1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine (KVM) Hypervisor
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 */
12
13 #include <kvm/iodev.h>
14
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52 #include <linux/rseq.h>
53
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 #include "kvm_mm.h"
61 #include "vfio.h"
62
63 #include <trace/events/ipi.h>
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70
71 /* Worst case buffer size needed for holding an integer. */
72 #define ITOA_MAX_LEN 12
73
74 MODULE_AUTHOR("Qumranet");
75 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
76 MODULE_LICENSE("GPL");
77
78 /* Architectures should define their poll value according to the halt latency */
79 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
80 module_param(halt_poll_ns, uint, 0644);
81 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns);
82
83 /* Default doubles per-vcpu halt_poll_ns. */
84 unsigned int halt_poll_ns_grow = 2;
85 module_param(halt_poll_ns_grow, uint, 0644);
86 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow);
87
88 /* The start value to grow halt_poll_ns from */
89 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
90 module_param(halt_poll_ns_grow_start, uint, 0644);
91 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start);
92
93 /* Default halves per-vcpu halt_poll_ns. */
94 unsigned int halt_poll_ns_shrink = 2;
95 module_param(halt_poll_ns_shrink, uint, 0644);
96 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink);
97
98 /*
99 * Allow direct access (from KVM or the CPU) without MMU notifier protection
100 * to unpinned pages.
101 */
102 static bool allow_unsafe_mappings;
103 module_param(allow_unsafe_mappings, bool, 0444);
104
105 /*
106 * Ordering of locks:
107 *
108 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
109 */
110
111 DEFINE_MUTEX(kvm_lock);
112 LIST_HEAD(vm_list);
113
114 static struct kmem_cache *kvm_vcpu_cache;
115
116 static __read_mostly struct preempt_ops kvm_preempt_ops;
117 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
118
119 static struct dentry *kvm_debugfs_dir;
120
121 static const struct file_operations stat_fops_per_vm;
122
123 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125 #ifdef CONFIG_KVM_COMPAT
126 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
127 unsigned long arg);
128 #define KVM_COMPAT(c) .compat_ioctl = (c)
129 #else
130 /*
131 * For architectures that don't implement a compat infrastructure,
132 * adopt a double line of defense:
133 * - Prevent a compat task from opening /dev/kvm
134 * - If the open has been done by a 64bit task, and the KVM fd
135 * passed to a compat task, let the ioctls fail.
136 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)137 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
138 unsigned long arg) { return -EINVAL; }
139
kvm_no_compat_open(struct inode * inode,struct file * file)140 static int kvm_no_compat_open(struct inode *inode, struct file *file)
141 {
142 return is_compat_task() ? -ENODEV : 0;
143 }
144 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
145 .open = kvm_no_compat_open
146 #endif
147
148 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
149
150 #define KVM_EVENT_CREATE_VM 0
151 #define KVM_EVENT_DESTROY_VM 1
152 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
153 static unsigned long long kvm_createvm_count;
154 static unsigned long long kvm_active_vms;
155
156 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
157
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)158 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
159 {
160 }
161
162 /*
163 * Switches to specified vcpu, until a matching vcpu_put()
164 */
vcpu_load(struct kvm_vcpu * vcpu)165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167 int cpu = get_cpu();
168
169 __this_cpu_write(kvm_running_vcpu, vcpu);
170 preempt_notifier_register(&vcpu->preempt_notifier);
171 kvm_arch_vcpu_load(vcpu, cpu);
172 put_cpu();
173 }
174 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load);
175
vcpu_put(struct kvm_vcpu * vcpu)176 void vcpu_put(struct kvm_vcpu *vcpu)
177 {
178 preempt_disable();
179 kvm_arch_vcpu_put(vcpu);
180 preempt_notifier_unregister(&vcpu->preempt_notifier);
181 __this_cpu_write(kvm_running_vcpu, NULL);
182 preempt_enable();
183 }
184 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put);
185
186 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)187 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
188 {
189 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
190
191 /*
192 * We need to wait for the VCPU to reenable interrupts and get out of
193 * READING_SHADOW_PAGE_TABLES mode.
194 */
195 if (req & KVM_REQUEST_WAIT)
196 return mode != OUTSIDE_GUEST_MODE;
197
198 /*
199 * Need to kick a running VCPU, but otherwise there is nothing to do.
200 */
201 return mode == IN_GUEST_MODE;
202 }
203
ack_kick(void * _completed)204 static void ack_kick(void *_completed)
205 {
206 }
207
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)208 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
209 {
210 if (cpumask_empty(cpus))
211 return false;
212
213 smp_call_function_many(cpus, ack_kick, NULL, wait);
214 return true;
215 }
216
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)217 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
218 struct cpumask *tmp, int current_cpu)
219 {
220 int cpu;
221
222 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
223 __kvm_make_request(req, vcpu);
224
225 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
226 return;
227
228 /*
229 * Note, the vCPU could get migrated to a different pCPU at any point
230 * after kvm_request_needs_ipi(), which could result in sending an IPI
231 * to the previous pCPU. But, that's OK because the purpose of the IPI
232 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
233 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
234 * after this point is also OK, as the requirement is only that KVM wait
235 * for vCPUs that were reading SPTEs _before_ any changes were
236 * finalized. See kvm_vcpu_kick() for more details on handling requests.
237 */
238 if (kvm_request_needs_ipi(vcpu, req)) {
239 cpu = READ_ONCE(vcpu->cpu);
240 if (cpu != -1 && cpu != current_cpu)
241 __cpumask_set_cpu(cpu, tmp);
242 }
243 }
244
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)245 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
246 unsigned long *vcpu_bitmap)
247 {
248 struct kvm_vcpu *vcpu;
249 struct cpumask *cpus;
250 int i, me;
251 bool called;
252
253 me = get_cpu();
254
255 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
256 cpumask_clear(cpus);
257
258 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
259 vcpu = kvm_get_vcpu(kvm, i);
260 if (!vcpu)
261 continue;
262 kvm_make_vcpu_request(vcpu, req, cpus, me);
263 }
264
265 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
266 put_cpu();
267
268 return called;
269 }
270
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)271 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
272 {
273 struct kvm_vcpu *vcpu;
274 struct cpumask *cpus;
275 unsigned long i;
276 bool called;
277 int me;
278
279 me = get_cpu();
280
281 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
282 cpumask_clear(cpus);
283
284 kvm_for_each_vcpu(i, vcpu, kvm)
285 kvm_make_vcpu_request(vcpu, req, cpus, me);
286
287 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
288 put_cpu();
289
290 return called;
291 }
292 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request);
293
kvm_flush_remote_tlbs(struct kvm * kvm)294 void kvm_flush_remote_tlbs(struct kvm *kvm)
295 {
296 ++kvm->stat.generic.remote_tlb_flush_requests;
297
298 /*
299 * We want to publish modifications to the page tables before reading
300 * mode. Pairs with a memory barrier in arch-specific code.
301 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
302 * and smp_mb in walk_shadow_page_lockless_begin/end.
303 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
304 *
305 * There is already an smp_mb__after_atomic() before
306 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
307 * barrier here.
308 */
309 if (!kvm_arch_flush_remote_tlbs(kvm)
310 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
311 ++kvm->stat.generic.remote_tlb_flush;
312 }
313 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs);
314
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)315 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
316 {
317 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
318 return;
319
320 /*
321 * Fall back to a flushing entire TLBs if the architecture range-based
322 * TLB invalidation is unsupported or can't be performed for whatever
323 * reason.
324 */
325 kvm_flush_remote_tlbs(kvm);
326 }
327
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)328 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
329 const struct kvm_memory_slot *memslot)
330 {
331 /*
332 * All current use cases for flushing the TLBs for a specific memslot
333 * are related to dirty logging, and many do the TLB flush out of
334 * mmu_lock. The interaction between the various operations on memslot
335 * must be serialized by slots_lock to ensure the TLB flush from one
336 * operation is observed by any other operation on the same memslot.
337 */
338 lockdep_assert_held(&kvm->slots_lock);
339 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
340 }
341
kvm_flush_shadow_all(struct kvm * kvm)342 static void kvm_flush_shadow_all(struct kvm *kvm)
343 {
344 kvm_arch_flush_shadow_all(kvm);
345 kvm_arch_guest_memory_reclaimed(kvm);
346 }
347
348 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)349 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
350 gfp_t gfp_flags)
351 {
352 void *page;
353
354 gfp_flags |= mc->gfp_zero;
355
356 if (mc->kmem_cache)
357 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
358
359 page = (void *)__get_free_page(gfp_flags);
360 if (page && mc->init_value)
361 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
362 return page;
363 }
364
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)365 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
366 {
367 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
368 void *obj;
369
370 if (mc->nobjs >= min)
371 return 0;
372
373 if (unlikely(!mc->objects)) {
374 if (WARN_ON_ONCE(!capacity))
375 return -EIO;
376
377 /*
378 * Custom init values can be used only for page allocations,
379 * and obviously conflict with __GFP_ZERO.
380 */
381 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
382 return -EIO;
383
384 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
385 if (!mc->objects)
386 return -ENOMEM;
387
388 mc->capacity = capacity;
389 }
390
391 /* It is illegal to request a different capacity across topups. */
392 if (WARN_ON_ONCE(mc->capacity != capacity))
393 return -EIO;
394
395 while (mc->nobjs < mc->capacity) {
396 obj = mmu_memory_cache_alloc_obj(mc, gfp);
397 if (!obj)
398 return mc->nobjs >= min ? 0 : -ENOMEM;
399 mc->objects[mc->nobjs++] = obj;
400 }
401 return 0;
402 }
403
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)404 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
405 {
406 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
407 }
408
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)409 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
410 {
411 return mc->nobjs;
412 }
413
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)414 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
415 {
416 while (mc->nobjs) {
417 if (mc->kmem_cache)
418 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
419 else
420 free_page((unsigned long)mc->objects[--mc->nobjs]);
421 }
422
423 kvfree(mc->objects);
424
425 mc->objects = NULL;
426 mc->capacity = 0;
427 }
428
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)429 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
430 {
431 void *p;
432
433 if (WARN_ON(!mc->nobjs))
434 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
435 else
436 p = mc->objects[--mc->nobjs];
437 BUG_ON(!p);
438 return p;
439 }
440 #endif
441
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)442 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
443 {
444 mutex_init(&vcpu->mutex);
445 vcpu->cpu = -1;
446 vcpu->kvm = kvm;
447 vcpu->vcpu_id = id;
448 vcpu->pid = NULL;
449 rwlock_init(&vcpu->pid_lock);
450 #ifndef __KVM_HAVE_ARCH_WQP
451 rcuwait_init(&vcpu->wait);
452 #endif
453 kvm_async_pf_vcpu_init(vcpu);
454
455 kvm_vcpu_set_in_spin_loop(vcpu, false);
456 kvm_vcpu_set_dy_eligible(vcpu, false);
457 vcpu->preempted = false;
458 vcpu->ready = false;
459 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
460 vcpu->last_used_slot = NULL;
461
462 /* Fill the stats id string for the vcpu */
463 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
464 task_pid_nr(current), id);
465 }
466
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)467 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
468 {
469 kvm_arch_vcpu_destroy(vcpu);
470 kvm_dirty_ring_free(&vcpu->dirty_ring);
471
472 /*
473 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
474 * the vcpu->pid pointer, and at destruction time all file descriptors
475 * are already gone.
476 */
477 put_pid(vcpu->pid);
478
479 free_page((unsigned long)vcpu->run);
480 kmem_cache_free(kvm_vcpu_cache, vcpu);
481 }
482
kvm_destroy_vcpus(struct kvm * kvm)483 void kvm_destroy_vcpus(struct kvm *kvm)
484 {
485 unsigned long i;
486 struct kvm_vcpu *vcpu;
487
488 kvm_for_each_vcpu(i, vcpu, kvm) {
489 kvm_vcpu_destroy(vcpu);
490 xa_erase(&kvm->vcpu_array, i);
491
492 /*
493 * Assert that the vCPU isn't visible in any way, to ensure KVM
494 * doesn't trigger a use-after-free if destroying vCPUs results
495 * in VM-wide request, e.g. to flush remote TLBs when tearing
496 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
497 */
498 WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
499 }
500
501 atomic_set(&kvm->online_vcpus, 0);
502 }
503 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus);
504
505 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_to_kvm(struct mmu_notifier * mn)506 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
507 {
508 return container_of(mn, struct kvm, mmu_notifier);
509 }
510
511 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
512
513 typedef void (*on_lock_fn_t)(struct kvm *kvm);
514
515 struct kvm_mmu_notifier_range {
516 /*
517 * 64-bit addresses, as KVM notifiers can operate on host virtual
518 * addresses (unsigned long) and guest physical addresses (64-bit).
519 */
520 u64 start;
521 u64 end;
522 union kvm_mmu_notifier_arg arg;
523 gfn_handler_t handler;
524 on_lock_fn_t on_lock;
525 bool flush_on_ret;
526 bool may_block;
527 bool lockless;
528 };
529
530 /*
531 * The inner-most helper returns a tuple containing the return value from the
532 * arch- and action-specific handler, plus a flag indicating whether or not at
533 * least one memslot was found, i.e. if the handler found guest memory.
534 *
535 * Note, most notifiers are averse to booleans, so even though KVM tracks the
536 * return from arch code as a bool, outer helpers will cast it to an int. :-(
537 */
538 typedef struct kvm_mmu_notifier_return {
539 bool ret;
540 bool found_memslot;
541 } kvm_mn_ret_t;
542
543 /*
544 * Use a dedicated stub instead of NULL to indicate that there is no callback
545 * function/handler. The compiler technically can't guarantee that a real
546 * function will have a non-zero address, and so it will generate code to
547 * check for !NULL, whereas comparing against a stub will be elided at compile
548 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
549 */
kvm_null_fn(void)550 static void kvm_null_fn(void)
551 {
552
553 }
554 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
555
556 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
557 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
558 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
559 node; \
560 node = interval_tree_iter_next(node, start, last)) \
561
kvm_handle_hva_range(struct kvm * kvm,const struct kvm_mmu_notifier_range * range)562 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
563 const struct kvm_mmu_notifier_range *range)
564 {
565 struct kvm_mmu_notifier_return r = {
566 .ret = false,
567 .found_memslot = false,
568 };
569 struct kvm_gfn_range gfn_range;
570 struct kvm_memory_slot *slot;
571 struct kvm_memslots *slots;
572 int i, idx;
573
574 if (WARN_ON_ONCE(range->end <= range->start))
575 return r;
576
577 /* A null handler is allowed if and only if on_lock() is provided. */
578 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
579 IS_KVM_NULL_FN(range->handler)))
580 return r;
581
582 /* on_lock will never be called for lockless walks */
583 if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
584 return r;
585
586 idx = srcu_read_lock(&kvm->srcu);
587
588 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
589 struct interval_tree_node *node;
590
591 slots = __kvm_memslots(kvm, i);
592 kvm_for_each_memslot_in_hva_range(node, slots,
593 range->start, range->end - 1) {
594 unsigned long hva_start, hva_end;
595
596 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
597 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
598 hva_end = min_t(unsigned long, range->end,
599 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
600
601 /*
602 * To optimize for the likely case where the address
603 * range is covered by zero or one memslots, don't
604 * bother making these conditional (to avoid writes on
605 * the second or later invocation of the handler).
606 */
607 gfn_range.arg = range->arg;
608 gfn_range.may_block = range->may_block;
609 /*
610 * HVA-based notifications aren't relevant to private
611 * mappings as they don't have a userspace mapping.
612 */
613 gfn_range.attr_filter = KVM_FILTER_SHARED;
614
615 /*
616 * {gfn(page) | page intersects with [hva_start, hva_end)} =
617 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
618 */
619 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
620 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
621 gfn_range.slot = slot;
622 gfn_range.lockless = range->lockless;
623
624 if (!r.found_memslot) {
625 r.found_memslot = true;
626 if (!range->lockless) {
627 KVM_MMU_LOCK(kvm);
628 if (!IS_KVM_NULL_FN(range->on_lock))
629 range->on_lock(kvm);
630
631 if (IS_KVM_NULL_FN(range->handler))
632 goto mmu_unlock;
633 }
634 }
635 r.ret |= range->handler(kvm, &gfn_range);
636 }
637 }
638
639 if (range->flush_on_ret && r.ret)
640 kvm_flush_remote_tlbs(kvm);
641
642 mmu_unlock:
643 if (r.found_memslot && !range->lockless)
644 KVM_MMU_UNLOCK(kvm);
645
646 srcu_read_unlock(&kvm->srcu, idx);
647
648 return r;
649 }
650
kvm_age_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler,bool flush_on_ret)651 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
652 unsigned long start,
653 unsigned long end,
654 gfn_handler_t handler,
655 bool flush_on_ret)
656 {
657 struct kvm *kvm = mmu_notifier_to_kvm(mn);
658 const struct kvm_mmu_notifier_range range = {
659 .start = start,
660 .end = end,
661 .handler = handler,
662 .on_lock = (void *)kvm_null_fn,
663 .flush_on_ret = flush_on_ret,
664 .may_block = false,
665 .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
666 };
667
668 return kvm_handle_hva_range(kvm, &range).ret;
669 }
670
kvm_age_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)671 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
672 unsigned long start,
673 unsigned long end,
674 gfn_handler_t handler)
675 {
676 return kvm_age_hva_range(mn, start, end, handler, false);
677 }
678
kvm_mmu_invalidate_begin(struct kvm * kvm)679 void kvm_mmu_invalidate_begin(struct kvm *kvm)
680 {
681 lockdep_assert_held_write(&kvm->mmu_lock);
682 /*
683 * The count increase must become visible at unlock time as no
684 * spte can be established without taking the mmu_lock and
685 * count is also read inside the mmu_lock critical section.
686 */
687 kvm->mmu_invalidate_in_progress++;
688
689 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
690 kvm->mmu_invalidate_range_start = INVALID_GPA;
691 kvm->mmu_invalidate_range_end = INVALID_GPA;
692 }
693 }
694
kvm_mmu_invalidate_range_add(struct kvm * kvm,gfn_t start,gfn_t end)695 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
696 {
697 lockdep_assert_held_write(&kvm->mmu_lock);
698
699 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
700
701 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
702 kvm->mmu_invalidate_range_start = start;
703 kvm->mmu_invalidate_range_end = end;
704 } else {
705 /*
706 * Fully tracking multiple concurrent ranges has diminishing
707 * returns. Keep things simple and just find the minimal range
708 * which includes the current and new ranges. As there won't be
709 * enough information to subtract a range after its invalidate
710 * completes, any ranges invalidated concurrently will
711 * accumulate and persist until all outstanding invalidates
712 * complete.
713 */
714 kvm->mmu_invalidate_range_start =
715 min(kvm->mmu_invalidate_range_start, start);
716 kvm->mmu_invalidate_range_end =
717 max(kvm->mmu_invalidate_range_end, end);
718 }
719 }
720
kvm_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)721 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
722 {
723 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
724 return kvm_unmap_gfn_range(kvm, range);
725 }
726
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)727 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
728 const struct mmu_notifier_range *range)
729 {
730 struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 const struct kvm_mmu_notifier_range hva_range = {
732 .start = range->start,
733 .end = range->end,
734 .handler = kvm_mmu_unmap_gfn_range,
735 .on_lock = kvm_mmu_invalidate_begin,
736 .flush_on_ret = true,
737 .may_block = mmu_notifier_range_blockable(range),
738 };
739
740 trace_kvm_unmap_hva_range(range->start, range->end);
741
742 /*
743 * Prevent memslot modification between range_start() and range_end()
744 * so that conditionally locking provides the same result in both
745 * functions. Without that guarantee, the mmu_invalidate_in_progress
746 * adjustments will be imbalanced.
747 *
748 * Pairs with the decrement in range_end().
749 */
750 spin_lock(&kvm->mn_invalidate_lock);
751 kvm->mn_active_invalidate_count++;
752 spin_unlock(&kvm->mn_invalidate_lock);
753
754 /*
755 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
756 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
757 * each cache's lock. There are relatively few caches in existence at
758 * any given time, and the caches themselves can check for hva overlap,
759 * i.e. don't need to rely on memslot overlap checks for performance.
760 * Because this runs without holding mmu_lock, the pfn caches must use
761 * mn_active_invalidate_count (see above) instead of
762 * mmu_invalidate_in_progress.
763 */
764 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
765
766 /*
767 * If one or more memslots were found and thus zapped, notify arch code
768 * that guest memory has been reclaimed. This needs to be done *after*
769 * dropping mmu_lock, as x86's reclaim path is slooooow.
770 */
771 if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
772 kvm_arch_guest_memory_reclaimed(kvm);
773
774 return 0;
775 }
776
kvm_mmu_invalidate_end(struct kvm * kvm)777 void kvm_mmu_invalidate_end(struct kvm *kvm)
778 {
779 lockdep_assert_held_write(&kvm->mmu_lock);
780
781 /*
782 * This sequence increase will notify the kvm page fault that
783 * the page that is going to be mapped in the spte could have
784 * been freed.
785 */
786 kvm->mmu_invalidate_seq++;
787 smp_wmb();
788 /*
789 * The above sequence increase must be visible before the
790 * below count decrease, which is ensured by the smp_wmb above
791 * in conjunction with the smp_rmb in mmu_invalidate_retry().
792 */
793 kvm->mmu_invalidate_in_progress--;
794 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
795
796 /*
797 * Assert that at least one range was added between start() and end().
798 * Not adding a range isn't fatal, but it is a KVM bug.
799 */
800 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
801 }
802
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)803 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
804 const struct mmu_notifier_range *range)
805 {
806 struct kvm *kvm = mmu_notifier_to_kvm(mn);
807 const struct kvm_mmu_notifier_range hva_range = {
808 .start = range->start,
809 .end = range->end,
810 .handler = (void *)kvm_null_fn,
811 .on_lock = kvm_mmu_invalidate_end,
812 .flush_on_ret = false,
813 .may_block = mmu_notifier_range_blockable(range),
814 };
815 bool wake;
816
817 kvm_handle_hva_range(kvm, &hva_range);
818
819 /* Pairs with the increment in range_start(). */
820 spin_lock(&kvm->mn_invalidate_lock);
821 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
822 --kvm->mn_active_invalidate_count;
823 wake = !kvm->mn_active_invalidate_count;
824 spin_unlock(&kvm->mn_invalidate_lock);
825
826 /*
827 * There can only be one waiter, since the wait happens under
828 * slots_lock.
829 */
830 if (wake)
831 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
832 }
833
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)834 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
835 struct mm_struct *mm,
836 unsigned long start,
837 unsigned long end)
838 {
839 trace_kvm_age_hva(start, end);
840
841 return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
842 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
843 }
844
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)845 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
846 struct mm_struct *mm,
847 unsigned long start,
848 unsigned long end)
849 {
850 trace_kvm_age_hva(start, end);
851
852 /*
853 * Even though we do not flush TLB, this will still adversely
854 * affect performance on pre-Haswell Intel EPT, where there is
855 * no EPT Access Bit to clear so that we have to tear down EPT
856 * tables instead. If we find this unacceptable, we can always
857 * add a parameter to kvm_age_hva so that it effectively doesn't
858 * do anything on clear_young.
859 *
860 * Also note that currently we never issue secondary TLB flushes
861 * from clear_young, leaving this job up to the regular system
862 * cadence. If we find this inaccurate, we might come up with a
863 * more sophisticated heuristic later.
864 */
865 return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
866 }
867
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)868 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
869 struct mm_struct *mm,
870 unsigned long address)
871 {
872 trace_kvm_test_age_hva(address);
873
874 return kvm_age_hva_range_no_flush(mn, address, address + 1,
875 kvm_test_age_gfn);
876 }
877
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)878 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
879 struct mm_struct *mm)
880 {
881 struct kvm *kvm = mmu_notifier_to_kvm(mn);
882 int idx;
883
884 idx = srcu_read_lock(&kvm->srcu);
885 kvm_flush_shadow_all(kvm);
886 srcu_read_unlock(&kvm->srcu, idx);
887 }
888
889 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
890 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
891 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
892 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
893 .clear_young = kvm_mmu_notifier_clear_young,
894 .test_young = kvm_mmu_notifier_test_young,
895 .release = kvm_mmu_notifier_release,
896 };
897
kvm_init_mmu_notifier(struct kvm * kvm)898 static int kvm_init_mmu_notifier(struct kvm *kvm)
899 {
900 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
901 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
902 }
903
904 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
905
kvm_init_mmu_notifier(struct kvm * kvm)906 static int kvm_init_mmu_notifier(struct kvm *kvm)
907 {
908 return 0;
909 }
910
911 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
912
913 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)914 static int kvm_pm_notifier_call(struct notifier_block *bl,
915 unsigned long state,
916 void *unused)
917 {
918 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
919
920 return kvm_arch_pm_notifier(kvm, state);
921 }
922
kvm_init_pm_notifier(struct kvm * kvm)923 static void kvm_init_pm_notifier(struct kvm *kvm)
924 {
925 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
926 /* Suspend KVM before we suspend ftrace, RCU, etc. */
927 kvm->pm_notifier.priority = INT_MAX;
928 register_pm_notifier(&kvm->pm_notifier);
929 }
930
kvm_destroy_pm_notifier(struct kvm * kvm)931 static void kvm_destroy_pm_notifier(struct kvm *kvm)
932 {
933 unregister_pm_notifier(&kvm->pm_notifier);
934 }
935 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)936 static void kvm_init_pm_notifier(struct kvm *kvm)
937 {
938 }
939
kvm_destroy_pm_notifier(struct kvm * kvm)940 static void kvm_destroy_pm_notifier(struct kvm *kvm)
941 {
942 }
943 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
944
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)945 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
946 {
947 if (!memslot->dirty_bitmap)
948 return;
949
950 vfree(memslot->dirty_bitmap);
951 memslot->dirty_bitmap = NULL;
952 }
953
954 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)955 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
956 {
957 if (slot->flags & KVM_MEM_GUEST_MEMFD)
958 kvm_gmem_unbind(slot);
959
960 kvm_destroy_dirty_bitmap(slot);
961
962 kvm_arch_free_memslot(kvm, slot);
963
964 kfree(slot);
965 }
966
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)967 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
968 {
969 struct hlist_node *idnode;
970 struct kvm_memory_slot *memslot;
971 int bkt;
972
973 /*
974 * The same memslot objects live in both active and inactive sets,
975 * arbitrarily free using index '1' so the second invocation of this
976 * function isn't operating over a structure with dangling pointers
977 * (even though this function isn't actually touching them).
978 */
979 if (!slots->node_idx)
980 return;
981
982 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
983 kvm_free_memslot(kvm, memslot);
984 }
985
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)986 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
987 {
988 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
989 case KVM_STATS_TYPE_INSTANT:
990 return 0444;
991 case KVM_STATS_TYPE_CUMULATIVE:
992 case KVM_STATS_TYPE_PEAK:
993 default:
994 return 0644;
995 }
996 }
997
998
kvm_destroy_vm_debugfs(struct kvm * kvm)999 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1000 {
1001 int i;
1002 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1003 kvm_vcpu_stats_header.num_desc;
1004
1005 if (IS_ERR(kvm->debugfs_dentry))
1006 return;
1007
1008 debugfs_remove_recursive(kvm->debugfs_dentry);
1009
1010 if (kvm->debugfs_stat_data) {
1011 for (i = 0; i < kvm_debugfs_num_entries; i++)
1012 kfree(kvm->debugfs_stat_data[i]);
1013 kfree(kvm->debugfs_stat_data);
1014 }
1015 }
1016
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1017 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1018 {
1019 static DEFINE_MUTEX(kvm_debugfs_lock);
1020 struct dentry *dent;
1021 char dir_name[ITOA_MAX_LEN * 2];
1022 struct kvm_stat_data *stat_data;
1023 const struct _kvm_stats_desc *pdesc;
1024 int i, ret = -ENOMEM;
1025 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1026 kvm_vcpu_stats_header.num_desc;
1027
1028 if (!debugfs_initialized())
1029 return 0;
1030
1031 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1032 mutex_lock(&kvm_debugfs_lock);
1033 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1034 if (dent) {
1035 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1036 dput(dent);
1037 mutex_unlock(&kvm_debugfs_lock);
1038 return 0;
1039 }
1040 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1041 mutex_unlock(&kvm_debugfs_lock);
1042 if (IS_ERR(dent))
1043 return 0;
1044
1045 kvm->debugfs_dentry = dent;
1046 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1047 sizeof(*kvm->debugfs_stat_data),
1048 GFP_KERNEL_ACCOUNT);
1049 if (!kvm->debugfs_stat_data)
1050 goto out_err;
1051
1052 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1053 pdesc = &kvm_vm_stats_desc[i];
1054 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1055 if (!stat_data)
1056 goto out_err;
1057
1058 stat_data->kvm = kvm;
1059 stat_data->desc = pdesc;
1060 stat_data->kind = KVM_STAT_VM;
1061 kvm->debugfs_stat_data[i] = stat_data;
1062 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1063 kvm->debugfs_dentry, stat_data,
1064 &stat_fops_per_vm);
1065 }
1066
1067 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1068 pdesc = &kvm_vcpu_stats_desc[i];
1069 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1070 if (!stat_data)
1071 goto out_err;
1072
1073 stat_data->kvm = kvm;
1074 stat_data->desc = pdesc;
1075 stat_data->kind = KVM_STAT_VCPU;
1076 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1077 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1078 kvm->debugfs_dentry, stat_data,
1079 &stat_fops_per_vm);
1080 }
1081
1082 kvm_arch_create_vm_debugfs(kvm);
1083 return 0;
1084 out_err:
1085 kvm_destroy_vm_debugfs(kvm);
1086 return ret;
1087 }
1088
1089 /*
1090 * Called just after removing the VM from the vm_list, but before doing any
1091 * other destruction.
1092 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1093 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1094 {
1095 }
1096
1097 /*
1098 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1099 * be setup already, so we can create arch-specific debugfs entries under it.
1100 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1101 * a per-arch destroy interface is not needed.
1102 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1103 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1104 {
1105 }
1106
1107 /* Called only on cleanup and destruction paths when there are no users. */
kvm_get_bus_for_destruction(struct kvm * kvm,enum kvm_bus idx)1108 static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm,
1109 enum kvm_bus idx)
1110 {
1111 return rcu_dereference_protected(kvm->buses[idx],
1112 !refcount_read(&kvm->users_count));
1113 }
1114
kvm_create_vm(unsigned long type,const char * fdname)1115 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1116 {
1117 struct kvm *kvm = kvm_arch_alloc_vm();
1118 struct kvm_memslots *slots;
1119 int r, i, j;
1120
1121 if (!kvm)
1122 return ERR_PTR(-ENOMEM);
1123
1124 KVM_MMU_LOCK_INIT(kvm);
1125 mmgrab(current->mm);
1126 kvm->mm = current->mm;
1127 kvm_eventfd_init(kvm);
1128 mutex_init(&kvm->lock);
1129 mutex_init(&kvm->irq_lock);
1130 mutex_init(&kvm->slots_lock);
1131 mutex_init(&kvm->slots_arch_lock);
1132 spin_lock_init(&kvm->mn_invalidate_lock);
1133 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1134 xa_init(&kvm->vcpu_array);
1135 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1136 xa_init(&kvm->mem_attr_array);
1137 #endif
1138
1139 INIT_LIST_HEAD(&kvm->gpc_list);
1140 spin_lock_init(&kvm->gpc_lock);
1141
1142 INIT_LIST_HEAD(&kvm->devices);
1143 kvm->max_vcpus = KVM_MAX_VCPUS;
1144
1145 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1146
1147 /*
1148 * Force subsequent debugfs file creations to fail if the VM directory
1149 * is not created (by kvm_create_vm_debugfs()).
1150 */
1151 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1152
1153 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1154 task_pid_nr(current));
1155
1156 r = -ENOMEM;
1157 if (init_srcu_struct(&kvm->srcu))
1158 goto out_err_no_srcu;
1159 if (init_srcu_struct(&kvm->irq_srcu))
1160 goto out_err_no_irq_srcu;
1161
1162 r = kvm_init_irq_routing(kvm);
1163 if (r)
1164 goto out_err_no_irq_routing;
1165
1166 refcount_set(&kvm->users_count, 1);
1167
1168 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1169 for (j = 0; j < 2; j++) {
1170 slots = &kvm->__memslots[i][j];
1171
1172 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1173 slots->hva_tree = RB_ROOT_CACHED;
1174 slots->gfn_tree = RB_ROOT;
1175 hash_init(slots->id_hash);
1176 slots->node_idx = j;
1177
1178 /* Generations must be different for each address space. */
1179 slots->generation = i;
1180 }
1181
1182 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1183 }
1184
1185 r = -ENOMEM;
1186 for (i = 0; i < KVM_NR_BUSES; i++) {
1187 rcu_assign_pointer(kvm->buses[i],
1188 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1189 if (!kvm->buses[i])
1190 goto out_err_no_arch_destroy_vm;
1191 }
1192
1193 r = kvm_arch_init_vm(kvm, type);
1194 if (r)
1195 goto out_err_no_arch_destroy_vm;
1196
1197 r = kvm_enable_virtualization();
1198 if (r)
1199 goto out_err_no_disable;
1200
1201 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1202 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1203 #endif
1204
1205 r = kvm_init_mmu_notifier(kvm);
1206 if (r)
1207 goto out_err_no_mmu_notifier;
1208
1209 r = kvm_coalesced_mmio_init(kvm);
1210 if (r < 0)
1211 goto out_no_coalesced_mmio;
1212
1213 r = kvm_create_vm_debugfs(kvm, fdname);
1214 if (r)
1215 goto out_err_no_debugfs;
1216
1217 mutex_lock(&kvm_lock);
1218 list_add(&kvm->vm_list, &vm_list);
1219 mutex_unlock(&kvm_lock);
1220
1221 preempt_notifier_inc();
1222 kvm_init_pm_notifier(kvm);
1223
1224 return kvm;
1225
1226 out_err_no_debugfs:
1227 kvm_coalesced_mmio_free(kvm);
1228 out_no_coalesced_mmio:
1229 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1230 if (kvm->mmu_notifier.ops)
1231 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1232 #endif
1233 out_err_no_mmu_notifier:
1234 kvm_disable_virtualization();
1235 out_err_no_disable:
1236 kvm_arch_destroy_vm(kvm);
1237 out_err_no_arch_destroy_vm:
1238 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1239 for (i = 0; i < KVM_NR_BUSES; i++)
1240 kfree(kvm_get_bus_for_destruction(kvm, i));
1241 kvm_free_irq_routing(kvm);
1242 out_err_no_irq_routing:
1243 cleanup_srcu_struct(&kvm->irq_srcu);
1244 out_err_no_irq_srcu:
1245 cleanup_srcu_struct(&kvm->srcu);
1246 out_err_no_srcu:
1247 kvm_arch_free_vm(kvm);
1248 mmdrop(current->mm);
1249 return ERR_PTR(r);
1250 }
1251
kvm_destroy_devices(struct kvm * kvm)1252 static void kvm_destroy_devices(struct kvm *kvm)
1253 {
1254 struct kvm_device *dev, *tmp;
1255
1256 /*
1257 * We do not need to take the kvm->lock here, because nobody else
1258 * has a reference to the struct kvm at this point and therefore
1259 * cannot access the devices list anyhow.
1260 *
1261 * The device list is generally managed as an rculist, but list_del()
1262 * is used intentionally here. If a bug in KVM introduced a reader that
1263 * was not backed by a reference on the kvm struct, the hope is that
1264 * it'd consume the poisoned forward pointer instead of suffering a
1265 * use-after-free, even though this cannot be guaranteed.
1266 */
1267 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1268 list_del(&dev->vm_node);
1269 dev->ops->destroy(dev);
1270 }
1271 }
1272
kvm_destroy_vm(struct kvm * kvm)1273 static void kvm_destroy_vm(struct kvm *kvm)
1274 {
1275 int i;
1276 struct mm_struct *mm = kvm->mm;
1277
1278 kvm_destroy_pm_notifier(kvm);
1279 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1280 kvm_destroy_vm_debugfs(kvm);
1281 mutex_lock(&kvm_lock);
1282 list_del(&kvm->vm_list);
1283 mutex_unlock(&kvm_lock);
1284 kvm_arch_pre_destroy_vm(kvm);
1285
1286 kvm_free_irq_routing(kvm);
1287 for (i = 0; i < KVM_NR_BUSES; i++) {
1288 struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i);
1289
1290 if (bus)
1291 kvm_io_bus_destroy(bus);
1292 kvm->buses[i] = NULL;
1293 }
1294 kvm_coalesced_mmio_free(kvm);
1295 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1296 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1297 /*
1298 * At this point, pending calls to invalidate_range_start()
1299 * have completed but no more MMU notifiers will run, so
1300 * mn_active_invalidate_count may remain unbalanced.
1301 * No threads can be waiting in kvm_swap_active_memslots() as the
1302 * last reference on KVM has been dropped, but freeing
1303 * memslots would deadlock without this manual intervention.
1304 *
1305 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1306 * notifier between a start() and end(), then there shouldn't be any
1307 * in-progress invalidations.
1308 */
1309 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1310 if (kvm->mn_active_invalidate_count)
1311 kvm->mn_active_invalidate_count = 0;
1312 else
1313 WARN_ON(kvm->mmu_invalidate_in_progress);
1314 #else
1315 kvm_flush_shadow_all(kvm);
1316 #endif
1317 kvm_arch_destroy_vm(kvm);
1318 kvm_destroy_devices(kvm);
1319 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1320 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1321 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1322 }
1323 cleanup_srcu_struct(&kvm->irq_srcu);
1324 srcu_barrier(&kvm->srcu);
1325 cleanup_srcu_struct(&kvm->srcu);
1326 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1327 xa_destroy(&kvm->mem_attr_array);
1328 #endif
1329 kvm_arch_free_vm(kvm);
1330 preempt_notifier_dec();
1331 kvm_disable_virtualization();
1332 mmdrop(mm);
1333 }
1334
kvm_get_kvm(struct kvm * kvm)1335 void kvm_get_kvm(struct kvm *kvm)
1336 {
1337 refcount_inc(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1340
1341 /*
1342 * Make sure the vm is not during destruction, which is a safe version of
1343 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1344 */
kvm_get_kvm_safe(struct kvm * kvm)1345 bool kvm_get_kvm_safe(struct kvm *kvm)
1346 {
1347 return refcount_inc_not_zero(&kvm->users_count);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1350
kvm_put_kvm(struct kvm * kvm)1351 void kvm_put_kvm(struct kvm *kvm)
1352 {
1353 if (refcount_dec_and_test(&kvm->users_count))
1354 kvm_destroy_vm(kvm);
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1357
1358 /*
1359 * Used to put a reference that was taken on behalf of an object associated
1360 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1361 * of the new file descriptor fails and the reference cannot be transferred to
1362 * its final owner. In such cases, the caller is still actively using @kvm and
1363 * will fail miserably if the refcount unexpectedly hits zero.
1364 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1365 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1366 {
1367 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1368 }
1369 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy);
1370
kvm_vm_release(struct inode * inode,struct file * filp)1371 static int kvm_vm_release(struct inode *inode, struct file *filp)
1372 {
1373 struct kvm *kvm = filp->private_data;
1374
1375 kvm_irqfd_release(kvm);
1376
1377 kvm_put_kvm(kvm);
1378 return 0;
1379 }
1380
kvm_trylock_all_vcpus(struct kvm * kvm)1381 int kvm_trylock_all_vcpus(struct kvm *kvm)
1382 {
1383 struct kvm_vcpu *vcpu;
1384 unsigned long i, j;
1385
1386 lockdep_assert_held(&kvm->lock);
1387
1388 kvm_for_each_vcpu(i, vcpu, kvm)
1389 if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock))
1390 goto out_unlock;
1391 return 0;
1392
1393 out_unlock:
1394 kvm_for_each_vcpu(j, vcpu, kvm) {
1395 if (i == j)
1396 break;
1397 mutex_unlock(&vcpu->mutex);
1398 }
1399 return -EINTR;
1400 }
1401 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus);
1402
kvm_lock_all_vcpus(struct kvm * kvm)1403 int kvm_lock_all_vcpus(struct kvm *kvm)
1404 {
1405 struct kvm_vcpu *vcpu;
1406 unsigned long i, j;
1407 int r;
1408
1409 lockdep_assert_held(&kvm->lock);
1410
1411 kvm_for_each_vcpu(i, vcpu, kvm) {
1412 r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock);
1413 if (r)
1414 goto out_unlock;
1415 }
1416 return 0;
1417
1418 out_unlock:
1419 kvm_for_each_vcpu(j, vcpu, kvm) {
1420 if (i == j)
1421 break;
1422 mutex_unlock(&vcpu->mutex);
1423 }
1424 return r;
1425 }
1426 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus);
1427
kvm_unlock_all_vcpus(struct kvm * kvm)1428 void kvm_unlock_all_vcpus(struct kvm *kvm)
1429 {
1430 struct kvm_vcpu *vcpu;
1431 unsigned long i;
1432
1433 lockdep_assert_held(&kvm->lock);
1434
1435 kvm_for_each_vcpu(i, vcpu, kvm)
1436 mutex_unlock(&vcpu->mutex);
1437 }
1438 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus);
1439
1440 /*
1441 * Allocation size is twice as large as the actual dirty bitmap size.
1442 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1443 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1444 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1445 {
1446 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1447
1448 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1449 if (!memslot->dirty_bitmap)
1450 return -ENOMEM;
1451
1452 return 0;
1453 }
1454
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1455 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1456 {
1457 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1458 int node_idx_inactive = active->node_idx ^ 1;
1459
1460 return &kvm->__memslots[as_id][node_idx_inactive];
1461 }
1462
1463 /*
1464 * Helper to get the address space ID when one of memslot pointers may be NULL.
1465 * This also serves as a sanity that at least one of the pointers is non-NULL,
1466 * and that their address space IDs don't diverge.
1467 */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1468 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1469 struct kvm_memory_slot *b)
1470 {
1471 if (WARN_ON_ONCE(!a && !b))
1472 return 0;
1473
1474 if (!a)
1475 return b->as_id;
1476 if (!b)
1477 return a->as_id;
1478
1479 WARN_ON_ONCE(a->as_id != b->as_id);
1480 return a->as_id;
1481 }
1482
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1483 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1484 struct kvm_memory_slot *slot)
1485 {
1486 struct rb_root *gfn_tree = &slots->gfn_tree;
1487 struct rb_node **node, *parent;
1488 int idx = slots->node_idx;
1489
1490 parent = NULL;
1491 for (node = &gfn_tree->rb_node; *node; ) {
1492 struct kvm_memory_slot *tmp;
1493
1494 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1495 parent = *node;
1496 if (slot->base_gfn < tmp->base_gfn)
1497 node = &(*node)->rb_left;
1498 else if (slot->base_gfn > tmp->base_gfn)
1499 node = &(*node)->rb_right;
1500 else
1501 BUG();
1502 }
1503
1504 rb_link_node(&slot->gfn_node[idx], parent, node);
1505 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1506 }
1507
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1508 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1509 struct kvm_memory_slot *slot)
1510 {
1511 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1512 }
1513
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1514 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1515 struct kvm_memory_slot *old,
1516 struct kvm_memory_slot *new)
1517 {
1518 int idx = slots->node_idx;
1519
1520 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1521
1522 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1523 &slots->gfn_tree);
1524 }
1525
1526 /*
1527 * Replace @old with @new in the inactive memslots.
1528 *
1529 * With NULL @old this simply adds @new.
1530 * With NULL @new this simply removes @old.
1531 *
1532 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1533 * appropriately.
1534 */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1535 static void kvm_replace_memslot(struct kvm *kvm,
1536 struct kvm_memory_slot *old,
1537 struct kvm_memory_slot *new)
1538 {
1539 int as_id = kvm_memslots_get_as_id(old, new);
1540 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1541 int idx = slots->node_idx;
1542
1543 if (old) {
1544 hash_del(&old->id_node[idx]);
1545 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1546
1547 if ((long)old == atomic_long_read(&slots->last_used_slot))
1548 atomic_long_set(&slots->last_used_slot, (long)new);
1549
1550 if (!new) {
1551 kvm_erase_gfn_node(slots, old);
1552 return;
1553 }
1554 }
1555
1556 /*
1557 * Initialize @new's hva range. Do this even when replacing an @old
1558 * slot, kvm_copy_memslot() deliberately does not touch node data.
1559 */
1560 new->hva_node[idx].start = new->userspace_addr;
1561 new->hva_node[idx].last = new->userspace_addr +
1562 (new->npages << PAGE_SHIFT) - 1;
1563
1564 /*
1565 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1566 * hva_node needs to be swapped with remove+insert even though hva can't
1567 * change when replacing an existing slot.
1568 */
1569 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1570 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1571
1572 /*
1573 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1574 * switch the node in the gfn tree instead of removing the old and
1575 * inserting the new as two separate operations. Replacement is a
1576 * single O(1) operation versus two O(log(n)) operations for
1577 * remove+insert.
1578 */
1579 if (old && old->base_gfn == new->base_gfn) {
1580 kvm_replace_gfn_node(slots, old, new);
1581 } else {
1582 if (old)
1583 kvm_erase_gfn_node(slots, old);
1584 kvm_insert_gfn_node(slots, new);
1585 }
1586 }
1587
1588 /*
1589 * Flags that do not access any of the extra space of struct
1590 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1591 * only allows these.
1592 */
1593 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1594 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1595
check_memory_region_flags(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1596 static int check_memory_region_flags(struct kvm *kvm,
1597 const struct kvm_userspace_memory_region2 *mem)
1598 {
1599 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1600
1601 if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
1602 valid_flags |= KVM_MEM_GUEST_MEMFD;
1603
1604 /* Dirty logging private memory is not currently supported. */
1605 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1606 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1607
1608 /*
1609 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1610 * read-only memslots have emulated MMIO, not page fault, semantics,
1611 * and KVM doesn't allow emulated MMIO for private memory.
1612 */
1613 if (kvm_arch_has_readonly_mem(kvm) &&
1614 !(mem->flags & KVM_MEM_GUEST_MEMFD))
1615 valid_flags |= KVM_MEM_READONLY;
1616
1617 if (mem->flags & ~valid_flags)
1618 return -EINVAL;
1619
1620 return 0;
1621 }
1622
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1623 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1624 {
1625 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1626
1627 /* Grab the generation from the activate memslots. */
1628 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1629
1630 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1631 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1632
1633 /*
1634 * Do not store the new memslots while there are invalidations in
1635 * progress, otherwise the locking in invalidate_range_start and
1636 * invalidate_range_end will be unbalanced.
1637 */
1638 spin_lock(&kvm->mn_invalidate_lock);
1639 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1640 while (kvm->mn_active_invalidate_count) {
1641 set_current_state(TASK_UNINTERRUPTIBLE);
1642 spin_unlock(&kvm->mn_invalidate_lock);
1643 schedule();
1644 spin_lock(&kvm->mn_invalidate_lock);
1645 }
1646 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1647 rcu_assign_pointer(kvm->memslots[as_id], slots);
1648 spin_unlock(&kvm->mn_invalidate_lock);
1649
1650 /*
1651 * Acquired in kvm_set_memslot. Must be released before synchronize
1652 * SRCU below in order to avoid deadlock with another thread
1653 * acquiring the slots_arch_lock in an srcu critical section.
1654 */
1655 mutex_unlock(&kvm->slots_arch_lock);
1656
1657 synchronize_srcu_expedited(&kvm->srcu);
1658
1659 /*
1660 * Increment the new memslot generation a second time, dropping the
1661 * update in-progress flag and incrementing the generation based on
1662 * the number of address spaces. This provides a unique and easily
1663 * identifiable generation number while the memslots are in flux.
1664 */
1665 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1666
1667 /*
1668 * Generations must be unique even across address spaces. We do not need
1669 * a global counter for that, instead the generation space is evenly split
1670 * across address spaces. For example, with two address spaces, address
1671 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1672 * use generations 1, 3, 5, ...
1673 */
1674 gen += kvm_arch_nr_memslot_as_ids(kvm);
1675
1676 kvm_arch_memslots_updated(kvm, gen);
1677
1678 slots->generation = gen;
1679 }
1680
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1681 static int kvm_prepare_memory_region(struct kvm *kvm,
1682 const struct kvm_memory_slot *old,
1683 struct kvm_memory_slot *new,
1684 enum kvm_mr_change change)
1685 {
1686 int r;
1687
1688 /*
1689 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1690 * will be freed on "commit". If logging is enabled in both old and
1691 * new, reuse the existing bitmap. If logging is enabled only in the
1692 * new and KVM isn't using a ring buffer, allocate and initialize a
1693 * new bitmap.
1694 */
1695 if (change != KVM_MR_DELETE) {
1696 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1697 new->dirty_bitmap = NULL;
1698 else if (old && old->dirty_bitmap)
1699 new->dirty_bitmap = old->dirty_bitmap;
1700 else if (kvm_use_dirty_bitmap(kvm)) {
1701 r = kvm_alloc_dirty_bitmap(new);
1702 if (r)
1703 return r;
1704
1705 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1706 bitmap_set(new->dirty_bitmap, 0, new->npages);
1707 }
1708 }
1709
1710 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1711
1712 /* Free the bitmap on failure if it was allocated above. */
1713 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1714 kvm_destroy_dirty_bitmap(new);
1715
1716 return r;
1717 }
1718
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1719 static void kvm_commit_memory_region(struct kvm *kvm,
1720 struct kvm_memory_slot *old,
1721 const struct kvm_memory_slot *new,
1722 enum kvm_mr_change change)
1723 {
1724 int old_flags = old ? old->flags : 0;
1725 int new_flags = new ? new->flags : 0;
1726 /*
1727 * Update the total number of memslot pages before calling the arch
1728 * hook so that architectures can consume the result directly.
1729 */
1730 if (change == KVM_MR_DELETE)
1731 kvm->nr_memslot_pages -= old->npages;
1732 else if (change == KVM_MR_CREATE)
1733 kvm->nr_memslot_pages += new->npages;
1734
1735 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1736 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1737 atomic_set(&kvm->nr_memslots_dirty_logging,
1738 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1739 }
1740
1741 kvm_arch_commit_memory_region(kvm, old, new, change);
1742
1743 switch (change) {
1744 case KVM_MR_CREATE:
1745 /* Nothing more to do. */
1746 break;
1747 case KVM_MR_DELETE:
1748 /* Free the old memslot and all its metadata. */
1749 kvm_free_memslot(kvm, old);
1750 break;
1751 case KVM_MR_MOVE:
1752 case KVM_MR_FLAGS_ONLY:
1753 /*
1754 * Free the dirty bitmap as needed; the below check encompasses
1755 * both the flags and whether a ring buffer is being used)
1756 */
1757 if (old->dirty_bitmap && !new->dirty_bitmap)
1758 kvm_destroy_dirty_bitmap(old);
1759
1760 /*
1761 * The final quirk. Free the detached, old slot, but only its
1762 * memory, not any metadata. Metadata, including arch specific
1763 * data, may be reused by @new.
1764 */
1765 kfree(old);
1766 break;
1767 default:
1768 BUG();
1769 }
1770 }
1771
1772 /*
1773 * Activate @new, which must be installed in the inactive slots by the caller,
1774 * by swapping the active slots and then propagating @new to @old once @old is
1775 * unreachable and can be safely modified.
1776 *
1777 * With NULL @old this simply adds @new to @active (while swapping the sets).
1778 * With NULL @new this simply removes @old from @active and frees it
1779 * (while also swapping the sets).
1780 */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1781 static void kvm_activate_memslot(struct kvm *kvm,
1782 struct kvm_memory_slot *old,
1783 struct kvm_memory_slot *new)
1784 {
1785 int as_id = kvm_memslots_get_as_id(old, new);
1786
1787 kvm_swap_active_memslots(kvm, as_id);
1788
1789 /* Propagate the new memslot to the now inactive memslots. */
1790 kvm_replace_memslot(kvm, old, new);
1791 }
1792
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1793 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1794 const struct kvm_memory_slot *src)
1795 {
1796 dest->base_gfn = src->base_gfn;
1797 dest->npages = src->npages;
1798 dest->dirty_bitmap = src->dirty_bitmap;
1799 dest->arch = src->arch;
1800 dest->userspace_addr = src->userspace_addr;
1801 dest->flags = src->flags;
1802 dest->id = src->id;
1803 dest->as_id = src->as_id;
1804 }
1805
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1806 static void kvm_invalidate_memslot(struct kvm *kvm,
1807 struct kvm_memory_slot *old,
1808 struct kvm_memory_slot *invalid_slot)
1809 {
1810 /*
1811 * Mark the current slot INVALID. As with all memslot modifications,
1812 * this must be done on an unreachable slot to avoid modifying the
1813 * current slot in the active tree.
1814 */
1815 kvm_copy_memslot(invalid_slot, old);
1816 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1817 kvm_replace_memslot(kvm, old, invalid_slot);
1818
1819 /*
1820 * Activate the slot that is now marked INVALID, but don't propagate
1821 * the slot to the now inactive slots. The slot is either going to be
1822 * deleted or recreated as a new slot.
1823 */
1824 kvm_swap_active_memslots(kvm, old->as_id);
1825
1826 /*
1827 * From this point no new shadow pages pointing to a deleted, or moved,
1828 * memslot will be created. Validation of sp->gfn happens in:
1829 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1830 * - kvm_is_visible_gfn (mmu_check_root)
1831 */
1832 kvm_arch_flush_shadow_memslot(kvm, old);
1833 kvm_arch_guest_memory_reclaimed(kvm);
1834
1835 /* Was released by kvm_swap_active_memslots(), reacquire. */
1836 mutex_lock(&kvm->slots_arch_lock);
1837
1838 /*
1839 * Copy the arch-specific field of the newly-installed slot back to the
1840 * old slot as the arch data could have changed between releasing
1841 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1842 * above. Writers are required to retrieve memslots *after* acquiring
1843 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1844 */
1845 old->arch = invalid_slot->arch;
1846 }
1847
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1848 static void kvm_create_memslot(struct kvm *kvm,
1849 struct kvm_memory_slot *new)
1850 {
1851 /* Add the new memslot to the inactive set and activate. */
1852 kvm_replace_memslot(kvm, NULL, new);
1853 kvm_activate_memslot(kvm, NULL, new);
1854 }
1855
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1856 static void kvm_delete_memslot(struct kvm *kvm,
1857 struct kvm_memory_slot *old,
1858 struct kvm_memory_slot *invalid_slot)
1859 {
1860 /*
1861 * Remove the old memslot (in the inactive memslots) by passing NULL as
1862 * the "new" slot, and for the invalid version in the active slots.
1863 */
1864 kvm_replace_memslot(kvm, old, NULL);
1865 kvm_activate_memslot(kvm, invalid_slot, NULL);
1866 }
1867
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1868 static void kvm_move_memslot(struct kvm *kvm,
1869 struct kvm_memory_slot *old,
1870 struct kvm_memory_slot *new,
1871 struct kvm_memory_slot *invalid_slot)
1872 {
1873 /*
1874 * Replace the old memslot in the inactive slots, and then swap slots
1875 * and replace the current INVALID with the new as well.
1876 */
1877 kvm_replace_memslot(kvm, old, new);
1878 kvm_activate_memslot(kvm, invalid_slot, new);
1879 }
1880
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1881 static void kvm_update_flags_memslot(struct kvm *kvm,
1882 struct kvm_memory_slot *old,
1883 struct kvm_memory_slot *new)
1884 {
1885 /*
1886 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1887 * an intermediate step. Instead, the old memslot is simply replaced
1888 * with a new, updated copy in both memslot sets.
1889 */
1890 kvm_replace_memslot(kvm, old, new);
1891 kvm_activate_memslot(kvm, old, new);
1892 }
1893
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1894 static int kvm_set_memslot(struct kvm *kvm,
1895 struct kvm_memory_slot *old,
1896 struct kvm_memory_slot *new,
1897 enum kvm_mr_change change)
1898 {
1899 struct kvm_memory_slot *invalid_slot;
1900 int r;
1901
1902 /*
1903 * Released in kvm_swap_active_memslots().
1904 *
1905 * Must be held from before the current memslots are copied until after
1906 * the new memslots are installed with rcu_assign_pointer, then
1907 * released before the synchronize srcu in kvm_swap_active_memslots().
1908 *
1909 * When modifying memslots outside of the slots_lock, must be held
1910 * before reading the pointer to the current memslots until after all
1911 * changes to those memslots are complete.
1912 *
1913 * These rules ensure that installing new memslots does not lose
1914 * changes made to the previous memslots.
1915 */
1916 mutex_lock(&kvm->slots_arch_lock);
1917
1918 /*
1919 * Invalidate the old slot if it's being deleted or moved. This is
1920 * done prior to actually deleting/moving the memslot to allow vCPUs to
1921 * continue running by ensuring there are no mappings or shadow pages
1922 * for the memslot when it is deleted/moved. Without pre-invalidation
1923 * (and without a lock), a window would exist between effecting the
1924 * delete/move and committing the changes in arch code where KVM or a
1925 * guest could access a non-existent memslot.
1926 *
1927 * Modifications are done on a temporary, unreachable slot. The old
1928 * slot needs to be preserved in case a later step fails and the
1929 * invalidation needs to be reverted.
1930 */
1931 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1932 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1933 if (!invalid_slot) {
1934 mutex_unlock(&kvm->slots_arch_lock);
1935 return -ENOMEM;
1936 }
1937 kvm_invalidate_memslot(kvm, old, invalid_slot);
1938 }
1939
1940 r = kvm_prepare_memory_region(kvm, old, new, change);
1941 if (r) {
1942 /*
1943 * For DELETE/MOVE, revert the above INVALID change. No
1944 * modifications required since the original slot was preserved
1945 * in the inactive slots. Changing the active memslots also
1946 * release slots_arch_lock.
1947 */
1948 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1949 kvm_activate_memslot(kvm, invalid_slot, old);
1950 kfree(invalid_slot);
1951 } else {
1952 mutex_unlock(&kvm->slots_arch_lock);
1953 }
1954 return r;
1955 }
1956
1957 /*
1958 * For DELETE and MOVE, the working slot is now active as the INVALID
1959 * version of the old slot. MOVE is particularly special as it reuses
1960 * the old slot and returns a copy of the old slot (in working_slot).
1961 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1962 * old slot is detached but otherwise preserved.
1963 */
1964 if (change == KVM_MR_CREATE)
1965 kvm_create_memslot(kvm, new);
1966 else if (change == KVM_MR_DELETE)
1967 kvm_delete_memslot(kvm, old, invalid_slot);
1968 else if (change == KVM_MR_MOVE)
1969 kvm_move_memslot(kvm, old, new, invalid_slot);
1970 else if (change == KVM_MR_FLAGS_ONLY)
1971 kvm_update_flags_memslot(kvm, old, new);
1972 else
1973 BUG();
1974
1975 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1976 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1977 kfree(invalid_slot);
1978
1979 /*
1980 * No need to refresh new->arch, changes after dropping slots_arch_lock
1981 * will directly hit the final, active memslot. Architectures are
1982 * responsible for knowing that new->arch may be stale.
1983 */
1984 kvm_commit_memory_region(kvm, old, new, change);
1985
1986 return 0;
1987 }
1988
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1989 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1990 gfn_t start, gfn_t end)
1991 {
1992 struct kvm_memslot_iter iter;
1993
1994 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1995 if (iter.slot->id != id)
1996 return true;
1997 }
1998
1999 return false;
2000 }
2001
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2002 static int kvm_set_memory_region(struct kvm *kvm,
2003 const struct kvm_userspace_memory_region2 *mem)
2004 {
2005 struct kvm_memory_slot *old, *new;
2006 struct kvm_memslots *slots;
2007 enum kvm_mr_change change;
2008 unsigned long npages;
2009 gfn_t base_gfn;
2010 int as_id, id;
2011 int r;
2012
2013 lockdep_assert_held(&kvm->slots_lock);
2014
2015 r = check_memory_region_flags(kvm, mem);
2016 if (r)
2017 return r;
2018
2019 as_id = mem->slot >> 16;
2020 id = (u16)mem->slot;
2021
2022 /* General sanity checks */
2023 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2024 (mem->memory_size != (unsigned long)mem->memory_size))
2025 return -EINVAL;
2026 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2027 return -EINVAL;
2028 /* We can read the guest memory with __xxx_user() later on. */
2029 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2030 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2031 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2032 mem->memory_size))
2033 return -EINVAL;
2034 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2035 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2036 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2037 return -EINVAL;
2038 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2039 return -EINVAL;
2040 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2041 return -EINVAL;
2042
2043 /*
2044 * The size of userspace-defined memory regions is restricted in order
2045 * to play nice with dirty bitmap operations, which are indexed with an
2046 * "unsigned int". KVM's internal memory regions don't support dirty
2047 * logging, and so are exempt.
2048 */
2049 if (id < KVM_USER_MEM_SLOTS &&
2050 (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2051 return -EINVAL;
2052
2053 slots = __kvm_memslots(kvm, as_id);
2054
2055 /*
2056 * Note, the old memslot (and the pointer itself!) may be invalidated
2057 * and/or destroyed by kvm_set_memslot().
2058 */
2059 old = id_to_memslot(slots, id);
2060
2061 if (!mem->memory_size) {
2062 if (!old || !old->npages)
2063 return -EINVAL;
2064
2065 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2066 return -EIO;
2067
2068 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2069 }
2070
2071 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2072 npages = (mem->memory_size >> PAGE_SHIFT);
2073
2074 if (!old || !old->npages) {
2075 change = KVM_MR_CREATE;
2076
2077 /*
2078 * To simplify KVM internals, the total number of pages across
2079 * all memslots must fit in an unsigned long.
2080 */
2081 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2082 return -EINVAL;
2083 } else { /* Modify an existing slot. */
2084 /* Private memslots are immutable, they can only be deleted. */
2085 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2086 return -EINVAL;
2087 if ((mem->userspace_addr != old->userspace_addr) ||
2088 (npages != old->npages) ||
2089 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2090 return -EINVAL;
2091
2092 if (base_gfn != old->base_gfn)
2093 change = KVM_MR_MOVE;
2094 else if (mem->flags != old->flags)
2095 change = KVM_MR_FLAGS_ONLY;
2096 else /* Nothing to change. */
2097 return 0;
2098 }
2099
2100 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2101 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2102 return -EEXIST;
2103
2104 /* Allocate a slot that will persist in the memslot. */
2105 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2106 if (!new)
2107 return -ENOMEM;
2108
2109 new->as_id = as_id;
2110 new->id = id;
2111 new->base_gfn = base_gfn;
2112 new->npages = npages;
2113 new->flags = mem->flags;
2114 new->userspace_addr = mem->userspace_addr;
2115 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2116 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2117 if (r)
2118 goto out;
2119 }
2120
2121 r = kvm_set_memslot(kvm, old, new, change);
2122 if (r)
2123 goto out_unbind;
2124
2125 return 0;
2126
2127 out_unbind:
2128 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2129 kvm_gmem_unbind(new);
2130 out:
2131 kfree(new);
2132 return r;
2133 }
2134
kvm_set_internal_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2135 int kvm_set_internal_memslot(struct kvm *kvm,
2136 const struct kvm_userspace_memory_region2 *mem)
2137 {
2138 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2139 return -EINVAL;
2140
2141 if (WARN_ON_ONCE(mem->flags))
2142 return -EINVAL;
2143
2144 return kvm_set_memory_region(kvm, mem);
2145 }
2146 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot);
2147
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region2 * mem)2148 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2149 struct kvm_userspace_memory_region2 *mem)
2150 {
2151 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2152 return -EINVAL;
2153
2154 guard(mutex)(&kvm->slots_lock);
2155 return kvm_set_memory_region(kvm, mem);
2156 }
2157
2158 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2159 /**
2160 * kvm_get_dirty_log - get a snapshot of dirty pages
2161 * @kvm: pointer to kvm instance
2162 * @log: slot id and address to which we copy the log
2163 * @is_dirty: set to '1' if any dirty pages were found
2164 * @memslot: set to the associated memslot, always valid on success
2165 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2166 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2167 int *is_dirty, struct kvm_memory_slot **memslot)
2168 {
2169 struct kvm_memslots *slots;
2170 int i, as_id, id;
2171 unsigned long n;
2172 unsigned long any = 0;
2173
2174 /* Dirty ring tracking may be exclusive to dirty log tracking */
2175 if (!kvm_use_dirty_bitmap(kvm))
2176 return -ENXIO;
2177
2178 *memslot = NULL;
2179 *is_dirty = 0;
2180
2181 as_id = log->slot >> 16;
2182 id = (u16)log->slot;
2183 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2184 return -EINVAL;
2185
2186 slots = __kvm_memslots(kvm, as_id);
2187 *memslot = id_to_memslot(slots, id);
2188 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2189 return -ENOENT;
2190
2191 kvm_arch_sync_dirty_log(kvm, *memslot);
2192
2193 n = kvm_dirty_bitmap_bytes(*memslot);
2194
2195 for (i = 0; !any && i < n/sizeof(long); ++i)
2196 any = (*memslot)->dirty_bitmap[i];
2197
2198 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2199 return -EFAULT;
2200
2201 if (any)
2202 *is_dirty = 1;
2203 return 0;
2204 }
2205 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log);
2206
2207 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2208 /**
2209 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2210 * and reenable dirty page tracking for the corresponding pages.
2211 * @kvm: pointer to kvm instance
2212 * @log: slot id and address to which we copy the log
2213 *
2214 * We need to keep it in mind that VCPU threads can write to the bitmap
2215 * concurrently. So, to avoid losing track of dirty pages we keep the
2216 * following order:
2217 *
2218 * 1. Take a snapshot of the bit and clear it if needed.
2219 * 2. Write protect the corresponding page.
2220 * 3. Copy the snapshot to the userspace.
2221 * 4. Upon return caller flushes TLB's if needed.
2222 *
2223 * Between 2 and 4, the guest may write to the page using the remaining TLB
2224 * entry. This is not a problem because the page is reported dirty using
2225 * the snapshot taken before and step 4 ensures that writes done after
2226 * exiting to userspace will be logged for the next call.
2227 *
2228 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2229 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2230 {
2231 struct kvm_memslots *slots;
2232 struct kvm_memory_slot *memslot;
2233 int i, as_id, id;
2234 unsigned long n;
2235 unsigned long *dirty_bitmap;
2236 unsigned long *dirty_bitmap_buffer;
2237 bool flush;
2238
2239 /* Dirty ring tracking may be exclusive to dirty log tracking */
2240 if (!kvm_use_dirty_bitmap(kvm))
2241 return -ENXIO;
2242
2243 as_id = log->slot >> 16;
2244 id = (u16)log->slot;
2245 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2246 return -EINVAL;
2247
2248 slots = __kvm_memslots(kvm, as_id);
2249 memslot = id_to_memslot(slots, id);
2250 if (!memslot || !memslot->dirty_bitmap)
2251 return -ENOENT;
2252
2253 dirty_bitmap = memslot->dirty_bitmap;
2254
2255 kvm_arch_sync_dirty_log(kvm, memslot);
2256
2257 n = kvm_dirty_bitmap_bytes(memslot);
2258 flush = false;
2259 if (kvm->manual_dirty_log_protect) {
2260 /*
2261 * Unlike kvm_get_dirty_log, we always return false in *flush,
2262 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2263 * is some code duplication between this function and
2264 * kvm_get_dirty_log, but hopefully all architecture
2265 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2266 * can be eliminated.
2267 */
2268 dirty_bitmap_buffer = dirty_bitmap;
2269 } else {
2270 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271 memset(dirty_bitmap_buffer, 0, n);
2272
2273 KVM_MMU_LOCK(kvm);
2274 for (i = 0; i < n / sizeof(long); i++) {
2275 unsigned long mask;
2276 gfn_t offset;
2277
2278 if (!dirty_bitmap[i])
2279 continue;
2280
2281 flush = true;
2282 mask = xchg(&dirty_bitmap[i], 0);
2283 dirty_bitmap_buffer[i] = mask;
2284
2285 offset = i * BITS_PER_LONG;
2286 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2287 offset, mask);
2288 }
2289 KVM_MMU_UNLOCK(kvm);
2290 }
2291
2292 if (flush)
2293 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2294
2295 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2296 return -EFAULT;
2297 return 0;
2298 }
2299
2300
2301 /**
2302 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2303 * @kvm: kvm instance
2304 * @log: slot id and address to which we copy the log
2305 *
2306 * Steps 1-4 below provide general overview of dirty page logging. See
2307 * kvm_get_dirty_log_protect() function description for additional details.
2308 *
2309 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2310 * always flush the TLB (step 4) even if previous step failed and the dirty
2311 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2312 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2313 * writes will be marked dirty for next log read.
2314 *
2315 * 1. Take a snapshot of the bit and clear it if needed.
2316 * 2. Write protect the corresponding page.
2317 * 3. Copy the snapshot to the userspace.
2318 * 4. Flush TLB's if needed.
2319 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2320 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2321 struct kvm_dirty_log *log)
2322 {
2323 int r;
2324
2325 mutex_lock(&kvm->slots_lock);
2326
2327 r = kvm_get_dirty_log_protect(kvm, log);
2328
2329 mutex_unlock(&kvm->slots_lock);
2330 return r;
2331 }
2332
2333 /**
2334 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2335 * and reenable dirty page tracking for the corresponding pages.
2336 * @kvm: pointer to kvm instance
2337 * @log: slot id and address from which to fetch the bitmap of dirty pages
2338 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2339 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2340 struct kvm_clear_dirty_log *log)
2341 {
2342 struct kvm_memslots *slots;
2343 struct kvm_memory_slot *memslot;
2344 int as_id, id;
2345 gfn_t offset;
2346 unsigned long i, n;
2347 unsigned long *dirty_bitmap;
2348 unsigned long *dirty_bitmap_buffer;
2349 bool flush;
2350
2351 /* Dirty ring tracking may be exclusive to dirty log tracking */
2352 if (!kvm_use_dirty_bitmap(kvm))
2353 return -ENXIO;
2354
2355 as_id = log->slot >> 16;
2356 id = (u16)log->slot;
2357 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2358 return -EINVAL;
2359
2360 if (log->first_page & 63)
2361 return -EINVAL;
2362
2363 slots = __kvm_memslots(kvm, as_id);
2364 memslot = id_to_memslot(slots, id);
2365 if (!memslot || !memslot->dirty_bitmap)
2366 return -ENOENT;
2367
2368 dirty_bitmap = memslot->dirty_bitmap;
2369
2370 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2371
2372 if (log->first_page > memslot->npages ||
2373 log->num_pages > memslot->npages - log->first_page ||
2374 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2375 return -EINVAL;
2376
2377 kvm_arch_sync_dirty_log(kvm, memslot);
2378
2379 flush = false;
2380 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2381 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2382 return -EFAULT;
2383
2384 KVM_MMU_LOCK(kvm);
2385 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2386 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2387 i++, offset += BITS_PER_LONG) {
2388 unsigned long mask = *dirty_bitmap_buffer++;
2389 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2390 if (!mask)
2391 continue;
2392
2393 mask &= atomic_long_fetch_andnot(mask, p);
2394
2395 /*
2396 * mask contains the bits that really have been cleared. This
2397 * never includes any bits beyond the length of the memslot (if
2398 * the length is not aligned to 64 pages), therefore it is not
2399 * a problem if userspace sets them in log->dirty_bitmap.
2400 */
2401 if (mask) {
2402 flush = true;
2403 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2404 offset, mask);
2405 }
2406 }
2407 KVM_MMU_UNLOCK(kvm);
2408
2409 if (flush)
2410 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2411
2412 return 0;
2413 }
2414
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2415 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2416 struct kvm_clear_dirty_log *log)
2417 {
2418 int r;
2419
2420 mutex_lock(&kvm->slots_lock);
2421
2422 r = kvm_clear_dirty_log_protect(kvm, log);
2423
2424 mutex_unlock(&kvm->slots_lock);
2425 return r;
2426 }
2427 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2428
2429 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_supported_mem_attributes(struct kvm * kvm)2430 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2431 {
2432 if (!kvm || kvm_arch_has_private_mem(kvm))
2433 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2434
2435 return 0;
2436 }
2437
2438 /*
2439 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2440 * such that the bits in @mask match @attrs.
2441 */
kvm_range_has_memory_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long mask,unsigned long attrs)2442 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2443 unsigned long mask, unsigned long attrs)
2444 {
2445 XA_STATE(xas, &kvm->mem_attr_array, start);
2446 unsigned long index;
2447 void *entry;
2448
2449 mask &= kvm_supported_mem_attributes(kvm);
2450 if (attrs & ~mask)
2451 return false;
2452
2453 if (end == start + 1)
2454 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2455
2456 guard(rcu)();
2457 if (!attrs)
2458 return !xas_find(&xas, end - 1);
2459
2460 for (index = start; index < end; index++) {
2461 do {
2462 entry = xas_next(&xas);
2463 } while (xas_retry(&xas, entry));
2464
2465 if (xas.xa_index != index ||
2466 (xa_to_value(entry) & mask) != attrs)
2467 return false;
2468 }
2469
2470 return true;
2471 }
2472
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_mmu_notifier_range * range)2473 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2474 struct kvm_mmu_notifier_range *range)
2475 {
2476 struct kvm_gfn_range gfn_range;
2477 struct kvm_memory_slot *slot;
2478 struct kvm_memslots *slots;
2479 struct kvm_memslot_iter iter;
2480 bool found_memslot = false;
2481 bool ret = false;
2482 int i;
2483
2484 gfn_range.arg = range->arg;
2485 gfn_range.may_block = range->may_block;
2486
2487 /*
2488 * If/when KVM supports more attributes beyond private .vs shared, this
2489 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2490 * range already has the desired private vs. shared state (it's unclear
2491 * if that is a net win). For now, KVM reaches this point if and only
2492 * if the private flag is being toggled, i.e. all mappings are in play.
2493 */
2494
2495 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2496 slots = __kvm_memslots(kvm, i);
2497
2498 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2499 slot = iter.slot;
2500 gfn_range.slot = slot;
2501
2502 gfn_range.start = max(range->start, slot->base_gfn);
2503 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2504 if (gfn_range.start >= gfn_range.end)
2505 continue;
2506
2507 if (!found_memslot) {
2508 found_memslot = true;
2509 KVM_MMU_LOCK(kvm);
2510 if (!IS_KVM_NULL_FN(range->on_lock))
2511 range->on_lock(kvm);
2512 }
2513
2514 ret |= range->handler(kvm, &gfn_range);
2515 }
2516 }
2517
2518 if (range->flush_on_ret && ret)
2519 kvm_flush_remote_tlbs(kvm);
2520
2521 if (found_memslot)
2522 KVM_MMU_UNLOCK(kvm);
2523 }
2524
kvm_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)2525 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2526 struct kvm_gfn_range *range)
2527 {
2528 /*
2529 * Unconditionally add the range to the invalidation set, regardless of
2530 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2531 * if KVM supports RWX attributes in the future and the attributes are
2532 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2533 * adding the range allows KVM to require that MMU invalidations add at
2534 * least one range between begin() and end(), e.g. allows KVM to detect
2535 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2536 * but it's not obvious that allowing new mappings while the attributes
2537 * are in flux is desirable or worth the complexity.
2538 */
2539 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2540
2541 return kvm_arch_pre_set_memory_attributes(kvm, range);
2542 }
2543
2544 /* Set @attributes for the gfn range [@start, @end). */
kvm_vm_set_mem_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long attributes)2545 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2546 unsigned long attributes)
2547 {
2548 struct kvm_mmu_notifier_range pre_set_range = {
2549 .start = start,
2550 .end = end,
2551 .arg.attributes = attributes,
2552 .handler = kvm_pre_set_memory_attributes,
2553 .on_lock = kvm_mmu_invalidate_begin,
2554 .flush_on_ret = true,
2555 .may_block = true,
2556 };
2557 struct kvm_mmu_notifier_range post_set_range = {
2558 .start = start,
2559 .end = end,
2560 .arg.attributes = attributes,
2561 .handler = kvm_arch_post_set_memory_attributes,
2562 .on_lock = kvm_mmu_invalidate_end,
2563 .may_block = true,
2564 };
2565 unsigned long i;
2566 void *entry;
2567 int r = 0;
2568
2569 entry = attributes ? xa_mk_value(attributes) : NULL;
2570
2571 trace_kvm_vm_set_mem_attributes(start, end, attributes);
2572
2573 mutex_lock(&kvm->slots_lock);
2574
2575 /* Nothing to do if the entire range has the desired attributes. */
2576 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2577 goto out_unlock;
2578
2579 /*
2580 * Reserve memory ahead of time to avoid having to deal with failures
2581 * partway through setting the new attributes.
2582 */
2583 for (i = start; i < end; i++) {
2584 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2585 if (r)
2586 goto out_unlock;
2587
2588 cond_resched();
2589 }
2590
2591 kvm_handle_gfn_range(kvm, &pre_set_range);
2592
2593 for (i = start; i < end; i++) {
2594 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2595 GFP_KERNEL_ACCOUNT));
2596 KVM_BUG_ON(r, kvm);
2597 cond_resched();
2598 }
2599
2600 kvm_handle_gfn_range(kvm, &post_set_range);
2601
2602 out_unlock:
2603 mutex_unlock(&kvm->slots_lock);
2604
2605 return r;
2606 }
kvm_vm_ioctl_set_mem_attributes(struct kvm * kvm,struct kvm_memory_attributes * attrs)2607 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2608 struct kvm_memory_attributes *attrs)
2609 {
2610 gfn_t start, end;
2611
2612 /* flags is currently not used. */
2613 if (attrs->flags)
2614 return -EINVAL;
2615 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2616 return -EINVAL;
2617 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2618 return -EINVAL;
2619 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2620 return -EINVAL;
2621
2622 start = attrs->address >> PAGE_SHIFT;
2623 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2624
2625 /*
2626 * xarray tracks data using "unsigned long", and as a result so does
2627 * KVM. For simplicity, supports generic attributes only on 64-bit
2628 * architectures.
2629 */
2630 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2631
2632 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2633 }
2634 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2635
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2636 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2637 {
2638 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2639 }
2640 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot);
2641
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2642 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2643 {
2644 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2645 u64 gen = slots->generation;
2646 struct kvm_memory_slot *slot;
2647
2648 /*
2649 * This also protects against using a memslot from a different address space,
2650 * since different address spaces have different generation numbers.
2651 */
2652 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2653 vcpu->last_used_slot = NULL;
2654 vcpu->last_used_slot_gen = gen;
2655 }
2656
2657 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2658 if (slot)
2659 return slot;
2660
2661 /*
2662 * Fall back to searching all memslots. We purposely use
2663 * search_memslots() instead of __gfn_to_memslot() to avoid
2664 * thrashing the VM-wide last_used_slot in kvm_memslots.
2665 */
2666 slot = search_memslots(slots, gfn, false);
2667 if (slot) {
2668 vcpu->last_used_slot = slot;
2669 return slot;
2670 }
2671
2672 return NULL;
2673 }
2674 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot);
2675
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2676 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2677 {
2678 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2679
2680 return kvm_is_visible_memslot(memslot);
2681 }
2682 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn);
2683
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2684 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2685 {
2686 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2687
2688 return kvm_is_visible_memslot(memslot);
2689 }
2690 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn);
2691
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2692 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2693 {
2694 struct vm_area_struct *vma;
2695 unsigned long addr, size;
2696
2697 size = PAGE_SIZE;
2698
2699 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2700 if (kvm_is_error_hva(addr))
2701 return PAGE_SIZE;
2702
2703 mmap_read_lock(current->mm);
2704 vma = find_vma(current->mm, addr);
2705 if (!vma)
2706 goto out;
2707
2708 size = vma_kernel_pagesize(vma);
2709
2710 out:
2711 mmap_read_unlock(current->mm);
2712
2713 return size;
2714 }
2715
memslot_is_readonly(const struct kvm_memory_slot * slot)2716 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2717 {
2718 return slot->flags & KVM_MEM_READONLY;
2719 }
2720
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2721 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2722 gfn_t *nr_pages, bool write)
2723 {
2724 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2725 return KVM_HVA_ERR_BAD;
2726
2727 if (memslot_is_readonly(slot) && write)
2728 return KVM_HVA_ERR_RO_BAD;
2729
2730 if (nr_pages)
2731 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2732
2733 return __gfn_to_hva_memslot(slot, gfn);
2734 }
2735
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2736 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2737 gfn_t *nr_pages)
2738 {
2739 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2740 }
2741
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2742 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2743 gfn_t gfn)
2744 {
2745 return gfn_to_hva_many(slot, gfn, NULL);
2746 }
2747 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot);
2748
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2749 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2750 {
2751 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2752 }
2753 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva);
2754
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2755 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2756 {
2757 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2758 }
2759 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva);
2760
2761 /*
2762 * Return the hva of a @gfn and the R/W attribute if possible.
2763 *
2764 * @slot: the kvm_memory_slot which contains @gfn
2765 * @gfn: the gfn to be translated
2766 * @writable: used to return the read/write attribute of the @slot if the hva
2767 * is valid and @writable is not NULL
2768 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2769 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2770 gfn_t gfn, bool *writable)
2771 {
2772 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2773
2774 if (!kvm_is_error_hva(hva) && writable)
2775 *writable = !memslot_is_readonly(slot);
2776
2777 return hva;
2778 }
2779
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2780 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2781 {
2782 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2783
2784 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2785 }
2786
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2787 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2788 {
2789 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2790
2791 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2792 }
2793
kvm_is_ad_tracked_page(struct page * page)2794 static bool kvm_is_ad_tracked_page(struct page *page)
2795 {
2796 /*
2797 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2798 * touched (e.g. set dirty) except by its owner".
2799 */
2800 return !PageReserved(page);
2801 }
2802
kvm_set_page_dirty(struct page * page)2803 static void kvm_set_page_dirty(struct page *page)
2804 {
2805 if (kvm_is_ad_tracked_page(page))
2806 SetPageDirty(page);
2807 }
2808
kvm_set_page_accessed(struct page * page)2809 static void kvm_set_page_accessed(struct page *page)
2810 {
2811 if (kvm_is_ad_tracked_page(page))
2812 mark_page_accessed(page);
2813 }
2814
kvm_release_page_clean(struct page * page)2815 void kvm_release_page_clean(struct page *page)
2816 {
2817 if (!page)
2818 return;
2819
2820 kvm_set_page_accessed(page);
2821 put_page(page);
2822 }
2823 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean);
2824
kvm_release_page_dirty(struct page * page)2825 void kvm_release_page_dirty(struct page *page)
2826 {
2827 if (!page)
2828 return;
2829
2830 kvm_set_page_dirty(page);
2831 kvm_release_page_clean(page);
2832 }
2833 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty);
2834
kvm_resolve_pfn(struct kvm_follow_pfn * kfp,struct page * page,struct follow_pfnmap_args * map,bool writable)2835 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2836 struct follow_pfnmap_args *map, bool writable)
2837 {
2838 kvm_pfn_t pfn;
2839
2840 WARN_ON_ONCE(!!page == !!map);
2841
2842 if (kfp->map_writable)
2843 *kfp->map_writable = writable;
2844
2845 if (map)
2846 pfn = map->pfn;
2847 else
2848 pfn = page_to_pfn(page);
2849
2850 *kfp->refcounted_page = page;
2851
2852 return pfn;
2853 }
2854
2855 /*
2856 * The fast path to get the writable pfn which will be stored in @pfn,
2857 * true indicates success, otherwise false is returned.
2858 */
hva_to_pfn_fast(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2859 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2860 {
2861 struct page *page;
2862 bool r;
2863
2864 /*
2865 * Try the fast-only path when the caller wants to pin/get the page for
2866 * writing. If the caller only wants to read the page, KVM must go
2867 * down the full, slow path in order to avoid racing an operation that
2868 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2869 * at the old, read-only page while mm/ points at a new, writable page.
2870 */
2871 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2872 return false;
2873
2874 if (kfp->pin)
2875 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2876 else
2877 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2878
2879 if (r) {
2880 *pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2881 return true;
2882 }
2883
2884 return false;
2885 }
2886
2887 /*
2888 * The slow path to get the pfn of the specified host virtual address,
2889 * 1 indicates success, -errno is returned if error is detected.
2890 */
hva_to_pfn_slow(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2891 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2892 {
2893 /*
2894 * When a VCPU accesses a page that is not mapped into the secondary
2895 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2896 * make progress. We always want to honor NUMA hinting faults in that
2897 * case, because GUP usage corresponds to memory accesses from the VCPU.
2898 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2899 * mapped into the secondary MMU and gets accessed by a VCPU.
2900 *
2901 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2902 * implicitly honor NUMA hinting faults and don't need this flag.
2903 */
2904 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2905 struct page *page, *wpage;
2906 int npages;
2907
2908 if (kfp->pin)
2909 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2910 else
2911 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2912 if (npages != 1)
2913 return npages;
2914
2915 /*
2916 * Pinning is mutually exclusive with opportunistically mapping a read
2917 * fault as writable, as KVM should never pin pages when mapping memory
2918 * into the guest (pinning is only for direct accesses from KVM).
2919 */
2920 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2921 goto out;
2922
2923 /* map read fault as writable if possible */
2924 if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2925 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2926 put_page(page);
2927 page = wpage;
2928 flags |= FOLL_WRITE;
2929 }
2930
2931 out:
2932 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2933 return npages;
2934 }
2935
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2936 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2937 {
2938 if (unlikely(!(vma->vm_flags & VM_READ)))
2939 return false;
2940
2941 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2942 return false;
2943
2944 return true;
2945 }
2946
hva_to_pfn_remapped(struct vm_area_struct * vma,struct kvm_follow_pfn * kfp,kvm_pfn_t * p_pfn)2947 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2948 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2949 {
2950 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2951 bool write_fault = kfp->flags & FOLL_WRITE;
2952 int r;
2953
2954 /*
2955 * Remapped memory cannot be pinned in any meaningful sense. Bail if
2956 * the caller wants to pin the page, i.e. access the page outside of
2957 * MMU notifier protection, and unsafe umappings are disallowed.
2958 */
2959 if (kfp->pin && !allow_unsafe_mappings)
2960 return -EINVAL;
2961
2962 r = follow_pfnmap_start(&args);
2963 if (r) {
2964 /*
2965 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2966 * not call the fault handler, so do it here.
2967 */
2968 bool unlocked = false;
2969 r = fixup_user_fault(current->mm, kfp->hva,
2970 (write_fault ? FAULT_FLAG_WRITE : 0),
2971 &unlocked);
2972 if (unlocked)
2973 return -EAGAIN;
2974 if (r)
2975 return r;
2976
2977 r = follow_pfnmap_start(&args);
2978 if (r)
2979 return r;
2980 }
2981
2982 if (write_fault && !args.writable) {
2983 *p_pfn = KVM_PFN_ERR_RO_FAULT;
2984 goto out;
2985 }
2986
2987 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2988 out:
2989 follow_pfnmap_end(&args);
2990 return r;
2991 }
2992
hva_to_pfn(struct kvm_follow_pfn * kfp)2993 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2994 {
2995 struct vm_area_struct *vma;
2996 kvm_pfn_t pfn;
2997 int npages, r;
2998
2999 might_sleep();
3000
3001 if (WARN_ON_ONCE(!kfp->refcounted_page))
3002 return KVM_PFN_ERR_FAULT;
3003
3004 if (hva_to_pfn_fast(kfp, &pfn))
3005 return pfn;
3006
3007 npages = hva_to_pfn_slow(kfp, &pfn);
3008 if (npages == 1)
3009 return pfn;
3010 if (npages == -EINTR || npages == -EAGAIN)
3011 return KVM_PFN_ERR_SIGPENDING;
3012 if (npages == -EHWPOISON)
3013 return KVM_PFN_ERR_HWPOISON;
3014
3015 mmap_read_lock(current->mm);
3016 retry:
3017 vma = vma_lookup(current->mm, kfp->hva);
3018
3019 if (vma == NULL)
3020 pfn = KVM_PFN_ERR_FAULT;
3021 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3022 r = hva_to_pfn_remapped(vma, kfp, &pfn);
3023 if (r == -EAGAIN)
3024 goto retry;
3025 if (r < 0)
3026 pfn = KVM_PFN_ERR_FAULT;
3027 } else {
3028 if ((kfp->flags & FOLL_NOWAIT) &&
3029 vma_is_valid(vma, kfp->flags & FOLL_WRITE))
3030 pfn = KVM_PFN_ERR_NEEDS_IO;
3031 else
3032 pfn = KVM_PFN_ERR_FAULT;
3033 }
3034 mmap_read_unlock(current->mm);
3035 return pfn;
3036 }
3037
kvm_follow_pfn(struct kvm_follow_pfn * kfp)3038 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
3039 {
3040 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
3041 kfp->flags & FOLL_WRITE);
3042
3043 if (kfp->hva == KVM_HVA_ERR_RO_BAD)
3044 return KVM_PFN_ERR_RO_FAULT;
3045
3046 if (kvm_is_error_hva(kfp->hva))
3047 return KVM_PFN_NOSLOT;
3048
3049 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
3050 *kfp->map_writable = false;
3051 kfp->map_writable = NULL;
3052 }
3053
3054 return hva_to_pfn(kfp);
3055 }
3056
__kvm_faultin_pfn(const struct kvm_memory_slot * slot,gfn_t gfn,unsigned int foll,bool * writable,struct page ** refcounted_page)3057 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
3058 unsigned int foll, bool *writable,
3059 struct page **refcounted_page)
3060 {
3061 struct kvm_follow_pfn kfp = {
3062 .slot = slot,
3063 .gfn = gfn,
3064 .flags = foll,
3065 .map_writable = writable,
3066 .refcounted_page = refcounted_page,
3067 };
3068
3069 if (WARN_ON_ONCE(!writable || !refcounted_page))
3070 return KVM_PFN_ERR_FAULT;
3071
3072 *writable = false;
3073 *refcounted_page = NULL;
3074
3075 return kvm_follow_pfn(&kfp);
3076 }
3077 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn);
3078
kvm_prefetch_pages(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)3079 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3080 struct page **pages, int nr_pages)
3081 {
3082 unsigned long addr;
3083 gfn_t entry = 0;
3084
3085 addr = gfn_to_hva_many(slot, gfn, &entry);
3086 if (kvm_is_error_hva(addr))
3087 return -1;
3088
3089 if (entry < nr_pages)
3090 return 0;
3091
3092 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3093 }
3094 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages);
3095
3096 /*
3097 * Don't use this API unless you are absolutely, positively certain that KVM
3098 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3099 *
3100 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3101 * its refcount.
3102 */
__gfn_to_page(struct kvm * kvm,gfn_t gfn,bool write)3103 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3104 {
3105 struct page *refcounted_page = NULL;
3106 struct kvm_follow_pfn kfp = {
3107 .slot = gfn_to_memslot(kvm, gfn),
3108 .gfn = gfn,
3109 .flags = write ? FOLL_WRITE : 0,
3110 .refcounted_page = &refcounted_page,
3111 };
3112
3113 (void)kvm_follow_pfn(&kfp);
3114 return refcounted_page;
3115 }
3116 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page);
3117
__kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,bool writable)3118 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3119 bool writable)
3120 {
3121 struct kvm_follow_pfn kfp = {
3122 .slot = gfn_to_memslot(vcpu->kvm, gfn),
3123 .gfn = gfn,
3124 .flags = writable ? FOLL_WRITE : 0,
3125 .refcounted_page = &map->pinned_page,
3126 .pin = true,
3127 };
3128
3129 map->pinned_page = NULL;
3130 map->page = NULL;
3131 map->hva = NULL;
3132 map->gfn = gfn;
3133 map->writable = writable;
3134
3135 map->pfn = kvm_follow_pfn(&kfp);
3136 if (is_error_noslot_pfn(map->pfn))
3137 return -EINVAL;
3138
3139 if (pfn_valid(map->pfn)) {
3140 map->page = pfn_to_page(map->pfn);
3141 map->hva = kmap(map->page);
3142 #ifdef CONFIG_HAS_IOMEM
3143 } else {
3144 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3145 #endif
3146 }
3147
3148 return map->hva ? 0 : -EFAULT;
3149 }
3150 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map);
3151
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map)3152 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3153 {
3154 if (!map->hva)
3155 return;
3156
3157 if (map->page)
3158 kunmap(map->page);
3159 #ifdef CONFIG_HAS_IOMEM
3160 else
3161 memunmap(map->hva);
3162 #endif
3163
3164 if (map->writable)
3165 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3166
3167 if (map->pinned_page) {
3168 if (map->writable)
3169 kvm_set_page_dirty(map->pinned_page);
3170 kvm_set_page_accessed(map->pinned_page);
3171 unpin_user_page(map->pinned_page);
3172 }
3173
3174 map->hva = NULL;
3175 map->page = NULL;
3176 map->pinned_page = NULL;
3177 }
3178 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap);
3179
next_segment(unsigned long len,int offset)3180 static int next_segment(unsigned long len, int offset)
3181 {
3182 if (len > PAGE_SIZE - offset)
3183 return PAGE_SIZE - offset;
3184 else
3185 return len;
3186 }
3187
3188 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3189 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3190 void *data, int offset, int len)
3191 {
3192 int r;
3193 unsigned long addr;
3194
3195 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3196 return -EFAULT;
3197
3198 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3199 if (kvm_is_error_hva(addr))
3200 return -EFAULT;
3201 r = __copy_from_user(data, (void __user *)addr + offset, len);
3202 if (r)
3203 return -EFAULT;
3204 return 0;
3205 }
3206
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3207 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3208 int len)
3209 {
3210 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3211
3212 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3213 }
3214 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page);
3215
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3216 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3217 int offset, int len)
3218 {
3219 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3220
3221 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3222 }
3223 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page);
3224
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3225 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3226 {
3227 gfn_t gfn = gpa >> PAGE_SHIFT;
3228 int seg;
3229 int offset = offset_in_page(gpa);
3230 int ret;
3231
3232 while ((seg = next_segment(len, offset)) != 0) {
3233 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3234 if (ret < 0)
3235 return ret;
3236 offset = 0;
3237 len -= seg;
3238 data += seg;
3239 ++gfn;
3240 }
3241 return 0;
3242 }
3243 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest);
3244
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3245 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3246 {
3247 gfn_t gfn = gpa >> PAGE_SHIFT;
3248 int seg;
3249 int offset = offset_in_page(gpa);
3250 int ret;
3251
3252 while ((seg = next_segment(len, offset)) != 0) {
3253 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3254 if (ret < 0)
3255 return ret;
3256 offset = 0;
3257 len -= seg;
3258 data += seg;
3259 ++gfn;
3260 }
3261 return 0;
3262 }
3263 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest);
3264
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3265 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3266 void *data, int offset, unsigned long len)
3267 {
3268 int r;
3269 unsigned long addr;
3270
3271 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3272 return -EFAULT;
3273
3274 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3275 if (kvm_is_error_hva(addr))
3276 return -EFAULT;
3277 pagefault_disable();
3278 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3279 pagefault_enable();
3280 if (r)
3281 return -EFAULT;
3282 return 0;
3283 }
3284
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3285 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3286 void *data, unsigned long len)
3287 {
3288 gfn_t gfn = gpa >> PAGE_SHIFT;
3289 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3290 int offset = offset_in_page(gpa);
3291
3292 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3293 }
3294 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic);
3295
3296 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3297 static int __kvm_write_guest_page(struct kvm *kvm,
3298 struct kvm_memory_slot *memslot, gfn_t gfn,
3299 const void *data, int offset, int len)
3300 {
3301 int r;
3302 unsigned long addr;
3303
3304 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3305 return -EFAULT;
3306
3307 addr = gfn_to_hva_memslot(memslot, gfn);
3308 if (kvm_is_error_hva(addr))
3309 return -EFAULT;
3310 r = __copy_to_user((void __user *)addr + offset, data, len);
3311 if (r)
3312 return -EFAULT;
3313 mark_page_dirty_in_slot(kvm, memslot, gfn);
3314 return 0;
3315 }
3316
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3317 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3318 const void *data, int offset, int len)
3319 {
3320 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3321
3322 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3323 }
3324 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page);
3325
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3326 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3327 const void *data, int offset, int len)
3328 {
3329 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3330
3331 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3332 }
3333 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page);
3334
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3335 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3336 unsigned long len)
3337 {
3338 gfn_t gfn = gpa >> PAGE_SHIFT;
3339 int seg;
3340 int offset = offset_in_page(gpa);
3341 int ret;
3342
3343 while ((seg = next_segment(len, offset)) != 0) {
3344 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3345 if (ret < 0)
3346 return ret;
3347 offset = 0;
3348 len -= seg;
3349 data += seg;
3350 ++gfn;
3351 }
3352 return 0;
3353 }
3354 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest);
3355
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3356 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3357 unsigned long len)
3358 {
3359 gfn_t gfn = gpa >> PAGE_SHIFT;
3360 int seg;
3361 int offset = offset_in_page(gpa);
3362 int ret;
3363
3364 while ((seg = next_segment(len, offset)) != 0) {
3365 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3366 if (ret < 0)
3367 return ret;
3368 offset = 0;
3369 len -= seg;
3370 data += seg;
3371 ++gfn;
3372 }
3373 return 0;
3374 }
3375 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest);
3376
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3377 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3378 struct gfn_to_hva_cache *ghc,
3379 gpa_t gpa, unsigned long len)
3380 {
3381 int offset = offset_in_page(gpa);
3382 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3383 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3384 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3385 gfn_t nr_pages_avail;
3386
3387 /* Update ghc->generation before performing any error checks. */
3388 ghc->generation = slots->generation;
3389
3390 if (start_gfn > end_gfn) {
3391 ghc->hva = KVM_HVA_ERR_BAD;
3392 return -EINVAL;
3393 }
3394
3395 /*
3396 * If the requested region crosses two memslots, we still
3397 * verify that the entire region is valid here.
3398 */
3399 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3400 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3401 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3402 &nr_pages_avail);
3403 if (kvm_is_error_hva(ghc->hva))
3404 return -EFAULT;
3405 }
3406
3407 /* Use the slow path for cross page reads and writes. */
3408 if (nr_pages_needed == 1)
3409 ghc->hva += offset;
3410 else
3411 ghc->memslot = NULL;
3412
3413 ghc->gpa = gpa;
3414 ghc->len = len;
3415 return 0;
3416 }
3417
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3418 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3419 gpa_t gpa, unsigned long len)
3420 {
3421 struct kvm_memslots *slots = kvm_memslots(kvm);
3422 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3423 }
3424 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init);
3425
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3426 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3427 void *data, unsigned int offset,
3428 unsigned long len)
3429 {
3430 struct kvm_memslots *slots = kvm_memslots(kvm);
3431 int r;
3432 gpa_t gpa = ghc->gpa + offset;
3433
3434 if (WARN_ON_ONCE(len + offset > ghc->len))
3435 return -EINVAL;
3436
3437 if (slots->generation != ghc->generation) {
3438 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3439 return -EFAULT;
3440 }
3441
3442 if (kvm_is_error_hva(ghc->hva))
3443 return -EFAULT;
3444
3445 if (unlikely(!ghc->memslot))
3446 return kvm_write_guest(kvm, gpa, data, len);
3447
3448 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3449 if (r)
3450 return -EFAULT;
3451 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3452
3453 return 0;
3454 }
3455 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached);
3456
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3457 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3458 void *data, unsigned long len)
3459 {
3460 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3461 }
3462 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached);
3463
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3464 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3465 void *data, unsigned int offset,
3466 unsigned long len)
3467 {
3468 struct kvm_memslots *slots = kvm_memslots(kvm);
3469 int r;
3470 gpa_t gpa = ghc->gpa + offset;
3471
3472 if (WARN_ON_ONCE(len + offset > ghc->len))
3473 return -EINVAL;
3474
3475 if (slots->generation != ghc->generation) {
3476 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3477 return -EFAULT;
3478 }
3479
3480 if (kvm_is_error_hva(ghc->hva))
3481 return -EFAULT;
3482
3483 if (unlikely(!ghc->memslot))
3484 return kvm_read_guest(kvm, gpa, data, len);
3485
3486 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3487 if (r)
3488 return -EFAULT;
3489
3490 return 0;
3491 }
3492 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached);
3493
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3494 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3495 void *data, unsigned long len)
3496 {
3497 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3498 }
3499 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached);
3500
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3501 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3502 {
3503 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3504 gfn_t gfn = gpa >> PAGE_SHIFT;
3505 int seg;
3506 int offset = offset_in_page(gpa);
3507 int ret;
3508
3509 while ((seg = next_segment(len, offset)) != 0) {
3510 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3511 if (ret < 0)
3512 return ret;
3513 offset = 0;
3514 len -= seg;
3515 ++gfn;
3516 }
3517 return 0;
3518 }
3519 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest);
3520
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3521 void mark_page_dirty_in_slot(struct kvm *kvm,
3522 const struct kvm_memory_slot *memslot,
3523 gfn_t gfn)
3524 {
3525 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3526
3527 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3528 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3529 return;
3530
3531 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3532 #endif
3533
3534 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3535 unsigned long rel_gfn = gfn - memslot->base_gfn;
3536 u32 slot = (memslot->as_id << 16) | memslot->id;
3537
3538 if (kvm->dirty_ring_size && vcpu)
3539 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3540 else if (memslot->dirty_bitmap)
3541 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3542 }
3543 }
3544 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot);
3545
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3546 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3547 {
3548 struct kvm_memory_slot *memslot;
3549
3550 memslot = gfn_to_memslot(kvm, gfn);
3551 mark_page_dirty_in_slot(kvm, memslot, gfn);
3552 }
3553 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty);
3554
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3555 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3556 {
3557 struct kvm_memory_slot *memslot;
3558
3559 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3560 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3561 }
3562 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty);
3563
kvm_sigset_activate(struct kvm_vcpu * vcpu)3564 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3565 {
3566 if (!vcpu->sigset_active)
3567 return;
3568
3569 /*
3570 * This does a lockless modification of ->real_blocked, which is fine
3571 * because, only current can change ->real_blocked and all readers of
3572 * ->real_blocked don't care as long ->real_blocked is always a subset
3573 * of ->blocked.
3574 */
3575 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3576 }
3577
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3578 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3579 {
3580 if (!vcpu->sigset_active)
3581 return;
3582
3583 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3584 sigemptyset(¤t->real_blocked);
3585 }
3586
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3587 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3588 {
3589 unsigned int old, val, grow, grow_start;
3590
3591 old = val = vcpu->halt_poll_ns;
3592 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3593 grow = READ_ONCE(halt_poll_ns_grow);
3594 if (!grow)
3595 goto out;
3596
3597 val *= grow;
3598 if (val < grow_start)
3599 val = grow_start;
3600
3601 vcpu->halt_poll_ns = val;
3602 out:
3603 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3604 }
3605
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3606 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3607 {
3608 unsigned int old, val, shrink, grow_start;
3609
3610 old = val = vcpu->halt_poll_ns;
3611 shrink = READ_ONCE(halt_poll_ns_shrink);
3612 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3613 if (shrink == 0)
3614 val = 0;
3615 else
3616 val /= shrink;
3617
3618 if (val < grow_start)
3619 val = 0;
3620
3621 vcpu->halt_poll_ns = val;
3622 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3623 }
3624
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3625 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3626 {
3627 int ret = -EINTR;
3628 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3629
3630 if (kvm_arch_vcpu_runnable(vcpu))
3631 goto out;
3632 if (kvm_cpu_has_pending_timer(vcpu))
3633 goto out;
3634 if (signal_pending(current))
3635 goto out;
3636 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3637 goto out;
3638
3639 ret = 0;
3640 out:
3641 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3642 return ret;
3643 }
3644
3645 /*
3646 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3647 * pending. This is mostly used when halting a vCPU, but may also be used
3648 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3649 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3650 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3651 {
3652 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3653 bool waited = false;
3654
3655 vcpu->stat.generic.blocking = 1;
3656
3657 preempt_disable();
3658 kvm_arch_vcpu_blocking(vcpu);
3659 prepare_to_rcuwait(wait);
3660 preempt_enable();
3661
3662 for (;;) {
3663 set_current_state(TASK_INTERRUPTIBLE);
3664
3665 if (kvm_vcpu_check_block(vcpu) < 0)
3666 break;
3667
3668 waited = true;
3669 schedule();
3670 }
3671
3672 preempt_disable();
3673 finish_rcuwait(wait);
3674 kvm_arch_vcpu_unblocking(vcpu);
3675 preempt_enable();
3676
3677 vcpu->stat.generic.blocking = 0;
3678
3679 return waited;
3680 }
3681
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3682 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3683 ktime_t end, bool success)
3684 {
3685 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3686 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3687
3688 ++vcpu->stat.generic.halt_attempted_poll;
3689
3690 if (success) {
3691 ++vcpu->stat.generic.halt_successful_poll;
3692
3693 if (!vcpu_valid_wakeup(vcpu))
3694 ++vcpu->stat.generic.halt_poll_invalid;
3695
3696 stats->halt_poll_success_ns += poll_ns;
3697 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3698 } else {
3699 stats->halt_poll_fail_ns += poll_ns;
3700 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3701 }
3702 }
3703
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3704 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3705 {
3706 struct kvm *kvm = vcpu->kvm;
3707
3708 if (kvm->override_halt_poll_ns) {
3709 /*
3710 * Ensure kvm->max_halt_poll_ns is not read before
3711 * kvm->override_halt_poll_ns.
3712 *
3713 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3714 */
3715 smp_rmb();
3716 return READ_ONCE(kvm->max_halt_poll_ns);
3717 }
3718
3719 return READ_ONCE(halt_poll_ns);
3720 }
3721
3722 /*
3723 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3724 * polling is enabled, busy wait for a short time before blocking to avoid the
3725 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3726 * is halted.
3727 */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3728 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3729 {
3730 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3731 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3732 ktime_t start, cur, poll_end;
3733 bool waited = false;
3734 bool do_halt_poll;
3735 u64 halt_ns;
3736
3737 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3738 vcpu->halt_poll_ns = max_halt_poll_ns;
3739
3740 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3741
3742 start = cur = poll_end = ktime_get();
3743 if (do_halt_poll) {
3744 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3745
3746 do {
3747 if (kvm_vcpu_check_block(vcpu) < 0)
3748 goto out;
3749 cpu_relax();
3750 poll_end = cur = ktime_get();
3751 } while (kvm_vcpu_can_poll(cur, stop));
3752 }
3753
3754 waited = kvm_vcpu_block(vcpu);
3755
3756 cur = ktime_get();
3757 if (waited) {
3758 vcpu->stat.generic.halt_wait_ns +=
3759 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3760 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3761 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3762 }
3763 out:
3764 /* The total time the vCPU was "halted", including polling time. */
3765 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3766
3767 /*
3768 * Note, halt-polling is considered successful so long as the vCPU was
3769 * never actually scheduled out, i.e. even if the wake event arrived
3770 * after of the halt-polling loop itself, but before the full wait.
3771 */
3772 if (do_halt_poll)
3773 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3774
3775 if (halt_poll_allowed) {
3776 /* Recompute the max halt poll time in case it changed. */
3777 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3778
3779 if (!vcpu_valid_wakeup(vcpu)) {
3780 shrink_halt_poll_ns(vcpu);
3781 } else if (max_halt_poll_ns) {
3782 if (halt_ns <= vcpu->halt_poll_ns)
3783 ;
3784 /* we had a long block, shrink polling */
3785 else if (vcpu->halt_poll_ns &&
3786 halt_ns > max_halt_poll_ns)
3787 shrink_halt_poll_ns(vcpu);
3788 /* we had a short halt and our poll time is too small */
3789 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3790 halt_ns < max_halt_poll_ns)
3791 grow_halt_poll_ns(vcpu);
3792 } else {
3793 vcpu->halt_poll_ns = 0;
3794 }
3795 }
3796
3797 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3798 }
3799 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt);
3800
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3801 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3802 {
3803 if (__kvm_vcpu_wake_up(vcpu)) {
3804 WRITE_ONCE(vcpu->ready, true);
3805 ++vcpu->stat.generic.halt_wakeup;
3806 return true;
3807 }
3808
3809 return false;
3810 }
3811 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up);
3812
3813 #ifndef CONFIG_S390
3814 /*
3815 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3816 */
__kvm_vcpu_kick(struct kvm_vcpu * vcpu,bool wait)3817 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait)
3818 {
3819 int me, cpu;
3820
3821 if (kvm_vcpu_wake_up(vcpu))
3822 return;
3823
3824 me = get_cpu();
3825 /*
3826 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3827 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3828 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3829 * within the vCPU thread itself.
3830 */
3831 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3832 if (vcpu->mode == IN_GUEST_MODE)
3833 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3834 goto out;
3835 }
3836
3837 /*
3838 * Note, the vCPU could get migrated to a different pCPU at any point
3839 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3840 * IPI to the previous pCPU. But, that's ok because the purpose of the
3841 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3842 * vCPU also requires it to leave IN_GUEST_MODE.
3843 */
3844 if (kvm_arch_vcpu_should_kick(vcpu)) {
3845 cpu = READ_ONCE(vcpu->cpu);
3846 if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) {
3847 /*
3848 * Use a reschedule IPI to kick the vCPU if the caller
3849 * doesn't need to wait for a response, as KVM allows
3850 * kicking vCPUs while IRQs are disabled, but using the
3851 * SMP function call framework with IRQs disabled can
3852 * deadlock due to taking cross-CPU locks.
3853 */
3854 if (wait)
3855 smp_call_function_single(cpu, ack_kick, NULL, wait);
3856 else
3857 smp_send_reschedule(cpu);
3858 }
3859 }
3860 out:
3861 put_cpu();
3862 }
3863 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick);
3864 #endif /* !CONFIG_S390 */
3865
kvm_vcpu_yield_to(struct kvm_vcpu * target)3866 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3867 {
3868 struct task_struct *task = NULL;
3869 int ret;
3870
3871 if (!read_trylock(&target->pid_lock))
3872 return 0;
3873
3874 if (target->pid)
3875 task = get_pid_task(target->pid, PIDTYPE_PID);
3876
3877 read_unlock(&target->pid_lock);
3878
3879 if (!task)
3880 return 0;
3881 ret = yield_to(task, 1);
3882 put_task_struct(task);
3883
3884 return ret;
3885 }
3886 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to);
3887
3888 /*
3889 * Helper that checks whether a VCPU is eligible for directed yield.
3890 * Most eligible candidate to yield is decided by following heuristics:
3891 *
3892 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3893 * (preempted lock holder), indicated by @in_spin_loop.
3894 * Set at the beginning and cleared at the end of interception/PLE handler.
3895 *
3896 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3897 * chance last time (mostly it has become eligible now since we have probably
3898 * yielded to lockholder in last iteration. This is done by toggling
3899 * @dy_eligible each time a VCPU checked for eligibility.)
3900 *
3901 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3902 * to preempted lock-holder could result in wrong VCPU selection and CPU
3903 * burning. Giving priority for a potential lock-holder increases lock
3904 * progress.
3905 *
3906 * Since algorithm is based on heuristics, accessing another VCPU data without
3907 * locking does not harm. It may result in trying to yield to same VCPU, fail
3908 * and continue with next VCPU and so on.
3909 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3910 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3911 {
3912 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3913 bool eligible;
3914
3915 eligible = !vcpu->spin_loop.in_spin_loop ||
3916 vcpu->spin_loop.dy_eligible;
3917
3918 if (vcpu->spin_loop.in_spin_loop)
3919 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3920
3921 return eligible;
3922 #else
3923 return true;
3924 #endif
3925 }
3926
3927 /*
3928 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3929 * a vcpu_load/vcpu_put pair. However, for most architectures
3930 * kvm_arch_vcpu_runnable does not require vcpu_load.
3931 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3932 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3933 {
3934 return kvm_arch_vcpu_runnable(vcpu);
3935 }
3936
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3937 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3938 {
3939 if (kvm_arch_dy_runnable(vcpu))
3940 return true;
3941
3942 #ifdef CONFIG_KVM_ASYNC_PF
3943 if (!list_empty_careful(&vcpu->async_pf.done))
3944 return true;
3945 #endif
3946
3947 return false;
3948 }
3949
3950 /*
3951 * By default, simply query the target vCPU's current mode when checking if a
3952 * vCPU was preempted in kernel mode. All architectures except x86 (or more
3953 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3954 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3955 * directly for cross-vCPU checks is functionally correct and accurate.
3956 */
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)3957 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3958 {
3959 return kvm_arch_vcpu_in_kernel(vcpu);
3960 }
3961
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3962 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3963 {
3964 return false;
3965 }
3966
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3967 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3968 {
3969 int nr_vcpus, start, i, idx, yielded;
3970 struct kvm *kvm = me->kvm;
3971 struct kvm_vcpu *vcpu;
3972 int try = 3;
3973
3974 nr_vcpus = atomic_read(&kvm->online_vcpus);
3975 if (nr_vcpus < 2)
3976 return;
3977
3978 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3979 smp_rmb();
3980
3981 kvm_vcpu_set_in_spin_loop(me, true);
3982
3983 /*
3984 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3985 * waiting for a resource to become available. Attempt to yield to a
3986 * vCPU that is runnable, but not currently running, e.g. because the
3987 * vCPU was preempted by a higher priority task. With luck, the vCPU
3988 * that was preempted is holding a lock or some other resource that the
3989 * current vCPU is waiting to acquire, and yielding to the other vCPU
3990 * will allow it to make forward progress and release the lock (or kick
3991 * the spinning vCPU, etc).
3992 *
3993 * Since KVM has no insight into what exactly the guest is doing,
3994 * approximate a round-robin selection by iterating over all vCPUs,
3995 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3996 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3997 *
3998 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3999 * they may all try to yield to the same vCPU(s). But as above, this
4000 * is all best effort due to KVM's lack of visibility into the guest.
4001 */
4002 start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
4003 for (i = 0; i < nr_vcpus; i++) {
4004 idx = (start + i) % nr_vcpus;
4005 if (idx == me->vcpu_idx)
4006 continue;
4007
4008 vcpu = xa_load(&kvm->vcpu_array, idx);
4009 if (!READ_ONCE(vcpu->ready))
4010 continue;
4011 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4012 continue;
4013
4014 /*
4015 * Treat the target vCPU as being in-kernel if it has a pending
4016 * interrupt, as the vCPU trying to yield may be spinning
4017 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
4018 * for the purposes of directed yield.
4019 */
4020 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4021 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4022 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4023 continue;
4024
4025 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4026 continue;
4027
4028 yielded = kvm_vcpu_yield_to(vcpu);
4029 if (yielded > 0) {
4030 WRITE_ONCE(kvm->last_boosted_vcpu, i);
4031 break;
4032 } else if (yielded < 0 && !--try) {
4033 break;
4034 }
4035 }
4036 kvm_vcpu_set_in_spin_loop(me, false);
4037
4038 /* Ensure vcpu is not eligible during next spinloop */
4039 kvm_vcpu_set_dy_eligible(me, false);
4040 }
4041 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin);
4042
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)4043 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4044 {
4045 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4046 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4047 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4048 kvm->dirty_ring_size / PAGE_SIZE);
4049 #else
4050 return false;
4051 #endif
4052 }
4053
kvm_vcpu_fault(struct vm_fault * vmf)4054 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4055 {
4056 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4057 struct page *page;
4058
4059 if (vmf->pgoff == 0)
4060 page = virt_to_page(vcpu->run);
4061 #ifdef CONFIG_X86
4062 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4063 page = virt_to_page(vcpu->arch.pio_data);
4064 #endif
4065 #ifdef CONFIG_KVM_MMIO
4066 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4067 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4068 #endif
4069 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4070 page = kvm_dirty_ring_get_page(
4071 &vcpu->dirty_ring,
4072 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4073 else
4074 return kvm_arch_vcpu_fault(vcpu, vmf);
4075 get_page(page);
4076 vmf->page = page;
4077 return 0;
4078 }
4079
4080 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4081 .fault = kvm_vcpu_fault,
4082 };
4083
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)4084 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4085 {
4086 struct kvm_vcpu *vcpu = file->private_data;
4087 unsigned long pages = vma_pages(vma);
4088
4089 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4090 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4091 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4092 return -EINVAL;
4093
4094 vma->vm_ops = &kvm_vcpu_vm_ops;
4095 return 0;
4096 }
4097
kvm_vcpu_release(struct inode * inode,struct file * filp)4098 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4099 {
4100 struct kvm_vcpu *vcpu = filp->private_data;
4101
4102 kvm_put_kvm(vcpu->kvm);
4103 return 0;
4104 }
4105
4106 static struct file_operations kvm_vcpu_fops = {
4107 .release = kvm_vcpu_release,
4108 .unlocked_ioctl = kvm_vcpu_ioctl,
4109 .mmap = kvm_vcpu_mmap,
4110 .llseek = noop_llseek,
4111 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4112 };
4113
4114 /*
4115 * Allocates an inode for the vcpu.
4116 */
create_vcpu_fd(struct kvm_vcpu * vcpu)4117 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4118 {
4119 char name[8 + 1 + ITOA_MAX_LEN + 1];
4120
4121 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4122 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4123 }
4124
4125 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)4126 static int vcpu_get_pid(void *data, u64 *val)
4127 {
4128 struct kvm_vcpu *vcpu = data;
4129
4130 read_lock(&vcpu->pid_lock);
4131 *val = pid_nr(vcpu->pid);
4132 read_unlock(&vcpu->pid_lock);
4133 return 0;
4134 }
4135
4136 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4137
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)4138 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4139 {
4140 struct dentry *debugfs_dentry;
4141 char dir_name[ITOA_MAX_LEN * 2];
4142
4143 if (!debugfs_initialized())
4144 return;
4145
4146 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4147 debugfs_dentry = debugfs_create_dir(dir_name,
4148 vcpu->kvm->debugfs_dentry);
4149 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4150 &vcpu_get_pid_fops);
4151
4152 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4153 }
4154 #endif
4155
4156 /*
4157 * Creates some virtual cpus. Good luck creating more than one.
4158 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,unsigned long id)4159 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4160 {
4161 int r;
4162 struct kvm_vcpu *vcpu;
4163 struct page *page;
4164
4165 /*
4166 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4167 * too-large values instead of silently truncating.
4168 *
4169 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4170 * changing the storage type (at the very least, IDs should be tracked
4171 * as unsigned ints).
4172 */
4173 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4174 if (id >= KVM_MAX_VCPU_IDS)
4175 return -EINVAL;
4176
4177 mutex_lock(&kvm->lock);
4178 if (kvm->created_vcpus >= kvm->max_vcpus) {
4179 mutex_unlock(&kvm->lock);
4180 return -EINVAL;
4181 }
4182
4183 r = kvm_arch_vcpu_precreate(kvm, id);
4184 if (r) {
4185 mutex_unlock(&kvm->lock);
4186 return r;
4187 }
4188
4189 kvm->created_vcpus++;
4190 mutex_unlock(&kvm->lock);
4191
4192 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4193 if (!vcpu) {
4194 r = -ENOMEM;
4195 goto vcpu_decrement;
4196 }
4197
4198 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4199 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4200 if (!page) {
4201 r = -ENOMEM;
4202 goto vcpu_free;
4203 }
4204 vcpu->run = page_address(page);
4205
4206 kvm_vcpu_init(vcpu, kvm, id);
4207
4208 r = kvm_arch_vcpu_create(vcpu);
4209 if (r)
4210 goto vcpu_free_run_page;
4211
4212 if (kvm->dirty_ring_size) {
4213 r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
4214 id, kvm->dirty_ring_size);
4215 if (r)
4216 goto arch_vcpu_destroy;
4217 }
4218
4219 mutex_lock(&kvm->lock);
4220
4221 if (kvm_get_vcpu_by_id(kvm, id)) {
4222 r = -EEXIST;
4223 goto unlock_vcpu_destroy;
4224 }
4225
4226 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4227 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4228 WARN_ON_ONCE(r == -EBUSY);
4229 if (r)
4230 goto unlock_vcpu_destroy;
4231
4232 /*
4233 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex
4234 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4235 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4236 * into a NULL-pointer dereference because KVM thinks the _current_
4237 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep
4238 * knows it's taken *inside* kvm->lock.
4239 */
4240 mutex_lock(&vcpu->mutex);
4241 kvm_get_kvm(kvm);
4242 r = create_vcpu_fd(vcpu);
4243 if (r < 0)
4244 goto kvm_put_xa_erase;
4245
4246 /*
4247 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4248 * pointer before kvm->online_vcpu's incremented value.
4249 */
4250 smp_wmb();
4251 atomic_inc(&kvm->online_vcpus);
4252 mutex_unlock(&vcpu->mutex);
4253
4254 mutex_unlock(&kvm->lock);
4255 kvm_arch_vcpu_postcreate(vcpu);
4256 kvm_create_vcpu_debugfs(vcpu);
4257 return r;
4258
4259 kvm_put_xa_erase:
4260 mutex_unlock(&vcpu->mutex);
4261 kvm_put_kvm_no_destroy(kvm);
4262 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4263 unlock_vcpu_destroy:
4264 mutex_unlock(&kvm->lock);
4265 kvm_dirty_ring_free(&vcpu->dirty_ring);
4266 arch_vcpu_destroy:
4267 kvm_arch_vcpu_destroy(vcpu);
4268 vcpu_free_run_page:
4269 free_page((unsigned long)vcpu->run);
4270 vcpu_free:
4271 kmem_cache_free(kvm_vcpu_cache, vcpu);
4272 vcpu_decrement:
4273 mutex_lock(&kvm->lock);
4274 kvm->created_vcpus--;
4275 mutex_unlock(&kvm->lock);
4276 return r;
4277 }
4278
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4279 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4280 {
4281 if (sigset) {
4282 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4283 vcpu->sigset_active = 1;
4284 vcpu->sigset = *sigset;
4285 } else
4286 vcpu->sigset_active = 0;
4287 return 0;
4288 }
4289
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4290 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4291 size_t size, loff_t *offset)
4292 {
4293 struct kvm_vcpu *vcpu = file->private_data;
4294
4295 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4296 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4297 sizeof(vcpu->stat), user_buffer, size, offset);
4298 }
4299
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4300 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4301 {
4302 struct kvm_vcpu *vcpu = file->private_data;
4303
4304 kvm_put_kvm(vcpu->kvm);
4305 return 0;
4306 }
4307
4308 static const struct file_operations kvm_vcpu_stats_fops = {
4309 .owner = THIS_MODULE,
4310 .read = kvm_vcpu_stats_read,
4311 .release = kvm_vcpu_stats_release,
4312 .llseek = noop_llseek,
4313 };
4314
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4315 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4316 {
4317 int fd;
4318 struct file *file;
4319 char name[15 + ITOA_MAX_LEN + 1];
4320
4321 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4322
4323 fd = get_unused_fd_flags(O_CLOEXEC);
4324 if (fd < 0)
4325 return fd;
4326
4327 file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4328 O_RDONLY, FMODE_PREAD);
4329 if (IS_ERR(file)) {
4330 put_unused_fd(fd);
4331 return PTR_ERR(file);
4332 }
4333
4334 kvm_get_kvm(vcpu->kvm);
4335 fd_install(fd, file);
4336
4337 return fd;
4338 }
4339
4340 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
kvm_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4341 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4342 struct kvm_pre_fault_memory *range)
4343 {
4344 int idx;
4345 long r;
4346 u64 full_size;
4347
4348 if (range->flags)
4349 return -EINVAL;
4350
4351 if (!PAGE_ALIGNED(range->gpa) ||
4352 !PAGE_ALIGNED(range->size) ||
4353 range->gpa + range->size <= range->gpa)
4354 return -EINVAL;
4355
4356 vcpu_load(vcpu);
4357 idx = srcu_read_lock(&vcpu->kvm->srcu);
4358
4359 full_size = range->size;
4360 do {
4361 if (signal_pending(current)) {
4362 r = -EINTR;
4363 break;
4364 }
4365
4366 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4367 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4368 break;
4369
4370 if (r < 0)
4371 break;
4372
4373 range->size -= r;
4374 range->gpa += r;
4375 cond_resched();
4376 } while (range->size);
4377
4378 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4379 vcpu_put(vcpu);
4380
4381 /* Return success if at least one page was mapped successfully. */
4382 return full_size == range->size ? r : 0;
4383 }
4384 #endif
4385
kvm_wait_for_vcpu_online(struct kvm_vcpu * vcpu)4386 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4387 {
4388 struct kvm *kvm = vcpu->kvm;
4389
4390 /*
4391 * In practice, this happy path will always be taken, as a well-behaved
4392 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4393 */
4394 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4395 return 0;
4396
4397 /*
4398 * Acquire and release the vCPU's mutex to wait for vCPU creation to
4399 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4400 * is fully online).
4401 */
4402 if (mutex_lock_killable(&vcpu->mutex))
4403 return -EINTR;
4404
4405 mutex_unlock(&vcpu->mutex);
4406
4407 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4408 return -EIO;
4409
4410 return 0;
4411 }
4412
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4413 static long kvm_vcpu_ioctl(struct file *filp,
4414 unsigned int ioctl, unsigned long arg)
4415 {
4416 struct kvm_vcpu *vcpu = filp->private_data;
4417 void __user *argp = (void __user *)arg;
4418 int r;
4419 struct kvm_fpu *fpu = NULL;
4420 struct kvm_sregs *kvm_sregs = NULL;
4421
4422 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4423 return -EIO;
4424
4425 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4426 return -EINVAL;
4427
4428 /*
4429 * Wait for the vCPU to be online before handling the ioctl(), as KVM
4430 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4431 * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4432 */
4433 r = kvm_wait_for_vcpu_online(vcpu);
4434 if (r)
4435 return r;
4436
4437 /*
4438 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4439 * execution; mutex_lock() would break them.
4440 */
4441 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4442 if (r != -ENOIOCTLCMD)
4443 return r;
4444
4445 if (mutex_lock_killable(&vcpu->mutex))
4446 return -EINTR;
4447 switch (ioctl) {
4448 case KVM_RUN: {
4449 struct pid *oldpid;
4450 r = -EINVAL;
4451 if (arg)
4452 goto out;
4453
4454 /*
4455 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4456 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4457 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4458 * directly to this vCPU
4459 */
4460 oldpid = vcpu->pid;
4461 if (unlikely(oldpid != task_pid(current))) {
4462 /* The thread running this VCPU changed. */
4463 struct pid *newpid;
4464
4465 r = kvm_arch_vcpu_run_pid_change(vcpu);
4466 if (r)
4467 break;
4468
4469 newpid = get_task_pid(current, PIDTYPE_PID);
4470 write_lock(&vcpu->pid_lock);
4471 vcpu->pid = newpid;
4472 write_unlock(&vcpu->pid_lock);
4473
4474 put_pid(oldpid);
4475 }
4476 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4477 r = kvm_arch_vcpu_ioctl_run(vcpu);
4478 vcpu->wants_to_run = false;
4479
4480 /*
4481 * FIXME: Remove this hack once all KVM architectures
4482 * support the generic TIF bits, i.e. a dedicated TIF_RSEQ.
4483 */
4484 rseq_virt_userspace_exit();
4485
4486 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4487 break;
4488 }
4489 case KVM_GET_REGS: {
4490 struct kvm_regs *kvm_regs;
4491
4492 r = -ENOMEM;
4493 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4494 if (!kvm_regs)
4495 goto out;
4496 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4497 if (r)
4498 goto out_free1;
4499 r = -EFAULT;
4500 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4501 goto out_free1;
4502 r = 0;
4503 out_free1:
4504 kfree(kvm_regs);
4505 break;
4506 }
4507 case KVM_SET_REGS: {
4508 struct kvm_regs *kvm_regs;
4509
4510 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4511 if (IS_ERR(kvm_regs)) {
4512 r = PTR_ERR(kvm_regs);
4513 goto out;
4514 }
4515 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4516 kfree(kvm_regs);
4517 break;
4518 }
4519 case KVM_GET_SREGS: {
4520 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4521 r = -ENOMEM;
4522 if (!kvm_sregs)
4523 goto out;
4524 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4525 if (r)
4526 goto out;
4527 r = -EFAULT;
4528 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4529 goto out;
4530 r = 0;
4531 break;
4532 }
4533 case KVM_SET_SREGS: {
4534 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4535 if (IS_ERR(kvm_sregs)) {
4536 r = PTR_ERR(kvm_sregs);
4537 kvm_sregs = NULL;
4538 goto out;
4539 }
4540 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4541 break;
4542 }
4543 case KVM_GET_MP_STATE: {
4544 struct kvm_mp_state mp_state;
4545
4546 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4547 if (r)
4548 goto out;
4549 r = -EFAULT;
4550 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4551 goto out;
4552 r = 0;
4553 break;
4554 }
4555 case KVM_SET_MP_STATE: {
4556 struct kvm_mp_state mp_state;
4557
4558 r = -EFAULT;
4559 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4560 goto out;
4561 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4562 break;
4563 }
4564 case KVM_TRANSLATE: {
4565 struct kvm_translation tr;
4566
4567 r = -EFAULT;
4568 if (copy_from_user(&tr, argp, sizeof(tr)))
4569 goto out;
4570 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4571 if (r)
4572 goto out;
4573 r = -EFAULT;
4574 if (copy_to_user(argp, &tr, sizeof(tr)))
4575 goto out;
4576 r = 0;
4577 break;
4578 }
4579 case KVM_SET_GUEST_DEBUG: {
4580 struct kvm_guest_debug dbg;
4581
4582 r = -EFAULT;
4583 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4584 goto out;
4585 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4586 break;
4587 }
4588 case KVM_SET_SIGNAL_MASK: {
4589 struct kvm_signal_mask __user *sigmask_arg = argp;
4590 struct kvm_signal_mask kvm_sigmask;
4591 sigset_t sigset, *p;
4592
4593 p = NULL;
4594 if (argp) {
4595 r = -EFAULT;
4596 if (copy_from_user(&kvm_sigmask, argp,
4597 sizeof(kvm_sigmask)))
4598 goto out;
4599 r = -EINVAL;
4600 if (kvm_sigmask.len != sizeof(sigset))
4601 goto out;
4602 r = -EFAULT;
4603 if (copy_from_user(&sigset, sigmask_arg->sigset,
4604 sizeof(sigset)))
4605 goto out;
4606 p = &sigset;
4607 }
4608 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4609 break;
4610 }
4611 case KVM_GET_FPU: {
4612 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4613 r = -ENOMEM;
4614 if (!fpu)
4615 goto out;
4616 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4617 if (r)
4618 goto out;
4619 r = -EFAULT;
4620 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4621 goto out;
4622 r = 0;
4623 break;
4624 }
4625 case KVM_SET_FPU: {
4626 fpu = memdup_user(argp, sizeof(*fpu));
4627 if (IS_ERR(fpu)) {
4628 r = PTR_ERR(fpu);
4629 fpu = NULL;
4630 goto out;
4631 }
4632 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4633 break;
4634 }
4635 case KVM_GET_STATS_FD: {
4636 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4637 break;
4638 }
4639 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4640 case KVM_PRE_FAULT_MEMORY: {
4641 struct kvm_pre_fault_memory range;
4642
4643 r = -EFAULT;
4644 if (copy_from_user(&range, argp, sizeof(range)))
4645 break;
4646 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4647 /* Pass back leftover range. */
4648 if (copy_to_user(argp, &range, sizeof(range)))
4649 r = -EFAULT;
4650 break;
4651 }
4652 #endif
4653 default:
4654 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4655 }
4656 out:
4657 mutex_unlock(&vcpu->mutex);
4658 kfree(fpu);
4659 kfree(kvm_sregs);
4660 return r;
4661 }
4662
4663 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4664 static long kvm_vcpu_compat_ioctl(struct file *filp,
4665 unsigned int ioctl, unsigned long arg)
4666 {
4667 struct kvm_vcpu *vcpu = filp->private_data;
4668 void __user *argp = compat_ptr(arg);
4669 int r;
4670
4671 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4672 return -EIO;
4673
4674 switch (ioctl) {
4675 case KVM_SET_SIGNAL_MASK: {
4676 struct kvm_signal_mask __user *sigmask_arg = argp;
4677 struct kvm_signal_mask kvm_sigmask;
4678 sigset_t sigset;
4679
4680 if (argp) {
4681 r = -EFAULT;
4682 if (copy_from_user(&kvm_sigmask, argp,
4683 sizeof(kvm_sigmask)))
4684 goto out;
4685 r = -EINVAL;
4686 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4687 goto out;
4688 r = -EFAULT;
4689 if (get_compat_sigset(&sigset,
4690 (compat_sigset_t __user *)sigmask_arg->sigset))
4691 goto out;
4692 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4693 } else
4694 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4695 break;
4696 }
4697 default:
4698 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4699 }
4700
4701 out:
4702 return r;
4703 }
4704 #endif
4705
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4706 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4707 {
4708 struct kvm_device *dev = filp->private_data;
4709
4710 if (dev->ops->mmap)
4711 return dev->ops->mmap(dev, vma);
4712
4713 return -ENODEV;
4714 }
4715
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4716 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4717 int (*accessor)(struct kvm_device *dev,
4718 struct kvm_device_attr *attr),
4719 unsigned long arg)
4720 {
4721 struct kvm_device_attr attr;
4722
4723 if (!accessor)
4724 return -EPERM;
4725
4726 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4727 return -EFAULT;
4728
4729 return accessor(dev, &attr);
4730 }
4731
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4732 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4733 unsigned long arg)
4734 {
4735 struct kvm_device *dev = filp->private_data;
4736
4737 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4738 return -EIO;
4739
4740 switch (ioctl) {
4741 case KVM_SET_DEVICE_ATTR:
4742 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4743 case KVM_GET_DEVICE_ATTR:
4744 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4745 case KVM_HAS_DEVICE_ATTR:
4746 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4747 default:
4748 if (dev->ops->ioctl)
4749 return dev->ops->ioctl(dev, ioctl, arg);
4750
4751 return -ENOTTY;
4752 }
4753 }
4754
kvm_device_release(struct inode * inode,struct file * filp)4755 static int kvm_device_release(struct inode *inode, struct file *filp)
4756 {
4757 struct kvm_device *dev = filp->private_data;
4758 struct kvm *kvm = dev->kvm;
4759
4760 if (dev->ops->release) {
4761 mutex_lock(&kvm->lock);
4762 list_del_rcu(&dev->vm_node);
4763 synchronize_rcu();
4764 dev->ops->release(dev);
4765 mutex_unlock(&kvm->lock);
4766 }
4767
4768 kvm_put_kvm(kvm);
4769 return 0;
4770 }
4771
4772 static struct file_operations kvm_device_fops = {
4773 .unlocked_ioctl = kvm_device_ioctl,
4774 .release = kvm_device_release,
4775 KVM_COMPAT(kvm_device_ioctl),
4776 .mmap = kvm_device_mmap,
4777 };
4778
kvm_device_from_filp(struct file * filp)4779 struct kvm_device *kvm_device_from_filp(struct file *filp)
4780 {
4781 if (filp->f_op != &kvm_device_fops)
4782 return NULL;
4783
4784 return filp->private_data;
4785 }
4786
4787 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4788 #ifdef CONFIG_KVM_MPIC
4789 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4790 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4791 #endif
4792 };
4793
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4794 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4795 {
4796 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4797 return -ENOSPC;
4798
4799 if (kvm_device_ops_table[type] != NULL)
4800 return -EEXIST;
4801
4802 kvm_device_ops_table[type] = ops;
4803 return 0;
4804 }
4805
kvm_unregister_device_ops(u32 type)4806 void kvm_unregister_device_ops(u32 type)
4807 {
4808 if (kvm_device_ops_table[type] != NULL)
4809 kvm_device_ops_table[type] = NULL;
4810 }
4811
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4812 static int kvm_ioctl_create_device(struct kvm *kvm,
4813 struct kvm_create_device *cd)
4814 {
4815 const struct kvm_device_ops *ops;
4816 struct kvm_device *dev;
4817 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4818 int type;
4819 int ret;
4820
4821 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4822 return -ENODEV;
4823
4824 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4825 ops = kvm_device_ops_table[type];
4826 if (ops == NULL)
4827 return -ENODEV;
4828
4829 if (test)
4830 return 0;
4831
4832 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4833 if (!dev)
4834 return -ENOMEM;
4835
4836 dev->ops = ops;
4837 dev->kvm = kvm;
4838
4839 mutex_lock(&kvm->lock);
4840 ret = ops->create(dev, type);
4841 if (ret < 0) {
4842 mutex_unlock(&kvm->lock);
4843 kfree(dev);
4844 return ret;
4845 }
4846 list_add_rcu(&dev->vm_node, &kvm->devices);
4847 mutex_unlock(&kvm->lock);
4848
4849 if (ops->init)
4850 ops->init(dev);
4851
4852 kvm_get_kvm(kvm);
4853 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4854 if (ret < 0) {
4855 kvm_put_kvm_no_destroy(kvm);
4856 mutex_lock(&kvm->lock);
4857 list_del_rcu(&dev->vm_node);
4858 synchronize_rcu();
4859 if (ops->release)
4860 ops->release(dev);
4861 mutex_unlock(&kvm->lock);
4862 if (ops->destroy)
4863 ops->destroy(dev);
4864 return ret;
4865 }
4866
4867 cd->fd = ret;
4868 return 0;
4869 }
4870
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4871 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4872 {
4873 switch (arg) {
4874 case KVM_CAP_USER_MEMORY:
4875 case KVM_CAP_USER_MEMORY2:
4876 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4877 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4878 case KVM_CAP_INTERNAL_ERROR_DATA:
4879 #ifdef CONFIG_HAVE_KVM_MSI
4880 case KVM_CAP_SIGNAL_MSI:
4881 #endif
4882 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4883 case KVM_CAP_IRQFD:
4884 #endif
4885 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4886 case KVM_CAP_CHECK_EXTENSION_VM:
4887 case KVM_CAP_ENABLE_CAP_VM:
4888 case KVM_CAP_HALT_POLL:
4889 return 1;
4890 #ifdef CONFIG_KVM_MMIO
4891 case KVM_CAP_COALESCED_MMIO:
4892 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4893 case KVM_CAP_COALESCED_PIO:
4894 return 1;
4895 #endif
4896 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4897 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4898 return KVM_DIRTY_LOG_MANUAL_CAPS;
4899 #endif
4900 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4901 case KVM_CAP_IRQ_ROUTING:
4902 return KVM_MAX_IRQ_ROUTES;
4903 #endif
4904 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4905 case KVM_CAP_MULTI_ADDRESS_SPACE:
4906 if (kvm)
4907 return kvm_arch_nr_memslot_as_ids(kvm);
4908 return KVM_MAX_NR_ADDRESS_SPACES;
4909 #endif
4910 case KVM_CAP_NR_MEMSLOTS:
4911 return KVM_USER_MEM_SLOTS;
4912 case KVM_CAP_DIRTY_LOG_RING:
4913 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4914 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4915 #else
4916 return 0;
4917 #endif
4918 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4920 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4921 #else
4922 return 0;
4923 #endif
4924 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4925 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4926 #endif
4927 case KVM_CAP_BINARY_STATS_FD:
4928 case KVM_CAP_SYSTEM_EVENT_DATA:
4929 case KVM_CAP_DEVICE_CTRL:
4930 return 1;
4931 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4932 case KVM_CAP_MEMORY_ATTRIBUTES:
4933 return kvm_supported_mem_attributes(kvm);
4934 #endif
4935 #ifdef CONFIG_KVM_GUEST_MEMFD
4936 case KVM_CAP_GUEST_MEMFD:
4937 return 1;
4938 case KVM_CAP_GUEST_MEMFD_FLAGS:
4939 return kvm_gmem_get_supported_flags(kvm);
4940 #endif
4941 default:
4942 break;
4943 }
4944 return kvm_vm_ioctl_check_extension(kvm, arg);
4945 }
4946
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4947 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4948 {
4949 int r;
4950
4951 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4952 return -EINVAL;
4953
4954 /* the size should be power of 2 */
4955 if (!size || (size & (size - 1)))
4956 return -EINVAL;
4957
4958 /* Should be bigger to keep the reserved entries, or a page */
4959 if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
4960 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4961 return -EINVAL;
4962
4963 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4964 sizeof(struct kvm_dirty_gfn))
4965 return -E2BIG;
4966
4967 /* We only allow it to set once */
4968 if (kvm->dirty_ring_size)
4969 return -EINVAL;
4970
4971 mutex_lock(&kvm->lock);
4972
4973 if (kvm->created_vcpus) {
4974 /* We don't allow to change this value after vcpu created */
4975 r = -EINVAL;
4976 } else {
4977 kvm->dirty_ring_size = size;
4978 r = 0;
4979 }
4980
4981 mutex_unlock(&kvm->lock);
4982 return r;
4983 }
4984
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4985 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4986 {
4987 unsigned long i;
4988 struct kvm_vcpu *vcpu;
4989 int cleared = 0, r;
4990
4991 if (!kvm->dirty_ring_size)
4992 return -EINVAL;
4993
4994 mutex_lock(&kvm->slots_lock);
4995
4996 kvm_for_each_vcpu(i, vcpu, kvm) {
4997 r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared);
4998 if (r)
4999 break;
5000 }
5001
5002 mutex_unlock(&kvm->slots_lock);
5003
5004 if (cleared)
5005 kvm_flush_remote_tlbs(kvm);
5006
5007 return cleared;
5008 }
5009
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5010 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5011 struct kvm_enable_cap *cap)
5012 {
5013 return -EINVAL;
5014 }
5015
kvm_are_all_memslots_empty(struct kvm * kvm)5016 bool kvm_are_all_memslots_empty(struct kvm *kvm)
5017 {
5018 int i;
5019
5020 lockdep_assert_held(&kvm->slots_lock);
5021
5022 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5023 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5024 return false;
5025 }
5026
5027 return true;
5028 }
5029 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty);
5030
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)5031 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5032 struct kvm_enable_cap *cap)
5033 {
5034 switch (cap->cap) {
5035 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5036 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5037 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5038
5039 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5040 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5041
5042 if (cap->flags || (cap->args[0] & ~allowed_options))
5043 return -EINVAL;
5044 kvm->manual_dirty_log_protect = cap->args[0];
5045 return 0;
5046 }
5047 #endif
5048 case KVM_CAP_HALT_POLL: {
5049 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5050 return -EINVAL;
5051
5052 kvm->max_halt_poll_ns = cap->args[0];
5053
5054 /*
5055 * Ensure kvm->override_halt_poll_ns does not become visible
5056 * before kvm->max_halt_poll_ns.
5057 *
5058 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5059 */
5060 smp_wmb();
5061 kvm->override_halt_poll_ns = true;
5062
5063 return 0;
5064 }
5065 case KVM_CAP_DIRTY_LOG_RING:
5066 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5067 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5068 return -EINVAL;
5069
5070 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5071 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5072 int r = -EINVAL;
5073
5074 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5075 !kvm->dirty_ring_size || cap->flags)
5076 return r;
5077
5078 mutex_lock(&kvm->slots_lock);
5079
5080 /*
5081 * For simplicity, allow enabling ring+bitmap if and only if
5082 * there are no memslots, e.g. to ensure all memslots allocate
5083 * a bitmap after the capability is enabled.
5084 */
5085 if (kvm_are_all_memslots_empty(kvm)) {
5086 kvm->dirty_ring_with_bitmap = true;
5087 r = 0;
5088 }
5089
5090 mutex_unlock(&kvm->slots_lock);
5091
5092 return r;
5093 }
5094 default:
5095 return kvm_vm_ioctl_enable_cap(kvm, cap);
5096 }
5097 }
5098
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)5099 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5100 size_t size, loff_t *offset)
5101 {
5102 struct kvm *kvm = file->private_data;
5103
5104 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5105 &kvm_vm_stats_desc[0], &kvm->stat,
5106 sizeof(kvm->stat), user_buffer, size, offset);
5107 }
5108
kvm_vm_stats_release(struct inode * inode,struct file * file)5109 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5110 {
5111 struct kvm *kvm = file->private_data;
5112
5113 kvm_put_kvm(kvm);
5114 return 0;
5115 }
5116
5117 static const struct file_operations kvm_vm_stats_fops = {
5118 .owner = THIS_MODULE,
5119 .read = kvm_vm_stats_read,
5120 .release = kvm_vm_stats_release,
5121 .llseek = noop_llseek,
5122 };
5123
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)5124 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5125 {
5126 int fd;
5127 struct file *file;
5128
5129 fd = get_unused_fd_flags(O_CLOEXEC);
5130 if (fd < 0)
5131 return fd;
5132
5133 file = anon_inode_getfile_fmode("kvm-vm-stats",
5134 &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5135 if (IS_ERR(file)) {
5136 put_unused_fd(fd);
5137 return PTR_ERR(file);
5138 }
5139
5140 kvm_get_kvm(kvm);
5141 fd_install(fd, file);
5142
5143 return fd;
5144 }
5145
5146 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5147 do { \
5148 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5149 offsetof(struct kvm_userspace_memory_region2, field)); \
5150 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5151 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5152 } while (0)
5153
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5154 static long kvm_vm_ioctl(struct file *filp,
5155 unsigned int ioctl, unsigned long arg)
5156 {
5157 struct kvm *kvm = filp->private_data;
5158 void __user *argp = (void __user *)arg;
5159 int r;
5160
5161 if (kvm->mm != current->mm || kvm->vm_dead)
5162 return -EIO;
5163 switch (ioctl) {
5164 case KVM_CREATE_VCPU:
5165 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5166 break;
5167 case KVM_ENABLE_CAP: {
5168 struct kvm_enable_cap cap;
5169
5170 r = -EFAULT;
5171 if (copy_from_user(&cap, argp, sizeof(cap)))
5172 goto out;
5173 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5174 break;
5175 }
5176 case KVM_SET_USER_MEMORY_REGION2:
5177 case KVM_SET_USER_MEMORY_REGION: {
5178 struct kvm_userspace_memory_region2 mem;
5179 unsigned long size;
5180
5181 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5182 /*
5183 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5184 * accessed, but avoid leaking kernel memory in case of a bug.
5185 */
5186 memset(&mem, 0, sizeof(mem));
5187 size = sizeof(struct kvm_userspace_memory_region);
5188 } else {
5189 size = sizeof(struct kvm_userspace_memory_region2);
5190 }
5191
5192 /* Ensure the common parts of the two structs are identical. */
5193 SANITY_CHECK_MEM_REGION_FIELD(slot);
5194 SANITY_CHECK_MEM_REGION_FIELD(flags);
5195 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5196 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5197 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5198
5199 r = -EFAULT;
5200 if (copy_from_user(&mem, argp, size))
5201 goto out;
5202
5203 r = -EINVAL;
5204 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5205 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5206 goto out;
5207
5208 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5209 break;
5210 }
5211 case KVM_GET_DIRTY_LOG: {
5212 struct kvm_dirty_log log;
5213
5214 r = -EFAULT;
5215 if (copy_from_user(&log, argp, sizeof(log)))
5216 goto out;
5217 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5218 break;
5219 }
5220 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5221 case KVM_CLEAR_DIRTY_LOG: {
5222 struct kvm_clear_dirty_log log;
5223
5224 r = -EFAULT;
5225 if (copy_from_user(&log, argp, sizeof(log)))
5226 goto out;
5227 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5228 break;
5229 }
5230 #endif
5231 #ifdef CONFIG_KVM_MMIO
5232 case KVM_REGISTER_COALESCED_MMIO: {
5233 struct kvm_coalesced_mmio_zone zone;
5234
5235 r = -EFAULT;
5236 if (copy_from_user(&zone, argp, sizeof(zone)))
5237 goto out;
5238 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5239 break;
5240 }
5241 case KVM_UNREGISTER_COALESCED_MMIO: {
5242 struct kvm_coalesced_mmio_zone zone;
5243
5244 r = -EFAULT;
5245 if (copy_from_user(&zone, argp, sizeof(zone)))
5246 goto out;
5247 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5248 break;
5249 }
5250 #endif
5251 case KVM_IRQFD: {
5252 struct kvm_irqfd data;
5253
5254 r = -EFAULT;
5255 if (copy_from_user(&data, argp, sizeof(data)))
5256 goto out;
5257 r = kvm_irqfd(kvm, &data);
5258 break;
5259 }
5260 case KVM_IOEVENTFD: {
5261 struct kvm_ioeventfd data;
5262
5263 r = -EFAULT;
5264 if (copy_from_user(&data, argp, sizeof(data)))
5265 goto out;
5266 r = kvm_ioeventfd(kvm, &data);
5267 break;
5268 }
5269 #ifdef CONFIG_HAVE_KVM_MSI
5270 case KVM_SIGNAL_MSI: {
5271 struct kvm_msi msi;
5272
5273 r = -EFAULT;
5274 if (copy_from_user(&msi, argp, sizeof(msi)))
5275 goto out;
5276 r = kvm_send_userspace_msi(kvm, &msi);
5277 break;
5278 }
5279 #endif
5280 #ifdef __KVM_HAVE_IRQ_LINE
5281 case KVM_IRQ_LINE_STATUS:
5282 case KVM_IRQ_LINE: {
5283 struct kvm_irq_level irq_event;
5284
5285 r = -EFAULT;
5286 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5287 goto out;
5288
5289 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5290 ioctl == KVM_IRQ_LINE_STATUS);
5291 if (r)
5292 goto out;
5293
5294 r = -EFAULT;
5295 if (ioctl == KVM_IRQ_LINE_STATUS) {
5296 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5297 goto out;
5298 }
5299
5300 r = 0;
5301 break;
5302 }
5303 #endif
5304 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5305 case KVM_SET_GSI_ROUTING: {
5306 struct kvm_irq_routing routing;
5307 struct kvm_irq_routing __user *urouting;
5308 struct kvm_irq_routing_entry *entries = NULL;
5309
5310 r = -EFAULT;
5311 if (copy_from_user(&routing, argp, sizeof(routing)))
5312 goto out;
5313 r = -EINVAL;
5314 if (!kvm_arch_can_set_irq_routing(kvm))
5315 goto out;
5316 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5317 goto out;
5318 if (routing.flags)
5319 goto out;
5320 if (routing.nr) {
5321 urouting = argp;
5322 entries = vmemdup_array_user(urouting->entries,
5323 routing.nr, sizeof(*entries));
5324 if (IS_ERR(entries)) {
5325 r = PTR_ERR(entries);
5326 goto out;
5327 }
5328 }
5329 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5330 routing.flags);
5331 kvfree(entries);
5332 break;
5333 }
5334 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5335 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5336 case KVM_SET_MEMORY_ATTRIBUTES: {
5337 struct kvm_memory_attributes attrs;
5338
5339 r = -EFAULT;
5340 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5341 goto out;
5342
5343 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5344 break;
5345 }
5346 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5347 case KVM_CREATE_DEVICE: {
5348 struct kvm_create_device cd;
5349
5350 r = -EFAULT;
5351 if (copy_from_user(&cd, argp, sizeof(cd)))
5352 goto out;
5353
5354 r = kvm_ioctl_create_device(kvm, &cd);
5355 if (r)
5356 goto out;
5357
5358 r = -EFAULT;
5359 if (copy_to_user(argp, &cd, sizeof(cd)))
5360 goto out;
5361
5362 r = 0;
5363 break;
5364 }
5365 case KVM_CHECK_EXTENSION:
5366 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5367 break;
5368 case KVM_RESET_DIRTY_RINGS:
5369 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5370 break;
5371 case KVM_GET_STATS_FD:
5372 r = kvm_vm_ioctl_get_stats_fd(kvm);
5373 break;
5374 #ifdef CONFIG_KVM_GUEST_MEMFD
5375 case KVM_CREATE_GUEST_MEMFD: {
5376 struct kvm_create_guest_memfd guest_memfd;
5377
5378 r = -EFAULT;
5379 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5380 goto out;
5381
5382 r = kvm_gmem_create(kvm, &guest_memfd);
5383 break;
5384 }
5385 #endif
5386 default:
5387 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5388 }
5389 out:
5390 return r;
5391 }
5392
5393 #ifdef CONFIG_KVM_COMPAT
5394 struct compat_kvm_dirty_log {
5395 __u32 slot;
5396 __u32 padding1;
5397 union {
5398 compat_uptr_t dirty_bitmap; /* one bit per page */
5399 __u64 padding2;
5400 };
5401 };
5402
5403 struct compat_kvm_clear_dirty_log {
5404 __u32 slot;
5405 __u32 num_pages;
5406 __u64 first_page;
5407 union {
5408 compat_uptr_t dirty_bitmap; /* one bit per page */
5409 __u64 padding2;
5410 };
5411 };
5412
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5413 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5414 unsigned long arg)
5415 {
5416 return -ENOTTY;
5417 }
5418
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5419 static long kvm_vm_compat_ioctl(struct file *filp,
5420 unsigned int ioctl, unsigned long arg)
5421 {
5422 struct kvm *kvm = filp->private_data;
5423 int r;
5424
5425 if (kvm->mm != current->mm || kvm->vm_dead)
5426 return -EIO;
5427
5428 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5429 if (r != -ENOTTY)
5430 return r;
5431
5432 switch (ioctl) {
5433 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5434 case KVM_CLEAR_DIRTY_LOG: {
5435 struct compat_kvm_clear_dirty_log compat_log;
5436 struct kvm_clear_dirty_log log;
5437
5438 if (copy_from_user(&compat_log, (void __user *)arg,
5439 sizeof(compat_log)))
5440 return -EFAULT;
5441 log.slot = compat_log.slot;
5442 log.num_pages = compat_log.num_pages;
5443 log.first_page = compat_log.first_page;
5444 log.padding2 = compat_log.padding2;
5445 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5446
5447 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5448 break;
5449 }
5450 #endif
5451 case KVM_GET_DIRTY_LOG: {
5452 struct compat_kvm_dirty_log compat_log;
5453 struct kvm_dirty_log log;
5454
5455 if (copy_from_user(&compat_log, (void __user *)arg,
5456 sizeof(compat_log)))
5457 return -EFAULT;
5458 log.slot = compat_log.slot;
5459 log.padding1 = compat_log.padding1;
5460 log.padding2 = compat_log.padding2;
5461 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5462
5463 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5464 break;
5465 }
5466 default:
5467 r = kvm_vm_ioctl(filp, ioctl, arg);
5468 }
5469 return r;
5470 }
5471 #endif
5472
5473 static struct file_operations kvm_vm_fops = {
5474 .release = kvm_vm_release,
5475 .unlocked_ioctl = kvm_vm_ioctl,
5476 .llseek = noop_llseek,
5477 KVM_COMPAT(kvm_vm_compat_ioctl),
5478 };
5479
file_is_kvm(struct file * file)5480 bool file_is_kvm(struct file *file)
5481 {
5482 return file && file->f_op == &kvm_vm_fops;
5483 }
5484 EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm);
5485
kvm_dev_ioctl_create_vm(unsigned long type)5486 static int kvm_dev_ioctl_create_vm(unsigned long type)
5487 {
5488 char fdname[ITOA_MAX_LEN + 1];
5489 int r, fd;
5490 struct kvm *kvm;
5491 struct file *file;
5492
5493 fd = get_unused_fd_flags(O_CLOEXEC);
5494 if (fd < 0)
5495 return fd;
5496
5497 snprintf(fdname, sizeof(fdname), "%d", fd);
5498
5499 kvm = kvm_create_vm(type, fdname);
5500 if (IS_ERR(kvm)) {
5501 r = PTR_ERR(kvm);
5502 goto put_fd;
5503 }
5504
5505 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5506 if (IS_ERR(file)) {
5507 r = PTR_ERR(file);
5508 goto put_kvm;
5509 }
5510
5511 /*
5512 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5513 * already set, with ->release() being kvm_vm_release(). In error
5514 * cases it will be called by the final fput(file) and will take
5515 * care of doing kvm_put_kvm(kvm).
5516 */
5517 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5518
5519 fd_install(fd, file);
5520 return fd;
5521
5522 put_kvm:
5523 kvm_put_kvm(kvm);
5524 put_fd:
5525 put_unused_fd(fd);
5526 return r;
5527 }
5528
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5529 static long kvm_dev_ioctl(struct file *filp,
5530 unsigned int ioctl, unsigned long arg)
5531 {
5532 int r = -EINVAL;
5533
5534 switch (ioctl) {
5535 case KVM_GET_API_VERSION:
5536 if (arg)
5537 goto out;
5538 r = KVM_API_VERSION;
5539 break;
5540 case KVM_CREATE_VM:
5541 r = kvm_dev_ioctl_create_vm(arg);
5542 break;
5543 case KVM_CHECK_EXTENSION:
5544 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5545 break;
5546 case KVM_GET_VCPU_MMAP_SIZE:
5547 if (arg)
5548 goto out;
5549 r = PAGE_SIZE; /* struct kvm_run */
5550 #ifdef CONFIG_X86
5551 r += PAGE_SIZE; /* pio data page */
5552 #endif
5553 #ifdef CONFIG_KVM_MMIO
5554 r += PAGE_SIZE; /* coalesced mmio ring page */
5555 #endif
5556 break;
5557 default:
5558 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5559 }
5560 out:
5561 return r;
5562 }
5563
5564 static struct file_operations kvm_chardev_ops = {
5565 .unlocked_ioctl = kvm_dev_ioctl,
5566 .llseek = noop_llseek,
5567 KVM_COMPAT(kvm_dev_ioctl),
5568 };
5569
5570 static struct miscdevice kvm_dev = {
5571 KVM_MINOR,
5572 "kvm",
5573 &kvm_chardev_ops,
5574 };
5575
5576 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5577 bool enable_virt_at_load = true;
5578 module_param(enable_virt_at_load, bool, 0444);
5579 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load);
5580
5581 __visible bool kvm_rebooting;
5582 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting);
5583
5584 static DEFINE_PER_CPU(bool, virtualization_enabled);
5585 static DEFINE_MUTEX(kvm_usage_lock);
5586 static int kvm_usage_count;
5587
kvm_arch_enable_virtualization(void)5588 __weak void kvm_arch_enable_virtualization(void)
5589 {
5590
5591 }
5592
kvm_arch_disable_virtualization(void)5593 __weak void kvm_arch_disable_virtualization(void)
5594 {
5595
5596 }
5597
kvm_enable_virtualization_cpu(void)5598 static int kvm_enable_virtualization_cpu(void)
5599 {
5600 if (__this_cpu_read(virtualization_enabled))
5601 return 0;
5602
5603 if (kvm_arch_enable_virtualization_cpu()) {
5604 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5605 raw_smp_processor_id());
5606 return -EIO;
5607 }
5608
5609 __this_cpu_write(virtualization_enabled, true);
5610 return 0;
5611 }
5612
kvm_online_cpu(unsigned int cpu)5613 static int kvm_online_cpu(unsigned int cpu)
5614 {
5615 /*
5616 * Abort the CPU online process if hardware virtualization cannot
5617 * be enabled. Otherwise running VMs would encounter unrecoverable
5618 * errors when scheduled to this CPU.
5619 */
5620 return kvm_enable_virtualization_cpu();
5621 }
5622
kvm_disable_virtualization_cpu(void * ign)5623 static void kvm_disable_virtualization_cpu(void *ign)
5624 {
5625 if (!__this_cpu_read(virtualization_enabled))
5626 return;
5627
5628 kvm_arch_disable_virtualization_cpu();
5629
5630 __this_cpu_write(virtualization_enabled, false);
5631 }
5632
kvm_offline_cpu(unsigned int cpu)5633 static int kvm_offline_cpu(unsigned int cpu)
5634 {
5635 kvm_disable_virtualization_cpu(NULL);
5636 return 0;
5637 }
5638
kvm_shutdown(void)5639 static void kvm_shutdown(void)
5640 {
5641 /*
5642 * Disable hardware virtualization and set kvm_rebooting to indicate
5643 * that KVM has asynchronously disabled hardware virtualization, i.e.
5644 * that relevant errors and exceptions aren't entirely unexpected.
5645 * Some flavors of hardware virtualization need to be disabled before
5646 * transferring control to firmware (to perform shutdown/reboot), e.g.
5647 * on x86, virtualization can block INIT interrupts, which are used by
5648 * firmware to pull APs back under firmware control. Note, this path
5649 * is used for both shutdown and reboot scenarios, i.e. neither name is
5650 * 100% comprehensive.
5651 */
5652 pr_info("kvm: exiting hardware virtualization\n");
5653 kvm_rebooting = true;
5654 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5655 }
5656
kvm_suspend(void)5657 static int kvm_suspend(void)
5658 {
5659 /*
5660 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5661 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5662 * count is stable. Assert that kvm_usage_lock is not held to ensure
5663 * the system isn't suspended while KVM is enabling hardware. Hardware
5664 * enabling can be preempted, but the task cannot be frozen until it has
5665 * dropped all locks (userspace tasks are frozen via a fake signal).
5666 */
5667 lockdep_assert_not_held(&kvm_usage_lock);
5668 lockdep_assert_irqs_disabled();
5669
5670 kvm_disable_virtualization_cpu(NULL);
5671 return 0;
5672 }
5673
kvm_resume(void)5674 static void kvm_resume(void)
5675 {
5676 lockdep_assert_not_held(&kvm_usage_lock);
5677 lockdep_assert_irqs_disabled();
5678
5679 WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5680 }
5681
5682 static struct syscore_ops kvm_syscore_ops = {
5683 .suspend = kvm_suspend,
5684 .resume = kvm_resume,
5685 .shutdown = kvm_shutdown,
5686 };
5687
kvm_enable_virtualization(void)5688 int kvm_enable_virtualization(void)
5689 {
5690 int r;
5691
5692 guard(mutex)(&kvm_usage_lock);
5693
5694 if (kvm_usage_count++)
5695 return 0;
5696
5697 kvm_arch_enable_virtualization();
5698
5699 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5700 kvm_online_cpu, kvm_offline_cpu);
5701 if (r)
5702 goto err_cpuhp;
5703
5704 register_syscore_ops(&kvm_syscore_ops);
5705
5706 /*
5707 * Undo virtualization enabling and bail if the system is going down.
5708 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5709 * possible for an in-flight operation to enable virtualization after
5710 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5711 * invoked. Note, this relies on system_state being set _before_
5712 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5713 * or this CPU observes the impending shutdown. Which is why KVM uses
5714 * a syscore ops hook instead of registering a dedicated reboot
5715 * notifier (the latter runs before system_state is updated).
5716 */
5717 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5718 system_state == SYSTEM_RESTART) {
5719 r = -EBUSY;
5720 goto err_rebooting;
5721 }
5722
5723 return 0;
5724
5725 err_rebooting:
5726 unregister_syscore_ops(&kvm_syscore_ops);
5727 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5728 err_cpuhp:
5729 kvm_arch_disable_virtualization();
5730 --kvm_usage_count;
5731 return r;
5732 }
5733 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization);
5734
kvm_disable_virtualization(void)5735 void kvm_disable_virtualization(void)
5736 {
5737 guard(mutex)(&kvm_usage_lock);
5738
5739 if (--kvm_usage_count)
5740 return;
5741
5742 unregister_syscore_ops(&kvm_syscore_ops);
5743 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5744 kvm_arch_disable_virtualization();
5745 }
5746 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization);
5747
kvm_init_virtualization(void)5748 static int kvm_init_virtualization(void)
5749 {
5750 if (enable_virt_at_load)
5751 return kvm_enable_virtualization();
5752
5753 return 0;
5754 }
5755
kvm_uninit_virtualization(void)5756 static void kvm_uninit_virtualization(void)
5757 {
5758 if (enable_virt_at_load)
5759 kvm_disable_virtualization();
5760 }
5761 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
kvm_init_virtualization(void)5762 static int kvm_init_virtualization(void)
5763 {
5764 return 0;
5765 }
5766
kvm_uninit_virtualization(void)5767 static void kvm_uninit_virtualization(void)
5768 {
5769
5770 }
5771 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5772
kvm_iodevice_destructor(struct kvm_io_device * dev)5773 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5774 {
5775 if (dev->ops->destructor)
5776 dev->ops->destructor(dev);
5777 }
5778
kvm_io_bus_destroy(struct kvm_io_bus * bus)5779 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5780 {
5781 int i;
5782
5783 for (i = 0; i < bus->dev_count; i++) {
5784 struct kvm_io_device *pos = bus->range[i].dev;
5785
5786 kvm_iodevice_destructor(pos);
5787 }
5788 kfree(bus);
5789 }
5790
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5791 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5792 const struct kvm_io_range *r2)
5793 {
5794 gpa_t addr1 = r1->addr;
5795 gpa_t addr2 = r2->addr;
5796
5797 if (addr1 < addr2)
5798 return -1;
5799
5800 /* If r2->len == 0, match the exact address. If r2->len != 0,
5801 * accept any overlapping write. Any order is acceptable for
5802 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5803 * we process all of them.
5804 */
5805 if (r2->len) {
5806 addr1 += r1->len;
5807 addr2 += r2->len;
5808 }
5809
5810 if (addr1 > addr2)
5811 return 1;
5812
5813 return 0;
5814 }
5815
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5816 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5817 {
5818 return kvm_io_bus_cmp(p1, p2);
5819 }
5820
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5821 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5822 gpa_t addr, int len)
5823 {
5824 struct kvm_io_range *range, key;
5825 int off;
5826
5827 key = (struct kvm_io_range) {
5828 .addr = addr,
5829 .len = len,
5830 };
5831
5832 range = bsearch(&key, bus->range, bus->dev_count,
5833 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5834 if (range == NULL)
5835 return -ENOENT;
5836
5837 off = range - bus->range;
5838
5839 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5840 off--;
5841
5842 return off;
5843 }
5844
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5845 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5846 struct kvm_io_range *range, const void *val)
5847 {
5848 int idx;
5849
5850 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5851 if (idx < 0)
5852 return -EOPNOTSUPP;
5853
5854 while (idx < bus->dev_count &&
5855 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5856 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5857 range->len, val))
5858 return idx;
5859 idx++;
5860 }
5861
5862 return -EOPNOTSUPP;
5863 }
5864
kvm_get_bus_srcu(struct kvm * kvm,enum kvm_bus idx)5865 static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx)
5866 {
5867 /*
5868 * Ensure that any updates to kvm_buses[] observed by the previous vCPU
5869 * machine instruction are also visible to the vCPU machine instruction
5870 * that triggered this call.
5871 */
5872 smp_mb__after_srcu_read_lock();
5873
5874 return srcu_dereference(kvm->buses[idx], &kvm->srcu);
5875 }
5876
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5877 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5878 int len, const void *val)
5879 {
5880 struct kvm_io_bus *bus;
5881 struct kvm_io_range range;
5882 int r;
5883
5884 range = (struct kvm_io_range) {
5885 .addr = addr,
5886 .len = len,
5887 };
5888
5889 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5890 if (!bus)
5891 return -ENOMEM;
5892 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5893 return r < 0 ? r : 0;
5894 }
5895 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write);
5896
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5897 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5898 gpa_t addr, int len, const void *val, long cookie)
5899 {
5900 struct kvm_io_bus *bus;
5901 struct kvm_io_range range;
5902
5903 range = (struct kvm_io_range) {
5904 .addr = addr,
5905 .len = len,
5906 };
5907
5908 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5909 if (!bus)
5910 return -ENOMEM;
5911
5912 /* First try the device referenced by cookie. */
5913 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5914 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5915 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5916 val))
5917 return cookie;
5918
5919 /*
5920 * cookie contained garbage; fall back to search and return the
5921 * correct cookie value.
5922 */
5923 return __kvm_io_bus_write(vcpu, bus, &range, val);
5924 }
5925
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5926 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5927 struct kvm_io_range *range, void *val)
5928 {
5929 int idx;
5930
5931 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5932 if (idx < 0)
5933 return -EOPNOTSUPP;
5934
5935 while (idx < bus->dev_count &&
5936 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5937 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5938 range->len, val))
5939 return idx;
5940 idx++;
5941 }
5942
5943 return -EOPNOTSUPP;
5944 }
5945
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5946 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5947 int len, void *val)
5948 {
5949 struct kvm_io_bus *bus;
5950 struct kvm_io_range range;
5951 int r;
5952
5953 range = (struct kvm_io_range) {
5954 .addr = addr,
5955 .len = len,
5956 };
5957
5958 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5959 if (!bus)
5960 return -ENOMEM;
5961 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5962 return r < 0 ? r : 0;
5963 }
5964 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read);
5965
__free_bus(struct rcu_head * rcu)5966 static void __free_bus(struct rcu_head *rcu)
5967 {
5968 struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu);
5969
5970 kfree(bus);
5971 }
5972
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5973 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5974 int len, struct kvm_io_device *dev)
5975 {
5976 int i;
5977 struct kvm_io_bus *new_bus, *bus;
5978 struct kvm_io_range range;
5979
5980 lockdep_assert_held(&kvm->slots_lock);
5981
5982 bus = kvm_get_bus(kvm, bus_idx);
5983 if (!bus)
5984 return -ENOMEM;
5985
5986 /* exclude ioeventfd which is limited by maximum fd */
5987 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5988 return -ENOSPC;
5989
5990 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5991 GFP_KERNEL_ACCOUNT);
5992 if (!new_bus)
5993 return -ENOMEM;
5994
5995 range = (struct kvm_io_range) {
5996 .addr = addr,
5997 .len = len,
5998 .dev = dev,
5999 };
6000
6001 for (i = 0; i < bus->dev_count; i++)
6002 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
6003 break;
6004
6005 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
6006 new_bus->dev_count++;
6007 new_bus->range[i] = range;
6008 memcpy(new_bus->range + i + 1, bus->range + i,
6009 (bus->dev_count - i) * sizeof(struct kvm_io_range));
6010 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6011 call_srcu(&kvm->srcu, &bus->rcu, __free_bus);
6012
6013 return 0;
6014 }
6015
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)6016 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6017 struct kvm_io_device *dev)
6018 {
6019 int i;
6020 struct kvm_io_bus *new_bus, *bus;
6021
6022 lockdep_assert_held(&kvm->slots_lock);
6023
6024 bus = kvm_get_bus(kvm, bus_idx);
6025 if (!bus)
6026 return 0;
6027
6028 for (i = 0; i < bus->dev_count; i++) {
6029 if (bus->range[i].dev == dev) {
6030 break;
6031 }
6032 }
6033
6034 if (i == bus->dev_count)
6035 return 0;
6036
6037 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6038 GFP_KERNEL_ACCOUNT);
6039 if (new_bus) {
6040 memcpy(new_bus, bus, struct_size(bus, range, i));
6041 new_bus->dev_count--;
6042 memcpy(new_bus->range + i, bus->range + i + 1,
6043 flex_array_size(new_bus, range, new_bus->dev_count - i));
6044 }
6045
6046 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6047 synchronize_srcu_expedited(&kvm->srcu);
6048
6049 /*
6050 * If NULL bus is installed, destroy the old bus, including all the
6051 * attached devices. Otherwise, destroy the caller's device only.
6052 */
6053 if (!new_bus) {
6054 pr_err("kvm: failed to shrink bus, removing it completely\n");
6055 kvm_io_bus_destroy(bus);
6056 return -ENOMEM;
6057 }
6058
6059 kvm_iodevice_destructor(dev);
6060 kfree(bus);
6061 return 0;
6062 }
6063
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)6064 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6065 gpa_t addr)
6066 {
6067 struct kvm_io_bus *bus;
6068 int dev_idx, srcu_idx;
6069 struct kvm_io_device *iodev = NULL;
6070
6071 srcu_idx = srcu_read_lock(&kvm->srcu);
6072
6073 bus = kvm_get_bus_srcu(kvm, bus_idx);
6074 if (!bus)
6075 goto out_unlock;
6076
6077 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6078 if (dev_idx < 0)
6079 goto out_unlock;
6080
6081 iodev = bus->range[dev_idx].dev;
6082
6083 out_unlock:
6084 srcu_read_unlock(&kvm->srcu, srcu_idx);
6085
6086 return iodev;
6087 }
6088 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev);
6089
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)6090 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6091 int (*get)(void *, u64 *), int (*set)(void *, u64),
6092 const char *fmt)
6093 {
6094 int ret;
6095 struct kvm_stat_data *stat_data = inode->i_private;
6096
6097 /*
6098 * The debugfs files are a reference to the kvm struct which
6099 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6100 * avoids the race between open and the removal of the debugfs directory.
6101 */
6102 if (!kvm_get_kvm_safe(stat_data->kvm))
6103 return -ENOENT;
6104
6105 ret = simple_attr_open(inode, file, get,
6106 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6107 ? set : NULL, fmt);
6108 if (ret)
6109 kvm_put_kvm(stat_data->kvm);
6110
6111 return ret;
6112 }
6113
kvm_debugfs_release(struct inode * inode,struct file * file)6114 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6115 {
6116 struct kvm_stat_data *stat_data = inode->i_private;
6117
6118 simple_attr_release(inode, file);
6119 kvm_put_kvm(stat_data->kvm);
6120
6121 return 0;
6122 }
6123
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)6124 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6125 {
6126 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6127
6128 return 0;
6129 }
6130
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)6131 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6132 {
6133 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6134
6135 return 0;
6136 }
6137
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)6138 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6139 {
6140 unsigned long i;
6141 struct kvm_vcpu *vcpu;
6142
6143 *val = 0;
6144
6145 kvm_for_each_vcpu(i, vcpu, kvm)
6146 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6147
6148 return 0;
6149 }
6150
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)6151 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6152 {
6153 unsigned long i;
6154 struct kvm_vcpu *vcpu;
6155
6156 kvm_for_each_vcpu(i, vcpu, kvm)
6157 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6158
6159 return 0;
6160 }
6161
kvm_stat_data_get(void * data,u64 * val)6162 static int kvm_stat_data_get(void *data, u64 *val)
6163 {
6164 int r = -EFAULT;
6165 struct kvm_stat_data *stat_data = data;
6166
6167 switch (stat_data->kind) {
6168 case KVM_STAT_VM:
6169 r = kvm_get_stat_per_vm(stat_data->kvm,
6170 stat_data->desc->desc.offset, val);
6171 break;
6172 case KVM_STAT_VCPU:
6173 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6174 stat_data->desc->desc.offset, val);
6175 break;
6176 }
6177
6178 return r;
6179 }
6180
kvm_stat_data_clear(void * data,u64 val)6181 static int kvm_stat_data_clear(void *data, u64 val)
6182 {
6183 int r = -EFAULT;
6184 struct kvm_stat_data *stat_data = data;
6185
6186 if (val)
6187 return -EINVAL;
6188
6189 switch (stat_data->kind) {
6190 case KVM_STAT_VM:
6191 r = kvm_clear_stat_per_vm(stat_data->kvm,
6192 stat_data->desc->desc.offset);
6193 break;
6194 case KVM_STAT_VCPU:
6195 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6196 stat_data->desc->desc.offset);
6197 break;
6198 }
6199
6200 return r;
6201 }
6202
kvm_stat_data_open(struct inode * inode,struct file * file)6203 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6204 {
6205 __simple_attr_check_format("%llu\n", 0ull);
6206 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6207 kvm_stat_data_clear, "%llu\n");
6208 }
6209
6210 static const struct file_operations stat_fops_per_vm = {
6211 .owner = THIS_MODULE,
6212 .open = kvm_stat_data_open,
6213 .release = kvm_debugfs_release,
6214 .read = simple_attr_read,
6215 .write = simple_attr_write,
6216 };
6217
vm_stat_get(void * _offset,u64 * val)6218 static int vm_stat_get(void *_offset, u64 *val)
6219 {
6220 unsigned offset = (long)_offset;
6221 struct kvm *kvm;
6222 u64 tmp_val;
6223
6224 *val = 0;
6225 mutex_lock(&kvm_lock);
6226 list_for_each_entry(kvm, &vm_list, vm_list) {
6227 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6228 *val += tmp_val;
6229 }
6230 mutex_unlock(&kvm_lock);
6231 return 0;
6232 }
6233
vm_stat_clear(void * _offset,u64 val)6234 static int vm_stat_clear(void *_offset, u64 val)
6235 {
6236 unsigned offset = (long)_offset;
6237 struct kvm *kvm;
6238
6239 if (val)
6240 return -EINVAL;
6241
6242 mutex_lock(&kvm_lock);
6243 list_for_each_entry(kvm, &vm_list, vm_list) {
6244 kvm_clear_stat_per_vm(kvm, offset);
6245 }
6246 mutex_unlock(&kvm_lock);
6247
6248 return 0;
6249 }
6250
6251 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6252 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6253
vcpu_stat_get(void * _offset,u64 * val)6254 static int vcpu_stat_get(void *_offset, u64 *val)
6255 {
6256 unsigned offset = (long)_offset;
6257 struct kvm *kvm;
6258 u64 tmp_val;
6259
6260 *val = 0;
6261 mutex_lock(&kvm_lock);
6262 list_for_each_entry(kvm, &vm_list, vm_list) {
6263 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6264 *val += tmp_val;
6265 }
6266 mutex_unlock(&kvm_lock);
6267 return 0;
6268 }
6269
vcpu_stat_clear(void * _offset,u64 val)6270 static int vcpu_stat_clear(void *_offset, u64 val)
6271 {
6272 unsigned offset = (long)_offset;
6273 struct kvm *kvm;
6274
6275 if (val)
6276 return -EINVAL;
6277
6278 mutex_lock(&kvm_lock);
6279 list_for_each_entry(kvm, &vm_list, vm_list) {
6280 kvm_clear_stat_per_vcpu(kvm, offset);
6281 }
6282 mutex_unlock(&kvm_lock);
6283
6284 return 0;
6285 }
6286
6287 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6288 "%llu\n");
6289 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6290
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)6291 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6292 {
6293 struct kobj_uevent_env *env;
6294 unsigned long long created, active;
6295
6296 if (!kvm_dev.this_device || !kvm)
6297 return;
6298
6299 mutex_lock(&kvm_lock);
6300 if (type == KVM_EVENT_CREATE_VM) {
6301 kvm_createvm_count++;
6302 kvm_active_vms++;
6303 } else if (type == KVM_EVENT_DESTROY_VM) {
6304 kvm_active_vms--;
6305 }
6306 created = kvm_createvm_count;
6307 active = kvm_active_vms;
6308 mutex_unlock(&kvm_lock);
6309
6310 env = kzalloc(sizeof(*env), GFP_KERNEL);
6311 if (!env)
6312 return;
6313
6314 add_uevent_var(env, "CREATED=%llu", created);
6315 add_uevent_var(env, "COUNT=%llu", active);
6316
6317 if (type == KVM_EVENT_CREATE_VM) {
6318 add_uevent_var(env, "EVENT=create");
6319 kvm->userspace_pid = task_pid_nr(current);
6320 } else if (type == KVM_EVENT_DESTROY_VM) {
6321 add_uevent_var(env, "EVENT=destroy");
6322 }
6323 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6324
6325 if (!IS_ERR(kvm->debugfs_dentry)) {
6326 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6327
6328 if (p) {
6329 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6330 if (!IS_ERR(tmp))
6331 add_uevent_var(env, "STATS_PATH=%s", tmp);
6332 kfree(p);
6333 }
6334 }
6335 /* no need for checks, since we are adding at most only 5 keys */
6336 env->envp[env->envp_idx++] = NULL;
6337 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6338 kfree(env);
6339 }
6340
kvm_init_debug(void)6341 static void kvm_init_debug(void)
6342 {
6343 const struct file_operations *fops;
6344 const struct _kvm_stats_desc *pdesc;
6345 int i;
6346
6347 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6348
6349 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6350 pdesc = &kvm_vm_stats_desc[i];
6351 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6352 fops = &vm_stat_fops;
6353 else
6354 fops = &vm_stat_readonly_fops;
6355 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6356 kvm_debugfs_dir,
6357 (void *)(long)pdesc->desc.offset, fops);
6358 }
6359
6360 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6361 pdesc = &kvm_vcpu_stats_desc[i];
6362 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6363 fops = &vcpu_stat_fops;
6364 else
6365 fops = &vcpu_stat_readonly_fops;
6366 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6367 kvm_debugfs_dir,
6368 (void *)(long)pdesc->desc.offset, fops);
6369 }
6370 }
6371
6372 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)6373 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6374 {
6375 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6376 }
6377
kvm_sched_in(struct preempt_notifier * pn,int cpu)6378 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6379 {
6380 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6381
6382 WRITE_ONCE(vcpu->preempted, false);
6383 WRITE_ONCE(vcpu->ready, false);
6384
6385 __this_cpu_write(kvm_running_vcpu, vcpu);
6386 kvm_arch_vcpu_load(vcpu, cpu);
6387
6388 WRITE_ONCE(vcpu->scheduled_out, false);
6389 }
6390
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)6391 static void kvm_sched_out(struct preempt_notifier *pn,
6392 struct task_struct *next)
6393 {
6394 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6395
6396 WRITE_ONCE(vcpu->scheduled_out, true);
6397
6398 if (task_is_runnable(current) && vcpu->wants_to_run) {
6399 WRITE_ONCE(vcpu->preempted, true);
6400 WRITE_ONCE(vcpu->ready, true);
6401 }
6402 kvm_arch_vcpu_put(vcpu);
6403 __this_cpu_write(kvm_running_vcpu, NULL);
6404 }
6405
6406 /**
6407 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6408 *
6409 * We can disable preemption locally around accessing the per-CPU variable,
6410 * and use the resolved vcpu pointer after enabling preemption again,
6411 * because even if the current thread is migrated to another CPU, reading
6412 * the per-CPU value later will give us the same value as we update the
6413 * per-CPU variable in the preempt notifier handlers.
6414 */
kvm_get_running_vcpu(void)6415 struct kvm_vcpu *kvm_get_running_vcpu(void)
6416 {
6417 struct kvm_vcpu *vcpu;
6418
6419 preempt_disable();
6420 vcpu = __this_cpu_read(kvm_running_vcpu);
6421 preempt_enable();
6422
6423 return vcpu;
6424 }
6425 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu);
6426
6427 /**
6428 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6429 */
kvm_get_running_vcpus(void)6430 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6431 {
6432 return &kvm_running_vcpu;
6433 }
6434
6435 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6436 static unsigned int kvm_guest_state(void)
6437 {
6438 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6439 unsigned int state;
6440
6441 if (!kvm_arch_pmi_in_guest(vcpu))
6442 return 0;
6443
6444 state = PERF_GUEST_ACTIVE;
6445 if (!kvm_arch_vcpu_in_kernel(vcpu))
6446 state |= PERF_GUEST_USER;
6447
6448 return state;
6449 }
6450
kvm_guest_get_ip(void)6451 static unsigned long kvm_guest_get_ip(void)
6452 {
6453 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6454
6455 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6456 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6457 return 0;
6458
6459 return kvm_arch_vcpu_get_ip(vcpu);
6460 }
6461
6462 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6463 .state = kvm_guest_state,
6464 .get_ip = kvm_guest_get_ip,
6465 .handle_intel_pt_intr = NULL,
6466 };
6467
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6468 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6469 {
6470 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6471 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6472 }
kvm_unregister_perf_callbacks(void)6473 void kvm_unregister_perf_callbacks(void)
6474 {
6475 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6476 }
6477 #endif
6478
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6479 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6480 {
6481 int r;
6482 int cpu;
6483
6484 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6485 if (!vcpu_align)
6486 vcpu_align = __alignof__(struct kvm_vcpu);
6487 kvm_vcpu_cache =
6488 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6489 SLAB_ACCOUNT,
6490 offsetof(struct kvm_vcpu, arch),
6491 offsetofend(struct kvm_vcpu, stats_id)
6492 - offsetof(struct kvm_vcpu, arch),
6493 NULL);
6494 if (!kvm_vcpu_cache)
6495 return -ENOMEM;
6496
6497 for_each_possible_cpu(cpu) {
6498 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6499 GFP_KERNEL, cpu_to_node(cpu))) {
6500 r = -ENOMEM;
6501 goto err_cpu_kick_mask;
6502 }
6503 }
6504
6505 r = kvm_irqfd_init();
6506 if (r)
6507 goto err_irqfd;
6508
6509 r = kvm_async_pf_init();
6510 if (r)
6511 goto err_async_pf;
6512
6513 kvm_chardev_ops.owner = module;
6514 kvm_vm_fops.owner = module;
6515 kvm_vcpu_fops.owner = module;
6516 kvm_device_fops.owner = module;
6517
6518 kvm_preempt_ops.sched_in = kvm_sched_in;
6519 kvm_preempt_ops.sched_out = kvm_sched_out;
6520
6521 kvm_init_debug();
6522
6523 r = kvm_vfio_ops_init();
6524 if (WARN_ON_ONCE(r))
6525 goto err_vfio;
6526
6527 kvm_gmem_init(module);
6528
6529 r = kvm_init_virtualization();
6530 if (r)
6531 goto err_virt;
6532
6533 /*
6534 * Registration _must_ be the very last thing done, as this exposes
6535 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6536 */
6537 r = misc_register(&kvm_dev);
6538 if (r) {
6539 pr_err("kvm: misc device register failed\n");
6540 goto err_register;
6541 }
6542
6543 return 0;
6544
6545 err_register:
6546 kvm_uninit_virtualization();
6547 err_virt:
6548 kvm_vfio_ops_exit();
6549 err_vfio:
6550 kvm_async_pf_deinit();
6551 err_async_pf:
6552 kvm_irqfd_exit();
6553 err_irqfd:
6554 err_cpu_kick_mask:
6555 for_each_possible_cpu(cpu)
6556 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6557 kmem_cache_destroy(kvm_vcpu_cache);
6558 return r;
6559 }
6560 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init);
6561
kvm_exit(void)6562 void kvm_exit(void)
6563 {
6564 int cpu;
6565
6566 /*
6567 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6568 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6569 * to KVM while the module is being stopped.
6570 */
6571 misc_deregister(&kvm_dev);
6572
6573 kvm_uninit_virtualization();
6574
6575 debugfs_remove_recursive(kvm_debugfs_dir);
6576 for_each_possible_cpu(cpu)
6577 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6578 kmem_cache_destroy(kvm_vcpu_cache);
6579 kvm_vfio_ops_exit();
6580 kvm_async_pf_deinit();
6581 kvm_irqfd_exit();
6582 }
6583 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit);
6584