xref: /linux/virt/kvm/kvm_main.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 
56 #include "coalesced_mmio.h"
57 #include "async_pf.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61 
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64 
65 /*
66  * Ordering of locks:
67  *
68  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69  */
70 
71 DEFINE_RAW_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73 
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77 
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80 
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82 
83 struct dentry *kvm_debugfs_dir;
84 
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 			   unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89 
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91 
92 bool kvm_rebooting;
93 EXPORT_SYMBOL_GPL(kvm_rebooting);
94 
95 static bool largepages_enabled = true;
96 
97 static struct page *hwpoison_page;
98 static pfn_t hwpoison_pfn;
99 
100 static struct page *fault_page;
101 static pfn_t fault_pfn;
102 
103 inline int kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn)) {
106 		int reserved;
107 		struct page *tail = pfn_to_page(pfn);
108 		struct page *head = compound_trans_head(tail);
109 		reserved = PageReserved(head);
110 		if (head != tail) {
111 			/*
112 			 * "head" is not a dangling pointer
113 			 * (compound_trans_head takes care of that)
114 			 * but the hugepage may have been splitted
115 			 * from under us (and we may not hold a
116 			 * reference count on the head page so it can
117 			 * be reused before we run PageReferenced), so
118 			 * we've to check PageTail before returning
119 			 * what we just read.
120 			 */
121 			smp_rmb();
122 			if (PageTail(tail))
123 				return reserved;
124 		}
125 		return PageReserved(tail);
126 	}
127 
128 	return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 void vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 	int cpu;
137 
138 	mutex_lock(&vcpu->mutex);
139 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
140 		/* The thread running this VCPU changed. */
141 		struct pid *oldpid = vcpu->pid;
142 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
143 		rcu_assign_pointer(vcpu->pid, newpid);
144 		synchronize_rcu();
145 		put_pid(oldpid);
146 	}
147 	cpu = get_cpu();
148 	preempt_notifier_register(&vcpu->preempt_notifier);
149 	kvm_arch_vcpu_load(vcpu, cpu);
150 	put_cpu();
151 }
152 
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 
162 static void ack_flush(void *_completed)
163 {
164 }
165 
166 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
167 {
168 	int i, cpu, me;
169 	cpumask_var_t cpus;
170 	bool called = true;
171 	struct kvm_vcpu *vcpu;
172 
173 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
174 
175 	me = get_cpu();
176 	kvm_for_each_vcpu(i, vcpu, kvm) {
177 		kvm_make_request(req, vcpu);
178 		cpu = vcpu->cpu;
179 
180 		/* Set ->requests bit before we read ->mode */
181 		smp_mb();
182 
183 		if (cpus != NULL && cpu != -1 && cpu != me &&
184 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
185 			cpumask_set_cpu(cpu, cpus);
186 	}
187 	if (unlikely(cpus == NULL))
188 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
189 	else if (!cpumask_empty(cpus))
190 		smp_call_function_many(cpus, ack_flush, NULL, 1);
191 	else
192 		called = false;
193 	put_cpu();
194 	free_cpumask_var(cpus);
195 	return called;
196 }
197 
198 void kvm_flush_remote_tlbs(struct kvm *kvm)
199 {
200 	int dirty_count = kvm->tlbs_dirty;
201 
202 	smp_mb();
203 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
204 		++kvm->stat.remote_tlb_flush;
205 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
206 }
207 
208 void kvm_reload_remote_mmus(struct kvm *kvm)
209 {
210 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
211 }
212 
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 	struct page *page;
216 	int r;
217 
218 	mutex_init(&vcpu->mutex);
219 	vcpu->cpu = -1;
220 	vcpu->kvm = kvm;
221 	vcpu->vcpu_id = id;
222 	vcpu->pid = NULL;
223 	init_waitqueue_head(&vcpu->wq);
224 	kvm_async_pf_vcpu_init(vcpu);
225 
226 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 	if (!page) {
228 		r = -ENOMEM;
229 		goto fail;
230 	}
231 	vcpu->run = page_address(page);
232 
233 	r = kvm_arch_vcpu_init(vcpu);
234 	if (r < 0)
235 		goto fail_free_run;
236 	return 0;
237 
238 fail_free_run:
239 	free_page((unsigned long)vcpu->run);
240 fail:
241 	return r;
242 }
243 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
244 
245 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
246 {
247 	put_pid(vcpu->pid);
248 	kvm_arch_vcpu_uninit(vcpu);
249 	free_page((unsigned long)vcpu->run);
250 }
251 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
252 
253 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
254 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
255 {
256 	return container_of(mn, struct kvm, mmu_notifier);
257 }
258 
259 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
260 					     struct mm_struct *mm,
261 					     unsigned long address)
262 {
263 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
264 	int need_tlb_flush, idx;
265 
266 	/*
267 	 * When ->invalidate_page runs, the linux pte has been zapped
268 	 * already but the page is still allocated until
269 	 * ->invalidate_page returns. So if we increase the sequence
270 	 * here the kvm page fault will notice if the spte can't be
271 	 * established because the page is going to be freed. If
272 	 * instead the kvm page fault establishes the spte before
273 	 * ->invalidate_page runs, kvm_unmap_hva will release it
274 	 * before returning.
275 	 *
276 	 * The sequence increase only need to be seen at spin_unlock
277 	 * time, and not at spin_lock time.
278 	 *
279 	 * Increasing the sequence after the spin_unlock would be
280 	 * unsafe because the kvm page fault could then establish the
281 	 * pte after kvm_unmap_hva returned, without noticing the page
282 	 * is going to be freed.
283 	 */
284 	idx = srcu_read_lock(&kvm->srcu);
285 	spin_lock(&kvm->mmu_lock);
286 	kvm->mmu_notifier_seq++;
287 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
288 	spin_unlock(&kvm->mmu_lock);
289 	srcu_read_unlock(&kvm->srcu, idx);
290 
291 	/* we've to flush the tlb before the pages can be freed */
292 	if (need_tlb_flush)
293 		kvm_flush_remote_tlbs(kvm);
294 
295 }
296 
297 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
298 					struct mm_struct *mm,
299 					unsigned long address,
300 					pte_t pte)
301 {
302 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
303 	int idx;
304 
305 	idx = srcu_read_lock(&kvm->srcu);
306 	spin_lock(&kvm->mmu_lock);
307 	kvm->mmu_notifier_seq++;
308 	kvm_set_spte_hva(kvm, address, pte);
309 	spin_unlock(&kvm->mmu_lock);
310 	srcu_read_unlock(&kvm->srcu, idx);
311 }
312 
313 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
314 						    struct mm_struct *mm,
315 						    unsigned long start,
316 						    unsigned long end)
317 {
318 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 	int need_tlb_flush = 0, idx;
320 
321 	idx = srcu_read_lock(&kvm->srcu);
322 	spin_lock(&kvm->mmu_lock);
323 	/*
324 	 * The count increase must become visible at unlock time as no
325 	 * spte can be established without taking the mmu_lock and
326 	 * count is also read inside the mmu_lock critical section.
327 	 */
328 	kvm->mmu_notifier_count++;
329 	for (; start < end; start += PAGE_SIZE)
330 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
331 	need_tlb_flush |= kvm->tlbs_dirty;
332 	spin_unlock(&kvm->mmu_lock);
333 	srcu_read_unlock(&kvm->srcu, idx);
334 
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 }
339 
340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
341 						  struct mm_struct *mm,
342 						  unsigned long start,
343 						  unsigned long end)
344 {
345 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
346 
347 	spin_lock(&kvm->mmu_lock);
348 	/*
349 	 * This sequence increase will notify the kvm page fault that
350 	 * the page that is going to be mapped in the spte could have
351 	 * been freed.
352 	 */
353 	kvm->mmu_notifier_seq++;
354 	/*
355 	 * The above sequence increase must be visible before the
356 	 * below count decrease but both values are read by the kvm
357 	 * page fault under mmu_lock spinlock so we don't need to add
358 	 * a smb_wmb() here in between the two.
359 	 */
360 	kvm->mmu_notifier_count--;
361 	spin_unlock(&kvm->mmu_lock);
362 
363 	BUG_ON(kvm->mmu_notifier_count < 0);
364 }
365 
366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
367 					      struct mm_struct *mm,
368 					      unsigned long address)
369 {
370 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 	int young, idx;
372 
373 	idx = srcu_read_lock(&kvm->srcu);
374 	spin_lock(&kvm->mmu_lock);
375 	young = kvm_age_hva(kvm, address);
376 	spin_unlock(&kvm->mmu_lock);
377 	srcu_read_unlock(&kvm->srcu, idx);
378 
379 	if (young)
380 		kvm_flush_remote_tlbs(kvm);
381 
382 	return young;
383 }
384 
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 				       struct mm_struct *mm,
387 				       unsigned long address)
388 {
389 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 	int young, idx;
391 
392 	idx = srcu_read_lock(&kvm->srcu);
393 	spin_lock(&kvm->mmu_lock);
394 	young = kvm_test_age_hva(kvm, address);
395 	spin_unlock(&kvm->mmu_lock);
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return young;
399 }
400 
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 				     struct mm_struct *mm)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 	int idx;
406 
407 	idx = srcu_read_lock(&kvm->srcu);
408 	kvm_arch_flush_shadow(kvm);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 }
411 
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
414 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
415 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
416 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
417 	.test_young		= kvm_mmu_notifier_test_young,
418 	.change_pte		= kvm_mmu_notifier_change_pte,
419 	.release		= kvm_mmu_notifier_release,
420 };
421 
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427 
428 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429 
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 	return 0;
433 }
434 
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436 
437 static struct kvm *kvm_create_vm(void)
438 {
439 	int r, i;
440 	struct kvm *kvm = kvm_arch_alloc_vm();
441 
442 	if (!kvm)
443 		return ERR_PTR(-ENOMEM);
444 
445 	r = kvm_arch_init_vm(kvm);
446 	if (r)
447 		goto out_err_nodisable;
448 
449 	r = hardware_enable_all();
450 	if (r)
451 		goto out_err_nodisable;
452 
453 #ifdef CONFIG_HAVE_KVM_IRQCHIP
454 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
455 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
456 #endif
457 
458 	r = -ENOMEM;
459 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
460 	if (!kvm->memslots)
461 		goto out_err_nosrcu;
462 	if (init_srcu_struct(&kvm->srcu))
463 		goto out_err_nosrcu;
464 	for (i = 0; i < KVM_NR_BUSES; i++) {
465 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
466 					GFP_KERNEL);
467 		if (!kvm->buses[i])
468 			goto out_err;
469 	}
470 
471 	spin_lock_init(&kvm->mmu_lock);
472 	kvm->mm = current->mm;
473 	atomic_inc(&kvm->mm->mm_count);
474 	kvm_eventfd_init(kvm);
475 	mutex_init(&kvm->lock);
476 	mutex_init(&kvm->irq_lock);
477 	mutex_init(&kvm->slots_lock);
478 	atomic_set(&kvm->users_count, 1);
479 
480 	r = kvm_init_mmu_notifier(kvm);
481 	if (r)
482 		goto out_err;
483 
484 	raw_spin_lock(&kvm_lock);
485 	list_add(&kvm->vm_list, &vm_list);
486 	raw_spin_unlock(&kvm_lock);
487 
488 	return kvm;
489 
490 out_err:
491 	cleanup_srcu_struct(&kvm->srcu);
492 out_err_nosrcu:
493 	hardware_disable_all();
494 out_err_nodisable:
495 	for (i = 0; i < KVM_NR_BUSES; i++)
496 		kfree(kvm->buses[i]);
497 	kfree(kvm->memslots);
498 	kvm_arch_free_vm(kvm);
499 	return ERR_PTR(r);
500 }
501 
502 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
503 {
504 	if (!memslot->dirty_bitmap)
505 		return;
506 
507 	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
508 		vfree(memslot->dirty_bitmap_head);
509 	else
510 		kfree(memslot->dirty_bitmap_head);
511 
512 	memslot->dirty_bitmap = NULL;
513 	memslot->dirty_bitmap_head = NULL;
514 }
515 
516 /*
517  * Free any memory in @free but not in @dont.
518  */
519 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
520 				  struct kvm_memory_slot *dont)
521 {
522 	int i;
523 
524 	if (!dont || free->rmap != dont->rmap)
525 		vfree(free->rmap);
526 
527 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
528 		kvm_destroy_dirty_bitmap(free);
529 
530 
531 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
532 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
533 			vfree(free->lpage_info[i]);
534 			free->lpage_info[i] = NULL;
535 		}
536 	}
537 
538 	free->npages = 0;
539 	free->rmap = NULL;
540 }
541 
542 void kvm_free_physmem(struct kvm *kvm)
543 {
544 	int i;
545 	struct kvm_memslots *slots = kvm->memslots;
546 
547 	for (i = 0; i < slots->nmemslots; ++i)
548 		kvm_free_physmem_slot(&slots->memslots[i], NULL);
549 
550 	kfree(kvm->memslots);
551 }
552 
553 static void kvm_destroy_vm(struct kvm *kvm)
554 {
555 	int i;
556 	struct mm_struct *mm = kvm->mm;
557 
558 	kvm_arch_sync_events(kvm);
559 	raw_spin_lock(&kvm_lock);
560 	list_del(&kvm->vm_list);
561 	raw_spin_unlock(&kvm_lock);
562 	kvm_free_irq_routing(kvm);
563 	for (i = 0; i < KVM_NR_BUSES; i++)
564 		kvm_io_bus_destroy(kvm->buses[i]);
565 	kvm_coalesced_mmio_free(kvm);
566 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
567 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
568 #else
569 	kvm_arch_flush_shadow(kvm);
570 #endif
571 	kvm_arch_destroy_vm(kvm);
572 	kvm_free_physmem(kvm);
573 	cleanup_srcu_struct(&kvm->srcu);
574 	kvm_arch_free_vm(kvm);
575 	hardware_disable_all();
576 	mmdrop(mm);
577 }
578 
579 void kvm_get_kvm(struct kvm *kvm)
580 {
581 	atomic_inc(&kvm->users_count);
582 }
583 EXPORT_SYMBOL_GPL(kvm_get_kvm);
584 
585 void kvm_put_kvm(struct kvm *kvm)
586 {
587 	if (atomic_dec_and_test(&kvm->users_count))
588 		kvm_destroy_vm(kvm);
589 }
590 EXPORT_SYMBOL_GPL(kvm_put_kvm);
591 
592 
593 static int kvm_vm_release(struct inode *inode, struct file *filp)
594 {
595 	struct kvm *kvm = filp->private_data;
596 
597 	kvm_irqfd_release(kvm);
598 
599 	kvm_put_kvm(kvm);
600 	return 0;
601 }
602 
603 #ifndef CONFIG_S390
604 /*
605  * Allocation size is twice as large as the actual dirty bitmap size.
606  * This makes it possible to do double buffering: see x86's
607  * kvm_vm_ioctl_get_dirty_log().
608  */
609 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
610 {
611 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
612 
613 	if (dirty_bytes > PAGE_SIZE)
614 		memslot->dirty_bitmap = vzalloc(dirty_bytes);
615 	else
616 		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
617 
618 	if (!memslot->dirty_bitmap)
619 		return -ENOMEM;
620 
621 	memslot->dirty_bitmap_head = memslot->dirty_bitmap;
622 	return 0;
623 }
624 #endif /* !CONFIG_S390 */
625 
626 /*
627  * Allocate some memory and give it an address in the guest physical address
628  * space.
629  *
630  * Discontiguous memory is allowed, mostly for framebuffers.
631  *
632  * Must be called holding mmap_sem for write.
633  */
634 int __kvm_set_memory_region(struct kvm *kvm,
635 			    struct kvm_userspace_memory_region *mem,
636 			    int user_alloc)
637 {
638 	int r;
639 	gfn_t base_gfn;
640 	unsigned long npages;
641 	unsigned long i;
642 	struct kvm_memory_slot *memslot;
643 	struct kvm_memory_slot old, new;
644 	struct kvm_memslots *slots, *old_memslots;
645 
646 	r = -EINVAL;
647 	/* General sanity checks */
648 	if (mem->memory_size & (PAGE_SIZE - 1))
649 		goto out;
650 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
651 		goto out;
652 	/* We can read the guest memory with __xxx_user() later on. */
653 	if (user_alloc &&
654 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
655 	     !access_ok(VERIFY_WRITE,
656 			(void __user *)(unsigned long)mem->userspace_addr,
657 			mem->memory_size)))
658 		goto out;
659 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
660 		goto out;
661 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
662 		goto out;
663 
664 	memslot = &kvm->memslots->memslots[mem->slot];
665 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
666 	npages = mem->memory_size >> PAGE_SHIFT;
667 
668 	r = -EINVAL;
669 	if (npages > KVM_MEM_MAX_NR_PAGES)
670 		goto out;
671 
672 	if (!npages)
673 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
674 
675 	new = old = *memslot;
676 
677 	new.id = mem->slot;
678 	new.base_gfn = base_gfn;
679 	new.npages = npages;
680 	new.flags = mem->flags;
681 
682 	/* Disallow changing a memory slot's size. */
683 	r = -EINVAL;
684 	if (npages && old.npages && npages != old.npages)
685 		goto out_free;
686 
687 	/* Check for overlaps */
688 	r = -EEXIST;
689 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
690 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
691 
692 		if (s == memslot || !s->npages)
693 			continue;
694 		if (!((base_gfn + npages <= s->base_gfn) ||
695 		      (base_gfn >= s->base_gfn + s->npages)))
696 			goto out_free;
697 	}
698 
699 	/* Free page dirty bitmap if unneeded */
700 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
701 		new.dirty_bitmap = NULL;
702 
703 	r = -ENOMEM;
704 
705 	/* Allocate if a slot is being created */
706 #ifndef CONFIG_S390
707 	if (npages && !new.rmap) {
708 		new.rmap = vzalloc(npages * sizeof(*new.rmap));
709 
710 		if (!new.rmap)
711 			goto out_free;
712 
713 		new.user_alloc = user_alloc;
714 		new.userspace_addr = mem->userspace_addr;
715 	}
716 	if (!npages)
717 		goto skip_lpage;
718 
719 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
720 		unsigned long ugfn;
721 		unsigned long j;
722 		int lpages;
723 		int level = i + 2;
724 
725 		/* Avoid unused variable warning if no large pages */
726 		(void)level;
727 
728 		if (new.lpage_info[i])
729 			continue;
730 
731 		lpages = 1 + ((base_gfn + npages - 1)
732 			     >> KVM_HPAGE_GFN_SHIFT(level));
733 		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
734 
735 		new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
736 
737 		if (!new.lpage_info[i])
738 			goto out_free;
739 
740 		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
741 			new.lpage_info[i][0].write_count = 1;
742 		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
743 			new.lpage_info[i][lpages - 1].write_count = 1;
744 		ugfn = new.userspace_addr >> PAGE_SHIFT;
745 		/*
746 		 * If the gfn and userspace address are not aligned wrt each
747 		 * other, or if explicitly asked to, disable large page
748 		 * support for this slot
749 		 */
750 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
751 		    !largepages_enabled)
752 			for (j = 0; j < lpages; ++j)
753 				new.lpage_info[i][j].write_count = 1;
754 	}
755 
756 skip_lpage:
757 
758 	/* Allocate page dirty bitmap if needed */
759 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
760 		if (kvm_create_dirty_bitmap(&new) < 0)
761 			goto out_free;
762 		/* destroy any largepage mappings for dirty tracking */
763 	}
764 #else  /* not defined CONFIG_S390 */
765 	new.user_alloc = user_alloc;
766 	if (user_alloc)
767 		new.userspace_addr = mem->userspace_addr;
768 #endif /* not defined CONFIG_S390 */
769 
770 	if (!npages) {
771 		r = -ENOMEM;
772 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
773 		if (!slots)
774 			goto out_free;
775 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
776 		if (mem->slot >= slots->nmemslots)
777 			slots->nmemslots = mem->slot + 1;
778 		slots->generation++;
779 		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
780 
781 		old_memslots = kvm->memslots;
782 		rcu_assign_pointer(kvm->memslots, slots);
783 		synchronize_srcu_expedited(&kvm->srcu);
784 		/* From this point no new shadow pages pointing to a deleted
785 		 * memslot will be created.
786 		 *
787 		 * validation of sp->gfn happens in:
788 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
789 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
790 		 */
791 		kvm_arch_flush_shadow(kvm);
792 		kfree(old_memslots);
793 	}
794 
795 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
796 	if (r)
797 		goto out_free;
798 
799 	/* map the pages in iommu page table */
800 	if (npages) {
801 		r = kvm_iommu_map_pages(kvm, &new);
802 		if (r)
803 			goto out_free;
804 	}
805 
806 	r = -ENOMEM;
807 	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
808 	if (!slots)
809 		goto out_free;
810 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
811 	if (mem->slot >= slots->nmemslots)
812 		slots->nmemslots = mem->slot + 1;
813 	slots->generation++;
814 
815 	/* actual memory is freed via old in kvm_free_physmem_slot below */
816 	if (!npages) {
817 		new.rmap = NULL;
818 		new.dirty_bitmap = NULL;
819 		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
820 			new.lpage_info[i] = NULL;
821 	}
822 
823 	slots->memslots[mem->slot] = new;
824 	old_memslots = kvm->memslots;
825 	rcu_assign_pointer(kvm->memslots, slots);
826 	synchronize_srcu_expedited(&kvm->srcu);
827 
828 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
829 
830 	kvm_free_physmem_slot(&old, &new);
831 	kfree(old_memslots);
832 
833 	return 0;
834 
835 out_free:
836 	kvm_free_physmem_slot(&new, &old);
837 out:
838 	return r;
839 
840 }
841 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
842 
843 int kvm_set_memory_region(struct kvm *kvm,
844 			  struct kvm_userspace_memory_region *mem,
845 			  int user_alloc)
846 {
847 	int r;
848 
849 	mutex_lock(&kvm->slots_lock);
850 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
851 	mutex_unlock(&kvm->slots_lock);
852 	return r;
853 }
854 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
855 
856 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
857 				   struct
858 				   kvm_userspace_memory_region *mem,
859 				   int user_alloc)
860 {
861 	if (mem->slot >= KVM_MEMORY_SLOTS)
862 		return -EINVAL;
863 	return kvm_set_memory_region(kvm, mem, user_alloc);
864 }
865 
866 int kvm_get_dirty_log(struct kvm *kvm,
867 			struct kvm_dirty_log *log, int *is_dirty)
868 {
869 	struct kvm_memory_slot *memslot;
870 	int r, i;
871 	unsigned long n;
872 	unsigned long any = 0;
873 
874 	r = -EINVAL;
875 	if (log->slot >= KVM_MEMORY_SLOTS)
876 		goto out;
877 
878 	memslot = &kvm->memslots->memslots[log->slot];
879 	r = -ENOENT;
880 	if (!memslot->dirty_bitmap)
881 		goto out;
882 
883 	n = kvm_dirty_bitmap_bytes(memslot);
884 
885 	for (i = 0; !any && i < n/sizeof(long); ++i)
886 		any = memslot->dirty_bitmap[i];
887 
888 	r = -EFAULT;
889 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
890 		goto out;
891 
892 	if (any)
893 		*is_dirty = 1;
894 
895 	r = 0;
896 out:
897 	return r;
898 }
899 
900 void kvm_disable_largepages(void)
901 {
902 	largepages_enabled = false;
903 }
904 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
905 
906 int is_error_page(struct page *page)
907 {
908 	return page == bad_page || page == hwpoison_page || page == fault_page;
909 }
910 EXPORT_SYMBOL_GPL(is_error_page);
911 
912 int is_error_pfn(pfn_t pfn)
913 {
914 	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
915 }
916 EXPORT_SYMBOL_GPL(is_error_pfn);
917 
918 int is_hwpoison_pfn(pfn_t pfn)
919 {
920 	return pfn == hwpoison_pfn;
921 }
922 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
923 
924 int is_fault_pfn(pfn_t pfn)
925 {
926 	return pfn == fault_pfn;
927 }
928 EXPORT_SYMBOL_GPL(is_fault_pfn);
929 
930 static inline unsigned long bad_hva(void)
931 {
932 	return PAGE_OFFSET;
933 }
934 
935 int kvm_is_error_hva(unsigned long addr)
936 {
937 	return addr == bad_hva();
938 }
939 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
940 
941 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
942 						gfn_t gfn)
943 {
944 	int i;
945 
946 	for (i = 0; i < slots->nmemslots; ++i) {
947 		struct kvm_memory_slot *memslot = &slots->memslots[i];
948 
949 		if (gfn >= memslot->base_gfn
950 		    && gfn < memslot->base_gfn + memslot->npages)
951 			return memslot;
952 	}
953 	return NULL;
954 }
955 
956 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
957 {
958 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
959 }
960 EXPORT_SYMBOL_GPL(gfn_to_memslot);
961 
962 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
963 {
964 	int i;
965 	struct kvm_memslots *slots = kvm_memslots(kvm);
966 
967 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
968 		struct kvm_memory_slot *memslot = &slots->memslots[i];
969 
970 		if (memslot->flags & KVM_MEMSLOT_INVALID)
971 			continue;
972 
973 		if (gfn >= memslot->base_gfn
974 		    && gfn < memslot->base_gfn + memslot->npages)
975 			return 1;
976 	}
977 	return 0;
978 }
979 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
980 
981 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
982 {
983 	struct vm_area_struct *vma;
984 	unsigned long addr, size;
985 
986 	size = PAGE_SIZE;
987 
988 	addr = gfn_to_hva(kvm, gfn);
989 	if (kvm_is_error_hva(addr))
990 		return PAGE_SIZE;
991 
992 	down_read(&current->mm->mmap_sem);
993 	vma = find_vma(current->mm, addr);
994 	if (!vma)
995 		goto out;
996 
997 	size = vma_kernel_pagesize(vma);
998 
999 out:
1000 	up_read(&current->mm->mmap_sem);
1001 
1002 	return size;
1003 }
1004 
1005 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1006 				     gfn_t *nr_pages)
1007 {
1008 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1009 		return bad_hva();
1010 
1011 	if (nr_pages)
1012 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1013 
1014 	return gfn_to_hva_memslot(slot, gfn);
1015 }
1016 
1017 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1018 {
1019 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1020 }
1021 EXPORT_SYMBOL_GPL(gfn_to_hva);
1022 
1023 static pfn_t get_fault_pfn(void)
1024 {
1025 	get_page(fault_page);
1026 	return fault_pfn;
1027 }
1028 
1029 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1030 	unsigned long start, int write, struct page **page)
1031 {
1032 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1033 
1034 	if (write)
1035 		flags |= FOLL_WRITE;
1036 
1037 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1038 }
1039 
1040 static inline int check_user_page_hwpoison(unsigned long addr)
1041 {
1042 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1043 
1044 	rc = __get_user_pages(current, current->mm, addr, 1,
1045 			      flags, NULL, NULL, NULL);
1046 	return rc == -EHWPOISON;
1047 }
1048 
1049 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1050 			bool *async, bool write_fault, bool *writable)
1051 {
1052 	struct page *page[1];
1053 	int npages = 0;
1054 	pfn_t pfn;
1055 
1056 	/* we can do it either atomically or asynchronously, not both */
1057 	BUG_ON(atomic && async);
1058 
1059 	BUG_ON(!write_fault && !writable);
1060 
1061 	if (writable)
1062 		*writable = true;
1063 
1064 	if (atomic || async)
1065 		npages = __get_user_pages_fast(addr, 1, 1, page);
1066 
1067 	if (unlikely(npages != 1) && !atomic) {
1068 		might_sleep();
1069 
1070 		if (writable)
1071 			*writable = write_fault;
1072 
1073 		if (async) {
1074 			down_read(&current->mm->mmap_sem);
1075 			npages = get_user_page_nowait(current, current->mm,
1076 						     addr, write_fault, page);
1077 			up_read(&current->mm->mmap_sem);
1078 		} else
1079 			npages = get_user_pages_fast(addr, 1, write_fault,
1080 						     page);
1081 
1082 		/* map read fault as writable if possible */
1083 		if (unlikely(!write_fault) && npages == 1) {
1084 			struct page *wpage[1];
1085 
1086 			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1087 			if (npages == 1) {
1088 				*writable = true;
1089 				put_page(page[0]);
1090 				page[0] = wpage[0];
1091 			}
1092 			npages = 1;
1093 		}
1094 	}
1095 
1096 	if (unlikely(npages != 1)) {
1097 		struct vm_area_struct *vma;
1098 
1099 		if (atomic)
1100 			return get_fault_pfn();
1101 
1102 		down_read(&current->mm->mmap_sem);
1103 		if (npages == -EHWPOISON ||
1104 			(!async && check_user_page_hwpoison(addr))) {
1105 			up_read(&current->mm->mmap_sem);
1106 			get_page(hwpoison_page);
1107 			return page_to_pfn(hwpoison_page);
1108 		}
1109 
1110 		vma = find_vma_intersection(current->mm, addr, addr+1);
1111 
1112 		if (vma == NULL)
1113 			pfn = get_fault_pfn();
1114 		else if ((vma->vm_flags & VM_PFNMAP)) {
1115 			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1116 				vma->vm_pgoff;
1117 			BUG_ON(!kvm_is_mmio_pfn(pfn));
1118 		} else {
1119 			if (async && (vma->vm_flags & VM_WRITE))
1120 				*async = true;
1121 			pfn = get_fault_pfn();
1122 		}
1123 		up_read(&current->mm->mmap_sem);
1124 	} else
1125 		pfn = page_to_pfn(page[0]);
1126 
1127 	return pfn;
1128 }
1129 
1130 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1131 {
1132 	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1133 }
1134 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1135 
1136 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1137 			  bool write_fault, bool *writable)
1138 {
1139 	unsigned long addr;
1140 
1141 	if (async)
1142 		*async = false;
1143 
1144 	addr = gfn_to_hva(kvm, gfn);
1145 	if (kvm_is_error_hva(addr)) {
1146 		get_page(bad_page);
1147 		return page_to_pfn(bad_page);
1148 	}
1149 
1150 	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1151 }
1152 
1153 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1154 {
1155 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1156 }
1157 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1158 
1159 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1160 		       bool write_fault, bool *writable)
1161 {
1162 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1163 }
1164 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1165 
1166 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1167 {
1168 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1169 }
1170 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1171 
1172 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1173 		      bool *writable)
1174 {
1175 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1176 }
1177 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1178 
1179 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1180 			 struct kvm_memory_slot *slot, gfn_t gfn)
1181 {
1182 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1183 	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1184 }
1185 
1186 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1187 								  int nr_pages)
1188 {
1189 	unsigned long addr;
1190 	gfn_t entry;
1191 
1192 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1193 	if (kvm_is_error_hva(addr))
1194 		return -1;
1195 
1196 	if (entry < nr_pages)
1197 		return 0;
1198 
1199 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1200 }
1201 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1202 
1203 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1204 {
1205 	pfn_t pfn;
1206 
1207 	pfn = gfn_to_pfn(kvm, gfn);
1208 	if (!kvm_is_mmio_pfn(pfn))
1209 		return pfn_to_page(pfn);
1210 
1211 	WARN_ON(kvm_is_mmio_pfn(pfn));
1212 
1213 	get_page(bad_page);
1214 	return bad_page;
1215 }
1216 
1217 EXPORT_SYMBOL_GPL(gfn_to_page);
1218 
1219 void kvm_release_page_clean(struct page *page)
1220 {
1221 	kvm_release_pfn_clean(page_to_pfn(page));
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1224 
1225 void kvm_release_pfn_clean(pfn_t pfn)
1226 {
1227 	if (!kvm_is_mmio_pfn(pfn))
1228 		put_page(pfn_to_page(pfn));
1229 }
1230 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1231 
1232 void kvm_release_page_dirty(struct page *page)
1233 {
1234 	kvm_release_pfn_dirty(page_to_pfn(page));
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1237 
1238 void kvm_release_pfn_dirty(pfn_t pfn)
1239 {
1240 	kvm_set_pfn_dirty(pfn);
1241 	kvm_release_pfn_clean(pfn);
1242 }
1243 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1244 
1245 void kvm_set_page_dirty(struct page *page)
1246 {
1247 	kvm_set_pfn_dirty(page_to_pfn(page));
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1250 
1251 void kvm_set_pfn_dirty(pfn_t pfn)
1252 {
1253 	if (!kvm_is_mmio_pfn(pfn)) {
1254 		struct page *page = pfn_to_page(pfn);
1255 		if (!PageReserved(page))
1256 			SetPageDirty(page);
1257 	}
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1260 
1261 void kvm_set_pfn_accessed(pfn_t pfn)
1262 {
1263 	if (!kvm_is_mmio_pfn(pfn))
1264 		mark_page_accessed(pfn_to_page(pfn));
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1267 
1268 void kvm_get_pfn(pfn_t pfn)
1269 {
1270 	if (!kvm_is_mmio_pfn(pfn))
1271 		get_page(pfn_to_page(pfn));
1272 }
1273 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1274 
1275 static int next_segment(unsigned long len, int offset)
1276 {
1277 	if (len > PAGE_SIZE - offset)
1278 		return PAGE_SIZE - offset;
1279 	else
1280 		return len;
1281 }
1282 
1283 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1284 			int len)
1285 {
1286 	int r;
1287 	unsigned long addr;
1288 
1289 	addr = gfn_to_hva(kvm, gfn);
1290 	if (kvm_is_error_hva(addr))
1291 		return -EFAULT;
1292 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1293 	if (r)
1294 		return -EFAULT;
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1298 
1299 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1300 {
1301 	gfn_t gfn = gpa >> PAGE_SHIFT;
1302 	int seg;
1303 	int offset = offset_in_page(gpa);
1304 	int ret;
1305 
1306 	while ((seg = next_segment(len, offset)) != 0) {
1307 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1308 		if (ret < 0)
1309 			return ret;
1310 		offset = 0;
1311 		len -= seg;
1312 		data += seg;
1313 		++gfn;
1314 	}
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL_GPL(kvm_read_guest);
1318 
1319 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1320 			  unsigned long len)
1321 {
1322 	int r;
1323 	unsigned long addr;
1324 	gfn_t gfn = gpa >> PAGE_SHIFT;
1325 	int offset = offset_in_page(gpa);
1326 
1327 	addr = gfn_to_hva(kvm, gfn);
1328 	if (kvm_is_error_hva(addr))
1329 		return -EFAULT;
1330 	pagefault_disable();
1331 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1332 	pagefault_enable();
1333 	if (r)
1334 		return -EFAULT;
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL(kvm_read_guest_atomic);
1338 
1339 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1340 			 int offset, int len)
1341 {
1342 	int r;
1343 	unsigned long addr;
1344 
1345 	addr = gfn_to_hva(kvm, gfn);
1346 	if (kvm_is_error_hva(addr))
1347 		return -EFAULT;
1348 	r = copy_to_user((void __user *)addr + offset, data, len);
1349 	if (r)
1350 		return -EFAULT;
1351 	mark_page_dirty(kvm, gfn);
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1355 
1356 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1357 		    unsigned long len)
1358 {
1359 	gfn_t gfn = gpa >> PAGE_SHIFT;
1360 	int seg;
1361 	int offset = offset_in_page(gpa);
1362 	int ret;
1363 
1364 	while ((seg = next_segment(len, offset)) != 0) {
1365 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1366 		if (ret < 0)
1367 			return ret;
1368 		offset = 0;
1369 		len -= seg;
1370 		data += seg;
1371 		++gfn;
1372 	}
1373 	return 0;
1374 }
1375 
1376 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1377 			      gpa_t gpa)
1378 {
1379 	struct kvm_memslots *slots = kvm_memslots(kvm);
1380 	int offset = offset_in_page(gpa);
1381 	gfn_t gfn = gpa >> PAGE_SHIFT;
1382 
1383 	ghc->gpa = gpa;
1384 	ghc->generation = slots->generation;
1385 	ghc->memslot = __gfn_to_memslot(slots, gfn);
1386 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1387 	if (!kvm_is_error_hva(ghc->hva))
1388 		ghc->hva += offset;
1389 	else
1390 		return -EFAULT;
1391 
1392 	return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1395 
1396 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1397 			   void *data, unsigned long len)
1398 {
1399 	struct kvm_memslots *slots = kvm_memslots(kvm);
1400 	int r;
1401 
1402 	if (slots->generation != ghc->generation)
1403 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1404 
1405 	if (kvm_is_error_hva(ghc->hva))
1406 		return -EFAULT;
1407 
1408 	r = copy_to_user((void __user *)ghc->hva, data, len);
1409 	if (r)
1410 		return -EFAULT;
1411 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1412 
1413 	return 0;
1414 }
1415 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1416 
1417 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1418 {
1419 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1420 				    offset, len);
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1423 
1424 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1425 {
1426 	gfn_t gfn = gpa >> PAGE_SHIFT;
1427 	int seg;
1428 	int offset = offset_in_page(gpa);
1429 	int ret;
1430 
1431         while ((seg = next_segment(len, offset)) != 0) {
1432 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1433 		if (ret < 0)
1434 			return ret;
1435 		offset = 0;
1436 		len -= seg;
1437 		++gfn;
1438 	}
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1442 
1443 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1444 			     gfn_t gfn)
1445 {
1446 	if (memslot && memslot->dirty_bitmap) {
1447 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1448 
1449 		__set_bit_le(rel_gfn, memslot->dirty_bitmap);
1450 	}
1451 }
1452 
1453 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1454 {
1455 	struct kvm_memory_slot *memslot;
1456 
1457 	memslot = gfn_to_memslot(kvm, gfn);
1458 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1459 }
1460 
1461 /*
1462  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1463  */
1464 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1465 {
1466 	DEFINE_WAIT(wait);
1467 
1468 	for (;;) {
1469 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1470 
1471 		if (kvm_arch_vcpu_runnable(vcpu)) {
1472 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1473 			break;
1474 		}
1475 		if (kvm_cpu_has_pending_timer(vcpu))
1476 			break;
1477 		if (signal_pending(current))
1478 			break;
1479 
1480 		schedule();
1481 	}
1482 
1483 	finish_wait(&vcpu->wq, &wait);
1484 }
1485 
1486 void kvm_resched(struct kvm_vcpu *vcpu)
1487 {
1488 	if (!need_resched())
1489 		return;
1490 	cond_resched();
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_resched);
1493 
1494 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1495 {
1496 	struct kvm *kvm = me->kvm;
1497 	struct kvm_vcpu *vcpu;
1498 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1499 	int yielded = 0;
1500 	int pass;
1501 	int i;
1502 
1503 	/*
1504 	 * We boost the priority of a VCPU that is runnable but not
1505 	 * currently running, because it got preempted by something
1506 	 * else and called schedule in __vcpu_run.  Hopefully that
1507 	 * VCPU is holding the lock that we need and will release it.
1508 	 * We approximate round-robin by starting at the last boosted VCPU.
1509 	 */
1510 	for (pass = 0; pass < 2 && !yielded; pass++) {
1511 		kvm_for_each_vcpu(i, vcpu, kvm) {
1512 			struct task_struct *task = NULL;
1513 			struct pid *pid;
1514 			if (!pass && i < last_boosted_vcpu) {
1515 				i = last_boosted_vcpu;
1516 				continue;
1517 			} else if (pass && i > last_boosted_vcpu)
1518 				break;
1519 			if (vcpu == me)
1520 				continue;
1521 			if (waitqueue_active(&vcpu->wq))
1522 				continue;
1523 			rcu_read_lock();
1524 			pid = rcu_dereference(vcpu->pid);
1525 			if (pid)
1526 				task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1527 			rcu_read_unlock();
1528 			if (!task)
1529 				continue;
1530 			if (task->flags & PF_VCPU) {
1531 				put_task_struct(task);
1532 				continue;
1533 			}
1534 			if (yield_to(task, 1)) {
1535 				put_task_struct(task);
1536 				kvm->last_boosted_vcpu = i;
1537 				yielded = 1;
1538 				break;
1539 			}
1540 			put_task_struct(task);
1541 		}
1542 	}
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1545 
1546 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1547 {
1548 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1549 	struct page *page;
1550 
1551 	if (vmf->pgoff == 0)
1552 		page = virt_to_page(vcpu->run);
1553 #ifdef CONFIG_X86
1554 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1555 		page = virt_to_page(vcpu->arch.pio_data);
1556 #endif
1557 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1558 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1559 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1560 #endif
1561 	else
1562 		return VM_FAULT_SIGBUS;
1563 	get_page(page);
1564 	vmf->page = page;
1565 	return 0;
1566 }
1567 
1568 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1569 	.fault = kvm_vcpu_fault,
1570 };
1571 
1572 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1573 {
1574 	vma->vm_ops = &kvm_vcpu_vm_ops;
1575 	return 0;
1576 }
1577 
1578 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1579 {
1580 	struct kvm_vcpu *vcpu = filp->private_data;
1581 
1582 	kvm_put_kvm(vcpu->kvm);
1583 	return 0;
1584 }
1585 
1586 static struct file_operations kvm_vcpu_fops = {
1587 	.release        = kvm_vcpu_release,
1588 	.unlocked_ioctl = kvm_vcpu_ioctl,
1589 	.compat_ioctl   = kvm_vcpu_ioctl,
1590 	.mmap           = kvm_vcpu_mmap,
1591 	.llseek		= noop_llseek,
1592 };
1593 
1594 /*
1595  * Allocates an inode for the vcpu.
1596  */
1597 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1598 {
1599 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1600 }
1601 
1602 /*
1603  * Creates some virtual cpus.  Good luck creating more than one.
1604  */
1605 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1606 {
1607 	int r;
1608 	struct kvm_vcpu *vcpu, *v;
1609 
1610 	vcpu = kvm_arch_vcpu_create(kvm, id);
1611 	if (IS_ERR(vcpu))
1612 		return PTR_ERR(vcpu);
1613 
1614 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1615 
1616 	r = kvm_arch_vcpu_setup(vcpu);
1617 	if (r)
1618 		return r;
1619 
1620 	mutex_lock(&kvm->lock);
1621 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1622 		r = -EINVAL;
1623 		goto vcpu_destroy;
1624 	}
1625 
1626 	kvm_for_each_vcpu(r, v, kvm)
1627 		if (v->vcpu_id == id) {
1628 			r = -EEXIST;
1629 			goto vcpu_destroy;
1630 		}
1631 
1632 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1633 
1634 	/* Now it's all set up, let userspace reach it */
1635 	kvm_get_kvm(kvm);
1636 	r = create_vcpu_fd(vcpu);
1637 	if (r < 0) {
1638 		kvm_put_kvm(kvm);
1639 		goto vcpu_destroy;
1640 	}
1641 
1642 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1643 	smp_wmb();
1644 	atomic_inc(&kvm->online_vcpus);
1645 
1646 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1647 	if (kvm->bsp_vcpu_id == id)
1648 		kvm->bsp_vcpu = vcpu;
1649 #endif
1650 	mutex_unlock(&kvm->lock);
1651 	return r;
1652 
1653 vcpu_destroy:
1654 	mutex_unlock(&kvm->lock);
1655 	kvm_arch_vcpu_destroy(vcpu);
1656 	return r;
1657 }
1658 
1659 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1660 {
1661 	if (sigset) {
1662 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1663 		vcpu->sigset_active = 1;
1664 		vcpu->sigset = *sigset;
1665 	} else
1666 		vcpu->sigset_active = 0;
1667 	return 0;
1668 }
1669 
1670 static long kvm_vcpu_ioctl(struct file *filp,
1671 			   unsigned int ioctl, unsigned long arg)
1672 {
1673 	struct kvm_vcpu *vcpu = filp->private_data;
1674 	void __user *argp = (void __user *)arg;
1675 	int r;
1676 	struct kvm_fpu *fpu = NULL;
1677 	struct kvm_sregs *kvm_sregs = NULL;
1678 
1679 	if (vcpu->kvm->mm != current->mm)
1680 		return -EIO;
1681 
1682 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1683 	/*
1684 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1685 	 * so vcpu_load() would break it.
1686 	 */
1687 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1688 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1689 #endif
1690 
1691 
1692 	vcpu_load(vcpu);
1693 	switch (ioctl) {
1694 	case KVM_RUN:
1695 		r = -EINVAL;
1696 		if (arg)
1697 			goto out;
1698 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1699 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1700 		break;
1701 	case KVM_GET_REGS: {
1702 		struct kvm_regs *kvm_regs;
1703 
1704 		r = -ENOMEM;
1705 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1706 		if (!kvm_regs)
1707 			goto out;
1708 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1709 		if (r)
1710 			goto out_free1;
1711 		r = -EFAULT;
1712 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1713 			goto out_free1;
1714 		r = 0;
1715 out_free1:
1716 		kfree(kvm_regs);
1717 		break;
1718 	}
1719 	case KVM_SET_REGS: {
1720 		struct kvm_regs *kvm_regs;
1721 
1722 		r = -ENOMEM;
1723 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1724 		if (!kvm_regs)
1725 			goto out;
1726 		r = -EFAULT;
1727 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1728 			goto out_free2;
1729 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1730 		if (r)
1731 			goto out_free2;
1732 		r = 0;
1733 out_free2:
1734 		kfree(kvm_regs);
1735 		break;
1736 	}
1737 	case KVM_GET_SREGS: {
1738 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1739 		r = -ENOMEM;
1740 		if (!kvm_sregs)
1741 			goto out;
1742 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1743 		if (r)
1744 			goto out;
1745 		r = -EFAULT;
1746 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1747 			goto out;
1748 		r = 0;
1749 		break;
1750 	}
1751 	case KVM_SET_SREGS: {
1752 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1753 		r = -ENOMEM;
1754 		if (!kvm_sregs)
1755 			goto out;
1756 		r = -EFAULT;
1757 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1758 			goto out;
1759 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1760 		if (r)
1761 			goto out;
1762 		r = 0;
1763 		break;
1764 	}
1765 	case KVM_GET_MP_STATE: {
1766 		struct kvm_mp_state mp_state;
1767 
1768 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1769 		if (r)
1770 			goto out;
1771 		r = -EFAULT;
1772 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1773 			goto out;
1774 		r = 0;
1775 		break;
1776 	}
1777 	case KVM_SET_MP_STATE: {
1778 		struct kvm_mp_state mp_state;
1779 
1780 		r = -EFAULT;
1781 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1782 			goto out;
1783 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1784 		if (r)
1785 			goto out;
1786 		r = 0;
1787 		break;
1788 	}
1789 	case KVM_TRANSLATE: {
1790 		struct kvm_translation tr;
1791 
1792 		r = -EFAULT;
1793 		if (copy_from_user(&tr, argp, sizeof tr))
1794 			goto out;
1795 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1796 		if (r)
1797 			goto out;
1798 		r = -EFAULT;
1799 		if (copy_to_user(argp, &tr, sizeof tr))
1800 			goto out;
1801 		r = 0;
1802 		break;
1803 	}
1804 	case KVM_SET_GUEST_DEBUG: {
1805 		struct kvm_guest_debug dbg;
1806 
1807 		r = -EFAULT;
1808 		if (copy_from_user(&dbg, argp, sizeof dbg))
1809 			goto out;
1810 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1811 		if (r)
1812 			goto out;
1813 		r = 0;
1814 		break;
1815 	}
1816 	case KVM_SET_SIGNAL_MASK: {
1817 		struct kvm_signal_mask __user *sigmask_arg = argp;
1818 		struct kvm_signal_mask kvm_sigmask;
1819 		sigset_t sigset, *p;
1820 
1821 		p = NULL;
1822 		if (argp) {
1823 			r = -EFAULT;
1824 			if (copy_from_user(&kvm_sigmask, argp,
1825 					   sizeof kvm_sigmask))
1826 				goto out;
1827 			r = -EINVAL;
1828 			if (kvm_sigmask.len != sizeof sigset)
1829 				goto out;
1830 			r = -EFAULT;
1831 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1832 					   sizeof sigset))
1833 				goto out;
1834 			p = &sigset;
1835 		}
1836 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1837 		break;
1838 	}
1839 	case KVM_GET_FPU: {
1840 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1841 		r = -ENOMEM;
1842 		if (!fpu)
1843 			goto out;
1844 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1845 		if (r)
1846 			goto out;
1847 		r = -EFAULT;
1848 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1849 			goto out;
1850 		r = 0;
1851 		break;
1852 	}
1853 	case KVM_SET_FPU: {
1854 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1855 		r = -ENOMEM;
1856 		if (!fpu)
1857 			goto out;
1858 		r = -EFAULT;
1859 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1860 			goto out;
1861 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1862 		if (r)
1863 			goto out;
1864 		r = 0;
1865 		break;
1866 	}
1867 	default:
1868 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1869 	}
1870 out:
1871 	vcpu_put(vcpu);
1872 	kfree(fpu);
1873 	kfree(kvm_sregs);
1874 	return r;
1875 }
1876 
1877 static long kvm_vm_ioctl(struct file *filp,
1878 			   unsigned int ioctl, unsigned long arg)
1879 {
1880 	struct kvm *kvm = filp->private_data;
1881 	void __user *argp = (void __user *)arg;
1882 	int r;
1883 
1884 	if (kvm->mm != current->mm)
1885 		return -EIO;
1886 	switch (ioctl) {
1887 	case KVM_CREATE_VCPU:
1888 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1889 		if (r < 0)
1890 			goto out;
1891 		break;
1892 	case KVM_SET_USER_MEMORY_REGION: {
1893 		struct kvm_userspace_memory_region kvm_userspace_mem;
1894 
1895 		r = -EFAULT;
1896 		if (copy_from_user(&kvm_userspace_mem, argp,
1897 						sizeof kvm_userspace_mem))
1898 			goto out;
1899 
1900 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1901 		if (r)
1902 			goto out;
1903 		break;
1904 	}
1905 	case KVM_GET_DIRTY_LOG: {
1906 		struct kvm_dirty_log log;
1907 
1908 		r = -EFAULT;
1909 		if (copy_from_user(&log, argp, sizeof log))
1910 			goto out;
1911 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1912 		if (r)
1913 			goto out;
1914 		break;
1915 	}
1916 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1917 	case KVM_REGISTER_COALESCED_MMIO: {
1918 		struct kvm_coalesced_mmio_zone zone;
1919 		r = -EFAULT;
1920 		if (copy_from_user(&zone, argp, sizeof zone))
1921 			goto out;
1922 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1923 		if (r)
1924 			goto out;
1925 		r = 0;
1926 		break;
1927 	}
1928 	case KVM_UNREGISTER_COALESCED_MMIO: {
1929 		struct kvm_coalesced_mmio_zone zone;
1930 		r = -EFAULT;
1931 		if (copy_from_user(&zone, argp, sizeof zone))
1932 			goto out;
1933 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1934 		if (r)
1935 			goto out;
1936 		r = 0;
1937 		break;
1938 	}
1939 #endif
1940 	case KVM_IRQFD: {
1941 		struct kvm_irqfd data;
1942 
1943 		r = -EFAULT;
1944 		if (copy_from_user(&data, argp, sizeof data))
1945 			goto out;
1946 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1947 		break;
1948 	}
1949 	case KVM_IOEVENTFD: {
1950 		struct kvm_ioeventfd data;
1951 
1952 		r = -EFAULT;
1953 		if (copy_from_user(&data, argp, sizeof data))
1954 			goto out;
1955 		r = kvm_ioeventfd(kvm, &data);
1956 		break;
1957 	}
1958 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1959 	case KVM_SET_BOOT_CPU_ID:
1960 		r = 0;
1961 		mutex_lock(&kvm->lock);
1962 		if (atomic_read(&kvm->online_vcpus) != 0)
1963 			r = -EBUSY;
1964 		else
1965 			kvm->bsp_vcpu_id = arg;
1966 		mutex_unlock(&kvm->lock);
1967 		break;
1968 #endif
1969 	default:
1970 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1971 		if (r == -ENOTTY)
1972 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1973 	}
1974 out:
1975 	return r;
1976 }
1977 
1978 #ifdef CONFIG_COMPAT
1979 struct compat_kvm_dirty_log {
1980 	__u32 slot;
1981 	__u32 padding1;
1982 	union {
1983 		compat_uptr_t dirty_bitmap; /* one bit per page */
1984 		__u64 padding2;
1985 	};
1986 };
1987 
1988 static long kvm_vm_compat_ioctl(struct file *filp,
1989 			   unsigned int ioctl, unsigned long arg)
1990 {
1991 	struct kvm *kvm = filp->private_data;
1992 	int r;
1993 
1994 	if (kvm->mm != current->mm)
1995 		return -EIO;
1996 	switch (ioctl) {
1997 	case KVM_GET_DIRTY_LOG: {
1998 		struct compat_kvm_dirty_log compat_log;
1999 		struct kvm_dirty_log log;
2000 
2001 		r = -EFAULT;
2002 		if (copy_from_user(&compat_log, (void __user *)arg,
2003 				   sizeof(compat_log)))
2004 			goto out;
2005 		log.slot	 = compat_log.slot;
2006 		log.padding1	 = compat_log.padding1;
2007 		log.padding2	 = compat_log.padding2;
2008 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2009 
2010 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2011 		if (r)
2012 			goto out;
2013 		break;
2014 	}
2015 	default:
2016 		r = kvm_vm_ioctl(filp, ioctl, arg);
2017 	}
2018 
2019 out:
2020 	return r;
2021 }
2022 #endif
2023 
2024 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2025 {
2026 	struct page *page[1];
2027 	unsigned long addr;
2028 	int npages;
2029 	gfn_t gfn = vmf->pgoff;
2030 	struct kvm *kvm = vma->vm_file->private_data;
2031 
2032 	addr = gfn_to_hva(kvm, gfn);
2033 	if (kvm_is_error_hva(addr))
2034 		return VM_FAULT_SIGBUS;
2035 
2036 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2037 				NULL);
2038 	if (unlikely(npages != 1))
2039 		return VM_FAULT_SIGBUS;
2040 
2041 	vmf->page = page[0];
2042 	return 0;
2043 }
2044 
2045 static const struct vm_operations_struct kvm_vm_vm_ops = {
2046 	.fault = kvm_vm_fault,
2047 };
2048 
2049 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2050 {
2051 	vma->vm_ops = &kvm_vm_vm_ops;
2052 	return 0;
2053 }
2054 
2055 static struct file_operations kvm_vm_fops = {
2056 	.release        = kvm_vm_release,
2057 	.unlocked_ioctl = kvm_vm_ioctl,
2058 #ifdef CONFIG_COMPAT
2059 	.compat_ioctl   = kvm_vm_compat_ioctl,
2060 #endif
2061 	.mmap           = kvm_vm_mmap,
2062 	.llseek		= noop_llseek,
2063 };
2064 
2065 static int kvm_dev_ioctl_create_vm(void)
2066 {
2067 	int r;
2068 	struct kvm *kvm;
2069 
2070 	kvm = kvm_create_vm();
2071 	if (IS_ERR(kvm))
2072 		return PTR_ERR(kvm);
2073 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2074 	r = kvm_coalesced_mmio_init(kvm);
2075 	if (r < 0) {
2076 		kvm_put_kvm(kvm);
2077 		return r;
2078 	}
2079 #endif
2080 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2081 	if (r < 0)
2082 		kvm_put_kvm(kvm);
2083 
2084 	return r;
2085 }
2086 
2087 static long kvm_dev_ioctl_check_extension_generic(long arg)
2088 {
2089 	switch (arg) {
2090 	case KVM_CAP_USER_MEMORY:
2091 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2092 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2093 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2094 	case KVM_CAP_SET_BOOT_CPU_ID:
2095 #endif
2096 	case KVM_CAP_INTERNAL_ERROR_DATA:
2097 		return 1;
2098 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2099 	case KVM_CAP_IRQ_ROUTING:
2100 		return KVM_MAX_IRQ_ROUTES;
2101 #endif
2102 	default:
2103 		break;
2104 	}
2105 	return kvm_dev_ioctl_check_extension(arg);
2106 }
2107 
2108 static long kvm_dev_ioctl(struct file *filp,
2109 			  unsigned int ioctl, unsigned long arg)
2110 {
2111 	long r = -EINVAL;
2112 
2113 	switch (ioctl) {
2114 	case KVM_GET_API_VERSION:
2115 		r = -EINVAL;
2116 		if (arg)
2117 			goto out;
2118 		r = KVM_API_VERSION;
2119 		break;
2120 	case KVM_CREATE_VM:
2121 		r = -EINVAL;
2122 		if (arg)
2123 			goto out;
2124 		r = kvm_dev_ioctl_create_vm();
2125 		break;
2126 	case KVM_CHECK_EXTENSION:
2127 		r = kvm_dev_ioctl_check_extension_generic(arg);
2128 		break;
2129 	case KVM_GET_VCPU_MMAP_SIZE:
2130 		r = -EINVAL;
2131 		if (arg)
2132 			goto out;
2133 		r = PAGE_SIZE;     /* struct kvm_run */
2134 #ifdef CONFIG_X86
2135 		r += PAGE_SIZE;    /* pio data page */
2136 #endif
2137 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2138 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2139 #endif
2140 		break;
2141 	case KVM_TRACE_ENABLE:
2142 	case KVM_TRACE_PAUSE:
2143 	case KVM_TRACE_DISABLE:
2144 		r = -EOPNOTSUPP;
2145 		break;
2146 	default:
2147 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2148 	}
2149 out:
2150 	return r;
2151 }
2152 
2153 static struct file_operations kvm_chardev_ops = {
2154 	.unlocked_ioctl = kvm_dev_ioctl,
2155 	.compat_ioctl   = kvm_dev_ioctl,
2156 	.llseek		= noop_llseek,
2157 };
2158 
2159 static struct miscdevice kvm_dev = {
2160 	KVM_MINOR,
2161 	"kvm",
2162 	&kvm_chardev_ops,
2163 };
2164 
2165 static void hardware_enable_nolock(void *junk)
2166 {
2167 	int cpu = raw_smp_processor_id();
2168 	int r;
2169 
2170 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2171 		return;
2172 
2173 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2174 
2175 	r = kvm_arch_hardware_enable(NULL);
2176 
2177 	if (r) {
2178 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2179 		atomic_inc(&hardware_enable_failed);
2180 		printk(KERN_INFO "kvm: enabling virtualization on "
2181 				 "CPU%d failed\n", cpu);
2182 	}
2183 }
2184 
2185 static void hardware_enable(void *junk)
2186 {
2187 	raw_spin_lock(&kvm_lock);
2188 	hardware_enable_nolock(junk);
2189 	raw_spin_unlock(&kvm_lock);
2190 }
2191 
2192 static void hardware_disable_nolock(void *junk)
2193 {
2194 	int cpu = raw_smp_processor_id();
2195 
2196 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2197 		return;
2198 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2199 	kvm_arch_hardware_disable(NULL);
2200 }
2201 
2202 static void hardware_disable(void *junk)
2203 {
2204 	raw_spin_lock(&kvm_lock);
2205 	hardware_disable_nolock(junk);
2206 	raw_spin_unlock(&kvm_lock);
2207 }
2208 
2209 static void hardware_disable_all_nolock(void)
2210 {
2211 	BUG_ON(!kvm_usage_count);
2212 
2213 	kvm_usage_count--;
2214 	if (!kvm_usage_count)
2215 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2216 }
2217 
2218 static void hardware_disable_all(void)
2219 {
2220 	raw_spin_lock(&kvm_lock);
2221 	hardware_disable_all_nolock();
2222 	raw_spin_unlock(&kvm_lock);
2223 }
2224 
2225 static int hardware_enable_all(void)
2226 {
2227 	int r = 0;
2228 
2229 	raw_spin_lock(&kvm_lock);
2230 
2231 	kvm_usage_count++;
2232 	if (kvm_usage_count == 1) {
2233 		atomic_set(&hardware_enable_failed, 0);
2234 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2235 
2236 		if (atomic_read(&hardware_enable_failed)) {
2237 			hardware_disable_all_nolock();
2238 			r = -EBUSY;
2239 		}
2240 	}
2241 
2242 	raw_spin_unlock(&kvm_lock);
2243 
2244 	return r;
2245 }
2246 
2247 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2248 			   void *v)
2249 {
2250 	int cpu = (long)v;
2251 
2252 	if (!kvm_usage_count)
2253 		return NOTIFY_OK;
2254 
2255 	val &= ~CPU_TASKS_FROZEN;
2256 	switch (val) {
2257 	case CPU_DYING:
2258 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2259 		       cpu);
2260 		hardware_disable(NULL);
2261 		break;
2262 	case CPU_STARTING:
2263 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2264 		       cpu);
2265 		hardware_enable(NULL);
2266 		break;
2267 	}
2268 	return NOTIFY_OK;
2269 }
2270 
2271 
2272 asmlinkage void kvm_spurious_fault(void)
2273 {
2274 	/* Fault while not rebooting.  We want the trace. */
2275 	BUG();
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2278 
2279 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2280 		      void *v)
2281 {
2282 	/*
2283 	 * Some (well, at least mine) BIOSes hang on reboot if
2284 	 * in vmx root mode.
2285 	 *
2286 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2287 	 */
2288 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2289 	kvm_rebooting = true;
2290 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2291 	return NOTIFY_OK;
2292 }
2293 
2294 static struct notifier_block kvm_reboot_notifier = {
2295 	.notifier_call = kvm_reboot,
2296 	.priority = 0,
2297 };
2298 
2299 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2300 {
2301 	int i;
2302 
2303 	for (i = 0; i < bus->dev_count; i++) {
2304 		struct kvm_io_device *pos = bus->devs[i];
2305 
2306 		kvm_iodevice_destructor(pos);
2307 	}
2308 	kfree(bus);
2309 }
2310 
2311 /* kvm_io_bus_write - called under kvm->slots_lock */
2312 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2313 		     int len, const void *val)
2314 {
2315 	int i;
2316 	struct kvm_io_bus *bus;
2317 
2318 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2319 	for (i = 0; i < bus->dev_count; i++)
2320 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2321 			return 0;
2322 	return -EOPNOTSUPP;
2323 }
2324 
2325 /* kvm_io_bus_read - called under kvm->slots_lock */
2326 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2327 		    int len, void *val)
2328 {
2329 	int i;
2330 	struct kvm_io_bus *bus;
2331 
2332 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2333 	for (i = 0; i < bus->dev_count; i++)
2334 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2335 			return 0;
2336 	return -EOPNOTSUPP;
2337 }
2338 
2339 /* Caller must hold slots_lock. */
2340 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2341 			    struct kvm_io_device *dev)
2342 {
2343 	struct kvm_io_bus *new_bus, *bus;
2344 
2345 	bus = kvm->buses[bus_idx];
2346 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2347 		return -ENOSPC;
2348 
2349 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2350 	if (!new_bus)
2351 		return -ENOMEM;
2352 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2353 	new_bus->devs[new_bus->dev_count++] = dev;
2354 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2355 	synchronize_srcu_expedited(&kvm->srcu);
2356 	kfree(bus);
2357 
2358 	return 0;
2359 }
2360 
2361 /* Caller must hold slots_lock. */
2362 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2363 			      struct kvm_io_device *dev)
2364 {
2365 	int i, r;
2366 	struct kvm_io_bus *new_bus, *bus;
2367 
2368 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2369 	if (!new_bus)
2370 		return -ENOMEM;
2371 
2372 	bus = kvm->buses[bus_idx];
2373 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2374 
2375 	r = -ENOENT;
2376 	for (i = 0; i < new_bus->dev_count; i++)
2377 		if (new_bus->devs[i] == dev) {
2378 			r = 0;
2379 			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2380 			break;
2381 		}
2382 
2383 	if (r) {
2384 		kfree(new_bus);
2385 		return r;
2386 	}
2387 
2388 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2389 	synchronize_srcu_expedited(&kvm->srcu);
2390 	kfree(bus);
2391 	return r;
2392 }
2393 
2394 static struct notifier_block kvm_cpu_notifier = {
2395 	.notifier_call = kvm_cpu_hotplug,
2396 };
2397 
2398 static int vm_stat_get(void *_offset, u64 *val)
2399 {
2400 	unsigned offset = (long)_offset;
2401 	struct kvm *kvm;
2402 
2403 	*val = 0;
2404 	raw_spin_lock(&kvm_lock);
2405 	list_for_each_entry(kvm, &vm_list, vm_list)
2406 		*val += *(u32 *)((void *)kvm + offset);
2407 	raw_spin_unlock(&kvm_lock);
2408 	return 0;
2409 }
2410 
2411 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2412 
2413 static int vcpu_stat_get(void *_offset, u64 *val)
2414 {
2415 	unsigned offset = (long)_offset;
2416 	struct kvm *kvm;
2417 	struct kvm_vcpu *vcpu;
2418 	int i;
2419 
2420 	*val = 0;
2421 	raw_spin_lock(&kvm_lock);
2422 	list_for_each_entry(kvm, &vm_list, vm_list)
2423 		kvm_for_each_vcpu(i, vcpu, kvm)
2424 			*val += *(u32 *)((void *)vcpu + offset);
2425 
2426 	raw_spin_unlock(&kvm_lock);
2427 	return 0;
2428 }
2429 
2430 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2431 
2432 static const struct file_operations *stat_fops[] = {
2433 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2434 	[KVM_STAT_VM]   = &vm_stat_fops,
2435 };
2436 
2437 static void kvm_init_debug(void)
2438 {
2439 	struct kvm_stats_debugfs_item *p;
2440 
2441 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2442 	for (p = debugfs_entries; p->name; ++p)
2443 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2444 						(void *)(long)p->offset,
2445 						stat_fops[p->kind]);
2446 }
2447 
2448 static void kvm_exit_debug(void)
2449 {
2450 	struct kvm_stats_debugfs_item *p;
2451 
2452 	for (p = debugfs_entries; p->name; ++p)
2453 		debugfs_remove(p->dentry);
2454 	debugfs_remove(kvm_debugfs_dir);
2455 }
2456 
2457 static int kvm_suspend(void)
2458 {
2459 	if (kvm_usage_count)
2460 		hardware_disable_nolock(NULL);
2461 	return 0;
2462 }
2463 
2464 static void kvm_resume(void)
2465 {
2466 	if (kvm_usage_count) {
2467 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2468 		hardware_enable_nolock(NULL);
2469 	}
2470 }
2471 
2472 static struct syscore_ops kvm_syscore_ops = {
2473 	.suspend = kvm_suspend,
2474 	.resume = kvm_resume,
2475 };
2476 
2477 struct page *bad_page;
2478 pfn_t bad_pfn;
2479 
2480 static inline
2481 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2482 {
2483 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2484 }
2485 
2486 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2487 {
2488 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2489 
2490 	kvm_arch_vcpu_load(vcpu, cpu);
2491 }
2492 
2493 static void kvm_sched_out(struct preempt_notifier *pn,
2494 			  struct task_struct *next)
2495 {
2496 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2497 
2498 	kvm_arch_vcpu_put(vcpu);
2499 }
2500 
2501 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2502 		  struct module *module)
2503 {
2504 	int r;
2505 	int cpu;
2506 
2507 	r = kvm_arch_init(opaque);
2508 	if (r)
2509 		goto out_fail;
2510 
2511 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2512 
2513 	if (bad_page == NULL) {
2514 		r = -ENOMEM;
2515 		goto out;
2516 	}
2517 
2518 	bad_pfn = page_to_pfn(bad_page);
2519 
2520 	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2521 
2522 	if (hwpoison_page == NULL) {
2523 		r = -ENOMEM;
2524 		goto out_free_0;
2525 	}
2526 
2527 	hwpoison_pfn = page_to_pfn(hwpoison_page);
2528 
2529 	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2530 
2531 	if (fault_page == NULL) {
2532 		r = -ENOMEM;
2533 		goto out_free_0;
2534 	}
2535 
2536 	fault_pfn = page_to_pfn(fault_page);
2537 
2538 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2539 		r = -ENOMEM;
2540 		goto out_free_0;
2541 	}
2542 
2543 	r = kvm_arch_hardware_setup();
2544 	if (r < 0)
2545 		goto out_free_0a;
2546 
2547 	for_each_online_cpu(cpu) {
2548 		smp_call_function_single(cpu,
2549 				kvm_arch_check_processor_compat,
2550 				&r, 1);
2551 		if (r < 0)
2552 			goto out_free_1;
2553 	}
2554 
2555 	r = register_cpu_notifier(&kvm_cpu_notifier);
2556 	if (r)
2557 		goto out_free_2;
2558 	register_reboot_notifier(&kvm_reboot_notifier);
2559 
2560 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2561 	if (!vcpu_align)
2562 		vcpu_align = __alignof__(struct kvm_vcpu);
2563 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2564 					   0, NULL);
2565 	if (!kvm_vcpu_cache) {
2566 		r = -ENOMEM;
2567 		goto out_free_3;
2568 	}
2569 
2570 	r = kvm_async_pf_init();
2571 	if (r)
2572 		goto out_free;
2573 
2574 	kvm_chardev_ops.owner = module;
2575 	kvm_vm_fops.owner = module;
2576 	kvm_vcpu_fops.owner = module;
2577 
2578 	r = misc_register(&kvm_dev);
2579 	if (r) {
2580 		printk(KERN_ERR "kvm: misc device register failed\n");
2581 		goto out_unreg;
2582 	}
2583 
2584 	register_syscore_ops(&kvm_syscore_ops);
2585 
2586 	kvm_preempt_ops.sched_in = kvm_sched_in;
2587 	kvm_preempt_ops.sched_out = kvm_sched_out;
2588 
2589 	kvm_init_debug();
2590 
2591 	return 0;
2592 
2593 out_unreg:
2594 	kvm_async_pf_deinit();
2595 out_free:
2596 	kmem_cache_destroy(kvm_vcpu_cache);
2597 out_free_3:
2598 	unregister_reboot_notifier(&kvm_reboot_notifier);
2599 	unregister_cpu_notifier(&kvm_cpu_notifier);
2600 out_free_2:
2601 out_free_1:
2602 	kvm_arch_hardware_unsetup();
2603 out_free_0a:
2604 	free_cpumask_var(cpus_hardware_enabled);
2605 out_free_0:
2606 	if (fault_page)
2607 		__free_page(fault_page);
2608 	if (hwpoison_page)
2609 		__free_page(hwpoison_page);
2610 	__free_page(bad_page);
2611 out:
2612 	kvm_arch_exit();
2613 out_fail:
2614 	return r;
2615 }
2616 EXPORT_SYMBOL_GPL(kvm_init);
2617 
2618 void kvm_exit(void)
2619 {
2620 	kvm_exit_debug();
2621 	misc_deregister(&kvm_dev);
2622 	kmem_cache_destroy(kvm_vcpu_cache);
2623 	kvm_async_pf_deinit();
2624 	unregister_syscore_ops(&kvm_syscore_ops);
2625 	unregister_reboot_notifier(&kvm_reboot_notifier);
2626 	unregister_cpu_notifier(&kvm_cpu_notifier);
2627 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2628 	kvm_arch_hardware_unsetup();
2629 	kvm_arch_exit();
2630 	free_cpumask_var(cpus_hardware_enabled);
2631 	__free_page(hwpoison_page);
2632 	__free_page(bad_page);
2633 }
2634 EXPORT_SYMBOL_GPL(kvm_exit);
2635