xref: /linux/virt/kvm/kvm_main.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79 
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83 
84 /*
85  * Ordering of locks:
86  *
87  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89 
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93 
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97 
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100 
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102 
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105 
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108 
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 			   unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 				  unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117 
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119 
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122 
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125 
126 static bool largepages_enabled = true;
127 
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 	if (pfn_valid(pfn))
131 		return PageReserved(pfn_to_page(pfn));
132 
133 	return true;
134 }
135 
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 	int cpu;
142 
143 	if (mutex_lock_killable(&vcpu->mutex))
144 		return -EINTR;
145 	cpu = get_cpu();
146 	preempt_notifier_register(&vcpu->preempt_notifier);
147 	kvm_arch_vcpu_load(vcpu, cpu);
148 	put_cpu();
149 	return 0;
150 }
151 
152 void vcpu_put(struct kvm_vcpu *vcpu)
153 {
154 	preempt_disable();
155 	kvm_arch_vcpu_put(vcpu);
156 	preempt_notifier_unregister(&vcpu->preempt_notifier);
157 	preempt_enable();
158 	mutex_unlock(&vcpu->mutex);
159 }
160 
161 static void ack_flush(void *_completed)
162 {
163 }
164 
165 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
166 {
167 	int i, cpu, me;
168 	cpumask_var_t cpus;
169 	bool called = true;
170 	struct kvm_vcpu *vcpu;
171 
172 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
173 
174 	me = get_cpu();
175 	kvm_for_each_vcpu(i, vcpu, kvm) {
176 		kvm_make_request(req, vcpu);
177 		cpu = vcpu->cpu;
178 
179 		/* Set ->requests bit before we read ->mode. */
180 		smp_mb__after_atomic();
181 
182 		if (cpus != NULL && cpu != -1 && cpu != me &&
183 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
184 			cpumask_set_cpu(cpu, cpus);
185 	}
186 	if (unlikely(cpus == NULL))
187 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
188 	else if (!cpumask_empty(cpus))
189 		smp_call_function_many(cpus, ack_flush, NULL, 1);
190 	else
191 		called = false;
192 	put_cpu();
193 	free_cpumask_var(cpus);
194 	return called;
195 }
196 
197 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
198 void kvm_flush_remote_tlbs(struct kvm *kvm)
199 {
200 	/*
201 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
202 	 * kvm_make_all_cpus_request.
203 	 */
204 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
205 
206 	/*
207 	 * We want to publish modifications to the page tables before reading
208 	 * mode. Pairs with a memory barrier in arch-specific code.
209 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
210 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
211 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
212 	 *
213 	 * There is already an smp_mb__after_atomic() before
214 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
215 	 * barrier here.
216 	 */
217 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
218 		++kvm->stat.remote_tlb_flush;
219 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
220 }
221 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
222 #endif
223 
224 void kvm_reload_remote_mmus(struct kvm *kvm)
225 {
226 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
227 }
228 
229 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
230 {
231 	struct page *page;
232 	int r;
233 
234 	mutex_init(&vcpu->mutex);
235 	vcpu->cpu = -1;
236 	vcpu->kvm = kvm;
237 	vcpu->vcpu_id = id;
238 	vcpu->pid = NULL;
239 	init_swait_queue_head(&vcpu->wq);
240 	kvm_async_pf_vcpu_init(vcpu);
241 
242 	vcpu->pre_pcpu = -1;
243 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
244 
245 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
246 	if (!page) {
247 		r = -ENOMEM;
248 		goto fail;
249 	}
250 	vcpu->run = page_address(page);
251 
252 	kvm_vcpu_set_in_spin_loop(vcpu, false);
253 	kvm_vcpu_set_dy_eligible(vcpu, false);
254 	vcpu->preempted = false;
255 
256 	r = kvm_arch_vcpu_init(vcpu);
257 	if (r < 0)
258 		goto fail_free_run;
259 	return 0;
260 
261 fail_free_run:
262 	free_page((unsigned long)vcpu->run);
263 fail:
264 	return r;
265 }
266 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
267 
268 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
269 {
270 	put_pid(vcpu->pid);
271 	kvm_arch_vcpu_uninit(vcpu);
272 	free_page((unsigned long)vcpu->run);
273 }
274 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
275 
276 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
277 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
278 {
279 	return container_of(mn, struct kvm, mmu_notifier);
280 }
281 
282 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
283 					     struct mm_struct *mm,
284 					     unsigned long address)
285 {
286 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
287 	int need_tlb_flush, idx;
288 
289 	/*
290 	 * When ->invalidate_page runs, the linux pte has been zapped
291 	 * already but the page is still allocated until
292 	 * ->invalidate_page returns. So if we increase the sequence
293 	 * here the kvm page fault will notice if the spte can't be
294 	 * established because the page is going to be freed. If
295 	 * instead the kvm page fault establishes the spte before
296 	 * ->invalidate_page runs, kvm_unmap_hva will release it
297 	 * before returning.
298 	 *
299 	 * The sequence increase only need to be seen at spin_unlock
300 	 * time, and not at spin_lock time.
301 	 *
302 	 * Increasing the sequence after the spin_unlock would be
303 	 * unsafe because the kvm page fault could then establish the
304 	 * pte after kvm_unmap_hva returned, without noticing the page
305 	 * is going to be freed.
306 	 */
307 	idx = srcu_read_lock(&kvm->srcu);
308 	spin_lock(&kvm->mmu_lock);
309 
310 	kvm->mmu_notifier_seq++;
311 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
312 	/* we've to flush the tlb before the pages can be freed */
313 	if (need_tlb_flush)
314 		kvm_flush_remote_tlbs(kvm);
315 
316 	spin_unlock(&kvm->mmu_lock);
317 
318 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
319 
320 	srcu_read_unlock(&kvm->srcu, idx);
321 }
322 
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
324 					struct mm_struct *mm,
325 					unsigned long address,
326 					pte_t pte)
327 {
328 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 	int idx;
330 
331 	idx = srcu_read_lock(&kvm->srcu);
332 	spin_lock(&kvm->mmu_lock);
333 	kvm->mmu_notifier_seq++;
334 	kvm_set_spte_hva(kvm, address, pte);
335 	spin_unlock(&kvm->mmu_lock);
336 	srcu_read_unlock(&kvm->srcu, idx);
337 }
338 
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
340 						    struct mm_struct *mm,
341 						    unsigned long start,
342 						    unsigned long end)
343 {
344 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
345 	int need_tlb_flush = 0, idx;
346 
347 	idx = srcu_read_lock(&kvm->srcu);
348 	spin_lock(&kvm->mmu_lock);
349 	/*
350 	 * The count increase must become visible at unlock time as no
351 	 * spte can be established without taking the mmu_lock and
352 	 * count is also read inside the mmu_lock critical section.
353 	 */
354 	kvm->mmu_notifier_count++;
355 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
356 	need_tlb_flush |= kvm->tlbs_dirty;
357 	/* we've to flush the tlb before the pages can be freed */
358 	if (need_tlb_flush)
359 		kvm_flush_remote_tlbs(kvm);
360 
361 	spin_unlock(&kvm->mmu_lock);
362 	srcu_read_unlock(&kvm->srcu, idx);
363 }
364 
365 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
366 						  struct mm_struct *mm,
367 						  unsigned long start,
368 						  unsigned long end)
369 {
370 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 
372 	spin_lock(&kvm->mmu_lock);
373 	/*
374 	 * This sequence increase will notify the kvm page fault that
375 	 * the page that is going to be mapped in the spte could have
376 	 * been freed.
377 	 */
378 	kvm->mmu_notifier_seq++;
379 	smp_wmb();
380 	/*
381 	 * The above sequence increase must be visible before the
382 	 * below count decrease, which is ensured by the smp_wmb above
383 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
384 	 */
385 	kvm->mmu_notifier_count--;
386 	spin_unlock(&kvm->mmu_lock);
387 
388 	BUG_ON(kvm->mmu_notifier_count < 0);
389 }
390 
391 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
392 					      struct mm_struct *mm,
393 					      unsigned long start,
394 					      unsigned long end)
395 {
396 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 	int young, idx;
398 
399 	idx = srcu_read_lock(&kvm->srcu);
400 	spin_lock(&kvm->mmu_lock);
401 
402 	young = kvm_age_hva(kvm, start, end);
403 	if (young)
404 		kvm_flush_remote_tlbs(kvm);
405 
406 	spin_unlock(&kvm->mmu_lock);
407 	srcu_read_unlock(&kvm->srcu, idx);
408 
409 	return young;
410 }
411 
412 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
413 					struct mm_struct *mm,
414 					unsigned long start,
415 					unsigned long end)
416 {
417 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
418 	int young, idx;
419 
420 	idx = srcu_read_lock(&kvm->srcu);
421 	spin_lock(&kvm->mmu_lock);
422 	/*
423 	 * Even though we do not flush TLB, this will still adversely
424 	 * affect performance on pre-Haswell Intel EPT, where there is
425 	 * no EPT Access Bit to clear so that we have to tear down EPT
426 	 * tables instead. If we find this unacceptable, we can always
427 	 * add a parameter to kvm_age_hva so that it effectively doesn't
428 	 * do anything on clear_young.
429 	 *
430 	 * Also note that currently we never issue secondary TLB flushes
431 	 * from clear_young, leaving this job up to the regular system
432 	 * cadence. If we find this inaccurate, we might come up with a
433 	 * more sophisticated heuristic later.
434 	 */
435 	young = kvm_age_hva(kvm, start, end);
436 	spin_unlock(&kvm->mmu_lock);
437 	srcu_read_unlock(&kvm->srcu, idx);
438 
439 	return young;
440 }
441 
442 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
443 				       struct mm_struct *mm,
444 				       unsigned long address)
445 {
446 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 	int young, idx;
448 
449 	idx = srcu_read_lock(&kvm->srcu);
450 	spin_lock(&kvm->mmu_lock);
451 	young = kvm_test_age_hva(kvm, address);
452 	spin_unlock(&kvm->mmu_lock);
453 	srcu_read_unlock(&kvm->srcu, idx);
454 
455 	return young;
456 }
457 
458 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
459 				     struct mm_struct *mm)
460 {
461 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
462 	int idx;
463 
464 	idx = srcu_read_lock(&kvm->srcu);
465 	kvm_arch_flush_shadow_all(kvm);
466 	srcu_read_unlock(&kvm->srcu, idx);
467 }
468 
469 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
470 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
471 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
472 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
473 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
474 	.clear_young		= kvm_mmu_notifier_clear_young,
475 	.test_young		= kvm_mmu_notifier_test_young,
476 	.change_pte		= kvm_mmu_notifier_change_pte,
477 	.release		= kvm_mmu_notifier_release,
478 };
479 
480 static int kvm_init_mmu_notifier(struct kvm *kvm)
481 {
482 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
483 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
484 }
485 
486 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
487 
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 	return 0;
491 }
492 
493 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
494 
495 static struct kvm_memslots *kvm_alloc_memslots(void)
496 {
497 	int i;
498 	struct kvm_memslots *slots;
499 
500 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
501 	if (!slots)
502 		return NULL;
503 
504 	/*
505 	 * Init kvm generation close to the maximum to easily test the
506 	 * code of handling generation number wrap-around.
507 	 */
508 	slots->generation = -150;
509 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
510 		slots->id_to_index[i] = slots->memslots[i].id = i;
511 
512 	return slots;
513 }
514 
515 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
516 {
517 	if (!memslot->dirty_bitmap)
518 		return;
519 
520 	kvfree(memslot->dirty_bitmap);
521 	memslot->dirty_bitmap = NULL;
522 }
523 
524 /*
525  * Free any memory in @free but not in @dont.
526  */
527 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
528 			      struct kvm_memory_slot *dont)
529 {
530 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
531 		kvm_destroy_dirty_bitmap(free);
532 
533 	kvm_arch_free_memslot(kvm, free, dont);
534 
535 	free->npages = 0;
536 }
537 
538 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
539 {
540 	struct kvm_memory_slot *memslot;
541 
542 	if (!slots)
543 		return;
544 
545 	kvm_for_each_memslot(memslot, slots)
546 		kvm_free_memslot(kvm, memslot, NULL);
547 
548 	kvfree(slots);
549 }
550 
551 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
552 {
553 	int i;
554 
555 	if (!kvm->debugfs_dentry)
556 		return;
557 
558 	debugfs_remove_recursive(kvm->debugfs_dentry);
559 
560 	for (i = 0; i < kvm_debugfs_num_entries; i++)
561 		kfree(kvm->debugfs_stat_data[i]);
562 	kfree(kvm->debugfs_stat_data);
563 }
564 
565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
566 {
567 	char dir_name[ITOA_MAX_LEN * 2];
568 	struct kvm_stat_data *stat_data;
569 	struct kvm_stats_debugfs_item *p;
570 
571 	if (!debugfs_initialized())
572 		return 0;
573 
574 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
575 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
576 						 kvm_debugfs_dir);
577 	if (!kvm->debugfs_dentry)
578 		return -ENOMEM;
579 
580 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
581 					 sizeof(*kvm->debugfs_stat_data),
582 					 GFP_KERNEL);
583 	if (!kvm->debugfs_stat_data)
584 		return -ENOMEM;
585 
586 	for (p = debugfs_entries; p->name; p++) {
587 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
588 		if (!stat_data)
589 			return -ENOMEM;
590 
591 		stat_data->kvm = kvm;
592 		stat_data->offset = p->offset;
593 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
594 		if (!debugfs_create_file(p->name, 0444,
595 					 kvm->debugfs_dentry,
596 					 stat_data,
597 					 stat_fops_per_vm[p->kind]))
598 			return -ENOMEM;
599 	}
600 	return 0;
601 }
602 
603 static struct kvm *kvm_create_vm(unsigned long type)
604 {
605 	int r, i;
606 	struct kvm *kvm = kvm_arch_alloc_vm();
607 
608 	if (!kvm)
609 		return ERR_PTR(-ENOMEM);
610 
611 	spin_lock_init(&kvm->mmu_lock);
612 	atomic_inc(&current->mm->mm_count);
613 	kvm->mm = current->mm;
614 	kvm_eventfd_init(kvm);
615 	mutex_init(&kvm->lock);
616 	mutex_init(&kvm->irq_lock);
617 	mutex_init(&kvm->slots_lock);
618 	atomic_set(&kvm->users_count, 1);
619 	INIT_LIST_HEAD(&kvm->devices);
620 
621 	r = kvm_arch_init_vm(kvm, type);
622 	if (r)
623 		goto out_err_no_disable;
624 
625 	r = hardware_enable_all();
626 	if (r)
627 		goto out_err_no_disable;
628 
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
631 #endif
632 
633 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
634 
635 	r = -ENOMEM;
636 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
637 		kvm->memslots[i] = kvm_alloc_memslots();
638 		if (!kvm->memslots[i])
639 			goto out_err_no_srcu;
640 	}
641 
642 	if (init_srcu_struct(&kvm->srcu))
643 		goto out_err_no_srcu;
644 	if (init_srcu_struct(&kvm->irq_srcu))
645 		goto out_err_no_irq_srcu;
646 	for (i = 0; i < KVM_NR_BUSES; i++) {
647 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
648 					GFP_KERNEL);
649 		if (!kvm->buses[i])
650 			goto out_err;
651 	}
652 
653 	r = kvm_init_mmu_notifier(kvm);
654 	if (r)
655 		goto out_err;
656 
657 	spin_lock(&kvm_lock);
658 	list_add(&kvm->vm_list, &vm_list);
659 	spin_unlock(&kvm_lock);
660 
661 	preempt_notifier_inc();
662 
663 	return kvm;
664 
665 out_err:
666 	cleanup_srcu_struct(&kvm->irq_srcu);
667 out_err_no_irq_srcu:
668 	cleanup_srcu_struct(&kvm->srcu);
669 out_err_no_srcu:
670 	hardware_disable_all();
671 out_err_no_disable:
672 	for (i = 0; i < KVM_NR_BUSES; i++)
673 		kfree(kvm->buses[i]);
674 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
675 		kvm_free_memslots(kvm, kvm->memslots[i]);
676 	kvm_arch_free_vm(kvm);
677 	mmdrop(current->mm);
678 	return ERR_PTR(r);
679 }
680 
681 /*
682  * Avoid using vmalloc for a small buffer.
683  * Should not be used when the size is statically known.
684  */
685 void *kvm_kvzalloc(unsigned long size)
686 {
687 	if (size > PAGE_SIZE)
688 		return vzalloc(size);
689 	else
690 		return kzalloc(size, GFP_KERNEL);
691 }
692 
693 static void kvm_destroy_devices(struct kvm *kvm)
694 {
695 	struct kvm_device *dev, *tmp;
696 
697 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
698 		list_del(&dev->vm_node);
699 		dev->ops->destroy(dev);
700 	}
701 }
702 
703 static void kvm_destroy_vm(struct kvm *kvm)
704 {
705 	int i;
706 	struct mm_struct *mm = kvm->mm;
707 
708 	kvm_destroy_vm_debugfs(kvm);
709 	kvm_arch_sync_events(kvm);
710 	spin_lock(&kvm_lock);
711 	list_del(&kvm->vm_list);
712 	spin_unlock(&kvm_lock);
713 	kvm_free_irq_routing(kvm);
714 	for (i = 0; i < KVM_NR_BUSES; i++)
715 		kvm_io_bus_destroy(kvm->buses[i]);
716 	kvm_coalesced_mmio_free(kvm);
717 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
718 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
719 #else
720 	kvm_arch_flush_shadow_all(kvm);
721 #endif
722 	kvm_arch_destroy_vm(kvm);
723 	kvm_destroy_devices(kvm);
724 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
725 		kvm_free_memslots(kvm, kvm->memslots[i]);
726 	cleanup_srcu_struct(&kvm->irq_srcu);
727 	cleanup_srcu_struct(&kvm->srcu);
728 	kvm_arch_free_vm(kvm);
729 	preempt_notifier_dec();
730 	hardware_disable_all();
731 	mmdrop(mm);
732 }
733 
734 void kvm_get_kvm(struct kvm *kvm)
735 {
736 	atomic_inc(&kvm->users_count);
737 }
738 EXPORT_SYMBOL_GPL(kvm_get_kvm);
739 
740 void kvm_put_kvm(struct kvm *kvm)
741 {
742 	if (atomic_dec_and_test(&kvm->users_count))
743 		kvm_destroy_vm(kvm);
744 }
745 EXPORT_SYMBOL_GPL(kvm_put_kvm);
746 
747 
748 static int kvm_vm_release(struct inode *inode, struct file *filp)
749 {
750 	struct kvm *kvm = filp->private_data;
751 
752 	kvm_irqfd_release(kvm);
753 
754 	kvm_put_kvm(kvm);
755 	return 0;
756 }
757 
758 /*
759  * Allocation size is twice as large as the actual dirty bitmap size.
760  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
761  */
762 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
763 {
764 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
765 
766 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
767 	if (!memslot->dirty_bitmap)
768 		return -ENOMEM;
769 
770 	return 0;
771 }
772 
773 /*
774  * Insert memslot and re-sort memslots based on their GFN,
775  * so binary search could be used to lookup GFN.
776  * Sorting algorithm takes advantage of having initially
777  * sorted array and known changed memslot position.
778  */
779 static void update_memslots(struct kvm_memslots *slots,
780 			    struct kvm_memory_slot *new)
781 {
782 	int id = new->id;
783 	int i = slots->id_to_index[id];
784 	struct kvm_memory_slot *mslots = slots->memslots;
785 
786 	WARN_ON(mslots[i].id != id);
787 	if (!new->npages) {
788 		WARN_ON(!mslots[i].npages);
789 		if (mslots[i].npages)
790 			slots->used_slots--;
791 	} else {
792 		if (!mslots[i].npages)
793 			slots->used_slots++;
794 	}
795 
796 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
797 	       new->base_gfn <= mslots[i + 1].base_gfn) {
798 		if (!mslots[i + 1].npages)
799 			break;
800 		mslots[i] = mslots[i + 1];
801 		slots->id_to_index[mslots[i].id] = i;
802 		i++;
803 	}
804 
805 	/*
806 	 * The ">=" is needed when creating a slot with base_gfn == 0,
807 	 * so that it moves before all those with base_gfn == npages == 0.
808 	 *
809 	 * On the other hand, if new->npages is zero, the above loop has
810 	 * already left i pointing to the beginning of the empty part of
811 	 * mslots, and the ">=" would move the hole backwards in this
812 	 * case---which is wrong.  So skip the loop when deleting a slot.
813 	 */
814 	if (new->npages) {
815 		while (i > 0 &&
816 		       new->base_gfn >= mslots[i - 1].base_gfn) {
817 			mslots[i] = mslots[i - 1];
818 			slots->id_to_index[mslots[i].id] = i;
819 			i--;
820 		}
821 	} else
822 		WARN_ON_ONCE(i != slots->used_slots);
823 
824 	mslots[i] = *new;
825 	slots->id_to_index[mslots[i].id] = i;
826 }
827 
828 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
829 {
830 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
831 
832 #ifdef __KVM_HAVE_READONLY_MEM
833 	valid_flags |= KVM_MEM_READONLY;
834 #endif
835 
836 	if (mem->flags & ~valid_flags)
837 		return -EINVAL;
838 
839 	return 0;
840 }
841 
842 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
843 		int as_id, struct kvm_memslots *slots)
844 {
845 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
846 
847 	/*
848 	 * Set the low bit in the generation, which disables SPTE caching
849 	 * until the end of synchronize_srcu_expedited.
850 	 */
851 	WARN_ON(old_memslots->generation & 1);
852 	slots->generation = old_memslots->generation + 1;
853 
854 	rcu_assign_pointer(kvm->memslots[as_id], slots);
855 	synchronize_srcu_expedited(&kvm->srcu);
856 
857 	/*
858 	 * Increment the new memslot generation a second time. This prevents
859 	 * vm exits that race with memslot updates from caching a memslot
860 	 * generation that will (potentially) be valid forever.
861 	 */
862 	slots->generation++;
863 
864 	kvm_arch_memslots_updated(kvm, slots);
865 
866 	return old_memslots;
867 }
868 
869 /*
870  * Allocate some memory and give it an address in the guest physical address
871  * space.
872  *
873  * Discontiguous memory is allowed, mostly for framebuffers.
874  *
875  * Must be called holding kvm->slots_lock for write.
876  */
877 int __kvm_set_memory_region(struct kvm *kvm,
878 			    const struct kvm_userspace_memory_region *mem)
879 {
880 	int r;
881 	gfn_t base_gfn;
882 	unsigned long npages;
883 	struct kvm_memory_slot *slot;
884 	struct kvm_memory_slot old, new;
885 	struct kvm_memslots *slots = NULL, *old_memslots;
886 	int as_id, id;
887 	enum kvm_mr_change change;
888 
889 	r = check_memory_region_flags(mem);
890 	if (r)
891 		goto out;
892 
893 	r = -EINVAL;
894 	as_id = mem->slot >> 16;
895 	id = (u16)mem->slot;
896 
897 	/* General sanity checks */
898 	if (mem->memory_size & (PAGE_SIZE - 1))
899 		goto out;
900 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
901 		goto out;
902 	/* We can read the guest memory with __xxx_user() later on. */
903 	if ((id < KVM_USER_MEM_SLOTS) &&
904 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
905 	     !access_ok(VERIFY_WRITE,
906 			(void __user *)(unsigned long)mem->userspace_addr,
907 			mem->memory_size)))
908 		goto out;
909 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
910 		goto out;
911 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
912 		goto out;
913 
914 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
915 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
916 	npages = mem->memory_size >> PAGE_SHIFT;
917 
918 	if (npages > KVM_MEM_MAX_NR_PAGES)
919 		goto out;
920 
921 	new = old = *slot;
922 
923 	new.id = id;
924 	new.base_gfn = base_gfn;
925 	new.npages = npages;
926 	new.flags = mem->flags;
927 
928 	if (npages) {
929 		if (!old.npages)
930 			change = KVM_MR_CREATE;
931 		else { /* Modify an existing slot. */
932 			if ((mem->userspace_addr != old.userspace_addr) ||
933 			    (npages != old.npages) ||
934 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
935 				goto out;
936 
937 			if (base_gfn != old.base_gfn)
938 				change = KVM_MR_MOVE;
939 			else if (new.flags != old.flags)
940 				change = KVM_MR_FLAGS_ONLY;
941 			else { /* Nothing to change. */
942 				r = 0;
943 				goto out;
944 			}
945 		}
946 	} else {
947 		if (!old.npages)
948 			goto out;
949 
950 		change = KVM_MR_DELETE;
951 		new.base_gfn = 0;
952 		new.flags = 0;
953 	}
954 
955 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
956 		/* Check for overlaps */
957 		r = -EEXIST;
958 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
959 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
960 			    (slot->id == id))
961 				continue;
962 			if (!((base_gfn + npages <= slot->base_gfn) ||
963 			      (base_gfn >= slot->base_gfn + slot->npages)))
964 				goto out;
965 		}
966 	}
967 
968 	/* Free page dirty bitmap if unneeded */
969 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
970 		new.dirty_bitmap = NULL;
971 
972 	r = -ENOMEM;
973 	if (change == KVM_MR_CREATE) {
974 		new.userspace_addr = mem->userspace_addr;
975 
976 		if (kvm_arch_create_memslot(kvm, &new, npages))
977 			goto out_free;
978 	}
979 
980 	/* Allocate page dirty bitmap if needed */
981 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
982 		if (kvm_create_dirty_bitmap(&new) < 0)
983 			goto out_free;
984 	}
985 
986 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
987 	if (!slots)
988 		goto out_free;
989 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
990 
991 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
992 		slot = id_to_memslot(slots, id);
993 		slot->flags |= KVM_MEMSLOT_INVALID;
994 
995 		old_memslots = install_new_memslots(kvm, as_id, slots);
996 
997 		/* slot was deleted or moved, clear iommu mapping */
998 		kvm_iommu_unmap_pages(kvm, &old);
999 		/* From this point no new shadow pages pointing to a deleted,
1000 		 * or moved, memslot will be created.
1001 		 *
1002 		 * validation of sp->gfn happens in:
1003 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1004 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1005 		 */
1006 		kvm_arch_flush_shadow_memslot(kvm, slot);
1007 
1008 		/*
1009 		 * We can re-use the old_memslots from above, the only difference
1010 		 * from the currently installed memslots is the invalid flag.  This
1011 		 * will get overwritten by update_memslots anyway.
1012 		 */
1013 		slots = old_memslots;
1014 	}
1015 
1016 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1017 	if (r)
1018 		goto out_slots;
1019 
1020 	/* actual memory is freed via old in kvm_free_memslot below */
1021 	if (change == KVM_MR_DELETE) {
1022 		new.dirty_bitmap = NULL;
1023 		memset(&new.arch, 0, sizeof(new.arch));
1024 	}
1025 
1026 	update_memslots(slots, &new);
1027 	old_memslots = install_new_memslots(kvm, as_id, slots);
1028 
1029 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1030 
1031 	kvm_free_memslot(kvm, &old, &new);
1032 	kvfree(old_memslots);
1033 
1034 	/*
1035 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1036 	 * un-mapped and re-mapped if their base changes.  Since base change
1037 	 * unmapping is handled above with slot deletion, mapping alone is
1038 	 * needed here.  Anything else the iommu might care about for existing
1039 	 * slots (size changes, userspace addr changes and read-only flag
1040 	 * changes) is disallowed above, so any other attribute changes getting
1041 	 * here can be skipped.
1042 	 */
1043 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1044 		r = kvm_iommu_map_pages(kvm, &new);
1045 		return r;
1046 	}
1047 
1048 	return 0;
1049 
1050 out_slots:
1051 	kvfree(slots);
1052 out_free:
1053 	kvm_free_memslot(kvm, &new, &old);
1054 out:
1055 	return r;
1056 }
1057 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1058 
1059 int kvm_set_memory_region(struct kvm *kvm,
1060 			  const struct kvm_userspace_memory_region *mem)
1061 {
1062 	int r;
1063 
1064 	mutex_lock(&kvm->slots_lock);
1065 	r = __kvm_set_memory_region(kvm, mem);
1066 	mutex_unlock(&kvm->slots_lock);
1067 	return r;
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1070 
1071 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1072 					  struct kvm_userspace_memory_region *mem)
1073 {
1074 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1075 		return -EINVAL;
1076 
1077 	return kvm_set_memory_region(kvm, mem);
1078 }
1079 
1080 int kvm_get_dirty_log(struct kvm *kvm,
1081 			struct kvm_dirty_log *log, int *is_dirty)
1082 {
1083 	struct kvm_memslots *slots;
1084 	struct kvm_memory_slot *memslot;
1085 	int r, i, as_id, id;
1086 	unsigned long n;
1087 	unsigned long any = 0;
1088 
1089 	r = -EINVAL;
1090 	as_id = log->slot >> 16;
1091 	id = (u16)log->slot;
1092 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093 		goto out;
1094 
1095 	slots = __kvm_memslots(kvm, as_id);
1096 	memslot = id_to_memslot(slots, id);
1097 	r = -ENOENT;
1098 	if (!memslot->dirty_bitmap)
1099 		goto out;
1100 
1101 	n = kvm_dirty_bitmap_bytes(memslot);
1102 
1103 	for (i = 0; !any && i < n/sizeof(long); ++i)
1104 		any = memslot->dirty_bitmap[i];
1105 
1106 	r = -EFAULT;
1107 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1108 		goto out;
1109 
1110 	if (any)
1111 		*is_dirty = 1;
1112 
1113 	r = 0;
1114 out:
1115 	return r;
1116 }
1117 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1118 
1119 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1120 /**
1121  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1122  *	are dirty write protect them for next write.
1123  * @kvm:	pointer to kvm instance
1124  * @log:	slot id and address to which we copy the log
1125  * @is_dirty:	flag set if any page is dirty
1126  *
1127  * We need to keep it in mind that VCPU threads can write to the bitmap
1128  * concurrently. So, to avoid losing track of dirty pages we keep the
1129  * following order:
1130  *
1131  *    1. Take a snapshot of the bit and clear it if needed.
1132  *    2. Write protect the corresponding page.
1133  *    3. Copy the snapshot to the userspace.
1134  *    4. Upon return caller flushes TLB's if needed.
1135  *
1136  * Between 2 and 4, the guest may write to the page using the remaining TLB
1137  * entry.  This is not a problem because the page is reported dirty using
1138  * the snapshot taken before and step 4 ensures that writes done after
1139  * exiting to userspace will be logged for the next call.
1140  *
1141  */
1142 int kvm_get_dirty_log_protect(struct kvm *kvm,
1143 			struct kvm_dirty_log *log, bool *is_dirty)
1144 {
1145 	struct kvm_memslots *slots;
1146 	struct kvm_memory_slot *memslot;
1147 	int r, i, as_id, id;
1148 	unsigned long n;
1149 	unsigned long *dirty_bitmap;
1150 	unsigned long *dirty_bitmap_buffer;
1151 
1152 	r = -EINVAL;
1153 	as_id = log->slot >> 16;
1154 	id = (u16)log->slot;
1155 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1156 		goto out;
1157 
1158 	slots = __kvm_memslots(kvm, as_id);
1159 	memslot = id_to_memslot(slots, id);
1160 
1161 	dirty_bitmap = memslot->dirty_bitmap;
1162 	r = -ENOENT;
1163 	if (!dirty_bitmap)
1164 		goto out;
1165 
1166 	n = kvm_dirty_bitmap_bytes(memslot);
1167 
1168 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1169 	memset(dirty_bitmap_buffer, 0, n);
1170 
1171 	spin_lock(&kvm->mmu_lock);
1172 	*is_dirty = false;
1173 	for (i = 0; i < n / sizeof(long); i++) {
1174 		unsigned long mask;
1175 		gfn_t offset;
1176 
1177 		if (!dirty_bitmap[i])
1178 			continue;
1179 
1180 		*is_dirty = true;
1181 
1182 		mask = xchg(&dirty_bitmap[i], 0);
1183 		dirty_bitmap_buffer[i] = mask;
1184 
1185 		if (mask) {
1186 			offset = i * BITS_PER_LONG;
1187 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1188 								offset, mask);
1189 		}
1190 	}
1191 
1192 	spin_unlock(&kvm->mmu_lock);
1193 
1194 	r = -EFAULT;
1195 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1196 		goto out;
1197 
1198 	r = 0;
1199 out:
1200 	return r;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1203 #endif
1204 
1205 bool kvm_largepages_enabled(void)
1206 {
1207 	return largepages_enabled;
1208 }
1209 
1210 void kvm_disable_largepages(void)
1211 {
1212 	largepages_enabled = false;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1215 
1216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1217 {
1218 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1221 
1222 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1223 {
1224 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1225 }
1226 
1227 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1228 {
1229 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1230 
1231 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1232 	      memslot->flags & KVM_MEMSLOT_INVALID)
1233 		return false;
1234 
1235 	return true;
1236 }
1237 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1238 
1239 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1240 {
1241 	struct vm_area_struct *vma;
1242 	unsigned long addr, size;
1243 
1244 	size = PAGE_SIZE;
1245 
1246 	addr = gfn_to_hva(kvm, gfn);
1247 	if (kvm_is_error_hva(addr))
1248 		return PAGE_SIZE;
1249 
1250 	down_read(&current->mm->mmap_sem);
1251 	vma = find_vma(current->mm, addr);
1252 	if (!vma)
1253 		goto out;
1254 
1255 	size = vma_kernel_pagesize(vma);
1256 
1257 out:
1258 	up_read(&current->mm->mmap_sem);
1259 
1260 	return size;
1261 }
1262 
1263 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1264 {
1265 	return slot->flags & KVM_MEM_READONLY;
1266 }
1267 
1268 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1269 				       gfn_t *nr_pages, bool write)
1270 {
1271 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1272 		return KVM_HVA_ERR_BAD;
1273 
1274 	if (memslot_is_readonly(slot) && write)
1275 		return KVM_HVA_ERR_RO_BAD;
1276 
1277 	if (nr_pages)
1278 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1279 
1280 	return __gfn_to_hva_memslot(slot, gfn);
1281 }
1282 
1283 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1284 				     gfn_t *nr_pages)
1285 {
1286 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1287 }
1288 
1289 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1290 					gfn_t gfn)
1291 {
1292 	return gfn_to_hva_many(slot, gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1295 
1296 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1297 {
1298 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_hva);
1301 
1302 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1303 {
1304 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1307 
1308 /*
1309  * If writable is set to false, the hva returned by this function is only
1310  * allowed to be read.
1311  */
1312 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1313 				      gfn_t gfn, bool *writable)
1314 {
1315 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1316 
1317 	if (!kvm_is_error_hva(hva) && writable)
1318 		*writable = !memslot_is_readonly(slot);
1319 
1320 	return hva;
1321 }
1322 
1323 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1324 {
1325 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1326 
1327 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1328 }
1329 
1330 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1331 {
1332 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1333 
1334 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336 
1337 static int get_user_page_nowait(unsigned long start, int write,
1338 		struct page **page)
1339 {
1340 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1341 
1342 	if (write)
1343 		flags |= FOLL_WRITE;
1344 
1345 	return __get_user_pages(current, current->mm, start, 1, flags, page,
1346 			NULL, NULL);
1347 }
1348 
1349 static inline int check_user_page_hwpoison(unsigned long addr)
1350 {
1351 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1352 
1353 	rc = __get_user_pages(current, current->mm, addr, 1,
1354 			      flags, NULL, NULL, NULL);
1355 	return rc == -EHWPOISON;
1356 }
1357 
1358 /*
1359  * The atomic path to get the writable pfn which will be stored in @pfn,
1360  * true indicates success, otherwise false is returned.
1361  */
1362 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1363 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1364 {
1365 	struct page *page[1];
1366 	int npages;
1367 
1368 	if (!(async || atomic))
1369 		return false;
1370 
1371 	/*
1372 	 * Fast pin a writable pfn only if it is a write fault request
1373 	 * or the caller allows to map a writable pfn for a read fault
1374 	 * request.
1375 	 */
1376 	if (!(write_fault || writable))
1377 		return false;
1378 
1379 	npages = __get_user_pages_fast(addr, 1, 1, page);
1380 	if (npages == 1) {
1381 		*pfn = page_to_pfn(page[0]);
1382 
1383 		if (writable)
1384 			*writable = true;
1385 		return true;
1386 	}
1387 
1388 	return false;
1389 }
1390 
1391 /*
1392  * The slow path to get the pfn of the specified host virtual address,
1393  * 1 indicates success, -errno is returned if error is detected.
1394  */
1395 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1396 			   bool *writable, kvm_pfn_t *pfn)
1397 {
1398 	struct page *page[1];
1399 	int npages = 0;
1400 
1401 	might_sleep();
1402 
1403 	if (writable)
1404 		*writable = write_fault;
1405 
1406 	if (async) {
1407 		down_read(&current->mm->mmap_sem);
1408 		npages = get_user_page_nowait(addr, write_fault, page);
1409 		up_read(&current->mm->mmap_sem);
1410 	} else
1411 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1412 						   write_fault, 0, page,
1413 						   FOLL_TOUCH|FOLL_HWPOISON);
1414 	if (npages != 1)
1415 		return npages;
1416 
1417 	/* map read fault as writable if possible */
1418 	if (unlikely(!write_fault) && writable) {
1419 		struct page *wpage[1];
1420 
1421 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1422 		if (npages == 1) {
1423 			*writable = true;
1424 			put_page(page[0]);
1425 			page[0] = wpage[0];
1426 		}
1427 
1428 		npages = 1;
1429 	}
1430 	*pfn = page_to_pfn(page[0]);
1431 	return npages;
1432 }
1433 
1434 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1435 {
1436 	if (unlikely(!(vma->vm_flags & VM_READ)))
1437 		return false;
1438 
1439 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1440 		return false;
1441 
1442 	return true;
1443 }
1444 
1445 /*
1446  * Pin guest page in memory and return its pfn.
1447  * @addr: host virtual address which maps memory to the guest
1448  * @atomic: whether this function can sleep
1449  * @async: whether this function need to wait IO complete if the
1450  *         host page is not in the memory
1451  * @write_fault: whether we should get a writable host page
1452  * @writable: whether it allows to map a writable host page for !@write_fault
1453  *
1454  * The function will map a writable host page for these two cases:
1455  * 1): @write_fault = true
1456  * 2): @write_fault = false && @writable, @writable will tell the caller
1457  *     whether the mapping is writable.
1458  */
1459 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1460 			bool write_fault, bool *writable)
1461 {
1462 	struct vm_area_struct *vma;
1463 	kvm_pfn_t pfn = 0;
1464 	int npages;
1465 
1466 	/* we can do it either atomically or asynchronously, not both */
1467 	BUG_ON(atomic && async);
1468 
1469 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1470 		return pfn;
1471 
1472 	if (atomic)
1473 		return KVM_PFN_ERR_FAULT;
1474 
1475 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1476 	if (npages == 1)
1477 		return pfn;
1478 
1479 	down_read(&current->mm->mmap_sem);
1480 	if (npages == -EHWPOISON ||
1481 	      (!async && check_user_page_hwpoison(addr))) {
1482 		pfn = KVM_PFN_ERR_HWPOISON;
1483 		goto exit;
1484 	}
1485 
1486 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1487 
1488 	if (vma == NULL)
1489 		pfn = KVM_PFN_ERR_FAULT;
1490 	else if ((vma->vm_flags & VM_PFNMAP)) {
1491 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1492 			vma->vm_pgoff;
1493 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1494 	} else {
1495 		if (async && vma_is_valid(vma, write_fault))
1496 			*async = true;
1497 		pfn = KVM_PFN_ERR_FAULT;
1498 	}
1499 exit:
1500 	up_read(&current->mm->mmap_sem);
1501 	return pfn;
1502 }
1503 
1504 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1505 			       bool atomic, bool *async, bool write_fault,
1506 			       bool *writable)
1507 {
1508 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1509 
1510 	if (addr == KVM_HVA_ERR_RO_BAD) {
1511 		if (writable)
1512 			*writable = false;
1513 		return KVM_PFN_ERR_RO_FAULT;
1514 	}
1515 
1516 	if (kvm_is_error_hva(addr)) {
1517 		if (writable)
1518 			*writable = false;
1519 		return KVM_PFN_NOSLOT;
1520 	}
1521 
1522 	/* Do not map writable pfn in the readonly memslot. */
1523 	if (writable && memslot_is_readonly(slot)) {
1524 		*writable = false;
1525 		writable = NULL;
1526 	}
1527 
1528 	return hva_to_pfn(addr, atomic, async, write_fault,
1529 			  writable);
1530 }
1531 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1532 
1533 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1534 		      bool *writable)
1535 {
1536 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1537 				    write_fault, writable);
1538 }
1539 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1540 
1541 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1542 {
1543 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1544 }
1545 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1546 
1547 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1548 {
1549 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1550 }
1551 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1552 
1553 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1554 {
1555 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1556 }
1557 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1558 
1559 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1560 {
1561 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1564 
1565 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1566 {
1567 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1568 }
1569 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1570 
1571 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1572 {
1573 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1576 
1577 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1578 			    struct page **pages, int nr_pages)
1579 {
1580 	unsigned long addr;
1581 	gfn_t entry;
1582 
1583 	addr = gfn_to_hva_many(slot, gfn, &entry);
1584 	if (kvm_is_error_hva(addr))
1585 		return -1;
1586 
1587 	if (entry < nr_pages)
1588 		return 0;
1589 
1590 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1591 }
1592 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1593 
1594 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1595 {
1596 	if (is_error_noslot_pfn(pfn))
1597 		return KVM_ERR_PTR_BAD_PAGE;
1598 
1599 	if (kvm_is_reserved_pfn(pfn)) {
1600 		WARN_ON(1);
1601 		return KVM_ERR_PTR_BAD_PAGE;
1602 	}
1603 
1604 	return pfn_to_page(pfn);
1605 }
1606 
1607 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1608 {
1609 	kvm_pfn_t pfn;
1610 
1611 	pfn = gfn_to_pfn(kvm, gfn);
1612 
1613 	return kvm_pfn_to_page(pfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_page);
1616 
1617 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619 	kvm_pfn_t pfn;
1620 
1621 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1622 
1623 	return kvm_pfn_to_page(pfn);
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1626 
1627 void kvm_release_page_clean(struct page *page)
1628 {
1629 	WARN_ON(is_error_page(page));
1630 
1631 	kvm_release_pfn_clean(page_to_pfn(page));
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1634 
1635 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1636 {
1637 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1638 		put_page(pfn_to_page(pfn));
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1641 
1642 void kvm_release_page_dirty(struct page *page)
1643 {
1644 	WARN_ON(is_error_page(page));
1645 
1646 	kvm_release_pfn_dirty(page_to_pfn(page));
1647 }
1648 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1649 
1650 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1651 {
1652 	kvm_set_pfn_dirty(pfn);
1653 	kvm_release_pfn_clean(pfn);
1654 }
1655 
1656 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1657 {
1658 	if (!kvm_is_reserved_pfn(pfn)) {
1659 		struct page *page = pfn_to_page(pfn);
1660 
1661 		if (!PageReserved(page))
1662 			SetPageDirty(page);
1663 	}
1664 }
1665 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1666 
1667 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1668 {
1669 	if (!kvm_is_reserved_pfn(pfn))
1670 		mark_page_accessed(pfn_to_page(pfn));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1673 
1674 void kvm_get_pfn(kvm_pfn_t pfn)
1675 {
1676 	if (!kvm_is_reserved_pfn(pfn))
1677 		get_page(pfn_to_page(pfn));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1680 
1681 static int next_segment(unsigned long len, int offset)
1682 {
1683 	if (len > PAGE_SIZE - offset)
1684 		return PAGE_SIZE - offset;
1685 	else
1686 		return len;
1687 }
1688 
1689 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1690 				 void *data, int offset, int len)
1691 {
1692 	int r;
1693 	unsigned long addr;
1694 
1695 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1696 	if (kvm_is_error_hva(addr))
1697 		return -EFAULT;
1698 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1699 	if (r)
1700 		return -EFAULT;
1701 	return 0;
1702 }
1703 
1704 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1705 			int len)
1706 {
1707 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1708 
1709 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1712 
1713 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1714 			     int offset, int len)
1715 {
1716 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1717 
1718 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1719 }
1720 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1721 
1722 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1723 {
1724 	gfn_t gfn = gpa >> PAGE_SHIFT;
1725 	int seg;
1726 	int offset = offset_in_page(gpa);
1727 	int ret;
1728 
1729 	while ((seg = next_segment(len, offset)) != 0) {
1730 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1731 		if (ret < 0)
1732 			return ret;
1733 		offset = 0;
1734 		len -= seg;
1735 		data += seg;
1736 		++gfn;
1737 	}
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_read_guest);
1741 
1742 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1743 {
1744 	gfn_t gfn = gpa >> PAGE_SHIFT;
1745 	int seg;
1746 	int offset = offset_in_page(gpa);
1747 	int ret;
1748 
1749 	while ((seg = next_segment(len, offset)) != 0) {
1750 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1751 		if (ret < 0)
1752 			return ret;
1753 		offset = 0;
1754 		len -= seg;
1755 		data += seg;
1756 		++gfn;
1757 	}
1758 	return 0;
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1761 
1762 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1763 			           void *data, int offset, unsigned long len)
1764 {
1765 	int r;
1766 	unsigned long addr;
1767 
1768 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1769 	if (kvm_is_error_hva(addr))
1770 		return -EFAULT;
1771 	pagefault_disable();
1772 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1773 	pagefault_enable();
1774 	if (r)
1775 		return -EFAULT;
1776 	return 0;
1777 }
1778 
1779 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1780 			  unsigned long len)
1781 {
1782 	gfn_t gfn = gpa >> PAGE_SHIFT;
1783 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784 	int offset = offset_in_page(gpa);
1785 
1786 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1789 
1790 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1791 			       void *data, unsigned long len)
1792 {
1793 	gfn_t gfn = gpa >> PAGE_SHIFT;
1794 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1795 	int offset = offset_in_page(gpa);
1796 
1797 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1800 
1801 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1802 			          const void *data, int offset, int len)
1803 {
1804 	int r;
1805 	unsigned long addr;
1806 
1807 	addr = gfn_to_hva_memslot(memslot, gfn);
1808 	if (kvm_is_error_hva(addr))
1809 		return -EFAULT;
1810 	r = __copy_to_user((void __user *)addr + offset, data, len);
1811 	if (r)
1812 		return -EFAULT;
1813 	mark_page_dirty_in_slot(memslot, gfn);
1814 	return 0;
1815 }
1816 
1817 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1818 			 const void *data, int offset, int len)
1819 {
1820 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1821 
1822 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1823 }
1824 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1825 
1826 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1827 			      const void *data, int offset, int len)
1828 {
1829 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1830 
1831 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1834 
1835 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1836 		    unsigned long len)
1837 {
1838 	gfn_t gfn = gpa >> PAGE_SHIFT;
1839 	int seg;
1840 	int offset = offset_in_page(gpa);
1841 	int ret;
1842 
1843 	while ((seg = next_segment(len, offset)) != 0) {
1844 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1845 		if (ret < 0)
1846 			return ret;
1847 		offset = 0;
1848 		len -= seg;
1849 		data += seg;
1850 		++gfn;
1851 	}
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_write_guest);
1855 
1856 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1857 		         unsigned long len)
1858 {
1859 	gfn_t gfn = gpa >> PAGE_SHIFT;
1860 	int seg;
1861 	int offset = offset_in_page(gpa);
1862 	int ret;
1863 
1864 	while ((seg = next_segment(len, offset)) != 0) {
1865 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1866 		if (ret < 0)
1867 			return ret;
1868 		offset = 0;
1869 		len -= seg;
1870 		data += seg;
1871 		++gfn;
1872 	}
1873 	return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1876 
1877 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1878 			      gpa_t gpa, unsigned long len)
1879 {
1880 	struct kvm_memslots *slots = kvm_memslots(kvm);
1881 	int offset = offset_in_page(gpa);
1882 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1883 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1884 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1885 	gfn_t nr_pages_avail;
1886 
1887 	ghc->gpa = gpa;
1888 	ghc->generation = slots->generation;
1889 	ghc->len = len;
1890 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1891 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1892 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1893 		ghc->hva += offset;
1894 	} else {
1895 		/*
1896 		 * If the requested region crosses two memslots, we still
1897 		 * verify that the entire region is valid here.
1898 		 */
1899 		while (start_gfn <= end_gfn) {
1900 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1901 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1902 						   &nr_pages_avail);
1903 			if (kvm_is_error_hva(ghc->hva))
1904 				return -EFAULT;
1905 			start_gfn += nr_pages_avail;
1906 		}
1907 		/* Use the slow path for cross page reads and writes. */
1908 		ghc->memslot = NULL;
1909 	}
1910 	return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1913 
1914 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1915 			   void *data, unsigned long len)
1916 {
1917 	struct kvm_memslots *slots = kvm_memslots(kvm);
1918 	int r;
1919 
1920 	BUG_ON(len > ghc->len);
1921 
1922 	if (slots->generation != ghc->generation)
1923 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1924 
1925 	if (unlikely(!ghc->memslot))
1926 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1927 
1928 	if (kvm_is_error_hva(ghc->hva))
1929 		return -EFAULT;
1930 
1931 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1932 	if (r)
1933 		return -EFAULT;
1934 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1935 
1936 	return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1939 
1940 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941 			   void *data, unsigned long len)
1942 {
1943 	struct kvm_memslots *slots = kvm_memslots(kvm);
1944 	int r;
1945 
1946 	BUG_ON(len > ghc->len);
1947 
1948 	if (slots->generation != ghc->generation)
1949 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1950 
1951 	if (unlikely(!ghc->memslot))
1952 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1953 
1954 	if (kvm_is_error_hva(ghc->hva))
1955 		return -EFAULT;
1956 
1957 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1958 	if (r)
1959 		return -EFAULT;
1960 
1961 	return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1964 
1965 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1966 {
1967 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1968 
1969 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1970 }
1971 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1972 
1973 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1974 {
1975 	gfn_t gfn = gpa >> PAGE_SHIFT;
1976 	int seg;
1977 	int offset = offset_in_page(gpa);
1978 	int ret;
1979 
1980 	while ((seg = next_segment(len, offset)) != 0) {
1981 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1982 		if (ret < 0)
1983 			return ret;
1984 		offset = 0;
1985 		len -= seg;
1986 		++gfn;
1987 	}
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1991 
1992 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1993 				    gfn_t gfn)
1994 {
1995 	if (memslot && memslot->dirty_bitmap) {
1996 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1997 
1998 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1999 	}
2000 }
2001 
2002 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2003 {
2004 	struct kvm_memory_slot *memslot;
2005 
2006 	memslot = gfn_to_memslot(kvm, gfn);
2007 	mark_page_dirty_in_slot(memslot, gfn);
2008 }
2009 EXPORT_SYMBOL_GPL(mark_page_dirty);
2010 
2011 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2012 {
2013 	struct kvm_memory_slot *memslot;
2014 
2015 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2016 	mark_page_dirty_in_slot(memslot, gfn);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2019 
2020 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2021 {
2022 	unsigned int old, val, grow;
2023 
2024 	old = val = vcpu->halt_poll_ns;
2025 	grow = READ_ONCE(halt_poll_ns_grow);
2026 	/* 10us base */
2027 	if (val == 0 && grow)
2028 		val = 10000;
2029 	else
2030 		val *= grow;
2031 
2032 	if (val > halt_poll_ns)
2033 		val = halt_poll_ns;
2034 
2035 	vcpu->halt_poll_ns = val;
2036 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2037 }
2038 
2039 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2040 {
2041 	unsigned int old, val, shrink;
2042 
2043 	old = val = vcpu->halt_poll_ns;
2044 	shrink = READ_ONCE(halt_poll_ns_shrink);
2045 	if (shrink == 0)
2046 		val = 0;
2047 	else
2048 		val /= shrink;
2049 
2050 	vcpu->halt_poll_ns = val;
2051 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2052 }
2053 
2054 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2055 {
2056 	if (kvm_arch_vcpu_runnable(vcpu)) {
2057 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2058 		return -EINTR;
2059 	}
2060 	if (kvm_cpu_has_pending_timer(vcpu))
2061 		return -EINTR;
2062 	if (signal_pending(current))
2063 		return -EINTR;
2064 
2065 	return 0;
2066 }
2067 
2068 /*
2069  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2070  */
2071 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2072 {
2073 	ktime_t start, cur;
2074 	DECLARE_SWAITQUEUE(wait);
2075 	bool waited = false;
2076 	u64 block_ns;
2077 
2078 	start = cur = ktime_get();
2079 	if (vcpu->halt_poll_ns) {
2080 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2081 
2082 		++vcpu->stat.halt_attempted_poll;
2083 		do {
2084 			/*
2085 			 * This sets KVM_REQ_UNHALT if an interrupt
2086 			 * arrives.
2087 			 */
2088 			if (kvm_vcpu_check_block(vcpu) < 0) {
2089 				++vcpu->stat.halt_successful_poll;
2090 				if (!vcpu_valid_wakeup(vcpu))
2091 					++vcpu->stat.halt_poll_invalid;
2092 				goto out;
2093 			}
2094 			cur = ktime_get();
2095 		} while (single_task_running() && ktime_before(cur, stop));
2096 	}
2097 
2098 	kvm_arch_vcpu_blocking(vcpu);
2099 
2100 	for (;;) {
2101 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2102 
2103 		if (kvm_vcpu_check_block(vcpu) < 0)
2104 			break;
2105 
2106 		waited = true;
2107 		schedule();
2108 	}
2109 
2110 	finish_swait(&vcpu->wq, &wait);
2111 	cur = ktime_get();
2112 
2113 	kvm_arch_vcpu_unblocking(vcpu);
2114 out:
2115 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2116 
2117 	if (!vcpu_valid_wakeup(vcpu))
2118 		shrink_halt_poll_ns(vcpu);
2119 	else if (halt_poll_ns) {
2120 		if (block_ns <= vcpu->halt_poll_ns)
2121 			;
2122 		/* we had a long block, shrink polling */
2123 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2124 			shrink_halt_poll_ns(vcpu);
2125 		/* we had a short halt and our poll time is too small */
2126 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2127 			block_ns < halt_poll_ns)
2128 			grow_halt_poll_ns(vcpu);
2129 	} else
2130 		vcpu->halt_poll_ns = 0;
2131 
2132 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2133 	kvm_arch_vcpu_block_finish(vcpu);
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2136 
2137 #ifndef CONFIG_S390
2138 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2139 {
2140 	struct swait_queue_head *wqp;
2141 
2142 	wqp = kvm_arch_vcpu_wq(vcpu);
2143 	if (swait_active(wqp)) {
2144 		swake_up(wqp);
2145 		++vcpu->stat.halt_wakeup;
2146 	}
2147 
2148 }
2149 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2150 
2151 /*
2152  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2153  */
2154 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2155 {
2156 	int me;
2157 	int cpu = vcpu->cpu;
2158 
2159 	kvm_vcpu_wake_up(vcpu);
2160 	me = get_cpu();
2161 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2162 		if (kvm_arch_vcpu_should_kick(vcpu))
2163 			smp_send_reschedule(cpu);
2164 	put_cpu();
2165 }
2166 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2167 #endif /* !CONFIG_S390 */
2168 
2169 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2170 {
2171 	struct pid *pid;
2172 	struct task_struct *task = NULL;
2173 	int ret = 0;
2174 
2175 	rcu_read_lock();
2176 	pid = rcu_dereference(target->pid);
2177 	if (pid)
2178 		task = get_pid_task(pid, PIDTYPE_PID);
2179 	rcu_read_unlock();
2180 	if (!task)
2181 		return ret;
2182 	ret = yield_to(task, 1);
2183 	put_task_struct(task);
2184 
2185 	return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2188 
2189 /*
2190  * Helper that checks whether a VCPU is eligible for directed yield.
2191  * Most eligible candidate to yield is decided by following heuristics:
2192  *
2193  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2194  *  (preempted lock holder), indicated by @in_spin_loop.
2195  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2196  *
2197  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2198  *  chance last time (mostly it has become eligible now since we have probably
2199  *  yielded to lockholder in last iteration. This is done by toggling
2200  *  @dy_eligible each time a VCPU checked for eligibility.)
2201  *
2202  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2203  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2204  *  burning. Giving priority for a potential lock-holder increases lock
2205  *  progress.
2206  *
2207  *  Since algorithm is based on heuristics, accessing another VCPU data without
2208  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2209  *  and continue with next VCPU and so on.
2210  */
2211 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2212 {
2213 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2214 	bool eligible;
2215 
2216 	eligible = !vcpu->spin_loop.in_spin_loop ||
2217 		    vcpu->spin_loop.dy_eligible;
2218 
2219 	if (vcpu->spin_loop.in_spin_loop)
2220 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2221 
2222 	return eligible;
2223 #else
2224 	return true;
2225 #endif
2226 }
2227 
2228 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2229 {
2230 	struct kvm *kvm = me->kvm;
2231 	struct kvm_vcpu *vcpu;
2232 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2233 	int yielded = 0;
2234 	int try = 3;
2235 	int pass;
2236 	int i;
2237 
2238 	kvm_vcpu_set_in_spin_loop(me, true);
2239 	/*
2240 	 * We boost the priority of a VCPU that is runnable but not
2241 	 * currently running, because it got preempted by something
2242 	 * else and called schedule in __vcpu_run.  Hopefully that
2243 	 * VCPU is holding the lock that we need and will release it.
2244 	 * We approximate round-robin by starting at the last boosted VCPU.
2245 	 */
2246 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2247 		kvm_for_each_vcpu(i, vcpu, kvm) {
2248 			if (!pass && i <= last_boosted_vcpu) {
2249 				i = last_boosted_vcpu;
2250 				continue;
2251 			} else if (pass && i > last_boosted_vcpu)
2252 				break;
2253 			if (!ACCESS_ONCE(vcpu->preempted))
2254 				continue;
2255 			if (vcpu == me)
2256 				continue;
2257 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2258 				continue;
2259 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2260 				continue;
2261 
2262 			yielded = kvm_vcpu_yield_to(vcpu);
2263 			if (yielded > 0) {
2264 				kvm->last_boosted_vcpu = i;
2265 				break;
2266 			} else if (yielded < 0) {
2267 				try--;
2268 				if (!try)
2269 					break;
2270 			}
2271 		}
2272 	}
2273 	kvm_vcpu_set_in_spin_loop(me, false);
2274 
2275 	/* Ensure vcpu is not eligible during next spinloop */
2276 	kvm_vcpu_set_dy_eligible(me, false);
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2279 
2280 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2281 {
2282 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2283 	struct page *page;
2284 
2285 	if (vmf->pgoff == 0)
2286 		page = virt_to_page(vcpu->run);
2287 #ifdef CONFIG_X86
2288 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2289 		page = virt_to_page(vcpu->arch.pio_data);
2290 #endif
2291 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2292 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2293 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2294 #endif
2295 	else
2296 		return kvm_arch_vcpu_fault(vcpu, vmf);
2297 	get_page(page);
2298 	vmf->page = page;
2299 	return 0;
2300 }
2301 
2302 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2303 	.fault = kvm_vcpu_fault,
2304 };
2305 
2306 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2307 {
2308 	vma->vm_ops = &kvm_vcpu_vm_ops;
2309 	return 0;
2310 }
2311 
2312 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2313 {
2314 	struct kvm_vcpu *vcpu = filp->private_data;
2315 
2316 	kvm_put_kvm(vcpu->kvm);
2317 	return 0;
2318 }
2319 
2320 static struct file_operations kvm_vcpu_fops = {
2321 	.release        = kvm_vcpu_release,
2322 	.unlocked_ioctl = kvm_vcpu_ioctl,
2323 #ifdef CONFIG_KVM_COMPAT
2324 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2325 #endif
2326 	.mmap           = kvm_vcpu_mmap,
2327 	.llseek		= noop_llseek,
2328 };
2329 
2330 /*
2331  * Allocates an inode for the vcpu.
2332  */
2333 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2334 {
2335 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2336 }
2337 
2338 /*
2339  * Creates some virtual cpus.  Good luck creating more than one.
2340  */
2341 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2342 {
2343 	int r;
2344 	struct kvm_vcpu *vcpu;
2345 
2346 	if (id >= KVM_MAX_VCPU_ID)
2347 		return -EINVAL;
2348 
2349 	vcpu = kvm_arch_vcpu_create(kvm, id);
2350 	if (IS_ERR(vcpu))
2351 		return PTR_ERR(vcpu);
2352 
2353 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2354 
2355 	r = kvm_arch_vcpu_setup(vcpu);
2356 	if (r)
2357 		goto vcpu_destroy;
2358 
2359 	mutex_lock(&kvm->lock);
2360 	if (!kvm_vcpu_compatible(vcpu)) {
2361 		r = -EINVAL;
2362 		goto unlock_vcpu_destroy;
2363 	}
2364 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2365 		r = -EINVAL;
2366 		goto unlock_vcpu_destroy;
2367 	}
2368 	if (kvm_get_vcpu_by_id(kvm, id)) {
2369 		r = -EEXIST;
2370 		goto unlock_vcpu_destroy;
2371 	}
2372 
2373 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2374 
2375 	/* Now it's all set up, let userspace reach it */
2376 	kvm_get_kvm(kvm);
2377 	r = create_vcpu_fd(vcpu);
2378 	if (r < 0) {
2379 		kvm_put_kvm(kvm);
2380 		goto unlock_vcpu_destroy;
2381 	}
2382 
2383 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2384 
2385 	/*
2386 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2387 	 * before kvm->online_vcpu's incremented value.
2388 	 */
2389 	smp_wmb();
2390 	atomic_inc(&kvm->online_vcpus);
2391 
2392 	mutex_unlock(&kvm->lock);
2393 	kvm_arch_vcpu_postcreate(vcpu);
2394 	return r;
2395 
2396 unlock_vcpu_destroy:
2397 	mutex_unlock(&kvm->lock);
2398 vcpu_destroy:
2399 	kvm_arch_vcpu_destroy(vcpu);
2400 	return r;
2401 }
2402 
2403 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2404 {
2405 	if (sigset) {
2406 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2407 		vcpu->sigset_active = 1;
2408 		vcpu->sigset = *sigset;
2409 	} else
2410 		vcpu->sigset_active = 0;
2411 	return 0;
2412 }
2413 
2414 static long kvm_vcpu_ioctl(struct file *filp,
2415 			   unsigned int ioctl, unsigned long arg)
2416 {
2417 	struct kvm_vcpu *vcpu = filp->private_data;
2418 	void __user *argp = (void __user *)arg;
2419 	int r;
2420 	struct kvm_fpu *fpu = NULL;
2421 	struct kvm_sregs *kvm_sregs = NULL;
2422 
2423 	if (vcpu->kvm->mm != current->mm)
2424 		return -EIO;
2425 
2426 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2427 		return -EINVAL;
2428 
2429 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2430 	/*
2431 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2432 	 * so vcpu_load() would break it.
2433 	 */
2434 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2435 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2436 #endif
2437 
2438 
2439 	r = vcpu_load(vcpu);
2440 	if (r)
2441 		return r;
2442 	switch (ioctl) {
2443 	case KVM_RUN:
2444 		r = -EINVAL;
2445 		if (arg)
2446 			goto out;
2447 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2448 			/* The thread running this VCPU changed. */
2449 			struct pid *oldpid = vcpu->pid;
2450 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2451 
2452 			rcu_assign_pointer(vcpu->pid, newpid);
2453 			if (oldpid)
2454 				synchronize_rcu();
2455 			put_pid(oldpid);
2456 		}
2457 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2458 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2459 		break;
2460 	case KVM_GET_REGS: {
2461 		struct kvm_regs *kvm_regs;
2462 
2463 		r = -ENOMEM;
2464 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2465 		if (!kvm_regs)
2466 			goto out;
2467 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2468 		if (r)
2469 			goto out_free1;
2470 		r = -EFAULT;
2471 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2472 			goto out_free1;
2473 		r = 0;
2474 out_free1:
2475 		kfree(kvm_regs);
2476 		break;
2477 	}
2478 	case KVM_SET_REGS: {
2479 		struct kvm_regs *kvm_regs;
2480 
2481 		r = -ENOMEM;
2482 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2483 		if (IS_ERR(kvm_regs)) {
2484 			r = PTR_ERR(kvm_regs);
2485 			goto out;
2486 		}
2487 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2488 		kfree(kvm_regs);
2489 		break;
2490 	}
2491 	case KVM_GET_SREGS: {
2492 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2493 		r = -ENOMEM;
2494 		if (!kvm_sregs)
2495 			goto out;
2496 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2497 		if (r)
2498 			goto out;
2499 		r = -EFAULT;
2500 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2501 			goto out;
2502 		r = 0;
2503 		break;
2504 	}
2505 	case KVM_SET_SREGS: {
2506 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2507 		if (IS_ERR(kvm_sregs)) {
2508 			r = PTR_ERR(kvm_sregs);
2509 			kvm_sregs = NULL;
2510 			goto out;
2511 		}
2512 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2513 		break;
2514 	}
2515 	case KVM_GET_MP_STATE: {
2516 		struct kvm_mp_state mp_state;
2517 
2518 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2519 		if (r)
2520 			goto out;
2521 		r = -EFAULT;
2522 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2523 			goto out;
2524 		r = 0;
2525 		break;
2526 	}
2527 	case KVM_SET_MP_STATE: {
2528 		struct kvm_mp_state mp_state;
2529 
2530 		r = -EFAULT;
2531 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2532 			goto out;
2533 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2534 		break;
2535 	}
2536 	case KVM_TRANSLATE: {
2537 		struct kvm_translation tr;
2538 
2539 		r = -EFAULT;
2540 		if (copy_from_user(&tr, argp, sizeof(tr)))
2541 			goto out;
2542 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2543 		if (r)
2544 			goto out;
2545 		r = -EFAULT;
2546 		if (copy_to_user(argp, &tr, sizeof(tr)))
2547 			goto out;
2548 		r = 0;
2549 		break;
2550 	}
2551 	case KVM_SET_GUEST_DEBUG: {
2552 		struct kvm_guest_debug dbg;
2553 
2554 		r = -EFAULT;
2555 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2556 			goto out;
2557 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2558 		break;
2559 	}
2560 	case KVM_SET_SIGNAL_MASK: {
2561 		struct kvm_signal_mask __user *sigmask_arg = argp;
2562 		struct kvm_signal_mask kvm_sigmask;
2563 		sigset_t sigset, *p;
2564 
2565 		p = NULL;
2566 		if (argp) {
2567 			r = -EFAULT;
2568 			if (copy_from_user(&kvm_sigmask, argp,
2569 					   sizeof(kvm_sigmask)))
2570 				goto out;
2571 			r = -EINVAL;
2572 			if (kvm_sigmask.len != sizeof(sigset))
2573 				goto out;
2574 			r = -EFAULT;
2575 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2576 					   sizeof(sigset)))
2577 				goto out;
2578 			p = &sigset;
2579 		}
2580 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2581 		break;
2582 	}
2583 	case KVM_GET_FPU: {
2584 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2585 		r = -ENOMEM;
2586 		if (!fpu)
2587 			goto out;
2588 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2589 		if (r)
2590 			goto out;
2591 		r = -EFAULT;
2592 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2593 			goto out;
2594 		r = 0;
2595 		break;
2596 	}
2597 	case KVM_SET_FPU: {
2598 		fpu = memdup_user(argp, sizeof(*fpu));
2599 		if (IS_ERR(fpu)) {
2600 			r = PTR_ERR(fpu);
2601 			fpu = NULL;
2602 			goto out;
2603 		}
2604 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2605 		break;
2606 	}
2607 	default:
2608 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2609 	}
2610 out:
2611 	vcpu_put(vcpu);
2612 	kfree(fpu);
2613 	kfree(kvm_sregs);
2614 	return r;
2615 }
2616 
2617 #ifdef CONFIG_KVM_COMPAT
2618 static long kvm_vcpu_compat_ioctl(struct file *filp,
2619 				  unsigned int ioctl, unsigned long arg)
2620 {
2621 	struct kvm_vcpu *vcpu = filp->private_data;
2622 	void __user *argp = compat_ptr(arg);
2623 	int r;
2624 
2625 	if (vcpu->kvm->mm != current->mm)
2626 		return -EIO;
2627 
2628 	switch (ioctl) {
2629 	case KVM_SET_SIGNAL_MASK: {
2630 		struct kvm_signal_mask __user *sigmask_arg = argp;
2631 		struct kvm_signal_mask kvm_sigmask;
2632 		compat_sigset_t csigset;
2633 		sigset_t sigset;
2634 
2635 		if (argp) {
2636 			r = -EFAULT;
2637 			if (copy_from_user(&kvm_sigmask, argp,
2638 					   sizeof(kvm_sigmask)))
2639 				goto out;
2640 			r = -EINVAL;
2641 			if (kvm_sigmask.len != sizeof(csigset))
2642 				goto out;
2643 			r = -EFAULT;
2644 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2645 					   sizeof(csigset)))
2646 				goto out;
2647 			sigset_from_compat(&sigset, &csigset);
2648 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2649 		} else
2650 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2651 		break;
2652 	}
2653 	default:
2654 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2655 	}
2656 
2657 out:
2658 	return r;
2659 }
2660 #endif
2661 
2662 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2663 				 int (*accessor)(struct kvm_device *dev,
2664 						 struct kvm_device_attr *attr),
2665 				 unsigned long arg)
2666 {
2667 	struct kvm_device_attr attr;
2668 
2669 	if (!accessor)
2670 		return -EPERM;
2671 
2672 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2673 		return -EFAULT;
2674 
2675 	return accessor(dev, &attr);
2676 }
2677 
2678 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2679 			     unsigned long arg)
2680 {
2681 	struct kvm_device *dev = filp->private_data;
2682 
2683 	switch (ioctl) {
2684 	case KVM_SET_DEVICE_ATTR:
2685 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2686 	case KVM_GET_DEVICE_ATTR:
2687 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2688 	case KVM_HAS_DEVICE_ATTR:
2689 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2690 	default:
2691 		if (dev->ops->ioctl)
2692 			return dev->ops->ioctl(dev, ioctl, arg);
2693 
2694 		return -ENOTTY;
2695 	}
2696 }
2697 
2698 static int kvm_device_release(struct inode *inode, struct file *filp)
2699 {
2700 	struct kvm_device *dev = filp->private_data;
2701 	struct kvm *kvm = dev->kvm;
2702 
2703 	kvm_put_kvm(kvm);
2704 	return 0;
2705 }
2706 
2707 static const struct file_operations kvm_device_fops = {
2708 	.unlocked_ioctl = kvm_device_ioctl,
2709 #ifdef CONFIG_KVM_COMPAT
2710 	.compat_ioctl = kvm_device_ioctl,
2711 #endif
2712 	.release = kvm_device_release,
2713 };
2714 
2715 struct kvm_device *kvm_device_from_filp(struct file *filp)
2716 {
2717 	if (filp->f_op != &kvm_device_fops)
2718 		return NULL;
2719 
2720 	return filp->private_data;
2721 }
2722 
2723 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2724 #ifdef CONFIG_KVM_MPIC
2725 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2726 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2727 #endif
2728 
2729 #ifdef CONFIG_KVM_XICS
2730 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2731 #endif
2732 };
2733 
2734 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2735 {
2736 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2737 		return -ENOSPC;
2738 
2739 	if (kvm_device_ops_table[type] != NULL)
2740 		return -EEXIST;
2741 
2742 	kvm_device_ops_table[type] = ops;
2743 	return 0;
2744 }
2745 
2746 void kvm_unregister_device_ops(u32 type)
2747 {
2748 	if (kvm_device_ops_table[type] != NULL)
2749 		kvm_device_ops_table[type] = NULL;
2750 }
2751 
2752 static int kvm_ioctl_create_device(struct kvm *kvm,
2753 				   struct kvm_create_device *cd)
2754 {
2755 	struct kvm_device_ops *ops = NULL;
2756 	struct kvm_device *dev;
2757 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2758 	int ret;
2759 
2760 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2761 		return -ENODEV;
2762 
2763 	ops = kvm_device_ops_table[cd->type];
2764 	if (ops == NULL)
2765 		return -ENODEV;
2766 
2767 	if (test)
2768 		return 0;
2769 
2770 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2771 	if (!dev)
2772 		return -ENOMEM;
2773 
2774 	dev->ops = ops;
2775 	dev->kvm = kvm;
2776 
2777 	ret = ops->create(dev, cd->type);
2778 	if (ret < 0) {
2779 		kfree(dev);
2780 		return ret;
2781 	}
2782 
2783 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2784 	if (ret < 0) {
2785 		ops->destroy(dev);
2786 		return ret;
2787 	}
2788 
2789 	list_add(&dev->vm_node, &kvm->devices);
2790 	kvm_get_kvm(kvm);
2791 	cd->fd = ret;
2792 	return 0;
2793 }
2794 
2795 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2796 {
2797 	switch (arg) {
2798 	case KVM_CAP_USER_MEMORY:
2799 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2800 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2801 	case KVM_CAP_INTERNAL_ERROR_DATA:
2802 #ifdef CONFIG_HAVE_KVM_MSI
2803 	case KVM_CAP_SIGNAL_MSI:
2804 #endif
2805 #ifdef CONFIG_HAVE_KVM_IRQFD
2806 	case KVM_CAP_IRQFD:
2807 	case KVM_CAP_IRQFD_RESAMPLE:
2808 #endif
2809 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2810 	case KVM_CAP_CHECK_EXTENSION_VM:
2811 		return 1;
2812 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2813 	case KVM_CAP_IRQ_ROUTING:
2814 		return KVM_MAX_IRQ_ROUTES;
2815 #endif
2816 #if KVM_ADDRESS_SPACE_NUM > 1
2817 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2818 		return KVM_ADDRESS_SPACE_NUM;
2819 #endif
2820 	case KVM_CAP_MAX_VCPU_ID:
2821 		return KVM_MAX_VCPU_ID;
2822 	default:
2823 		break;
2824 	}
2825 	return kvm_vm_ioctl_check_extension(kvm, arg);
2826 }
2827 
2828 static long kvm_vm_ioctl(struct file *filp,
2829 			   unsigned int ioctl, unsigned long arg)
2830 {
2831 	struct kvm *kvm = filp->private_data;
2832 	void __user *argp = (void __user *)arg;
2833 	int r;
2834 
2835 	if (kvm->mm != current->mm)
2836 		return -EIO;
2837 	switch (ioctl) {
2838 	case KVM_CREATE_VCPU:
2839 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2840 		break;
2841 	case KVM_SET_USER_MEMORY_REGION: {
2842 		struct kvm_userspace_memory_region kvm_userspace_mem;
2843 
2844 		r = -EFAULT;
2845 		if (copy_from_user(&kvm_userspace_mem, argp,
2846 						sizeof(kvm_userspace_mem)))
2847 			goto out;
2848 
2849 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2850 		break;
2851 	}
2852 	case KVM_GET_DIRTY_LOG: {
2853 		struct kvm_dirty_log log;
2854 
2855 		r = -EFAULT;
2856 		if (copy_from_user(&log, argp, sizeof(log)))
2857 			goto out;
2858 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2859 		break;
2860 	}
2861 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2862 	case KVM_REGISTER_COALESCED_MMIO: {
2863 		struct kvm_coalesced_mmio_zone zone;
2864 
2865 		r = -EFAULT;
2866 		if (copy_from_user(&zone, argp, sizeof(zone)))
2867 			goto out;
2868 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2869 		break;
2870 	}
2871 	case KVM_UNREGISTER_COALESCED_MMIO: {
2872 		struct kvm_coalesced_mmio_zone zone;
2873 
2874 		r = -EFAULT;
2875 		if (copy_from_user(&zone, argp, sizeof(zone)))
2876 			goto out;
2877 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2878 		break;
2879 	}
2880 #endif
2881 	case KVM_IRQFD: {
2882 		struct kvm_irqfd data;
2883 
2884 		r = -EFAULT;
2885 		if (copy_from_user(&data, argp, sizeof(data)))
2886 			goto out;
2887 		r = kvm_irqfd(kvm, &data);
2888 		break;
2889 	}
2890 	case KVM_IOEVENTFD: {
2891 		struct kvm_ioeventfd data;
2892 
2893 		r = -EFAULT;
2894 		if (copy_from_user(&data, argp, sizeof(data)))
2895 			goto out;
2896 		r = kvm_ioeventfd(kvm, &data);
2897 		break;
2898 	}
2899 #ifdef CONFIG_HAVE_KVM_MSI
2900 	case KVM_SIGNAL_MSI: {
2901 		struct kvm_msi msi;
2902 
2903 		r = -EFAULT;
2904 		if (copy_from_user(&msi, argp, sizeof(msi)))
2905 			goto out;
2906 		r = kvm_send_userspace_msi(kvm, &msi);
2907 		break;
2908 	}
2909 #endif
2910 #ifdef __KVM_HAVE_IRQ_LINE
2911 	case KVM_IRQ_LINE_STATUS:
2912 	case KVM_IRQ_LINE: {
2913 		struct kvm_irq_level irq_event;
2914 
2915 		r = -EFAULT;
2916 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2917 			goto out;
2918 
2919 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2920 					ioctl == KVM_IRQ_LINE_STATUS);
2921 		if (r)
2922 			goto out;
2923 
2924 		r = -EFAULT;
2925 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2926 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2927 				goto out;
2928 		}
2929 
2930 		r = 0;
2931 		break;
2932 	}
2933 #endif
2934 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2935 	case KVM_SET_GSI_ROUTING: {
2936 		struct kvm_irq_routing routing;
2937 		struct kvm_irq_routing __user *urouting;
2938 		struct kvm_irq_routing_entry *entries = NULL;
2939 
2940 		r = -EFAULT;
2941 		if (copy_from_user(&routing, argp, sizeof(routing)))
2942 			goto out;
2943 		r = -EINVAL;
2944 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2945 			goto out;
2946 		if (routing.flags)
2947 			goto out;
2948 		if (routing.nr) {
2949 			r = -ENOMEM;
2950 			entries = vmalloc(routing.nr * sizeof(*entries));
2951 			if (!entries)
2952 				goto out;
2953 			r = -EFAULT;
2954 			urouting = argp;
2955 			if (copy_from_user(entries, urouting->entries,
2956 					   routing.nr * sizeof(*entries)))
2957 				goto out_free_irq_routing;
2958 		}
2959 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2960 					routing.flags);
2961 out_free_irq_routing:
2962 		vfree(entries);
2963 		break;
2964 	}
2965 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2966 	case KVM_CREATE_DEVICE: {
2967 		struct kvm_create_device cd;
2968 
2969 		r = -EFAULT;
2970 		if (copy_from_user(&cd, argp, sizeof(cd)))
2971 			goto out;
2972 
2973 		r = kvm_ioctl_create_device(kvm, &cd);
2974 		if (r)
2975 			goto out;
2976 
2977 		r = -EFAULT;
2978 		if (copy_to_user(argp, &cd, sizeof(cd)))
2979 			goto out;
2980 
2981 		r = 0;
2982 		break;
2983 	}
2984 	case KVM_CHECK_EXTENSION:
2985 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2986 		break;
2987 	default:
2988 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2989 	}
2990 out:
2991 	return r;
2992 }
2993 
2994 #ifdef CONFIG_KVM_COMPAT
2995 struct compat_kvm_dirty_log {
2996 	__u32 slot;
2997 	__u32 padding1;
2998 	union {
2999 		compat_uptr_t dirty_bitmap; /* one bit per page */
3000 		__u64 padding2;
3001 	};
3002 };
3003 
3004 static long kvm_vm_compat_ioctl(struct file *filp,
3005 			   unsigned int ioctl, unsigned long arg)
3006 {
3007 	struct kvm *kvm = filp->private_data;
3008 	int r;
3009 
3010 	if (kvm->mm != current->mm)
3011 		return -EIO;
3012 	switch (ioctl) {
3013 	case KVM_GET_DIRTY_LOG: {
3014 		struct compat_kvm_dirty_log compat_log;
3015 		struct kvm_dirty_log log;
3016 
3017 		r = -EFAULT;
3018 		if (copy_from_user(&compat_log, (void __user *)arg,
3019 				   sizeof(compat_log)))
3020 			goto out;
3021 		log.slot	 = compat_log.slot;
3022 		log.padding1	 = compat_log.padding1;
3023 		log.padding2	 = compat_log.padding2;
3024 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3025 
3026 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3027 		break;
3028 	}
3029 	default:
3030 		r = kvm_vm_ioctl(filp, ioctl, arg);
3031 	}
3032 
3033 out:
3034 	return r;
3035 }
3036 #endif
3037 
3038 static struct file_operations kvm_vm_fops = {
3039 	.release        = kvm_vm_release,
3040 	.unlocked_ioctl = kvm_vm_ioctl,
3041 #ifdef CONFIG_KVM_COMPAT
3042 	.compat_ioctl   = kvm_vm_compat_ioctl,
3043 #endif
3044 	.llseek		= noop_llseek,
3045 };
3046 
3047 static int kvm_dev_ioctl_create_vm(unsigned long type)
3048 {
3049 	int r;
3050 	struct kvm *kvm;
3051 
3052 	kvm = kvm_create_vm(type);
3053 	if (IS_ERR(kvm))
3054 		return PTR_ERR(kvm);
3055 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3056 	r = kvm_coalesced_mmio_init(kvm);
3057 	if (r < 0) {
3058 		kvm_put_kvm(kvm);
3059 		return r;
3060 	}
3061 #endif
3062 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
3063 	if (r < 0) {
3064 		kvm_put_kvm(kvm);
3065 		return r;
3066 	}
3067 
3068 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3069 		kvm_put_kvm(kvm);
3070 		return -ENOMEM;
3071 	}
3072 
3073 	return r;
3074 }
3075 
3076 static long kvm_dev_ioctl(struct file *filp,
3077 			  unsigned int ioctl, unsigned long arg)
3078 {
3079 	long r = -EINVAL;
3080 
3081 	switch (ioctl) {
3082 	case KVM_GET_API_VERSION:
3083 		if (arg)
3084 			goto out;
3085 		r = KVM_API_VERSION;
3086 		break;
3087 	case KVM_CREATE_VM:
3088 		r = kvm_dev_ioctl_create_vm(arg);
3089 		break;
3090 	case KVM_CHECK_EXTENSION:
3091 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3092 		break;
3093 	case KVM_GET_VCPU_MMAP_SIZE:
3094 		if (arg)
3095 			goto out;
3096 		r = PAGE_SIZE;     /* struct kvm_run */
3097 #ifdef CONFIG_X86
3098 		r += PAGE_SIZE;    /* pio data page */
3099 #endif
3100 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3101 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3102 #endif
3103 		break;
3104 	case KVM_TRACE_ENABLE:
3105 	case KVM_TRACE_PAUSE:
3106 	case KVM_TRACE_DISABLE:
3107 		r = -EOPNOTSUPP;
3108 		break;
3109 	default:
3110 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3111 	}
3112 out:
3113 	return r;
3114 }
3115 
3116 static struct file_operations kvm_chardev_ops = {
3117 	.unlocked_ioctl = kvm_dev_ioctl,
3118 	.compat_ioctl   = kvm_dev_ioctl,
3119 	.llseek		= noop_llseek,
3120 };
3121 
3122 static struct miscdevice kvm_dev = {
3123 	KVM_MINOR,
3124 	"kvm",
3125 	&kvm_chardev_ops,
3126 };
3127 
3128 static void hardware_enable_nolock(void *junk)
3129 {
3130 	int cpu = raw_smp_processor_id();
3131 	int r;
3132 
3133 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3134 		return;
3135 
3136 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3137 
3138 	r = kvm_arch_hardware_enable();
3139 
3140 	if (r) {
3141 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3142 		atomic_inc(&hardware_enable_failed);
3143 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3144 	}
3145 }
3146 
3147 static void hardware_enable(void)
3148 {
3149 	raw_spin_lock(&kvm_count_lock);
3150 	if (kvm_usage_count)
3151 		hardware_enable_nolock(NULL);
3152 	raw_spin_unlock(&kvm_count_lock);
3153 }
3154 
3155 static void hardware_disable_nolock(void *junk)
3156 {
3157 	int cpu = raw_smp_processor_id();
3158 
3159 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3160 		return;
3161 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3162 	kvm_arch_hardware_disable();
3163 }
3164 
3165 static void hardware_disable(void)
3166 {
3167 	raw_spin_lock(&kvm_count_lock);
3168 	if (kvm_usage_count)
3169 		hardware_disable_nolock(NULL);
3170 	raw_spin_unlock(&kvm_count_lock);
3171 }
3172 
3173 static void hardware_disable_all_nolock(void)
3174 {
3175 	BUG_ON(!kvm_usage_count);
3176 
3177 	kvm_usage_count--;
3178 	if (!kvm_usage_count)
3179 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3180 }
3181 
3182 static void hardware_disable_all(void)
3183 {
3184 	raw_spin_lock(&kvm_count_lock);
3185 	hardware_disable_all_nolock();
3186 	raw_spin_unlock(&kvm_count_lock);
3187 }
3188 
3189 static int hardware_enable_all(void)
3190 {
3191 	int r = 0;
3192 
3193 	raw_spin_lock(&kvm_count_lock);
3194 
3195 	kvm_usage_count++;
3196 	if (kvm_usage_count == 1) {
3197 		atomic_set(&hardware_enable_failed, 0);
3198 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3199 
3200 		if (atomic_read(&hardware_enable_failed)) {
3201 			hardware_disable_all_nolock();
3202 			r = -EBUSY;
3203 		}
3204 	}
3205 
3206 	raw_spin_unlock(&kvm_count_lock);
3207 
3208 	return r;
3209 }
3210 
3211 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3212 			   void *v)
3213 {
3214 	val &= ~CPU_TASKS_FROZEN;
3215 	switch (val) {
3216 	case CPU_DYING:
3217 		hardware_disable();
3218 		break;
3219 	case CPU_STARTING:
3220 		hardware_enable();
3221 		break;
3222 	}
3223 	return NOTIFY_OK;
3224 }
3225 
3226 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3227 		      void *v)
3228 {
3229 	/*
3230 	 * Some (well, at least mine) BIOSes hang on reboot if
3231 	 * in vmx root mode.
3232 	 *
3233 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3234 	 */
3235 	pr_info("kvm: exiting hardware virtualization\n");
3236 	kvm_rebooting = true;
3237 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3238 	return NOTIFY_OK;
3239 }
3240 
3241 static struct notifier_block kvm_reboot_notifier = {
3242 	.notifier_call = kvm_reboot,
3243 	.priority = 0,
3244 };
3245 
3246 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3247 {
3248 	int i;
3249 
3250 	for (i = 0; i < bus->dev_count; i++) {
3251 		struct kvm_io_device *pos = bus->range[i].dev;
3252 
3253 		kvm_iodevice_destructor(pos);
3254 	}
3255 	kfree(bus);
3256 }
3257 
3258 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3259 				 const struct kvm_io_range *r2)
3260 {
3261 	gpa_t addr1 = r1->addr;
3262 	gpa_t addr2 = r2->addr;
3263 
3264 	if (addr1 < addr2)
3265 		return -1;
3266 
3267 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3268 	 * accept any overlapping write.  Any order is acceptable for
3269 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3270 	 * we process all of them.
3271 	 */
3272 	if (r2->len) {
3273 		addr1 += r1->len;
3274 		addr2 += r2->len;
3275 	}
3276 
3277 	if (addr1 > addr2)
3278 		return 1;
3279 
3280 	return 0;
3281 }
3282 
3283 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3284 {
3285 	return kvm_io_bus_cmp(p1, p2);
3286 }
3287 
3288 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3289 			  gpa_t addr, int len)
3290 {
3291 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3292 		.addr = addr,
3293 		.len = len,
3294 		.dev = dev,
3295 	};
3296 
3297 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3298 		kvm_io_bus_sort_cmp, NULL);
3299 
3300 	return 0;
3301 }
3302 
3303 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3304 			     gpa_t addr, int len)
3305 {
3306 	struct kvm_io_range *range, key;
3307 	int off;
3308 
3309 	key = (struct kvm_io_range) {
3310 		.addr = addr,
3311 		.len = len,
3312 	};
3313 
3314 	range = bsearch(&key, bus->range, bus->dev_count,
3315 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3316 	if (range == NULL)
3317 		return -ENOENT;
3318 
3319 	off = range - bus->range;
3320 
3321 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3322 		off--;
3323 
3324 	return off;
3325 }
3326 
3327 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3328 			      struct kvm_io_range *range, const void *val)
3329 {
3330 	int idx;
3331 
3332 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3333 	if (idx < 0)
3334 		return -EOPNOTSUPP;
3335 
3336 	while (idx < bus->dev_count &&
3337 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3338 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3339 					range->len, val))
3340 			return idx;
3341 		idx++;
3342 	}
3343 
3344 	return -EOPNOTSUPP;
3345 }
3346 
3347 /* kvm_io_bus_write - called under kvm->slots_lock */
3348 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3349 		     int len, const void *val)
3350 {
3351 	struct kvm_io_bus *bus;
3352 	struct kvm_io_range range;
3353 	int r;
3354 
3355 	range = (struct kvm_io_range) {
3356 		.addr = addr,
3357 		.len = len,
3358 	};
3359 
3360 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3361 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3362 	return r < 0 ? r : 0;
3363 }
3364 
3365 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3366 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3367 			    gpa_t addr, int len, const void *val, long cookie)
3368 {
3369 	struct kvm_io_bus *bus;
3370 	struct kvm_io_range range;
3371 
3372 	range = (struct kvm_io_range) {
3373 		.addr = addr,
3374 		.len = len,
3375 	};
3376 
3377 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3378 
3379 	/* First try the device referenced by cookie. */
3380 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3381 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3382 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3383 					val))
3384 			return cookie;
3385 
3386 	/*
3387 	 * cookie contained garbage; fall back to search and return the
3388 	 * correct cookie value.
3389 	 */
3390 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3391 }
3392 
3393 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3394 			     struct kvm_io_range *range, void *val)
3395 {
3396 	int idx;
3397 
3398 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3399 	if (idx < 0)
3400 		return -EOPNOTSUPP;
3401 
3402 	while (idx < bus->dev_count &&
3403 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3404 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3405 				       range->len, val))
3406 			return idx;
3407 		idx++;
3408 	}
3409 
3410 	return -EOPNOTSUPP;
3411 }
3412 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3413 
3414 /* kvm_io_bus_read - called under kvm->slots_lock */
3415 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3416 		    int len, void *val)
3417 {
3418 	struct kvm_io_bus *bus;
3419 	struct kvm_io_range range;
3420 	int r;
3421 
3422 	range = (struct kvm_io_range) {
3423 		.addr = addr,
3424 		.len = len,
3425 	};
3426 
3427 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3428 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3429 	return r < 0 ? r : 0;
3430 }
3431 
3432 
3433 /* Caller must hold slots_lock. */
3434 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3435 			    int len, struct kvm_io_device *dev)
3436 {
3437 	struct kvm_io_bus *new_bus, *bus;
3438 
3439 	bus = kvm->buses[bus_idx];
3440 	/* exclude ioeventfd which is limited by maximum fd */
3441 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3442 		return -ENOSPC;
3443 
3444 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3445 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3446 	if (!new_bus)
3447 		return -ENOMEM;
3448 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3449 	       sizeof(struct kvm_io_range)));
3450 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3451 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3452 	synchronize_srcu_expedited(&kvm->srcu);
3453 	kfree(bus);
3454 
3455 	return 0;
3456 }
3457 
3458 /* Caller must hold slots_lock. */
3459 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3460 			      struct kvm_io_device *dev)
3461 {
3462 	int i, r;
3463 	struct kvm_io_bus *new_bus, *bus;
3464 
3465 	bus = kvm->buses[bus_idx];
3466 	r = -ENOENT;
3467 	for (i = 0; i < bus->dev_count; i++)
3468 		if (bus->range[i].dev == dev) {
3469 			r = 0;
3470 			break;
3471 		}
3472 
3473 	if (r)
3474 		return r;
3475 
3476 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3477 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3478 	if (!new_bus)
3479 		return -ENOMEM;
3480 
3481 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3482 	new_bus->dev_count--;
3483 	memcpy(new_bus->range + i, bus->range + i + 1,
3484 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3485 
3486 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3487 	synchronize_srcu_expedited(&kvm->srcu);
3488 	kfree(bus);
3489 	return r;
3490 }
3491 
3492 static struct notifier_block kvm_cpu_notifier = {
3493 	.notifier_call = kvm_cpu_hotplug,
3494 };
3495 
3496 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3497 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3498 			   const char *fmt)
3499 {
3500 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3501 					  inode->i_private;
3502 
3503 	/* The debugfs files are a reference to the kvm struct which
3504 	 * is still valid when kvm_destroy_vm is called.
3505 	 * To avoid the race between open and the removal of the debugfs
3506 	 * directory we test against the users count.
3507 	 */
3508 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3509 		return -ENOENT;
3510 
3511 	if (simple_attr_open(inode, file, get, set, fmt)) {
3512 		kvm_put_kvm(stat_data->kvm);
3513 		return -ENOMEM;
3514 	}
3515 
3516 	return 0;
3517 }
3518 
3519 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3520 {
3521 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3522 					  inode->i_private;
3523 
3524 	simple_attr_release(inode, file);
3525 	kvm_put_kvm(stat_data->kvm);
3526 
3527 	return 0;
3528 }
3529 
3530 static int vm_stat_get_per_vm(void *data, u64 *val)
3531 {
3532 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3533 
3534 	*val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3535 
3536 	return 0;
3537 }
3538 
3539 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3540 {
3541 	__simple_attr_check_format("%llu\n", 0ull);
3542 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3543 				NULL, "%llu\n");
3544 }
3545 
3546 static const struct file_operations vm_stat_get_per_vm_fops = {
3547 	.owner   = THIS_MODULE,
3548 	.open    = vm_stat_get_per_vm_open,
3549 	.release = kvm_debugfs_release,
3550 	.read    = simple_attr_read,
3551 	.write   = simple_attr_write,
3552 	.llseek  = generic_file_llseek,
3553 };
3554 
3555 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3556 {
3557 	int i;
3558 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3559 	struct kvm_vcpu *vcpu;
3560 
3561 	*val = 0;
3562 
3563 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3564 		*val += *(u32 *)((void *)vcpu + stat_data->offset);
3565 
3566 	return 0;
3567 }
3568 
3569 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3570 {
3571 	__simple_attr_check_format("%llu\n", 0ull);
3572 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3573 				 NULL, "%llu\n");
3574 }
3575 
3576 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3577 	.owner   = THIS_MODULE,
3578 	.open    = vcpu_stat_get_per_vm_open,
3579 	.release = kvm_debugfs_release,
3580 	.read    = simple_attr_read,
3581 	.write   = simple_attr_write,
3582 	.llseek  = generic_file_llseek,
3583 };
3584 
3585 static const struct file_operations *stat_fops_per_vm[] = {
3586 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3587 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3588 };
3589 
3590 static int vm_stat_get(void *_offset, u64 *val)
3591 {
3592 	unsigned offset = (long)_offset;
3593 	struct kvm *kvm;
3594 	struct kvm_stat_data stat_tmp = {.offset = offset};
3595 	u64 tmp_val;
3596 
3597 	*val = 0;
3598 	spin_lock(&kvm_lock);
3599 	list_for_each_entry(kvm, &vm_list, vm_list) {
3600 		stat_tmp.kvm = kvm;
3601 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3602 		*val += tmp_val;
3603 	}
3604 	spin_unlock(&kvm_lock);
3605 	return 0;
3606 }
3607 
3608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3609 
3610 static int vcpu_stat_get(void *_offset, u64 *val)
3611 {
3612 	unsigned offset = (long)_offset;
3613 	struct kvm *kvm;
3614 	struct kvm_stat_data stat_tmp = {.offset = offset};
3615 	u64 tmp_val;
3616 
3617 	*val = 0;
3618 	spin_lock(&kvm_lock);
3619 	list_for_each_entry(kvm, &vm_list, vm_list) {
3620 		stat_tmp.kvm = kvm;
3621 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3622 		*val += tmp_val;
3623 	}
3624 	spin_unlock(&kvm_lock);
3625 	return 0;
3626 }
3627 
3628 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3629 
3630 static const struct file_operations *stat_fops[] = {
3631 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3632 	[KVM_STAT_VM]   = &vm_stat_fops,
3633 };
3634 
3635 static int kvm_init_debug(void)
3636 {
3637 	int r = -EEXIST;
3638 	struct kvm_stats_debugfs_item *p;
3639 
3640 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3641 	if (kvm_debugfs_dir == NULL)
3642 		goto out;
3643 
3644 	kvm_debugfs_num_entries = 0;
3645 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3646 		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3647 					 (void *)(long)p->offset,
3648 					 stat_fops[p->kind]))
3649 			goto out_dir;
3650 	}
3651 
3652 	return 0;
3653 
3654 out_dir:
3655 	debugfs_remove_recursive(kvm_debugfs_dir);
3656 out:
3657 	return r;
3658 }
3659 
3660 static int kvm_suspend(void)
3661 {
3662 	if (kvm_usage_count)
3663 		hardware_disable_nolock(NULL);
3664 	return 0;
3665 }
3666 
3667 static void kvm_resume(void)
3668 {
3669 	if (kvm_usage_count) {
3670 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3671 		hardware_enable_nolock(NULL);
3672 	}
3673 }
3674 
3675 static struct syscore_ops kvm_syscore_ops = {
3676 	.suspend = kvm_suspend,
3677 	.resume = kvm_resume,
3678 };
3679 
3680 static inline
3681 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3682 {
3683 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3684 }
3685 
3686 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3687 {
3688 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3689 
3690 	if (vcpu->preempted)
3691 		vcpu->preempted = false;
3692 
3693 	kvm_arch_sched_in(vcpu, cpu);
3694 
3695 	kvm_arch_vcpu_load(vcpu, cpu);
3696 }
3697 
3698 static void kvm_sched_out(struct preempt_notifier *pn,
3699 			  struct task_struct *next)
3700 {
3701 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3702 
3703 	if (current->state == TASK_RUNNING)
3704 		vcpu->preempted = true;
3705 	kvm_arch_vcpu_put(vcpu);
3706 }
3707 
3708 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3709 		  struct module *module)
3710 {
3711 	int r;
3712 	int cpu;
3713 
3714 	r = kvm_arch_init(opaque);
3715 	if (r)
3716 		goto out_fail;
3717 
3718 	/*
3719 	 * kvm_arch_init makes sure there's at most one caller
3720 	 * for architectures that support multiple implementations,
3721 	 * like intel and amd on x86.
3722 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3723 	 * conflicts in case kvm is already setup for another implementation.
3724 	 */
3725 	r = kvm_irqfd_init();
3726 	if (r)
3727 		goto out_irqfd;
3728 
3729 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3730 		r = -ENOMEM;
3731 		goto out_free_0;
3732 	}
3733 
3734 	r = kvm_arch_hardware_setup();
3735 	if (r < 0)
3736 		goto out_free_0a;
3737 
3738 	for_each_online_cpu(cpu) {
3739 		smp_call_function_single(cpu,
3740 				kvm_arch_check_processor_compat,
3741 				&r, 1);
3742 		if (r < 0)
3743 			goto out_free_1;
3744 	}
3745 
3746 	r = register_cpu_notifier(&kvm_cpu_notifier);
3747 	if (r)
3748 		goto out_free_2;
3749 	register_reboot_notifier(&kvm_reboot_notifier);
3750 
3751 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3752 	if (!vcpu_align)
3753 		vcpu_align = __alignof__(struct kvm_vcpu);
3754 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3755 					   0, NULL);
3756 	if (!kvm_vcpu_cache) {
3757 		r = -ENOMEM;
3758 		goto out_free_3;
3759 	}
3760 
3761 	r = kvm_async_pf_init();
3762 	if (r)
3763 		goto out_free;
3764 
3765 	kvm_chardev_ops.owner = module;
3766 	kvm_vm_fops.owner = module;
3767 	kvm_vcpu_fops.owner = module;
3768 
3769 	r = misc_register(&kvm_dev);
3770 	if (r) {
3771 		pr_err("kvm: misc device register failed\n");
3772 		goto out_unreg;
3773 	}
3774 
3775 	register_syscore_ops(&kvm_syscore_ops);
3776 
3777 	kvm_preempt_ops.sched_in = kvm_sched_in;
3778 	kvm_preempt_ops.sched_out = kvm_sched_out;
3779 
3780 	r = kvm_init_debug();
3781 	if (r) {
3782 		pr_err("kvm: create debugfs files failed\n");
3783 		goto out_undebugfs;
3784 	}
3785 
3786 	r = kvm_vfio_ops_init();
3787 	WARN_ON(r);
3788 
3789 	return 0;
3790 
3791 out_undebugfs:
3792 	unregister_syscore_ops(&kvm_syscore_ops);
3793 	misc_deregister(&kvm_dev);
3794 out_unreg:
3795 	kvm_async_pf_deinit();
3796 out_free:
3797 	kmem_cache_destroy(kvm_vcpu_cache);
3798 out_free_3:
3799 	unregister_reboot_notifier(&kvm_reboot_notifier);
3800 	unregister_cpu_notifier(&kvm_cpu_notifier);
3801 out_free_2:
3802 out_free_1:
3803 	kvm_arch_hardware_unsetup();
3804 out_free_0a:
3805 	free_cpumask_var(cpus_hardware_enabled);
3806 out_free_0:
3807 	kvm_irqfd_exit();
3808 out_irqfd:
3809 	kvm_arch_exit();
3810 out_fail:
3811 	return r;
3812 }
3813 EXPORT_SYMBOL_GPL(kvm_init);
3814 
3815 void kvm_exit(void)
3816 {
3817 	debugfs_remove_recursive(kvm_debugfs_dir);
3818 	misc_deregister(&kvm_dev);
3819 	kmem_cache_destroy(kvm_vcpu_cache);
3820 	kvm_async_pf_deinit();
3821 	unregister_syscore_ops(&kvm_syscore_ops);
3822 	unregister_reboot_notifier(&kvm_reboot_notifier);
3823 	unregister_cpu_notifier(&kvm_cpu_notifier);
3824 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3825 	kvm_arch_hardware_unsetup();
3826 	kvm_arch_exit();
3827 	kvm_irqfd_exit();
3828 	free_cpumask_var(cpus_hardware_enabled);
3829 	kvm_vfio_ops_exit();
3830 }
3831 EXPORT_SYMBOL_GPL(kvm_exit);
3832