1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 127 128 __visible bool kvm_rebooting; 129 EXPORT_SYMBOL_GPL(kvm_rebooting); 130 131 static bool largepages_enabled = true; 132 133 #define KVM_EVENT_CREATE_VM 0 134 #define KVM_EVENT_DESTROY_VM 1 135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 136 static unsigned long long kvm_createvm_count; 137 static unsigned long long kvm_active_vms; 138 139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 140 { 141 if (pfn_valid(pfn)) 142 return PageReserved(pfn_to_page(pfn)); 143 144 return true; 145 } 146 147 /* 148 * Switches to specified vcpu, until a matching vcpu_put() 149 */ 150 int vcpu_load(struct kvm_vcpu *vcpu) 151 { 152 int cpu; 153 154 if (mutex_lock_killable(&vcpu->mutex)) 155 return -EINTR; 156 cpu = get_cpu(); 157 preempt_notifier_register(&vcpu->preempt_notifier); 158 kvm_arch_vcpu_load(vcpu, cpu); 159 put_cpu(); 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(vcpu_load); 163 164 void vcpu_put(struct kvm_vcpu *vcpu) 165 { 166 preempt_disable(); 167 kvm_arch_vcpu_put(vcpu); 168 preempt_notifier_unregister(&vcpu->preempt_notifier); 169 preempt_enable(); 170 mutex_unlock(&vcpu->mutex); 171 } 172 EXPORT_SYMBOL_GPL(vcpu_put); 173 174 /* TODO: merge with kvm_arch_vcpu_should_kick */ 175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 176 { 177 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 178 179 /* 180 * We need to wait for the VCPU to reenable interrupts and get out of 181 * READING_SHADOW_PAGE_TABLES mode. 182 */ 183 if (req & KVM_REQUEST_WAIT) 184 return mode != OUTSIDE_GUEST_MODE; 185 186 /* 187 * Need to kick a running VCPU, but otherwise there is nothing to do. 188 */ 189 return mode == IN_GUEST_MODE; 190 } 191 192 static void ack_flush(void *_completed) 193 { 194 } 195 196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 197 { 198 if (unlikely(!cpus)) 199 cpus = cpu_online_mask; 200 201 if (cpumask_empty(cpus)) 202 return false; 203 204 smp_call_function_many(cpus, ack_flush, NULL, wait); 205 return true; 206 } 207 208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 209 { 210 int i, cpu, me; 211 cpumask_var_t cpus; 212 bool called; 213 struct kvm_vcpu *vcpu; 214 215 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 216 217 me = get_cpu(); 218 kvm_for_each_vcpu(i, vcpu, kvm) { 219 kvm_make_request(req, vcpu); 220 cpu = vcpu->cpu; 221 222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 223 continue; 224 225 if (cpus != NULL && cpu != -1 && cpu != me && 226 kvm_request_needs_ipi(vcpu, req)) 227 __cpumask_set_cpu(cpu, cpus); 228 } 229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 230 put_cpu(); 231 free_cpumask_var(cpus); 232 return called; 233 } 234 235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 236 void kvm_flush_remote_tlbs(struct kvm *kvm) 237 { 238 /* 239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 240 * kvm_make_all_cpus_request. 241 */ 242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 243 244 /* 245 * We want to publish modifications to the page tables before reading 246 * mode. Pairs with a memory barrier in arch-specific code. 247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 248 * and smp_mb in walk_shadow_page_lockless_begin/end. 249 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 250 * 251 * There is already an smp_mb__after_atomic() before 252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 253 * barrier here. 254 */ 255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 256 ++kvm->stat.remote_tlb_flush; 257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 258 } 259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 260 #endif 261 262 void kvm_reload_remote_mmus(struct kvm *kvm) 263 { 264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 265 } 266 267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 268 { 269 struct page *page; 270 int r; 271 272 mutex_init(&vcpu->mutex); 273 vcpu->cpu = -1; 274 vcpu->kvm = kvm; 275 vcpu->vcpu_id = id; 276 vcpu->pid = NULL; 277 init_swait_queue_head(&vcpu->wq); 278 kvm_async_pf_vcpu_init(vcpu); 279 280 vcpu->pre_pcpu = -1; 281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 282 283 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 284 if (!page) { 285 r = -ENOMEM; 286 goto fail; 287 } 288 vcpu->run = page_address(page); 289 290 kvm_vcpu_set_in_spin_loop(vcpu, false); 291 kvm_vcpu_set_dy_eligible(vcpu, false); 292 vcpu->preempted = false; 293 294 r = kvm_arch_vcpu_init(vcpu); 295 if (r < 0) 296 goto fail_free_run; 297 return 0; 298 299 fail_free_run: 300 free_page((unsigned long)vcpu->run); 301 fail: 302 return r; 303 } 304 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 305 306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 307 { 308 /* 309 * no need for rcu_read_lock as VCPU_RUN is the only place that 310 * will change the vcpu->pid pointer and on uninit all file 311 * descriptors are already gone. 312 */ 313 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 314 kvm_arch_vcpu_uninit(vcpu); 315 free_page((unsigned long)vcpu->run); 316 } 317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 318 319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 321 { 322 return container_of(mn, struct kvm, mmu_notifier); 323 } 324 325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 326 struct mm_struct *mm, 327 unsigned long address, 328 pte_t pte) 329 { 330 struct kvm *kvm = mmu_notifier_to_kvm(mn); 331 int idx; 332 333 idx = srcu_read_lock(&kvm->srcu); 334 spin_lock(&kvm->mmu_lock); 335 kvm->mmu_notifier_seq++; 336 kvm_set_spte_hva(kvm, address, pte); 337 spin_unlock(&kvm->mmu_lock); 338 srcu_read_unlock(&kvm->srcu, idx); 339 } 340 341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 342 struct mm_struct *mm, 343 unsigned long start, 344 unsigned long end) 345 { 346 struct kvm *kvm = mmu_notifier_to_kvm(mn); 347 int need_tlb_flush = 0, idx; 348 349 idx = srcu_read_lock(&kvm->srcu); 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * The count increase must become visible at unlock time as no 353 * spte can be established without taking the mmu_lock and 354 * count is also read inside the mmu_lock critical section. 355 */ 356 kvm->mmu_notifier_count++; 357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 358 need_tlb_flush |= kvm->tlbs_dirty; 359 /* we've to flush the tlb before the pages can be freed */ 360 if (need_tlb_flush) 361 kvm_flush_remote_tlbs(kvm); 362 363 spin_unlock(&kvm->mmu_lock); 364 srcu_read_unlock(&kvm->srcu, idx); 365 } 366 367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 368 struct mm_struct *mm, 369 unsigned long start, 370 unsigned long end) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 374 spin_lock(&kvm->mmu_lock); 375 /* 376 * This sequence increase will notify the kvm page fault that 377 * the page that is going to be mapped in the spte could have 378 * been freed. 379 */ 380 kvm->mmu_notifier_seq++; 381 smp_wmb(); 382 /* 383 * The above sequence increase must be visible before the 384 * below count decrease, which is ensured by the smp_wmb above 385 * in conjunction with the smp_rmb in mmu_notifier_retry(). 386 */ 387 kvm->mmu_notifier_count--; 388 spin_unlock(&kvm->mmu_lock); 389 390 BUG_ON(kvm->mmu_notifier_count < 0); 391 } 392 393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 394 struct mm_struct *mm, 395 unsigned long start, 396 unsigned long end) 397 { 398 struct kvm *kvm = mmu_notifier_to_kvm(mn); 399 int young, idx; 400 401 idx = srcu_read_lock(&kvm->srcu); 402 spin_lock(&kvm->mmu_lock); 403 404 young = kvm_age_hva(kvm, start, end); 405 if (young) 406 kvm_flush_remote_tlbs(kvm); 407 408 spin_unlock(&kvm->mmu_lock); 409 srcu_read_unlock(&kvm->srcu, idx); 410 411 return young; 412 } 413 414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 415 struct mm_struct *mm, 416 unsigned long start, 417 unsigned long end) 418 { 419 struct kvm *kvm = mmu_notifier_to_kvm(mn); 420 int young, idx; 421 422 idx = srcu_read_lock(&kvm->srcu); 423 spin_lock(&kvm->mmu_lock); 424 /* 425 * Even though we do not flush TLB, this will still adversely 426 * affect performance on pre-Haswell Intel EPT, where there is 427 * no EPT Access Bit to clear so that we have to tear down EPT 428 * tables instead. If we find this unacceptable, we can always 429 * add a parameter to kvm_age_hva so that it effectively doesn't 430 * do anything on clear_young. 431 * 432 * Also note that currently we never issue secondary TLB flushes 433 * from clear_young, leaving this job up to the regular system 434 * cadence. If we find this inaccurate, we might come up with a 435 * more sophisticated heuristic later. 436 */ 437 young = kvm_age_hva(kvm, start, end); 438 spin_unlock(&kvm->mmu_lock); 439 srcu_read_unlock(&kvm->srcu, idx); 440 441 return young; 442 } 443 444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 445 struct mm_struct *mm, 446 unsigned long address) 447 { 448 struct kvm *kvm = mmu_notifier_to_kvm(mn); 449 int young, idx; 450 451 idx = srcu_read_lock(&kvm->srcu); 452 spin_lock(&kvm->mmu_lock); 453 young = kvm_test_age_hva(kvm, address); 454 spin_unlock(&kvm->mmu_lock); 455 srcu_read_unlock(&kvm->srcu, idx); 456 457 return young; 458 } 459 460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 461 struct mm_struct *mm) 462 { 463 struct kvm *kvm = mmu_notifier_to_kvm(mn); 464 int idx; 465 466 idx = srcu_read_lock(&kvm->srcu); 467 kvm_arch_flush_shadow_all(kvm); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 472 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 473 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 474 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 475 .clear_young = kvm_mmu_notifier_clear_young, 476 .test_young = kvm_mmu_notifier_test_young, 477 .change_pte = kvm_mmu_notifier_change_pte, 478 .release = kvm_mmu_notifier_release, 479 }; 480 481 static int kvm_init_mmu_notifier(struct kvm *kvm) 482 { 483 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 484 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 485 } 486 487 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 488 489 static int kvm_init_mmu_notifier(struct kvm *kvm) 490 { 491 return 0; 492 } 493 494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 495 496 static struct kvm_memslots *kvm_alloc_memslots(void) 497 { 498 int i; 499 struct kvm_memslots *slots; 500 501 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 502 if (!slots) 503 return NULL; 504 505 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 506 slots->id_to_index[i] = slots->memslots[i].id = i; 507 508 return slots; 509 } 510 511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 512 { 513 if (!memslot->dirty_bitmap) 514 return; 515 516 kvfree(memslot->dirty_bitmap); 517 memslot->dirty_bitmap = NULL; 518 } 519 520 /* 521 * Free any memory in @free but not in @dont. 522 */ 523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 524 struct kvm_memory_slot *dont) 525 { 526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 527 kvm_destroy_dirty_bitmap(free); 528 529 kvm_arch_free_memslot(kvm, free, dont); 530 531 free->npages = 0; 532 } 533 534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 535 { 536 struct kvm_memory_slot *memslot; 537 538 if (!slots) 539 return; 540 541 kvm_for_each_memslot(memslot, slots) 542 kvm_free_memslot(kvm, memslot, NULL); 543 544 kvfree(slots); 545 } 546 547 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 548 { 549 int i; 550 551 if (!kvm->debugfs_dentry) 552 return; 553 554 debugfs_remove_recursive(kvm->debugfs_dentry); 555 556 if (kvm->debugfs_stat_data) { 557 for (i = 0; i < kvm_debugfs_num_entries; i++) 558 kfree(kvm->debugfs_stat_data[i]); 559 kfree(kvm->debugfs_stat_data); 560 } 561 } 562 563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 564 { 565 char dir_name[ITOA_MAX_LEN * 2]; 566 struct kvm_stat_data *stat_data; 567 struct kvm_stats_debugfs_item *p; 568 569 if (!debugfs_initialized()) 570 return 0; 571 572 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 573 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 574 kvm_debugfs_dir); 575 if (!kvm->debugfs_dentry) 576 return -ENOMEM; 577 578 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 579 sizeof(*kvm->debugfs_stat_data), 580 GFP_KERNEL); 581 if (!kvm->debugfs_stat_data) 582 return -ENOMEM; 583 584 for (p = debugfs_entries; p->name; p++) { 585 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 586 if (!stat_data) 587 return -ENOMEM; 588 589 stat_data->kvm = kvm; 590 stat_data->offset = p->offset; 591 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 592 if (!debugfs_create_file(p->name, 0644, 593 kvm->debugfs_dentry, 594 stat_data, 595 stat_fops_per_vm[p->kind])) 596 return -ENOMEM; 597 } 598 return 0; 599 } 600 601 static struct kvm *kvm_create_vm(unsigned long type) 602 { 603 int r, i; 604 struct kvm *kvm = kvm_arch_alloc_vm(); 605 606 if (!kvm) 607 return ERR_PTR(-ENOMEM); 608 609 spin_lock_init(&kvm->mmu_lock); 610 mmgrab(current->mm); 611 kvm->mm = current->mm; 612 kvm_eventfd_init(kvm); 613 mutex_init(&kvm->lock); 614 mutex_init(&kvm->irq_lock); 615 mutex_init(&kvm->slots_lock); 616 refcount_set(&kvm->users_count, 1); 617 INIT_LIST_HEAD(&kvm->devices); 618 619 r = kvm_arch_init_vm(kvm, type); 620 if (r) 621 goto out_err_no_disable; 622 623 r = hardware_enable_all(); 624 if (r) 625 goto out_err_no_disable; 626 627 #ifdef CONFIG_HAVE_KVM_IRQFD 628 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 629 #endif 630 631 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 632 633 r = -ENOMEM; 634 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 635 struct kvm_memslots *slots = kvm_alloc_memslots(); 636 if (!slots) 637 goto out_err_no_srcu; 638 /* 639 * Generations must be different for each address space. 640 * Init kvm generation close to the maximum to easily test the 641 * code of handling generation number wrap-around. 642 */ 643 slots->generation = i * 2 - 150; 644 rcu_assign_pointer(kvm->memslots[i], slots); 645 } 646 647 if (init_srcu_struct(&kvm->srcu)) 648 goto out_err_no_srcu; 649 if (init_srcu_struct(&kvm->irq_srcu)) 650 goto out_err_no_irq_srcu; 651 for (i = 0; i < KVM_NR_BUSES; i++) { 652 rcu_assign_pointer(kvm->buses[i], 653 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 654 if (!kvm->buses[i]) 655 goto out_err; 656 } 657 658 r = kvm_init_mmu_notifier(kvm); 659 if (r) 660 goto out_err; 661 662 spin_lock(&kvm_lock); 663 list_add(&kvm->vm_list, &vm_list); 664 spin_unlock(&kvm_lock); 665 666 preempt_notifier_inc(); 667 668 return kvm; 669 670 out_err: 671 cleanup_srcu_struct(&kvm->irq_srcu); 672 out_err_no_irq_srcu: 673 cleanup_srcu_struct(&kvm->srcu); 674 out_err_no_srcu: 675 hardware_disable_all(); 676 out_err_no_disable: 677 for (i = 0; i < KVM_NR_BUSES; i++) 678 kfree(kvm_get_bus(kvm, i)); 679 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 680 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 681 kvm_arch_free_vm(kvm); 682 mmdrop(current->mm); 683 return ERR_PTR(r); 684 } 685 686 static void kvm_destroy_devices(struct kvm *kvm) 687 { 688 struct kvm_device *dev, *tmp; 689 690 /* 691 * We do not need to take the kvm->lock here, because nobody else 692 * has a reference to the struct kvm at this point and therefore 693 * cannot access the devices list anyhow. 694 */ 695 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 696 list_del(&dev->vm_node); 697 dev->ops->destroy(dev); 698 } 699 } 700 701 static void kvm_destroy_vm(struct kvm *kvm) 702 { 703 int i; 704 struct mm_struct *mm = kvm->mm; 705 706 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 707 kvm_destroy_vm_debugfs(kvm); 708 kvm_arch_sync_events(kvm); 709 spin_lock(&kvm_lock); 710 list_del(&kvm->vm_list); 711 spin_unlock(&kvm_lock); 712 kvm_free_irq_routing(kvm); 713 for (i = 0; i < KVM_NR_BUSES; i++) { 714 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 715 716 if (bus) 717 kvm_io_bus_destroy(bus); 718 kvm->buses[i] = NULL; 719 } 720 kvm_coalesced_mmio_free(kvm); 721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 722 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 723 #else 724 kvm_arch_flush_shadow_all(kvm); 725 #endif 726 kvm_arch_destroy_vm(kvm); 727 kvm_destroy_devices(kvm); 728 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 729 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 730 cleanup_srcu_struct(&kvm->irq_srcu); 731 cleanup_srcu_struct(&kvm->srcu); 732 kvm_arch_free_vm(kvm); 733 preempt_notifier_dec(); 734 hardware_disable_all(); 735 mmdrop(mm); 736 } 737 738 void kvm_get_kvm(struct kvm *kvm) 739 { 740 refcount_inc(&kvm->users_count); 741 } 742 EXPORT_SYMBOL_GPL(kvm_get_kvm); 743 744 void kvm_put_kvm(struct kvm *kvm) 745 { 746 if (refcount_dec_and_test(&kvm->users_count)) 747 kvm_destroy_vm(kvm); 748 } 749 EXPORT_SYMBOL_GPL(kvm_put_kvm); 750 751 752 static int kvm_vm_release(struct inode *inode, struct file *filp) 753 { 754 struct kvm *kvm = filp->private_data; 755 756 kvm_irqfd_release(kvm); 757 758 kvm_put_kvm(kvm); 759 return 0; 760 } 761 762 /* 763 * Allocation size is twice as large as the actual dirty bitmap size. 764 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 765 */ 766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 767 { 768 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 769 770 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 771 if (!memslot->dirty_bitmap) 772 return -ENOMEM; 773 774 return 0; 775 } 776 777 /* 778 * Insert memslot and re-sort memslots based on their GFN, 779 * so binary search could be used to lookup GFN. 780 * Sorting algorithm takes advantage of having initially 781 * sorted array and known changed memslot position. 782 */ 783 static void update_memslots(struct kvm_memslots *slots, 784 struct kvm_memory_slot *new) 785 { 786 int id = new->id; 787 int i = slots->id_to_index[id]; 788 struct kvm_memory_slot *mslots = slots->memslots; 789 790 WARN_ON(mslots[i].id != id); 791 if (!new->npages) { 792 WARN_ON(!mslots[i].npages); 793 if (mslots[i].npages) 794 slots->used_slots--; 795 } else { 796 if (!mslots[i].npages) 797 slots->used_slots++; 798 } 799 800 while (i < KVM_MEM_SLOTS_NUM - 1 && 801 new->base_gfn <= mslots[i + 1].base_gfn) { 802 if (!mslots[i + 1].npages) 803 break; 804 mslots[i] = mslots[i + 1]; 805 slots->id_to_index[mslots[i].id] = i; 806 i++; 807 } 808 809 /* 810 * The ">=" is needed when creating a slot with base_gfn == 0, 811 * so that it moves before all those with base_gfn == npages == 0. 812 * 813 * On the other hand, if new->npages is zero, the above loop has 814 * already left i pointing to the beginning of the empty part of 815 * mslots, and the ">=" would move the hole backwards in this 816 * case---which is wrong. So skip the loop when deleting a slot. 817 */ 818 if (new->npages) { 819 while (i > 0 && 820 new->base_gfn >= mslots[i - 1].base_gfn) { 821 mslots[i] = mslots[i - 1]; 822 slots->id_to_index[mslots[i].id] = i; 823 i--; 824 } 825 } else 826 WARN_ON_ONCE(i != slots->used_slots); 827 828 mslots[i] = *new; 829 slots->id_to_index[mslots[i].id] = i; 830 } 831 832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 833 { 834 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 835 836 #ifdef __KVM_HAVE_READONLY_MEM 837 valid_flags |= KVM_MEM_READONLY; 838 #endif 839 840 if (mem->flags & ~valid_flags) 841 return -EINVAL; 842 843 return 0; 844 } 845 846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 847 int as_id, struct kvm_memslots *slots) 848 { 849 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 850 851 /* 852 * Set the low bit in the generation, which disables SPTE caching 853 * until the end of synchronize_srcu_expedited. 854 */ 855 WARN_ON(old_memslots->generation & 1); 856 slots->generation = old_memslots->generation + 1; 857 858 rcu_assign_pointer(kvm->memslots[as_id], slots); 859 synchronize_srcu_expedited(&kvm->srcu); 860 861 /* 862 * Increment the new memslot generation a second time. This prevents 863 * vm exits that race with memslot updates from caching a memslot 864 * generation that will (potentially) be valid forever. 865 * 866 * Generations must be unique even across address spaces. We do not need 867 * a global counter for that, instead the generation space is evenly split 868 * across address spaces. For example, with two address spaces, address 869 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 870 * use generations 2, 6, 10, 14, ... 871 */ 872 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 873 874 kvm_arch_memslots_updated(kvm, slots); 875 876 return old_memslots; 877 } 878 879 /* 880 * Allocate some memory and give it an address in the guest physical address 881 * space. 882 * 883 * Discontiguous memory is allowed, mostly for framebuffers. 884 * 885 * Must be called holding kvm->slots_lock for write. 886 */ 887 int __kvm_set_memory_region(struct kvm *kvm, 888 const struct kvm_userspace_memory_region *mem) 889 { 890 int r; 891 gfn_t base_gfn; 892 unsigned long npages; 893 struct kvm_memory_slot *slot; 894 struct kvm_memory_slot old, new; 895 struct kvm_memslots *slots = NULL, *old_memslots; 896 int as_id, id; 897 enum kvm_mr_change change; 898 899 r = check_memory_region_flags(mem); 900 if (r) 901 goto out; 902 903 r = -EINVAL; 904 as_id = mem->slot >> 16; 905 id = (u16)mem->slot; 906 907 /* General sanity checks */ 908 if (mem->memory_size & (PAGE_SIZE - 1)) 909 goto out; 910 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 911 goto out; 912 /* We can read the guest memory with __xxx_user() later on. */ 913 if ((id < KVM_USER_MEM_SLOTS) && 914 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 915 !access_ok(VERIFY_WRITE, 916 (void __user *)(unsigned long)mem->userspace_addr, 917 mem->memory_size))) 918 goto out; 919 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 920 goto out; 921 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 922 goto out; 923 924 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 925 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 926 npages = mem->memory_size >> PAGE_SHIFT; 927 928 if (npages > KVM_MEM_MAX_NR_PAGES) 929 goto out; 930 931 new = old = *slot; 932 933 new.id = id; 934 new.base_gfn = base_gfn; 935 new.npages = npages; 936 new.flags = mem->flags; 937 938 if (npages) { 939 if (!old.npages) 940 change = KVM_MR_CREATE; 941 else { /* Modify an existing slot. */ 942 if ((mem->userspace_addr != old.userspace_addr) || 943 (npages != old.npages) || 944 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 945 goto out; 946 947 if (base_gfn != old.base_gfn) 948 change = KVM_MR_MOVE; 949 else if (new.flags != old.flags) 950 change = KVM_MR_FLAGS_ONLY; 951 else { /* Nothing to change. */ 952 r = 0; 953 goto out; 954 } 955 } 956 } else { 957 if (!old.npages) 958 goto out; 959 960 change = KVM_MR_DELETE; 961 new.base_gfn = 0; 962 new.flags = 0; 963 } 964 965 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 966 /* Check for overlaps */ 967 r = -EEXIST; 968 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 969 if ((slot->id >= KVM_USER_MEM_SLOTS) || 970 (slot->id == id)) 971 continue; 972 if (!((base_gfn + npages <= slot->base_gfn) || 973 (base_gfn >= slot->base_gfn + slot->npages))) 974 goto out; 975 } 976 } 977 978 /* Free page dirty bitmap if unneeded */ 979 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 980 new.dirty_bitmap = NULL; 981 982 r = -ENOMEM; 983 if (change == KVM_MR_CREATE) { 984 new.userspace_addr = mem->userspace_addr; 985 986 if (kvm_arch_create_memslot(kvm, &new, npages)) 987 goto out_free; 988 } 989 990 /* Allocate page dirty bitmap if needed */ 991 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 992 if (kvm_create_dirty_bitmap(&new) < 0) 993 goto out_free; 994 } 995 996 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 997 if (!slots) 998 goto out_free; 999 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1000 1001 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1002 slot = id_to_memslot(slots, id); 1003 slot->flags |= KVM_MEMSLOT_INVALID; 1004 1005 old_memslots = install_new_memslots(kvm, as_id, slots); 1006 1007 /* From this point no new shadow pages pointing to a deleted, 1008 * or moved, memslot will be created. 1009 * 1010 * validation of sp->gfn happens in: 1011 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1012 * - kvm_is_visible_gfn (mmu_check_roots) 1013 */ 1014 kvm_arch_flush_shadow_memslot(kvm, slot); 1015 1016 /* 1017 * We can re-use the old_memslots from above, the only difference 1018 * from the currently installed memslots is the invalid flag. This 1019 * will get overwritten by update_memslots anyway. 1020 */ 1021 slots = old_memslots; 1022 } 1023 1024 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1025 if (r) 1026 goto out_slots; 1027 1028 /* actual memory is freed via old in kvm_free_memslot below */ 1029 if (change == KVM_MR_DELETE) { 1030 new.dirty_bitmap = NULL; 1031 memset(&new.arch, 0, sizeof(new.arch)); 1032 } 1033 1034 update_memslots(slots, &new); 1035 old_memslots = install_new_memslots(kvm, as_id, slots); 1036 1037 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1038 1039 kvm_free_memslot(kvm, &old, &new); 1040 kvfree(old_memslots); 1041 return 0; 1042 1043 out_slots: 1044 kvfree(slots); 1045 out_free: 1046 kvm_free_memslot(kvm, &new, &old); 1047 out: 1048 return r; 1049 } 1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1051 1052 int kvm_set_memory_region(struct kvm *kvm, 1053 const struct kvm_userspace_memory_region *mem) 1054 { 1055 int r; 1056 1057 mutex_lock(&kvm->slots_lock); 1058 r = __kvm_set_memory_region(kvm, mem); 1059 mutex_unlock(&kvm->slots_lock); 1060 return r; 1061 } 1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1063 1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1065 struct kvm_userspace_memory_region *mem) 1066 { 1067 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1068 return -EINVAL; 1069 1070 return kvm_set_memory_region(kvm, mem); 1071 } 1072 1073 int kvm_get_dirty_log(struct kvm *kvm, 1074 struct kvm_dirty_log *log, int *is_dirty) 1075 { 1076 struct kvm_memslots *slots; 1077 struct kvm_memory_slot *memslot; 1078 int i, as_id, id; 1079 unsigned long n; 1080 unsigned long any = 0; 1081 1082 as_id = log->slot >> 16; 1083 id = (u16)log->slot; 1084 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1085 return -EINVAL; 1086 1087 slots = __kvm_memslots(kvm, as_id); 1088 memslot = id_to_memslot(slots, id); 1089 if (!memslot->dirty_bitmap) 1090 return -ENOENT; 1091 1092 n = kvm_dirty_bitmap_bytes(memslot); 1093 1094 for (i = 0; !any && i < n/sizeof(long); ++i) 1095 any = memslot->dirty_bitmap[i]; 1096 1097 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1098 return -EFAULT; 1099 1100 if (any) 1101 *is_dirty = 1; 1102 return 0; 1103 } 1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1105 1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1107 /** 1108 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1109 * are dirty write protect them for next write. 1110 * @kvm: pointer to kvm instance 1111 * @log: slot id and address to which we copy the log 1112 * @is_dirty: flag set if any page is dirty 1113 * 1114 * We need to keep it in mind that VCPU threads can write to the bitmap 1115 * concurrently. So, to avoid losing track of dirty pages we keep the 1116 * following order: 1117 * 1118 * 1. Take a snapshot of the bit and clear it if needed. 1119 * 2. Write protect the corresponding page. 1120 * 3. Copy the snapshot to the userspace. 1121 * 4. Upon return caller flushes TLB's if needed. 1122 * 1123 * Between 2 and 4, the guest may write to the page using the remaining TLB 1124 * entry. This is not a problem because the page is reported dirty using 1125 * the snapshot taken before and step 4 ensures that writes done after 1126 * exiting to userspace will be logged for the next call. 1127 * 1128 */ 1129 int kvm_get_dirty_log_protect(struct kvm *kvm, 1130 struct kvm_dirty_log *log, bool *is_dirty) 1131 { 1132 struct kvm_memslots *slots; 1133 struct kvm_memory_slot *memslot; 1134 int i, as_id, id; 1135 unsigned long n; 1136 unsigned long *dirty_bitmap; 1137 unsigned long *dirty_bitmap_buffer; 1138 1139 as_id = log->slot >> 16; 1140 id = (u16)log->slot; 1141 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1142 return -EINVAL; 1143 1144 slots = __kvm_memslots(kvm, as_id); 1145 memslot = id_to_memslot(slots, id); 1146 1147 dirty_bitmap = memslot->dirty_bitmap; 1148 if (!dirty_bitmap) 1149 return -ENOENT; 1150 1151 n = kvm_dirty_bitmap_bytes(memslot); 1152 1153 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1154 memset(dirty_bitmap_buffer, 0, n); 1155 1156 spin_lock(&kvm->mmu_lock); 1157 *is_dirty = false; 1158 for (i = 0; i < n / sizeof(long); i++) { 1159 unsigned long mask; 1160 gfn_t offset; 1161 1162 if (!dirty_bitmap[i]) 1163 continue; 1164 1165 *is_dirty = true; 1166 1167 mask = xchg(&dirty_bitmap[i], 0); 1168 dirty_bitmap_buffer[i] = mask; 1169 1170 if (mask) { 1171 offset = i * BITS_PER_LONG; 1172 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1173 offset, mask); 1174 } 1175 } 1176 1177 spin_unlock(&kvm->mmu_lock); 1178 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1179 return -EFAULT; 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1183 #endif 1184 1185 bool kvm_largepages_enabled(void) 1186 { 1187 return largepages_enabled; 1188 } 1189 1190 void kvm_disable_largepages(void) 1191 { 1192 largepages_enabled = false; 1193 } 1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1195 1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1197 { 1198 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1199 } 1200 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1201 1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1203 { 1204 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1205 } 1206 1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1208 { 1209 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1210 1211 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1212 memslot->flags & KVM_MEMSLOT_INVALID) 1213 return false; 1214 1215 return true; 1216 } 1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1218 1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1220 { 1221 struct vm_area_struct *vma; 1222 unsigned long addr, size; 1223 1224 size = PAGE_SIZE; 1225 1226 addr = gfn_to_hva(kvm, gfn); 1227 if (kvm_is_error_hva(addr)) 1228 return PAGE_SIZE; 1229 1230 down_read(¤t->mm->mmap_sem); 1231 vma = find_vma(current->mm, addr); 1232 if (!vma) 1233 goto out; 1234 1235 size = vma_kernel_pagesize(vma); 1236 1237 out: 1238 up_read(¤t->mm->mmap_sem); 1239 1240 return size; 1241 } 1242 1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1244 { 1245 return slot->flags & KVM_MEM_READONLY; 1246 } 1247 1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1249 gfn_t *nr_pages, bool write) 1250 { 1251 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1252 return KVM_HVA_ERR_BAD; 1253 1254 if (memslot_is_readonly(slot) && write) 1255 return KVM_HVA_ERR_RO_BAD; 1256 1257 if (nr_pages) 1258 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1259 1260 return __gfn_to_hva_memslot(slot, gfn); 1261 } 1262 1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1264 gfn_t *nr_pages) 1265 { 1266 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1267 } 1268 1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1270 gfn_t gfn) 1271 { 1272 return gfn_to_hva_many(slot, gfn, NULL); 1273 } 1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1275 1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1277 { 1278 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1279 } 1280 EXPORT_SYMBOL_GPL(gfn_to_hva); 1281 1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1283 { 1284 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1285 } 1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1287 1288 /* 1289 * If writable is set to false, the hva returned by this function is only 1290 * allowed to be read. 1291 */ 1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1293 gfn_t gfn, bool *writable) 1294 { 1295 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1296 1297 if (!kvm_is_error_hva(hva) && writable) 1298 *writable = !memslot_is_readonly(slot); 1299 1300 return hva; 1301 } 1302 1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1304 { 1305 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1306 1307 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1308 } 1309 1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1311 { 1312 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1313 1314 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1315 } 1316 1317 static int get_user_page_nowait(unsigned long start, int write, 1318 struct page **page) 1319 { 1320 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1321 1322 if (write) 1323 flags |= FOLL_WRITE; 1324 1325 return get_user_pages(start, 1, flags, page, NULL); 1326 } 1327 1328 static inline int check_user_page_hwpoison(unsigned long addr) 1329 { 1330 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1331 1332 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1333 return rc == -EHWPOISON; 1334 } 1335 1336 /* 1337 * The atomic path to get the writable pfn which will be stored in @pfn, 1338 * true indicates success, otherwise false is returned. 1339 */ 1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1341 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1342 { 1343 struct page *page[1]; 1344 int npages; 1345 1346 if (!(async || atomic)) 1347 return false; 1348 1349 /* 1350 * Fast pin a writable pfn only if it is a write fault request 1351 * or the caller allows to map a writable pfn for a read fault 1352 * request. 1353 */ 1354 if (!(write_fault || writable)) 1355 return false; 1356 1357 npages = __get_user_pages_fast(addr, 1, 1, page); 1358 if (npages == 1) { 1359 *pfn = page_to_pfn(page[0]); 1360 1361 if (writable) 1362 *writable = true; 1363 return true; 1364 } 1365 1366 return false; 1367 } 1368 1369 /* 1370 * The slow path to get the pfn of the specified host virtual address, 1371 * 1 indicates success, -errno is returned if error is detected. 1372 */ 1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1374 bool *writable, kvm_pfn_t *pfn) 1375 { 1376 struct page *page[1]; 1377 int npages = 0; 1378 1379 might_sleep(); 1380 1381 if (writable) 1382 *writable = write_fault; 1383 1384 if (async) { 1385 down_read(¤t->mm->mmap_sem); 1386 npages = get_user_page_nowait(addr, write_fault, page); 1387 up_read(¤t->mm->mmap_sem); 1388 } else { 1389 unsigned int flags = FOLL_HWPOISON; 1390 1391 if (write_fault) 1392 flags |= FOLL_WRITE; 1393 1394 npages = get_user_pages_unlocked(addr, 1, page, flags); 1395 } 1396 if (npages != 1) 1397 return npages; 1398 1399 /* map read fault as writable if possible */ 1400 if (unlikely(!write_fault) && writable) { 1401 struct page *wpage[1]; 1402 1403 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1404 if (npages == 1) { 1405 *writable = true; 1406 put_page(page[0]); 1407 page[0] = wpage[0]; 1408 } 1409 1410 npages = 1; 1411 } 1412 *pfn = page_to_pfn(page[0]); 1413 return npages; 1414 } 1415 1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1417 { 1418 if (unlikely(!(vma->vm_flags & VM_READ))) 1419 return false; 1420 1421 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1422 return false; 1423 1424 return true; 1425 } 1426 1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1428 unsigned long addr, bool *async, 1429 bool write_fault, kvm_pfn_t *p_pfn) 1430 { 1431 unsigned long pfn; 1432 int r; 1433 1434 r = follow_pfn(vma, addr, &pfn); 1435 if (r) { 1436 /* 1437 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1438 * not call the fault handler, so do it here. 1439 */ 1440 bool unlocked = false; 1441 r = fixup_user_fault(current, current->mm, addr, 1442 (write_fault ? FAULT_FLAG_WRITE : 0), 1443 &unlocked); 1444 if (unlocked) 1445 return -EAGAIN; 1446 if (r) 1447 return r; 1448 1449 r = follow_pfn(vma, addr, &pfn); 1450 if (r) 1451 return r; 1452 1453 } 1454 1455 1456 /* 1457 * Get a reference here because callers of *hva_to_pfn* and 1458 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1459 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1460 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1461 * simply do nothing for reserved pfns. 1462 * 1463 * Whoever called remap_pfn_range is also going to call e.g. 1464 * unmap_mapping_range before the underlying pages are freed, 1465 * causing a call to our MMU notifier. 1466 */ 1467 kvm_get_pfn(pfn); 1468 1469 *p_pfn = pfn; 1470 return 0; 1471 } 1472 1473 /* 1474 * Pin guest page in memory and return its pfn. 1475 * @addr: host virtual address which maps memory to the guest 1476 * @atomic: whether this function can sleep 1477 * @async: whether this function need to wait IO complete if the 1478 * host page is not in the memory 1479 * @write_fault: whether we should get a writable host page 1480 * @writable: whether it allows to map a writable host page for !@write_fault 1481 * 1482 * The function will map a writable host page for these two cases: 1483 * 1): @write_fault = true 1484 * 2): @write_fault = false && @writable, @writable will tell the caller 1485 * whether the mapping is writable. 1486 */ 1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1488 bool write_fault, bool *writable) 1489 { 1490 struct vm_area_struct *vma; 1491 kvm_pfn_t pfn = 0; 1492 int npages, r; 1493 1494 /* we can do it either atomically or asynchronously, not both */ 1495 BUG_ON(atomic && async); 1496 1497 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1498 return pfn; 1499 1500 if (atomic) 1501 return KVM_PFN_ERR_FAULT; 1502 1503 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1504 if (npages == 1) 1505 return pfn; 1506 1507 down_read(¤t->mm->mmap_sem); 1508 if (npages == -EHWPOISON || 1509 (!async && check_user_page_hwpoison(addr))) { 1510 pfn = KVM_PFN_ERR_HWPOISON; 1511 goto exit; 1512 } 1513 1514 retry: 1515 vma = find_vma_intersection(current->mm, addr, addr + 1); 1516 1517 if (vma == NULL) 1518 pfn = KVM_PFN_ERR_FAULT; 1519 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1520 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1521 if (r == -EAGAIN) 1522 goto retry; 1523 if (r < 0) 1524 pfn = KVM_PFN_ERR_FAULT; 1525 } else { 1526 if (async && vma_is_valid(vma, write_fault)) 1527 *async = true; 1528 pfn = KVM_PFN_ERR_FAULT; 1529 } 1530 exit: 1531 up_read(¤t->mm->mmap_sem); 1532 return pfn; 1533 } 1534 1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1536 bool atomic, bool *async, bool write_fault, 1537 bool *writable) 1538 { 1539 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1540 1541 if (addr == KVM_HVA_ERR_RO_BAD) { 1542 if (writable) 1543 *writable = false; 1544 return KVM_PFN_ERR_RO_FAULT; 1545 } 1546 1547 if (kvm_is_error_hva(addr)) { 1548 if (writable) 1549 *writable = false; 1550 return KVM_PFN_NOSLOT; 1551 } 1552 1553 /* Do not map writable pfn in the readonly memslot. */ 1554 if (writable && memslot_is_readonly(slot)) { 1555 *writable = false; 1556 writable = NULL; 1557 } 1558 1559 return hva_to_pfn(addr, atomic, async, write_fault, 1560 writable); 1561 } 1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1563 1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1565 bool *writable) 1566 { 1567 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1568 write_fault, writable); 1569 } 1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1571 1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1573 { 1574 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1575 } 1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1577 1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1579 { 1580 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1581 } 1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1583 1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1585 { 1586 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1587 } 1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1589 1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1591 { 1592 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1593 } 1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1595 1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1597 { 1598 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1599 } 1600 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1601 1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1603 { 1604 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1605 } 1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1607 1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1609 struct page **pages, int nr_pages) 1610 { 1611 unsigned long addr; 1612 gfn_t entry; 1613 1614 addr = gfn_to_hva_many(slot, gfn, &entry); 1615 if (kvm_is_error_hva(addr)) 1616 return -1; 1617 1618 if (entry < nr_pages) 1619 return 0; 1620 1621 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1622 } 1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1624 1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1626 { 1627 if (is_error_noslot_pfn(pfn)) 1628 return KVM_ERR_PTR_BAD_PAGE; 1629 1630 if (kvm_is_reserved_pfn(pfn)) { 1631 WARN_ON(1); 1632 return KVM_ERR_PTR_BAD_PAGE; 1633 } 1634 1635 return pfn_to_page(pfn); 1636 } 1637 1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1639 { 1640 kvm_pfn_t pfn; 1641 1642 pfn = gfn_to_pfn(kvm, gfn); 1643 1644 return kvm_pfn_to_page(pfn); 1645 } 1646 EXPORT_SYMBOL_GPL(gfn_to_page); 1647 1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1649 { 1650 kvm_pfn_t pfn; 1651 1652 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1653 1654 return kvm_pfn_to_page(pfn); 1655 } 1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1657 1658 void kvm_release_page_clean(struct page *page) 1659 { 1660 WARN_ON(is_error_page(page)); 1661 1662 kvm_release_pfn_clean(page_to_pfn(page)); 1663 } 1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1665 1666 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1667 { 1668 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1669 put_page(pfn_to_page(pfn)); 1670 } 1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1672 1673 void kvm_release_page_dirty(struct page *page) 1674 { 1675 WARN_ON(is_error_page(page)); 1676 1677 kvm_release_pfn_dirty(page_to_pfn(page)); 1678 } 1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1680 1681 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1682 { 1683 kvm_set_pfn_dirty(pfn); 1684 kvm_release_pfn_clean(pfn); 1685 } 1686 1687 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1688 { 1689 if (!kvm_is_reserved_pfn(pfn)) { 1690 struct page *page = pfn_to_page(pfn); 1691 1692 if (!PageReserved(page)) 1693 SetPageDirty(page); 1694 } 1695 } 1696 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1697 1698 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1699 { 1700 if (!kvm_is_reserved_pfn(pfn)) 1701 mark_page_accessed(pfn_to_page(pfn)); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1704 1705 void kvm_get_pfn(kvm_pfn_t pfn) 1706 { 1707 if (!kvm_is_reserved_pfn(pfn)) 1708 get_page(pfn_to_page(pfn)); 1709 } 1710 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1711 1712 static int next_segment(unsigned long len, int offset) 1713 { 1714 if (len > PAGE_SIZE - offset) 1715 return PAGE_SIZE - offset; 1716 else 1717 return len; 1718 } 1719 1720 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1721 void *data, int offset, int len) 1722 { 1723 int r; 1724 unsigned long addr; 1725 1726 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1727 if (kvm_is_error_hva(addr)) 1728 return -EFAULT; 1729 r = __copy_from_user(data, (void __user *)addr + offset, len); 1730 if (r) 1731 return -EFAULT; 1732 return 0; 1733 } 1734 1735 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1736 int len) 1737 { 1738 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1739 1740 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1743 1744 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1745 int offset, int len) 1746 { 1747 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1748 1749 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1750 } 1751 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1752 1753 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1754 { 1755 gfn_t gfn = gpa >> PAGE_SHIFT; 1756 int seg; 1757 int offset = offset_in_page(gpa); 1758 int ret; 1759 1760 while ((seg = next_segment(len, offset)) != 0) { 1761 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1762 if (ret < 0) 1763 return ret; 1764 offset = 0; 1765 len -= seg; 1766 data += seg; 1767 ++gfn; 1768 } 1769 return 0; 1770 } 1771 EXPORT_SYMBOL_GPL(kvm_read_guest); 1772 1773 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1774 { 1775 gfn_t gfn = gpa >> PAGE_SHIFT; 1776 int seg; 1777 int offset = offset_in_page(gpa); 1778 int ret; 1779 1780 while ((seg = next_segment(len, offset)) != 0) { 1781 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1782 if (ret < 0) 1783 return ret; 1784 offset = 0; 1785 len -= seg; 1786 data += seg; 1787 ++gfn; 1788 } 1789 return 0; 1790 } 1791 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1792 1793 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1794 void *data, int offset, unsigned long len) 1795 { 1796 int r; 1797 unsigned long addr; 1798 1799 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1800 if (kvm_is_error_hva(addr)) 1801 return -EFAULT; 1802 pagefault_disable(); 1803 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1804 pagefault_enable(); 1805 if (r) 1806 return -EFAULT; 1807 return 0; 1808 } 1809 1810 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1811 unsigned long len) 1812 { 1813 gfn_t gfn = gpa >> PAGE_SHIFT; 1814 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1815 int offset = offset_in_page(gpa); 1816 1817 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1818 } 1819 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1820 1821 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1822 void *data, unsigned long len) 1823 { 1824 gfn_t gfn = gpa >> PAGE_SHIFT; 1825 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1826 int offset = offset_in_page(gpa); 1827 1828 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1829 } 1830 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1831 1832 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1833 const void *data, int offset, int len) 1834 { 1835 int r; 1836 unsigned long addr; 1837 1838 addr = gfn_to_hva_memslot(memslot, gfn); 1839 if (kvm_is_error_hva(addr)) 1840 return -EFAULT; 1841 r = __copy_to_user((void __user *)addr + offset, data, len); 1842 if (r) 1843 return -EFAULT; 1844 mark_page_dirty_in_slot(memslot, gfn); 1845 return 0; 1846 } 1847 1848 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1849 const void *data, int offset, int len) 1850 { 1851 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1852 1853 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1854 } 1855 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1856 1857 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1858 const void *data, int offset, int len) 1859 { 1860 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1861 1862 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1863 } 1864 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1865 1866 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1867 unsigned long len) 1868 { 1869 gfn_t gfn = gpa >> PAGE_SHIFT; 1870 int seg; 1871 int offset = offset_in_page(gpa); 1872 int ret; 1873 1874 while ((seg = next_segment(len, offset)) != 0) { 1875 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1876 if (ret < 0) 1877 return ret; 1878 offset = 0; 1879 len -= seg; 1880 data += seg; 1881 ++gfn; 1882 } 1883 return 0; 1884 } 1885 EXPORT_SYMBOL_GPL(kvm_write_guest); 1886 1887 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1888 unsigned long len) 1889 { 1890 gfn_t gfn = gpa >> PAGE_SHIFT; 1891 int seg; 1892 int offset = offset_in_page(gpa); 1893 int ret; 1894 1895 while ((seg = next_segment(len, offset)) != 0) { 1896 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1897 if (ret < 0) 1898 return ret; 1899 offset = 0; 1900 len -= seg; 1901 data += seg; 1902 ++gfn; 1903 } 1904 return 0; 1905 } 1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1907 1908 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1909 struct gfn_to_hva_cache *ghc, 1910 gpa_t gpa, unsigned long len) 1911 { 1912 int offset = offset_in_page(gpa); 1913 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1914 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1915 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1916 gfn_t nr_pages_avail; 1917 1918 ghc->gpa = gpa; 1919 ghc->generation = slots->generation; 1920 ghc->len = len; 1921 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1922 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1923 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1924 ghc->hva += offset; 1925 } else { 1926 /* 1927 * If the requested region crosses two memslots, we still 1928 * verify that the entire region is valid here. 1929 */ 1930 while (start_gfn <= end_gfn) { 1931 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1932 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1933 &nr_pages_avail); 1934 if (kvm_is_error_hva(ghc->hva)) 1935 return -EFAULT; 1936 start_gfn += nr_pages_avail; 1937 } 1938 /* Use the slow path for cross page reads and writes. */ 1939 ghc->memslot = NULL; 1940 } 1941 return 0; 1942 } 1943 1944 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1945 gpa_t gpa, unsigned long len) 1946 { 1947 struct kvm_memslots *slots = kvm_memslots(kvm); 1948 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1949 } 1950 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1951 1952 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1953 void *data, int offset, unsigned long len) 1954 { 1955 struct kvm_memslots *slots = kvm_memslots(kvm); 1956 int r; 1957 gpa_t gpa = ghc->gpa + offset; 1958 1959 BUG_ON(len + offset > ghc->len); 1960 1961 if (slots->generation != ghc->generation) 1962 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1963 1964 if (unlikely(!ghc->memslot)) 1965 return kvm_write_guest(kvm, gpa, data, len); 1966 1967 if (kvm_is_error_hva(ghc->hva)) 1968 return -EFAULT; 1969 1970 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1971 if (r) 1972 return -EFAULT; 1973 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1974 1975 return 0; 1976 } 1977 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 1978 1979 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1980 void *data, unsigned long len) 1981 { 1982 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 1983 } 1984 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1985 1986 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1987 void *data, unsigned long len) 1988 { 1989 struct kvm_memslots *slots = kvm_memslots(kvm); 1990 int r; 1991 1992 BUG_ON(len > ghc->len); 1993 1994 if (slots->generation != ghc->generation) 1995 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1996 1997 if (unlikely(!ghc->memslot)) 1998 return kvm_read_guest(kvm, ghc->gpa, data, len); 1999 2000 if (kvm_is_error_hva(ghc->hva)) 2001 return -EFAULT; 2002 2003 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2004 if (r) 2005 return -EFAULT; 2006 2007 return 0; 2008 } 2009 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2010 2011 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2012 { 2013 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2014 2015 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2016 } 2017 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2018 2019 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2020 { 2021 gfn_t gfn = gpa >> PAGE_SHIFT; 2022 int seg; 2023 int offset = offset_in_page(gpa); 2024 int ret; 2025 2026 while ((seg = next_segment(len, offset)) != 0) { 2027 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2028 if (ret < 0) 2029 return ret; 2030 offset = 0; 2031 len -= seg; 2032 ++gfn; 2033 } 2034 return 0; 2035 } 2036 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2037 2038 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2039 gfn_t gfn) 2040 { 2041 if (memslot && memslot->dirty_bitmap) { 2042 unsigned long rel_gfn = gfn - memslot->base_gfn; 2043 2044 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2045 } 2046 } 2047 2048 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2049 { 2050 struct kvm_memory_slot *memslot; 2051 2052 memslot = gfn_to_memslot(kvm, gfn); 2053 mark_page_dirty_in_slot(memslot, gfn); 2054 } 2055 EXPORT_SYMBOL_GPL(mark_page_dirty); 2056 2057 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2058 { 2059 struct kvm_memory_slot *memslot; 2060 2061 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2062 mark_page_dirty_in_slot(memslot, gfn); 2063 } 2064 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2065 2066 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2067 { 2068 unsigned int old, val, grow; 2069 2070 old = val = vcpu->halt_poll_ns; 2071 grow = READ_ONCE(halt_poll_ns_grow); 2072 /* 10us base */ 2073 if (val == 0 && grow) 2074 val = 10000; 2075 else 2076 val *= grow; 2077 2078 if (val > halt_poll_ns) 2079 val = halt_poll_ns; 2080 2081 vcpu->halt_poll_ns = val; 2082 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2083 } 2084 2085 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2086 { 2087 unsigned int old, val, shrink; 2088 2089 old = val = vcpu->halt_poll_ns; 2090 shrink = READ_ONCE(halt_poll_ns_shrink); 2091 if (shrink == 0) 2092 val = 0; 2093 else 2094 val /= shrink; 2095 2096 vcpu->halt_poll_ns = val; 2097 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2098 } 2099 2100 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2101 { 2102 if (kvm_arch_vcpu_runnable(vcpu)) { 2103 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2104 return -EINTR; 2105 } 2106 if (kvm_cpu_has_pending_timer(vcpu)) 2107 return -EINTR; 2108 if (signal_pending(current)) 2109 return -EINTR; 2110 2111 return 0; 2112 } 2113 2114 /* 2115 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2116 */ 2117 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2118 { 2119 ktime_t start, cur; 2120 DECLARE_SWAITQUEUE(wait); 2121 bool waited = false; 2122 u64 block_ns; 2123 2124 start = cur = ktime_get(); 2125 if (vcpu->halt_poll_ns) { 2126 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2127 2128 ++vcpu->stat.halt_attempted_poll; 2129 do { 2130 /* 2131 * This sets KVM_REQ_UNHALT if an interrupt 2132 * arrives. 2133 */ 2134 if (kvm_vcpu_check_block(vcpu) < 0) { 2135 ++vcpu->stat.halt_successful_poll; 2136 if (!vcpu_valid_wakeup(vcpu)) 2137 ++vcpu->stat.halt_poll_invalid; 2138 goto out; 2139 } 2140 cur = ktime_get(); 2141 } while (single_task_running() && ktime_before(cur, stop)); 2142 } 2143 2144 kvm_arch_vcpu_blocking(vcpu); 2145 2146 for (;;) { 2147 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2148 2149 if (kvm_vcpu_check_block(vcpu) < 0) 2150 break; 2151 2152 waited = true; 2153 schedule(); 2154 } 2155 2156 finish_swait(&vcpu->wq, &wait); 2157 cur = ktime_get(); 2158 2159 kvm_arch_vcpu_unblocking(vcpu); 2160 out: 2161 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2162 2163 if (!vcpu_valid_wakeup(vcpu)) 2164 shrink_halt_poll_ns(vcpu); 2165 else if (halt_poll_ns) { 2166 if (block_ns <= vcpu->halt_poll_ns) 2167 ; 2168 /* we had a long block, shrink polling */ 2169 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2170 shrink_halt_poll_ns(vcpu); 2171 /* we had a short halt and our poll time is too small */ 2172 else if (vcpu->halt_poll_ns < halt_poll_ns && 2173 block_ns < halt_poll_ns) 2174 grow_halt_poll_ns(vcpu); 2175 } else 2176 vcpu->halt_poll_ns = 0; 2177 2178 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2179 kvm_arch_vcpu_block_finish(vcpu); 2180 } 2181 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2182 2183 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2184 { 2185 struct swait_queue_head *wqp; 2186 2187 wqp = kvm_arch_vcpu_wq(vcpu); 2188 if (swait_active(wqp)) { 2189 swake_up(wqp); 2190 ++vcpu->stat.halt_wakeup; 2191 return true; 2192 } 2193 2194 return false; 2195 } 2196 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2197 2198 #ifndef CONFIG_S390 2199 /* 2200 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2201 */ 2202 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2203 { 2204 int me; 2205 int cpu = vcpu->cpu; 2206 2207 if (kvm_vcpu_wake_up(vcpu)) 2208 return; 2209 2210 me = get_cpu(); 2211 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2212 if (kvm_arch_vcpu_should_kick(vcpu)) 2213 smp_send_reschedule(cpu); 2214 put_cpu(); 2215 } 2216 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2217 #endif /* !CONFIG_S390 */ 2218 2219 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2220 { 2221 struct pid *pid; 2222 struct task_struct *task = NULL; 2223 int ret = 0; 2224 2225 rcu_read_lock(); 2226 pid = rcu_dereference(target->pid); 2227 if (pid) 2228 task = get_pid_task(pid, PIDTYPE_PID); 2229 rcu_read_unlock(); 2230 if (!task) 2231 return ret; 2232 ret = yield_to(task, 1); 2233 put_task_struct(task); 2234 2235 return ret; 2236 } 2237 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2238 2239 /* 2240 * Helper that checks whether a VCPU is eligible for directed yield. 2241 * Most eligible candidate to yield is decided by following heuristics: 2242 * 2243 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2244 * (preempted lock holder), indicated by @in_spin_loop. 2245 * Set at the beiginning and cleared at the end of interception/PLE handler. 2246 * 2247 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2248 * chance last time (mostly it has become eligible now since we have probably 2249 * yielded to lockholder in last iteration. This is done by toggling 2250 * @dy_eligible each time a VCPU checked for eligibility.) 2251 * 2252 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2253 * to preempted lock-holder could result in wrong VCPU selection and CPU 2254 * burning. Giving priority for a potential lock-holder increases lock 2255 * progress. 2256 * 2257 * Since algorithm is based on heuristics, accessing another VCPU data without 2258 * locking does not harm. It may result in trying to yield to same VCPU, fail 2259 * and continue with next VCPU and so on. 2260 */ 2261 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2262 { 2263 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2264 bool eligible; 2265 2266 eligible = !vcpu->spin_loop.in_spin_loop || 2267 vcpu->spin_loop.dy_eligible; 2268 2269 if (vcpu->spin_loop.in_spin_loop) 2270 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2271 2272 return eligible; 2273 #else 2274 return true; 2275 #endif 2276 } 2277 2278 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2279 { 2280 struct kvm *kvm = me->kvm; 2281 struct kvm_vcpu *vcpu; 2282 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2283 int yielded = 0; 2284 int try = 3; 2285 int pass; 2286 int i; 2287 2288 kvm_vcpu_set_in_spin_loop(me, true); 2289 /* 2290 * We boost the priority of a VCPU that is runnable but not 2291 * currently running, because it got preempted by something 2292 * else and called schedule in __vcpu_run. Hopefully that 2293 * VCPU is holding the lock that we need and will release it. 2294 * We approximate round-robin by starting at the last boosted VCPU. 2295 */ 2296 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2297 kvm_for_each_vcpu(i, vcpu, kvm) { 2298 if (!pass && i <= last_boosted_vcpu) { 2299 i = last_boosted_vcpu; 2300 continue; 2301 } else if (pass && i > last_boosted_vcpu) 2302 break; 2303 if (!ACCESS_ONCE(vcpu->preempted)) 2304 continue; 2305 if (vcpu == me) 2306 continue; 2307 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2308 continue; 2309 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2310 continue; 2311 2312 yielded = kvm_vcpu_yield_to(vcpu); 2313 if (yielded > 0) { 2314 kvm->last_boosted_vcpu = i; 2315 break; 2316 } else if (yielded < 0) { 2317 try--; 2318 if (!try) 2319 break; 2320 } 2321 } 2322 } 2323 kvm_vcpu_set_in_spin_loop(me, false); 2324 2325 /* Ensure vcpu is not eligible during next spinloop */ 2326 kvm_vcpu_set_dy_eligible(me, false); 2327 } 2328 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2329 2330 static int kvm_vcpu_fault(struct vm_fault *vmf) 2331 { 2332 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2333 struct page *page; 2334 2335 if (vmf->pgoff == 0) 2336 page = virt_to_page(vcpu->run); 2337 #ifdef CONFIG_X86 2338 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2339 page = virt_to_page(vcpu->arch.pio_data); 2340 #endif 2341 #ifdef CONFIG_KVM_MMIO 2342 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2343 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2344 #endif 2345 else 2346 return kvm_arch_vcpu_fault(vcpu, vmf); 2347 get_page(page); 2348 vmf->page = page; 2349 return 0; 2350 } 2351 2352 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2353 .fault = kvm_vcpu_fault, 2354 }; 2355 2356 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2357 { 2358 vma->vm_ops = &kvm_vcpu_vm_ops; 2359 return 0; 2360 } 2361 2362 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2363 { 2364 struct kvm_vcpu *vcpu = filp->private_data; 2365 2366 debugfs_remove_recursive(vcpu->debugfs_dentry); 2367 kvm_put_kvm(vcpu->kvm); 2368 return 0; 2369 } 2370 2371 static struct file_operations kvm_vcpu_fops = { 2372 .release = kvm_vcpu_release, 2373 .unlocked_ioctl = kvm_vcpu_ioctl, 2374 #ifdef CONFIG_KVM_COMPAT 2375 .compat_ioctl = kvm_vcpu_compat_ioctl, 2376 #endif 2377 .mmap = kvm_vcpu_mmap, 2378 .llseek = noop_llseek, 2379 }; 2380 2381 /* 2382 * Allocates an inode for the vcpu. 2383 */ 2384 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2385 { 2386 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2387 } 2388 2389 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2390 { 2391 char dir_name[ITOA_MAX_LEN * 2]; 2392 int ret; 2393 2394 if (!kvm_arch_has_vcpu_debugfs()) 2395 return 0; 2396 2397 if (!debugfs_initialized()) 2398 return 0; 2399 2400 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2401 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2402 vcpu->kvm->debugfs_dentry); 2403 if (!vcpu->debugfs_dentry) 2404 return -ENOMEM; 2405 2406 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2407 if (ret < 0) { 2408 debugfs_remove_recursive(vcpu->debugfs_dentry); 2409 return ret; 2410 } 2411 2412 return 0; 2413 } 2414 2415 /* 2416 * Creates some virtual cpus. Good luck creating more than one. 2417 */ 2418 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2419 { 2420 int r; 2421 struct kvm_vcpu *vcpu; 2422 2423 if (id >= KVM_MAX_VCPU_ID) 2424 return -EINVAL; 2425 2426 mutex_lock(&kvm->lock); 2427 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2428 mutex_unlock(&kvm->lock); 2429 return -EINVAL; 2430 } 2431 2432 kvm->created_vcpus++; 2433 mutex_unlock(&kvm->lock); 2434 2435 vcpu = kvm_arch_vcpu_create(kvm, id); 2436 if (IS_ERR(vcpu)) { 2437 r = PTR_ERR(vcpu); 2438 goto vcpu_decrement; 2439 } 2440 2441 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2442 2443 r = kvm_arch_vcpu_setup(vcpu); 2444 if (r) 2445 goto vcpu_destroy; 2446 2447 r = kvm_create_vcpu_debugfs(vcpu); 2448 if (r) 2449 goto vcpu_destroy; 2450 2451 mutex_lock(&kvm->lock); 2452 if (kvm_get_vcpu_by_id(kvm, id)) { 2453 r = -EEXIST; 2454 goto unlock_vcpu_destroy; 2455 } 2456 2457 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2458 2459 /* Now it's all set up, let userspace reach it */ 2460 kvm_get_kvm(kvm); 2461 r = create_vcpu_fd(vcpu); 2462 if (r < 0) { 2463 kvm_put_kvm(kvm); 2464 goto unlock_vcpu_destroy; 2465 } 2466 2467 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2468 2469 /* 2470 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2471 * before kvm->online_vcpu's incremented value. 2472 */ 2473 smp_wmb(); 2474 atomic_inc(&kvm->online_vcpus); 2475 2476 mutex_unlock(&kvm->lock); 2477 kvm_arch_vcpu_postcreate(vcpu); 2478 return r; 2479 2480 unlock_vcpu_destroy: 2481 mutex_unlock(&kvm->lock); 2482 debugfs_remove_recursive(vcpu->debugfs_dentry); 2483 vcpu_destroy: 2484 kvm_arch_vcpu_destroy(vcpu); 2485 vcpu_decrement: 2486 mutex_lock(&kvm->lock); 2487 kvm->created_vcpus--; 2488 mutex_unlock(&kvm->lock); 2489 return r; 2490 } 2491 2492 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2493 { 2494 if (sigset) { 2495 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2496 vcpu->sigset_active = 1; 2497 vcpu->sigset = *sigset; 2498 } else 2499 vcpu->sigset_active = 0; 2500 return 0; 2501 } 2502 2503 static long kvm_vcpu_ioctl(struct file *filp, 2504 unsigned int ioctl, unsigned long arg) 2505 { 2506 struct kvm_vcpu *vcpu = filp->private_data; 2507 void __user *argp = (void __user *)arg; 2508 int r; 2509 struct kvm_fpu *fpu = NULL; 2510 struct kvm_sregs *kvm_sregs = NULL; 2511 2512 if (vcpu->kvm->mm != current->mm) 2513 return -EIO; 2514 2515 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2516 return -EINVAL; 2517 2518 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2519 /* 2520 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2521 * so vcpu_load() would break it. 2522 */ 2523 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2524 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2525 #endif 2526 2527 2528 r = vcpu_load(vcpu); 2529 if (r) 2530 return r; 2531 switch (ioctl) { 2532 case KVM_RUN: { 2533 struct pid *oldpid; 2534 r = -EINVAL; 2535 if (arg) 2536 goto out; 2537 oldpid = rcu_access_pointer(vcpu->pid); 2538 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2539 /* The thread running this VCPU changed. */ 2540 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2541 2542 rcu_assign_pointer(vcpu->pid, newpid); 2543 if (oldpid) 2544 synchronize_rcu(); 2545 put_pid(oldpid); 2546 } 2547 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2548 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2549 break; 2550 } 2551 case KVM_GET_REGS: { 2552 struct kvm_regs *kvm_regs; 2553 2554 r = -ENOMEM; 2555 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2556 if (!kvm_regs) 2557 goto out; 2558 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2559 if (r) 2560 goto out_free1; 2561 r = -EFAULT; 2562 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2563 goto out_free1; 2564 r = 0; 2565 out_free1: 2566 kfree(kvm_regs); 2567 break; 2568 } 2569 case KVM_SET_REGS: { 2570 struct kvm_regs *kvm_regs; 2571 2572 r = -ENOMEM; 2573 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2574 if (IS_ERR(kvm_regs)) { 2575 r = PTR_ERR(kvm_regs); 2576 goto out; 2577 } 2578 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2579 kfree(kvm_regs); 2580 break; 2581 } 2582 case KVM_GET_SREGS: { 2583 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2584 r = -ENOMEM; 2585 if (!kvm_sregs) 2586 goto out; 2587 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2588 if (r) 2589 goto out; 2590 r = -EFAULT; 2591 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2592 goto out; 2593 r = 0; 2594 break; 2595 } 2596 case KVM_SET_SREGS: { 2597 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2598 if (IS_ERR(kvm_sregs)) { 2599 r = PTR_ERR(kvm_sregs); 2600 kvm_sregs = NULL; 2601 goto out; 2602 } 2603 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2604 break; 2605 } 2606 case KVM_GET_MP_STATE: { 2607 struct kvm_mp_state mp_state; 2608 2609 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2610 if (r) 2611 goto out; 2612 r = -EFAULT; 2613 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2614 goto out; 2615 r = 0; 2616 break; 2617 } 2618 case KVM_SET_MP_STATE: { 2619 struct kvm_mp_state mp_state; 2620 2621 r = -EFAULT; 2622 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2623 goto out; 2624 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2625 break; 2626 } 2627 case KVM_TRANSLATE: { 2628 struct kvm_translation tr; 2629 2630 r = -EFAULT; 2631 if (copy_from_user(&tr, argp, sizeof(tr))) 2632 goto out; 2633 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2634 if (r) 2635 goto out; 2636 r = -EFAULT; 2637 if (copy_to_user(argp, &tr, sizeof(tr))) 2638 goto out; 2639 r = 0; 2640 break; 2641 } 2642 case KVM_SET_GUEST_DEBUG: { 2643 struct kvm_guest_debug dbg; 2644 2645 r = -EFAULT; 2646 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2647 goto out; 2648 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2649 break; 2650 } 2651 case KVM_SET_SIGNAL_MASK: { 2652 struct kvm_signal_mask __user *sigmask_arg = argp; 2653 struct kvm_signal_mask kvm_sigmask; 2654 sigset_t sigset, *p; 2655 2656 p = NULL; 2657 if (argp) { 2658 r = -EFAULT; 2659 if (copy_from_user(&kvm_sigmask, argp, 2660 sizeof(kvm_sigmask))) 2661 goto out; 2662 r = -EINVAL; 2663 if (kvm_sigmask.len != sizeof(sigset)) 2664 goto out; 2665 r = -EFAULT; 2666 if (copy_from_user(&sigset, sigmask_arg->sigset, 2667 sizeof(sigset))) 2668 goto out; 2669 p = &sigset; 2670 } 2671 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2672 break; 2673 } 2674 case KVM_GET_FPU: { 2675 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2676 r = -ENOMEM; 2677 if (!fpu) 2678 goto out; 2679 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2680 if (r) 2681 goto out; 2682 r = -EFAULT; 2683 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2684 goto out; 2685 r = 0; 2686 break; 2687 } 2688 case KVM_SET_FPU: { 2689 fpu = memdup_user(argp, sizeof(*fpu)); 2690 if (IS_ERR(fpu)) { 2691 r = PTR_ERR(fpu); 2692 fpu = NULL; 2693 goto out; 2694 } 2695 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2696 break; 2697 } 2698 default: 2699 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2700 } 2701 out: 2702 vcpu_put(vcpu); 2703 kfree(fpu); 2704 kfree(kvm_sregs); 2705 return r; 2706 } 2707 2708 #ifdef CONFIG_KVM_COMPAT 2709 static long kvm_vcpu_compat_ioctl(struct file *filp, 2710 unsigned int ioctl, unsigned long arg) 2711 { 2712 struct kvm_vcpu *vcpu = filp->private_data; 2713 void __user *argp = compat_ptr(arg); 2714 int r; 2715 2716 if (vcpu->kvm->mm != current->mm) 2717 return -EIO; 2718 2719 switch (ioctl) { 2720 case KVM_SET_SIGNAL_MASK: { 2721 struct kvm_signal_mask __user *sigmask_arg = argp; 2722 struct kvm_signal_mask kvm_sigmask; 2723 compat_sigset_t csigset; 2724 sigset_t sigset; 2725 2726 if (argp) { 2727 r = -EFAULT; 2728 if (copy_from_user(&kvm_sigmask, argp, 2729 sizeof(kvm_sigmask))) 2730 goto out; 2731 r = -EINVAL; 2732 if (kvm_sigmask.len != sizeof(csigset)) 2733 goto out; 2734 r = -EFAULT; 2735 if (copy_from_user(&csigset, sigmask_arg->sigset, 2736 sizeof(csigset))) 2737 goto out; 2738 sigset_from_compat(&sigset, &csigset); 2739 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2740 } else 2741 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2742 break; 2743 } 2744 default: 2745 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2746 } 2747 2748 out: 2749 return r; 2750 } 2751 #endif 2752 2753 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2754 int (*accessor)(struct kvm_device *dev, 2755 struct kvm_device_attr *attr), 2756 unsigned long arg) 2757 { 2758 struct kvm_device_attr attr; 2759 2760 if (!accessor) 2761 return -EPERM; 2762 2763 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2764 return -EFAULT; 2765 2766 return accessor(dev, &attr); 2767 } 2768 2769 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2770 unsigned long arg) 2771 { 2772 struct kvm_device *dev = filp->private_data; 2773 2774 switch (ioctl) { 2775 case KVM_SET_DEVICE_ATTR: 2776 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2777 case KVM_GET_DEVICE_ATTR: 2778 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2779 case KVM_HAS_DEVICE_ATTR: 2780 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2781 default: 2782 if (dev->ops->ioctl) 2783 return dev->ops->ioctl(dev, ioctl, arg); 2784 2785 return -ENOTTY; 2786 } 2787 } 2788 2789 static int kvm_device_release(struct inode *inode, struct file *filp) 2790 { 2791 struct kvm_device *dev = filp->private_data; 2792 struct kvm *kvm = dev->kvm; 2793 2794 kvm_put_kvm(kvm); 2795 return 0; 2796 } 2797 2798 static const struct file_operations kvm_device_fops = { 2799 .unlocked_ioctl = kvm_device_ioctl, 2800 #ifdef CONFIG_KVM_COMPAT 2801 .compat_ioctl = kvm_device_ioctl, 2802 #endif 2803 .release = kvm_device_release, 2804 }; 2805 2806 struct kvm_device *kvm_device_from_filp(struct file *filp) 2807 { 2808 if (filp->f_op != &kvm_device_fops) 2809 return NULL; 2810 2811 return filp->private_data; 2812 } 2813 2814 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2815 #ifdef CONFIG_KVM_MPIC 2816 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2817 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2818 #endif 2819 }; 2820 2821 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2822 { 2823 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2824 return -ENOSPC; 2825 2826 if (kvm_device_ops_table[type] != NULL) 2827 return -EEXIST; 2828 2829 kvm_device_ops_table[type] = ops; 2830 return 0; 2831 } 2832 2833 void kvm_unregister_device_ops(u32 type) 2834 { 2835 if (kvm_device_ops_table[type] != NULL) 2836 kvm_device_ops_table[type] = NULL; 2837 } 2838 2839 static int kvm_ioctl_create_device(struct kvm *kvm, 2840 struct kvm_create_device *cd) 2841 { 2842 struct kvm_device_ops *ops = NULL; 2843 struct kvm_device *dev; 2844 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2845 int ret; 2846 2847 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2848 return -ENODEV; 2849 2850 ops = kvm_device_ops_table[cd->type]; 2851 if (ops == NULL) 2852 return -ENODEV; 2853 2854 if (test) 2855 return 0; 2856 2857 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2858 if (!dev) 2859 return -ENOMEM; 2860 2861 dev->ops = ops; 2862 dev->kvm = kvm; 2863 2864 mutex_lock(&kvm->lock); 2865 ret = ops->create(dev, cd->type); 2866 if (ret < 0) { 2867 mutex_unlock(&kvm->lock); 2868 kfree(dev); 2869 return ret; 2870 } 2871 list_add(&dev->vm_node, &kvm->devices); 2872 mutex_unlock(&kvm->lock); 2873 2874 if (ops->init) 2875 ops->init(dev); 2876 2877 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2878 if (ret < 0) { 2879 mutex_lock(&kvm->lock); 2880 list_del(&dev->vm_node); 2881 mutex_unlock(&kvm->lock); 2882 ops->destroy(dev); 2883 return ret; 2884 } 2885 2886 kvm_get_kvm(kvm); 2887 cd->fd = ret; 2888 return 0; 2889 } 2890 2891 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2892 { 2893 switch (arg) { 2894 case KVM_CAP_USER_MEMORY: 2895 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2896 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2897 case KVM_CAP_INTERNAL_ERROR_DATA: 2898 #ifdef CONFIG_HAVE_KVM_MSI 2899 case KVM_CAP_SIGNAL_MSI: 2900 #endif 2901 #ifdef CONFIG_HAVE_KVM_IRQFD 2902 case KVM_CAP_IRQFD: 2903 case KVM_CAP_IRQFD_RESAMPLE: 2904 #endif 2905 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2906 case KVM_CAP_CHECK_EXTENSION_VM: 2907 return 1; 2908 #ifdef CONFIG_KVM_MMIO 2909 case KVM_CAP_COALESCED_MMIO: 2910 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2911 #endif 2912 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2913 case KVM_CAP_IRQ_ROUTING: 2914 return KVM_MAX_IRQ_ROUTES; 2915 #endif 2916 #if KVM_ADDRESS_SPACE_NUM > 1 2917 case KVM_CAP_MULTI_ADDRESS_SPACE: 2918 return KVM_ADDRESS_SPACE_NUM; 2919 #endif 2920 case KVM_CAP_MAX_VCPU_ID: 2921 return KVM_MAX_VCPU_ID; 2922 default: 2923 break; 2924 } 2925 return kvm_vm_ioctl_check_extension(kvm, arg); 2926 } 2927 2928 static long kvm_vm_ioctl(struct file *filp, 2929 unsigned int ioctl, unsigned long arg) 2930 { 2931 struct kvm *kvm = filp->private_data; 2932 void __user *argp = (void __user *)arg; 2933 int r; 2934 2935 if (kvm->mm != current->mm) 2936 return -EIO; 2937 switch (ioctl) { 2938 case KVM_CREATE_VCPU: 2939 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2940 break; 2941 case KVM_SET_USER_MEMORY_REGION: { 2942 struct kvm_userspace_memory_region kvm_userspace_mem; 2943 2944 r = -EFAULT; 2945 if (copy_from_user(&kvm_userspace_mem, argp, 2946 sizeof(kvm_userspace_mem))) 2947 goto out; 2948 2949 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2950 break; 2951 } 2952 case KVM_GET_DIRTY_LOG: { 2953 struct kvm_dirty_log log; 2954 2955 r = -EFAULT; 2956 if (copy_from_user(&log, argp, sizeof(log))) 2957 goto out; 2958 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2959 break; 2960 } 2961 #ifdef CONFIG_KVM_MMIO 2962 case KVM_REGISTER_COALESCED_MMIO: { 2963 struct kvm_coalesced_mmio_zone zone; 2964 2965 r = -EFAULT; 2966 if (copy_from_user(&zone, argp, sizeof(zone))) 2967 goto out; 2968 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2969 break; 2970 } 2971 case KVM_UNREGISTER_COALESCED_MMIO: { 2972 struct kvm_coalesced_mmio_zone zone; 2973 2974 r = -EFAULT; 2975 if (copy_from_user(&zone, argp, sizeof(zone))) 2976 goto out; 2977 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2978 break; 2979 } 2980 #endif 2981 case KVM_IRQFD: { 2982 struct kvm_irqfd data; 2983 2984 r = -EFAULT; 2985 if (copy_from_user(&data, argp, sizeof(data))) 2986 goto out; 2987 r = kvm_irqfd(kvm, &data); 2988 break; 2989 } 2990 case KVM_IOEVENTFD: { 2991 struct kvm_ioeventfd data; 2992 2993 r = -EFAULT; 2994 if (copy_from_user(&data, argp, sizeof(data))) 2995 goto out; 2996 r = kvm_ioeventfd(kvm, &data); 2997 break; 2998 } 2999 #ifdef CONFIG_HAVE_KVM_MSI 3000 case KVM_SIGNAL_MSI: { 3001 struct kvm_msi msi; 3002 3003 r = -EFAULT; 3004 if (copy_from_user(&msi, argp, sizeof(msi))) 3005 goto out; 3006 r = kvm_send_userspace_msi(kvm, &msi); 3007 break; 3008 } 3009 #endif 3010 #ifdef __KVM_HAVE_IRQ_LINE 3011 case KVM_IRQ_LINE_STATUS: 3012 case KVM_IRQ_LINE: { 3013 struct kvm_irq_level irq_event; 3014 3015 r = -EFAULT; 3016 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3017 goto out; 3018 3019 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3020 ioctl == KVM_IRQ_LINE_STATUS); 3021 if (r) 3022 goto out; 3023 3024 r = -EFAULT; 3025 if (ioctl == KVM_IRQ_LINE_STATUS) { 3026 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3027 goto out; 3028 } 3029 3030 r = 0; 3031 break; 3032 } 3033 #endif 3034 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3035 case KVM_SET_GSI_ROUTING: { 3036 struct kvm_irq_routing routing; 3037 struct kvm_irq_routing __user *urouting; 3038 struct kvm_irq_routing_entry *entries = NULL; 3039 3040 r = -EFAULT; 3041 if (copy_from_user(&routing, argp, sizeof(routing))) 3042 goto out; 3043 r = -EINVAL; 3044 if (!kvm_arch_can_set_irq_routing(kvm)) 3045 goto out; 3046 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3047 goto out; 3048 if (routing.flags) 3049 goto out; 3050 if (routing.nr) { 3051 r = -ENOMEM; 3052 entries = vmalloc(routing.nr * sizeof(*entries)); 3053 if (!entries) 3054 goto out; 3055 r = -EFAULT; 3056 urouting = argp; 3057 if (copy_from_user(entries, urouting->entries, 3058 routing.nr * sizeof(*entries))) 3059 goto out_free_irq_routing; 3060 } 3061 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3062 routing.flags); 3063 out_free_irq_routing: 3064 vfree(entries); 3065 break; 3066 } 3067 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3068 case KVM_CREATE_DEVICE: { 3069 struct kvm_create_device cd; 3070 3071 r = -EFAULT; 3072 if (copy_from_user(&cd, argp, sizeof(cd))) 3073 goto out; 3074 3075 r = kvm_ioctl_create_device(kvm, &cd); 3076 if (r) 3077 goto out; 3078 3079 r = -EFAULT; 3080 if (copy_to_user(argp, &cd, sizeof(cd))) 3081 goto out; 3082 3083 r = 0; 3084 break; 3085 } 3086 case KVM_CHECK_EXTENSION: 3087 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3088 break; 3089 default: 3090 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3091 } 3092 out: 3093 return r; 3094 } 3095 3096 #ifdef CONFIG_KVM_COMPAT 3097 struct compat_kvm_dirty_log { 3098 __u32 slot; 3099 __u32 padding1; 3100 union { 3101 compat_uptr_t dirty_bitmap; /* one bit per page */ 3102 __u64 padding2; 3103 }; 3104 }; 3105 3106 static long kvm_vm_compat_ioctl(struct file *filp, 3107 unsigned int ioctl, unsigned long arg) 3108 { 3109 struct kvm *kvm = filp->private_data; 3110 int r; 3111 3112 if (kvm->mm != current->mm) 3113 return -EIO; 3114 switch (ioctl) { 3115 case KVM_GET_DIRTY_LOG: { 3116 struct compat_kvm_dirty_log compat_log; 3117 struct kvm_dirty_log log; 3118 3119 if (copy_from_user(&compat_log, (void __user *)arg, 3120 sizeof(compat_log))) 3121 return -EFAULT; 3122 log.slot = compat_log.slot; 3123 log.padding1 = compat_log.padding1; 3124 log.padding2 = compat_log.padding2; 3125 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3126 3127 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3128 break; 3129 } 3130 default: 3131 r = kvm_vm_ioctl(filp, ioctl, arg); 3132 } 3133 return r; 3134 } 3135 #endif 3136 3137 static struct file_operations kvm_vm_fops = { 3138 .release = kvm_vm_release, 3139 .unlocked_ioctl = kvm_vm_ioctl, 3140 #ifdef CONFIG_KVM_COMPAT 3141 .compat_ioctl = kvm_vm_compat_ioctl, 3142 #endif 3143 .llseek = noop_llseek, 3144 }; 3145 3146 static int kvm_dev_ioctl_create_vm(unsigned long type) 3147 { 3148 int r; 3149 struct kvm *kvm; 3150 struct file *file; 3151 3152 kvm = kvm_create_vm(type); 3153 if (IS_ERR(kvm)) 3154 return PTR_ERR(kvm); 3155 #ifdef CONFIG_KVM_MMIO 3156 r = kvm_coalesced_mmio_init(kvm); 3157 if (r < 0) { 3158 kvm_put_kvm(kvm); 3159 return r; 3160 } 3161 #endif 3162 r = get_unused_fd_flags(O_CLOEXEC); 3163 if (r < 0) { 3164 kvm_put_kvm(kvm); 3165 return r; 3166 } 3167 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3168 if (IS_ERR(file)) { 3169 put_unused_fd(r); 3170 kvm_put_kvm(kvm); 3171 return PTR_ERR(file); 3172 } 3173 3174 /* 3175 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3176 * already set, with ->release() being kvm_vm_release(). In error 3177 * cases it will be called by the final fput(file) and will take 3178 * care of doing kvm_put_kvm(kvm). 3179 */ 3180 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3181 put_unused_fd(r); 3182 fput(file); 3183 return -ENOMEM; 3184 } 3185 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3186 3187 fd_install(r, file); 3188 return r; 3189 } 3190 3191 static long kvm_dev_ioctl(struct file *filp, 3192 unsigned int ioctl, unsigned long arg) 3193 { 3194 long r = -EINVAL; 3195 3196 switch (ioctl) { 3197 case KVM_GET_API_VERSION: 3198 if (arg) 3199 goto out; 3200 r = KVM_API_VERSION; 3201 break; 3202 case KVM_CREATE_VM: 3203 r = kvm_dev_ioctl_create_vm(arg); 3204 break; 3205 case KVM_CHECK_EXTENSION: 3206 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3207 break; 3208 case KVM_GET_VCPU_MMAP_SIZE: 3209 if (arg) 3210 goto out; 3211 r = PAGE_SIZE; /* struct kvm_run */ 3212 #ifdef CONFIG_X86 3213 r += PAGE_SIZE; /* pio data page */ 3214 #endif 3215 #ifdef CONFIG_KVM_MMIO 3216 r += PAGE_SIZE; /* coalesced mmio ring page */ 3217 #endif 3218 break; 3219 case KVM_TRACE_ENABLE: 3220 case KVM_TRACE_PAUSE: 3221 case KVM_TRACE_DISABLE: 3222 r = -EOPNOTSUPP; 3223 break; 3224 default: 3225 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3226 } 3227 out: 3228 return r; 3229 } 3230 3231 static struct file_operations kvm_chardev_ops = { 3232 .unlocked_ioctl = kvm_dev_ioctl, 3233 .compat_ioctl = kvm_dev_ioctl, 3234 .llseek = noop_llseek, 3235 }; 3236 3237 static struct miscdevice kvm_dev = { 3238 KVM_MINOR, 3239 "kvm", 3240 &kvm_chardev_ops, 3241 }; 3242 3243 static void hardware_enable_nolock(void *junk) 3244 { 3245 int cpu = raw_smp_processor_id(); 3246 int r; 3247 3248 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3249 return; 3250 3251 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3252 3253 r = kvm_arch_hardware_enable(); 3254 3255 if (r) { 3256 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3257 atomic_inc(&hardware_enable_failed); 3258 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3259 } 3260 } 3261 3262 static int kvm_starting_cpu(unsigned int cpu) 3263 { 3264 raw_spin_lock(&kvm_count_lock); 3265 if (kvm_usage_count) 3266 hardware_enable_nolock(NULL); 3267 raw_spin_unlock(&kvm_count_lock); 3268 return 0; 3269 } 3270 3271 static void hardware_disable_nolock(void *junk) 3272 { 3273 int cpu = raw_smp_processor_id(); 3274 3275 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3276 return; 3277 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3278 kvm_arch_hardware_disable(); 3279 } 3280 3281 static int kvm_dying_cpu(unsigned int cpu) 3282 { 3283 raw_spin_lock(&kvm_count_lock); 3284 if (kvm_usage_count) 3285 hardware_disable_nolock(NULL); 3286 raw_spin_unlock(&kvm_count_lock); 3287 return 0; 3288 } 3289 3290 static void hardware_disable_all_nolock(void) 3291 { 3292 BUG_ON(!kvm_usage_count); 3293 3294 kvm_usage_count--; 3295 if (!kvm_usage_count) 3296 on_each_cpu(hardware_disable_nolock, NULL, 1); 3297 } 3298 3299 static void hardware_disable_all(void) 3300 { 3301 raw_spin_lock(&kvm_count_lock); 3302 hardware_disable_all_nolock(); 3303 raw_spin_unlock(&kvm_count_lock); 3304 } 3305 3306 static int hardware_enable_all(void) 3307 { 3308 int r = 0; 3309 3310 raw_spin_lock(&kvm_count_lock); 3311 3312 kvm_usage_count++; 3313 if (kvm_usage_count == 1) { 3314 atomic_set(&hardware_enable_failed, 0); 3315 on_each_cpu(hardware_enable_nolock, NULL, 1); 3316 3317 if (atomic_read(&hardware_enable_failed)) { 3318 hardware_disable_all_nolock(); 3319 r = -EBUSY; 3320 } 3321 } 3322 3323 raw_spin_unlock(&kvm_count_lock); 3324 3325 return r; 3326 } 3327 3328 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3329 void *v) 3330 { 3331 /* 3332 * Some (well, at least mine) BIOSes hang on reboot if 3333 * in vmx root mode. 3334 * 3335 * And Intel TXT required VMX off for all cpu when system shutdown. 3336 */ 3337 pr_info("kvm: exiting hardware virtualization\n"); 3338 kvm_rebooting = true; 3339 on_each_cpu(hardware_disable_nolock, NULL, 1); 3340 return NOTIFY_OK; 3341 } 3342 3343 static struct notifier_block kvm_reboot_notifier = { 3344 .notifier_call = kvm_reboot, 3345 .priority = 0, 3346 }; 3347 3348 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3349 { 3350 int i; 3351 3352 for (i = 0; i < bus->dev_count; i++) { 3353 struct kvm_io_device *pos = bus->range[i].dev; 3354 3355 kvm_iodevice_destructor(pos); 3356 } 3357 kfree(bus); 3358 } 3359 3360 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3361 const struct kvm_io_range *r2) 3362 { 3363 gpa_t addr1 = r1->addr; 3364 gpa_t addr2 = r2->addr; 3365 3366 if (addr1 < addr2) 3367 return -1; 3368 3369 /* If r2->len == 0, match the exact address. If r2->len != 0, 3370 * accept any overlapping write. Any order is acceptable for 3371 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3372 * we process all of them. 3373 */ 3374 if (r2->len) { 3375 addr1 += r1->len; 3376 addr2 += r2->len; 3377 } 3378 3379 if (addr1 > addr2) 3380 return 1; 3381 3382 return 0; 3383 } 3384 3385 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3386 { 3387 return kvm_io_bus_cmp(p1, p2); 3388 } 3389 3390 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3391 gpa_t addr, int len) 3392 { 3393 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3394 .addr = addr, 3395 .len = len, 3396 .dev = dev, 3397 }; 3398 3399 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3400 kvm_io_bus_sort_cmp, NULL); 3401 3402 return 0; 3403 } 3404 3405 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3406 gpa_t addr, int len) 3407 { 3408 struct kvm_io_range *range, key; 3409 int off; 3410 3411 key = (struct kvm_io_range) { 3412 .addr = addr, 3413 .len = len, 3414 }; 3415 3416 range = bsearch(&key, bus->range, bus->dev_count, 3417 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3418 if (range == NULL) 3419 return -ENOENT; 3420 3421 off = range - bus->range; 3422 3423 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3424 off--; 3425 3426 return off; 3427 } 3428 3429 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3430 struct kvm_io_range *range, const void *val) 3431 { 3432 int idx; 3433 3434 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3435 if (idx < 0) 3436 return -EOPNOTSUPP; 3437 3438 while (idx < bus->dev_count && 3439 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3440 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3441 range->len, val)) 3442 return idx; 3443 idx++; 3444 } 3445 3446 return -EOPNOTSUPP; 3447 } 3448 3449 /* kvm_io_bus_write - called under kvm->slots_lock */ 3450 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3451 int len, const void *val) 3452 { 3453 struct kvm_io_bus *bus; 3454 struct kvm_io_range range; 3455 int r; 3456 3457 range = (struct kvm_io_range) { 3458 .addr = addr, 3459 .len = len, 3460 }; 3461 3462 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3463 if (!bus) 3464 return -ENOMEM; 3465 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3466 return r < 0 ? r : 0; 3467 } 3468 3469 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3470 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3471 gpa_t addr, int len, const void *val, long cookie) 3472 { 3473 struct kvm_io_bus *bus; 3474 struct kvm_io_range range; 3475 3476 range = (struct kvm_io_range) { 3477 .addr = addr, 3478 .len = len, 3479 }; 3480 3481 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3482 if (!bus) 3483 return -ENOMEM; 3484 3485 /* First try the device referenced by cookie. */ 3486 if ((cookie >= 0) && (cookie < bus->dev_count) && 3487 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3488 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3489 val)) 3490 return cookie; 3491 3492 /* 3493 * cookie contained garbage; fall back to search and return the 3494 * correct cookie value. 3495 */ 3496 return __kvm_io_bus_write(vcpu, bus, &range, val); 3497 } 3498 3499 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3500 struct kvm_io_range *range, void *val) 3501 { 3502 int idx; 3503 3504 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3505 if (idx < 0) 3506 return -EOPNOTSUPP; 3507 3508 while (idx < bus->dev_count && 3509 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3510 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3511 range->len, val)) 3512 return idx; 3513 idx++; 3514 } 3515 3516 return -EOPNOTSUPP; 3517 } 3518 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3519 3520 /* kvm_io_bus_read - called under kvm->slots_lock */ 3521 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3522 int len, void *val) 3523 { 3524 struct kvm_io_bus *bus; 3525 struct kvm_io_range range; 3526 int r; 3527 3528 range = (struct kvm_io_range) { 3529 .addr = addr, 3530 .len = len, 3531 }; 3532 3533 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3534 if (!bus) 3535 return -ENOMEM; 3536 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3537 return r < 0 ? r : 0; 3538 } 3539 3540 3541 /* Caller must hold slots_lock. */ 3542 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3543 int len, struct kvm_io_device *dev) 3544 { 3545 struct kvm_io_bus *new_bus, *bus; 3546 3547 bus = kvm_get_bus(kvm, bus_idx); 3548 if (!bus) 3549 return -ENOMEM; 3550 3551 /* exclude ioeventfd which is limited by maximum fd */ 3552 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3553 return -ENOSPC; 3554 3555 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3556 sizeof(struct kvm_io_range)), GFP_KERNEL); 3557 if (!new_bus) 3558 return -ENOMEM; 3559 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3560 sizeof(struct kvm_io_range))); 3561 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3562 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3563 synchronize_srcu_expedited(&kvm->srcu); 3564 kfree(bus); 3565 3566 return 0; 3567 } 3568 3569 /* Caller must hold slots_lock. */ 3570 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3571 struct kvm_io_device *dev) 3572 { 3573 int i; 3574 struct kvm_io_bus *new_bus, *bus; 3575 3576 bus = kvm_get_bus(kvm, bus_idx); 3577 if (!bus) 3578 return; 3579 3580 for (i = 0; i < bus->dev_count; i++) 3581 if (bus->range[i].dev == dev) { 3582 break; 3583 } 3584 3585 if (i == bus->dev_count) 3586 return; 3587 3588 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3589 sizeof(struct kvm_io_range)), GFP_KERNEL); 3590 if (!new_bus) { 3591 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3592 goto broken; 3593 } 3594 3595 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3596 new_bus->dev_count--; 3597 memcpy(new_bus->range + i, bus->range + i + 1, 3598 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3599 3600 broken: 3601 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3602 synchronize_srcu_expedited(&kvm->srcu); 3603 kfree(bus); 3604 return; 3605 } 3606 3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3608 gpa_t addr) 3609 { 3610 struct kvm_io_bus *bus; 3611 int dev_idx, srcu_idx; 3612 struct kvm_io_device *iodev = NULL; 3613 3614 srcu_idx = srcu_read_lock(&kvm->srcu); 3615 3616 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3617 if (!bus) 3618 goto out_unlock; 3619 3620 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3621 if (dev_idx < 0) 3622 goto out_unlock; 3623 3624 iodev = bus->range[dev_idx].dev; 3625 3626 out_unlock: 3627 srcu_read_unlock(&kvm->srcu, srcu_idx); 3628 3629 return iodev; 3630 } 3631 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3632 3633 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3634 int (*get)(void *, u64 *), int (*set)(void *, u64), 3635 const char *fmt) 3636 { 3637 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3638 inode->i_private; 3639 3640 /* The debugfs files are a reference to the kvm struct which 3641 * is still valid when kvm_destroy_vm is called. 3642 * To avoid the race between open and the removal of the debugfs 3643 * directory we test against the users count. 3644 */ 3645 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3646 return -ENOENT; 3647 3648 if (simple_attr_open(inode, file, get, set, fmt)) { 3649 kvm_put_kvm(stat_data->kvm); 3650 return -ENOMEM; 3651 } 3652 3653 return 0; 3654 } 3655 3656 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3657 { 3658 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3659 inode->i_private; 3660 3661 simple_attr_release(inode, file); 3662 kvm_put_kvm(stat_data->kvm); 3663 3664 return 0; 3665 } 3666 3667 static int vm_stat_get_per_vm(void *data, u64 *val) 3668 { 3669 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3670 3671 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3672 3673 return 0; 3674 } 3675 3676 static int vm_stat_clear_per_vm(void *data, u64 val) 3677 { 3678 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3679 3680 if (val) 3681 return -EINVAL; 3682 3683 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3684 3685 return 0; 3686 } 3687 3688 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3689 { 3690 __simple_attr_check_format("%llu\n", 0ull); 3691 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3692 vm_stat_clear_per_vm, "%llu\n"); 3693 } 3694 3695 static const struct file_operations vm_stat_get_per_vm_fops = { 3696 .owner = THIS_MODULE, 3697 .open = vm_stat_get_per_vm_open, 3698 .release = kvm_debugfs_release, 3699 .read = simple_attr_read, 3700 .write = simple_attr_write, 3701 .llseek = no_llseek, 3702 }; 3703 3704 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3705 { 3706 int i; 3707 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3708 struct kvm_vcpu *vcpu; 3709 3710 *val = 0; 3711 3712 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3713 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3714 3715 return 0; 3716 } 3717 3718 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3719 { 3720 int i; 3721 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3722 struct kvm_vcpu *vcpu; 3723 3724 if (val) 3725 return -EINVAL; 3726 3727 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3728 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3729 3730 return 0; 3731 } 3732 3733 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3734 { 3735 __simple_attr_check_format("%llu\n", 0ull); 3736 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3737 vcpu_stat_clear_per_vm, "%llu\n"); 3738 } 3739 3740 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3741 .owner = THIS_MODULE, 3742 .open = vcpu_stat_get_per_vm_open, 3743 .release = kvm_debugfs_release, 3744 .read = simple_attr_read, 3745 .write = simple_attr_write, 3746 .llseek = no_llseek, 3747 }; 3748 3749 static const struct file_operations *stat_fops_per_vm[] = { 3750 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3751 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3752 }; 3753 3754 static int vm_stat_get(void *_offset, u64 *val) 3755 { 3756 unsigned offset = (long)_offset; 3757 struct kvm *kvm; 3758 struct kvm_stat_data stat_tmp = {.offset = offset}; 3759 u64 tmp_val; 3760 3761 *val = 0; 3762 spin_lock(&kvm_lock); 3763 list_for_each_entry(kvm, &vm_list, vm_list) { 3764 stat_tmp.kvm = kvm; 3765 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3766 *val += tmp_val; 3767 } 3768 spin_unlock(&kvm_lock); 3769 return 0; 3770 } 3771 3772 static int vm_stat_clear(void *_offset, u64 val) 3773 { 3774 unsigned offset = (long)_offset; 3775 struct kvm *kvm; 3776 struct kvm_stat_data stat_tmp = {.offset = offset}; 3777 3778 if (val) 3779 return -EINVAL; 3780 3781 spin_lock(&kvm_lock); 3782 list_for_each_entry(kvm, &vm_list, vm_list) { 3783 stat_tmp.kvm = kvm; 3784 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3785 } 3786 spin_unlock(&kvm_lock); 3787 3788 return 0; 3789 } 3790 3791 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3792 3793 static int vcpu_stat_get(void *_offset, u64 *val) 3794 { 3795 unsigned offset = (long)_offset; 3796 struct kvm *kvm; 3797 struct kvm_stat_data stat_tmp = {.offset = offset}; 3798 u64 tmp_val; 3799 3800 *val = 0; 3801 spin_lock(&kvm_lock); 3802 list_for_each_entry(kvm, &vm_list, vm_list) { 3803 stat_tmp.kvm = kvm; 3804 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3805 *val += tmp_val; 3806 } 3807 spin_unlock(&kvm_lock); 3808 return 0; 3809 } 3810 3811 static int vcpu_stat_clear(void *_offset, u64 val) 3812 { 3813 unsigned offset = (long)_offset; 3814 struct kvm *kvm; 3815 struct kvm_stat_data stat_tmp = {.offset = offset}; 3816 3817 if (val) 3818 return -EINVAL; 3819 3820 spin_lock(&kvm_lock); 3821 list_for_each_entry(kvm, &vm_list, vm_list) { 3822 stat_tmp.kvm = kvm; 3823 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3824 } 3825 spin_unlock(&kvm_lock); 3826 3827 return 0; 3828 } 3829 3830 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3831 "%llu\n"); 3832 3833 static const struct file_operations *stat_fops[] = { 3834 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3835 [KVM_STAT_VM] = &vm_stat_fops, 3836 }; 3837 3838 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3839 { 3840 struct kobj_uevent_env *env; 3841 unsigned long long created, active; 3842 3843 if (!kvm_dev.this_device || !kvm) 3844 return; 3845 3846 spin_lock(&kvm_lock); 3847 if (type == KVM_EVENT_CREATE_VM) { 3848 kvm_createvm_count++; 3849 kvm_active_vms++; 3850 } else if (type == KVM_EVENT_DESTROY_VM) { 3851 kvm_active_vms--; 3852 } 3853 created = kvm_createvm_count; 3854 active = kvm_active_vms; 3855 spin_unlock(&kvm_lock); 3856 3857 env = kzalloc(sizeof(*env), GFP_KERNEL); 3858 if (!env) 3859 return; 3860 3861 add_uevent_var(env, "CREATED=%llu", created); 3862 add_uevent_var(env, "COUNT=%llu", active); 3863 3864 if (type == KVM_EVENT_CREATE_VM) { 3865 add_uevent_var(env, "EVENT=create"); 3866 kvm->userspace_pid = task_pid_nr(current); 3867 } else if (type == KVM_EVENT_DESTROY_VM) { 3868 add_uevent_var(env, "EVENT=destroy"); 3869 } 3870 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 3871 3872 if (kvm->debugfs_dentry) { 3873 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 3874 3875 if (p) { 3876 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 3877 if (!IS_ERR(tmp)) 3878 add_uevent_var(env, "STATS_PATH=%s", tmp); 3879 kfree(p); 3880 } 3881 } 3882 /* no need for checks, since we are adding at most only 5 keys */ 3883 env->envp[env->envp_idx++] = NULL; 3884 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3885 kfree(env); 3886 } 3887 3888 static int kvm_init_debug(void) 3889 { 3890 int r = -EEXIST; 3891 struct kvm_stats_debugfs_item *p; 3892 3893 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3894 if (kvm_debugfs_dir == NULL) 3895 goto out; 3896 3897 kvm_debugfs_num_entries = 0; 3898 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3899 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3900 (void *)(long)p->offset, 3901 stat_fops[p->kind])) 3902 goto out_dir; 3903 } 3904 3905 return 0; 3906 3907 out_dir: 3908 debugfs_remove_recursive(kvm_debugfs_dir); 3909 out: 3910 return r; 3911 } 3912 3913 static int kvm_suspend(void) 3914 { 3915 if (kvm_usage_count) 3916 hardware_disable_nolock(NULL); 3917 return 0; 3918 } 3919 3920 static void kvm_resume(void) 3921 { 3922 if (kvm_usage_count) { 3923 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3924 hardware_enable_nolock(NULL); 3925 } 3926 } 3927 3928 static struct syscore_ops kvm_syscore_ops = { 3929 .suspend = kvm_suspend, 3930 .resume = kvm_resume, 3931 }; 3932 3933 static inline 3934 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3935 { 3936 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3937 } 3938 3939 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3940 { 3941 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3942 3943 if (vcpu->preempted) 3944 vcpu->preempted = false; 3945 3946 kvm_arch_sched_in(vcpu, cpu); 3947 3948 kvm_arch_vcpu_load(vcpu, cpu); 3949 } 3950 3951 static void kvm_sched_out(struct preempt_notifier *pn, 3952 struct task_struct *next) 3953 { 3954 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3955 3956 if (current->state == TASK_RUNNING) 3957 vcpu->preempted = true; 3958 kvm_arch_vcpu_put(vcpu); 3959 } 3960 3961 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3962 struct module *module) 3963 { 3964 int r; 3965 int cpu; 3966 3967 r = kvm_arch_init(opaque); 3968 if (r) 3969 goto out_fail; 3970 3971 /* 3972 * kvm_arch_init makes sure there's at most one caller 3973 * for architectures that support multiple implementations, 3974 * like intel and amd on x86. 3975 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3976 * conflicts in case kvm is already setup for another implementation. 3977 */ 3978 r = kvm_irqfd_init(); 3979 if (r) 3980 goto out_irqfd; 3981 3982 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3983 r = -ENOMEM; 3984 goto out_free_0; 3985 } 3986 3987 r = kvm_arch_hardware_setup(); 3988 if (r < 0) 3989 goto out_free_0a; 3990 3991 for_each_online_cpu(cpu) { 3992 smp_call_function_single(cpu, 3993 kvm_arch_check_processor_compat, 3994 &r, 1); 3995 if (r < 0) 3996 goto out_free_1; 3997 } 3998 3999 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4000 kvm_starting_cpu, kvm_dying_cpu); 4001 if (r) 4002 goto out_free_2; 4003 register_reboot_notifier(&kvm_reboot_notifier); 4004 4005 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4006 if (!vcpu_align) 4007 vcpu_align = __alignof__(struct kvm_vcpu); 4008 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 4009 0, NULL); 4010 if (!kvm_vcpu_cache) { 4011 r = -ENOMEM; 4012 goto out_free_3; 4013 } 4014 4015 r = kvm_async_pf_init(); 4016 if (r) 4017 goto out_free; 4018 4019 kvm_chardev_ops.owner = module; 4020 kvm_vm_fops.owner = module; 4021 kvm_vcpu_fops.owner = module; 4022 4023 r = misc_register(&kvm_dev); 4024 if (r) { 4025 pr_err("kvm: misc device register failed\n"); 4026 goto out_unreg; 4027 } 4028 4029 register_syscore_ops(&kvm_syscore_ops); 4030 4031 kvm_preempt_ops.sched_in = kvm_sched_in; 4032 kvm_preempt_ops.sched_out = kvm_sched_out; 4033 4034 r = kvm_init_debug(); 4035 if (r) { 4036 pr_err("kvm: create debugfs files failed\n"); 4037 goto out_undebugfs; 4038 } 4039 4040 r = kvm_vfio_ops_init(); 4041 WARN_ON(r); 4042 4043 return 0; 4044 4045 out_undebugfs: 4046 unregister_syscore_ops(&kvm_syscore_ops); 4047 misc_deregister(&kvm_dev); 4048 out_unreg: 4049 kvm_async_pf_deinit(); 4050 out_free: 4051 kmem_cache_destroy(kvm_vcpu_cache); 4052 out_free_3: 4053 unregister_reboot_notifier(&kvm_reboot_notifier); 4054 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4055 out_free_2: 4056 out_free_1: 4057 kvm_arch_hardware_unsetup(); 4058 out_free_0a: 4059 free_cpumask_var(cpus_hardware_enabled); 4060 out_free_0: 4061 kvm_irqfd_exit(); 4062 out_irqfd: 4063 kvm_arch_exit(); 4064 out_fail: 4065 return r; 4066 } 4067 EXPORT_SYMBOL_GPL(kvm_init); 4068 4069 void kvm_exit(void) 4070 { 4071 debugfs_remove_recursive(kvm_debugfs_dir); 4072 misc_deregister(&kvm_dev); 4073 kmem_cache_destroy(kvm_vcpu_cache); 4074 kvm_async_pf_deinit(); 4075 unregister_syscore_ops(&kvm_syscore_ops); 4076 unregister_reboot_notifier(&kvm_reboot_notifier); 4077 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4078 on_each_cpu(hardware_disable_nolock, NULL, 1); 4079 kvm_arch_hardware_unsetup(); 4080 kvm_arch_exit(); 4081 kvm_irqfd_exit(); 4082 free_cpumask_var(cpus_hardware_enabled); 4083 kvm_vfio_ops_exit(); 4084 } 4085 EXPORT_SYMBOL_GPL(kvm_exit); 4086