xref: /linux/virt/kvm/kvm_main.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 				unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127 
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129 
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131 
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134 
135 static bool largepages_enabled = true;
136 
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142 
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 		unsigned long start, unsigned long end, bool blockable)
145 {
146 	return 0;
147 }
148 
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 	if (pfn_valid(pfn))
152 		return PageReserved(pfn_to_page(pfn));
153 
154 	return true;
155 }
156 
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 	int cpu = get_cpu();
163 	preempt_notifier_register(&vcpu->preempt_notifier);
164 	kvm_arch_vcpu_load(vcpu, cpu);
165 	put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168 
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 	preempt_disable();
172 	kvm_arch_vcpu_put(vcpu);
173 	preempt_notifier_unregister(&vcpu->preempt_notifier);
174 	preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183 	/*
184 	 * We need to wait for the VCPU to reenable interrupts and get out of
185 	 * READING_SHADOW_PAGE_TABLES mode.
186 	 */
187 	if (req & KVM_REQUEST_WAIT)
188 		return mode != OUTSIDE_GUEST_MODE;
189 
190 	/*
191 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 	 */
193 	return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 	if (unlikely(!cpus))
203 		cpus = cpu_online_mask;
204 
205 	if (cpumask_empty(cpus))
206 		return false;
207 
208 	smp_call_function_many(cpus, ack_flush, NULL, wait);
209 	return true;
210 }
211 
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 	int i, cpu, me;
216 	struct kvm_vcpu *vcpu;
217 	bool called;
218 
219 	me = get_cpu();
220 
221 	kvm_for_each_vcpu(i, vcpu, kvm) {
222 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223 			continue;
224 
225 		kvm_make_request(req, vcpu);
226 		cpu = vcpu->cpu;
227 
228 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 			continue;
230 
231 		if (tmp != NULL && cpu != -1 && cpu != me &&
232 		    kvm_request_needs_ipi(vcpu, req))
233 			__cpumask_set_cpu(cpu, tmp);
234 	}
235 
236 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 	put_cpu();
238 
239 	return called;
240 }
241 
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 	cpumask_var_t cpus;
245 	bool called;
246 
247 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248 
249 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250 
251 	free_cpumask_var(cpus);
252 	return called;
253 }
254 
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258 	/*
259 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 	 * kvm_make_all_cpus_request.
261 	 */
262 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263 
264 	/*
265 	 * We want to publish modifications to the page tables before reading
266 	 * mode. Pairs with a memory barrier in arch-specific code.
267 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 	 *
271 	 * There is already an smp_mb__after_atomic() before
272 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 	 * barrier here.
274 	 */
275 	if (!kvm_arch_flush_remote_tlb(kvm)
276 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 		++kvm->stat.remote_tlb_flush;
278 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282 
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287 
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 	struct page *page;
291 	int r;
292 
293 	mutex_init(&vcpu->mutex);
294 	vcpu->cpu = -1;
295 	vcpu->kvm = kvm;
296 	vcpu->vcpu_id = id;
297 	vcpu->pid = NULL;
298 	init_swait_queue_head(&vcpu->wq);
299 	kvm_async_pf_vcpu_init(vcpu);
300 
301 	vcpu->pre_pcpu = -1;
302 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303 
304 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 	if (!page) {
306 		r = -ENOMEM;
307 		goto fail;
308 	}
309 	vcpu->run = page_address(page);
310 
311 	kvm_vcpu_set_in_spin_loop(vcpu, false);
312 	kvm_vcpu_set_dy_eligible(vcpu, false);
313 	vcpu->preempted = false;
314 
315 	r = kvm_arch_vcpu_init(vcpu);
316 	if (r < 0)
317 		goto fail_free_run;
318 	return 0;
319 
320 fail_free_run:
321 	free_page((unsigned long)vcpu->run);
322 fail:
323 	return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326 
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 	/*
330 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 	 * will change the vcpu->pid pointer and on uninit all file
332 	 * descriptors are already gone.
333 	 */
334 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 	kvm_arch_vcpu_uninit(vcpu);
336 	free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339 
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 	return container_of(mn, struct kvm, mmu_notifier);
344 }
345 
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 					struct mm_struct *mm,
348 					unsigned long address,
349 					pte_t pte)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 	int idx;
353 
354 	idx = srcu_read_lock(&kvm->srcu);
355 	spin_lock(&kvm->mmu_lock);
356 	kvm->mmu_notifier_seq++;
357 
358 	if (kvm_set_spte_hva(kvm, address, pte))
359 		kvm_flush_remote_tlbs(kvm);
360 
361 	spin_unlock(&kvm->mmu_lock);
362 	srcu_read_unlock(&kvm->srcu, idx);
363 }
364 
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 					const struct mmu_notifier_range *range)
367 {
368 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 	int need_tlb_flush = 0, idx;
370 	int ret;
371 
372 	idx = srcu_read_lock(&kvm->srcu);
373 	spin_lock(&kvm->mmu_lock);
374 	/*
375 	 * The count increase must become visible at unlock time as no
376 	 * spte can be established without taking the mmu_lock and
377 	 * count is also read inside the mmu_lock critical section.
378 	 */
379 	kvm->mmu_notifier_count++;
380 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381 	need_tlb_flush |= kvm->tlbs_dirty;
382 	/* we've to flush the tlb before the pages can be freed */
383 	if (need_tlb_flush)
384 		kvm_flush_remote_tlbs(kvm);
385 
386 	spin_unlock(&kvm->mmu_lock);
387 
388 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389 					range->end, range->blockable);
390 
391 	srcu_read_unlock(&kvm->srcu, idx);
392 
393 	return ret;
394 }
395 
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397 					const struct mmu_notifier_range *range)
398 {
399 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 
401 	spin_lock(&kvm->mmu_lock);
402 	/*
403 	 * This sequence increase will notify the kvm page fault that
404 	 * the page that is going to be mapped in the spte could have
405 	 * been freed.
406 	 */
407 	kvm->mmu_notifier_seq++;
408 	smp_wmb();
409 	/*
410 	 * The above sequence increase must be visible before the
411 	 * below count decrease, which is ensured by the smp_wmb above
412 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
413 	 */
414 	kvm->mmu_notifier_count--;
415 	spin_unlock(&kvm->mmu_lock);
416 
417 	BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419 
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421 					      struct mm_struct *mm,
422 					      unsigned long start,
423 					      unsigned long end)
424 {
425 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
426 	int young, idx;
427 
428 	idx = srcu_read_lock(&kvm->srcu);
429 	spin_lock(&kvm->mmu_lock);
430 
431 	young = kvm_age_hva(kvm, start, end);
432 	if (young)
433 		kvm_flush_remote_tlbs(kvm);
434 
435 	spin_unlock(&kvm->mmu_lock);
436 	srcu_read_unlock(&kvm->srcu, idx);
437 
438 	return young;
439 }
440 
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442 					struct mm_struct *mm,
443 					unsigned long start,
444 					unsigned long end)
445 {
446 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 	int young, idx;
448 
449 	idx = srcu_read_lock(&kvm->srcu);
450 	spin_lock(&kvm->mmu_lock);
451 	/*
452 	 * Even though we do not flush TLB, this will still adversely
453 	 * affect performance on pre-Haswell Intel EPT, where there is
454 	 * no EPT Access Bit to clear so that we have to tear down EPT
455 	 * tables instead. If we find this unacceptable, we can always
456 	 * add a parameter to kvm_age_hva so that it effectively doesn't
457 	 * do anything on clear_young.
458 	 *
459 	 * Also note that currently we never issue secondary TLB flushes
460 	 * from clear_young, leaving this job up to the regular system
461 	 * cadence. If we find this inaccurate, we might come up with a
462 	 * more sophisticated heuristic later.
463 	 */
464 	young = kvm_age_hva(kvm, start, end);
465 	spin_unlock(&kvm->mmu_lock);
466 	srcu_read_unlock(&kvm->srcu, idx);
467 
468 	return young;
469 }
470 
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472 				       struct mm_struct *mm,
473 				       unsigned long address)
474 {
475 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 	int young, idx;
477 
478 	idx = srcu_read_lock(&kvm->srcu);
479 	spin_lock(&kvm->mmu_lock);
480 	young = kvm_test_age_hva(kvm, address);
481 	spin_unlock(&kvm->mmu_lock);
482 	srcu_read_unlock(&kvm->srcu, idx);
483 
484 	return young;
485 }
486 
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488 				     struct mm_struct *mm)
489 {
490 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
491 	int idx;
492 
493 	idx = srcu_read_lock(&kvm->srcu);
494 	kvm_arch_flush_shadow_all(kvm);
495 	srcu_read_unlock(&kvm->srcu, idx);
496 }
497 
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
500 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
501 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
502 	.clear_young		= kvm_mmu_notifier_clear_young,
503 	.test_young		= kvm_mmu_notifier_test_young,
504 	.change_pte		= kvm_mmu_notifier_change_pte,
505 	.release		= kvm_mmu_notifier_release,
506 };
507 
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513 
514 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515 
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518 	return 0;
519 }
520 
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522 
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525 	int i;
526 	struct kvm_memslots *slots;
527 
528 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529 	if (!slots)
530 		return NULL;
531 
532 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533 		slots->id_to_index[i] = slots->memslots[i].id = i;
534 
535 	return slots;
536 }
537 
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540 	if (!memslot->dirty_bitmap)
541 		return;
542 
543 	kvfree(memslot->dirty_bitmap);
544 	memslot->dirty_bitmap = NULL;
545 }
546 
547 /*
548  * Free any memory in @free but not in @dont.
549  */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551 			      struct kvm_memory_slot *dont)
552 {
553 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554 		kvm_destroy_dirty_bitmap(free);
555 
556 	kvm_arch_free_memslot(kvm, free, dont);
557 
558 	free->npages = 0;
559 }
560 
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563 	struct kvm_memory_slot *memslot;
564 
565 	if (!slots)
566 		return;
567 
568 	kvm_for_each_memslot(memslot, slots)
569 		kvm_free_memslot(kvm, memslot, NULL);
570 
571 	kvfree(slots);
572 }
573 
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576 	int i;
577 
578 	if (!kvm->debugfs_dentry)
579 		return;
580 
581 	debugfs_remove_recursive(kvm->debugfs_dentry);
582 
583 	if (kvm->debugfs_stat_data) {
584 		for (i = 0; i < kvm_debugfs_num_entries; i++)
585 			kfree(kvm->debugfs_stat_data[i]);
586 		kfree(kvm->debugfs_stat_data);
587 	}
588 }
589 
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592 	char dir_name[ITOA_MAX_LEN * 2];
593 	struct kvm_stat_data *stat_data;
594 	struct kvm_stats_debugfs_item *p;
595 
596 	if (!debugfs_initialized())
597 		return 0;
598 
599 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601 
602 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603 					 sizeof(*kvm->debugfs_stat_data),
604 					 GFP_KERNEL);
605 	if (!kvm->debugfs_stat_data)
606 		return -ENOMEM;
607 
608 	for (p = debugfs_entries; p->name; p++) {
609 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610 		if (!stat_data)
611 			return -ENOMEM;
612 
613 		stat_data->kvm = kvm;
614 		stat_data->offset = p->offset;
615 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617 				    stat_data, stat_fops_per_vm[p->kind]);
618 	}
619 	return 0;
620 }
621 
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624 	int r, i;
625 	struct kvm *kvm = kvm_arch_alloc_vm();
626 
627 	if (!kvm)
628 		return ERR_PTR(-ENOMEM);
629 
630 	spin_lock_init(&kvm->mmu_lock);
631 	mmgrab(current->mm);
632 	kvm->mm = current->mm;
633 	kvm_eventfd_init(kvm);
634 	mutex_init(&kvm->lock);
635 	mutex_init(&kvm->irq_lock);
636 	mutex_init(&kvm->slots_lock);
637 	refcount_set(&kvm->users_count, 1);
638 	INIT_LIST_HEAD(&kvm->devices);
639 
640 	r = kvm_arch_init_vm(kvm, type);
641 	if (r)
642 		goto out_err_no_disable;
643 
644 	r = hardware_enable_all();
645 	if (r)
646 		goto out_err_no_disable;
647 
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651 
652 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653 
654 	r = -ENOMEM;
655 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656 		struct kvm_memslots *slots = kvm_alloc_memslots();
657 		if (!slots)
658 			goto out_err_no_srcu;
659 		/*
660 		 * Generations must be different for each address space.
661 		 * Init kvm generation close to the maximum to easily test the
662 		 * code of handling generation number wrap-around.
663 		 */
664 		slots->generation = i * 2 - 150;
665 		rcu_assign_pointer(kvm->memslots[i], slots);
666 	}
667 
668 	if (init_srcu_struct(&kvm->srcu))
669 		goto out_err_no_srcu;
670 	if (init_srcu_struct(&kvm->irq_srcu))
671 		goto out_err_no_irq_srcu;
672 	for (i = 0; i < KVM_NR_BUSES; i++) {
673 		rcu_assign_pointer(kvm->buses[i],
674 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675 		if (!kvm->buses[i])
676 			goto out_err;
677 	}
678 
679 	r = kvm_init_mmu_notifier(kvm);
680 	if (r)
681 		goto out_err;
682 
683 	spin_lock(&kvm_lock);
684 	list_add(&kvm->vm_list, &vm_list);
685 	spin_unlock(&kvm_lock);
686 
687 	preempt_notifier_inc();
688 
689 	return kvm;
690 
691 out_err:
692 	cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694 	cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696 	hardware_disable_all();
697 out_err_no_disable:
698 	refcount_set(&kvm->users_count, 0);
699 	for (i = 0; i < KVM_NR_BUSES; i++)
700 		kfree(kvm_get_bus(kvm, i));
701 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703 	kvm_arch_free_vm(kvm);
704 	mmdrop(current->mm);
705 	return ERR_PTR(r);
706 }
707 
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710 	struct kvm_device *dev, *tmp;
711 
712 	/*
713 	 * We do not need to take the kvm->lock here, because nobody else
714 	 * has a reference to the struct kvm at this point and therefore
715 	 * cannot access the devices list anyhow.
716 	 */
717 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718 		list_del(&dev->vm_node);
719 		dev->ops->destroy(dev);
720 	}
721 }
722 
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725 	int i;
726 	struct mm_struct *mm = kvm->mm;
727 
728 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729 	kvm_destroy_vm_debugfs(kvm);
730 	kvm_arch_sync_events(kvm);
731 	spin_lock(&kvm_lock);
732 	list_del(&kvm->vm_list);
733 	spin_unlock(&kvm_lock);
734 	kvm_free_irq_routing(kvm);
735 	for (i = 0; i < KVM_NR_BUSES; i++) {
736 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737 
738 		if (bus)
739 			kvm_io_bus_destroy(bus);
740 		kvm->buses[i] = NULL;
741 	}
742 	kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 	kvm_arch_flush_shadow_all(kvm);
747 #endif
748 	kvm_arch_destroy_vm(kvm);
749 	kvm_destroy_devices(kvm);
750 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 	cleanup_srcu_struct(&kvm->irq_srcu);
753 	cleanup_srcu_struct(&kvm->srcu);
754 	kvm_arch_free_vm(kvm);
755 	preempt_notifier_dec();
756 	hardware_disable_all();
757 	mmdrop(mm);
758 }
759 
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 	refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765 
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 	if (refcount_dec_and_test(&kvm->users_count))
769 		kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772 
773 
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 	struct kvm *kvm = filp->private_data;
777 
778 	kvm_irqfd_release(kvm);
779 
780 	kvm_put_kvm(kvm);
781 	return 0;
782 }
783 
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791 
792 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 	if (!memslot->dirty_bitmap)
794 		return -ENOMEM;
795 
796 	return 0;
797 }
798 
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806 			    struct kvm_memory_slot *new,
807 			    enum kvm_mr_change change)
808 {
809 	int id = new->id;
810 	int i = slots->id_to_index[id];
811 	struct kvm_memory_slot *mslots = slots->memslots;
812 
813 	WARN_ON(mslots[i].id != id);
814 	switch (change) {
815 	case KVM_MR_CREATE:
816 		slots->used_slots++;
817 		WARN_ON(mslots[i].npages || !new->npages);
818 		break;
819 	case KVM_MR_DELETE:
820 		slots->used_slots--;
821 		WARN_ON(new->npages || !mslots[i].npages);
822 		break;
823 	default:
824 		break;
825 	}
826 
827 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
828 	       new->base_gfn <= mslots[i + 1].base_gfn) {
829 		if (!mslots[i + 1].npages)
830 			break;
831 		mslots[i] = mslots[i + 1];
832 		slots->id_to_index[mslots[i].id] = i;
833 		i++;
834 	}
835 
836 	/*
837 	 * The ">=" is needed when creating a slot with base_gfn == 0,
838 	 * so that it moves before all those with base_gfn == npages == 0.
839 	 *
840 	 * On the other hand, if new->npages is zero, the above loop has
841 	 * already left i pointing to the beginning of the empty part of
842 	 * mslots, and the ">=" would move the hole backwards in this
843 	 * case---which is wrong.  So skip the loop when deleting a slot.
844 	 */
845 	if (new->npages) {
846 		while (i > 0 &&
847 		       new->base_gfn >= mslots[i - 1].base_gfn) {
848 			mslots[i] = mslots[i - 1];
849 			slots->id_to_index[mslots[i].id] = i;
850 			i--;
851 		}
852 	} else
853 		WARN_ON_ONCE(i != slots->used_slots);
854 
855 	mslots[i] = *new;
856 	slots->id_to_index[mslots[i].id] = i;
857 }
858 
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862 
863 #ifdef __KVM_HAVE_READONLY_MEM
864 	valid_flags |= KVM_MEM_READONLY;
865 #endif
866 
867 	if (mem->flags & ~valid_flags)
868 		return -EINVAL;
869 
870 	return 0;
871 }
872 
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874 		int as_id, struct kvm_memslots *slots)
875 {
876 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877 
878 	/*
879 	 * Set the low bit in the generation, which disables SPTE caching
880 	 * until the end of synchronize_srcu_expedited.
881 	 */
882 	WARN_ON(old_memslots->generation & 1);
883 	slots->generation = old_memslots->generation + 1;
884 
885 	rcu_assign_pointer(kvm->memslots[as_id], slots);
886 	synchronize_srcu_expedited(&kvm->srcu);
887 
888 	/*
889 	 * Increment the new memslot generation a second time. This prevents
890 	 * vm exits that race with memslot updates from caching a memslot
891 	 * generation that will (potentially) be valid forever.
892 	 *
893 	 * Generations must be unique even across address spaces.  We do not need
894 	 * a global counter for that, instead the generation space is evenly split
895 	 * across address spaces.  For example, with two address spaces, address
896 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897 	 * use generations 2, 6, 10, 14, ...
898 	 */
899 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900 
901 	kvm_arch_memslots_updated(kvm, slots);
902 
903 	return old_memslots;
904 }
905 
906 /*
907  * Allocate some memory and give it an address in the guest physical address
908  * space.
909  *
910  * Discontiguous memory is allowed, mostly for framebuffers.
911  *
912  * Must be called holding kvm->slots_lock for write.
913  */
914 int __kvm_set_memory_region(struct kvm *kvm,
915 			    const struct kvm_userspace_memory_region *mem)
916 {
917 	int r;
918 	gfn_t base_gfn;
919 	unsigned long npages;
920 	struct kvm_memory_slot *slot;
921 	struct kvm_memory_slot old, new;
922 	struct kvm_memslots *slots = NULL, *old_memslots;
923 	int as_id, id;
924 	enum kvm_mr_change change;
925 
926 	r = check_memory_region_flags(mem);
927 	if (r)
928 		goto out;
929 
930 	r = -EINVAL;
931 	as_id = mem->slot >> 16;
932 	id = (u16)mem->slot;
933 
934 	/* General sanity checks */
935 	if (mem->memory_size & (PAGE_SIZE - 1))
936 		goto out;
937 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938 		goto out;
939 	/* We can read the guest memory with __xxx_user() later on. */
940 	if ((id < KVM_USER_MEM_SLOTS) &&
941 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942 	     !access_ok(VERIFY_WRITE,
943 			(void __user *)(unsigned long)mem->userspace_addr,
944 			mem->memory_size)))
945 		goto out;
946 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
947 		goto out;
948 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
949 		goto out;
950 
951 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
952 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
953 	npages = mem->memory_size >> PAGE_SHIFT;
954 
955 	if (npages > KVM_MEM_MAX_NR_PAGES)
956 		goto out;
957 
958 	new = old = *slot;
959 
960 	new.id = id;
961 	new.base_gfn = base_gfn;
962 	new.npages = npages;
963 	new.flags = mem->flags;
964 
965 	if (npages) {
966 		if (!old.npages)
967 			change = KVM_MR_CREATE;
968 		else { /* Modify an existing slot. */
969 			if ((mem->userspace_addr != old.userspace_addr) ||
970 			    (npages != old.npages) ||
971 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
972 				goto out;
973 
974 			if (base_gfn != old.base_gfn)
975 				change = KVM_MR_MOVE;
976 			else if (new.flags != old.flags)
977 				change = KVM_MR_FLAGS_ONLY;
978 			else { /* Nothing to change. */
979 				r = 0;
980 				goto out;
981 			}
982 		}
983 	} else {
984 		if (!old.npages)
985 			goto out;
986 
987 		change = KVM_MR_DELETE;
988 		new.base_gfn = 0;
989 		new.flags = 0;
990 	}
991 
992 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
993 		/* Check for overlaps */
994 		r = -EEXIST;
995 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
996 			if (slot->id == id)
997 				continue;
998 			if (!((base_gfn + npages <= slot->base_gfn) ||
999 			      (base_gfn >= slot->base_gfn + slot->npages)))
1000 				goto out;
1001 		}
1002 	}
1003 
1004 	/* Free page dirty bitmap if unneeded */
1005 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1006 		new.dirty_bitmap = NULL;
1007 
1008 	r = -ENOMEM;
1009 	if (change == KVM_MR_CREATE) {
1010 		new.userspace_addr = mem->userspace_addr;
1011 
1012 		if (kvm_arch_create_memslot(kvm, &new, npages))
1013 			goto out_free;
1014 	}
1015 
1016 	/* Allocate page dirty bitmap if needed */
1017 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1018 		if (kvm_create_dirty_bitmap(&new) < 0)
1019 			goto out_free;
1020 	}
1021 
1022 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1023 	if (!slots)
1024 		goto out_free;
1025 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1026 
1027 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1028 		slot = id_to_memslot(slots, id);
1029 		slot->flags |= KVM_MEMSLOT_INVALID;
1030 
1031 		old_memslots = install_new_memslots(kvm, as_id, slots);
1032 
1033 		/* From this point no new shadow pages pointing to a deleted,
1034 		 * or moved, memslot will be created.
1035 		 *
1036 		 * validation of sp->gfn happens in:
1037 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1038 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1039 		 */
1040 		kvm_arch_flush_shadow_memslot(kvm, slot);
1041 
1042 		/*
1043 		 * We can re-use the old_memslots from above, the only difference
1044 		 * from the currently installed memslots is the invalid flag.  This
1045 		 * will get overwritten by update_memslots anyway.
1046 		 */
1047 		slots = old_memslots;
1048 	}
1049 
1050 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1051 	if (r)
1052 		goto out_slots;
1053 
1054 	/* actual memory is freed via old in kvm_free_memslot below */
1055 	if (change == KVM_MR_DELETE) {
1056 		new.dirty_bitmap = NULL;
1057 		memset(&new.arch, 0, sizeof(new.arch));
1058 	}
1059 
1060 	update_memslots(slots, &new, change);
1061 	old_memslots = install_new_memslots(kvm, as_id, slots);
1062 
1063 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1064 
1065 	kvm_free_memslot(kvm, &old, &new);
1066 	kvfree(old_memslots);
1067 	return 0;
1068 
1069 out_slots:
1070 	kvfree(slots);
1071 out_free:
1072 	kvm_free_memslot(kvm, &new, &old);
1073 out:
1074 	return r;
1075 }
1076 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1077 
1078 int kvm_set_memory_region(struct kvm *kvm,
1079 			  const struct kvm_userspace_memory_region *mem)
1080 {
1081 	int r;
1082 
1083 	mutex_lock(&kvm->slots_lock);
1084 	r = __kvm_set_memory_region(kvm, mem);
1085 	mutex_unlock(&kvm->slots_lock);
1086 	return r;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1089 
1090 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1091 					  struct kvm_userspace_memory_region *mem)
1092 {
1093 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1094 		return -EINVAL;
1095 
1096 	return kvm_set_memory_region(kvm, mem);
1097 }
1098 
1099 int kvm_get_dirty_log(struct kvm *kvm,
1100 			struct kvm_dirty_log *log, int *is_dirty)
1101 {
1102 	struct kvm_memslots *slots;
1103 	struct kvm_memory_slot *memslot;
1104 	int i, as_id, id;
1105 	unsigned long n;
1106 	unsigned long any = 0;
1107 
1108 	as_id = log->slot >> 16;
1109 	id = (u16)log->slot;
1110 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1111 		return -EINVAL;
1112 
1113 	slots = __kvm_memslots(kvm, as_id);
1114 	memslot = id_to_memslot(slots, id);
1115 	if (!memslot->dirty_bitmap)
1116 		return -ENOENT;
1117 
1118 	n = kvm_dirty_bitmap_bytes(memslot);
1119 
1120 	for (i = 0; !any && i < n/sizeof(long); ++i)
1121 		any = memslot->dirty_bitmap[i];
1122 
1123 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1124 		return -EFAULT;
1125 
1126 	if (any)
1127 		*is_dirty = 1;
1128 	return 0;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1131 
1132 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1133 /**
1134  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1135  *	and reenable dirty page tracking for the corresponding pages.
1136  * @kvm:	pointer to kvm instance
1137  * @log:	slot id and address to which we copy the log
1138  * @is_dirty:	flag set if any page is dirty
1139  *
1140  * We need to keep it in mind that VCPU threads can write to the bitmap
1141  * concurrently. So, to avoid losing track of dirty pages we keep the
1142  * following order:
1143  *
1144  *    1. Take a snapshot of the bit and clear it if needed.
1145  *    2. Write protect the corresponding page.
1146  *    3. Copy the snapshot to the userspace.
1147  *    4. Upon return caller flushes TLB's if needed.
1148  *
1149  * Between 2 and 4, the guest may write to the page using the remaining TLB
1150  * entry.  This is not a problem because the page is reported dirty using
1151  * the snapshot taken before and step 4 ensures that writes done after
1152  * exiting to userspace will be logged for the next call.
1153  *
1154  */
1155 int kvm_get_dirty_log_protect(struct kvm *kvm,
1156 			struct kvm_dirty_log *log, bool *flush)
1157 {
1158 	struct kvm_memslots *slots;
1159 	struct kvm_memory_slot *memslot;
1160 	int i, as_id, id;
1161 	unsigned long n;
1162 	unsigned long *dirty_bitmap;
1163 	unsigned long *dirty_bitmap_buffer;
1164 
1165 	as_id = log->slot >> 16;
1166 	id = (u16)log->slot;
1167 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168 		return -EINVAL;
1169 
1170 	slots = __kvm_memslots(kvm, as_id);
1171 	memslot = id_to_memslot(slots, id);
1172 
1173 	dirty_bitmap = memslot->dirty_bitmap;
1174 	if (!dirty_bitmap)
1175 		return -ENOENT;
1176 
1177 	n = kvm_dirty_bitmap_bytes(memslot);
1178 	*flush = false;
1179 	if (kvm->manual_dirty_log_protect) {
1180 		/*
1181 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1182 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1183 		 * is some code duplication between this function and
1184 		 * kvm_get_dirty_log, but hopefully all architecture
1185 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1186 		 * can be eliminated.
1187 		 */
1188 		dirty_bitmap_buffer = dirty_bitmap;
1189 	} else {
1190 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1191 		memset(dirty_bitmap_buffer, 0, n);
1192 
1193 		spin_lock(&kvm->mmu_lock);
1194 		for (i = 0; i < n / sizeof(long); i++) {
1195 			unsigned long mask;
1196 			gfn_t offset;
1197 
1198 			if (!dirty_bitmap[i])
1199 				continue;
1200 
1201 			*flush = true;
1202 			mask = xchg(&dirty_bitmap[i], 0);
1203 			dirty_bitmap_buffer[i] = mask;
1204 
1205 			if (mask) {
1206 				offset = i * BITS_PER_LONG;
1207 				kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1208 									offset, mask);
1209 			}
1210 		}
1211 		spin_unlock(&kvm->mmu_lock);
1212 	}
1213 
1214 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1215 		return -EFAULT;
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1219 
1220 /**
1221  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1222  *	and reenable dirty page tracking for the corresponding pages.
1223  * @kvm:	pointer to kvm instance
1224  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1225  */
1226 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1227 				struct kvm_clear_dirty_log *log, bool *flush)
1228 {
1229 	struct kvm_memslots *slots;
1230 	struct kvm_memory_slot *memslot;
1231 	int as_id, id, n;
1232 	gfn_t offset;
1233 	unsigned long i;
1234 	unsigned long *dirty_bitmap;
1235 	unsigned long *dirty_bitmap_buffer;
1236 
1237 	as_id = log->slot >> 16;
1238 	id = (u16)log->slot;
1239 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1240 		return -EINVAL;
1241 
1242 	if ((log->first_page & 63) || (log->num_pages & 63))
1243 		return -EINVAL;
1244 
1245 	slots = __kvm_memslots(kvm, as_id);
1246 	memslot = id_to_memslot(slots, id);
1247 
1248 	dirty_bitmap = memslot->dirty_bitmap;
1249 	if (!dirty_bitmap)
1250 		return -ENOENT;
1251 
1252 	n = kvm_dirty_bitmap_bytes(memslot);
1253 	*flush = false;
1254 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1255 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1256 		return -EFAULT;
1257 
1258 	spin_lock(&kvm->mmu_lock);
1259 	for (offset = log->first_page,
1260 	     i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1261 	     i++, offset += BITS_PER_LONG) {
1262 		unsigned long mask = *dirty_bitmap_buffer++;
1263 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1264 		if (!mask)
1265 			continue;
1266 
1267 		mask &= atomic_long_fetch_andnot(mask, p);
1268 
1269 		/*
1270 		 * mask contains the bits that really have been cleared.  This
1271 		 * never includes any bits beyond the length of the memslot (if
1272 		 * the length is not aligned to 64 pages), therefore it is not
1273 		 * a problem if userspace sets them in log->dirty_bitmap.
1274 		*/
1275 		if (mask) {
1276 			*flush = true;
1277 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1278 								offset, mask);
1279 		}
1280 	}
1281 	spin_unlock(&kvm->mmu_lock);
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1286 #endif
1287 
1288 bool kvm_largepages_enabled(void)
1289 {
1290 	return largepages_enabled;
1291 }
1292 
1293 void kvm_disable_largepages(void)
1294 {
1295 	largepages_enabled = false;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1298 
1299 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1300 {
1301 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1304 
1305 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1306 {
1307 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1308 }
1309 
1310 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1311 {
1312 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1313 
1314 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1315 	      memslot->flags & KVM_MEMSLOT_INVALID)
1316 		return false;
1317 
1318 	return true;
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1321 
1322 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1323 {
1324 	struct vm_area_struct *vma;
1325 	unsigned long addr, size;
1326 
1327 	size = PAGE_SIZE;
1328 
1329 	addr = gfn_to_hva(kvm, gfn);
1330 	if (kvm_is_error_hva(addr))
1331 		return PAGE_SIZE;
1332 
1333 	down_read(&current->mm->mmap_sem);
1334 	vma = find_vma(current->mm, addr);
1335 	if (!vma)
1336 		goto out;
1337 
1338 	size = vma_kernel_pagesize(vma);
1339 
1340 out:
1341 	up_read(&current->mm->mmap_sem);
1342 
1343 	return size;
1344 }
1345 
1346 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1347 {
1348 	return slot->flags & KVM_MEM_READONLY;
1349 }
1350 
1351 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1352 				       gfn_t *nr_pages, bool write)
1353 {
1354 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1355 		return KVM_HVA_ERR_BAD;
1356 
1357 	if (memslot_is_readonly(slot) && write)
1358 		return KVM_HVA_ERR_RO_BAD;
1359 
1360 	if (nr_pages)
1361 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1362 
1363 	return __gfn_to_hva_memslot(slot, gfn);
1364 }
1365 
1366 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1367 				     gfn_t *nr_pages)
1368 {
1369 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1370 }
1371 
1372 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1373 					gfn_t gfn)
1374 {
1375 	return gfn_to_hva_many(slot, gfn, NULL);
1376 }
1377 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1378 
1379 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1380 {
1381 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1382 }
1383 EXPORT_SYMBOL_GPL(gfn_to_hva);
1384 
1385 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1386 {
1387 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1390 
1391 /*
1392  * Return the hva of a @gfn and the R/W attribute if possible.
1393  *
1394  * @slot: the kvm_memory_slot which contains @gfn
1395  * @gfn: the gfn to be translated
1396  * @writable: used to return the read/write attribute of the @slot if the hva
1397  * is valid and @writable is not NULL
1398  */
1399 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1400 				      gfn_t gfn, bool *writable)
1401 {
1402 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1403 
1404 	if (!kvm_is_error_hva(hva) && writable)
1405 		*writable = !memslot_is_readonly(slot);
1406 
1407 	return hva;
1408 }
1409 
1410 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1411 {
1412 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1413 
1414 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1415 }
1416 
1417 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1418 {
1419 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1420 
1421 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1422 }
1423 
1424 static inline int check_user_page_hwpoison(unsigned long addr)
1425 {
1426 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1427 
1428 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1429 	return rc == -EHWPOISON;
1430 }
1431 
1432 /*
1433  * The fast path to get the writable pfn which will be stored in @pfn,
1434  * true indicates success, otherwise false is returned.  It's also the
1435  * only part that runs if we can are in atomic context.
1436  */
1437 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1438 			    bool *writable, kvm_pfn_t *pfn)
1439 {
1440 	struct page *page[1];
1441 	int npages;
1442 
1443 	/*
1444 	 * Fast pin a writable pfn only if it is a write fault request
1445 	 * or the caller allows to map a writable pfn for a read fault
1446 	 * request.
1447 	 */
1448 	if (!(write_fault || writable))
1449 		return false;
1450 
1451 	npages = __get_user_pages_fast(addr, 1, 1, page);
1452 	if (npages == 1) {
1453 		*pfn = page_to_pfn(page[0]);
1454 
1455 		if (writable)
1456 			*writable = true;
1457 		return true;
1458 	}
1459 
1460 	return false;
1461 }
1462 
1463 /*
1464  * The slow path to get the pfn of the specified host virtual address,
1465  * 1 indicates success, -errno is returned if error is detected.
1466  */
1467 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1468 			   bool *writable, kvm_pfn_t *pfn)
1469 {
1470 	unsigned int flags = FOLL_HWPOISON;
1471 	struct page *page;
1472 	int npages = 0;
1473 
1474 	might_sleep();
1475 
1476 	if (writable)
1477 		*writable = write_fault;
1478 
1479 	if (write_fault)
1480 		flags |= FOLL_WRITE;
1481 	if (async)
1482 		flags |= FOLL_NOWAIT;
1483 
1484 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1485 	if (npages != 1)
1486 		return npages;
1487 
1488 	/* map read fault as writable if possible */
1489 	if (unlikely(!write_fault) && writable) {
1490 		struct page *wpage;
1491 
1492 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1493 			*writable = true;
1494 			put_page(page);
1495 			page = wpage;
1496 		}
1497 	}
1498 	*pfn = page_to_pfn(page);
1499 	return npages;
1500 }
1501 
1502 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1503 {
1504 	if (unlikely(!(vma->vm_flags & VM_READ)))
1505 		return false;
1506 
1507 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1508 		return false;
1509 
1510 	return true;
1511 }
1512 
1513 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1514 			       unsigned long addr, bool *async,
1515 			       bool write_fault, bool *writable,
1516 			       kvm_pfn_t *p_pfn)
1517 {
1518 	unsigned long pfn;
1519 	int r;
1520 
1521 	r = follow_pfn(vma, addr, &pfn);
1522 	if (r) {
1523 		/*
1524 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1525 		 * not call the fault handler, so do it here.
1526 		 */
1527 		bool unlocked = false;
1528 		r = fixup_user_fault(current, current->mm, addr,
1529 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1530 				     &unlocked);
1531 		if (unlocked)
1532 			return -EAGAIN;
1533 		if (r)
1534 			return r;
1535 
1536 		r = follow_pfn(vma, addr, &pfn);
1537 		if (r)
1538 			return r;
1539 
1540 	}
1541 
1542 	if (writable)
1543 		*writable = true;
1544 
1545 	/*
1546 	 * Get a reference here because callers of *hva_to_pfn* and
1547 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1548 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1549 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1550 	 * simply do nothing for reserved pfns.
1551 	 *
1552 	 * Whoever called remap_pfn_range is also going to call e.g.
1553 	 * unmap_mapping_range before the underlying pages are freed,
1554 	 * causing a call to our MMU notifier.
1555 	 */
1556 	kvm_get_pfn(pfn);
1557 
1558 	*p_pfn = pfn;
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Pin guest page in memory and return its pfn.
1564  * @addr: host virtual address which maps memory to the guest
1565  * @atomic: whether this function can sleep
1566  * @async: whether this function need to wait IO complete if the
1567  *         host page is not in the memory
1568  * @write_fault: whether we should get a writable host page
1569  * @writable: whether it allows to map a writable host page for !@write_fault
1570  *
1571  * The function will map a writable host page for these two cases:
1572  * 1): @write_fault = true
1573  * 2): @write_fault = false && @writable, @writable will tell the caller
1574  *     whether the mapping is writable.
1575  */
1576 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1577 			bool write_fault, bool *writable)
1578 {
1579 	struct vm_area_struct *vma;
1580 	kvm_pfn_t pfn = 0;
1581 	int npages, r;
1582 
1583 	/* we can do it either atomically or asynchronously, not both */
1584 	BUG_ON(atomic && async);
1585 
1586 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1587 		return pfn;
1588 
1589 	if (atomic)
1590 		return KVM_PFN_ERR_FAULT;
1591 
1592 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1593 	if (npages == 1)
1594 		return pfn;
1595 
1596 	down_read(&current->mm->mmap_sem);
1597 	if (npages == -EHWPOISON ||
1598 	      (!async && check_user_page_hwpoison(addr))) {
1599 		pfn = KVM_PFN_ERR_HWPOISON;
1600 		goto exit;
1601 	}
1602 
1603 retry:
1604 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1605 
1606 	if (vma == NULL)
1607 		pfn = KVM_PFN_ERR_FAULT;
1608 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1609 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1610 		if (r == -EAGAIN)
1611 			goto retry;
1612 		if (r < 0)
1613 			pfn = KVM_PFN_ERR_FAULT;
1614 	} else {
1615 		if (async && vma_is_valid(vma, write_fault))
1616 			*async = true;
1617 		pfn = KVM_PFN_ERR_FAULT;
1618 	}
1619 exit:
1620 	up_read(&current->mm->mmap_sem);
1621 	return pfn;
1622 }
1623 
1624 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1625 			       bool atomic, bool *async, bool write_fault,
1626 			       bool *writable)
1627 {
1628 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1629 
1630 	if (addr == KVM_HVA_ERR_RO_BAD) {
1631 		if (writable)
1632 			*writable = false;
1633 		return KVM_PFN_ERR_RO_FAULT;
1634 	}
1635 
1636 	if (kvm_is_error_hva(addr)) {
1637 		if (writable)
1638 			*writable = false;
1639 		return KVM_PFN_NOSLOT;
1640 	}
1641 
1642 	/* Do not map writable pfn in the readonly memslot. */
1643 	if (writable && memslot_is_readonly(slot)) {
1644 		*writable = false;
1645 		writable = NULL;
1646 	}
1647 
1648 	return hva_to_pfn(addr, atomic, async, write_fault,
1649 			  writable);
1650 }
1651 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1652 
1653 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1654 		      bool *writable)
1655 {
1656 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1657 				    write_fault, writable);
1658 }
1659 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1660 
1661 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1662 {
1663 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1664 }
1665 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1666 
1667 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1668 {
1669 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1670 }
1671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1672 
1673 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1674 {
1675 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1676 }
1677 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1678 
1679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1680 {
1681 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1684 
1685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1686 {
1687 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1688 }
1689 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1690 
1691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1692 {
1693 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1696 
1697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1698 			    struct page **pages, int nr_pages)
1699 {
1700 	unsigned long addr;
1701 	gfn_t entry = 0;
1702 
1703 	addr = gfn_to_hva_many(slot, gfn, &entry);
1704 	if (kvm_is_error_hva(addr))
1705 		return -1;
1706 
1707 	if (entry < nr_pages)
1708 		return 0;
1709 
1710 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1711 }
1712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1713 
1714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1715 {
1716 	if (is_error_noslot_pfn(pfn))
1717 		return KVM_ERR_PTR_BAD_PAGE;
1718 
1719 	if (kvm_is_reserved_pfn(pfn)) {
1720 		WARN_ON(1);
1721 		return KVM_ERR_PTR_BAD_PAGE;
1722 	}
1723 
1724 	return pfn_to_page(pfn);
1725 }
1726 
1727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1728 {
1729 	kvm_pfn_t pfn;
1730 
1731 	pfn = gfn_to_pfn(kvm, gfn);
1732 
1733 	return kvm_pfn_to_page(pfn);
1734 }
1735 EXPORT_SYMBOL_GPL(gfn_to_page);
1736 
1737 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1738 {
1739 	kvm_pfn_t pfn;
1740 
1741 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1742 
1743 	return kvm_pfn_to_page(pfn);
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1746 
1747 void kvm_release_page_clean(struct page *page)
1748 {
1749 	WARN_ON(is_error_page(page));
1750 
1751 	kvm_release_pfn_clean(page_to_pfn(page));
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1754 
1755 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1756 {
1757 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1758 		put_page(pfn_to_page(pfn));
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1761 
1762 void kvm_release_page_dirty(struct page *page)
1763 {
1764 	WARN_ON(is_error_page(page));
1765 
1766 	kvm_release_pfn_dirty(page_to_pfn(page));
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1769 
1770 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1771 {
1772 	kvm_set_pfn_dirty(pfn);
1773 	kvm_release_pfn_clean(pfn);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1776 
1777 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1778 {
1779 	if (!kvm_is_reserved_pfn(pfn)) {
1780 		struct page *page = pfn_to_page(pfn);
1781 
1782 		if (!PageReserved(page))
1783 			SetPageDirty(page);
1784 	}
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1787 
1788 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1789 {
1790 	if (!kvm_is_reserved_pfn(pfn))
1791 		mark_page_accessed(pfn_to_page(pfn));
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1794 
1795 void kvm_get_pfn(kvm_pfn_t pfn)
1796 {
1797 	if (!kvm_is_reserved_pfn(pfn))
1798 		get_page(pfn_to_page(pfn));
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1801 
1802 static int next_segment(unsigned long len, int offset)
1803 {
1804 	if (len > PAGE_SIZE - offset)
1805 		return PAGE_SIZE - offset;
1806 	else
1807 		return len;
1808 }
1809 
1810 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1811 				 void *data, int offset, int len)
1812 {
1813 	int r;
1814 	unsigned long addr;
1815 
1816 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1817 	if (kvm_is_error_hva(addr))
1818 		return -EFAULT;
1819 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1820 	if (r)
1821 		return -EFAULT;
1822 	return 0;
1823 }
1824 
1825 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1826 			int len)
1827 {
1828 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829 
1830 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1833 
1834 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1835 			     int offset, int len)
1836 {
1837 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1838 
1839 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1842 
1843 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1844 {
1845 	gfn_t gfn = gpa >> PAGE_SHIFT;
1846 	int seg;
1847 	int offset = offset_in_page(gpa);
1848 	int ret;
1849 
1850 	while ((seg = next_segment(len, offset)) != 0) {
1851 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1852 		if (ret < 0)
1853 			return ret;
1854 		offset = 0;
1855 		len -= seg;
1856 		data += seg;
1857 		++gfn;
1858 	}
1859 	return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_read_guest);
1862 
1863 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1864 {
1865 	gfn_t gfn = gpa >> PAGE_SHIFT;
1866 	int seg;
1867 	int offset = offset_in_page(gpa);
1868 	int ret;
1869 
1870 	while ((seg = next_segment(len, offset)) != 0) {
1871 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1872 		if (ret < 0)
1873 			return ret;
1874 		offset = 0;
1875 		len -= seg;
1876 		data += seg;
1877 		++gfn;
1878 	}
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1882 
1883 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1884 			           void *data, int offset, unsigned long len)
1885 {
1886 	int r;
1887 	unsigned long addr;
1888 
1889 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1890 	if (kvm_is_error_hva(addr))
1891 		return -EFAULT;
1892 	pagefault_disable();
1893 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1894 	pagefault_enable();
1895 	if (r)
1896 		return -EFAULT;
1897 	return 0;
1898 }
1899 
1900 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1901 			  unsigned long len)
1902 {
1903 	gfn_t gfn = gpa >> PAGE_SHIFT;
1904 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905 	int offset = offset_in_page(gpa);
1906 
1907 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1910 
1911 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1912 			       void *data, unsigned long len)
1913 {
1914 	gfn_t gfn = gpa >> PAGE_SHIFT;
1915 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1916 	int offset = offset_in_page(gpa);
1917 
1918 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1921 
1922 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1923 			          const void *data, int offset, int len)
1924 {
1925 	int r;
1926 	unsigned long addr;
1927 
1928 	addr = gfn_to_hva_memslot(memslot, gfn);
1929 	if (kvm_is_error_hva(addr))
1930 		return -EFAULT;
1931 	r = __copy_to_user((void __user *)addr + offset, data, len);
1932 	if (r)
1933 		return -EFAULT;
1934 	mark_page_dirty_in_slot(memslot, gfn);
1935 	return 0;
1936 }
1937 
1938 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1939 			 const void *data, int offset, int len)
1940 {
1941 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1942 
1943 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1946 
1947 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1948 			      const void *data, int offset, int len)
1949 {
1950 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1951 
1952 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1955 
1956 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1957 		    unsigned long len)
1958 {
1959 	gfn_t gfn = gpa >> PAGE_SHIFT;
1960 	int seg;
1961 	int offset = offset_in_page(gpa);
1962 	int ret;
1963 
1964 	while ((seg = next_segment(len, offset)) != 0) {
1965 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1966 		if (ret < 0)
1967 			return ret;
1968 		offset = 0;
1969 		len -= seg;
1970 		data += seg;
1971 		++gfn;
1972 	}
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_write_guest);
1976 
1977 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1978 		         unsigned long len)
1979 {
1980 	gfn_t gfn = gpa >> PAGE_SHIFT;
1981 	int seg;
1982 	int offset = offset_in_page(gpa);
1983 	int ret;
1984 
1985 	while ((seg = next_segment(len, offset)) != 0) {
1986 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1987 		if (ret < 0)
1988 			return ret;
1989 		offset = 0;
1990 		len -= seg;
1991 		data += seg;
1992 		++gfn;
1993 	}
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1997 
1998 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1999 				       struct gfn_to_hva_cache *ghc,
2000 				       gpa_t gpa, unsigned long len)
2001 {
2002 	int offset = offset_in_page(gpa);
2003 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2004 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2005 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2006 	gfn_t nr_pages_avail;
2007 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2008 
2009 	ghc->gpa = gpa;
2010 	ghc->generation = slots->generation;
2011 	ghc->len = len;
2012 	ghc->hva = KVM_HVA_ERR_BAD;
2013 
2014 	/*
2015 	 * If the requested region crosses two memslots, we still
2016 	 * verify that the entire region is valid here.
2017 	 */
2018 	while (!r && start_gfn <= end_gfn) {
2019 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2020 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2021 					   &nr_pages_avail);
2022 		if (kvm_is_error_hva(ghc->hva))
2023 			r = -EFAULT;
2024 		start_gfn += nr_pages_avail;
2025 	}
2026 
2027 	/* Use the slow path for cross page reads and writes. */
2028 	if (!r && nr_pages_needed == 1)
2029 		ghc->hva += offset;
2030 	else
2031 		ghc->memslot = NULL;
2032 
2033 	return r;
2034 }
2035 
2036 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2037 			      gpa_t gpa, unsigned long len)
2038 {
2039 	struct kvm_memslots *slots = kvm_memslots(kvm);
2040 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2043 
2044 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2045 				  void *data, unsigned int offset,
2046 				  unsigned long len)
2047 {
2048 	struct kvm_memslots *slots = kvm_memslots(kvm);
2049 	int r;
2050 	gpa_t gpa = ghc->gpa + offset;
2051 
2052 	BUG_ON(len + offset > ghc->len);
2053 
2054 	if (slots->generation != ghc->generation)
2055 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2056 
2057 	if (unlikely(!ghc->memslot))
2058 		return kvm_write_guest(kvm, gpa, data, len);
2059 
2060 	if (kvm_is_error_hva(ghc->hva))
2061 		return -EFAULT;
2062 
2063 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2064 	if (r)
2065 		return -EFAULT;
2066 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2067 
2068 	return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2071 
2072 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2073 			   void *data, unsigned long len)
2074 {
2075 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2078 
2079 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2080 			   void *data, unsigned long len)
2081 {
2082 	struct kvm_memslots *slots = kvm_memslots(kvm);
2083 	int r;
2084 
2085 	BUG_ON(len > ghc->len);
2086 
2087 	if (slots->generation != ghc->generation)
2088 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2089 
2090 	if (unlikely(!ghc->memslot))
2091 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2092 
2093 	if (kvm_is_error_hva(ghc->hva))
2094 		return -EFAULT;
2095 
2096 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2097 	if (r)
2098 		return -EFAULT;
2099 
2100 	return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2103 
2104 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2105 {
2106 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2107 
2108 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2111 
2112 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2113 {
2114 	gfn_t gfn = gpa >> PAGE_SHIFT;
2115 	int seg;
2116 	int offset = offset_in_page(gpa);
2117 	int ret;
2118 
2119 	while ((seg = next_segment(len, offset)) != 0) {
2120 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2121 		if (ret < 0)
2122 			return ret;
2123 		offset = 0;
2124 		len -= seg;
2125 		++gfn;
2126 	}
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2130 
2131 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2132 				    gfn_t gfn)
2133 {
2134 	if (memslot && memslot->dirty_bitmap) {
2135 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2136 
2137 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2138 	}
2139 }
2140 
2141 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2142 {
2143 	struct kvm_memory_slot *memslot;
2144 
2145 	memslot = gfn_to_memslot(kvm, gfn);
2146 	mark_page_dirty_in_slot(memslot, gfn);
2147 }
2148 EXPORT_SYMBOL_GPL(mark_page_dirty);
2149 
2150 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2151 {
2152 	struct kvm_memory_slot *memslot;
2153 
2154 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2155 	mark_page_dirty_in_slot(memslot, gfn);
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2158 
2159 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2160 {
2161 	if (!vcpu->sigset_active)
2162 		return;
2163 
2164 	/*
2165 	 * This does a lockless modification of ->real_blocked, which is fine
2166 	 * because, only current can change ->real_blocked and all readers of
2167 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2168 	 * of ->blocked.
2169 	 */
2170 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2171 }
2172 
2173 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2174 {
2175 	if (!vcpu->sigset_active)
2176 		return;
2177 
2178 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2179 	sigemptyset(&current->real_blocked);
2180 }
2181 
2182 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2183 {
2184 	unsigned int old, val, grow;
2185 
2186 	old = val = vcpu->halt_poll_ns;
2187 	grow = READ_ONCE(halt_poll_ns_grow);
2188 	/* 10us base */
2189 	if (val == 0 && grow)
2190 		val = 10000;
2191 	else
2192 		val *= grow;
2193 
2194 	if (val > halt_poll_ns)
2195 		val = halt_poll_ns;
2196 
2197 	vcpu->halt_poll_ns = val;
2198 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2199 }
2200 
2201 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2202 {
2203 	unsigned int old, val, shrink;
2204 
2205 	old = val = vcpu->halt_poll_ns;
2206 	shrink = READ_ONCE(halt_poll_ns_shrink);
2207 	if (shrink == 0)
2208 		val = 0;
2209 	else
2210 		val /= shrink;
2211 
2212 	vcpu->halt_poll_ns = val;
2213 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2214 }
2215 
2216 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2217 {
2218 	int ret = -EINTR;
2219 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2220 
2221 	if (kvm_arch_vcpu_runnable(vcpu)) {
2222 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2223 		goto out;
2224 	}
2225 	if (kvm_cpu_has_pending_timer(vcpu))
2226 		goto out;
2227 	if (signal_pending(current))
2228 		goto out;
2229 
2230 	ret = 0;
2231 out:
2232 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2233 	return ret;
2234 }
2235 
2236 /*
2237  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2238  */
2239 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2240 {
2241 	ktime_t start, cur;
2242 	DECLARE_SWAITQUEUE(wait);
2243 	bool waited = false;
2244 	u64 block_ns;
2245 
2246 	start = cur = ktime_get();
2247 	if (vcpu->halt_poll_ns) {
2248 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2249 
2250 		++vcpu->stat.halt_attempted_poll;
2251 		do {
2252 			/*
2253 			 * This sets KVM_REQ_UNHALT if an interrupt
2254 			 * arrives.
2255 			 */
2256 			if (kvm_vcpu_check_block(vcpu) < 0) {
2257 				++vcpu->stat.halt_successful_poll;
2258 				if (!vcpu_valid_wakeup(vcpu))
2259 					++vcpu->stat.halt_poll_invalid;
2260 				goto out;
2261 			}
2262 			cur = ktime_get();
2263 		} while (single_task_running() && ktime_before(cur, stop));
2264 	}
2265 
2266 	kvm_arch_vcpu_blocking(vcpu);
2267 
2268 	for (;;) {
2269 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2270 
2271 		if (kvm_vcpu_check_block(vcpu) < 0)
2272 			break;
2273 
2274 		waited = true;
2275 		schedule();
2276 	}
2277 
2278 	finish_swait(&vcpu->wq, &wait);
2279 	cur = ktime_get();
2280 
2281 	kvm_arch_vcpu_unblocking(vcpu);
2282 out:
2283 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2284 
2285 	if (!vcpu_valid_wakeup(vcpu))
2286 		shrink_halt_poll_ns(vcpu);
2287 	else if (halt_poll_ns) {
2288 		if (block_ns <= vcpu->halt_poll_ns)
2289 			;
2290 		/* we had a long block, shrink polling */
2291 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2292 			shrink_halt_poll_ns(vcpu);
2293 		/* we had a short halt and our poll time is too small */
2294 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2295 			block_ns < halt_poll_ns)
2296 			grow_halt_poll_ns(vcpu);
2297 	} else
2298 		vcpu->halt_poll_ns = 0;
2299 
2300 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2301 	kvm_arch_vcpu_block_finish(vcpu);
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2304 
2305 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2306 {
2307 	struct swait_queue_head *wqp;
2308 
2309 	wqp = kvm_arch_vcpu_wq(vcpu);
2310 	if (swq_has_sleeper(wqp)) {
2311 		swake_up_one(wqp);
2312 		++vcpu->stat.halt_wakeup;
2313 		return true;
2314 	}
2315 
2316 	return false;
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2319 
2320 #ifndef CONFIG_S390
2321 /*
2322  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2323  */
2324 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2325 {
2326 	int me;
2327 	int cpu = vcpu->cpu;
2328 
2329 	if (kvm_vcpu_wake_up(vcpu))
2330 		return;
2331 
2332 	me = get_cpu();
2333 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2334 		if (kvm_arch_vcpu_should_kick(vcpu))
2335 			smp_send_reschedule(cpu);
2336 	put_cpu();
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2339 #endif /* !CONFIG_S390 */
2340 
2341 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2342 {
2343 	struct pid *pid;
2344 	struct task_struct *task = NULL;
2345 	int ret = 0;
2346 
2347 	rcu_read_lock();
2348 	pid = rcu_dereference(target->pid);
2349 	if (pid)
2350 		task = get_pid_task(pid, PIDTYPE_PID);
2351 	rcu_read_unlock();
2352 	if (!task)
2353 		return ret;
2354 	ret = yield_to(task, 1);
2355 	put_task_struct(task);
2356 
2357 	return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2360 
2361 /*
2362  * Helper that checks whether a VCPU is eligible for directed yield.
2363  * Most eligible candidate to yield is decided by following heuristics:
2364  *
2365  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2366  *  (preempted lock holder), indicated by @in_spin_loop.
2367  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2368  *
2369  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2370  *  chance last time (mostly it has become eligible now since we have probably
2371  *  yielded to lockholder in last iteration. This is done by toggling
2372  *  @dy_eligible each time a VCPU checked for eligibility.)
2373  *
2374  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2375  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2376  *  burning. Giving priority for a potential lock-holder increases lock
2377  *  progress.
2378  *
2379  *  Since algorithm is based on heuristics, accessing another VCPU data without
2380  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2381  *  and continue with next VCPU and so on.
2382  */
2383 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2384 {
2385 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2386 	bool eligible;
2387 
2388 	eligible = !vcpu->spin_loop.in_spin_loop ||
2389 		    vcpu->spin_loop.dy_eligible;
2390 
2391 	if (vcpu->spin_loop.in_spin_loop)
2392 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2393 
2394 	return eligible;
2395 #else
2396 	return true;
2397 #endif
2398 }
2399 
2400 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2401 {
2402 	struct kvm *kvm = me->kvm;
2403 	struct kvm_vcpu *vcpu;
2404 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2405 	int yielded = 0;
2406 	int try = 3;
2407 	int pass;
2408 	int i;
2409 
2410 	kvm_vcpu_set_in_spin_loop(me, true);
2411 	/*
2412 	 * We boost the priority of a VCPU that is runnable but not
2413 	 * currently running, because it got preempted by something
2414 	 * else and called schedule in __vcpu_run.  Hopefully that
2415 	 * VCPU is holding the lock that we need and will release it.
2416 	 * We approximate round-robin by starting at the last boosted VCPU.
2417 	 */
2418 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2419 		kvm_for_each_vcpu(i, vcpu, kvm) {
2420 			if (!pass && i <= last_boosted_vcpu) {
2421 				i = last_boosted_vcpu;
2422 				continue;
2423 			} else if (pass && i > last_boosted_vcpu)
2424 				break;
2425 			if (!READ_ONCE(vcpu->preempted))
2426 				continue;
2427 			if (vcpu == me)
2428 				continue;
2429 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2430 				continue;
2431 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2432 				continue;
2433 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2434 				continue;
2435 
2436 			yielded = kvm_vcpu_yield_to(vcpu);
2437 			if (yielded > 0) {
2438 				kvm->last_boosted_vcpu = i;
2439 				break;
2440 			} else if (yielded < 0) {
2441 				try--;
2442 				if (!try)
2443 					break;
2444 			}
2445 		}
2446 	}
2447 	kvm_vcpu_set_in_spin_loop(me, false);
2448 
2449 	/* Ensure vcpu is not eligible during next spinloop */
2450 	kvm_vcpu_set_dy_eligible(me, false);
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2453 
2454 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2455 {
2456 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2457 	struct page *page;
2458 
2459 	if (vmf->pgoff == 0)
2460 		page = virt_to_page(vcpu->run);
2461 #ifdef CONFIG_X86
2462 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2463 		page = virt_to_page(vcpu->arch.pio_data);
2464 #endif
2465 #ifdef CONFIG_KVM_MMIO
2466 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2467 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2468 #endif
2469 	else
2470 		return kvm_arch_vcpu_fault(vcpu, vmf);
2471 	get_page(page);
2472 	vmf->page = page;
2473 	return 0;
2474 }
2475 
2476 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2477 	.fault = kvm_vcpu_fault,
2478 };
2479 
2480 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2481 {
2482 	vma->vm_ops = &kvm_vcpu_vm_ops;
2483 	return 0;
2484 }
2485 
2486 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2487 {
2488 	struct kvm_vcpu *vcpu = filp->private_data;
2489 
2490 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2491 	kvm_put_kvm(vcpu->kvm);
2492 	return 0;
2493 }
2494 
2495 static struct file_operations kvm_vcpu_fops = {
2496 	.release        = kvm_vcpu_release,
2497 	.unlocked_ioctl = kvm_vcpu_ioctl,
2498 	.mmap           = kvm_vcpu_mmap,
2499 	.llseek		= noop_llseek,
2500 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2501 };
2502 
2503 /*
2504  * Allocates an inode for the vcpu.
2505  */
2506 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2507 {
2508 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2509 
2510 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2511 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2512 }
2513 
2514 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2515 {
2516 	char dir_name[ITOA_MAX_LEN * 2];
2517 	int ret;
2518 
2519 	if (!kvm_arch_has_vcpu_debugfs())
2520 		return 0;
2521 
2522 	if (!debugfs_initialized())
2523 		return 0;
2524 
2525 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2526 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2527 								vcpu->kvm->debugfs_dentry);
2528 	if (!vcpu->debugfs_dentry)
2529 		return -ENOMEM;
2530 
2531 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2532 	if (ret < 0) {
2533 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2534 		return ret;
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 /*
2541  * Creates some virtual cpus.  Good luck creating more than one.
2542  */
2543 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2544 {
2545 	int r;
2546 	struct kvm_vcpu *vcpu;
2547 
2548 	if (id >= KVM_MAX_VCPU_ID)
2549 		return -EINVAL;
2550 
2551 	mutex_lock(&kvm->lock);
2552 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2553 		mutex_unlock(&kvm->lock);
2554 		return -EINVAL;
2555 	}
2556 
2557 	kvm->created_vcpus++;
2558 	mutex_unlock(&kvm->lock);
2559 
2560 	vcpu = kvm_arch_vcpu_create(kvm, id);
2561 	if (IS_ERR(vcpu)) {
2562 		r = PTR_ERR(vcpu);
2563 		goto vcpu_decrement;
2564 	}
2565 
2566 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2567 
2568 	r = kvm_arch_vcpu_setup(vcpu);
2569 	if (r)
2570 		goto vcpu_destroy;
2571 
2572 	r = kvm_create_vcpu_debugfs(vcpu);
2573 	if (r)
2574 		goto vcpu_destroy;
2575 
2576 	mutex_lock(&kvm->lock);
2577 	if (kvm_get_vcpu_by_id(kvm, id)) {
2578 		r = -EEXIST;
2579 		goto unlock_vcpu_destroy;
2580 	}
2581 
2582 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2583 
2584 	/* Now it's all set up, let userspace reach it */
2585 	kvm_get_kvm(kvm);
2586 	r = create_vcpu_fd(vcpu);
2587 	if (r < 0) {
2588 		kvm_put_kvm(kvm);
2589 		goto unlock_vcpu_destroy;
2590 	}
2591 
2592 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2593 
2594 	/*
2595 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2596 	 * before kvm->online_vcpu's incremented value.
2597 	 */
2598 	smp_wmb();
2599 	atomic_inc(&kvm->online_vcpus);
2600 
2601 	mutex_unlock(&kvm->lock);
2602 	kvm_arch_vcpu_postcreate(vcpu);
2603 	return r;
2604 
2605 unlock_vcpu_destroy:
2606 	mutex_unlock(&kvm->lock);
2607 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2608 vcpu_destroy:
2609 	kvm_arch_vcpu_destroy(vcpu);
2610 vcpu_decrement:
2611 	mutex_lock(&kvm->lock);
2612 	kvm->created_vcpus--;
2613 	mutex_unlock(&kvm->lock);
2614 	return r;
2615 }
2616 
2617 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2618 {
2619 	if (sigset) {
2620 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2621 		vcpu->sigset_active = 1;
2622 		vcpu->sigset = *sigset;
2623 	} else
2624 		vcpu->sigset_active = 0;
2625 	return 0;
2626 }
2627 
2628 static long kvm_vcpu_ioctl(struct file *filp,
2629 			   unsigned int ioctl, unsigned long arg)
2630 {
2631 	struct kvm_vcpu *vcpu = filp->private_data;
2632 	void __user *argp = (void __user *)arg;
2633 	int r;
2634 	struct kvm_fpu *fpu = NULL;
2635 	struct kvm_sregs *kvm_sregs = NULL;
2636 
2637 	if (vcpu->kvm->mm != current->mm)
2638 		return -EIO;
2639 
2640 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2641 		return -EINVAL;
2642 
2643 	/*
2644 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2645 	 * execution; mutex_lock() would break them.
2646 	 */
2647 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2648 	if (r != -ENOIOCTLCMD)
2649 		return r;
2650 
2651 	if (mutex_lock_killable(&vcpu->mutex))
2652 		return -EINTR;
2653 	switch (ioctl) {
2654 	case KVM_RUN: {
2655 		struct pid *oldpid;
2656 		r = -EINVAL;
2657 		if (arg)
2658 			goto out;
2659 		oldpid = rcu_access_pointer(vcpu->pid);
2660 		if (unlikely(oldpid != task_pid(current))) {
2661 			/* The thread running this VCPU changed. */
2662 			struct pid *newpid;
2663 
2664 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2665 			if (r)
2666 				break;
2667 
2668 			newpid = get_task_pid(current, PIDTYPE_PID);
2669 			rcu_assign_pointer(vcpu->pid, newpid);
2670 			if (oldpid)
2671 				synchronize_rcu();
2672 			put_pid(oldpid);
2673 		}
2674 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2675 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2676 		break;
2677 	}
2678 	case KVM_GET_REGS: {
2679 		struct kvm_regs *kvm_regs;
2680 
2681 		r = -ENOMEM;
2682 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2683 		if (!kvm_regs)
2684 			goto out;
2685 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2686 		if (r)
2687 			goto out_free1;
2688 		r = -EFAULT;
2689 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2690 			goto out_free1;
2691 		r = 0;
2692 out_free1:
2693 		kfree(kvm_regs);
2694 		break;
2695 	}
2696 	case KVM_SET_REGS: {
2697 		struct kvm_regs *kvm_regs;
2698 
2699 		r = -ENOMEM;
2700 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2701 		if (IS_ERR(kvm_regs)) {
2702 			r = PTR_ERR(kvm_regs);
2703 			goto out;
2704 		}
2705 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2706 		kfree(kvm_regs);
2707 		break;
2708 	}
2709 	case KVM_GET_SREGS: {
2710 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2711 		r = -ENOMEM;
2712 		if (!kvm_sregs)
2713 			goto out;
2714 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2715 		if (r)
2716 			goto out;
2717 		r = -EFAULT;
2718 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2719 			goto out;
2720 		r = 0;
2721 		break;
2722 	}
2723 	case KVM_SET_SREGS: {
2724 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2725 		if (IS_ERR(kvm_sregs)) {
2726 			r = PTR_ERR(kvm_sregs);
2727 			kvm_sregs = NULL;
2728 			goto out;
2729 		}
2730 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2731 		break;
2732 	}
2733 	case KVM_GET_MP_STATE: {
2734 		struct kvm_mp_state mp_state;
2735 
2736 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2737 		if (r)
2738 			goto out;
2739 		r = -EFAULT;
2740 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2741 			goto out;
2742 		r = 0;
2743 		break;
2744 	}
2745 	case KVM_SET_MP_STATE: {
2746 		struct kvm_mp_state mp_state;
2747 
2748 		r = -EFAULT;
2749 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2750 			goto out;
2751 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2752 		break;
2753 	}
2754 	case KVM_TRANSLATE: {
2755 		struct kvm_translation tr;
2756 
2757 		r = -EFAULT;
2758 		if (copy_from_user(&tr, argp, sizeof(tr)))
2759 			goto out;
2760 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2761 		if (r)
2762 			goto out;
2763 		r = -EFAULT;
2764 		if (copy_to_user(argp, &tr, sizeof(tr)))
2765 			goto out;
2766 		r = 0;
2767 		break;
2768 	}
2769 	case KVM_SET_GUEST_DEBUG: {
2770 		struct kvm_guest_debug dbg;
2771 
2772 		r = -EFAULT;
2773 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2774 			goto out;
2775 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2776 		break;
2777 	}
2778 	case KVM_SET_SIGNAL_MASK: {
2779 		struct kvm_signal_mask __user *sigmask_arg = argp;
2780 		struct kvm_signal_mask kvm_sigmask;
2781 		sigset_t sigset, *p;
2782 
2783 		p = NULL;
2784 		if (argp) {
2785 			r = -EFAULT;
2786 			if (copy_from_user(&kvm_sigmask, argp,
2787 					   sizeof(kvm_sigmask)))
2788 				goto out;
2789 			r = -EINVAL;
2790 			if (kvm_sigmask.len != sizeof(sigset))
2791 				goto out;
2792 			r = -EFAULT;
2793 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2794 					   sizeof(sigset)))
2795 				goto out;
2796 			p = &sigset;
2797 		}
2798 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2799 		break;
2800 	}
2801 	case KVM_GET_FPU: {
2802 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2803 		r = -ENOMEM;
2804 		if (!fpu)
2805 			goto out;
2806 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2807 		if (r)
2808 			goto out;
2809 		r = -EFAULT;
2810 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2811 			goto out;
2812 		r = 0;
2813 		break;
2814 	}
2815 	case KVM_SET_FPU: {
2816 		fpu = memdup_user(argp, sizeof(*fpu));
2817 		if (IS_ERR(fpu)) {
2818 			r = PTR_ERR(fpu);
2819 			fpu = NULL;
2820 			goto out;
2821 		}
2822 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2823 		break;
2824 	}
2825 	default:
2826 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2827 	}
2828 out:
2829 	mutex_unlock(&vcpu->mutex);
2830 	kfree(fpu);
2831 	kfree(kvm_sregs);
2832 	return r;
2833 }
2834 
2835 #ifdef CONFIG_KVM_COMPAT
2836 static long kvm_vcpu_compat_ioctl(struct file *filp,
2837 				  unsigned int ioctl, unsigned long arg)
2838 {
2839 	struct kvm_vcpu *vcpu = filp->private_data;
2840 	void __user *argp = compat_ptr(arg);
2841 	int r;
2842 
2843 	if (vcpu->kvm->mm != current->mm)
2844 		return -EIO;
2845 
2846 	switch (ioctl) {
2847 	case KVM_SET_SIGNAL_MASK: {
2848 		struct kvm_signal_mask __user *sigmask_arg = argp;
2849 		struct kvm_signal_mask kvm_sigmask;
2850 		sigset_t sigset;
2851 
2852 		if (argp) {
2853 			r = -EFAULT;
2854 			if (copy_from_user(&kvm_sigmask, argp,
2855 					   sizeof(kvm_sigmask)))
2856 				goto out;
2857 			r = -EINVAL;
2858 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2859 				goto out;
2860 			r = -EFAULT;
2861 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2862 				goto out;
2863 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2864 		} else
2865 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2866 		break;
2867 	}
2868 	default:
2869 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2870 	}
2871 
2872 out:
2873 	return r;
2874 }
2875 #endif
2876 
2877 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2878 				 int (*accessor)(struct kvm_device *dev,
2879 						 struct kvm_device_attr *attr),
2880 				 unsigned long arg)
2881 {
2882 	struct kvm_device_attr attr;
2883 
2884 	if (!accessor)
2885 		return -EPERM;
2886 
2887 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2888 		return -EFAULT;
2889 
2890 	return accessor(dev, &attr);
2891 }
2892 
2893 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2894 			     unsigned long arg)
2895 {
2896 	struct kvm_device *dev = filp->private_data;
2897 
2898 	switch (ioctl) {
2899 	case KVM_SET_DEVICE_ATTR:
2900 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2901 	case KVM_GET_DEVICE_ATTR:
2902 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2903 	case KVM_HAS_DEVICE_ATTR:
2904 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2905 	default:
2906 		if (dev->ops->ioctl)
2907 			return dev->ops->ioctl(dev, ioctl, arg);
2908 
2909 		return -ENOTTY;
2910 	}
2911 }
2912 
2913 static int kvm_device_release(struct inode *inode, struct file *filp)
2914 {
2915 	struct kvm_device *dev = filp->private_data;
2916 	struct kvm *kvm = dev->kvm;
2917 
2918 	kvm_put_kvm(kvm);
2919 	return 0;
2920 }
2921 
2922 static const struct file_operations kvm_device_fops = {
2923 	.unlocked_ioctl = kvm_device_ioctl,
2924 	.release = kvm_device_release,
2925 	KVM_COMPAT(kvm_device_ioctl),
2926 };
2927 
2928 struct kvm_device *kvm_device_from_filp(struct file *filp)
2929 {
2930 	if (filp->f_op != &kvm_device_fops)
2931 		return NULL;
2932 
2933 	return filp->private_data;
2934 }
2935 
2936 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2937 #ifdef CONFIG_KVM_MPIC
2938 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2939 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2940 #endif
2941 };
2942 
2943 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2944 {
2945 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2946 		return -ENOSPC;
2947 
2948 	if (kvm_device_ops_table[type] != NULL)
2949 		return -EEXIST;
2950 
2951 	kvm_device_ops_table[type] = ops;
2952 	return 0;
2953 }
2954 
2955 void kvm_unregister_device_ops(u32 type)
2956 {
2957 	if (kvm_device_ops_table[type] != NULL)
2958 		kvm_device_ops_table[type] = NULL;
2959 }
2960 
2961 static int kvm_ioctl_create_device(struct kvm *kvm,
2962 				   struct kvm_create_device *cd)
2963 {
2964 	struct kvm_device_ops *ops = NULL;
2965 	struct kvm_device *dev;
2966 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2967 	int ret;
2968 
2969 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2970 		return -ENODEV;
2971 
2972 	ops = kvm_device_ops_table[cd->type];
2973 	if (ops == NULL)
2974 		return -ENODEV;
2975 
2976 	if (test)
2977 		return 0;
2978 
2979 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2980 	if (!dev)
2981 		return -ENOMEM;
2982 
2983 	dev->ops = ops;
2984 	dev->kvm = kvm;
2985 
2986 	mutex_lock(&kvm->lock);
2987 	ret = ops->create(dev, cd->type);
2988 	if (ret < 0) {
2989 		mutex_unlock(&kvm->lock);
2990 		kfree(dev);
2991 		return ret;
2992 	}
2993 	list_add(&dev->vm_node, &kvm->devices);
2994 	mutex_unlock(&kvm->lock);
2995 
2996 	if (ops->init)
2997 		ops->init(dev);
2998 
2999 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3000 	if (ret < 0) {
3001 		mutex_lock(&kvm->lock);
3002 		list_del(&dev->vm_node);
3003 		mutex_unlock(&kvm->lock);
3004 		ops->destroy(dev);
3005 		return ret;
3006 	}
3007 
3008 	kvm_get_kvm(kvm);
3009 	cd->fd = ret;
3010 	return 0;
3011 }
3012 
3013 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3014 {
3015 	switch (arg) {
3016 	case KVM_CAP_USER_MEMORY:
3017 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3018 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3019 	case KVM_CAP_INTERNAL_ERROR_DATA:
3020 #ifdef CONFIG_HAVE_KVM_MSI
3021 	case KVM_CAP_SIGNAL_MSI:
3022 #endif
3023 #ifdef CONFIG_HAVE_KVM_IRQFD
3024 	case KVM_CAP_IRQFD:
3025 	case KVM_CAP_IRQFD_RESAMPLE:
3026 #endif
3027 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3028 	case KVM_CAP_CHECK_EXTENSION_VM:
3029 	case KVM_CAP_ENABLE_CAP_VM:
3030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3031 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3032 #endif
3033 		return 1;
3034 #ifdef CONFIG_KVM_MMIO
3035 	case KVM_CAP_COALESCED_MMIO:
3036 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3037 	case KVM_CAP_COALESCED_PIO:
3038 		return 1;
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3041 	case KVM_CAP_IRQ_ROUTING:
3042 		return KVM_MAX_IRQ_ROUTES;
3043 #endif
3044 #if KVM_ADDRESS_SPACE_NUM > 1
3045 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3046 		return KVM_ADDRESS_SPACE_NUM;
3047 #endif
3048 	case KVM_CAP_MAX_VCPU_ID:
3049 		return KVM_MAX_VCPU_ID;
3050 	default:
3051 		break;
3052 	}
3053 	return kvm_vm_ioctl_check_extension(kvm, arg);
3054 }
3055 
3056 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3057 						  struct kvm_enable_cap *cap)
3058 {
3059 	return -EINVAL;
3060 }
3061 
3062 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3063 					   struct kvm_enable_cap *cap)
3064 {
3065 	switch (cap->cap) {
3066 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3067 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3068 		if (cap->flags || (cap->args[0] & ~1))
3069 			return -EINVAL;
3070 		kvm->manual_dirty_log_protect = cap->args[0];
3071 		return 0;
3072 #endif
3073 	default:
3074 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3075 	}
3076 }
3077 
3078 static long kvm_vm_ioctl(struct file *filp,
3079 			   unsigned int ioctl, unsigned long arg)
3080 {
3081 	struct kvm *kvm = filp->private_data;
3082 	void __user *argp = (void __user *)arg;
3083 	int r;
3084 
3085 	if (kvm->mm != current->mm)
3086 		return -EIO;
3087 	switch (ioctl) {
3088 	case KVM_CREATE_VCPU:
3089 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3090 		break;
3091 	case KVM_ENABLE_CAP: {
3092 		struct kvm_enable_cap cap;
3093 
3094 		r = -EFAULT;
3095 		if (copy_from_user(&cap, argp, sizeof(cap)))
3096 			goto out;
3097 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3098 		break;
3099 	}
3100 	case KVM_SET_USER_MEMORY_REGION: {
3101 		struct kvm_userspace_memory_region kvm_userspace_mem;
3102 
3103 		r = -EFAULT;
3104 		if (copy_from_user(&kvm_userspace_mem, argp,
3105 						sizeof(kvm_userspace_mem)))
3106 			goto out;
3107 
3108 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3109 		break;
3110 	}
3111 	case KVM_GET_DIRTY_LOG: {
3112 		struct kvm_dirty_log log;
3113 
3114 		r = -EFAULT;
3115 		if (copy_from_user(&log, argp, sizeof(log)))
3116 			goto out;
3117 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3118 		break;
3119 	}
3120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3121 	case KVM_CLEAR_DIRTY_LOG: {
3122 		struct kvm_clear_dirty_log log;
3123 
3124 		r = -EFAULT;
3125 		if (copy_from_user(&log, argp, sizeof(log)))
3126 			goto out;
3127 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3128 		break;
3129 	}
3130 #endif
3131 #ifdef CONFIG_KVM_MMIO
3132 	case KVM_REGISTER_COALESCED_MMIO: {
3133 		struct kvm_coalesced_mmio_zone zone;
3134 
3135 		r = -EFAULT;
3136 		if (copy_from_user(&zone, argp, sizeof(zone)))
3137 			goto out;
3138 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3139 		break;
3140 	}
3141 	case KVM_UNREGISTER_COALESCED_MMIO: {
3142 		struct kvm_coalesced_mmio_zone zone;
3143 
3144 		r = -EFAULT;
3145 		if (copy_from_user(&zone, argp, sizeof(zone)))
3146 			goto out;
3147 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3148 		break;
3149 	}
3150 #endif
3151 	case KVM_IRQFD: {
3152 		struct kvm_irqfd data;
3153 
3154 		r = -EFAULT;
3155 		if (copy_from_user(&data, argp, sizeof(data)))
3156 			goto out;
3157 		r = kvm_irqfd(kvm, &data);
3158 		break;
3159 	}
3160 	case KVM_IOEVENTFD: {
3161 		struct kvm_ioeventfd data;
3162 
3163 		r = -EFAULT;
3164 		if (copy_from_user(&data, argp, sizeof(data)))
3165 			goto out;
3166 		r = kvm_ioeventfd(kvm, &data);
3167 		break;
3168 	}
3169 #ifdef CONFIG_HAVE_KVM_MSI
3170 	case KVM_SIGNAL_MSI: {
3171 		struct kvm_msi msi;
3172 
3173 		r = -EFAULT;
3174 		if (copy_from_user(&msi, argp, sizeof(msi)))
3175 			goto out;
3176 		r = kvm_send_userspace_msi(kvm, &msi);
3177 		break;
3178 	}
3179 #endif
3180 #ifdef __KVM_HAVE_IRQ_LINE
3181 	case KVM_IRQ_LINE_STATUS:
3182 	case KVM_IRQ_LINE: {
3183 		struct kvm_irq_level irq_event;
3184 
3185 		r = -EFAULT;
3186 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3187 			goto out;
3188 
3189 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3190 					ioctl == KVM_IRQ_LINE_STATUS);
3191 		if (r)
3192 			goto out;
3193 
3194 		r = -EFAULT;
3195 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3196 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3197 				goto out;
3198 		}
3199 
3200 		r = 0;
3201 		break;
3202 	}
3203 #endif
3204 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3205 	case KVM_SET_GSI_ROUTING: {
3206 		struct kvm_irq_routing routing;
3207 		struct kvm_irq_routing __user *urouting;
3208 		struct kvm_irq_routing_entry *entries = NULL;
3209 
3210 		r = -EFAULT;
3211 		if (copy_from_user(&routing, argp, sizeof(routing)))
3212 			goto out;
3213 		r = -EINVAL;
3214 		if (!kvm_arch_can_set_irq_routing(kvm))
3215 			goto out;
3216 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3217 			goto out;
3218 		if (routing.flags)
3219 			goto out;
3220 		if (routing.nr) {
3221 			r = -ENOMEM;
3222 			entries = vmalloc(array_size(sizeof(*entries),
3223 						     routing.nr));
3224 			if (!entries)
3225 				goto out;
3226 			r = -EFAULT;
3227 			urouting = argp;
3228 			if (copy_from_user(entries, urouting->entries,
3229 					   routing.nr * sizeof(*entries)))
3230 				goto out_free_irq_routing;
3231 		}
3232 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3233 					routing.flags);
3234 out_free_irq_routing:
3235 		vfree(entries);
3236 		break;
3237 	}
3238 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3239 	case KVM_CREATE_DEVICE: {
3240 		struct kvm_create_device cd;
3241 
3242 		r = -EFAULT;
3243 		if (copy_from_user(&cd, argp, sizeof(cd)))
3244 			goto out;
3245 
3246 		r = kvm_ioctl_create_device(kvm, &cd);
3247 		if (r)
3248 			goto out;
3249 
3250 		r = -EFAULT;
3251 		if (copy_to_user(argp, &cd, sizeof(cd)))
3252 			goto out;
3253 
3254 		r = 0;
3255 		break;
3256 	}
3257 	case KVM_CHECK_EXTENSION:
3258 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3259 		break;
3260 	default:
3261 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3262 	}
3263 out:
3264 	return r;
3265 }
3266 
3267 #ifdef CONFIG_KVM_COMPAT
3268 struct compat_kvm_dirty_log {
3269 	__u32 slot;
3270 	__u32 padding1;
3271 	union {
3272 		compat_uptr_t dirty_bitmap; /* one bit per page */
3273 		__u64 padding2;
3274 	};
3275 };
3276 
3277 static long kvm_vm_compat_ioctl(struct file *filp,
3278 			   unsigned int ioctl, unsigned long arg)
3279 {
3280 	struct kvm *kvm = filp->private_data;
3281 	int r;
3282 
3283 	if (kvm->mm != current->mm)
3284 		return -EIO;
3285 	switch (ioctl) {
3286 	case KVM_GET_DIRTY_LOG: {
3287 		struct compat_kvm_dirty_log compat_log;
3288 		struct kvm_dirty_log log;
3289 
3290 		if (copy_from_user(&compat_log, (void __user *)arg,
3291 				   sizeof(compat_log)))
3292 			return -EFAULT;
3293 		log.slot	 = compat_log.slot;
3294 		log.padding1	 = compat_log.padding1;
3295 		log.padding2	 = compat_log.padding2;
3296 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3297 
3298 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3299 		break;
3300 	}
3301 	default:
3302 		r = kvm_vm_ioctl(filp, ioctl, arg);
3303 	}
3304 	return r;
3305 }
3306 #endif
3307 
3308 static struct file_operations kvm_vm_fops = {
3309 	.release        = kvm_vm_release,
3310 	.unlocked_ioctl = kvm_vm_ioctl,
3311 	.llseek		= noop_llseek,
3312 	KVM_COMPAT(kvm_vm_compat_ioctl),
3313 };
3314 
3315 static int kvm_dev_ioctl_create_vm(unsigned long type)
3316 {
3317 	int r;
3318 	struct kvm *kvm;
3319 	struct file *file;
3320 
3321 	kvm = kvm_create_vm(type);
3322 	if (IS_ERR(kvm))
3323 		return PTR_ERR(kvm);
3324 #ifdef CONFIG_KVM_MMIO
3325 	r = kvm_coalesced_mmio_init(kvm);
3326 	if (r < 0)
3327 		goto put_kvm;
3328 #endif
3329 	r = get_unused_fd_flags(O_CLOEXEC);
3330 	if (r < 0)
3331 		goto put_kvm;
3332 
3333 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3334 	if (IS_ERR(file)) {
3335 		put_unused_fd(r);
3336 		r = PTR_ERR(file);
3337 		goto put_kvm;
3338 	}
3339 
3340 	/*
3341 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3342 	 * already set, with ->release() being kvm_vm_release().  In error
3343 	 * cases it will be called by the final fput(file) and will take
3344 	 * care of doing kvm_put_kvm(kvm).
3345 	 */
3346 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3347 		put_unused_fd(r);
3348 		fput(file);
3349 		return -ENOMEM;
3350 	}
3351 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3352 
3353 	fd_install(r, file);
3354 	return r;
3355 
3356 put_kvm:
3357 	kvm_put_kvm(kvm);
3358 	return r;
3359 }
3360 
3361 static long kvm_dev_ioctl(struct file *filp,
3362 			  unsigned int ioctl, unsigned long arg)
3363 {
3364 	long r = -EINVAL;
3365 
3366 	switch (ioctl) {
3367 	case KVM_GET_API_VERSION:
3368 		if (arg)
3369 			goto out;
3370 		r = KVM_API_VERSION;
3371 		break;
3372 	case KVM_CREATE_VM:
3373 		r = kvm_dev_ioctl_create_vm(arg);
3374 		break;
3375 	case KVM_CHECK_EXTENSION:
3376 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3377 		break;
3378 	case KVM_GET_VCPU_MMAP_SIZE:
3379 		if (arg)
3380 			goto out;
3381 		r = PAGE_SIZE;     /* struct kvm_run */
3382 #ifdef CONFIG_X86
3383 		r += PAGE_SIZE;    /* pio data page */
3384 #endif
3385 #ifdef CONFIG_KVM_MMIO
3386 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3387 #endif
3388 		break;
3389 	case KVM_TRACE_ENABLE:
3390 	case KVM_TRACE_PAUSE:
3391 	case KVM_TRACE_DISABLE:
3392 		r = -EOPNOTSUPP;
3393 		break;
3394 	default:
3395 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3396 	}
3397 out:
3398 	return r;
3399 }
3400 
3401 static struct file_operations kvm_chardev_ops = {
3402 	.unlocked_ioctl = kvm_dev_ioctl,
3403 	.llseek		= noop_llseek,
3404 	KVM_COMPAT(kvm_dev_ioctl),
3405 };
3406 
3407 static struct miscdevice kvm_dev = {
3408 	KVM_MINOR,
3409 	"kvm",
3410 	&kvm_chardev_ops,
3411 };
3412 
3413 static void hardware_enable_nolock(void *junk)
3414 {
3415 	int cpu = raw_smp_processor_id();
3416 	int r;
3417 
3418 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3419 		return;
3420 
3421 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3422 
3423 	r = kvm_arch_hardware_enable();
3424 
3425 	if (r) {
3426 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3427 		atomic_inc(&hardware_enable_failed);
3428 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3429 	}
3430 }
3431 
3432 static int kvm_starting_cpu(unsigned int cpu)
3433 {
3434 	raw_spin_lock(&kvm_count_lock);
3435 	if (kvm_usage_count)
3436 		hardware_enable_nolock(NULL);
3437 	raw_spin_unlock(&kvm_count_lock);
3438 	return 0;
3439 }
3440 
3441 static void hardware_disable_nolock(void *junk)
3442 {
3443 	int cpu = raw_smp_processor_id();
3444 
3445 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3446 		return;
3447 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3448 	kvm_arch_hardware_disable();
3449 }
3450 
3451 static int kvm_dying_cpu(unsigned int cpu)
3452 {
3453 	raw_spin_lock(&kvm_count_lock);
3454 	if (kvm_usage_count)
3455 		hardware_disable_nolock(NULL);
3456 	raw_spin_unlock(&kvm_count_lock);
3457 	return 0;
3458 }
3459 
3460 static void hardware_disable_all_nolock(void)
3461 {
3462 	BUG_ON(!kvm_usage_count);
3463 
3464 	kvm_usage_count--;
3465 	if (!kvm_usage_count)
3466 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3467 }
3468 
3469 static void hardware_disable_all(void)
3470 {
3471 	raw_spin_lock(&kvm_count_lock);
3472 	hardware_disable_all_nolock();
3473 	raw_spin_unlock(&kvm_count_lock);
3474 }
3475 
3476 static int hardware_enable_all(void)
3477 {
3478 	int r = 0;
3479 
3480 	raw_spin_lock(&kvm_count_lock);
3481 
3482 	kvm_usage_count++;
3483 	if (kvm_usage_count == 1) {
3484 		atomic_set(&hardware_enable_failed, 0);
3485 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3486 
3487 		if (atomic_read(&hardware_enable_failed)) {
3488 			hardware_disable_all_nolock();
3489 			r = -EBUSY;
3490 		}
3491 	}
3492 
3493 	raw_spin_unlock(&kvm_count_lock);
3494 
3495 	return r;
3496 }
3497 
3498 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3499 		      void *v)
3500 {
3501 	/*
3502 	 * Some (well, at least mine) BIOSes hang on reboot if
3503 	 * in vmx root mode.
3504 	 *
3505 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3506 	 */
3507 	pr_info("kvm: exiting hardware virtualization\n");
3508 	kvm_rebooting = true;
3509 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3510 	return NOTIFY_OK;
3511 }
3512 
3513 static struct notifier_block kvm_reboot_notifier = {
3514 	.notifier_call = kvm_reboot,
3515 	.priority = 0,
3516 };
3517 
3518 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3519 {
3520 	int i;
3521 
3522 	for (i = 0; i < bus->dev_count; i++) {
3523 		struct kvm_io_device *pos = bus->range[i].dev;
3524 
3525 		kvm_iodevice_destructor(pos);
3526 	}
3527 	kfree(bus);
3528 }
3529 
3530 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3531 				 const struct kvm_io_range *r2)
3532 {
3533 	gpa_t addr1 = r1->addr;
3534 	gpa_t addr2 = r2->addr;
3535 
3536 	if (addr1 < addr2)
3537 		return -1;
3538 
3539 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3540 	 * accept any overlapping write.  Any order is acceptable for
3541 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3542 	 * we process all of them.
3543 	 */
3544 	if (r2->len) {
3545 		addr1 += r1->len;
3546 		addr2 += r2->len;
3547 	}
3548 
3549 	if (addr1 > addr2)
3550 		return 1;
3551 
3552 	return 0;
3553 }
3554 
3555 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3556 {
3557 	return kvm_io_bus_cmp(p1, p2);
3558 }
3559 
3560 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3561 			     gpa_t addr, int len)
3562 {
3563 	struct kvm_io_range *range, key;
3564 	int off;
3565 
3566 	key = (struct kvm_io_range) {
3567 		.addr = addr,
3568 		.len = len,
3569 	};
3570 
3571 	range = bsearch(&key, bus->range, bus->dev_count,
3572 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3573 	if (range == NULL)
3574 		return -ENOENT;
3575 
3576 	off = range - bus->range;
3577 
3578 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3579 		off--;
3580 
3581 	return off;
3582 }
3583 
3584 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3585 			      struct kvm_io_range *range, const void *val)
3586 {
3587 	int idx;
3588 
3589 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3590 	if (idx < 0)
3591 		return -EOPNOTSUPP;
3592 
3593 	while (idx < bus->dev_count &&
3594 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3595 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3596 					range->len, val))
3597 			return idx;
3598 		idx++;
3599 	}
3600 
3601 	return -EOPNOTSUPP;
3602 }
3603 
3604 /* kvm_io_bus_write - called under kvm->slots_lock */
3605 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3606 		     int len, const void *val)
3607 {
3608 	struct kvm_io_bus *bus;
3609 	struct kvm_io_range range;
3610 	int r;
3611 
3612 	range = (struct kvm_io_range) {
3613 		.addr = addr,
3614 		.len = len,
3615 	};
3616 
3617 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3618 	if (!bus)
3619 		return -ENOMEM;
3620 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3621 	return r < 0 ? r : 0;
3622 }
3623 
3624 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3625 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3626 			    gpa_t addr, int len, const void *val, long cookie)
3627 {
3628 	struct kvm_io_bus *bus;
3629 	struct kvm_io_range range;
3630 
3631 	range = (struct kvm_io_range) {
3632 		.addr = addr,
3633 		.len = len,
3634 	};
3635 
3636 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3637 	if (!bus)
3638 		return -ENOMEM;
3639 
3640 	/* First try the device referenced by cookie. */
3641 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3642 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3643 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3644 					val))
3645 			return cookie;
3646 
3647 	/*
3648 	 * cookie contained garbage; fall back to search and return the
3649 	 * correct cookie value.
3650 	 */
3651 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3652 }
3653 
3654 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3655 			     struct kvm_io_range *range, void *val)
3656 {
3657 	int idx;
3658 
3659 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3660 	if (idx < 0)
3661 		return -EOPNOTSUPP;
3662 
3663 	while (idx < bus->dev_count &&
3664 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3665 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3666 				       range->len, val))
3667 			return idx;
3668 		idx++;
3669 	}
3670 
3671 	return -EOPNOTSUPP;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3674 
3675 /* kvm_io_bus_read - called under kvm->slots_lock */
3676 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3677 		    int len, void *val)
3678 {
3679 	struct kvm_io_bus *bus;
3680 	struct kvm_io_range range;
3681 	int r;
3682 
3683 	range = (struct kvm_io_range) {
3684 		.addr = addr,
3685 		.len = len,
3686 	};
3687 
3688 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3689 	if (!bus)
3690 		return -ENOMEM;
3691 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3692 	return r < 0 ? r : 0;
3693 }
3694 
3695 
3696 /* Caller must hold slots_lock. */
3697 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3698 			    int len, struct kvm_io_device *dev)
3699 {
3700 	int i;
3701 	struct kvm_io_bus *new_bus, *bus;
3702 	struct kvm_io_range range;
3703 
3704 	bus = kvm_get_bus(kvm, bus_idx);
3705 	if (!bus)
3706 		return -ENOMEM;
3707 
3708 	/* exclude ioeventfd which is limited by maximum fd */
3709 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3710 		return -ENOSPC;
3711 
3712 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3713 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3714 	if (!new_bus)
3715 		return -ENOMEM;
3716 
3717 	range = (struct kvm_io_range) {
3718 		.addr = addr,
3719 		.len = len,
3720 		.dev = dev,
3721 	};
3722 
3723 	for (i = 0; i < bus->dev_count; i++)
3724 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3725 			break;
3726 
3727 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3728 	new_bus->dev_count++;
3729 	new_bus->range[i] = range;
3730 	memcpy(new_bus->range + i + 1, bus->range + i,
3731 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3732 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3733 	synchronize_srcu_expedited(&kvm->srcu);
3734 	kfree(bus);
3735 
3736 	return 0;
3737 }
3738 
3739 /* Caller must hold slots_lock. */
3740 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3741 			       struct kvm_io_device *dev)
3742 {
3743 	int i;
3744 	struct kvm_io_bus *new_bus, *bus;
3745 
3746 	bus = kvm_get_bus(kvm, bus_idx);
3747 	if (!bus)
3748 		return;
3749 
3750 	for (i = 0; i < bus->dev_count; i++)
3751 		if (bus->range[i].dev == dev) {
3752 			break;
3753 		}
3754 
3755 	if (i == bus->dev_count)
3756 		return;
3757 
3758 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3759 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3760 	if (!new_bus)  {
3761 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3762 		goto broken;
3763 	}
3764 
3765 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3766 	new_bus->dev_count--;
3767 	memcpy(new_bus->range + i, bus->range + i + 1,
3768 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3769 
3770 broken:
3771 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3772 	synchronize_srcu_expedited(&kvm->srcu);
3773 	kfree(bus);
3774 	return;
3775 }
3776 
3777 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3778 					 gpa_t addr)
3779 {
3780 	struct kvm_io_bus *bus;
3781 	int dev_idx, srcu_idx;
3782 	struct kvm_io_device *iodev = NULL;
3783 
3784 	srcu_idx = srcu_read_lock(&kvm->srcu);
3785 
3786 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3787 	if (!bus)
3788 		goto out_unlock;
3789 
3790 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3791 	if (dev_idx < 0)
3792 		goto out_unlock;
3793 
3794 	iodev = bus->range[dev_idx].dev;
3795 
3796 out_unlock:
3797 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3798 
3799 	return iodev;
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3802 
3803 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3804 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3805 			   const char *fmt)
3806 {
3807 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3808 					  inode->i_private;
3809 
3810 	/* The debugfs files are a reference to the kvm struct which
3811 	 * is still valid when kvm_destroy_vm is called.
3812 	 * To avoid the race between open and the removal of the debugfs
3813 	 * directory we test against the users count.
3814 	 */
3815 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3816 		return -ENOENT;
3817 
3818 	if (simple_attr_open(inode, file, get, set, fmt)) {
3819 		kvm_put_kvm(stat_data->kvm);
3820 		return -ENOMEM;
3821 	}
3822 
3823 	return 0;
3824 }
3825 
3826 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3827 {
3828 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3829 					  inode->i_private;
3830 
3831 	simple_attr_release(inode, file);
3832 	kvm_put_kvm(stat_data->kvm);
3833 
3834 	return 0;
3835 }
3836 
3837 static int vm_stat_get_per_vm(void *data, u64 *val)
3838 {
3839 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3840 
3841 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3842 
3843 	return 0;
3844 }
3845 
3846 static int vm_stat_clear_per_vm(void *data, u64 val)
3847 {
3848 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3849 
3850 	if (val)
3851 		return -EINVAL;
3852 
3853 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3854 
3855 	return 0;
3856 }
3857 
3858 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3859 {
3860 	__simple_attr_check_format("%llu\n", 0ull);
3861 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3862 				vm_stat_clear_per_vm, "%llu\n");
3863 }
3864 
3865 static const struct file_operations vm_stat_get_per_vm_fops = {
3866 	.owner   = THIS_MODULE,
3867 	.open    = vm_stat_get_per_vm_open,
3868 	.release = kvm_debugfs_release,
3869 	.read    = simple_attr_read,
3870 	.write   = simple_attr_write,
3871 	.llseek  = no_llseek,
3872 };
3873 
3874 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3875 {
3876 	int i;
3877 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3878 	struct kvm_vcpu *vcpu;
3879 
3880 	*val = 0;
3881 
3882 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3883 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3884 
3885 	return 0;
3886 }
3887 
3888 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3889 {
3890 	int i;
3891 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3892 	struct kvm_vcpu *vcpu;
3893 
3894 	if (val)
3895 		return -EINVAL;
3896 
3897 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3898 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3899 
3900 	return 0;
3901 }
3902 
3903 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3904 {
3905 	__simple_attr_check_format("%llu\n", 0ull);
3906 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3907 				 vcpu_stat_clear_per_vm, "%llu\n");
3908 }
3909 
3910 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3911 	.owner   = THIS_MODULE,
3912 	.open    = vcpu_stat_get_per_vm_open,
3913 	.release = kvm_debugfs_release,
3914 	.read    = simple_attr_read,
3915 	.write   = simple_attr_write,
3916 	.llseek  = no_llseek,
3917 };
3918 
3919 static const struct file_operations *stat_fops_per_vm[] = {
3920 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3921 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3922 };
3923 
3924 static int vm_stat_get(void *_offset, u64 *val)
3925 {
3926 	unsigned offset = (long)_offset;
3927 	struct kvm *kvm;
3928 	struct kvm_stat_data stat_tmp = {.offset = offset};
3929 	u64 tmp_val;
3930 
3931 	*val = 0;
3932 	spin_lock(&kvm_lock);
3933 	list_for_each_entry(kvm, &vm_list, vm_list) {
3934 		stat_tmp.kvm = kvm;
3935 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3936 		*val += tmp_val;
3937 	}
3938 	spin_unlock(&kvm_lock);
3939 	return 0;
3940 }
3941 
3942 static int vm_stat_clear(void *_offset, u64 val)
3943 {
3944 	unsigned offset = (long)_offset;
3945 	struct kvm *kvm;
3946 	struct kvm_stat_data stat_tmp = {.offset = offset};
3947 
3948 	if (val)
3949 		return -EINVAL;
3950 
3951 	spin_lock(&kvm_lock);
3952 	list_for_each_entry(kvm, &vm_list, vm_list) {
3953 		stat_tmp.kvm = kvm;
3954 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3955 	}
3956 	spin_unlock(&kvm_lock);
3957 
3958 	return 0;
3959 }
3960 
3961 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3962 
3963 static int vcpu_stat_get(void *_offset, u64 *val)
3964 {
3965 	unsigned offset = (long)_offset;
3966 	struct kvm *kvm;
3967 	struct kvm_stat_data stat_tmp = {.offset = offset};
3968 	u64 tmp_val;
3969 
3970 	*val = 0;
3971 	spin_lock(&kvm_lock);
3972 	list_for_each_entry(kvm, &vm_list, vm_list) {
3973 		stat_tmp.kvm = kvm;
3974 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3975 		*val += tmp_val;
3976 	}
3977 	spin_unlock(&kvm_lock);
3978 	return 0;
3979 }
3980 
3981 static int vcpu_stat_clear(void *_offset, u64 val)
3982 {
3983 	unsigned offset = (long)_offset;
3984 	struct kvm *kvm;
3985 	struct kvm_stat_data stat_tmp = {.offset = offset};
3986 
3987 	if (val)
3988 		return -EINVAL;
3989 
3990 	spin_lock(&kvm_lock);
3991 	list_for_each_entry(kvm, &vm_list, vm_list) {
3992 		stat_tmp.kvm = kvm;
3993 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3994 	}
3995 	spin_unlock(&kvm_lock);
3996 
3997 	return 0;
3998 }
3999 
4000 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4001 			"%llu\n");
4002 
4003 static const struct file_operations *stat_fops[] = {
4004 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4005 	[KVM_STAT_VM]   = &vm_stat_fops,
4006 };
4007 
4008 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4009 {
4010 	struct kobj_uevent_env *env;
4011 	unsigned long long created, active;
4012 
4013 	if (!kvm_dev.this_device || !kvm)
4014 		return;
4015 
4016 	spin_lock(&kvm_lock);
4017 	if (type == KVM_EVENT_CREATE_VM) {
4018 		kvm_createvm_count++;
4019 		kvm_active_vms++;
4020 	} else if (type == KVM_EVENT_DESTROY_VM) {
4021 		kvm_active_vms--;
4022 	}
4023 	created = kvm_createvm_count;
4024 	active = kvm_active_vms;
4025 	spin_unlock(&kvm_lock);
4026 
4027 	env = kzalloc(sizeof(*env), GFP_KERNEL);
4028 	if (!env)
4029 		return;
4030 
4031 	add_uevent_var(env, "CREATED=%llu", created);
4032 	add_uevent_var(env, "COUNT=%llu", active);
4033 
4034 	if (type == KVM_EVENT_CREATE_VM) {
4035 		add_uevent_var(env, "EVENT=create");
4036 		kvm->userspace_pid = task_pid_nr(current);
4037 	} else if (type == KVM_EVENT_DESTROY_VM) {
4038 		add_uevent_var(env, "EVENT=destroy");
4039 	}
4040 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4041 
4042 	if (kvm->debugfs_dentry) {
4043 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4044 
4045 		if (p) {
4046 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4047 			if (!IS_ERR(tmp))
4048 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4049 			kfree(p);
4050 		}
4051 	}
4052 	/* no need for checks, since we are adding at most only 5 keys */
4053 	env->envp[env->envp_idx++] = NULL;
4054 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4055 	kfree(env);
4056 }
4057 
4058 static void kvm_init_debug(void)
4059 {
4060 	struct kvm_stats_debugfs_item *p;
4061 
4062 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4063 
4064 	kvm_debugfs_num_entries = 0;
4065 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4066 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4067 				    (void *)(long)p->offset,
4068 				    stat_fops[p->kind]);
4069 	}
4070 }
4071 
4072 static int kvm_suspend(void)
4073 {
4074 	if (kvm_usage_count)
4075 		hardware_disable_nolock(NULL);
4076 	return 0;
4077 }
4078 
4079 static void kvm_resume(void)
4080 {
4081 	if (kvm_usage_count) {
4082 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4083 		hardware_enable_nolock(NULL);
4084 	}
4085 }
4086 
4087 static struct syscore_ops kvm_syscore_ops = {
4088 	.suspend = kvm_suspend,
4089 	.resume = kvm_resume,
4090 };
4091 
4092 static inline
4093 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4094 {
4095 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4096 }
4097 
4098 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4099 {
4100 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4101 
4102 	if (vcpu->preempted)
4103 		vcpu->preempted = false;
4104 
4105 	kvm_arch_sched_in(vcpu, cpu);
4106 
4107 	kvm_arch_vcpu_load(vcpu, cpu);
4108 }
4109 
4110 static void kvm_sched_out(struct preempt_notifier *pn,
4111 			  struct task_struct *next)
4112 {
4113 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4114 
4115 	if (current->state == TASK_RUNNING)
4116 		vcpu->preempted = true;
4117 	kvm_arch_vcpu_put(vcpu);
4118 }
4119 
4120 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4121 		  struct module *module)
4122 {
4123 	int r;
4124 	int cpu;
4125 
4126 	r = kvm_arch_init(opaque);
4127 	if (r)
4128 		goto out_fail;
4129 
4130 	/*
4131 	 * kvm_arch_init makes sure there's at most one caller
4132 	 * for architectures that support multiple implementations,
4133 	 * like intel and amd on x86.
4134 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4135 	 * conflicts in case kvm is already setup for another implementation.
4136 	 */
4137 	r = kvm_irqfd_init();
4138 	if (r)
4139 		goto out_irqfd;
4140 
4141 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4142 		r = -ENOMEM;
4143 		goto out_free_0;
4144 	}
4145 
4146 	r = kvm_arch_hardware_setup();
4147 	if (r < 0)
4148 		goto out_free_0a;
4149 
4150 	for_each_online_cpu(cpu) {
4151 		smp_call_function_single(cpu,
4152 				kvm_arch_check_processor_compat,
4153 				&r, 1);
4154 		if (r < 0)
4155 			goto out_free_1;
4156 	}
4157 
4158 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4159 				      kvm_starting_cpu, kvm_dying_cpu);
4160 	if (r)
4161 		goto out_free_2;
4162 	register_reboot_notifier(&kvm_reboot_notifier);
4163 
4164 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4165 	if (!vcpu_align)
4166 		vcpu_align = __alignof__(struct kvm_vcpu);
4167 	kvm_vcpu_cache =
4168 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4169 					   SLAB_ACCOUNT,
4170 					   offsetof(struct kvm_vcpu, arch),
4171 					   sizeof_field(struct kvm_vcpu, arch),
4172 					   NULL);
4173 	if (!kvm_vcpu_cache) {
4174 		r = -ENOMEM;
4175 		goto out_free_3;
4176 	}
4177 
4178 	r = kvm_async_pf_init();
4179 	if (r)
4180 		goto out_free;
4181 
4182 	kvm_chardev_ops.owner = module;
4183 	kvm_vm_fops.owner = module;
4184 	kvm_vcpu_fops.owner = module;
4185 
4186 	r = misc_register(&kvm_dev);
4187 	if (r) {
4188 		pr_err("kvm: misc device register failed\n");
4189 		goto out_unreg;
4190 	}
4191 
4192 	register_syscore_ops(&kvm_syscore_ops);
4193 
4194 	kvm_preempt_ops.sched_in = kvm_sched_in;
4195 	kvm_preempt_ops.sched_out = kvm_sched_out;
4196 
4197 	kvm_init_debug();
4198 
4199 	r = kvm_vfio_ops_init();
4200 	WARN_ON(r);
4201 
4202 	return 0;
4203 
4204 out_unreg:
4205 	kvm_async_pf_deinit();
4206 out_free:
4207 	kmem_cache_destroy(kvm_vcpu_cache);
4208 out_free_3:
4209 	unregister_reboot_notifier(&kvm_reboot_notifier);
4210 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4211 out_free_2:
4212 out_free_1:
4213 	kvm_arch_hardware_unsetup();
4214 out_free_0a:
4215 	free_cpumask_var(cpus_hardware_enabled);
4216 out_free_0:
4217 	kvm_irqfd_exit();
4218 out_irqfd:
4219 	kvm_arch_exit();
4220 out_fail:
4221 	return r;
4222 }
4223 EXPORT_SYMBOL_GPL(kvm_init);
4224 
4225 void kvm_exit(void)
4226 {
4227 	debugfs_remove_recursive(kvm_debugfs_dir);
4228 	misc_deregister(&kvm_dev);
4229 	kmem_cache_destroy(kvm_vcpu_cache);
4230 	kvm_async_pf_deinit();
4231 	unregister_syscore_ops(&kvm_syscore_ops);
4232 	unregister_reboot_notifier(&kvm_reboot_notifier);
4233 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4234 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4235 	kvm_arch_hardware_unsetup();
4236 	kvm_arch_exit();
4237 	kvm_irqfd_exit();
4238 	free_cpumask_var(cpus_hardware_enabled);
4239 	kvm_vfio_ops_exit();
4240 }
4241 EXPORT_SYMBOL_GPL(kvm_exit);
4242