100 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2101 {
2102 	if (kvm_arch_vcpu_runnable(vcpu)) {
2103 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2104 		return -EINTR;
2105 	}
2106 	if (kvm_cpu_has_pending_timer(vcpu))
2107 		return -EINTR;
2108 	if (signal_pending(current))
2109 		return -EINTR;
2110 
2111 	return 0;
2112 }
2113 
2114 /*
2115  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2116  */
2117 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2118 {
2119 	ktime_t start, cur;
2120 	DECLARE_SWAITQUEUE(wait);
2121 	bool waited = false;
2122 	u64 block_ns;
2123 
2124 	start = cur = ktime_get();
2125 	if (vcpu->halt_poll_ns) {
2126 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2127 
2128 		++vcpu->stat.halt_attempted_poll;
2129 		do {
2130 			/*
2131 			 * This sets KVM_REQ_UNHALT if an interrupt
2132 			 * arrives.
2133 			 */
2134 			if (kvm_vcpu_check_block(vcpu) < 0) {
2135 				++vcpu->stat.halt_successful_poll;
2136 				if (!vcpu_valid_wakeup(vcpu))
2137 					++vcpu->stat.halt_poll_invalid;
2138 				goto out;
2139 			}
2140 			cur = ktime_get();
2141 		} while (single_task_running() && ktime_before(cur, stop));
2142 	}
2143 
2144 	kvm_arch_vcpu_blocking(vcpu);
2145 
2146 	for (;;) {
2147 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2148 
2149 		if (kvm_vcpu_check_block(vcpu) < 0)
2150 			break;
2151 
2152 		waited = true;
2153 		schedule();
2154 	}
2155 
2156 	finish_swait(&vcpu->wq, &wait);
2157 	cur = ktime_get();
2158 
2159 	kvm_arch_vcpu_unblocking(vcpu);
2160 out:
2161 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2162 
2163 	if (!vcpu_valid_wakeup(vcpu))
2164 		shrink_halt_poll_ns(vcpu);
2165 	else if (halt_poll_ns) {
2166 		if (block_ns <= vcpu->halt_poll_ns)
2167 			;
2168 		/* we had a long block, shrink polling */
2169 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2170 			shrink_halt_poll_ns(vcpu);
2171 		/* we had a short halt and our poll time is too small */
2172 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2173 			block_ns < halt_poll_ns)
2174 			grow_halt_poll_ns(vcpu);
2175 	} else
2176 		vcpu->halt_poll_ns = 0;
2177 
2178 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2179 	kvm_arch_vcpu_block_finish(vcpu);
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2182 
2183 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2184 {
2185 	struct swait_queue_head *wqp;
2186 
2187 	wqp = kvm_arch_vcpu_wq(vcpu);
2188 	if (swait_active(wqp)) {
2189 		swake_up(wqp);
2190 		++vcpu->stat.halt_wakeup;
2191 		return true;
2192 	}
2193 
2194 	return false;
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2197 
2198 #ifndef CONFIG_S390
2199 /*
2200  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2201  */
2202 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2203 {
2204 	int me;
2205 	int cpu = vcpu->cpu;
2206 
2207 	if (kvm_vcpu_wake_up(vcpu))
2208 		return;
2209 
2210 	me = get_cpu();
2211 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2212 		if (kvm_arch_vcpu_should_kick(vcpu))
2213 			smp_send_reschedule(cpu);
2214 	put_cpu();
2215 }
2216 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2217 #endif /* !CONFIG_S390 */
2218 
2219 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2220 {
2221 	struct pid *pid;
2222 	struct task_struct *task = NULL;
2223 	int ret = 0;
2224 
2225 	rcu_read_lock();
2226 	pid = rcu_dereference(target->pid);
2227 	if (pid)
2228 		task = get_pid_task(pid, PIDTYPE_PID);
2229 	rcu_read_unlock();
2230 	if (!task)
2231 		return ret;
2232 	ret = yield_to(task, 1);
2233 	put_task_struct(task);
2234 
2235 	return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2238 
2239 /*
2240  * Helper that checks whether a VCPU is eligible for directed yield.
2241  * Most eligible candidate to yield is decided by following heuristics:
2242  *
2243  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2244  *  (preempted lock holder), indicated by @in_spin_loop.
2245  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2246  *
2247  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2248  *  chance last time (mostly it has become eligible now since we have probably
2249  *  yielded to lockholder in last iteration. This is done by toggling
2250  *  @dy_eligible each time a VCPU checked for eligibility.)
2251  *
2252  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2253  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2254  *  burning. Giving priority for a potential lock-holder increases lock
2255  *  progress.
2256  *
2257  *  Since algorithm is based on heuristics, accessing another VCPU data without
2258  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2259  *  and continue with next VCPU and so on.
2260  */
2261 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2262 {
2263 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2264 	bool eligible;
2265 
2266 	eligible = !vcpu->spin_loop.in_spin_loop ||
2267 		    vcpu->spin_loop.dy_eligible;
2268 
2269 	if (vcpu->spin_loop.in_spin_loop)
2270 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2271 
2272 	return eligible;
2273 #else
2274 	return true;
2275 #endif
2276 }
2277 
2278 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2279 {
2280 	struct kvm *kvm = me->kvm;
2281 	struct kvm_vcpu *vcpu;
2282 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2283 	int yielded = 0;
2284 	int try = 3;
2285 	int pass;
2286 	int i;
2287 
2288 	kvm_vcpu_set_in_spin_loop(me, true);
2289 	/*
2290 	 * We boost the priority of a VCPU that is runnable but not
2291 	 * currently running, because it got preempted by something
2292 	 * else and called schedule in __vcpu_run.  Hopefully that
2293 	 * VCPU is holding the lock that we need and will release it.
2294 	 * We approximate round-robin by starting at the last boosted VCPU.
2295 	 */
2296 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2297 		kvm_for_each_vcpu(i, vcpu, kvm) {
2298 			if (!pass && i <= last_boosted_vcpu) {
2299 				i = last_boosted_vcpu;
2300 				continue;
2301 			} else if (pass && i > last_boosted_vcpu)
2302 				break;
2303 			if (!ACCESS_ONCE(vcpu->preempted))
2304 				continue;
2305 			if (vcpu == me)
2306 				continue;
2307 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2308 				continue;
2309 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2310 				continue;
2311 
2312 			yielded = kvm_vcpu_yield_to(vcpu);
2313 			if (yielded > 0) {
2314 				kvm->last_boosted_vcpu = i;
2315 				break;
2316 			} else if (yielded < 0) {
2317 				try--;
2318 				if (!try)
2319 					break;
2320 			}
2321 		}
2322 	}
2323 	kvm_vcpu_set_in_spin_loop(me, false);
2324 
2325 	/* Ensure vcpu is not eligible during next spinloop */
2326 	kvm_vcpu_set_dy_eligible(me, false);
2327 }
2328 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2329 
2330 static int kvm_vcpu_fault(struct vm_fault *vmf)
2331 {
2332 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2333 	struct page *page;
2334 
2335 	if (vmf->pgoff == 0)
2336 		page = virt_to_page(vcpu->run);
2337 #ifdef CONFIG_X86
2338 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2339 		page = virt_to_page(vcpu->arch.pio_data);
2340 #endif
2341 #ifdef CONFIG_KVM_MMIO
2342 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2343 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2344 #endif
2345 	else
2346 		return kvm_arch_vcpu_fault(vcpu, vmf);
2347 	get_page(page);
2348 	vmf->page = page;
2349 	return 0;
2350 }
2351 
2352 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2353 	.fault = kvm_vcpu_fault,
2354 };
2355 
2356 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2357 {
2358 	vma->vm_ops = &kvm_vcpu_vm_ops;
2359 	return 0;
2360 }
2361 
2362 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2363 {
2364 	struct kvm_vcpu *vcpu = filp->private_data;
2365 
2366 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2367 	kvm_put_kvm(vcpu->kvm);
2368 	return 0;
2369 }
2370 
2371 static struct file_operations kvm_vcpu_fops = {
2372 	.release        = kvm_vcpu_release,
2373 	.unlocked_ioctl = kvm_vcpu_ioctl,
2374 #ifdef CONFIG_KVM_COMPAT
2375 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2376 #endif
2377 	.mmap           = kvm_vcpu_mmap,
2378 	.llseek		= noop_llseek,
2379 };
2380 
2381 /*
2382  * Allocates an inode for the vcpu.
2383  */
2384 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2385 {
2386 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2387 }
2388 
2389 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2390 {
2391 	char dir_name[ITOA_MAX_LEN * 2];
2392 	int ret;
2393 
2394 	if (!kvm_arch_has_vcpu_debugfs())
2395 		return 0;
2396 
2397 	if (!debugfs_initialized())
2398 		return 0;
2399 
2400 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2401 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2402 								vcpu->kvm->debugfs_dentry);
2403 	if (!vcpu->debugfs_dentry)
2404 		return -ENOMEM;
2405 
2406 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2407 	if (ret < 0) {
2408 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2409 		return ret;
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 /*
2416  * Creates some virtual cpus.  Good luck creating more than one.
2417  */
2418 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2419 {
2420 	int r;
2421 	struct kvm_vcpu *vcpu;
2422 
2423 	if (id >= KVM_MAX_VCPU_ID)
2424 		return -EINVAL;
2425 
2426 	mutex_lock(&kvm->lock);
2427 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2428 		mutex_unlock(&kvm->lock);
2429 		return -EINVAL;
2430 	}
2431 
2432 	kvm->created_vcpus++;
2433 	mutex_unlock(&kvm->lock);
2434 
2435 	vcpu = kvm_arch_vcpu_create(kvm, id);
2436 	if (IS_ERR(vcpu)) {
2437 		r = PTR_ERR(vcpu);
2438 		goto vcpu_decrement;
2439 	}
2440 
2441 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2442 
2443 	r = kvm_arch_vcpu_setup(vcpu);
2444 	if (r)
2445 		goto vcpu_destroy;
2446 
2447 	r = kvm_create_vcpu_debugfs(vcpu);
2448 	if (r)
2449 		goto vcpu_destroy;
2450 
2451 	mutex_lock(&kvm->lock);
2452 	if (kvm_get_vcpu_by_id(kvm, id)) {
2453 		r = -EEXIST;
2454 		goto unlock_vcpu_destroy;
2455 	}
2456 
2457 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2458 
2459 	/* Now it's all set up, let userspace reach it */
2460 	kvm_get_kvm(kvm);
2461 	r = create_vcpu_fd(vcpu);
2462 	if (r < 0) {
2463 		kvm_put_kvm(kvm);
2464 		goto unlock_vcpu_destroy;
2465 	}
2466 
2467 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2468 
2469 	/*
2470 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2471 	 * before kvm->online_vcpu's incremented value.
2472 	 */
2473 	smp_wmb();
2474 	atomic_inc(&kvm->online_vcpus);
2475 
2476 	mutex_unlock(&kvm->lock);
2477 	kvm_arch_vcpu_postcreate(vcpu);
2478 	return r;
2479 
2480 unlock_vcpu_destroy:
2481 	mutex_unlock(&kvm->lock);
2482 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2483 vcpu_destroy:
2484 	kvm_arch_vcpu_destroy(vcpu);
2485 vcpu_decrement:
2486 	mutex_lock(&kvm->lock);
2487 	kvm->created_vcpus--;
2488 	mutex_unlock(&kvm->lock);
2489 	return r;
2490 }
2491 
2492 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2493 {
2494 	if (sigset) {
2495 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2496 		vcpu->sigset_active = 1;
2497 		vcpu->sigset = *sigset;
2498 	} else
2499 		vcpu->sigset_active = 0;
2500 	return 0;
2501 }
2502 
2503 static long kvm_vcpu_ioctl(struct file *filp,
2504 			   unsigned int ioctl, unsigned long arg)
2505 {
2506 	struct kvm_vcpu *vcpu = filp->private_data;
2507 	void __user *argp = (void __user *)arg;
2508 	int r;
2509 	struct kvm_fpu *fpu = NULL;
2510 	struct kvm_sregs *kvm_sregs = NULL;
2511 
2512 	if (vcpu->kvm->mm != current->mm)
2513 		return -EIO;
2514 
2515 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2516 		return -EINVAL;
2517 
2518 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2519 	/*
2520 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2521 	 * so vcpu_load() would break it.
2522 	 */
2523 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2524 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2525 #endif
2526 
2527 
2528 	r = vcpu_load(vcpu);
2529 	if (r)
2530 		return r;
2531 	switch (ioctl) {
2532 	case KVM_RUN: {
2533 		struct pid *oldpid;
2534 		r = -EINVAL;
2535 		if (arg)
2536 			goto out;
2537 		oldpid = rcu_access_pointer(vcpu->pid);
2538 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2539 			/* The thread running this VCPU changed. */
2540 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2541 
2542 			rcu_assign_pointer(vcpu->pid, newpid);
2543 			if (oldpid)
2544 				synchronize_rcu();
2545 			put_pid(oldpid);
2546 		}
2547 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2548 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2549 		break;
2550 	}
2551 	case KVM_GET_REGS: {
2552 		struct kvm_regs *kvm_regs;
2553 
2554 		r = -ENOMEM;
2555 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2556 		if (!kvm_regs)
2557 			goto out;
2558 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2559 		if (r)
2560 			goto out_free1;
2561 		r = -EFAULT;
2562 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2563 			goto out_free1;
2564 		r = 0;
2565 out_free1:
2566 		kfree(kvm_regs);
2567 		break;
2568 	}
2569 	case KVM_SET_REGS: {
2570 		struct kvm_regs *kvm_regs;
2571 
2572 		r = -ENOMEM;
2573 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2574 		if (IS_ERR(kvm_regs)) {
2575 			r = PTR_ERR(kvm_regs);
2576 			goto out;
2577 		}
2578 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2579 		kfree(kvm_regs);
2580 		break;
2581 	}
2582 	case KVM_GET_SREGS: {
2583 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2584 		r = -ENOMEM;
2585 		if (!kvm_sregs)
2586 			goto out;
2587 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2588 		if (r)
2589 			goto out;
2590 		r = -EFAULT;
2591 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2592 			goto out;
2593 		r = 0;
2594 		break;
2595 	}
2596 	case KVM_SET_SREGS: {
2597 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2598 		if (IS_ERR(kvm_sregs)) {
2599 			r = PTR_ERR(kvm_sregs);
2600 			kvm_sregs = NULL;
2601 			goto out;
2602 		}
2603 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2604 		break;
2605 	}
2606 	case KVM_GET_MP_STATE: {
2607 		struct kvm_mp_state mp_state;
2608 
2609 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2610 		if (r)
2611 			goto out;
2612 		r = -EFAULT;
2613 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2614 			goto out;
2615 		r = 0;
2616 		break;
2617 	}
2618 	case KVM_SET_MP_STATE: {
2619 		struct kvm_mp_state mp_state;
2620 
2621 		r = -EFAULT;
2622 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2623 			goto out;
2624 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2625 		break;
2626 	}
2627 	case KVM_TRANSLATE: {
2628 		struct kvm_translation tr;
2629 
2630 		r = -EFAULT;
2631 		if (copy_from_user(&tr, argp, sizeof(tr)))
2632 			goto out;
2633 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2634 		if (r)
2635 			goto out;
2636 		r = -EFAULT;
2637 		if (copy_to_user(argp, &tr, sizeof(tr)))
2638 			goto out;
2639 		r = 0;
2640 		break;
2641 	}
2642 	case KVM_SET_GUEST_DEBUG: {
2643 		struct kvm_guest_debug dbg;
2644 
2645 		r = -EFAULT;
2646 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2647 			goto out;
2648 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2649 		break;
2650 	}
2651 	case KVM_SET_SIGNAL_MASK: {
2652 		struct kvm_signal_mask __user *sigmask_arg = argp;
2653 		struct kvm_signal_mask kvm_sigmask;
2654 		sigset_t sigset, *p;
2655 
2656 		p = NULL;
2657 		if (argp) {
2658 			r = -EFAULT;
2659 			if (copy_from_user(&kvm_sigmask, argp,
2660 					   sizeof(kvm_sigmask)))
2661 				goto out;
2662 			r = -EINVAL;
2663 			if (kvm_sigmask.len != sizeof(sigset))
2664 				goto out;
2665 			r = -EFAULT;
2666 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2667 					   sizeof(sigset)))
2668 				goto out;
2669 			p = &sigset;
2670 		}
2671 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2672 		break;
2673 	}
2674 	case KVM_GET_FPU: {
2675 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2676 		r = -ENOMEM;
2677 		if (!fpu)
2678 			goto out;
2679 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2680 		if (r)
2681 			goto out;
2682 		r = -EFAULT;
2683 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2684 			goto out;
2685 		r = 0;
2686 		break;
2687 	}
2688 	case KVM_SET_FPU: {
2689 		fpu = memdup_user(argp, sizeof(*fpu));
2690 		if (IS_ERR(fpu)) {
2691 			r = PTR_ERR(fpu);
2692 			fpu = NULL;
2693 			goto out;
2694 		}
2695 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2696 		break;
2697 	}
2698 	default:
2699 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2700 	}
2701 out:
2702 	vcpu_put(vcpu);
2703 	kfree(fpu);
2704 	kfree(kvm_sregs);
2705 	return r;
2706 }
2707 
2708 #ifdef CONFIG_KVM_COMPAT
2709 static long kvm_vcpu_compat_ioctl(struct file *filp,
2710 				  unsigned int ioctl, unsigned long arg)
2711 {
2712 	struct kvm_vcpu *vcpu = filp->private_data;
2713 	void __user *argp = compat_ptr(arg);
2714 	int r;
2715 
2716 	if (vcpu->kvm->mm != current->mm)
2717 		return -EIO;
2718 
2719 	switch (ioctl) {
2720 	case KVM_SET_SIGNAL_MASK: {
2721 		struct kvm_signal_mask __user *sigmask_arg = argp;
2722 		struct kvm_signal_mask kvm_sigmask;
2723 		compat_sigset_t csigset;
2724 		sigset_t sigset;
2725 
2726 		if (argp) {
2727 			r = -EFAULT;
2728 			if (copy_from_user(&kvm_sigmask, argp,
2729 					   sizeof(kvm_sigmask)))
2730 				goto out;
2731 			r = -EINVAL;
2732 			if (kvm_sigmask.len != sizeof(csigset))
2733 				goto out;
2734 			r = -EFAULT;
2735 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2736 					   sizeof(csigset)))
2737 				goto out;
2738 			sigset_from_compat(&sigset, &csigset);
2739 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2740 		} else
2741 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2742 		break;
2743 	}
2744 	default:
2745 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2746 	}
2747 
2748 out:
2749 	return r;
2750 }
2751 #endif
2752 
2753 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2754 				 int (*accessor)(struct kvm_device *dev,
2755 						 struct kvm_device_attr *attr),
2756 				 unsigned long arg)
2757 {
2758 	struct kvm_device_attr attr;
2759 
2760 	if (!accessor)
2761 		return -EPERM;
2762 
2763 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2764 		return -EFAULT;
2765 
2766 	return accessor(dev, &attr);
2767 }
2768 
2769 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2770 			     unsigned long arg)
2771 {
2772 	struct kvm_device *dev = filp->private_data;
2773 
2774 	switch (ioctl) {
2775 	case KVM_SET_DEVICE_ATTR:
2776 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2777 	case KVM_GET_DEVICE_ATTR:
2778 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2779 	case KVM_HAS_DEVICE_ATTR:
2780 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2781 	default:
2782 		if (dev->ops->ioctl)
2783 			return dev->ops->ioctl(dev, ioctl, arg);
2784 
2785 		return -ENOTTY;
2786 	}
2787 }
2788 
2789 static int kvm_device_release(struct inode *inode, struct file *filp)
2790 {
2791 	struct kvm_device *dev = filp->private_data;
2792 	struct kvm *kvm = dev->kvm;
2793 
2794 	kvm_put_kvm(kvm);
2795 	return 0;
2796 }
2797 
2798 static const struct file_operations kvm_device_fops = {
2799 	.unlocked_ioctl = kvm_device_ioctl,
2800 #ifdef CONFIG_KVM_COMPAT
2801 	.compat_ioctl = kvm_device_ioctl,
2802 #endif
2803 	.release = kvm_device_release,
2804 };
2805 
2806 struct kvm_device *kvm_device_from_filp(struct file *filp)
2807 {
2808 	if (filp->f_op != &kvm_device_fops)
2809 		return NULL;
2810 
2811 	return filp->private_data;
2812 }
2813 
2814 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2815 #ifdef CONFIG_KVM_MPIC
2816 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2817 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2818 #endif
2819 };
2820 
2821 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2822 {
2823 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2824 		return -ENOSPC;
2825 
2826 	if (kvm_device_ops_table[type] != NULL)
2827 		return -EEXIST;
2828 
2829 	kvm_device_ops_table[type] = ops;
2830 	return 0;
2831 }
2832 
2833 void kvm_unregister_device_ops(u32 type)
2834 {
2835 	if (kvm_device_ops_table[type] != NULL)
2836 		kvm_device_ops_table[type] = NULL;
2837 }
2838 
2839 static int kvm_ioctl_create_device(struct kvm *kvm,
2840 				   struct kvm_create_device *cd)
2841 {
2842 	struct kvm_device_ops *ops = NULL;
2843 	struct kvm_device *dev;
2844 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2845 	int ret;
2846 
2847 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2848 		return -ENODEV;
2849 
2850 	ops = kvm_device_ops_table[cd->type];
2851 	if (ops == NULL)
2852 		return -ENODEV;
2853 
2854 	if (test)
2855 		return 0;
2856 
2857 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2858 	if (!dev)
2859 		return -ENOMEM;
2860 
2861 	dev->ops = ops;
2862 	dev->kvm = kvm;
2863 
2864 	mutex_lock(&kvm->lock);
2865 	ret = ops->create(dev, cd->type);
2866 	if (ret < 0) {
2867 		mutex_unlock(&kvm->lock);
2868 		kfree(dev);
2869 		return ret;
2870 	}
2871 	list_add(&dev->vm_node, &kvm->devices);
2872 	mutex_unlock(&kvm->lock);
2873 
2874 	if (ops->init)
2875 		ops->init(dev);
2876 
2877 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2878 	if (ret < 0) {
2879 		mutex_lock(&kvm->lock);
2880 		list_del(&dev->vm_node);
2881 		mutex_unlock(&kvm->lock);
2882 		ops->destroy(dev);
2883 		return ret;
2884 	}
2885 
2886 	kvm_get_kvm(kvm);
2887 	cd->fd = ret;
2888 	return 0;
2889 }
2890 
2891 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2892 {
2893 	switch (arg) {
2894 	case KVM_CAP_USER_MEMORY:
2895 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2896 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2897 	case KVM_CAP_INTERNAL_ERROR_DATA:
2898 #ifdef CONFIG_HAVE_KVM_MSI
2899 	case KVM_CAP_SIGNAL_MSI:
2900 #endif
2901 #ifdef CONFIG_HAVE_KVM_IRQFD
2902 	case KVM_CAP_IRQFD:
2903 	case KVM_CAP_IRQFD_RESAMPLE:
2904 #endif
2905 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2906 	case KVM_CAP_CHECK_EXTENSION_VM:
2907 		return 1;
2908 #ifdef CONFIG_KVM_MMIO
2909 	case KVM_CAP_COALESCED_MMIO:
2910 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2911 #endif
2912 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2913 	case KVM_CAP_IRQ_ROUTING:
2914 		return KVM_MAX_IRQ_ROUTES;
2915 #endif
2916 #if KVM_ADDRESS_SPACE_NUM > 1
2917 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2918 		return KVM_ADDRESS_SPACE_NUM;
2919 #endif
2920 	case KVM_CAP_MAX_VCPU_ID:
2921 		return KVM_MAX_VCPU_ID;
2922 	default:
2923 		break;
2924 	}
2925 	return kvm_vm_ioctl_check_extension(kvm, arg);
2926 }
2927 
2928 static long kvm_vm_ioctl(struct file *filp,
2929 			   unsigned int ioctl, unsigned long arg)
2930 {
2931 	struct kvm *kvm = filp->private_data;
2932 	void __user *argp = (void __user *)arg;
2933 	int r;
2934 
2935 	if (kvm->mm != current->mm)
2936 		return -EIO;
2937 	switch (ioctl) {
2938 	case KVM_CREATE_VCPU:
2939 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2940 		break;
2941 	case KVM_SET_USER_MEMORY_REGION: {
2942 		struct kvm_userspace_memory_region kvm_userspace_mem;
2943 
2944 		r = -EFAULT;
2945 		if (copy_from_user(&kvm_userspace_mem, argp,
2946 						sizeof(kvm_userspace_mem)))
2947 			goto out;
2948 
2949 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2950 		break;
2951 	}
2952 	case KVM_GET_DIRTY_LOG: {
2953 		struct kvm_dirty_log log;
2954 
2955 		r = -EFAULT;
2956 		if (copy_from_user(&log, argp, sizeof(log)))
2957 			goto out;
2958 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2959 		break;
2960 	}
2961 #ifdef CONFIG_KVM_MMIO
2962 	case KVM_REGISTER_COALESCED_MMIO: {
2963 		struct kvm_coalesced_mmio_zone zone;
2964 
2965 		r = -EFAULT;
2966 		if (copy_from_user(&zone, argp, sizeof(zone)))
2967 			goto out;
2968 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2969 		break;
2970 	}
2971 	case KVM_UNREGISTER_COALESCED_MMIO: {
2972 		struct kvm_coalesced_mmio_zone zone;
2973 
2974 		r = -EFAULT;
2975 		if (copy_from_user(&zone, argp, sizeof(zone)))
2976 			goto out;
2977 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2978 		break;
2979 	}
2980 #endif
2981 	case KVM_IRQFD: {
2982 		struct kvm_irqfd data;
2983 
2984 		r = -EFAULT;
2985 		if (copy_from_user(&data, argp, sizeof(data)))
2986 			goto out;
2987 		r = kvm_irqfd(kvm, &data);
2988 		break;
2989 	}
2990 	case KVM_IOEVENTFD: {
2991 		struct kvm_ioeventfd data;
2992 
2993 		r = -EFAULT;
2994 		if (copy_from_user(&data, argp, sizeof(data)))
2995 			goto out;
2996 		r = kvm_ioeventfd(kvm, &data);
2997 		break;
2998 	}
2999 #ifdef CONFIG_HAVE_KVM_MSI
3000 	case KVM_SIGNAL_MSI: {
3001 		struct kvm_msi msi;
3002 
3003 		r = -EFAULT;
3004 		if (copy_from_user(&msi, argp, sizeof(msi)))
3005 			goto out;
3006 		r = kvm_send_userspace_msi(kvm, &msi);
3007 		break;
3008 	}
3009 #endif
3010 #ifdef __KVM_HAVE_IRQ_LINE
3011 	case KVM_IRQ_LINE_STATUS:
3012 	case KVM_IRQ_LINE: {
3013 		struct kvm_irq_level irq_event;
3014 
3015 		r = -EFAULT;
3016 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3017 			goto out;
3018 
3019 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3020 					ioctl == KVM_IRQ_LINE_STATUS);
3021 		if (r)
3022 			goto out;
3023 
3024 		r = -EFAULT;
3025 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3026 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3027 				goto out;
3028 		}
3029 
3030 		r = 0;
3031 		break;
3032 	}
3033 #endif
3034 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3035 	case KVM_SET_GSI_ROUTING: {
3036 		struct kvm_irq_routing routing;
3037 		struct kvm_irq_routing __user *urouting;
3038 		struct kvm_irq_routing_entry *entries = NULL;
3039 
3040 		r = -EFAULT;
3041 		if (copy_from_user(&routing, argp, sizeof(routing)))
3042 			goto out;
3043 		r = -EINVAL;
3044 		if (!kvm_arch_can_set_irq_routing(kvm))
3045 			goto out;
3046 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3047 			goto out;
3048 		if (routing.flags)
3049 			goto out;
3050 		if (routing.nr) {
3051 			r = -ENOMEM;
3052 			entries = vmalloc(routing.nr * sizeof(*entries));
3053 			if (!entries)
3054 				goto out;
3055 			r = -EFAULT;
3056 			urouting = argp;
3057 			if (copy_from_user(entries, urouting->entries,
3058 					   routing.nr * sizeof(*entries)))
3059 				goto out_free_irq_routing;
3060 		}
3061 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3062 					routing.flags);
3063 out_free_irq_routing:
3064 		vfree(entries);
3065 		break;
3066 	}
3067 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3068 	case KVM_CREATE_DEVICE: {
3069 		struct kvm_create_device cd;
3070 
3071 		r = -EFAULT;
3072 		if (copy_from_user(&cd, argp, sizeof(cd)))
3073 			goto out;
3074 
3075 		r = kvm_ioctl_create_device(kvm, &cd);
3076 		if (r)
3077 			goto out;
3078 
3079 		r = -EFAULT;
3080 		if (copy_to_user(argp, &cd, sizeof(cd)))
3081 			goto out;
3082 
3083 		r = 0;
3084 		break;
3085 	}
3086 	case KVM_CHECK_EXTENSION:
3087 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3088 		break;
3089 	default:
3090 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3091 	}
3092 out:
3093 	return r;
3094 }
3095 
3096 #ifdef CONFIG_KVM_COMPAT
3097 struct compat_kvm_dirty_log {
3098 	__u32 slot;
3099 	__u32 padding1;
3100 	union {
3101 		compat_uptr_t dirty_bitmap; /* one bit per page */
3102 		__u64 padding2;
3103 	};
3104 };
3105 
3106 static long kvm_vm_compat_ioctl(struct file *filp,
3107 			   unsigned int ioctl, unsigned long arg)
3108 {
3109 	struct kvm *kvm = filp->private_data;
3110 	int r;
3111 
3112 	if (kvm->mm != current->mm)
3113 		return -EIO;
3114 	switch (ioctl) {
3115 	case KVM_GET_DIRTY_LOG: {
3116 		struct compat_kvm_dirty_log compat_log;
3117 		struct kvm_dirty_log log;
3118 
3119 		if (copy_from_user(&compat_log, (void __user *)arg,
3120 				   sizeof(compat_log)))
3121 			return -EFAULT;
3122 		log.slot	 = compat_log.slot;
3123 		log.padding1	 = compat_log.padding1;
3124 		log.padding2	 = compat_log.padding2;
3125 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3126 
3127 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3128 		break;
3129 	}
3130 	default:
3131 		r = kvm_vm_ioctl(filp, ioctl, arg);
3132 	}
3133 	return r;
3134 }
3135 #endif
3136 
3137 static struct file_operations kvm_vm_fops = {
3138 	.release        = kvm_vm_release,
3139 	.unlocked_ioctl = kvm_vm_ioctl,
3140 #ifdef CONFIG_KVM_COMPAT
3141 	.compat_ioctl   = kvm_vm_compat_ioctl,
3142 #endif
3143 	.llseek		= noop_llseek,
3144 };
3145 
3146 static int kvm_dev_ioctl_create_vm(unsigned long type)
3147 {
3148 	int r;
3149 	struct kvm *kvm;
3150 	struct file *file;
3151 
3152 	kvm = kvm_create_vm(type);
3153 	if (IS_ERR(kvm))
3154 		return PTR_ERR(kvm);
3155 #ifdef CONFIG_KVM_MMIO
3156 	r = kvm_coalesced_mmio_init(kvm);
3157 	if (r < 0) {
3158 		kvm_put_kvm(kvm);
3159 		return r;
3160 	}
3161 #endif
3162 	r = get_unused_fd_flags(O_CLOEXEC);
3163 	if (r < 0) {
3164 		kvm_put_kvm(kvm);
3165 		return r;
3166 	}
3167 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3168 	if (IS_ERR(file)) {
3169 		put_unused_fd(r);
3170 		kvm_put_kvm(kvm);
3171 		return PTR_ERR(file);
3172 	}
3173 
3174 	/*
3175 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3176 	 * already set, with ->release() being kvm_vm_release().  In error
3177 	 * cases it will be called by the final fput(file) and will take
3178 	 * care of doing kvm_put_kvm(kvm).
3179 	 */
3180 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3181 		put_unused_fd(r);
3182 		fput(file);
3183 		return -ENOMEM;
3184 	}
3185 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3186 
3187 	fd_install(r, file);
3188 	return r;
3189 }
3190 
3191 static long kvm_dev_ioctl(struct file *filp,
3192 			  unsigned int ioctl, unsigned long arg)
3193 {
3194 	long r = -EINVAL;
3195 
3196 	switch (ioctl) {
3197 	case KVM_GET_API_VERSION:
3198 		if (arg)
3199 			goto out;
3200 		r = KVM_API_VERSION;
3201 		break;
3202 	case KVM_CREATE_VM:
3203 		r = kvm_dev_ioctl_create_vm(arg);
3204 		break;
3205 	case KVM_CHECK_EXTENSION:
3206 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3207 		break;
3208 	case KVM_GET_VCPU_MMAP_SIZE:
3209 		if (arg)
3210 			goto out;
3211 		r = PAGE_SIZE;     /* struct kvm_run */
3212 #ifdef CONFIG_X86
3213 		r += PAGE_SIZE;    /* pio data page */
3214 #endif
3215 #ifdef CONFIG_KVM_MMIO
3216 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3217 #endif
3218 		break;
3219 	case KVM_TRACE_ENABLE:
3220 	case KVM_TRACE_PAUSE:
3221 	case KVM_TRACE_DISABLE:
3222 		r = -EOPNOTSUPP;
3223 		break;
3224 	default:
3225 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3226 	}
3227 out:
3228 	return r;
3229 }
3230 
3231 static struct file_operations kvm_chardev_ops = {
3232 	.unlocked_ioctl = kvm_dev_ioctl,
3233 	.compat_ioctl   = kvm_dev_ioctl,
3234 	.llseek		= noop_llseek,
3235 };
3236 
3237 static struct miscdevice kvm_dev = {
3238 	KVM_MINOR,
3239 	"kvm",
3240 	&kvm_chardev_ops,
3241 };
3242 
3243 static void hardware_enable_nolock(void *junk)
3244 {
3245 	int cpu = raw_smp_processor_id();
3246 	int r;
3247 
3248 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3249 		return;
3250 
3251 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3252 
3253 	r = kvm_arch_hardware_enable();
3254 
3255 	if (r) {
3256 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3257 		atomic_inc(&hardware_enable_failed);
3258 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3259 	}
3260 }
3261 
3262 static int kvm_starting_cpu(unsigned int cpu)
3263 {
3264 	raw_spin_lock(&kvm_count_lock);
3265 	if (kvm_usage_count)
3266 		hardware_enable_nolock(NULL);
3267 	raw_spin_unlock(&kvm_count_lock);
3268 	return 0;
3269 }
3270 
3271 static void hardware_disable_nolock(void *junk)
3272 {
3273 	int cpu = raw_smp_processor_id();
3274 
3275 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276 		return;
3277 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3278 	kvm_arch_hardware_disable();
3279 }
3280 
3281 static int kvm_dying_cpu(unsigned int cpu)
3282 {
3283 	raw_spin_lock(&kvm_count_lock);
3284 	if (kvm_usage_count)
3285 		hardware_disable_nolock(NULL);
3286 	raw_spin_unlock(&kvm_count_lock);
3287 	return 0;
3288 }
3289 
3290 static void hardware_disable_all_nolock(void)
3291 {
3292 	BUG_ON(!kvm_usage_count);
3293 
3294 	kvm_usage_count--;
3295 	if (!kvm_usage_count)
3296 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3297 }
3298 
3299 static void hardware_disable_all(void)
3300 {
3301 	raw_spin_lock(&kvm_count_lock);
3302 	hardware_disable_all_nolock();
3303 	raw_spin_unlock(&kvm_count_lock);
3304 }
3305 
3306 static int hardware_enable_all(void)
3307 {
3308 	int r = 0;
3309 
3310 	raw_spin_lock(&kvm_count_lock);
3311 
3312 	kvm_usage_count++;
3313 	if (kvm_usage_count == 1) {
3314 		atomic_set(&hardware_enable_failed, 0);
3315 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3316 
3317 		if (atomic_read(&hardware_enable_failed)) {
3318 			hardware_disable_all_nolock();
3319 			r = -EBUSY;
3320 		}
3321 	}
3322 
3323 	raw_spin_unlock(&kvm_count_lock);
3324 
3325 	return r;
3326 }
3327 
3328 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3329 		      void *v)
3330 {
3331 	/*
3332 	 * Some (well, at least mine) BIOSes hang on reboot if
3333 	 * in vmx root mode.
3334 	 *
3335 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3336 	 */
3337 	pr_info("kvm: exiting hardware virtualization\n");
3338 	kvm_rebooting = true;
3339 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3340 	return NOTIFY_OK;
3341 }
3342 
3343 static struct notifier_block kvm_reboot_notifier = {
3344 	.notifier_call = kvm_reboot,
3345 	.priority = 0,
3346 };
3347 
3348 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3349 {
3350 	int i;
3351 
3352 	for (i = 0; i < bus->dev_count; i++) {
3353 		struct kvm_io_device *pos = bus->range[i].dev;
3354 
3355 		kvm_iodevice_destructor(pos);
3356 	}
3357 	kfree(bus);
3358 }
3359 
3360 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3361 				 const struct kvm_io_range *r2)
3362 {
3363 	gpa_t addr1 = r1->addr;
3364 	gpa_t addr2 = r2->addr;
3365 
3366 	if (addr1 < addr2)
3367 		return -1;
3368 
3369 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3370 	 * accept any overlapping write.  Any order is acceptable for
3371 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3372 	 * we process all of them.
3373 	 */
3374 	if (r2->len) {
3375 		addr1 += r1->len;
3376 		addr2 += r2->len;
3377 	}
3378 
3379 	if (addr1 > addr2)
3380 		return 1;
3381 
3382 	return 0;
3383 }
3384 
3385 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3386 {
3387 	return kvm_io_bus_cmp(p1, p2);
3388 }
3389 
3390 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3391 			  gpa_t addr, int len)
3392 {
3393 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3394 		.addr = addr,
3395 		.len = len,
3396 		.dev = dev,
3397 	};
3398 
3399 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3400 		kvm_io_bus_sort_cmp, NULL);
3401 
3402 	return 0;
3403 }
3404 
3405 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3406 			     gpa_t addr, int len)
3407 {
3408 	struct kvm_io_range *range, key;
3409 	int off;
3410 
3411 	key = (struct kvm_io_range) {
3412 		.addr = addr,
3413 		.len = len,
3414 	};
3415 
3416 	range = bsearch(&key, bus->range, bus->dev_count,
3417 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3418 	if (range == NULL)
3419 		return -ENOENT;
3420 
3421 	off = range - bus->range;
3422 
3423 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3424 		off--;
3425 
3426 	return off;
3427 }
3428 
3429 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3430 			      struct kvm_io_range *range, const void *val)
3431 {
3432 	int idx;
3433 
3434 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3435 	if (idx < 0)
3436 		return -EOPNOTSUPP;
3437 
3438 	while (idx < bus->dev_count &&
3439 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3440 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3441 					range->len, val))
3442 			return idx;
3443 		idx++;
3444 	}
3445 
3446 	return -EOPNOTSUPP;
3447 }
3448 
3449 /* kvm_io_bus_write - called under kvm->slots_lock */
3450 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3451 		     int len, const void *val)
3452 {
3453 	struct kvm_io_bus *bus;
3454 	struct kvm_io_range range;
3455 	int r;
3456 
3457 	range = (struct kvm_io_range) {
3458 		.addr = addr,
3459 		.len = len,
3460 	};
3461 
3462 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3463 	if (!bus)
3464 		return -ENOMEM;
3465 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3466 	return r < 0 ? r : 0;
3467 }
3468 
3469 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3470 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3471 			    gpa_t addr, int len, const void *val, long cookie)
3472 {
3473 	struct kvm_io_bus *bus;
3474 	struct kvm_io_range range;
3475 
3476 	range = (struct kvm_io_range) {
3477 		.addr = addr,
3478 		.len = len,
3479 	};
3480 
3481 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482 	if (!bus)
3483 		return -ENOMEM;
3484 
3485 	/* First try the device referenced by cookie. */
3486 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3487 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3488 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3489 					val))
3490 			return cookie;
3491 
3492 	/*
3493 	 * cookie contained garbage; fall back to search and return the
3494 	 * correct cookie value.
3495 	 */
3496 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3497 }
3498 
3499 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3500 			     struct kvm_io_range *range, void *val)
3501 {
3502 	int idx;
3503 
3504 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3505 	if (idx < 0)
3506 		return -EOPNOTSUPP;
3507 
3508 	while (idx < bus->dev_count &&
3509 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3510 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3511 				       range->len, val))
3512 			return idx;
3513 		idx++;
3514 	}
3515 
3516 	return -EOPNOTSUPP;
3517 }
3518 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3519 
3520 /* kvm_io_bus_read - called under kvm->slots_lock */
3521 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3522 		    int len, void *val)
3523 {
3524 	struct kvm_io_bus *bus;
3525 	struct kvm_io_range range;
3526 	int r;
3527 
3528 	range = (struct kvm_io_range) {
3529 		.addr = addr,
3530 		.len = len,
3531 	};
3532 
3533 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3534 	if (!bus)
3535 		return -ENOMEM;
3536 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3537 	return r < 0 ? r : 0;
3538 }
3539 
3540 
3541 /* Caller must hold slots_lock. */
3542 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3543 			    int len, struct kvm_io_device *dev)
3544 {
3545 	struct kvm_io_bus *new_bus, *bus;
3546 
3547 	bus = kvm_get_bus(kvm, bus_idx);
3548 	if (!bus)
3549 		return -ENOMEM;
3550 
3551 	/* exclude ioeventfd which is limited by maximum fd */
3552 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3553 		return -ENOSPC;
3554 
3555 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3556 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3557 	if (!new_bus)
3558 		return -ENOMEM;
3559 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3560 	       sizeof(struct kvm_io_range)));
3561 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3562 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3563 	synchronize_srcu_expedited(&kvm->srcu);
3564 	kfree(bus);
3565 
3566 	return 0;
3567 }
3568 
3569 /* Caller must hold slots_lock. */
3570 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3571 			       struct kvm_io_device *dev)
3572 {
3573 	int i;
3574 	struct kvm_io_bus *new_bus, *bus;
3575 
3576 	bus = kvm_get_bus(kvm, bus_idx);
3577 	if (!bus)
3578 		return;
3579 
3580 	for (i = 0; i < bus->dev_count; i++)
3581 		if (bus->range[i].dev == dev) {
3582 			break;
3583 		}
3584 
3585 	if (i == bus->dev_count)
3586 		return;
3587 
3588 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3589 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3590 	if (!new_bus)  {
3591 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3592 		goto broken;
3593 	}
3594 
3595 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596 	new_bus->dev_count--;
3597 	memcpy(new_bus->range + i, bus->range + i + 1,
3598 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3599 
3600 broken:
3601 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602 	synchronize_srcu_expedited(&kvm->srcu);
3603 	kfree(bus);
3604 	return;
3605 }
3606 
3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608 					 gpa_t addr)
3609 {
3610 	struct kvm_io_bus *bus;
3611 	int dev_idx, srcu_idx;
3612 	struct kvm_io_device *iodev = NULL;
3613 
3614 	srcu_idx = srcu_read_lock(&kvm->srcu);
3615 
3616 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617 	if (!bus)
3618 		goto out_unlock;
3619 
3620 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3621 	if (dev_idx < 0)
3622 		goto out_unlock;
3623 
3624 	iodev = bus->range[dev_idx].dev;
3625 
3626 out_unlock:
3627 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3628 
3629 	return iodev;
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3632 
3633 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3634 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3635 			   const char *fmt)
3636 {
3637 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3638 					  inode->i_private;
3639 
3640 	/* The debugfs files are a reference to the kvm struct which
3641 	 * is still valid when kvm_destroy_vm is called.
3642 	 * To avoid the race between open and the removal of the debugfs
3643 	 * directory we test against the users count.
3644 	 */
3645 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3646 		return -ENOENT;
3647 
3648 	if (simple_attr_open(inode, file, get, set, fmt)) {
3649 		kvm_put_kvm(stat_data->kvm);
3650 		return -ENOMEM;
3651 	}
3652 
3653 	return 0;
3654 }
3655 
3656 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3657 {
3658 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3659 					  inode->i_private;
3660 
3661 	simple_attr_release(inode, file);
3662 	kvm_put_kvm(stat_data->kvm);
3663 
3664 	return 0;
3665 }
3666 
3667 static int vm_stat_get_per_vm(void *data, u64 *val)
3668 {
3669 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3670 
3671 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3672 
3673 	return 0;
3674 }
3675 
3676 static int vm_stat_clear_per_vm(void *data, u64 val)
3677 {
3678 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3679 
3680 	if (val)
3681 		return -EINVAL;
3682 
3683 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3684 
3685 	return 0;
3686 }
3687 
3688 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3689 {
3690 	__simple_attr_check_format("%llu\n", 0ull);
3691 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3692 				vm_stat_clear_per_vm, "%llu\n");
3693 }
3694 
3695 static const struct file_operations vm_stat_get_per_vm_fops = {
3696 	.owner   = THIS_MODULE,
3697 	.open    = vm_stat_get_per_vm_open,
3698 	.release = kvm_debugfs_release,
3699 	.read    = simple_attr_read,
3700 	.write   = simple_attr_write,
3701 	.llseek  = no_llseek,
3702 };
3703 
3704 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3705 {
3706 	int i;
3707 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708 	struct kvm_vcpu *vcpu;
3709 
3710 	*val = 0;
3711 
3712 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3713 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3714 
3715 	return 0;
3716 }
3717 
3718 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3719 {
3720 	int i;
3721 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3722 	struct kvm_vcpu *vcpu;
3723 
3724 	if (val)
3725 		return -EINVAL;
3726 
3727 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3728 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3729 
3730 	return 0;
3731 }
3732 
3733 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3734 {
3735 	__simple_attr_check_format("%llu\n", 0ull);
3736 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3737 				 vcpu_stat_clear_per_vm, "%llu\n");
3738 }
3739 
3740 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3741 	.owner   = THIS_MODULE,
3742 	.open    = vcpu_stat_get_per_vm_open,
3743 	.release = kvm_debugfs_release,
3744 	.read    = simple_attr_read,
3745 	.write   = simple_attr_write,
3746 	.llseek  = no_llseek,
3747 };
3748 
3749 static const struct file_operations *stat_fops_per_vm[] = {
3750 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3751 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3752 };
3753 
3754 static int vm_stat_get(void *_offset, u64 *val)
3755 {
3756 	unsigned offset = (long)_offset;
3757 	struct kvm *kvm;
3758 	struct kvm_stat_data stat_tmp = {.offset = offset};
3759 	u64 tmp_val;
3760 
3761 	*val = 0;
3762 	spin_lock(&kvm_lock);
3763 	list_for_each_entry(kvm, &vm_list, vm_list) {
3764 		stat_tmp.kvm = kvm;
3765 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3766 		*val += tmp_val;
3767 	}
3768 	spin_unlock(&kvm_lock);
3769 	return 0;
3770 }
3771 
3772 static int vm_stat_clear(void *_offset, u64 val)
3773 {
3774 	unsigned offset = (long)_offset;
3775 	struct kvm *kvm;
3776 	struct kvm_stat_data stat_tmp = {.offset = offset};
3777 
3778 	if (val)
3779 		return -EINVAL;
3780 
3781 	spin_lock(&kvm_lock);
3782 	list_for_each_entry(kvm, &vm_list, vm_list) {
3783 		stat_tmp.kvm = kvm;
3784 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3785 	}
3786 	spin_unlock(&kvm_lock);
3787 
3788 	return 0;
3789 }
3790 
3791 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3792 
3793 static int vcpu_stat_get(void *_offset, u64 *val)
3794 {
3795 	unsigned offset = (long)_offset;
3796 	struct kvm *kvm;
3797 	struct kvm_stat_data stat_tmp = {.offset = offset};
3798 	u64 tmp_val;
3799 
3800 	*val = 0;
3801 	spin_lock(&kvm_lock);
3802 	list_for_each_entry(kvm, &vm_list, vm_list) {
3803 		stat_tmp.kvm = kvm;
3804 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3805 		*val += tmp_val;
3806 	}
3807 	spin_unlock(&kvm_lock);
3808 	return 0;
3809 }
3810 
3811 static int vcpu_stat_clear(void *_offset, u64 val)
3812 {
3813 	unsigned offset = (long)_offset;
3814 	struct kvm *kvm;
3815 	struct kvm_stat_data stat_tmp = {.offset = offset};
3816 
3817 	if (val)
3818 		return -EINVAL;
3819 
3820 	spin_lock(&kvm_lock);
3821 	list_for_each_entry(kvm, &vm_list, vm_list) {
3822 		stat_tmp.kvm = kvm;
3823 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3824 	}
3825 	spin_unlock(&kvm_lock);
3826 
3827 	return 0;
3828 }
3829 
3830 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3831 			"%llu\n");
3832 
3833 static const struct file_operations *stat_fops[] = {
3834 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3835 	[KVM_STAT_VM]   = &vm_stat_fops,
3836 };
3837 
3838 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3839 {
3840 	struct kobj_uevent_env *env;
3841 	unsigned long long created, active;
3842 
3843 	if (!kvm_dev.this_device || !kvm)
3844 		return;
3845 
3846 	spin_lock(&kvm_lock);
3847 	if (type == KVM_EVENT_CREATE_VM) {
3848 		kvm_createvm_count++;
3849 		kvm_active_vms++;
3850 	} else if (type == KVM_EVENT_DESTROY_VM) {
3851 		kvm_active_vms--;
3852 	}
3853 	created = kvm_createvm_count;
3854 	active = kvm_active_vms;
3855 	spin_unlock(&kvm_lock);
3856 
3857 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3858 	if (!env)
3859 		return;
3860 
3861 	add_uevent_var(env, "CREATED=%llu", created);
3862 	add_uevent_var(env, "COUNT=%llu", active);
3863 
3864 	if (type == KVM_EVENT_CREATE_VM) {
3865 		add_uevent_var(env, "EVENT=create");
3866 		kvm->userspace_pid = task_pid_nr(current);
3867 	} else if (type == KVM_EVENT_DESTROY_VM) {
3868 		add_uevent_var(env, "EVENT=destroy");
3869 	}
3870 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3871 
3872 	if (kvm->debugfs_dentry) {
3873 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3874 
3875 		if (p) {
3876 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3877 			if (!IS_ERR(tmp))
3878 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3879 			kfree(p);
3880 		}
3881 	}
3882 	/* no need for checks, since we are adding at most only 5 keys */
3883 	env->envp[env->envp_idx++] = NULL;
3884 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3885 	kfree(env);
3886 }
3887 
3888 static int kvm_init_debug(void)
3889 {
3890 	int r = -EEXIST;
3891 	struct kvm_stats_debugfs_item *p;
3892 
3893 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3894 	if (kvm_debugfs_dir == NULL)
3895 		goto out;
3896 
3897 	kvm_debugfs_num_entries = 0;
3898 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3899 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3900 					 (void *)(long)p->offset,
3901 					 stat_fops[p->kind]))
3902 			goto out_dir;
3903 	}
3904 
3905 	return 0;
3906 
3907 out_dir:
3908 	debugfs_remove_recursive(kvm_debugfs_dir);
3909 out:
3910 	return r;
3911 }
3912 
3913 static int kvm_suspend(void)
3914 {
3915 	if (kvm_usage_count)
3916 		hardware_disable_nolock(NULL);
3917 	return 0;
3918 }
3919 
3920 static void kvm_resume(void)
3921 {
3922 	if (kvm_usage_count) {
3923 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3924 		hardware_enable_nolock(NULL);
3925 	}
3926 }
3927 
3928 static struct syscore_ops kvm_syscore_ops = {
3929 	.suspend = kvm_suspend,
3930 	.resume = kvm_resume,
3931 };
3932 
3933 static inline
3934 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3935 {
3936 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3937 }
3938 
3939 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3940 {
3941 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3942 
3943 	if (vcpu->preempted)
3944 		vcpu->preempted = false;
3945 
3946 	kvm_arch_sched_in(vcpu, cpu);
3947 
3948 	kvm_arch_vcpu_load(vcpu, cpu);
3949 }
3950 
3951 static void kvm_sched_out(struct preempt_notifier *pn,
3952 			  struct task_struct *next)
3953 {
3954 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3955 
3956 	if (current->state == TASK_RUNNING)
3957 		vcpu->preempted = true;
3958 	kvm_arch_vcpu_put(vcpu);
3959 }
3960 
3961 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3962 		  struct module *module)
3963 {
3964 	int r;
3965 	int cpu;
3966 
3967 	r = kvm_arch_init(opaque);
3968 	if (r)
3969 		goto out_fail;
3970 
3971 	/*
3972 	 * kvm_arch_init makes sure there's at most one caller
3973 	 * for architectures that support multiple implementations,
3974 	 * like intel and amd on x86.
3975 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3976 	 * conflicts in case kvm is already setup for another implementation.
3977 	 */
3978 	r = kvm_irqfd_init();
3979 	if (r)
3980 		goto out_irqfd;
3981 
3982 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3983 		r = -ENOMEM;
3984 		goto out_free_0;
3985 	}
3986 
3987 	r = kvm_arch_hardware_setup();
3988 	if (r < 0)
3989 		goto out_free_0a;
3990 
3991 	for_each_online_cpu(cpu) {
3992 		smp_call_function_single(cpu,
3993 				kvm_arch_check_processor_compat,
3994 				&r, 1);
3995 		if (r < 0)
3996 			goto out_free_1;
3997 	}
3998 
3999 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4000 				      kvm_starting_cpu, kvm_dying_cpu);
4001 	if (r)
4002 		goto out_free_2;
4003 	register_reboot_notifier(&kvm_reboot_notifier);
4004 
4005 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4006 	if (!vcpu_align)
4007 		vcpu_align = __alignof__(struct kvm_vcpu);
4008 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4009 					   0, NULL);
4010 	if (!kvm_vcpu_cache) {
4011 		r = -ENOMEM;
4012 		goto out_free_3;
4013 	}
4014 
4015 	r = kvm_async_pf_init();
4016 	if (r)
4017 		goto out_free;
4018 
4019 	kvm_chardev_ops.owner = module;
4020 	kvm_vm_fops.owner = module;
4021 	kvm_vcpu_fops.owner = module;
4022 
4023 	r = misc_register(&kvm_dev);
4024 	if (r) {
4025 		pr_err("kvm: misc device register failed\n");
4026 		goto out_unreg;
4027 	}
4028 
4029 	register_syscore_ops(&kvm_syscore_ops);
4030 
4031 	kvm_preempt_ops.sched_in = kvm_sched_in;
4032 	kvm_preempt_ops.sched_out = kvm_sched_out;
4033 
4034 	r = kvm_init_debug();
4035 	if (r) {
4036 		pr_err("kvm: create debugfs files failed\n");
4037 		goto out_undebugfs;
4038 	}
4039 
4040 	r = kvm_vfio_ops_init();
4041 	WARN_ON(r);
4042 
4043 	return 0;
4044 
4045 out_undebugfs:
4046 	unregister_syscore_ops(&kvm_syscore_ops);
4047 	misc_deregister(&kvm_dev);
4048 out_unreg:
4049 	kvm_async_pf_deinit();
4050 out_free:
4051 	kmem_cache_destroy(kvm_vcpu_cache);
4052 out_free_3:
4053 	unregister_reboot_notifier(&kvm_reboot_notifier);
4054 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4055 out_free_2:
4056 out_free_1:
4057 	kvm_arch_hardware_unsetup();
4058 out_free_0a:
4059 	free_cpumask_var(cpus_hardware_enabled);
4060 out_free_0:
4061 	kvm_irqfd_exit();
4062 out_irqfd:
4063 	kvm_arch_exit();
4064 out_fail:
4065 	return r;
4066 }
4067 EXPORT_SYMBOL_GPL(kvm_init);
4068 
4069 void kvm_exit(void)
4070 {
4071 	debugfs_remove_recursive(kvm_debugfs_dir);
4072 	misc_deregister(&kvm_dev);
4073 	kmem_cache_destroy(kvm_vcpu_cache);
4074 	kvm_async_pf_deinit();
4075 	unregister_syscore_ops(&kvm_syscore_ops);
4076 	unregister_reboot_notifier(&kvm_reboot_notifier);
4077 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4078 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4079 	kvm_arch_hardware_unsetup();
4080 	kvm_arch_exit();
4081 	kvm_irqfd_exit();
4082 	free_cpumask_var(cpus_hardware_enabled);
4083 	kvm_vfio_ops_exit();
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_exit);
4086