1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #define KVM_COMPAT(c) .compat_ioctl = (c) 120 #else 121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg) { return -EINVAL; } 123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 124 #endif 125 static int hardware_enable_all(void); 126 static void hardware_disable_all(void); 127 128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 129 130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 131 132 __visible bool kvm_rebooting; 133 EXPORT_SYMBOL_GPL(kvm_rebooting); 134 135 static bool largepages_enabled = true; 136 137 #define KVM_EVENT_CREATE_VM 0 138 #define KVM_EVENT_DESTROY_VM 1 139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 140 static unsigned long long kvm_createvm_count; 141 static unsigned long long kvm_active_vms; 142 143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 144 unsigned long start, unsigned long end, bool blockable) 145 { 146 return 0; 147 } 148 149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 150 { 151 if (pfn_valid(pfn)) 152 return PageReserved(pfn_to_page(pfn)); 153 154 return true; 155 } 156 157 /* 158 * Switches to specified vcpu, until a matching vcpu_put() 159 */ 160 void vcpu_load(struct kvm_vcpu *vcpu) 161 { 162 int cpu = get_cpu(); 163 preempt_notifier_register(&vcpu->preempt_notifier); 164 kvm_arch_vcpu_load(vcpu, cpu); 165 put_cpu(); 166 } 167 EXPORT_SYMBOL_GPL(vcpu_load); 168 169 void vcpu_put(struct kvm_vcpu *vcpu) 170 { 171 preempt_disable(); 172 kvm_arch_vcpu_put(vcpu); 173 preempt_notifier_unregister(&vcpu->preempt_notifier); 174 preempt_enable(); 175 } 176 EXPORT_SYMBOL_GPL(vcpu_put); 177 178 /* TODO: merge with kvm_arch_vcpu_should_kick */ 179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 180 { 181 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 182 183 /* 184 * We need to wait for the VCPU to reenable interrupts and get out of 185 * READING_SHADOW_PAGE_TABLES mode. 186 */ 187 if (req & KVM_REQUEST_WAIT) 188 return mode != OUTSIDE_GUEST_MODE; 189 190 /* 191 * Need to kick a running VCPU, but otherwise there is nothing to do. 192 */ 193 return mode == IN_GUEST_MODE; 194 } 195 196 static void ack_flush(void *_completed) 197 { 198 } 199 200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 201 { 202 if (unlikely(!cpus)) 203 cpus = cpu_online_mask; 204 205 if (cpumask_empty(cpus)) 206 return false; 207 208 smp_call_function_many(cpus, ack_flush, NULL, wait); 209 return true; 210 } 211 212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 213 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 214 { 215 int i, cpu, me; 216 struct kvm_vcpu *vcpu; 217 bool called; 218 219 me = get_cpu(); 220 221 kvm_for_each_vcpu(i, vcpu, kvm) { 222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 223 continue; 224 225 kvm_make_request(req, vcpu); 226 cpu = vcpu->cpu; 227 228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 229 continue; 230 231 if (tmp != NULL && cpu != -1 && cpu != me && 232 kvm_request_needs_ipi(vcpu, req)) 233 __cpumask_set_cpu(cpu, tmp); 234 } 235 236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 237 put_cpu(); 238 239 return called; 240 } 241 242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 243 { 244 cpumask_var_t cpus; 245 bool called; 246 247 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 248 249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 250 251 free_cpumask_var(cpus); 252 return called; 253 } 254 255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 256 void kvm_flush_remote_tlbs(struct kvm *kvm) 257 { 258 /* 259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 260 * kvm_make_all_cpus_request. 261 */ 262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 263 264 /* 265 * We want to publish modifications to the page tables before reading 266 * mode. Pairs with a memory barrier in arch-specific code. 267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 268 * and smp_mb in walk_shadow_page_lockless_begin/end. 269 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 270 * 271 * There is already an smp_mb__after_atomic() before 272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 273 * barrier here. 274 */ 275 if (!kvm_arch_flush_remote_tlb(kvm) 276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 277 ++kvm->stat.remote_tlb_flush; 278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 279 } 280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 281 #endif 282 283 void kvm_reload_remote_mmus(struct kvm *kvm) 284 { 285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 286 } 287 288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 289 { 290 struct page *page; 291 int r; 292 293 mutex_init(&vcpu->mutex); 294 vcpu->cpu = -1; 295 vcpu->kvm = kvm; 296 vcpu->vcpu_id = id; 297 vcpu->pid = NULL; 298 init_swait_queue_head(&vcpu->wq); 299 kvm_async_pf_vcpu_init(vcpu); 300 301 vcpu->pre_pcpu = -1; 302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 303 304 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 305 if (!page) { 306 r = -ENOMEM; 307 goto fail; 308 } 309 vcpu->run = page_address(page); 310 311 kvm_vcpu_set_in_spin_loop(vcpu, false); 312 kvm_vcpu_set_dy_eligible(vcpu, false); 313 vcpu->preempted = false; 314 315 r = kvm_arch_vcpu_init(vcpu); 316 if (r < 0) 317 goto fail_free_run; 318 return 0; 319 320 fail_free_run: 321 free_page((unsigned long)vcpu->run); 322 fail: 323 return r; 324 } 325 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 326 327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 328 { 329 /* 330 * no need for rcu_read_lock as VCPU_RUN is the only place that 331 * will change the vcpu->pid pointer and on uninit all file 332 * descriptors are already gone. 333 */ 334 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 335 kvm_arch_vcpu_uninit(vcpu); 336 free_page((unsigned long)vcpu->run); 337 } 338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 339 340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 342 { 343 return container_of(mn, struct kvm, mmu_notifier); 344 } 345 346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long address, 349 pte_t pte) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 int idx; 353 354 idx = srcu_read_lock(&kvm->srcu); 355 spin_lock(&kvm->mmu_lock); 356 kvm->mmu_notifier_seq++; 357 358 if (kvm_set_spte_hva(kvm, address, pte)) 359 kvm_flush_remote_tlbs(kvm); 360 361 spin_unlock(&kvm->mmu_lock); 362 srcu_read_unlock(&kvm->srcu, idx); 363 } 364 365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 366 const struct mmu_notifier_range *range) 367 { 368 struct kvm *kvm = mmu_notifier_to_kvm(mn); 369 int need_tlb_flush = 0, idx; 370 int ret; 371 372 idx = srcu_read_lock(&kvm->srcu); 373 spin_lock(&kvm->mmu_lock); 374 /* 375 * The count increase must become visible at unlock time as no 376 * spte can be established without taking the mmu_lock and 377 * count is also read inside the mmu_lock critical section. 378 */ 379 kvm->mmu_notifier_count++; 380 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 381 need_tlb_flush |= kvm->tlbs_dirty; 382 /* we've to flush the tlb before the pages can be freed */ 383 if (need_tlb_flush) 384 kvm_flush_remote_tlbs(kvm); 385 386 spin_unlock(&kvm->mmu_lock); 387 388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 389 range->end, range->blockable); 390 391 srcu_read_unlock(&kvm->srcu, idx); 392 393 return ret; 394 } 395 396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 397 const struct mmu_notifier_range *range) 398 { 399 struct kvm *kvm = mmu_notifier_to_kvm(mn); 400 401 spin_lock(&kvm->mmu_lock); 402 /* 403 * This sequence increase will notify the kvm page fault that 404 * the page that is going to be mapped in the spte could have 405 * been freed. 406 */ 407 kvm->mmu_notifier_seq++; 408 smp_wmb(); 409 /* 410 * The above sequence increase must be visible before the 411 * below count decrease, which is ensured by the smp_wmb above 412 * in conjunction with the smp_rmb in mmu_notifier_retry(). 413 */ 414 kvm->mmu_notifier_count--; 415 spin_unlock(&kvm->mmu_lock); 416 417 BUG_ON(kvm->mmu_notifier_count < 0); 418 } 419 420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 421 struct mm_struct *mm, 422 unsigned long start, 423 unsigned long end) 424 { 425 struct kvm *kvm = mmu_notifier_to_kvm(mn); 426 int young, idx; 427 428 idx = srcu_read_lock(&kvm->srcu); 429 spin_lock(&kvm->mmu_lock); 430 431 young = kvm_age_hva(kvm, start, end); 432 if (young) 433 kvm_flush_remote_tlbs(kvm); 434 435 spin_unlock(&kvm->mmu_lock); 436 srcu_read_unlock(&kvm->srcu, idx); 437 438 return young; 439 } 440 441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 442 struct mm_struct *mm, 443 unsigned long start, 444 unsigned long end) 445 { 446 struct kvm *kvm = mmu_notifier_to_kvm(mn); 447 int young, idx; 448 449 idx = srcu_read_lock(&kvm->srcu); 450 spin_lock(&kvm->mmu_lock); 451 /* 452 * Even though we do not flush TLB, this will still adversely 453 * affect performance on pre-Haswell Intel EPT, where there is 454 * no EPT Access Bit to clear so that we have to tear down EPT 455 * tables instead. If we find this unacceptable, we can always 456 * add a parameter to kvm_age_hva so that it effectively doesn't 457 * do anything on clear_young. 458 * 459 * Also note that currently we never issue secondary TLB flushes 460 * from clear_young, leaving this job up to the regular system 461 * cadence. If we find this inaccurate, we might come up with a 462 * more sophisticated heuristic later. 463 */ 464 young = kvm_age_hva(kvm, start, end); 465 spin_unlock(&kvm->mmu_lock); 466 srcu_read_unlock(&kvm->srcu, idx); 467 468 return young; 469 } 470 471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 472 struct mm_struct *mm, 473 unsigned long address) 474 { 475 struct kvm *kvm = mmu_notifier_to_kvm(mn); 476 int young, idx; 477 478 idx = srcu_read_lock(&kvm->srcu); 479 spin_lock(&kvm->mmu_lock); 480 young = kvm_test_age_hva(kvm, address); 481 spin_unlock(&kvm->mmu_lock); 482 srcu_read_unlock(&kvm->srcu, idx); 483 484 return young; 485 } 486 487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 488 struct mm_struct *mm) 489 { 490 struct kvm *kvm = mmu_notifier_to_kvm(mn); 491 int idx; 492 493 idx = srcu_read_lock(&kvm->srcu); 494 kvm_arch_flush_shadow_all(kvm); 495 srcu_read_unlock(&kvm->srcu, idx); 496 } 497 498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 499 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 500 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 501 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 502 .clear_young = kvm_mmu_notifier_clear_young, 503 .test_young = kvm_mmu_notifier_test_young, 504 .change_pte = kvm_mmu_notifier_change_pte, 505 .release = kvm_mmu_notifier_release, 506 }; 507 508 static int kvm_init_mmu_notifier(struct kvm *kvm) 509 { 510 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 511 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 512 } 513 514 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 515 516 static int kvm_init_mmu_notifier(struct kvm *kvm) 517 { 518 return 0; 519 } 520 521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 522 523 static struct kvm_memslots *kvm_alloc_memslots(void) 524 { 525 int i; 526 struct kvm_memslots *slots; 527 528 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 529 if (!slots) 530 return NULL; 531 532 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 533 slots->id_to_index[i] = slots->memslots[i].id = i; 534 535 return slots; 536 } 537 538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 539 { 540 if (!memslot->dirty_bitmap) 541 return; 542 543 kvfree(memslot->dirty_bitmap); 544 memslot->dirty_bitmap = NULL; 545 } 546 547 /* 548 * Free any memory in @free but not in @dont. 549 */ 550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 551 struct kvm_memory_slot *dont) 552 { 553 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 554 kvm_destroy_dirty_bitmap(free); 555 556 kvm_arch_free_memslot(kvm, free, dont); 557 558 free->npages = 0; 559 } 560 561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 562 { 563 struct kvm_memory_slot *memslot; 564 565 if (!slots) 566 return; 567 568 kvm_for_each_memslot(memslot, slots) 569 kvm_free_memslot(kvm, memslot, NULL); 570 571 kvfree(slots); 572 } 573 574 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 575 { 576 int i; 577 578 if (!kvm->debugfs_dentry) 579 return; 580 581 debugfs_remove_recursive(kvm->debugfs_dentry); 582 583 if (kvm->debugfs_stat_data) { 584 for (i = 0; i < kvm_debugfs_num_entries; i++) 585 kfree(kvm->debugfs_stat_data[i]); 586 kfree(kvm->debugfs_stat_data); 587 } 588 } 589 590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 591 { 592 char dir_name[ITOA_MAX_LEN * 2]; 593 struct kvm_stat_data *stat_data; 594 struct kvm_stats_debugfs_item *p; 595 596 if (!debugfs_initialized()) 597 return 0; 598 599 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 600 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 601 602 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 603 sizeof(*kvm->debugfs_stat_data), 604 GFP_KERNEL); 605 if (!kvm->debugfs_stat_data) 606 return -ENOMEM; 607 608 for (p = debugfs_entries; p->name; p++) { 609 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 610 if (!stat_data) 611 return -ENOMEM; 612 613 stat_data->kvm = kvm; 614 stat_data->offset = p->offset; 615 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 616 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 617 stat_data, stat_fops_per_vm[p->kind]); 618 } 619 return 0; 620 } 621 622 static struct kvm *kvm_create_vm(unsigned long type) 623 { 624 int r, i; 625 struct kvm *kvm = kvm_arch_alloc_vm(); 626 627 if (!kvm) 628 return ERR_PTR(-ENOMEM); 629 630 spin_lock_init(&kvm->mmu_lock); 631 mmgrab(current->mm); 632 kvm->mm = current->mm; 633 kvm_eventfd_init(kvm); 634 mutex_init(&kvm->lock); 635 mutex_init(&kvm->irq_lock); 636 mutex_init(&kvm->slots_lock); 637 refcount_set(&kvm->users_count, 1); 638 INIT_LIST_HEAD(&kvm->devices); 639 640 r = kvm_arch_init_vm(kvm, type); 641 if (r) 642 goto out_err_no_disable; 643 644 r = hardware_enable_all(); 645 if (r) 646 goto out_err_no_disable; 647 648 #ifdef CONFIG_HAVE_KVM_IRQFD 649 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 650 #endif 651 652 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 653 654 r = -ENOMEM; 655 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 656 struct kvm_memslots *slots = kvm_alloc_memslots(); 657 if (!slots) 658 goto out_err_no_srcu; 659 /* 660 * Generations must be different for each address space. 661 * Init kvm generation close to the maximum to easily test the 662 * code of handling generation number wrap-around. 663 */ 664 slots->generation = i * 2 - 150; 665 rcu_assign_pointer(kvm->memslots[i], slots); 666 } 667 668 if (init_srcu_struct(&kvm->srcu)) 669 goto out_err_no_srcu; 670 if (init_srcu_struct(&kvm->irq_srcu)) 671 goto out_err_no_irq_srcu; 672 for (i = 0; i < KVM_NR_BUSES; i++) { 673 rcu_assign_pointer(kvm->buses[i], 674 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 675 if (!kvm->buses[i]) 676 goto out_err; 677 } 678 679 r = kvm_init_mmu_notifier(kvm); 680 if (r) 681 goto out_err; 682 683 spin_lock(&kvm_lock); 684 list_add(&kvm->vm_list, &vm_list); 685 spin_unlock(&kvm_lock); 686 687 preempt_notifier_inc(); 688 689 return kvm; 690 691 out_err: 692 cleanup_srcu_struct(&kvm->irq_srcu); 693 out_err_no_irq_srcu: 694 cleanup_srcu_struct(&kvm->srcu); 695 out_err_no_srcu: 696 hardware_disable_all(); 697 out_err_no_disable: 698 refcount_set(&kvm->users_count, 0); 699 for (i = 0; i < KVM_NR_BUSES; i++) 700 kfree(kvm_get_bus(kvm, i)); 701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 702 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 703 kvm_arch_free_vm(kvm); 704 mmdrop(current->mm); 705 return ERR_PTR(r); 706 } 707 708 static void kvm_destroy_devices(struct kvm *kvm) 709 { 710 struct kvm_device *dev, *tmp; 711 712 /* 713 * We do not need to take the kvm->lock here, because nobody else 714 * has a reference to the struct kvm at this point and therefore 715 * cannot access the devices list anyhow. 716 */ 717 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 718 list_del(&dev->vm_node); 719 dev->ops->destroy(dev); 720 } 721 } 722 723 static void kvm_destroy_vm(struct kvm *kvm) 724 { 725 int i; 726 struct mm_struct *mm = kvm->mm; 727 728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 729 kvm_destroy_vm_debugfs(kvm); 730 kvm_arch_sync_events(kvm); 731 spin_lock(&kvm_lock); 732 list_del(&kvm->vm_list); 733 spin_unlock(&kvm_lock); 734 kvm_free_irq_routing(kvm); 735 for (i = 0; i < KVM_NR_BUSES; i++) { 736 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 737 738 if (bus) 739 kvm_io_bus_destroy(bus); 740 kvm->buses[i] = NULL; 741 } 742 kvm_coalesced_mmio_free(kvm); 743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 745 #else 746 kvm_arch_flush_shadow_all(kvm); 747 #endif 748 kvm_arch_destroy_vm(kvm); 749 kvm_destroy_devices(kvm); 750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 752 cleanup_srcu_struct(&kvm->irq_srcu); 753 cleanup_srcu_struct(&kvm->srcu); 754 kvm_arch_free_vm(kvm); 755 preempt_notifier_dec(); 756 hardware_disable_all(); 757 mmdrop(mm); 758 } 759 760 void kvm_get_kvm(struct kvm *kvm) 761 { 762 refcount_inc(&kvm->users_count); 763 } 764 EXPORT_SYMBOL_GPL(kvm_get_kvm); 765 766 void kvm_put_kvm(struct kvm *kvm) 767 { 768 if (refcount_dec_and_test(&kvm->users_count)) 769 kvm_destroy_vm(kvm); 770 } 771 EXPORT_SYMBOL_GPL(kvm_put_kvm); 772 773 774 static int kvm_vm_release(struct inode *inode, struct file *filp) 775 { 776 struct kvm *kvm = filp->private_data; 777 778 kvm_irqfd_release(kvm); 779 780 kvm_put_kvm(kvm); 781 return 0; 782 } 783 784 /* 785 * Allocation size is twice as large as the actual dirty bitmap size. 786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 787 */ 788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 789 { 790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 791 792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 793 if (!memslot->dirty_bitmap) 794 return -ENOMEM; 795 796 return 0; 797 } 798 799 /* 800 * Insert memslot and re-sort memslots based on their GFN, 801 * so binary search could be used to lookup GFN. 802 * Sorting algorithm takes advantage of having initially 803 * sorted array and known changed memslot position. 804 */ 805 static void update_memslots(struct kvm_memslots *slots, 806 struct kvm_memory_slot *new, 807 enum kvm_mr_change change) 808 { 809 int id = new->id; 810 int i = slots->id_to_index[id]; 811 struct kvm_memory_slot *mslots = slots->memslots; 812 813 WARN_ON(mslots[i].id != id); 814 switch (change) { 815 case KVM_MR_CREATE: 816 slots->used_slots++; 817 WARN_ON(mslots[i].npages || !new->npages); 818 break; 819 case KVM_MR_DELETE: 820 slots->used_slots--; 821 WARN_ON(new->npages || !mslots[i].npages); 822 break; 823 default: 824 break; 825 } 826 827 while (i < KVM_MEM_SLOTS_NUM - 1 && 828 new->base_gfn <= mslots[i + 1].base_gfn) { 829 if (!mslots[i + 1].npages) 830 break; 831 mslots[i] = mslots[i + 1]; 832 slots->id_to_index[mslots[i].id] = i; 833 i++; 834 } 835 836 /* 837 * The ">=" is needed when creating a slot with base_gfn == 0, 838 * so that it moves before all those with base_gfn == npages == 0. 839 * 840 * On the other hand, if new->npages is zero, the above loop has 841 * already left i pointing to the beginning of the empty part of 842 * mslots, and the ">=" would move the hole backwards in this 843 * case---which is wrong. So skip the loop when deleting a slot. 844 */ 845 if (new->npages) { 846 while (i > 0 && 847 new->base_gfn >= mslots[i - 1].base_gfn) { 848 mslots[i] = mslots[i - 1]; 849 slots->id_to_index[mslots[i].id] = i; 850 i--; 851 } 852 } else 853 WARN_ON_ONCE(i != slots->used_slots); 854 855 mslots[i] = *new; 856 slots->id_to_index[mslots[i].id] = i; 857 } 858 859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 860 { 861 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 862 863 #ifdef __KVM_HAVE_READONLY_MEM 864 valid_flags |= KVM_MEM_READONLY; 865 #endif 866 867 if (mem->flags & ~valid_flags) 868 return -EINVAL; 869 870 return 0; 871 } 872 873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 874 int as_id, struct kvm_memslots *slots) 875 { 876 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 877 878 /* 879 * Set the low bit in the generation, which disables SPTE caching 880 * until the end of synchronize_srcu_expedited. 881 */ 882 WARN_ON(old_memslots->generation & 1); 883 slots->generation = old_memslots->generation + 1; 884 885 rcu_assign_pointer(kvm->memslots[as_id], slots); 886 synchronize_srcu_expedited(&kvm->srcu); 887 888 /* 889 * Increment the new memslot generation a second time. This prevents 890 * vm exits that race with memslot updates from caching a memslot 891 * generation that will (potentially) be valid forever. 892 * 893 * Generations must be unique even across address spaces. We do not need 894 * a global counter for that, instead the generation space is evenly split 895 * across address spaces. For example, with two address spaces, address 896 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 897 * use generations 2, 6, 10, 14, ... 898 */ 899 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 900 901 kvm_arch_memslots_updated(kvm, slots); 902 903 return old_memslots; 904 } 905 906 /* 907 * Allocate some memory and give it an address in the guest physical address 908 * space. 909 * 910 * Discontiguous memory is allowed, mostly for framebuffers. 911 * 912 * Must be called holding kvm->slots_lock for write. 913 */ 914 int __kvm_set_memory_region(struct kvm *kvm, 915 const struct kvm_userspace_memory_region *mem) 916 { 917 int r; 918 gfn_t base_gfn; 919 unsigned long npages; 920 struct kvm_memory_slot *slot; 921 struct kvm_memory_slot old, new; 922 struct kvm_memslots *slots = NULL, *old_memslots; 923 int as_id, id; 924 enum kvm_mr_change change; 925 926 r = check_memory_region_flags(mem); 927 if (r) 928 goto out; 929 930 r = -EINVAL; 931 as_id = mem->slot >> 16; 932 id = (u16)mem->slot; 933 934 /* General sanity checks */ 935 if (mem->memory_size & (PAGE_SIZE - 1)) 936 goto out; 937 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 938 goto out; 939 /* We can read the guest memory with __xxx_user() later on. */ 940 if ((id < KVM_USER_MEM_SLOTS) && 941 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 942 !access_ok(VERIFY_WRITE, 943 (void __user *)(unsigned long)mem->userspace_addr, 944 mem->memory_size))) 945 goto out; 946 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 947 goto out; 948 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 949 goto out; 950 951 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 952 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 953 npages = mem->memory_size >> PAGE_SHIFT; 954 955 if (npages > KVM_MEM_MAX_NR_PAGES) 956 goto out; 957 958 new = old = *slot; 959 960 new.id = id; 961 new.base_gfn = base_gfn; 962 new.npages = npages; 963 new.flags = mem->flags; 964 965 if (npages) { 966 if (!old.npages) 967 change = KVM_MR_CREATE; 968 else { /* Modify an existing slot. */ 969 if ((mem->userspace_addr != old.userspace_addr) || 970 (npages != old.npages) || 971 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 972 goto out; 973 974 if (base_gfn != old.base_gfn) 975 change = KVM_MR_MOVE; 976 else if (new.flags != old.flags) 977 change = KVM_MR_FLAGS_ONLY; 978 else { /* Nothing to change. */ 979 r = 0; 980 goto out; 981 } 982 } 983 } else { 984 if (!old.npages) 985 goto out; 986 987 change = KVM_MR_DELETE; 988 new.base_gfn = 0; 989 new.flags = 0; 990 } 991 992 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 993 /* Check for overlaps */ 994 r = -EEXIST; 995 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 996 if (slot->id == id) 997 continue; 998 if (!((base_gfn + npages <= slot->base_gfn) || 999 (base_gfn >= slot->base_gfn + slot->npages))) 1000 goto out; 1001 } 1002 } 1003 1004 /* Free page dirty bitmap if unneeded */ 1005 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1006 new.dirty_bitmap = NULL; 1007 1008 r = -ENOMEM; 1009 if (change == KVM_MR_CREATE) { 1010 new.userspace_addr = mem->userspace_addr; 1011 1012 if (kvm_arch_create_memslot(kvm, &new, npages)) 1013 goto out_free; 1014 } 1015 1016 /* Allocate page dirty bitmap if needed */ 1017 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1018 if (kvm_create_dirty_bitmap(&new) < 0) 1019 goto out_free; 1020 } 1021 1022 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1023 if (!slots) 1024 goto out_free; 1025 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1026 1027 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1028 slot = id_to_memslot(slots, id); 1029 slot->flags |= KVM_MEMSLOT_INVALID; 1030 1031 old_memslots = install_new_memslots(kvm, as_id, slots); 1032 1033 /* From this point no new shadow pages pointing to a deleted, 1034 * or moved, memslot will be created. 1035 * 1036 * validation of sp->gfn happens in: 1037 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1038 * - kvm_is_visible_gfn (mmu_check_roots) 1039 */ 1040 kvm_arch_flush_shadow_memslot(kvm, slot); 1041 1042 /* 1043 * We can re-use the old_memslots from above, the only difference 1044 * from the currently installed memslots is the invalid flag. This 1045 * will get overwritten by update_memslots anyway. 1046 */ 1047 slots = old_memslots; 1048 } 1049 1050 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1051 if (r) 1052 goto out_slots; 1053 1054 /* actual memory is freed via old in kvm_free_memslot below */ 1055 if (change == KVM_MR_DELETE) { 1056 new.dirty_bitmap = NULL; 1057 memset(&new.arch, 0, sizeof(new.arch)); 1058 } 1059 1060 update_memslots(slots, &new, change); 1061 old_memslots = install_new_memslots(kvm, as_id, slots); 1062 1063 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1064 1065 kvm_free_memslot(kvm, &old, &new); 1066 kvfree(old_memslots); 1067 return 0; 1068 1069 out_slots: 1070 kvfree(slots); 1071 out_free: 1072 kvm_free_memslot(kvm, &new, &old); 1073 out: 1074 return r; 1075 } 1076 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1077 1078 int kvm_set_memory_region(struct kvm *kvm, 1079 const struct kvm_userspace_memory_region *mem) 1080 { 1081 int r; 1082 1083 mutex_lock(&kvm->slots_lock); 1084 r = __kvm_set_memory_region(kvm, mem); 1085 mutex_unlock(&kvm->slots_lock); 1086 return r; 1087 } 1088 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1089 1090 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1091 struct kvm_userspace_memory_region *mem) 1092 { 1093 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1094 return -EINVAL; 1095 1096 return kvm_set_memory_region(kvm, mem); 1097 } 1098 1099 int kvm_get_dirty_log(struct kvm *kvm, 1100 struct kvm_dirty_log *log, int *is_dirty) 1101 { 1102 struct kvm_memslots *slots; 1103 struct kvm_memory_slot *memslot; 1104 int i, as_id, id; 1105 unsigned long n; 1106 unsigned long any = 0; 1107 1108 as_id = log->slot >> 16; 1109 id = (u16)log->slot; 1110 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1111 return -EINVAL; 1112 1113 slots = __kvm_memslots(kvm, as_id); 1114 memslot = id_to_memslot(slots, id); 1115 if (!memslot->dirty_bitmap) 1116 return -ENOENT; 1117 1118 n = kvm_dirty_bitmap_bytes(memslot); 1119 1120 for (i = 0; !any && i < n/sizeof(long); ++i) 1121 any = memslot->dirty_bitmap[i]; 1122 1123 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1124 return -EFAULT; 1125 1126 if (any) 1127 *is_dirty = 1; 1128 return 0; 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1131 1132 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1133 /** 1134 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1135 * and reenable dirty page tracking for the corresponding pages. 1136 * @kvm: pointer to kvm instance 1137 * @log: slot id and address to which we copy the log 1138 * @is_dirty: flag set if any page is dirty 1139 * 1140 * We need to keep it in mind that VCPU threads can write to the bitmap 1141 * concurrently. So, to avoid losing track of dirty pages we keep the 1142 * following order: 1143 * 1144 * 1. Take a snapshot of the bit and clear it if needed. 1145 * 2. Write protect the corresponding page. 1146 * 3. Copy the snapshot to the userspace. 1147 * 4. Upon return caller flushes TLB's if needed. 1148 * 1149 * Between 2 and 4, the guest may write to the page using the remaining TLB 1150 * entry. This is not a problem because the page is reported dirty using 1151 * the snapshot taken before and step 4 ensures that writes done after 1152 * exiting to userspace will be logged for the next call. 1153 * 1154 */ 1155 int kvm_get_dirty_log_protect(struct kvm *kvm, 1156 struct kvm_dirty_log *log, bool *flush) 1157 { 1158 struct kvm_memslots *slots; 1159 struct kvm_memory_slot *memslot; 1160 int i, as_id, id; 1161 unsigned long n; 1162 unsigned long *dirty_bitmap; 1163 unsigned long *dirty_bitmap_buffer; 1164 1165 as_id = log->slot >> 16; 1166 id = (u16)log->slot; 1167 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1168 return -EINVAL; 1169 1170 slots = __kvm_memslots(kvm, as_id); 1171 memslot = id_to_memslot(slots, id); 1172 1173 dirty_bitmap = memslot->dirty_bitmap; 1174 if (!dirty_bitmap) 1175 return -ENOENT; 1176 1177 n = kvm_dirty_bitmap_bytes(memslot); 1178 *flush = false; 1179 if (kvm->manual_dirty_log_protect) { 1180 /* 1181 * Unlike kvm_get_dirty_log, we always return false in *flush, 1182 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1183 * is some code duplication between this function and 1184 * kvm_get_dirty_log, but hopefully all architecture 1185 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1186 * can be eliminated. 1187 */ 1188 dirty_bitmap_buffer = dirty_bitmap; 1189 } else { 1190 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1191 memset(dirty_bitmap_buffer, 0, n); 1192 1193 spin_lock(&kvm->mmu_lock); 1194 for (i = 0; i < n / sizeof(long); i++) { 1195 unsigned long mask; 1196 gfn_t offset; 1197 1198 if (!dirty_bitmap[i]) 1199 continue; 1200 1201 *flush = true; 1202 mask = xchg(&dirty_bitmap[i], 0); 1203 dirty_bitmap_buffer[i] = mask; 1204 1205 if (mask) { 1206 offset = i * BITS_PER_LONG; 1207 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1208 offset, mask); 1209 } 1210 } 1211 spin_unlock(&kvm->mmu_lock); 1212 } 1213 1214 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1215 return -EFAULT; 1216 return 0; 1217 } 1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1219 1220 /** 1221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1222 * and reenable dirty page tracking for the corresponding pages. 1223 * @kvm: pointer to kvm instance 1224 * @log: slot id and address from which to fetch the bitmap of dirty pages 1225 */ 1226 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1227 struct kvm_clear_dirty_log *log, bool *flush) 1228 { 1229 struct kvm_memslots *slots; 1230 struct kvm_memory_slot *memslot; 1231 int as_id, id, n; 1232 gfn_t offset; 1233 unsigned long i; 1234 unsigned long *dirty_bitmap; 1235 unsigned long *dirty_bitmap_buffer; 1236 1237 as_id = log->slot >> 16; 1238 id = (u16)log->slot; 1239 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1240 return -EINVAL; 1241 1242 if ((log->first_page & 63) || (log->num_pages & 63)) 1243 return -EINVAL; 1244 1245 slots = __kvm_memslots(kvm, as_id); 1246 memslot = id_to_memslot(slots, id); 1247 1248 dirty_bitmap = memslot->dirty_bitmap; 1249 if (!dirty_bitmap) 1250 return -ENOENT; 1251 1252 n = kvm_dirty_bitmap_bytes(memslot); 1253 *flush = false; 1254 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1255 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1256 return -EFAULT; 1257 1258 spin_lock(&kvm->mmu_lock); 1259 for (offset = log->first_page, 1260 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--; 1261 i++, offset += BITS_PER_LONG) { 1262 unsigned long mask = *dirty_bitmap_buffer++; 1263 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1264 if (!mask) 1265 continue; 1266 1267 mask &= atomic_long_fetch_andnot(mask, p); 1268 1269 /* 1270 * mask contains the bits that really have been cleared. This 1271 * never includes any bits beyond the length of the memslot (if 1272 * the length is not aligned to 64 pages), therefore it is not 1273 * a problem if userspace sets them in log->dirty_bitmap. 1274 */ 1275 if (mask) { 1276 *flush = true; 1277 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1278 offset, mask); 1279 } 1280 } 1281 spin_unlock(&kvm->mmu_lock); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1286 #endif 1287 1288 bool kvm_largepages_enabled(void) 1289 { 1290 return largepages_enabled; 1291 } 1292 1293 void kvm_disable_largepages(void) 1294 { 1295 largepages_enabled = false; 1296 } 1297 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1298 1299 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1300 { 1301 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1302 } 1303 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1304 1305 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1306 { 1307 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1308 } 1309 1310 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1311 { 1312 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1313 1314 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1315 memslot->flags & KVM_MEMSLOT_INVALID) 1316 return false; 1317 1318 return true; 1319 } 1320 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1321 1322 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1323 { 1324 struct vm_area_struct *vma; 1325 unsigned long addr, size; 1326 1327 size = PAGE_SIZE; 1328 1329 addr = gfn_to_hva(kvm, gfn); 1330 if (kvm_is_error_hva(addr)) 1331 return PAGE_SIZE; 1332 1333 down_read(¤t->mm->mmap_sem); 1334 vma = find_vma(current->mm, addr); 1335 if (!vma) 1336 goto out; 1337 1338 size = vma_kernel_pagesize(vma); 1339 1340 out: 1341 up_read(¤t->mm->mmap_sem); 1342 1343 return size; 1344 } 1345 1346 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1347 { 1348 return slot->flags & KVM_MEM_READONLY; 1349 } 1350 1351 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1352 gfn_t *nr_pages, bool write) 1353 { 1354 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1355 return KVM_HVA_ERR_BAD; 1356 1357 if (memslot_is_readonly(slot) && write) 1358 return KVM_HVA_ERR_RO_BAD; 1359 1360 if (nr_pages) 1361 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1362 1363 return __gfn_to_hva_memslot(slot, gfn); 1364 } 1365 1366 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1367 gfn_t *nr_pages) 1368 { 1369 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1370 } 1371 1372 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1373 gfn_t gfn) 1374 { 1375 return gfn_to_hva_many(slot, gfn, NULL); 1376 } 1377 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1378 1379 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1380 { 1381 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1382 } 1383 EXPORT_SYMBOL_GPL(gfn_to_hva); 1384 1385 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1386 { 1387 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1388 } 1389 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1390 1391 /* 1392 * Return the hva of a @gfn and the R/W attribute if possible. 1393 * 1394 * @slot: the kvm_memory_slot which contains @gfn 1395 * @gfn: the gfn to be translated 1396 * @writable: used to return the read/write attribute of the @slot if the hva 1397 * is valid and @writable is not NULL 1398 */ 1399 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1400 gfn_t gfn, bool *writable) 1401 { 1402 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1403 1404 if (!kvm_is_error_hva(hva) && writable) 1405 *writable = !memslot_is_readonly(slot); 1406 1407 return hva; 1408 } 1409 1410 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1411 { 1412 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1413 1414 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1415 } 1416 1417 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1418 { 1419 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1420 1421 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1422 } 1423 1424 static inline int check_user_page_hwpoison(unsigned long addr) 1425 { 1426 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1427 1428 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1429 return rc == -EHWPOISON; 1430 } 1431 1432 /* 1433 * The fast path to get the writable pfn which will be stored in @pfn, 1434 * true indicates success, otherwise false is returned. It's also the 1435 * only part that runs if we can are in atomic context. 1436 */ 1437 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1438 bool *writable, kvm_pfn_t *pfn) 1439 { 1440 struct page *page[1]; 1441 int npages; 1442 1443 /* 1444 * Fast pin a writable pfn only if it is a write fault request 1445 * or the caller allows to map a writable pfn for a read fault 1446 * request. 1447 */ 1448 if (!(write_fault || writable)) 1449 return false; 1450 1451 npages = __get_user_pages_fast(addr, 1, 1, page); 1452 if (npages == 1) { 1453 *pfn = page_to_pfn(page[0]); 1454 1455 if (writable) 1456 *writable = true; 1457 return true; 1458 } 1459 1460 return false; 1461 } 1462 1463 /* 1464 * The slow path to get the pfn of the specified host virtual address, 1465 * 1 indicates success, -errno is returned if error is detected. 1466 */ 1467 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1468 bool *writable, kvm_pfn_t *pfn) 1469 { 1470 unsigned int flags = FOLL_HWPOISON; 1471 struct page *page; 1472 int npages = 0; 1473 1474 might_sleep(); 1475 1476 if (writable) 1477 *writable = write_fault; 1478 1479 if (write_fault) 1480 flags |= FOLL_WRITE; 1481 if (async) 1482 flags |= FOLL_NOWAIT; 1483 1484 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1485 if (npages != 1) 1486 return npages; 1487 1488 /* map read fault as writable if possible */ 1489 if (unlikely(!write_fault) && writable) { 1490 struct page *wpage; 1491 1492 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1493 *writable = true; 1494 put_page(page); 1495 page = wpage; 1496 } 1497 } 1498 *pfn = page_to_pfn(page); 1499 return npages; 1500 } 1501 1502 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1503 { 1504 if (unlikely(!(vma->vm_flags & VM_READ))) 1505 return false; 1506 1507 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1508 return false; 1509 1510 return true; 1511 } 1512 1513 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1514 unsigned long addr, bool *async, 1515 bool write_fault, bool *writable, 1516 kvm_pfn_t *p_pfn) 1517 { 1518 unsigned long pfn; 1519 int r; 1520 1521 r = follow_pfn(vma, addr, &pfn); 1522 if (r) { 1523 /* 1524 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1525 * not call the fault handler, so do it here. 1526 */ 1527 bool unlocked = false; 1528 r = fixup_user_fault(current, current->mm, addr, 1529 (write_fault ? FAULT_FLAG_WRITE : 0), 1530 &unlocked); 1531 if (unlocked) 1532 return -EAGAIN; 1533 if (r) 1534 return r; 1535 1536 r = follow_pfn(vma, addr, &pfn); 1537 if (r) 1538 return r; 1539 1540 } 1541 1542 if (writable) 1543 *writable = true; 1544 1545 /* 1546 * Get a reference here because callers of *hva_to_pfn* and 1547 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1548 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1549 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1550 * simply do nothing for reserved pfns. 1551 * 1552 * Whoever called remap_pfn_range is also going to call e.g. 1553 * unmap_mapping_range before the underlying pages are freed, 1554 * causing a call to our MMU notifier. 1555 */ 1556 kvm_get_pfn(pfn); 1557 1558 *p_pfn = pfn; 1559 return 0; 1560 } 1561 1562 /* 1563 * Pin guest page in memory and return its pfn. 1564 * @addr: host virtual address which maps memory to the guest 1565 * @atomic: whether this function can sleep 1566 * @async: whether this function need to wait IO complete if the 1567 * host page is not in the memory 1568 * @write_fault: whether we should get a writable host page 1569 * @writable: whether it allows to map a writable host page for !@write_fault 1570 * 1571 * The function will map a writable host page for these two cases: 1572 * 1): @write_fault = true 1573 * 2): @write_fault = false && @writable, @writable will tell the caller 1574 * whether the mapping is writable. 1575 */ 1576 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1577 bool write_fault, bool *writable) 1578 { 1579 struct vm_area_struct *vma; 1580 kvm_pfn_t pfn = 0; 1581 int npages, r; 1582 1583 /* we can do it either atomically or asynchronously, not both */ 1584 BUG_ON(atomic && async); 1585 1586 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1587 return pfn; 1588 1589 if (atomic) 1590 return KVM_PFN_ERR_FAULT; 1591 1592 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1593 if (npages == 1) 1594 return pfn; 1595 1596 down_read(¤t->mm->mmap_sem); 1597 if (npages == -EHWPOISON || 1598 (!async && check_user_page_hwpoison(addr))) { 1599 pfn = KVM_PFN_ERR_HWPOISON; 1600 goto exit; 1601 } 1602 1603 retry: 1604 vma = find_vma_intersection(current->mm, addr, addr + 1); 1605 1606 if (vma == NULL) 1607 pfn = KVM_PFN_ERR_FAULT; 1608 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1609 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1610 if (r == -EAGAIN) 1611 goto retry; 1612 if (r < 0) 1613 pfn = KVM_PFN_ERR_FAULT; 1614 } else { 1615 if (async && vma_is_valid(vma, write_fault)) 1616 *async = true; 1617 pfn = KVM_PFN_ERR_FAULT; 1618 } 1619 exit: 1620 up_read(¤t->mm->mmap_sem); 1621 return pfn; 1622 } 1623 1624 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1625 bool atomic, bool *async, bool write_fault, 1626 bool *writable) 1627 { 1628 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1629 1630 if (addr == KVM_HVA_ERR_RO_BAD) { 1631 if (writable) 1632 *writable = false; 1633 return KVM_PFN_ERR_RO_FAULT; 1634 } 1635 1636 if (kvm_is_error_hva(addr)) { 1637 if (writable) 1638 *writable = false; 1639 return KVM_PFN_NOSLOT; 1640 } 1641 1642 /* Do not map writable pfn in the readonly memslot. */ 1643 if (writable && memslot_is_readonly(slot)) { 1644 *writable = false; 1645 writable = NULL; 1646 } 1647 1648 return hva_to_pfn(addr, atomic, async, write_fault, 1649 writable); 1650 } 1651 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1652 1653 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1654 bool *writable) 1655 { 1656 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1657 write_fault, writable); 1658 } 1659 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1660 1661 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1662 { 1663 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1664 } 1665 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1666 1667 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1668 { 1669 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1670 } 1671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1672 1673 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1674 { 1675 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1676 } 1677 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1678 1679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1680 { 1681 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1682 } 1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1684 1685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1686 { 1687 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1688 } 1689 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1690 1691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1692 { 1693 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1694 } 1695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1696 1697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1698 struct page **pages, int nr_pages) 1699 { 1700 unsigned long addr; 1701 gfn_t entry = 0; 1702 1703 addr = gfn_to_hva_many(slot, gfn, &entry); 1704 if (kvm_is_error_hva(addr)) 1705 return -1; 1706 1707 if (entry < nr_pages) 1708 return 0; 1709 1710 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1711 } 1712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1713 1714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1715 { 1716 if (is_error_noslot_pfn(pfn)) 1717 return KVM_ERR_PTR_BAD_PAGE; 1718 1719 if (kvm_is_reserved_pfn(pfn)) { 1720 WARN_ON(1); 1721 return KVM_ERR_PTR_BAD_PAGE; 1722 } 1723 1724 return pfn_to_page(pfn); 1725 } 1726 1727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1728 { 1729 kvm_pfn_t pfn; 1730 1731 pfn = gfn_to_pfn(kvm, gfn); 1732 1733 return kvm_pfn_to_page(pfn); 1734 } 1735 EXPORT_SYMBOL_GPL(gfn_to_page); 1736 1737 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1738 { 1739 kvm_pfn_t pfn; 1740 1741 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1742 1743 return kvm_pfn_to_page(pfn); 1744 } 1745 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1746 1747 void kvm_release_page_clean(struct page *page) 1748 { 1749 WARN_ON(is_error_page(page)); 1750 1751 kvm_release_pfn_clean(page_to_pfn(page)); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1754 1755 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1756 { 1757 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1758 put_page(pfn_to_page(pfn)); 1759 } 1760 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1761 1762 void kvm_release_page_dirty(struct page *page) 1763 { 1764 WARN_ON(is_error_page(page)); 1765 1766 kvm_release_pfn_dirty(page_to_pfn(page)); 1767 } 1768 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1769 1770 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1771 { 1772 kvm_set_pfn_dirty(pfn); 1773 kvm_release_pfn_clean(pfn); 1774 } 1775 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1776 1777 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1778 { 1779 if (!kvm_is_reserved_pfn(pfn)) { 1780 struct page *page = pfn_to_page(pfn); 1781 1782 if (!PageReserved(page)) 1783 SetPageDirty(page); 1784 } 1785 } 1786 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1787 1788 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1789 { 1790 if (!kvm_is_reserved_pfn(pfn)) 1791 mark_page_accessed(pfn_to_page(pfn)); 1792 } 1793 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1794 1795 void kvm_get_pfn(kvm_pfn_t pfn) 1796 { 1797 if (!kvm_is_reserved_pfn(pfn)) 1798 get_page(pfn_to_page(pfn)); 1799 } 1800 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1801 1802 static int next_segment(unsigned long len, int offset) 1803 { 1804 if (len > PAGE_SIZE - offset) 1805 return PAGE_SIZE - offset; 1806 else 1807 return len; 1808 } 1809 1810 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1811 void *data, int offset, int len) 1812 { 1813 int r; 1814 unsigned long addr; 1815 1816 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1817 if (kvm_is_error_hva(addr)) 1818 return -EFAULT; 1819 r = __copy_from_user(data, (void __user *)addr + offset, len); 1820 if (r) 1821 return -EFAULT; 1822 return 0; 1823 } 1824 1825 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1826 int len) 1827 { 1828 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1829 1830 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1831 } 1832 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1833 1834 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1835 int offset, int len) 1836 { 1837 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1838 1839 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1840 } 1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1842 1843 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1844 { 1845 gfn_t gfn = gpa >> PAGE_SHIFT; 1846 int seg; 1847 int offset = offset_in_page(gpa); 1848 int ret; 1849 1850 while ((seg = next_segment(len, offset)) != 0) { 1851 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1852 if (ret < 0) 1853 return ret; 1854 offset = 0; 1855 len -= seg; 1856 data += seg; 1857 ++gfn; 1858 } 1859 return 0; 1860 } 1861 EXPORT_SYMBOL_GPL(kvm_read_guest); 1862 1863 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1864 { 1865 gfn_t gfn = gpa >> PAGE_SHIFT; 1866 int seg; 1867 int offset = offset_in_page(gpa); 1868 int ret; 1869 1870 while ((seg = next_segment(len, offset)) != 0) { 1871 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1872 if (ret < 0) 1873 return ret; 1874 offset = 0; 1875 len -= seg; 1876 data += seg; 1877 ++gfn; 1878 } 1879 return 0; 1880 } 1881 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1882 1883 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1884 void *data, int offset, unsigned long len) 1885 { 1886 int r; 1887 unsigned long addr; 1888 1889 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1890 if (kvm_is_error_hva(addr)) 1891 return -EFAULT; 1892 pagefault_disable(); 1893 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1894 pagefault_enable(); 1895 if (r) 1896 return -EFAULT; 1897 return 0; 1898 } 1899 1900 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1901 unsigned long len) 1902 { 1903 gfn_t gfn = gpa >> PAGE_SHIFT; 1904 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1905 int offset = offset_in_page(gpa); 1906 1907 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1908 } 1909 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1910 1911 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1912 void *data, unsigned long len) 1913 { 1914 gfn_t gfn = gpa >> PAGE_SHIFT; 1915 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1916 int offset = offset_in_page(gpa); 1917 1918 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1919 } 1920 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1921 1922 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1923 const void *data, int offset, int len) 1924 { 1925 int r; 1926 unsigned long addr; 1927 1928 addr = gfn_to_hva_memslot(memslot, gfn); 1929 if (kvm_is_error_hva(addr)) 1930 return -EFAULT; 1931 r = __copy_to_user((void __user *)addr + offset, data, len); 1932 if (r) 1933 return -EFAULT; 1934 mark_page_dirty_in_slot(memslot, gfn); 1935 return 0; 1936 } 1937 1938 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1939 const void *data, int offset, int len) 1940 { 1941 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1942 1943 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1944 } 1945 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1946 1947 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1948 const void *data, int offset, int len) 1949 { 1950 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1951 1952 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1953 } 1954 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1955 1956 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1957 unsigned long len) 1958 { 1959 gfn_t gfn = gpa >> PAGE_SHIFT; 1960 int seg; 1961 int offset = offset_in_page(gpa); 1962 int ret; 1963 1964 while ((seg = next_segment(len, offset)) != 0) { 1965 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1966 if (ret < 0) 1967 return ret; 1968 offset = 0; 1969 len -= seg; 1970 data += seg; 1971 ++gfn; 1972 } 1973 return 0; 1974 } 1975 EXPORT_SYMBOL_GPL(kvm_write_guest); 1976 1977 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1978 unsigned long len) 1979 { 1980 gfn_t gfn = gpa >> PAGE_SHIFT; 1981 int seg; 1982 int offset = offset_in_page(gpa); 1983 int ret; 1984 1985 while ((seg = next_segment(len, offset)) != 0) { 1986 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1987 if (ret < 0) 1988 return ret; 1989 offset = 0; 1990 len -= seg; 1991 data += seg; 1992 ++gfn; 1993 } 1994 return 0; 1995 } 1996 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1997 1998 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1999 struct gfn_to_hva_cache *ghc, 2000 gpa_t gpa, unsigned long len) 2001 { 2002 int offset = offset_in_page(gpa); 2003 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2004 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2005 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2006 gfn_t nr_pages_avail; 2007 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2008 2009 ghc->gpa = gpa; 2010 ghc->generation = slots->generation; 2011 ghc->len = len; 2012 ghc->hva = KVM_HVA_ERR_BAD; 2013 2014 /* 2015 * If the requested region crosses two memslots, we still 2016 * verify that the entire region is valid here. 2017 */ 2018 while (!r && start_gfn <= end_gfn) { 2019 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2020 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2021 &nr_pages_avail); 2022 if (kvm_is_error_hva(ghc->hva)) 2023 r = -EFAULT; 2024 start_gfn += nr_pages_avail; 2025 } 2026 2027 /* Use the slow path for cross page reads and writes. */ 2028 if (!r && nr_pages_needed == 1) 2029 ghc->hva += offset; 2030 else 2031 ghc->memslot = NULL; 2032 2033 return r; 2034 } 2035 2036 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2037 gpa_t gpa, unsigned long len) 2038 { 2039 struct kvm_memslots *slots = kvm_memslots(kvm); 2040 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2041 } 2042 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2043 2044 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2045 void *data, unsigned int offset, 2046 unsigned long len) 2047 { 2048 struct kvm_memslots *slots = kvm_memslots(kvm); 2049 int r; 2050 gpa_t gpa = ghc->gpa + offset; 2051 2052 BUG_ON(len + offset > ghc->len); 2053 2054 if (slots->generation != ghc->generation) 2055 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2056 2057 if (unlikely(!ghc->memslot)) 2058 return kvm_write_guest(kvm, gpa, data, len); 2059 2060 if (kvm_is_error_hva(ghc->hva)) 2061 return -EFAULT; 2062 2063 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2064 if (r) 2065 return -EFAULT; 2066 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2067 2068 return 0; 2069 } 2070 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2071 2072 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2073 void *data, unsigned long len) 2074 { 2075 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2078 2079 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2080 void *data, unsigned long len) 2081 { 2082 struct kvm_memslots *slots = kvm_memslots(kvm); 2083 int r; 2084 2085 BUG_ON(len > ghc->len); 2086 2087 if (slots->generation != ghc->generation) 2088 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2089 2090 if (unlikely(!ghc->memslot)) 2091 return kvm_read_guest(kvm, ghc->gpa, data, len); 2092 2093 if (kvm_is_error_hva(ghc->hva)) 2094 return -EFAULT; 2095 2096 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2097 if (r) 2098 return -EFAULT; 2099 2100 return 0; 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2103 2104 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2105 { 2106 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2107 2108 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2109 } 2110 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2111 2112 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2113 { 2114 gfn_t gfn = gpa >> PAGE_SHIFT; 2115 int seg; 2116 int offset = offset_in_page(gpa); 2117 int ret; 2118 2119 while ((seg = next_segment(len, offset)) != 0) { 2120 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2121 if (ret < 0) 2122 return ret; 2123 offset = 0; 2124 len -= seg; 2125 ++gfn; 2126 } 2127 return 0; 2128 } 2129 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2130 2131 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2132 gfn_t gfn) 2133 { 2134 if (memslot && memslot->dirty_bitmap) { 2135 unsigned long rel_gfn = gfn - memslot->base_gfn; 2136 2137 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2138 } 2139 } 2140 2141 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2142 { 2143 struct kvm_memory_slot *memslot; 2144 2145 memslot = gfn_to_memslot(kvm, gfn); 2146 mark_page_dirty_in_slot(memslot, gfn); 2147 } 2148 EXPORT_SYMBOL_GPL(mark_page_dirty); 2149 2150 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2151 { 2152 struct kvm_memory_slot *memslot; 2153 2154 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2155 mark_page_dirty_in_slot(memslot, gfn); 2156 } 2157 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2158 2159 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2160 { 2161 if (!vcpu->sigset_active) 2162 return; 2163 2164 /* 2165 * This does a lockless modification of ->real_blocked, which is fine 2166 * because, only current can change ->real_blocked and all readers of 2167 * ->real_blocked don't care as long ->real_blocked is always a subset 2168 * of ->blocked. 2169 */ 2170 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2171 } 2172 2173 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2174 { 2175 if (!vcpu->sigset_active) 2176 return; 2177 2178 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2179 sigemptyset(¤t->real_blocked); 2180 } 2181 2182 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2183 { 2184 unsigned int old, val, grow; 2185 2186 old = val = vcpu->halt_poll_ns; 2187 grow = READ_ONCE(halt_poll_ns_grow); 2188 /* 10us base */ 2189 if (val == 0 && grow) 2190 val = 10000; 2191 else 2192 val *= grow; 2193 2194 if (val > halt_poll_ns) 2195 val = halt_poll_ns; 2196 2197 vcpu->halt_poll_ns = val; 2198 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2199 } 2200 2201 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2202 { 2203 unsigned int old, val, shrink; 2204 2205 old = val = vcpu->halt_poll_ns; 2206 shrink = READ_ONCE(halt_poll_ns_shrink); 2207 if (shrink == 0) 2208 val = 0; 2209 else 2210 val /= shrink; 2211 2212 vcpu->halt_poll_ns = val; 2213 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2214 } 2215 2216 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2217 { 2218 int ret = -EINTR; 2219 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2220 2221 if (kvm_arch_vcpu_runnable(vcpu)) { 2222 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2223 goto out; 2224 } 2225 if (kvm_cpu_has_pending_timer(vcpu)) 2226 goto out; 2227 if (signal_pending(current)) 2228 goto out; 2229 2230 ret = 0; 2231 out: 2232 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2233 return ret; 2234 } 2235 2236 /* 2237 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2238 */ 2239 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2240 { 2241 ktime_t start, cur; 2242 DECLARE_SWAITQUEUE(wait); 2243 bool waited = false; 2244 u64 block_ns; 2245 2246 start = cur = ktime_get(); 2247 if (vcpu->halt_poll_ns) { 2248 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2249 2250 ++vcpu->stat.halt_attempted_poll; 2251 do { 2252 /* 2253 * This sets KVM_REQ_UNHALT if an interrupt 2254 * arrives. 2255 */ 2256 if (kvm_vcpu_check_block(vcpu) < 0) { 2257 ++vcpu->stat.halt_successful_poll; 2258 if (!vcpu_valid_wakeup(vcpu)) 2259 ++vcpu->stat.halt_poll_invalid; 2260 goto out; 2261 } 2262 cur = ktime_get(); 2263 } while (single_task_running() && ktime_before(cur, stop)); 2264 } 2265 2266 kvm_arch_vcpu_blocking(vcpu); 2267 2268 for (;;) { 2269 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2270 2271 if (kvm_vcpu_check_block(vcpu) < 0) 2272 break; 2273 2274 waited = true; 2275 schedule(); 2276 } 2277 2278 finish_swait(&vcpu->wq, &wait); 2279 cur = ktime_get(); 2280 2281 kvm_arch_vcpu_unblocking(vcpu); 2282 out: 2283 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2284 2285 if (!vcpu_valid_wakeup(vcpu)) 2286 shrink_halt_poll_ns(vcpu); 2287 else if (halt_poll_ns) { 2288 if (block_ns <= vcpu->halt_poll_ns) 2289 ; 2290 /* we had a long block, shrink polling */ 2291 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2292 shrink_halt_poll_ns(vcpu); 2293 /* we had a short halt and our poll time is too small */ 2294 else if (vcpu->halt_poll_ns < halt_poll_ns && 2295 block_ns < halt_poll_ns) 2296 grow_halt_poll_ns(vcpu); 2297 } else 2298 vcpu->halt_poll_ns = 0; 2299 2300 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2301 kvm_arch_vcpu_block_finish(vcpu); 2302 } 2303 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2304 2305 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2306 { 2307 struct swait_queue_head *wqp; 2308 2309 wqp = kvm_arch_vcpu_wq(vcpu); 2310 if (swq_has_sleeper(wqp)) { 2311 swake_up_one(wqp); 2312 ++vcpu->stat.halt_wakeup; 2313 return true; 2314 } 2315 2316 return false; 2317 } 2318 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2319 2320 #ifndef CONFIG_S390 2321 /* 2322 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2323 */ 2324 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2325 { 2326 int me; 2327 int cpu = vcpu->cpu; 2328 2329 if (kvm_vcpu_wake_up(vcpu)) 2330 return; 2331 2332 me = get_cpu(); 2333 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2334 if (kvm_arch_vcpu_should_kick(vcpu)) 2335 smp_send_reschedule(cpu); 2336 put_cpu(); 2337 } 2338 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2339 #endif /* !CONFIG_S390 */ 2340 2341 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2342 { 2343 struct pid *pid; 2344 struct task_struct *task = NULL; 2345 int ret = 0; 2346 2347 rcu_read_lock(); 2348 pid = rcu_dereference(target->pid); 2349 if (pid) 2350 task = get_pid_task(pid, PIDTYPE_PID); 2351 rcu_read_unlock(); 2352 if (!task) 2353 return ret; 2354 ret = yield_to(task, 1); 2355 put_task_struct(task); 2356 2357 return ret; 2358 } 2359 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2360 2361 /* 2362 * Helper that checks whether a VCPU is eligible for directed yield. 2363 * Most eligible candidate to yield is decided by following heuristics: 2364 * 2365 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2366 * (preempted lock holder), indicated by @in_spin_loop. 2367 * Set at the beiginning and cleared at the end of interception/PLE handler. 2368 * 2369 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2370 * chance last time (mostly it has become eligible now since we have probably 2371 * yielded to lockholder in last iteration. This is done by toggling 2372 * @dy_eligible each time a VCPU checked for eligibility.) 2373 * 2374 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2375 * to preempted lock-holder could result in wrong VCPU selection and CPU 2376 * burning. Giving priority for a potential lock-holder increases lock 2377 * progress. 2378 * 2379 * Since algorithm is based on heuristics, accessing another VCPU data without 2380 * locking does not harm. It may result in trying to yield to same VCPU, fail 2381 * and continue with next VCPU and so on. 2382 */ 2383 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2384 { 2385 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2386 bool eligible; 2387 2388 eligible = !vcpu->spin_loop.in_spin_loop || 2389 vcpu->spin_loop.dy_eligible; 2390 2391 if (vcpu->spin_loop.in_spin_loop) 2392 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2393 2394 return eligible; 2395 #else 2396 return true; 2397 #endif 2398 } 2399 2400 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2401 { 2402 struct kvm *kvm = me->kvm; 2403 struct kvm_vcpu *vcpu; 2404 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2405 int yielded = 0; 2406 int try = 3; 2407 int pass; 2408 int i; 2409 2410 kvm_vcpu_set_in_spin_loop(me, true); 2411 /* 2412 * We boost the priority of a VCPU that is runnable but not 2413 * currently running, because it got preempted by something 2414 * else and called schedule in __vcpu_run. Hopefully that 2415 * VCPU is holding the lock that we need and will release it. 2416 * We approximate round-robin by starting at the last boosted VCPU. 2417 */ 2418 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2419 kvm_for_each_vcpu(i, vcpu, kvm) { 2420 if (!pass && i <= last_boosted_vcpu) { 2421 i = last_boosted_vcpu; 2422 continue; 2423 } else if (pass && i > last_boosted_vcpu) 2424 break; 2425 if (!READ_ONCE(vcpu->preempted)) 2426 continue; 2427 if (vcpu == me) 2428 continue; 2429 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2430 continue; 2431 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2432 continue; 2433 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2434 continue; 2435 2436 yielded = kvm_vcpu_yield_to(vcpu); 2437 if (yielded > 0) { 2438 kvm->last_boosted_vcpu = i; 2439 break; 2440 } else if (yielded < 0) { 2441 try--; 2442 if (!try) 2443 break; 2444 } 2445 } 2446 } 2447 kvm_vcpu_set_in_spin_loop(me, false); 2448 2449 /* Ensure vcpu is not eligible during next spinloop */ 2450 kvm_vcpu_set_dy_eligible(me, false); 2451 } 2452 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2453 2454 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2455 { 2456 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2457 struct page *page; 2458 2459 if (vmf->pgoff == 0) 2460 page = virt_to_page(vcpu->run); 2461 #ifdef CONFIG_X86 2462 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2463 page = virt_to_page(vcpu->arch.pio_data); 2464 #endif 2465 #ifdef CONFIG_KVM_MMIO 2466 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2467 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2468 #endif 2469 else 2470 return kvm_arch_vcpu_fault(vcpu, vmf); 2471 get_page(page); 2472 vmf->page = page; 2473 return 0; 2474 } 2475 2476 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2477 .fault = kvm_vcpu_fault, 2478 }; 2479 2480 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2481 { 2482 vma->vm_ops = &kvm_vcpu_vm_ops; 2483 return 0; 2484 } 2485 2486 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2487 { 2488 struct kvm_vcpu *vcpu = filp->private_data; 2489 2490 debugfs_remove_recursive(vcpu->debugfs_dentry); 2491 kvm_put_kvm(vcpu->kvm); 2492 return 0; 2493 } 2494 2495 static struct file_operations kvm_vcpu_fops = { 2496 .release = kvm_vcpu_release, 2497 .unlocked_ioctl = kvm_vcpu_ioctl, 2498 .mmap = kvm_vcpu_mmap, 2499 .llseek = noop_llseek, 2500 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2501 }; 2502 2503 /* 2504 * Allocates an inode for the vcpu. 2505 */ 2506 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2507 { 2508 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2509 2510 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2511 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2512 } 2513 2514 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2515 { 2516 char dir_name[ITOA_MAX_LEN * 2]; 2517 int ret; 2518 2519 if (!kvm_arch_has_vcpu_debugfs()) 2520 return 0; 2521 2522 if (!debugfs_initialized()) 2523 return 0; 2524 2525 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2526 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2527 vcpu->kvm->debugfs_dentry); 2528 if (!vcpu->debugfs_dentry) 2529 return -ENOMEM; 2530 2531 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2532 if (ret < 0) { 2533 debugfs_remove_recursive(vcpu->debugfs_dentry); 2534 return ret; 2535 } 2536 2537 return 0; 2538 } 2539 2540 /* 2541 * Creates some virtual cpus. Good luck creating more than one. 2542 */ 2543 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2544 { 2545 int r; 2546 struct kvm_vcpu *vcpu; 2547 2548 if (id >= KVM_MAX_VCPU_ID) 2549 return -EINVAL; 2550 2551 mutex_lock(&kvm->lock); 2552 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2553 mutex_unlock(&kvm->lock); 2554 return -EINVAL; 2555 } 2556 2557 kvm->created_vcpus++; 2558 mutex_unlock(&kvm->lock); 2559 2560 vcpu = kvm_arch_vcpu_create(kvm, id); 2561 if (IS_ERR(vcpu)) { 2562 r = PTR_ERR(vcpu); 2563 goto vcpu_decrement; 2564 } 2565 2566 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2567 2568 r = kvm_arch_vcpu_setup(vcpu); 2569 if (r) 2570 goto vcpu_destroy; 2571 2572 r = kvm_create_vcpu_debugfs(vcpu); 2573 if (r) 2574 goto vcpu_destroy; 2575 2576 mutex_lock(&kvm->lock); 2577 if (kvm_get_vcpu_by_id(kvm, id)) { 2578 r = -EEXIST; 2579 goto unlock_vcpu_destroy; 2580 } 2581 2582 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2583 2584 /* Now it's all set up, let userspace reach it */ 2585 kvm_get_kvm(kvm); 2586 r = create_vcpu_fd(vcpu); 2587 if (r < 0) { 2588 kvm_put_kvm(kvm); 2589 goto unlock_vcpu_destroy; 2590 } 2591 2592 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2593 2594 /* 2595 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2596 * before kvm->online_vcpu's incremented value. 2597 */ 2598 smp_wmb(); 2599 atomic_inc(&kvm->online_vcpus); 2600 2601 mutex_unlock(&kvm->lock); 2602 kvm_arch_vcpu_postcreate(vcpu); 2603 return r; 2604 2605 unlock_vcpu_destroy: 2606 mutex_unlock(&kvm->lock); 2607 debugfs_remove_recursive(vcpu->debugfs_dentry); 2608 vcpu_destroy: 2609 kvm_arch_vcpu_destroy(vcpu); 2610 vcpu_decrement: 2611 mutex_lock(&kvm->lock); 2612 kvm->created_vcpus--; 2613 mutex_unlock(&kvm->lock); 2614 return r; 2615 } 2616 2617 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2618 { 2619 if (sigset) { 2620 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2621 vcpu->sigset_active = 1; 2622 vcpu->sigset = *sigset; 2623 } else 2624 vcpu->sigset_active = 0; 2625 return 0; 2626 } 2627 2628 static long kvm_vcpu_ioctl(struct file *filp, 2629 unsigned int ioctl, unsigned long arg) 2630 { 2631 struct kvm_vcpu *vcpu = filp->private_data; 2632 void __user *argp = (void __user *)arg; 2633 int r; 2634 struct kvm_fpu *fpu = NULL; 2635 struct kvm_sregs *kvm_sregs = NULL; 2636 2637 if (vcpu->kvm->mm != current->mm) 2638 return -EIO; 2639 2640 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2641 return -EINVAL; 2642 2643 /* 2644 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2645 * execution; mutex_lock() would break them. 2646 */ 2647 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2648 if (r != -ENOIOCTLCMD) 2649 return r; 2650 2651 if (mutex_lock_killable(&vcpu->mutex)) 2652 return -EINTR; 2653 switch (ioctl) { 2654 case KVM_RUN: { 2655 struct pid *oldpid; 2656 r = -EINVAL; 2657 if (arg) 2658 goto out; 2659 oldpid = rcu_access_pointer(vcpu->pid); 2660 if (unlikely(oldpid != task_pid(current))) { 2661 /* The thread running this VCPU changed. */ 2662 struct pid *newpid; 2663 2664 r = kvm_arch_vcpu_run_pid_change(vcpu); 2665 if (r) 2666 break; 2667 2668 newpid = get_task_pid(current, PIDTYPE_PID); 2669 rcu_assign_pointer(vcpu->pid, newpid); 2670 if (oldpid) 2671 synchronize_rcu(); 2672 put_pid(oldpid); 2673 } 2674 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2675 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2676 break; 2677 } 2678 case KVM_GET_REGS: { 2679 struct kvm_regs *kvm_regs; 2680 2681 r = -ENOMEM; 2682 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2683 if (!kvm_regs) 2684 goto out; 2685 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2686 if (r) 2687 goto out_free1; 2688 r = -EFAULT; 2689 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2690 goto out_free1; 2691 r = 0; 2692 out_free1: 2693 kfree(kvm_regs); 2694 break; 2695 } 2696 case KVM_SET_REGS: { 2697 struct kvm_regs *kvm_regs; 2698 2699 r = -ENOMEM; 2700 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2701 if (IS_ERR(kvm_regs)) { 2702 r = PTR_ERR(kvm_regs); 2703 goto out; 2704 } 2705 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2706 kfree(kvm_regs); 2707 break; 2708 } 2709 case KVM_GET_SREGS: { 2710 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2711 r = -ENOMEM; 2712 if (!kvm_sregs) 2713 goto out; 2714 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2715 if (r) 2716 goto out; 2717 r = -EFAULT; 2718 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2719 goto out; 2720 r = 0; 2721 break; 2722 } 2723 case KVM_SET_SREGS: { 2724 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2725 if (IS_ERR(kvm_sregs)) { 2726 r = PTR_ERR(kvm_sregs); 2727 kvm_sregs = NULL; 2728 goto out; 2729 } 2730 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2731 break; 2732 } 2733 case KVM_GET_MP_STATE: { 2734 struct kvm_mp_state mp_state; 2735 2736 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2737 if (r) 2738 goto out; 2739 r = -EFAULT; 2740 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2741 goto out; 2742 r = 0; 2743 break; 2744 } 2745 case KVM_SET_MP_STATE: { 2746 struct kvm_mp_state mp_state; 2747 2748 r = -EFAULT; 2749 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2750 goto out; 2751 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2752 break; 2753 } 2754 case KVM_TRANSLATE: { 2755 struct kvm_translation tr; 2756 2757 r = -EFAULT; 2758 if (copy_from_user(&tr, argp, sizeof(tr))) 2759 goto out; 2760 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2761 if (r) 2762 goto out; 2763 r = -EFAULT; 2764 if (copy_to_user(argp, &tr, sizeof(tr))) 2765 goto out; 2766 r = 0; 2767 break; 2768 } 2769 case KVM_SET_GUEST_DEBUG: { 2770 struct kvm_guest_debug dbg; 2771 2772 r = -EFAULT; 2773 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2774 goto out; 2775 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2776 break; 2777 } 2778 case KVM_SET_SIGNAL_MASK: { 2779 struct kvm_signal_mask __user *sigmask_arg = argp; 2780 struct kvm_signal_mask kvm_sigmask; 2781 sigset_t sigset, *p; 2782 2783 p = NULL; 2784 if (argp) { 2785 r = -EFAULT; 2786 if (copy_from_user(&kvm_sigmask, argp, 2787 sizeof(kvm_sigmask))) 2788 goto out; 2789 r = -EINVAL; 2790 if (kvm_sigmask.len != sizeof(sigset)) 2791 goto out; 2792 r = -EFAULT; 2793 if (copy_from_user(&sigset, sigmask_arg->sigset, 2794 sizeof(sigset))) 2795 goto out; 2796 p = &sigset; 2797 } 2798 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2799 break; 2800 } 2801 case KVM_GET_FPU: { 2802 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2803 r = -ENOMEM; 2804 if (!fpu) 2805 goto out; 2806 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2807 if (r) 2808 goto out; 2809 r = -EFAULT; 2810 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2811 goto out; 2812 r = 0; 2813 break; 2814 } 2815 case KVM_SET_FPU: { 2816 fpu = memdup_user(argp, sizeof(*fpu)); 2817 if (IS_ERR(fpu)) { 2818 r = PTR_ERR(fpu); 2819 fpu = NULL; 2820 goto out; 2821 } 2822 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2823 break; 2824 } 2825 default: 2826 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2827 } 2828 out: 2829 mutex_unlock(&vcpu->mutex); 2830 kfree(fpu); 2831 kfree(kvm_sregs); 2832 return r; 2833 } 2834 2835 #ifdef CONFIG_KVM_COMPAT 2836 static long kvm_vcpu_compat_ioctl(struct file *filp, 2837 unsigned int ioctl, unsigned long arg) 2838 { 2839 struct kvm_vcpu *vcpu = filp->private_data; 2840 void __user *argp = compat_ptr(arg); 2841 int r; 2842 2843 if (vcpu->kvm->mm != current->mm) 2844 return -EIO; 2845 2846 switch (ioctl) { 2847 case KVM_SET_SIGNAL_MASK: { 2848 struct kvm_signal_mask __user *sigmask_arg = argp; 2849 struct kvm_signal_mask kvm_sigmask; 2850 sigset_t sigset; 2851 2852 if (argp) { 2853 r = -EFAULT; 2854 if (copy_from_user(&kvm_sigmask, argp, 2855 sizeof(kvm_sigmask))) 2856 goto out; 2857 r = -EINVAL; 2858 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2859 goto out; 2860 r = -EFAULT; 2861 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2862 goto out; 2863 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2864 } else 2865 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2866 break; 2867 } 2868 default: 2869 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2870 } 2871 2872 out: 2873 return r; 2874 } 2875 #endif 2876 2877 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2878 int (*accessor)(struct kvm_device *dev, 2879 struct kvm_device_attr *attr), 2880 unsigned long arg) 2881 { 2882 struct kvm_device_attr attr; 2883 2884 if (!accessor) 2885 return -EPERM; 2886 2887 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2888 return -EFAULT; 2889 2890 return accessor(dev, &attr); 2891 } 2892 2893 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2894 unsigned long arg) 2895 { 2896 struct kvm_device *dev = filp->private_data; 2897 2898 switch (ioctl) { 2899 case KVM_SET_DEVICE_ATTR: 2900 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2901 case KVM_GET_DEVICE_ATTR: 2902 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2903 case KVM_HAS_DEVICE_ATTR: 2904 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2905 default: 2906 if (dev->ops->ioctl) 2907 return dev->ops->ioctl(dev, ioctl, arg); 2908 2909 return -ENOTTY; 2910 } 2911 } 2912 2913 static int kvm_device_release(struct inode *inode, struct file *filp) 2914 { 2915 struct kvm_device *dev = filp->private_data; 2916 struct kvm *kvm = dev->kvm; 2917 2918 kvm_put_kvm(kvm); 2919 return 0; 2920 } 2921 2922 static const struct file_operations kvm_device_fops = { 2923 .unlocked_ioctl = kvm_device_ioctl, 2924 .release = kvm_device_release, 2925 KVM_COMPAT(kvm_device_ioctl), 2926 }; 2927 2928 struct kvm_device *kvm_device_from_filp(struct file *filp) 2929 { 2930 if (filp->f_op != &kvm_device_fops) 2931 return NULL; 2932 2933 return filp->private_data; 2934 } 2935 2936 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2937 #ifdef CONFIG_KVM_MPIC 2938 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2939 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2940 #endif 2941 }; 2942 2943 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2944 { 2945 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2946 return -ENOSPC; 2947 2948 if (kvm_device_ops_table[type] != NULL) 2949 return -EEXIST; 2950 2951 kvm_device_ops_table[type] = ops; 2952 return 0; 2953 } 2954 2955 void kvm_unregister_device_ops(u32 type) 2956 { 2957 if (kvm_device_ops_table[type] != NULL) 2958 kvm_device_ops_table[type] = NULL; 2959 } 2960 2961 static int kvm_ioctl_create_device(struct kvm *kvm, 2962 struct kvm_create_device *cd) 2963 { 2964 struct kvm_device_ops *ops = NULL; 2965 struct kvm_device *dev; 2966 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2967 int ret; 2968 2969 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2970 return -ENODEV; 2971 2972 ops = kvm_device_ops_table[cd->type]; 2973 if (ops == NULL) 2974 return -ENODEV; 2975 2976 if (test) 2977 return 0; 2978 2979 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2980 if (!dev) 2981 return -ENOMEM; 2982 2983 dev->ops = ops; 2984 dev->kvm = kvm; 2985 2986 mutex_lock(&kvm->lock); 2987 ret = ops->create(dev, cd->type); 2988 if (ret < 0) { 2989 mutex_unlock(&kvm->lock); 2990 kfree(dev); 2991 return ret; 2992 } 2993 list_add(&dev->vm_node, &kvm->devices); 2994 mutex_unlock(&kvm->lock); 2995 2996 if (ops->init) 2997 ops->init(dev); 2998 2999 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3000 if (ret < 0) { 3001 mutex_lock(&kvm->lock); 3002 list_del(&dev->vm_node); 3003 mutex_unlock(&kvm->lock); 3004 ops->destroy(dev); 3005 return ret; 3006 } 3007 3008 kvm_get_kvm(kvm); 3009 cd->fd = ret; 3010 return 0; 3011 } 3012 3013 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3014 { 3015 switch (arg) { 3016 case KVM_CAP_USER_MEMORY: 3017 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3018 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3019 case KVM_CAP_INTERNAL_ERROR_DATA: 3020 #ifdef CONFIG_HAVE_KVM_MSI 3021 case KVM_CAP_SIGNAL_MSI: 3022 #endif 3023 #ifdef CONFIG_HAVE_KVM_IRQFD 3024 case KVM_CAP_IRQFD: 3025 case KVM_CAP_IRQFD_RESAMPLE: 3026 #endif 3027 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3028 case KVM_CAP_CHECK_EXTENSION_VM: 3029 case KVM_CAP_ENABLE_CAP_VM: 3030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3031 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3032 #endif 3033 return 1; 3034 #ifdef CONFIG_KVM_MMIO 3035 case KVM_CAP_COALESCED_MMIO: 3036 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3037 case KVM_CAP_COALESCED_PIO: 3038 return 1; 3039 #endif 3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3041 case KVM_CAP_IRQ_ROUTING: 3042 return KVM_MAX_IRQ_ROUTES; 3043 #endif 3044 #if KVM_ADDRESS_SPACE_NUM > 1 3045 case KVM_CAP_MULTI_ADDRESS_SPACE: 3046 return KVM_ADDRESS_SPACE_NUM; 3047 #endif 3048 case KVM_CAP_MAX_VCPU_ID: 3049 return KVM_MAX_VCPU_ID; 3050 default: 3051 break; 3052 } 3053 return kvm_vm_ioctl_check_extension(kvm, arg); 3054 } 3055 3056 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3057 struct kvm_enable_cap *cap) 3058 { 3059 return -EINVAL; 3060 } 3061 3062 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3063 struct kvm_enable_cap *cap) 3064 { 3065 switch (cap->cap) { 3066 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3067 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3068 if (cap->flags || (cap->args[0] & ~1)) 3069 return -EINVAL; 3070 kvm->manual_dirty_log_protect = cap->args[0]; 3071 return 0; 3072 #endif 3073 default: 3074 return kvm_vm_ioctl_enable_cap(kvm, cap); 3075 } 3076 } 3077 3078 static long kvm_vm_ioctl(struct file *filp, 3079 unsigned int ioctl, unsigned long arg) 3080 { 3081 struct kvm *kvm = filp->private_data; 3082 void __user *argp = (void __user *)arg; 3083 int r; 3084 3085 if (kvm->mm != current->mm) 3086 return -EIO; 3087 switch (ioctl) { 3088 case KVM_CREATE_VCPU: 3089 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3090 break; 3091 case KVM_ENABLE_CAP: { 3092 struct kvm_enable_cap cap; 3093 3094 r = -EFAULT; 3095 if (copy_from_user(&cap, argp, sizeof(cap))) 3096 goto out; 3097 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3098 break; 3099 } 3100 case KVM_SET_USER_MEMORY_REGION: { 3101 struct kvm_userspace_memory_region kvm_userspace_mem; 3102 3103 r = -EFAULT; 3104 if (copy_from_user(&kvm_userspace_mem, argp, 3105 sizeof(kvm_userspace_mem))) 3106 goto out; 3107 3108 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3109 break; 3110 } 3111 case KVM_GET_DIRTY_LOG: { 3112 struct kvm_dirty_log log; 3113 3114 r = -EFAULT; 3115 if (copy_from_user(&log, argp, sizeof(log))) 3116 goto out; 3117 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3118 break; 3119 } 3120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3121 case KVM_CLEAR_DIRTY_LOG: { 3122 struct kvm_clear_dirty_log log; 3123 3124 r = -EFAULT; 3125 if (copy_from_user(&log, argp, sizeof(log))) 3126 goto out; 3127 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3128 break; 3129 } 3130 #endif 3131 #ifdef CONFIG_KVM_MMIO 3132 case KVM_REGISTER_COALESCED_MMIO: { 3133 struct kvm_coalesced_mmio_zone zone; 3134 3135 r = -EFAULT; 3136 if (copy_from_user(&zone, argp, sizeof(zone))) 3137 goto out; 3138 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3139 break; 3140 } 3141 case KVM_UNREGISTER_COALESCED_MMIO: { 3142 struct kvm_coalesced_mmio_zone zone; 3143 3144 r = -EFAULT; 3145 if (copy_from_user(&zone, argp, sizeof(zone))) 3146 goto out; 3147 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3148 break; 3149 } 3150 #endif 3151 case KVM_IRQFD: { 3152 struct kvm_irqfd data; 3153 3154 r = -EFAULT; 3155 if (copy_from_user(&data, argp, sizeof(data))) 3156 goto out; 3157 r = kvm_irqfd(kvm, &data); 3158 break; 3159 } 3160 case KVM_IOEVENTFD: { 3161 struct kvm_ioeventfd data; 3162 3163 r = -EFAULT; 3164 if (copy_from_user(&data, argp, sizeof(data))) 3165 goto out; 3166 r = kvm_ioeventfd(kvm, &data); 3167 break; 3168 } 3169 #ifdef CONFIG_HAVE_KVM_MSI 3170 case KVM_SIGNAL_MSI: { 3171 struct kvm_msi msi; 3172 3173 r = -EFAULT; 3174 if (copy_from_user(&msi, argp, sizeof(msi))) 3175 goto out; 3176 r = kvm_send_userspace_msi(kvm, &msi); 3177 break; 3178 } 3179 #endif 3180 #ifdef __KVM_HAVE_IRQ_LINE 3181 case KVM_IRQ_LINE_STATUS: 3182 case KVM_IRQ_LINE: { 3183 struct kvm_irq_level irq_event; 3184 3185 r = -EFAULT; 3186 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3187 goto out; 3188 3189 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3190 ioctl == KVM_IRQ_LINE_STATUS); 3191 if (r) 3192 goto out; 3193 3194 r = -EFAULT; 3195 if (ioctl == KVM_IRQ_LINE_STATUS) { 3196 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3197 goto out; 3198 } 3199 3200 r = 0; 3201 break; 3202 } 3203 #endif 3204 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3205 case KVM_SET_GSI_ROUTING: { 3206 struct kvm_irq_routing routing; 3207 struct kvm_irq_routing __user *urouting; 3208 struct kvm_irq_routing_entry *entries = NULL; 3209 3210 r = -EFAULT; 3211 if (copy_from_user(&routing, argp, sizeof(routing))) 3212 goto out; 3213 r = -EINVAL; 3214 if (!kvm_arch_can_set_irq_routing(kvm)) 3215 goto out; 3216 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3217 goto out; 3218 if (routing.flags) 3219 goto out; 3220 if (routing.nr) { 3221 r = -ENOMEM; 3222 entries = vmalloc(array_size(sizeof(*entries), 3223 routing.nr)); 3224 if (!entries) 3225 goto out; 3226 r = -EFAULT; 3227 urouting = argp; 3228 if (copy_from_user(entries, urouting->entries, 3229 routing.nr * sizeof(*entries))) 3230 goto out_free_irq_routing; 3231 } 3232 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3233 routing.flags); 3234 out_free_irq_routing: 3235 vfree(entries); 3236 break; 3237 } 3238 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3239 case KVM_CREATE_DEVICE: { 3240 struct kvm_create_device cd; 3241 3242 r = -EFAULT; 3243 if (copy_from_user(&cd, argp, sizeof(cd))) 3244 goto out; 3245 3246 r = kvm_ioctl_create_device(kvm, &cd); 3247 if (r) 3248 goto out; 3249 3250 r = -EFAULT; 3251 if (copy_to_user(argp, &cd, sizeof(cd))) 3252 goto out; 3253 3254 r = 0; 3255 break; 3256 } 3257 case KVM_CHECK_EXTENSION: 3258 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3259 break; 3260 default: 3261 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3262 } 3263 out: 3264 return r; 3265 } 3266 3267 #ifdef CONFIG_KVM_COMPAT 3268 struct compat_kvm_dirty_log { 3269 __u32 slot; 3270 __u32 padding1; 3271 union { 3272 compat_uptr_t dirty_bitmap; /* one bit per page */ 3273 __u64 padding2; 3274 }; 3275 }; 3276 3277 static long kvm_vm_compat_ioctl(struct file *filp, 3278 unsigned int ioctl, unsigned long arg) 3279 { 3280 struct kvm *kvm = filp->private_data; 3281 int r; 3282 3283 if (kvm->mm != current->mm) 3284 return -EIO; 3285 switch (ioctl) { 3286 case KVM_GET_DIRTY_LOG: { 3287 struct compat_kvm_dirty_log compat_log; 3288 struct kvm_dirty_log log; 3289 3290 if (copy_from_user(&compat_log, (void __user *)arg, 3291 sizeof(compat_log))) 3292 return -EFAULT; 3293 log.slot = compat_log.slot; 3294 log.padding1 = compat_log.padding1; 3295 log.padding2 = compat_log.padding2; 3296 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3297 3298 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3299 break; 3300 } 3301 default: 3302 r = kvm_vm_ioctl(filp, ioctl, arg); 3303 } 3304 return r; 3305 } 3306 #endif 3307 3308 static struct file_operations kvm_vm_fops = { 3309 .release = kvm_vm_release, 3310 .unlocked_ioctl = kvm_vm_ioctl, 3311 .llseek = noop_llseek, 3312 KVM_COMPAT(kvm_vm_compat_ioctl), 3313 }; 3314 3315 static int kvm_dev_ioctl_create_vm(unsigned long type) 3316 { 3317 int r; 3318 struct kvm *kvm; 3319 struct file *file; 3320 3321 kvm = kvm_create_vm(type); 3322 if (IS_ERR(kvm)) 3323 return PTR_ERR(kvm); 3324 #ifdef CONFIG_KVM_MMIO 3325 r = kvm_coalesced_mmio_init(kvm); 3326 if (r < 0) 3327 goto put_kvm; 3328 #endif 3329 r = get_unused_fd_flags(O_CLOEXEC); 3330 if (r < 0) 3331 goto put_kvm; 3332 3333 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3334 if (IS_ERR(file)) { 3335 put_unused_fd(r); 3336 r = PTR_ERR(file); 3337 goto put_kvm; 3338 } 3339 3340 /* 3341 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3342 * already set, with ->release() being kvm_vm_release(). In error 3343 * cases it will be called by the final fput(file) and will take 3344 * care of doing kvm_put_kvm(kvm). 3345 */ 3346 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3347 put_unused_fd(r); 3348 fput(file); 3349 return -ENOMEM; 3350 } 3351 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3352 3353 fd_install(r, file); 3354 return r; 3355 3356 put_kvm: 3357 kvm_put_kvm(kvm); 3358 return r; 3359 } 3360 3361 static long kvm_dev_ioctl(struct file *filp, 3362 unsigned int ioctl, unsigned long arg) 3363 { 3364 long r = -EINVAL; 3365 3366 switch (ioctl) { 3367 case KVM_GET_API_VERSION: 3368 if (arg) 3369 goto out; 3370 r = KVM_API_VERSION; 3371 break; 3372 case KVM_CREATE_VM: 3373 r = kvm_dev_ioctl_create_vm(arg); 3374 break; 3375 case KVM_CHECK_EXTENSION: 3376 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3377 break; 3378 case KVM_GET_VCPU_MMAP_SIZE: 3379 if (arg) 3380 goto out; 3381 r = PAGE_SIZE; /* struct kvm_run */ 3382 #ifdef CONFIG_X86 3383 r += PAGE_SIZE; /* pio data page */ 3384 #endif 3385 #ifdef CONFIG_KVM_MMIO 3386 r += PAGE_SIZE; /* coalesced mmio ring page */ 3387 #endif 3388 break; 3389 case KVM_TRACE_ENABLE: 3390 case KVM_TRACE_PAUSE: 3391 case KVM_TRACE_DISABLE: 3392 r = -EOPNOTSUPP; 3393 break; 3394 default: 3395 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3396 } 3397 out: 3398 return r; 3399 } 3400 3401 static struct file_operations kvm_chardev_ops = { 3402 .unlocked_ioctl = kvm_dev_ioctl, 3403 .llseek = noop_llseek, 3404 KVM_COMPAT(kvm_dev_ioctl), 3405 }; 3406 3407 static struct miscdevice kvm_dev = { 3408 KVM_MINOR, 3409 "kvm", 3410 &kvm_chardev_ops, 3411 }; 3412 3413 static void hardware_enable_nolock(void *junk) 3414 { 3415 int cpu = raw_smp_processor_id(); 3416 int r; 3417 3418 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3419 return; 3420 3421 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3422 3423 r = kvm_arch_hardware_enable(); 3424 3425 if (r) { 3426 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3427 atomic_inc(&hardware_enable_failed); 3428 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3429 } 3430 } 3431 3432 static int kvm_starting_cpu(unsigned int cpu) 3433 { 3434 raw_spin_lock(&kvm_count_lock); 3435 if (kvm_usage_count) 3436 hardware_enable_nolock(NULL); 3437 raw_spin_unlock(&kvm_count_lock); 3438 return 0; 3439 } 3440 3441 static void hardware_disable_nolock(void *junk) 3442 { 3443 int cpu = raw_smp_processor_id(); 3444 3445 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3446 return; 3447 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3448 kvm_arch_hardware_disable(); 3449 } 3450 3451 static int kvm_dying_cpu(unsigned int cpu) 3452 { 3453 raw_spin_lock(&kvm_count_lock); 3454 if (kvm_usage_count) 3455 hardware_disable_nolock(NULL); 3456 raw_spin_unlock(&kvm_count_lock); 3457 return 0; 3458 } 3459 3460 static void hardware_disable_all_nolock(void) 3461 { 3462 BUG_ON(!kvm_usage_count); 3463 3464 kvm_usage_count--; 3465 if (!kvm_usage_count) 3466 on_each_cpu(hardware_disable_nolock, NULL, 1); 3467 } 3468 3469 static void hardware_disable_all(void) 3470 { 3471 raw_spin_lock(&kvm_count_lock); 3472 hardware_disable_all_nolock(); 3473 raw_spin_unlock(&kvm_count_lock); 3474 } 3475 3476 static int hardware_enable_all(void) 3477 { 3478 int r = 0; 3479 3480 raw_spin_lock(&kvm_count_lock); 3481 3482 kvm_usage_count++; 3483 if (kvm_usage_count == 1) { 3484 atomic_set(&hardware_enable_failed, 0); 3485 on_each_cpu(hardware_enable_nolock, NULL, 1); 3486 3487 if (atomic_read(&hardware_enable_failed)) { 3488 hardware_disable_all_nolock(); 3489 r = -EBUSY; 3490 } 3491 } 3492 3493 raw_spin_unlock(&kvm_count_lock); 3494 3495 return r; 3496 } 3497 3498 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3499 void *v) 3500 { 3501 /* 3502 * Some (well, at least mine) BIOSes hang on reboot if 3503 * in vmx root mode. 3504 * 3505 * And Intel TXT required VMX off for all cpu when system shutdown. 3506 */ 3507 pr_info("kvm: exiting hardware virtualization\n"); 3508 kvm_rebooting = true; 3509 on_each_cpu(hardware_disable_nolock, NULL, 1); 3510 return NOTIFY_OK; 3511 } 3512 3513 static struct notifier_block kvm_reboot_notifier = { 3514 .notifier_call = kvm_reboot, 3515 .priority = 0, 3516 }; 3517 3518 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3519 { 3520 int i; 3521 3522 for (i = 0; i < bus->dev_count; i++) { 3523 struct kvm_io_device *pos = bus->range[i].dev; 3524 3525 kvm_iodevice_destructor(pos); 3526 } 3527 kfree(bus); 3528 } 3529 3530 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3531 const struct kvm_io_range *r2) 3532 { 3533 gpa_t addr1 = r1->addr; 3534 gpa_t addr2 = r2->addr; 3535 3536 if (addr1 < addr2) 3537 return -1; 3538 3539 /* If r2->len == 0, match the exact address. If r2->len != 0, 3540 * accept any overlapping write. Any order is acceptable for 3541 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3542 * we process all of them. 3543 */ 3544 if (r2->len) { 3545 addr1 += r1->len; 3546 addr2 += r2->len; 3547 } 3548 3549 if (addr1 > addr2) 3550 return 1; 3551 3552 return 0; 3553 } 3554 3555 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3556 { 3557 return kvm_io_bus_cmp(p1, p2); 3558 } 3559 3560 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3561 gpa_t addr, int len) 3562 { 3563 struct kvm_io_range *range, key; 3564 int off; 3565 3566 key = (struct kvm_io_range) { 3567 .addr = addr, 3568 .len = len, 3569 }; 3570 3571 range = bsearch(&key, bus->range, bus->dev_count, 3572 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3573 if (range == NULL) 3574 return -ENOENT; 3575 3576 off = range - bus->range; 3577 3578 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3579 off--; 3580 3581 return off; 3582 } 3583 3584 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3585 struct kvm_io_range *range, const void *val) 3586 { 3587 int idx; 3588 3589 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3590 if (idx < 0) 3591 return -EOPNOTSUPP; 3592 3593 while (idx < bus->dev_count && 3594 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3595 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3596 range->len, val)) 3597 return idx; 3598 idx++; 3599 } 3600 3601 return -EOPNOTSUPP; 3602 } 3603 3604 /* kvm_io_bus_write - called under kvm->slots_lock */ 3605 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3606 int len, const void *val) 3607 { 3608 struct kvm_io_bus *bus; 3609 struct kvm_io_range range; 3610 int r; 3611 3612 range = (struct kvm_io_range) { 3613 .addr = addr, 3614 .len = len, 3615 }; 3616 3617 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3618 if (!bus) 3619 return -ENOMEM; 3620 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3621 return r < 0 ? r : 0; 3622 } 3623 3624 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3625 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3626 gpa_t addr, int len, const void *val, long cookie) 3627 { 3628 struct kvm_io_bus *bus; 3629 struct kvm_io_range range; 3630 3631 range = (struct kvm_io_range) { 3632 .addr = addr, 3633 .len = len, 3634 }; 3635 3636 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3637 if (!bus) 3638 return -ENOMEM; 3639 3640 /* First try the device referenced by cookie. */ 3641 if ((cookie >= 0) && (cookie < bus->dev_count) && 3642 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3643 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3644 val)) 3645 return cookie; 3646 3647 /* 3648 * cookie contained garbage; fall back to search and return the 3649 * correct cookie value. 3650 */ 3651 return __kvm_io_bus_write(vcpu, bus, &range, val); 3652 } 3653 3654 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3655 struct kvm_io_range *range, void *val) 3656 { 3657 int idx; 3658 3659 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3660 if (idx < 0) 3661 return -EOPNOTSUPP; 3662 3663 while (idx < bus->dev_count && 3664 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3665 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3666 range->len, val)) 3667 return idx; 3668 idx++; 3669 } 3670 3671 return -EOPNOTSUPP; 3672 } 3673 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3674 3675 /* kvm_io_bus_read - called under kvm->slots_lock */ 3676 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3677 int len, void *val) 3678 { 3679 struct kvm_io_bus *bus; 3680 struct kvm_io_range range; 3681 int r; 3682 3683 range = (struct kvm_io_range) { 3684 .addr = addr, 3685 .len = len, 3686 }; 3687 3688 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3689 if (!bus) 3690 return -ENOMEM; 3691 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3692 return r < 0 ? r : 0; 3693 } 3694 3695 3696 /* Caller must hold slots_lock. */ 3697 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3698 int len, struct kvm_io_device *dev) 3699 { 3700 int i; 3701 struct kvm_io_bus *new_bus, *bus; 3702 struct kvm_io_range range; 3703 3704 bus = kvm_get_bus(kvm, bus_idx); 3705 if (!bus) 3706 return -ENOMEM; 3707 3708 /* exclude ioeventfd which is limited by maximum fd */ 3709 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3710 return -ENOSPC; 3711 3712 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3713 sizeof(struct kvm_io_range)), GFP_KERNEL); 3714 if (!new_bus) 3715 return -ENOMEM; 3716 3717 range = (struct kvm_io_range) { 3718 .addr = addr, 3719 .len = len, 3720 .dev = dev, 3721 }; 3722 3723 for (i = 0; i < bus->dev_count; i++) 3724 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3725 break; 3726 3727 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3728 new_bus->dev_count++; 3729 new_bus->range[i] = range; 3730 memcpy(new_bus->range + i + 1, bus->range + i, 3731 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3732 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3733 synchronize_srcu_expedited(&kvm->srcu); 3734 kfree(bus); 3735 3736 return 0; 3737 } 3738 3739 /* Caller must hold slots_lock. */ 3740 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3741 struct kvm_io_device *dev) 3742 { 3743 int i; 3744 struct kvm_io_bus *new_bus, *bus; 3745 3746 bus = kvm_get_bus(kvm, bus_idx); 3747 if (!bus) 3748 return; 3749 3750 for (i = 0; i < bus->dev_count; i++) 3751 if (bus->range[i].dev == dev) { 3752 break; 3753 } 3754 3755 if (i == bus->dev_count) 3756 return; 3757 3758 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3759 sizeof(struct kvm_io_range)), GFP_KERNEL); 3760 if (!new_bus) { 3761 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3762 goto broken; 3763 } 3764 3765 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3766 new_bus->dev_count--; 3767 memcpy(new_bus->range + i, bus->range + i + 1, 3768 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3769 3770 broken: 3771 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3772 synchronize_srcu_expedited(&kvm->srcu); 3773 kfree(bus); 3774 return; 3775 } 3776 3777 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3778 gpa_t addr) 3779 { 3780 struct kvm_io_bus *bus; 3781 int dev_idx, srcu_idx; 3782 struct kvm_io_device *iodev = NULL; 3783 3784 srcu_idx = srcu_read_lock(&kvm->srcu); 3785 3786 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3787 if (!bus) 3788 goto out_unlock; 3789 3790 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3791 if (dev_idx < 0) 3792 goto out_unlock; 3793 3794 iodev = bus->range[dev_idx].dev; 3795 3796 out_unlock: 3797 srcu_read_unlock(&kvm->srcu, srcu_idx); 3798 3799 return iodev; 3800 } 3801 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3802 3803 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3804 int (*get)(void *, u64 *), int (*set)(void *, u64), 3805 const char *fmt) 3806 { 3807 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3808 inode->i_private; 3809 3810 /* The debugfs files are a reference to the kvm struct which 3811 * is still valid when kvm_destroy_vm is called. 3812 * To avoid the race between open and the removal of the debugfs 3813 * directory we test against the users count. 3814 */ 3815 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3816 return -ENOENT; 3817 3818 if (simple_attr_open(inode, file, get, set, fmt)) { 3819 kvm_put_kvm(stat_data->kvm); 3820 return -ENOMEM; 3821 } 3822 3823 return 0; 3824 } 3825 3826 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3827 { 3828 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3829 inode->i_private; 3830 3831 simple_attr_release(inode, file); 3832 kvm_put_kvm(stat_data->kvm); 3833 3834 return 0; 3835 } 3836 3837 static int vm_stat_get_per_vm(void *data, u64 *val) 3838 { 3839 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3840 3841 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3842 3843 return 0; 3844 } 3845 3846 static int vm_stat_clear_per_vm(void *data, u64 val) 3847 { 3848 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3849 3850 if (val) 3851 return -EINVAL; 3852 3853 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3854 3855 return 0; 3856 } 3857 3858 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3859 { 3860 __simple_attr_check_format("%llu\n", 0ull); 3861 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3862 vm_stat_clear_per_vm, "%llu\n"); 3863 } 3864 3865 static const struct file_operations vm_stat_get_per_vm_fops = { 3866 .owner = THIS_MODULE, 3867 .open = vm_stat_get_per_vm_open, 3868 .release = kvm_debugfs_release, 3869 .read = simple_attr_read, 3870 .write = simple_attr_write, 3871 .llseek = no_llseek, 3872 }; 3873 3874 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3875 { 3876 int i; 3877 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3878 struct kvm_vcpu *vcpu; 3879 3880 *val = 0; 3881 3882 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3883 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3884 3885 return 0; 3886 } 3887 3888 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3889 { 3890 int i; 3891 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3892 struct kvm_vcpu *vcpu; 3893 3894 if (val) 3895 return -EINVAL; 3896 3897 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3898 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3899 3900 return 0; 3901 } 3902 3903 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3904 { 3905 __simple_attr_check_format("%llu\n", 0ull); 3906 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3907 vcpu_stat_clear_per_vm, "%llu\n"); 3908 } 3909 3910 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3911 .owner = THIS_MODULE, 3912 .open = vcpu_stat_get_per_vm_open, 3913 .release = kvm_debugfs_release, 3914 .read = simple_attr_read, 3915 .write = simple_attr_write, 3916 .llseek = no_llseek, 3917 }; 3918 3919 static const struct file_operations *stat_fops_per_vm[] = { 3920 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3921 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3922 }; 3923 3924 static int vm_stat_get(void *_offset, u64 *val) 3925 { 3926 unsigned offset = (long)_offset; 3927 struct kvm *kvm; 3928 struct kvm_stat_data stat_tmp = {.offset = offset}; 3929 u64 tmp_val; 3930 3931 *val = 0; 3932 spin_lock(&kvm_lock); 3933 list_for_each_entry(kvm, &vm_list, vm_list) { 3934 stat_tmp.kvm = kvm; 3935 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3936 *val += tmp_val; 3937 } 3938 spin_unlock(&kvm_lock); 3939 return 0; 3940 } 3941 3942 static int vm_stat_clear(void *_offset, u64 val) 3943 { 3944 unsigned offset = (long)_offset; 3945 struct kvm *kvm; 3946 struct kvm_stat_data stat_tmp = {.offset = offset}; 3947 3948 if (val) 3949 return -EINVAL; 3950 3951 spin_lock(&kvm_lock); 3952 list_for_each_entry(kvm, &vm_list, vm_list) { 3953 stat_tmp.kvm = kvm; 3954 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3955 } 3956 spin_unlock(&kvm_lock); 3957 3958 return 0; 3959 } 3960 3961 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3962 3963 static int vcpu_stat_get(void *_offset, u64 *val) 3964 { 3965 unsigned offset = (long)_offset; 3966 struct kvm *kvm; 3967 struct kvm_stat_data stat_tmp = {.offset = offset}; 3968 u64 tmp_val; 3969 3970 *val = 0; 3971 spin_lock(&kvm_lock); 3972 list_for_each_entry(kvm, &vm_list, vm_list) { 3973 stat_tmp.kvm = kvm; 3974 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3975 *val += tmp_val; 3976 } 3977 spin_unlock(&kvm_lock); 3978 return 0; 3979 } 3980 3981 static int vcpu_stat_clear(void *_offset, u64 val) 3982 { 3983 unsigned offset = (long)_offset; 3984 struct kvm *kvm; 3985 struct kvm_stat_data stat_tmp = {.offset = offset}; 3986 3987 if (val) 3988 return -EINVAL; 3989 3990 spin_lock(&kvm_lock); 3991 list_for_each_entry(kvm, &vm_list, vm_list) { 3992 stat_tmp.kvm = kvm; 3993 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3994 } 3995 spin_unlock(&kvm_lock); 3996 3997 return 0; 3998 } 3999 4000 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4001 "%llu\n"); 4002 4003 static const struct file_operations *stat_fops[] = { 4004 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4005 [KVM_STAT_VM] = &vm_stat_fops, 4006 }; 4007 4008 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4009 { 4010 struct kobj_uevent_env *env; 4011 unsigned long long created, active; 4012 4013 if (!kvm_dev.this_device || !kvm) 4014 return; 4015 4016 spin_lock(&kvm_lock); 4017 if (type == KVM_EVENT_CREATE_VM) { 4018 kvm_createvm_count++; 4019 kvm_active_vms++; 4020 } else if (type == KVM_EVENT_DESTROY_VM) { 4021 kvm_active_vms--; 4022 } 4023 created = kvm_createvm_count; 4024 active = kvm_active_vms; 4025 spin_unlock(&kvm_lock); 4026 4027 env = kzalloc(sizeof(*env), GFP_KERNEL); 4028 if (!env) 4029 return; 4030 4031 add_uevent_var(env, "CREATED=%llu", created); 4032 add_uevent_var(env, "COUNT=%llu", active); 4033 4034 if (type == KVM_EVENT_CREATE_VM) { 4035 add_uevent_var(env, "EVENT=create"); 4036 kvm->userspace_pid = task_pid_nr(current); 4037 } else if (type == KVM_EVENT_DESTROY_VM) { 4038 add_uevent_var(env, "EVENT=destroy"); 4039 } 4040 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4041 4042 if (kvm->debugfs_dentry) { 4043 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 4044 4045 if (p) { 4046 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4047 if (!IS_ERR(tmp)) 4048 add_uevent_var(env, "STATS_PATH=%s", tmp); 4049 kfree(p); 4050 } 4051 } 4052 /* no need for checks, since we are adding at most only 5 keys */ 4053 env->envp[env->envp_idx++] = NULL; 4054 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4055 kfree(env); 4056 } 4057 4058 static void kvm_init_debug(void) 4059 { 4060 struct kvm_stats_debugfs_item *p; 4061 4062 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4063 4064 kvm_debugfs_num_entries = 0; 4065 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4066 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4067 (void *)(long)p->offset, 4068 stat_fops[p->kind]); 4069 } 4070 } 4071 4072 static int kvm_suspend(void) 4073 { 4074 if (kvm_usage_count) 4075 hardware_disable_nolock(NULL); 4076 return 0; 4077 } 4078 4079 static void kvm_resume(void) 4080 { 4081 if (kvm_usage_count) { 4082 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 4083 hardware_enable_nolock(NULL); 4084 } 4085 } 4086 4087 static struct syscore_ops kvm_syscore_ops = { 4088 .suspend = kvm_suspend, 4089 .resume = kvm_resume, 4090 }; 4091 4092 static inline 4093 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4094 { 4095 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4096 } 4097 4098 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4099 { 4100 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4101 4102 if (vcpu->preempted) 4103 vcpu->preempted = false; 4104 4105 kvm_arch_sched_in(vcpu, cpu); 4106 4107 kvm_arch_vcpu_load(vcpu, cpu); 4108 } 4109 4110 static void kvm_sched_out(struct preempt_notifier *pn, 4111 struct task_struct *next) 4112 { 4113 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4114 4115 if (current->state == TASK_RUNNING) 4116 vcpu->preempted = true; 4117 kvm_arch_vcpu_put(vcpu); 4118 } 4119 4120 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4121 struct module *module) 4122 { 4123 int r; 4124 int cpu; 4125 4126 r = kvm_arch_init(opaque); 4127 if (r) 4128 goto out_fail; 4129 4130 /* 4131 * kvm_arch_init makes sure there's at most one caller 4132 * for architectures that support multiple implementations, 4133 * like intel and amd on x86. 4134 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4135 * conflicts in case kvm is already setup for another implementation. 4136 */ 4137 r = kvm_irqfd_init(); 4138 if (r) 4139 goto out_irqfd; 4140 4141 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4142 r = -ENOMEM; 4143 goto out_free_0; 4144 } 4145 4146 r = kvm_arch_hardware_setup(); 4147 if (r < 0) 4148 goto out_free_0a; 4149 4150 for_each_online_cpu(cpu) { 4151 smp_call_function_single(cpu, 4152 kvm_arch_check_processor_compat, 4153 &r, 1); 4154 if (r < 0) 4155 goto out_free_1; 4156 } 4157 4158 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4159 kvm_starting_cpu, kvm_dying_cpu); 4160 if (r) 4161 goto out_free_2; 4162 register_reboot_notifier(&kvm_reboot_notifier); 4163 4164 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4165 if (!vcpu_align) 4166 vcpu_align = __alignof__(struct kvm_vcpu); 4167 kvm_vcpu_cache = 4168 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4169 SLAB_ACCOUNT, 4170 offsetof(struct kvm_vcpu, arch), 4171 sizeof_field(struct kvm_vcpu, arch), 4172 NULL); 4173 if (!kvm_vcpu_cache) { 4174 r = -ENOMEM; 4175 goto out_free_3; 4176 } 4177 4178 r = kvm_async_pf_init(); 4179 if (r) 4180 goto out_free; 4181 4182 kvm_chardev_ops.owner = module; 4183 kvm_vm_fops.owner = module; 4184 kvm_vcpu_fops.owner = module; 4185 4186 r = misc_register(&kvm_dev); 4187 if (r) { 4188 pr_err("kvm: misc device register failed\n"); 4189 goto out_unreg; 4190 } 4191 4192 register_syscore_ops(&kvm_syscore_ops); 4193 4194 kvm_preempt_ops.sched_in = kvm_sched_in; 4195 kvm_preempt_ops.sched_out = kvm_sched_out; 4196 4197 kvm_init_debug(); 4198 4199 r = kvm_vfio_ops_init(); 4200 WARN_ON(r); 4201 4202 return 0; 4203 4204 out_unreg: 4205 kvm_async_pf_deinit(); 4206 out_free: 4207 kmem_cache_destroy(kvm_vcpu_cache); 4208 out_free_3: 4209 unregister_reboot_notifier(&kvm_reboot_notifier); 4210 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4211 out_free_2: 4212 out_free_1: 4213 kvm_arch_hardware_unsetup(); 4214 out_free_0a: 4215 free_cpumask_var(cpus_hardware_enabled); 4216 out_free_0: 4217 kvm_irqfd_exit(); 4218 out_irqfd: 4219 kvm_arch_exit(); 4220 out_fail: 4221 return r; 4222 } 4223 EXPORT_SYMBOL_GPL(kvm_init); 4224 4225 void kvm_exit(void) 4226 { 4227 debugfs_remove_recursive(kvm_debugfs_dir); 4228 misc_deregister(&kvm_dev); 4229 kmem_cache_destroy(kvm_vcpu_cache); 4230 kvm_async_pf_deinit(); 4231 unregister_syscore_ops(&kvm_syscore_ops); 4232 unregister_reboot_notifier(&kvm_reboot_notifier); 4233 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4234 on_each_cpu(hardware_disable_nolock, NULL, 1); 4235 kvm_arch_hardware_unsetup(); 4236 kvm_arch_exit(); 4237 kvm_irqfd_exit(); 4238 free_cpumask_var(cpus_hardware_enabled); 4239 kvm_vfio_ops_exit(); 4240 } 4241 EXPORT_SYMBOL_GPL(kvm_exit); 4242