xref: /linux/virt/kvm/kvm_main.c (revision 072c0b4f0f9597c86ddb01fd39e784fda6b7a922)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine (KVM) Hypervisor
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  */
12 
13 #include <kvm/iodev.h>
14 
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52 #include <linux/rseq.h>
53 
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 #include "kvm_mm.h"
61 #include "vfio.h"
62 
63 #include <trace/events/ipi.h>
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 
71 /* Worst case buffer size needed for holding an integer. */
72 #define ITOA_MAX_LEN 12
73 
74 MODULE_AUTHOR("Qumranet");
75 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
76 MODULE_LICENSE("GPL");
77 
78 /* Architectures should define their poll value according to the halt latency */
79 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
80 module_param(halt_poll_ns, uint, 0644);
81 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns);
82 
83 /* Default doubles per-vcpu halt_poll_ns. */
84 unsigned int halt_poll_ns_grow = 2;
85 module_param(halt_poll_ns_grow, uint, 0644);
86 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow);
87 
88 /* The start value to grow halt_poll_ns from */
89 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
90 module_param(halt_poll_ns_grow_start, uint, 0644);
91 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start);
92 
93 /* Default halves per-vcpu halt_poll_ns. */
94 unsigned int halt_poll_ns_shrink = 2;
95 module_param(halt_poll_ns_shrink, uint, 0644);
96 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink);
97 
98 /*
99  * Allow direct access (from KVM or the CPU) without MMU notifier protection
100  * to unpinned pages.
101  */
102 static bool allow_unsafe_mappings;
103 module_param(allow_unsafe_mappings, bool, 0444);
104 
105 /*
106  * Ordering of locks:
107  *
108  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
109  */
110 
111 DEFINE_MUTEX(kvm_lock);
112 LIST_HEAD(vm_list);
113 
114 static struct kmem_cache *kvm_vcpu_cache;
115 
116 static __read_mostly struct preempt_ops kvm_preempt_ops;
117 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
118 
119 static struct dentry *kvm_debugfs_dir;
120 
121 static const struct file_operations stat_fops_per_vm;
122 
123 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
124 			   unsigned long arg);
125 #ifdef CONFIG_KVM_COMPAT
126 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
127 				  unsigned long arg);
128 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
129 #else
130 /*
131  * For architectures that don't implement a compat infrastructure,
132  * adopt a double line of defense:
133  * - Prevent a compat task from opening /dev/kvm
134  * - If the open has been done by a 64bit task, and the KVM fd
135  *   passed to a compat task, let the ioctls fail.
136  */
137 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
138 				unsigned long arg) { return -EINVAL; }
139 
140 static int kvm_no_compat_open(struct inode *inode, struct file *file)
141 {
142 	return is_compat_task() ? -ENODEV : 0;
143 }
144 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
145 			.open		= kvm_no_compat_open
146 #endif
147 
148 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
149 
150 #define KVM_EVENT_CREATE_VM 0
151 #define KVM_EVENT_DESTROY_VM 1
152 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
153 static unsigned long long kvm_createvm_count;
154 static unsigned long long kvm_active_vms;
155 
156 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
157 
158 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
159 {
160 }
161 
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167 	int cpu = get_cpu();
168 
169 	__this_cpu_write(kvm_running_vcpu, vcpu);
170 	preempt_notifier_register(&vcpu->preempt_notifier);
171 	kvm_arch_vcpu_load(vcpu, cpu);
172 	put_cpu();
173 }
174 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load);
175 
176 void vcpu_put(struct kvm_vcpu *vcpu)
177 {
178 	preempt_disable();
179 	kvm_arch_vcpu_put(vcpu);
180 	preempt_notifier_unregister(&vcpu->preempt_notifier);
181 	__this_cpu_write(kvm_running_vcpu, NULL);
182 	preempt_enable();
183 }
184 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put);
185 
186 /* TODO: merge with kvm_arch_vcpu_should_kick */
187 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
188 {
189 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
190 
191 	/*
192 	 * We need to wait for the VCPU to reenable interrupts and get out of
193 	 * READING_SHADOW_PAGE_TABLES mode.
194 	 */
195 	if (req & KVM_REQUEST_WAIT)
196 		return mode != OUTSIDE_GUEST_MODE;
197 
198 	/*
199 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
200 	 */
201 	return mode == IN_GUEST_MODE;
202 }
203 
204 static void ack_kick(void *_completed)
205 {
206 }
207 
208 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
209 {
210 	if (cpumask_empty(cpus))
211 		return false;
212 
213 	smp_call_function_many(cpus, ack_kick, NULL, wait);
214 	return true;
215 }
216 
217 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
218 				  struct cpumask *tmp, int current_cpu)
219 {
220 	int cpu;
221 
222 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
223 		__kvm_make_request(req, vcpu);
224 
225 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
226 		return;
227 
228 	/*
229 	 * Note, the vCPU could get migrated to a different pCPU at any point
230 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
231 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
232 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
233 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
234 	 * after this point is also OK, as the requirement is only that KVM wait
235 	 * for vCPUs that were reading SPTEs _before_ any changes were
236 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
237 	 */
238 	if (kvm_request_needs_ipi(vcpu, req)) {
239 		cpu = READ_ONCE(vcpu->cpu);
240 		if (cpu != -1 && cpu != current_cpu)
241 			__cpumask_set_cpu(cpu, tmp);
242 	}
243 }
244 
245 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
246 				 unsigned long *vcpu_bitmap)
247 {
248 	struct kvm_vcpu *vcpu;
249 	struct cpumask *cpus;
250 	int i, me;
251 	bool called;
252 
253 	me = get_cpu();
254 
255 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
256 	cpumask_clear(cpus);
257 
258 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
259 		vcpu = kvm_get_vcpu(kvm, i);
260 		if (!vcpu)
261 			continue;
262 		kvm_make_vcpu_request(vcpu, req, cpus, me);
263 	}
264 
265 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
266 	put_cpu();
267 
268 	return called;
269 }
270 
271 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
272 {
273 	struct kvm_vcpu *vcpu;
274 	struct cpumask *cpus;
275 	unsigned long i;
276 	bool called;
277 	int me;
278 
279 	me = get_cpu();
280 
281 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
282 	cpumask_clear(cpus);
283 
284 	kvm_for_each_vcpu(i, vcpu, kvm)
285 		kvm_make_vcpu_request(vcpu, req, cpus, me);
286 
287 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
288 	put_cpu();
289 
290 	return called;
291 }
292 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request);
293 
294 void kvm_flush_remote_tlbs(struct kvm *kvm)
295 {
296 	++kvm->stat.generic.remote_tlb_flush_requests;
297 
298 	/*
299 	 * We want to publish modifications to the page tables before reading
300 	 * mode. Pairs with a memory barrier in arch-specific code.
301 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
302 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
303 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
304 	 *
305 	 * There is already an smp_mb__after_atomic() before
306 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
307 	 * barrier here.
308 	 */
309 	if (!kvm_arch_flush_remote_tlbs(kvm)
310 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
311 		++kvm->stat.generic.remote_tlb_flush;
312 }
313 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs);
314 
315 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
316 {
317 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
318 		return;
319 
320 	/*
321 	 * Fall back to a flushing entire TLBs if the architecture range-based
322 	 * TLB invalidation is unsupported or can't be performed for whatever
323 	 * reason.
324 	 */
325 	kvm_flush_remote_tlbs(kvm);
326 }
327 
328 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
329 				   const struct kvm_memory_slot *memslot)
330 {
331 	/*
332 	 * All current use cases for flushing the TLBs for a specific memslot
333 	 * are related to dirty logging, and many do the TLB flush out of
334 	 * mmu_lock. The interaction between the various operations on memslot
335 	 * must be serialized by slots_lock to ensure the TLB flush from one
336 	 * operation is observed by any other operation on the same memslot.
337 	 */
338 	lockdep_assert_held(&kvm->slots_lock);
339 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
340 }
341 
342 static void kvm_flush_shadow_all(struct kvm *kvm)
343 {
344 	kvm_arch_flush_shadow_all(kvm);
345 	kvm_arch_guest_memory_reclaimed(kvm);
346 }
347 
348 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
349 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
350 					       gfp_t gfp_flags)
351 {
352 	void *page;
353 
354 	gfp_flags |= mc->gfp_zero;
355 
356 	if (mc->kmem_cache)
357 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
358 
359 	page = (void *)__get_free_page(gfp_flags);
360 	if (page && mc->init_value)
361 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
362 	return page;
363 }
364 
365 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
366 {
367 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
368 	void *obj;
369 
370 	if (mc->nobjs >= min)
371 		return 0;
372 
373 	if (unlikely(!mc->objects)) {
374 		if (WARN_ON_ONCE(!capacity))
375 			return -EIO;
376 
377 		/*
378 		 * Custom init values can be used only for page allocations,
379 		 * and obviously conflict with __GFP_ZERO.
380 		 */
381 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
382 			return -EIO;
383 
384 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
385 		if (!mc->objects)
386 			return -ENOMEM;
387 
388 		mc->capacity = capacity;
389 	}
390 
391 	/* It is illegal to request a different capacity across topups. */
392 	if (WARN_ON_ONCE(mc->capacity != capacity))
393 		return -EIO;
394 
395 	while (mc->nobjs < mc->capacity) {
396 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
397 		if (!obj)
398 			return mc->nobjs >= min ? 0 : -ENOMEM;
399 		mc->objects[mc->nobjs++] = obj;
400 	}
401 	return 0;
402 }
403 
404 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
405 {
406 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
407 }
408 
409 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
410 {
411 	return mc->nobjs;
412 }
413 
414 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
415 {
416 	while (mc->nobjs) {
417 		if (mc->kmem_cache)
418 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
419 		else
420 			free_page((unsigned long)mc->objects[--mc->nobjs]);
421 	}
422 
423 	kvfree(mc->objects);
424 
425 	mc->objects = NULL;
426 	mc->capacity = 0;
427 }
428 
429 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
430 {
431 	void *p;
432 
433 	if (WARN_ON(!mc->nobjs))
434 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
435 	else
436 		p = mc->objects[--mc->nobjs];
437 	BUG_ON(!p);
438 	return p;
439 }
440 #endif
441 
442 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
443 {
444 	mutex_init(&vcpu->mutex);
445 	vcpu->cpu = -1;
446 	vcpu->kvm = kvm;
447 	vcpu->vcpu_id = id;
448 	vcpu->pid = NULL;
449 	rwlock_init(&vcpu->pid_lock);
450 #ifndef __KVM_HAVE_ARCH_WQP
451 	rcuwait_init(&vcpu->wait);
452 #endif
453 	kvm_async_pf_vcpu_init(vcpu);
454 
455 	kvm_vcpu_set_in_spin_loop(vcpu, false);
456 	kvm_vcpu_set_dy_eligible(vcpu, false);
457 	vcpu->preempted = false;
458 	vcpu->ready = false;
459 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
460 	vcpu->last_used_slot = NULL;
461 
462 	/* Fill the stats id string for the vcpu */
463 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
464 		 task_pid_nr(current), id);
465 }
466 
467 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
468 {
469 	kvm_arch_vcpu_destroy(vcpu);
470 	kvm_dirty_ring_free(&vcpu->dirty_ring);
471 
472 	/*
473 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
474 	 * the vcpu->pid pointer, and at destruction time all file descriptors
475 	 * are already gone.
476 	 */
477 	put_pid(vcpu->pid);
478 
479 	free_page((unsigned long)vcpu->run);
480 	kmem_cache_free(kvm_vcpu_cache, vcpu);
481 }
482 
483 void kvm_destroy_vcpus(struct kvm *kvm)
484 {
485 	unsigned long i;
486 	struct kvm_vcpu *vcpu;
487 
488 	kvm_for_each_vcpu(i, vcpu, kvm) {
489 		kvm_vcpu_destroy(vcpu);
490 		xa_erase(&kvm->vcpu_array, i);
491 
492 		/*
493 		 * Assert that the vCPU isn't visible in any way, to ensure KVM
494 		 * doesn't trigger a use-after-free if destroying vCPUs results
495 		 * in VM-wide request, e.g. to flush remote TLBs when tearing
496 		 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
497 		 */
498 		WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
499 	}
500 
501 	atomic_set(&kvm->online_vcpus, 0);
502 }
503 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus);
504 
505 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
506 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
507 {
508 	return container_of(mn, struct kvm, mmu_notifier);
509 }
510 
511 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
512 
513 typedef void (*on_lock_fn_t)(struct kvm *kvm);
514 
515 struct kvm_mmu_notifier_range {
516 	/*
517 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
518 	 * addresses (unsigned long) and guest physical addresses (64-bit).
519 	 */
520 	u64 start;
521 	u64 end;
522 	union kvm_mmu_notifier_arg arg;
523 	gfn_handler_t handler;
524 	on_lock_fn_t on_lock;
525 	bool flush_on_ret;
526 	bool may_block;
527 	bool lockless;
528 };
529 
530 /*
531  * The inner-most helper returns a tuple containing the return value from the
532  * arch- and action-specific handler, plus a flag indicating whether or not at
533  * least one memslot was found, i.e. if the handler found guest memory.
534  *
535  * Note, most notifiers are averse to booleans, so even though KVM tracks the
536  * return from arch code as a bool, outer helpers will cast it to an int. :-(
537  */
538 typedef struct kvm_mmu_notifier_return {
539 	bool ret;
540 	bool found_memslot;
541 } kvm_mn_ret_t;
542 
543 /*
544  * Use a dedicated stub instead of NULL to indicate that there is no callback
545  * function/handler.  The compiler technically can't guarantee that a real
546  * function will have a non-zero address, and so it will generate code to
547  * check for !NULL, whereas comparing against a stub will be elided at compile
548  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
549  */
550 static void kvm_null_fn(void)
551 {
552 
553 }
554 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
555 
556 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
557 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
558 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
559 	     node;							     \
560 	     node = interval_tree_iter_next(node, start, last))	     \
561 
562 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
563 							 const struct kvm_mmu_notifier_range *range)
564 {
565 	struct kvm_mmu_notifier_return r = {
566 		.ret = false,
567 		.found_memslot = false,
568 	};
569 	struct kvm_gfn_range gfn_range;
570 	struct kvm_memory_slot *slot;
571 	struct kvm_memslots *slots;
572 	int i, idx;
573 
574 	if (WARN_ON_ONCE(range->end <= range->start))
575 		return r;
576 
577 	/* A null handler is allowed if and only if on_lock() is provided. */
578 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
579 			 IS_KVM_NULL_FN(range->handler)))
580 		return r;
581 
582 	/* on_lock will never be called for lockless walks */
583 	if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
584 		return r;
585 
586 	idx = srcu_read_lock(&kvm->srcu);
587 
588 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
589 		struct interval_tree_node *node;
590 
591 		slots = __kvm_memslots(kvm, i);
592 		kvm_for_each_memslot_in_hva_range(node, slots,
593 						  range->start, range->end - 1) {
594 			unsigned long hva_start, hva_end;
595 
596 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
597 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
598 			hva_end = min_t(unsigned long, range->end,
599 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
600 
601 			/*
602 			 * To optimize for the likely case where the address
603 			 * range is covered by zero or one memslots, don't
604 			 * bother making these conditional (to avoid writes on
605 			 * the second or later invocation of the handler).
606 			 */
607 			gfn_range.arg = range->arg;
608 			gfn_range.may_block = range->may_block;
609 			/*
610 			 * HVA-based notifications aren't relevant to private
611 			 * mappings as they don't have a userspace mapping.
612 			 */
613 			gfn_range.attr_filter = KVM_FILTER_SHARED;
614 
615 			/*
616 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
617 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
618 			 */
619 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
620 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
621 			gfn_range.slot = slot;
622 			gfn_range.lockless = range->lockless;
623 
624 			if (!r.found_memslot) {
625 				r.found_memslot = true;
626 				if (!range->lockless) {
627 					KVM_MMU_LOCK(kvm);
628 					if (!IS_KVM_NULL_FN(range->on_lock))
629 						range->on_lock(kvm);
630 
631 					if (IS_KVM_NULL_FN(range->handler))
632 						goto mmu_unlock;
633 				}
634 			}
635 			r.ret |= range->handler(kvm, &gfn_range);
636 		}
637 	}
638 
639 	if (range->flush_on_ret && r.ret)
640 		kvm_flush_remote_tlbs(kvm);
641 
642 mmu_unlock:
643 	if (r.found_memslot && !range->lockless)
644 		KVM_MMU_UNLOCK(kvm);
645 
646 	srcu_read_unlock(&kvm->srcu, idx);
647 
648 	return r;
649 }
650 
651 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
652 						unsigned long start,
653 						unsigned long end,
654 						gfn_handler_t handler,
655 						bool flush_on_ret)
656 {
657 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
658 	const struct kvm_mmu_notifier_range range = {
659 		.start		= start,
660 		.end		= end,
661 		.handler	= handler,
662 		.on_lock	= (void *)kvm_null_fn,
663 		.flush_on_ret	= flush_on_ret,
664 		.may_block	= false,
665 		.lockless	= IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
666 	};
667 
668 	return kvm_handle_hva_range(kvm, &range).ret;
669 }
670 
671 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
672 						      unsigned long start,
673 						      unsigned long end,
674 						      gfn_handler_t handler)
675 {
676 	return kvm_age_hva_range(mn, start, end, handler, false);
677 }
678 
679 void kvm_mmu_invalidate_begin(struct kvm *kvm)
680 {
681 	lockdep_assert_held_write(&kvm->mmu_lock);
682 	/*
683 	 * The count increase must become visible at unlock time as no
684 	 * spte can be established without taking the mmu_lock and
685 	 * count is also read inside the mmu_lock critical section.
686 	 */
687 	kvm->mmu_invalidate_in_progress++;
688 
689 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
690 		kvm->mmu_invalidate_range_start = INVALID_GPA;
691 		kvm->mmu_invalidate_range_end = INVALID_GPA;
692 	}
693 }
694 
695 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
696 {
697 	lockdep_assert_held_write(&kvm->mmu_lock);
698 
699 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
700 
701 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
702 		kvm->mmu_invalidate_range_start = start;
703 		kvm->mmu_invalidate_range_end = end;
704 	} else {
705 		/*
706 		 * Fully tracking multiple concurrent ranges has diminishing
707 		 * returns. Keep things simple and just find the minimal range
708 		 * which includes the current and new ranges. As there won't be
709 		 * enough information to subtract a range after its invalidate
710 		 * completes, any ranges invalidated concurrently will
711 		 * accumulate and persist until all outstanding invalidates
712 		 * complete.
713 		 */
714 		kvm->mmu_invalidate_range_start =
715 			min(kvm->mmu_invalidate_range_start, start);
716 		kvm->mmu_invalidate_range_end =
717 			max(kvm->mmu_invalidate_range_end, end);
718 	}
719 }
720 
721 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
722 {
723 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
724 	return kvm_unmap_gfn_range(kvm, range);
725 }
726 
727 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
728 					const struct mmu_notifier_range *range)
729 {
730 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 	const struct kvm_mmu_notifier_range hva_range = {
732 		.start		= range->start,
733 		.end		= range->end,
734 		.handler	= kvm_mmu_unmap_gfn_range,
735 		.on_lock	= kvm_mmu_invalidate_begin,
736 		.flush_on_ret	= true,
737 		.may_block	= mmu_notifier_range_blockable(range),
738 	};
739 
740 	trace_kvm_unmap_hva_range(range->start, range->end);
741 
742 	/*
743 	 * Prevent memslot modification between range_start() and range_end()
744 	 * so that conditionally locking provides the same result in both
745 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
746 	 * adjustments will be imbalanced.
747 	 *
748 	 * Pairs with the decrement in range_end().
749 	 */
750 	spin_lock(&kvm->mn_invalidate_lock);
751 	kvm->mn_active_invalidate_count++;
752 	spin_unlock(&kvm->mn_invalidate_lock);
753 
754 	/*
755 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
756 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
757 	 * each cache's lock.  There are relatively few caches in existence at
758 	 * any given time, and the caches themselves can check for hva overlap,
759 	 * i.e. don't need to rely on memslot overlap checks for performance.
760 	 * Because this runs without holding mmu_lock, the pfn caches must use
761 	 * mn_active_invalidate_count (see above) instead of
762 	 * mmu_invalidate_in_progress.
763 	 */
764 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
765 
766 	/*
767 	 * If one or more memslots were found and thus zapped, notify arch code
768 	 * that guest memory has been reclaimed.  This needs to be done *after*
769 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
770 	 */
771 	if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
772 		kvm_arch_guest_memory_reclaimed(kvm);
773 
774 	return 0;
775 }
776 
777 void kvm_mmu_invalidate_end(struct kvm *kvm)
778 {
779 	lockdep_assert_held_write(&kvm->mmu_lock);
780 
781 	/*
782 	 * This sequence increase will notify the kvm page fault that
783 	 * the page that is going to be mapped in the spte could have
784 	 * been freed.
785 	 */
786 	kvm->mmu_invalidate_seq++;
787 	smp_wmb();
788 	/*
789 	 * The above sequence increase must be visible before the
790 	 * below count decrease, which is ensured by the smp_wmb above
791 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
792 	 */
793 	kvm->mmu_invalidate_in_progress--;
794 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
795 
796 	/*
797 	 * Assert that at least one range was added between start() and end().
798 	 * Not adding a range isn't fatal, but it is a KVM bug.
799 	 */
800 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
801 }
802 
803 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
804 					const struct mmu_notifier_range *range)
805 {
806 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
807 	const struct kvm_mmu_notifier_range hva_range = {
808 		.start		= range->start,
809 		.end		= range->end,
810 		.handler	= (void *)kvm_null_fn,
811 		.on_lock	= kvm_mmu_invalidate_end,
812 		.flush_on_ret	= false,
813 		.may_block	= mmu_notifier_range_blockable(range),
814 	};
815 	bool wake;
816 
817 	kvm_handle_hva_range(kvm, &hva_range);
818 
819 	/* Pairs with the increment in range_start(). */
820 	spin_lock(&kvm->mn_invalidate_lock);
821 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
822 		--kvm->mn_active_invalidate_count;
823 	wake = !kvm->mn_active_invalidate_count;
824 	spin_unlock(&kvm->mn_invalidate_lock);
825 
826 	/*
827 	 * There can only be one waiter, since the wait happens under
828 	 * slots_lock.
829 	 */
830 	if (wake)
831 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
832 }
833 
834 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
835 					      struct mm_struct *mm,
836 					      unsigned long start,
837 					      unsigned long end)
838 {
839 	trace_kvm_age_hva(start, end);
840 
841 	return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
842 				 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
843 }
844 
845 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
846 					struct mm_struct *mm,
847 					unsigned long start,
848 					unsigned long end)
849 {
850 	trace_kvm_age_hva(start, end);
851 
852 	/*
853 	 * Even though we do not flush TLB, this will still adversely
854 	 * affect performance on pre-Haswell Intel EPT, where there is
855 	 * no EPT Access Bit to clear so that we have to tear down EPT
856 	 * tables instead. If we find this unacceptable, we can always
857 	 * add a parameter to kvm_age_hva so that it effectively doesn't
858 	 * do anything on clear_young.
859 	 *
860 	 * Also note that currently we never issue secondary TLB flushes
861 	 * from clear_young, leaving this job up to the regular system
862 	 * cadence. If we find this inaccurate, we might come up with a
863 	 * more sophisticated heuristic later.
864 	 */
865 	return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
866 }
867 
868 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
869 				       struct mm_struct *mm,
870 				       unsigned long address)
871 {
872 	trace_kvm_test_age_hva(address);
873 
874 	return kvm_age_hva_range_no_flush(mn, address, address + 1,
875 					  kvm_test_age_gfn);
876 }
877 
878 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
879 				     struct mm_struct *mm)
880 {
881 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
882 	int idx;
883 
884 	idx = srcu_read_lock(&kvm->srcu);
885 	kvm_flush_shadow_all(kvm);
886 	srcu_read_unlock(&kvm->srcu, idx);
887 }
888 
889 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
890 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
891 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
892 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
893 	.clear_young		= kvm_mmu_notifier_clear_young,
894 	.test_young		= kvm_mmu_notifier_test_young,
895 	.release		= kvm_mmu_notifier_release,
896 };
897 
898 static int kvm_init_mmu_notifier(struct kvm *kvm)
899 {
900 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
901 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
902 }
903 
904 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
905 
906 static int kvm_init_mmu_notifier(struct kvm *kvm)
907 {
908 	return 0;
909 }
910 
911 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
912 
913 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
914 static int kvm_pm_notifier_call(struct notifier_block *bl,
915 				unsigned long state,
916 				void *unused)
917 {
918 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
919 
920 	return kvm_arch_pm_notifier(kvm, state);
921 }
922 
923 static void kvm_init_pm_notifier(struct kvm *kvm)
924 {
925 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
926 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
927 	kvm->pm_notifier.priority = INT_MAX;
928 	register_pm_notifier(&kvm->pm_notifier);
929 }
930 
931 static void kvm_destroy_pm_notifier(struct kvm *kvm)
932 {
933 	unregister_pm_notifier(&kvm->pm_notifier);
934 }
935 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
936 static void kvm_init_pm_notifier(struct kvm *kvm)
937 {
938 }
939 
940 static void kvm_destroy_pm_notifier(struct kvm *kvm)
941 {
942 }
943 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
944 
945 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
946 {
947 	if (!memslot->dirty_bitmap)
948 		return;
949 
950 	vfree(memslot->dirty_bitmap);
951 	memslot->dirty_bitmap = NULL;
952 }
953 
954 /* This does not remove the slot from struct kvm_memslots data structures */
955 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
956 {
957 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
958 		kvm_gmem_unbind(slot);
959 
960 	kvm_destroy_dirty_bitmap(slot);
961 
962 	kvm_arch_free_memslot(kvm, slot);
963 
964 	kfree(slot);
965 }
966 
967 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
968 {
969 	struct hlist_node *idnode;
970 	struct kvm_memory_slot *memslot;
971 	int bkt;
972 
973 	/*
974 	 * The same memslot objects live in both active and inactive sets,
975 	 * arbitrarily free using index '1' so the second invocation of this
976 	 * function isn't operating over a structure with dangling pointers
977 	 * (even though this function isn't actually touching them).
978 	 */
979 	if (!slots->node_idx)
980 		return;
981 
982 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
983 		kvm_free_memslot(kvm, memslot);
984 }
985 
986 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
987 {
988 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
989 	case KVM_STATS_TYPE_INSTANT:
990 		return 0444;
991 	case KVM_STATS_TYPE_CUMULATIVE:
992 	case KVM_STATS_TYPE_PEAK:
993 	default:
994 		return 0644;
995 	}
996 }
997 
998 
999 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1000 {
1001 	int i;
1002 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1003 				      kvm_vcpu_stats_header.num_desc;
1004 
1005 	if (IS_ERR(kvm->debugfs_dentry))
1006 		return;
1007 
1008 	debugfs_remove_recursive(kvm->debugfs_dentry);
1009 
1010 	if (kvm->debugfs_stat_data) {
1011 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1012 			kfree(kvm->debugfs_stat_data[i]);
1013 		kfree(kvm->debugfs_stat_data);
1014 	}
1015 }
1016 
1017 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1018 {
1019 	static DEFINE_MUTEX(kvm_debugfs_lock);
1020 	struct dentry *dent;
1021 	char dir_name[ITOA_MAX_LEN * 2];
1022 	struct kvm_stat_data *stat_data;
1023 	const struct _kvm_stats_desc *pdesc;
1024 	int i, ret = -ENOMEM;
1025 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1026 				      kvm_vcpu_stats_header.num_desc;
1027 
1028 	if (!debugfs_initialized())
1029 		return 0;
1030 
1031 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1032 	mutex_lock(&kvm_debugfs_lock);
1033 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1034 	if (dent) {
1035 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1036 		dput(dent);
1037 		mutex_unlock(&kvm_debugfs_lock);
1038 		return 0;
1039 	}
1040 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1041 	mutex_unlock(&kvm_debugfs_lock);
1042 	if (IS_ERR(dent))
1043 		return 0;
1044 
1045 	kvm->debugfs_dentry = dent;
1046 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1047 					 sizeof(*kvm->debugfs_stat_data),
1048 					 GFP_KERNEL_ACCOUNT);
1049 	if (!kvm->debugfs_stat_data)
1050 		goto out_err;
1051 
1052 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1053 		pdesc = &kvm_vm_stats_desc[i];
1054 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1055 		if (!stat_data)
1056 			goto out_err;
1057 
1058 		stat_data->kvm = kvm;
1059 		stat_data->desc = pdesc;
1060 		stat_data->kind = KVM_STAT_VM;
1061 		kvm->debugfs_stat_data[i] = stat_data;
1062 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1063 				    kvm->debugfs_dentry, stat_data,
1064 				    &stat_fops_per_vm);
1065 	}
1066 
1067 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1068 		pdesc = &kvm_vcpu_stats_desc[i];
1069 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1070 		if (!stat_data)
1071 			goto out_err;
1072 
1073 		stat_data->kvm = kvm;
1074 		stat_data->desc = pdesc;
1075 		stat_data->kind = KVM_STAT_VCPU;
1076 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1077 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1078 				    kvm->debugfs_dentry, stat_data,
1079 				    &stat_fops_per_vm);
1080 	}
1081 
1082 	kvm_arch_create_vm_debugfs(kvm);
1083 	return 0;
1084 out_err:
1085 	kvm_destroy_vm_debugfs(kvm);
1086 	return ret;
1087 }
1088 
1089 /*
1090  * Called just after removing the VM from the vm_list, but before doing any
1091  * other destruction.
1092  */
1093 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1094 {
1095 }
1096 
1097 /*
1098  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1099  * be setup already, so we can create arch-specific debugfs entries under it.
1100  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1101  * a per-arch destroy interface is not needed.
1102  */
1103 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1104 {
1105 }
1106 
1107 /* Called only on cleanup and destruction paths when there are no users. */
1108 static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm,
1109 							     enum kvm_bus idx)
1110 {
1111 	return rcu_dereference_protected(kvm->buses[idx],
1112 					 !refcount_read(&kvm->users_count));
1113 }
1114 
1115 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1116 {
1117 	struct kvm *kvm = kvm_arch_alloc_vm();
1118 	struct kvm_memslots *slots;
1119 	int r, i, j;
1120 
1121 	if (!kvm)
1122 		return ERR_PTR(-ENOMEM);
1123 
1124 	KVM_MMU_LOCK_INIT(kvm);
1125 	mmgrab(current->mm);
1126 	kvm->mm = current->mm;
1127 	kvm_eventfd_init(kvm);
1128 	mutex_init(&kvm->lock);
1129 	mutex_init(&kvm->irq_lock);
1130 	mutex_init(&kvm->slots_lock);
1131 	mutex_init(&kvm->slots_arch_lock);
1132 	spin_lock_init(&kvm->mn_invalidate_lock);
1133 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1134 	xa_init(&kvm->vcpu_array);
1135 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1136 	xa_init(&kvm->mem_attr_array);
1137 #endif
1138 
1139 	INIT_LIST_HEAD(&kvm->gpc_list);
1140 	spin_lock_init(&kvm->gpc_lock);
1141 
1142 	INIT_LIST_HEAD(&kvm->devices);
1143 	kvm->max_vcpus = KVM_MAX_VCPUS;
1144 
1145 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1146 
1147 	/*
1148 	 * Force subsequent debugfs file creations to fail if the VM directory
1149 	 * is not created (by kvm_create_vm_debugfs()).
1150 	 */
1151 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1152 
1153 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1154 		 task_pid_nr(current));
1155 
1156 	r = -ENOMEM;
1157 	if (init_srcu_struct(&kvm->srcu))
1158 		goto out_err_no_srcu;
1159 	if (init_srcu_struct(&kvm->irq_srcu))
1160 		goto out_err_no_irq_srcu;
1161 
1162 	r = kvm_init_irq_routing(kvm);
1163 	if (r)
1164 		goto out_err_no_irq_routing;
1165 
1166 	refcount_set(&kvm->users_count, 1);
1167 
1168 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1169 		for (j = 0; j < 2; j++) {
1170 			slots = &kvm->__memslots[i][j];
1171 
1172 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1173 			slots->hva_tree = RB_ROOT_CACHED;
1174 			slots->gfn_tree = RB_ROOT;
1175 			hash_init(slots->id_hash);
1176 			slots->node_idx = j;
1177 
1178 			/* Generations must be different for each address space. */
1179 			slots->generation = i;
1180 		}
1181 
1182 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1183 	}
1184 
1185 	r = -ENOMEM;
1186 	for (i = 0; i < KVM_NR_BUSES; i++) {
1187 		rcu_assign_pointer(kvm->buses[i],
1188 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1189 		if (!kvm->buses[i])
1190 			goto out_err_no_arch_destroy_vm;
1191 	}
1192 
1193 	r = kvm_arch_init_vm(kvm, type);
1194 	if (r)
1195 		goto out_err_no_arch_destroy_vm;
1196 
1197 	r = kvm_enable_virtualization();
1198 	if (r)
1199 		goto out_err_no_disable;
1200 
1201 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1202 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1203 #endif
1204 
1205 	r = kvm_init_mmu_notifier(kvm);
1206 	if (r)
1207 		goto out_err_no_mmu_notifier;
1208 
1209 	r = kvm_coalesced_mmio_init(kvm);
1210 	if (r < 0)
1211 		goto out_no_coalesced_mmio;
1212 
1213 	r = kvm_create_vm_debugfs(kvm, fdname);
1214 	if (r)
1215 		goto out_err_no_debugfs;
1216 
1217 	mutex_lock(&kvm_lock);
1218 	list_add(&kvm->vm_list, &vm_list);
1219 	mutex_unlock(&kvm_lock);
1220 
1221 	preempt_notifier_inc();
1222 	kvm_init_pm_notifier(kvm);
1223 
1224 	return kvm;
1225 
1226 out_err_no_debugfs:
1227 	kvm_coalesced_mmio_free(kvm);
1228 out_no_coalesced_mmio:
1229 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1230 	if (kvm->mmu_notifier.ops)
1231 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1232 #endif
1233 out_err_no_mmu_notifier:
1234 	kvm_disable_virtualization();
1235 out_err_no_disable:
1236 	kvm_arch_destroy_vm(kvm);
1237 out_err_no_arch_destroy_vm:
1238 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1239 	for (i = 0; i < KVM_NR_BUSES; i++)
1240 		kfree(kvm_get_bus_for_destruction(kvm, i));
1241 	kvm_free_irq_routing(kvm);
1242 out_err_no_irq_routing:
1243 	cleanup_srcu_struct(&kvm->irq_srcu);
1244 out_err_no_irq_srcu:
1245 	cleanup_srcu_struct(&kvm->srcu);
1246 out_err_no_srcu:
1247 	kvm_arch_free_vm(kvm);
1248 	mmdrop(current->mm);
1249 	return ERR_PTR(r);
1250 }
1251 
1252 static void kvm_destroy_devices(struct kvm *kvm)
1253 {
1254 	struct kvm_device *dev, *tmp;
1255 
1256 	/*
1257 	 * We do not need to take the kvm->lock here, because nobody else
1258 	 * has a reference to the struct kvm at this point and therefore
1259 	 * cannot access the devices list anyhow.
1260 	 *
1261 	 * The device list is generally managed as an rculist, but list_del()
1262 	 * is used intentionally here. If a bug in KVM introduced a reader that
1263 	 * was not backed by a reference on the kvm struct, the hope is that
1264 	 * it'd consume the poisoned forward pointer instead of suffering a
1265 	 * use-after-free, even though this cannot be guaranteed.
1266 	 */
1267 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1268 		list_del(&dev->vm_node);
1269 		dev->ops->destroy(dev);
1270 	}
1271 }
1272 
1273 static void kvm_destroy_vm(struct kvm *kvm)
1274 {
1275 	int i;
1276 	struct mm_struct *mm = kvm->mm;
1277 
1278 	kvm_destroy_pm_notifier(kvm);
1279 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1280 	kvm_destroy_vm_debugfs(kvm);
1281 	mutex_lock(&kvm_lock);
1282 	list_del(&kvm->vm_list);
1283 	mutex_unlock(&kvm_lock);
1284 	kvm_arch_pre_destroy_vm(kvm);
1285 
1286 	kvm_free_irq_routing(kvm);
1287 	for (i = 0; i < KVM_NR_BUSES; i++) {
1288 		struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i);
1289 
1290 		if (bus)
1291 			kvm_io_bus_destroy(bus);
1292 		kvm->buses[i] = NULL;
1293 	}
1294 	kvm_coalesced_mmio_free(kvm);
1295 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1296 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1297 	/*
1298 	 * At this point, pending calls to invalidate_range_start()
1299 	 * have completed but no more MMU notifiers will run, so
1300 	 * mn_active_invalidate_count may remain unbalanced.
1301 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1302 	 * last reference on KVM has been dropped, but freeing
1303 	 * memslots would deadlock without this manual intervention.
1304 	 *
1305 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1306 	 * notifier between a start() and end(), then there shouldn't be any
1307 	 * in-progress invalidations.
1308 	 */
1309 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1310 	if (kvm->mn_active_invalidate_count)
1311 		kvm->mn_active_invalidate_count = 0;
1312 	else
1313 		WARN_ON(kvm->mmu_invalidate_in_progress);
1314 #else
1315 	kvm_flush_shadow_all(kvm);
1316 #endif
1317 	kvm_arch_destroy_vm(kvm);
1318 	kvm_destroy_devices(kvm);
1319 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1320 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1321 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1322 	}
1323 	cleanup_srcu_struct(&kvm->irq_srcu);
1324 	srcu_barrier(&kvm->srcu);
1325 	cleanup_srcu_struct(&kvm->srcu);
1326 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1327 	xa_destroy(&kvm->mem_attr_array);
1328 #endif
1329 	kvm_arch_free_vm(kvm);
1330 	preempt_notifier_dec();
1331 	kvm_disable_virtualization();
1332 	mmdrop(mm);
1333 }
1334 
1335 void kvm_get_kvm(struct kvm *kvm)
1336 {
1337 	refcount_inc(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1340 
1341 /*
1342  * Make sure the vm is not during destruction, which is a safe version of
1343  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1344  */
1345 bool kvm_get_kvm_safe(struct kvm *kvm)
1346 {
1347 	return refcount_inc_not_zero(&kvm->users_count);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1350 
1351 void kvm_put_kvm(struct kvm *kvm)
1352 {
1353 	if (refcount_dec_and_test(&kvm->users_count))
1354 		kvm_destroy_vm(kvm);
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1357 
1358 /*
1359  * Used to put a reference that was taken on behalf of an object associated
1360  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1361  * of the new file descriptor fails and the reference cannot be transferred to
1362  * its final owner.  In such cases, the caller is still actively using @kvm and
1363  * will fail miserably if the refcount unexpectedly hits zero.
1364  */
1365 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1366 {
1367 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1368 }
1369 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy);
1370 
1371 static int kvm_vm_release(struct inode *inode, struct file *filp)
1372 {
1373 	struct kvm *kvm = filp->private_data;
1374 
1375 	kvm_irqfd_release(kvm);
1376 
1377 	kvm_put_kvm(kvm);
1378 	return 0;
1379 }
1380 
1381 int kvm_trylock_all_vcpus(struct kvm *kvm)
1382 {
1383 	struct kvm_vcpu *vcpu;
1384 	unsigned long i, j;
1385 
1386 	lockdep_assert_held(&kvm->lock);
1387 
1388 	kvm_for_each_vcpu(i, vcpu, kvm)
1389 		if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock))
1390 			goto out_unlock;
1391 	return 0;
1392 
1393 out_unlock:
1394 	kvm_for_each_vcpu(j, vcpu, kvm) {
1395 		if (i == j)
1396 			break;
1397 		mutex_unlock(&vcpu->mutex);
1398 	}
1399 	return -EINTR;
1400 }
1401 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus);
1402 
1403 int kvm_lock_all_vcpus(struct kvm *kvm)
1404 {
1405 	struct kvm_vcpu *vcpu;
1406 	unsigned long i, j;
1407 	int r;
1408 
1409 	lockdep_assert_held(&kvm->lock);
1410 
1411 	kvm_for_each_vcpu(i, vcpu, kvm) {
1412 		r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock);
1413 		if (r)
1414 			goto out_unlock;
1415 	}
1416 	return 0;
1417 
1418 out_unlock:
1419 	kvm_for_each_vcpu(j, vcpu, kvm) {
1420 		if (i == j)
1421 			break;
1422 		mutex_unlock(&vcpu->mutex);
1423 	}
1424 	return r;
1425 }
1426 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus);
1427 
1428 void kvm_unlock_all_vcpus(struct kvm *kvm)
1429 {
1430 	struct kvm_vcpu *vcpu;
1431 	unsigned long i;
1432 
1433 	lockdep_assert_held(&kvm->lock);
1434 
1435 	kvm_for_each_vcpu(i, vcpu, kvm)
1436 		mutex_unlock(&vcpu->mutex);
1437 }
1438 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus);
1439 
1440 /*
1441  * Allocation size is twice as large as the actual dirty bitmap size.
1442  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1443  */
1444 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1445 {
1446 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1447 
1448 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1449 	if (!memslot->dirty_bitmap)
1450 		return -ENOMEM;
1451 
1452 	return 0;
1453 }
1454 
1455 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1456 {
1457 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1458 	int node_idx_inactive = active->node_idx ^ 1;
1459 
1460 	return &kvm->__memslots[as_id][node_idx_inactive];
1461 }
1462 
1463 /*
1464  * Helper to get the address space ID when one of memslot pointers may be NULL.
1465  * This also serves as a sanity that at least one of the pointers is non-NULL,
1466  * and that their address space IDs don't diverge.
1467  */
1468 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1469 				  struct kvm_memory_slot *b)
1470 {
1471 	if (WARN_ON_ONCE(!a && !b))
1472 		return 0;
1473 
1474 	if (!a)
1475 		return b->as_id;
1476 	if (!b)
1477 		return a->as_id;
1478 
1479 	WARN_ON_ONCE(a->as_id != b->as_id);
1480 	return a->as_id;
1481 }
1482 
1483 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1484 				struct kvm_memory_slot *slot)
1485 {
1486 	struct rb_root *gfn_tree = &slots->gfn_tree;
1487 	struct rb_node **node, *parent;
1488 	int idx = slots->node_idx;
1489 
1490 	parent = NULL;
1491 	for (node = &gfn_tree->rb_node; *node; ) {
1492 		struct kvm_memory_slot *tmp;
1493 
1494 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1495 		parent = *node;
1496 		if (slot->base_gfn < tmp->base_gfn)
1497 			node = &(*node)->rb_left;
1498 		else if (slot->base_gfn > tmp->base_gfn)
1499 			node = &(*node)->rb_right;
1500 		else
1501 			BUG();
1502 	}
1503 
1504 	rb_link_node(&slot->gfn_node[idx], parent, node);
1505 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1506 }
1507 
1508 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1509 			       struct kvm_memory_slot *slot)
1510 {
1511 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1512 }
1513 
1514 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1515 				 struct kvm_memory_slot *old,
1516 				 struct kvm_memory_slot *new)
1517 {
1518 	int idx = slots->node_idx;
1519 
1520 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1521 
1522 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1523 			&slots->gfn_tree);
1524 }
1525 
1526 /*
1527  * Replace @old with @new in the inactive memslots.
1528  *
1529  * With NULL @old this simply adds @new.
1530  * With NULL @new this simply removes @old.
1531  *
1532  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1533  * appropriately.
1534  */
1535 static void kvm_replace_memslot(struct kvm *kvm,
1536 				struct kvm_memory_slot *old,
1537 				struct kvm_memory_slot *new)
1538 {
1539 	int as_id = kvm_memslots_get_as_id(old, new);
1540 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1541 	int idx = slots->node_idx;
1542 
1543 	if (old) {
1544 		hash_del(&old->id_node[idx]);
1545 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1546 
1547 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1548 			atomic_long_set(&slots->last_used_slot, (long)new);
1549 
1550 		if (!new) {
1551 			kvm_erase_gfn_node(slots, old);
1552 			return;
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * Initialize @new's hva range.  Do this even when replacing an @old
1558 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1559 	 */
1560 	new->hva_node[idx].start = new->userspace_addr;
1561 	new->hva_node[idx].last = new->userspace_addr +
1562 				  (new->npages << PAGE_SHIFT) - 1;
1563 
1564 	/*
1565 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1566 	 * hva_node needs to be swapped with remove+insert even though hva can't
1567 	 * change when replacing an existing slot.
1568 	 */
1569 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1570 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1571 
1572 	/*
1573 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1574 	 * switch the node in the gfn tree instead of removing the old and
1575 	 * inserting the new as two separate operations. Replacement is a
1576 	 * single O(1) operation versus two O(log(n)) operations for
1577 	 * remove+insert.
1578 	 */
1579 	if (old && old->base_gfn == new->base_gfn) {
1580 		kvm_replace_gfn_node(slots, old, new);
1581 	} else {
1582 		if (old)
1583 			kvm_erase_gfn_node(slots, old);
1584 		kvm_insert_gfn_node(slots, new);
1585 	}
1586 }
1587 
1588 /*
1589  * Flags that do not access any of the extra space of struct
1590  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1591  * only allows these.
1592  */
1593 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1594 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1595 
1596 static int check_memory_region_flags(struct kvm *kvm,
1597 				     const struct kvm_userspace_memory_region2 *mem)
1598 {
1599 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1600 
1601 	if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
1602 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1603 
1604 	/* Dirty logging private memory is not currently supported. */
1605 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1606 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1607 
1608 	/*
1609 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1610 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1611 	 * and KVM doesn't allow emulated MMIO for private memory.
1612 	 */
1613 	if (kvm_arch_has_readonly_mem(kvm) &&
1614 	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1615 		valid_flags |= KVM_MEM_READONLY;
1616 
1617 	if (mem->flags & ~valid_flags)
1618 		return -EINVAL;
1619 
1620 	return 0;
1621 }
1622 
1623 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1624 {
1625 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1626 
1627 	/* Grab the generation from the activate memslots. */
1628 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1629 
1630 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1631 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1632 
1633 	/*
1634 	 * Do not store the new memslots while there are invalidations in
1635 	 * progress, otherwise the locking in invalidate_range_start and
1636 	 * invalidate_range_end will be unbalanced.
1637 	 */
1638 	spin_lock(&kvm->mn_invalidate_lock);
1639 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1640 	while (kvm->mn_active_invalidate_count) {
1641 		set_current_state(TASK_UNINTERRUPTIBLE);
1642 		spin_unlock(&kvm->mn_invalidate_lock);
1643 		schedule();
1644 		spin_lock(&kvm->mn_invalidate_lock);
1645 	}
1646 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1647 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1648 	spin_unlock(&kvm->mn_invalidate_lock);
1649 
1650 	/*
1651 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1652 	 * SRCU below in order to avoid deadlock with another thread
1653 	 * acquiring the slots_arch_lock in an srcu critical section.
1654 	 */
1655 	mutex_unlock(&kvm->slots_arch_lock);
1656 
1657 	synchronize_srcu_expedited(&kvm->srcu);
1658 
1659 	/*
1660 	 * Increment the new memslot generation a second time, dropping the
1661 	 * update in-progress flag and incrementing the generation based on
1662 	 * the number of address spaces.  This provides a unique and easily
1663 	 * identifiable generation number while the memslots are in flux.
1664 	 */
1665 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1666 
1667 	/*
1668 	 * Generations must be unique even across address spaces.  We do not need
1669 	 * a global counter for that, instead the generation space is evenly split
1670 	 * across address spaces.  For example, with two address spaces, address
1671 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1672 	 * use generations 1, 3, 5, ...
1673 	 */
1674 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1675 
1676 	kvm_arch_memslots_updated(kvm, gen);
1677 
1678 	slots->generation = gen;
1679 }
1680 
1681 static int kvm_prepare_memory_region(struct kvm *kvm,
1682 				     const struct kvm_memory_slot *old,
1683 				     struct kvm_memory_slot *new,
1684 				     enum kvm_mr_change change)
1685 {
1686 	int r;
1687 
1688 	/*
1689 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1690 	 * will be freed on "commit".  If logging is enabled in both old and
1691 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1692 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1693 	 * new bitmap.
1694 	 */
1695 	if (change != KVM_MR_DELETE) {
1696 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1697 			new->dirty_bitmap = NULL;
1698 		else if (old && old->dirty_bitmap)
1699 			new->dirty_bitmap = old->dirty_bitmap;
1700 		else if (kvm_use_dirty_bitmap(kvm)) {
1701 			r = kvm_alloc_dirty_bitmap(new);
1702 			if (r)
1703 				return r;
1704 
1705 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1706 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1707 		}
1708 	}
1709 
1710 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1711 
1712 	/* Free the bitmap on failure if it was allocated above. */
1713 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1714 		kvm_destroy_dirty_bitmap(new);
1715 
1716 	return r;
1717 }
1718 
1719 static void kvm_commit_memory_region(struct kvm *kvm,
1720 				     struct kvm_memory_slot *old,
1721 				     const struct kvm_memory_slot *new,
1722 				     enum kvm_mr_change change)
1723 {
1724 	int old_flags = old ? old->flags : 0;
1725 	int new_flags = new ? new->flags : 0;
1726 	/*
1727 	 * Update the total number of memslot pages before calling the arch
1728 	 * hook so that architectures can consume the result directly.
1729 	 */
1730 	if (change == KVM_MR_DELETE)
1731 		kvm->nr_memslot_pages -= old->npages;
1732 	else if (change == KVM_MR_CREATE)
1733 		kvm->nr_memslot_pages += new->npages;
1734 
1735 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1736 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1737 		atomic_set(&kvm->nr_memslots_dirty_logging,
1738 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1739 	}
1740 
1741 	kvm_arch_commit_memory_region(kvm, old, new, change);
1742 
1743 	switch (change) {
1744 	case KVM_MR_CREATE:
1745 		/* Nothing more to do. */
1746 		break;
1747 	case KVM_MR_DELETE:
1748 		/* Free the old memslot and all its metadata. */
1749 		kvm_free_memslot(kvm, old);
1750 		break;
1751 	case KVM_MR_MOVE:
1752 		/*
1753 		 * Moving a guest_memfd memslot isn't supported, and will never
1754 		 * be supported.
1755 		 */
1756 		WARN_ON_ONCE(old->flags & KVM_MEM_GUEST_MEMFD);
1757 		fallthrough;
1758 	case KVM_MR_FLAGS_ONLY:
1759 		/*
1760 		 * Free the dirty bitmap as needed; the below check encompasses
1761 		 * both the flags and whether a ring buffer is being used)
1762 		 */
1763 		if (old->dirty_bitmap && !new->dirty_bitmap)
1764 			kvm_destroy_dirty_bitmap(old);
1765 
1766 		/*
1767 		 * Unbind the guest_memfd instance as needed; the @new slot has
1768 		 * already created its own binding.  TODO: Drop the WARN when
1769 		 * dirty logging guest_memfd memslots is supported.  Until then,
1770 		 * flags-only changes on guest_memfd slots should be impossible.
1771 		 */
1772 		if (WARN_ON_ONCE(old->flags & KVM_MEM_GUEST_MEMFD))
1773 			kvm_gmem_unbind(old);
1774 
1775 		/*
1776 		 * The final quirk.  Free the detached, old slot, but only its
1777 		 * memory, not any metadata.  Metadata, including arch specific
1778 		 * data, may be reused by @new.
1779 		 */
1780 		kfree(old);
1781 		break;
1782 	default:
1783 		BUG();
1784 	}
1785 }
1786 
1787 /*
1788  * Activate @new, which must be installed in the inactive slots by the caller,
1789  * by swapping the active slots and then propagating @new to @old once @old is
1790  * unreachable and can be safely modified.
1791  *
1792  * With NULL @old this simply adds @new to @active (while swapping the sets).
1793  * With NULL @new this simply removes @old from @active and frees it
1794  * (while also swapping the sets).
1795  */
1796 static void kvm_activate_memslot(struct kvm *kvm,
1797 				 struct kvm_memory_slot *old,
1798 				 struct kvm_memory_slot *new)
1799 {
1800 	int as_id = kvm_memslots_get_as_id(old, new);
1801 
1802 	kvm_swap_active_memslots(kvm, as_id);
1803 
1804 	/* Propagate the new memslot to the now inactive memslots. */
1805 	kvm_replace_memslot(kvm, old, new);
1806 }
1807 
1808 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1809 			     const struct kvm_memory_slot *src)
1810 {
1811 	dest->base_gfn = src->base_gfn;
1812 	dest->npages = src->npages;
1813 	dest->dirty_bitmap = src->dirty_bitmap;
1814 	dest->arch = src->arch;
1815 	dest->userspace_addr = src->userspace_addr;
1816 	dest->flags = src->flags;
1817 	dest->id = src->id;
1818 	dest->as_id = src->as_id;
1819 }
1820 
1821 static void kvm_invalidate_memslot(struct kvm *kvm,
1822 				   struct kvm_memory_slot *old,
1823 				   struct kvm_memory_slot *invalid_slot)
1824 {
1825 	/*
1826 	 * Mark the current slot INVALID.  As with all memslot modifications,
1827 	 * this must be done on an unreachable slot to avoid modifying the
1828 	 * current slot in the active tree.
1829 	 */
1830 	kvm_copy_memslot(invalid_slot, old);
1831 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1832 	kvm_replace_memslot(kvm, old, invalid_slot);
1833 
1834 	/*
1835 	 * Activate the slot that is now marked INVALID, but don't propagate
1836 	 * the slot to the now inactive slots. The slot is either going to be
1837 	 * deleted or recreated as a new slot.
1838 	 */
1839 	kvm_swap_active_memslots(kvm, old->as_id);
1840 
1841 	/*
1842 	 * From this point no new shadow pages pointing to a deleted, or moved,
1843 	 * memslot will be created.  Validation of sp->gfn happens in:
1844 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1845 	 *	- kvm_is_visible_gfn (mmu_check_root)
1846 	 */
1847 	kvm_arch_flush_shadow_memslot(kvm, old);
1848 	kvm_arch_guest_memory_reclaimed(kvm);
1849 
1850 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1851 	mutex_lock(&kvm->slots_arch_lock);
1852 
1853 	/*
1854 	 * Copy the arch-specific field of the newly-installed slot back to the
1855 	 * old slot as the arch data could have changed between releasing
1856 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1857 	 * above.  Writers are required to retrieve memslots *after* acquiring
1858 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1859 	 */
1860 	old->arch = invalid_slot->arch;
1861 }
1862 
1863 static void kvm_create_memslot(struct kvm *kvm,
1864 			       struct kvm_memory_slot *new)
1865 {
1866 	/* Add the new memslot to the inactive set and activate. */
1867 	kvm_replace_memslot(kvm, NULL, new);
1868 	kvm_activate_memslot(kvm, NULL, new);
1869 }
1870 
1871 static void kvm_delete_memslot(struct kvm *kvm,
1872 			       struct kvm_memory_slot *old,
1873 			       struct kvm_memory_slot *invalid_slot)
1874 {
1875 	/*
1876 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1877 	 * the "new" slot, and for the invalid version in the active slots.
1878 	 */
1879 	kvm_replace_memslot(kvm, old, NULL);
1880 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1881 }
1882 
1883 static void kvm_move_memslot(struct kvm *kvm,
1884 			     struct kvm_memory_slot *old,
1885 			     struct kvm_memory_slot *new,
1886 			     struct kvm_memory_slot *invalid_slot)
1887 {
1888 	/*
1889 	 * Replace the old memslot in the inactive slots, and then swap slots
1890 	 * and replace the current INVALID with the new as well.
1891 	 */
1892 	kvm_replace_memslot(kvm, old, new);
1893 	kvm_activate_memslot(kvm, invalid_slot, new);
1894 }
1895 
1896 static void kvm_update_flags_memslot(struct kvm *kvm,
1897 				     struct kvm_memory_slot *old,
1898 				     struct kvm_memory_slot *new)
1899 {
1900 	/*
1901 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1902 	 * an intermediate step. Instead, the old memslot is simply replaced
1903 	 * with a new, updated copy in both memslot sets.
1904 	 */
1905 	kvm_replace_memslot(kvm, old, new);
1906 	kvm_activate_memslot(kvm, old, new);
1907 }
1908 
1909 static int kvm_set_memslot(struct kvm *kvm,
1910 			   struct kvm_memory_slot *old,
1911 			   struct kvm_memory_slot *new,
1912 			   enum kvm_mr_change change)
1913 {
1914 	struct kvm_memory_slot *invalid_slot;
1915 	int r;
1916 
1917 	/*
1918 	 * Released in kvm_swap_active_memslots().
1919 	 *
1920 	 * Must be held from before the current memslots are copied until after
1921 	 * the new memslots are installed with rcu_assign_pointer, then
1922 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1923 	 *
1924 	 * When modifying memslots outside of the slots_lock, must be held
1925 	 * before reading the pointer to the current memslots until after all
1926 	 * changes to those memslots are complete.
1927 	 *
1928 	 * These rules ensure that installing new memslots does not lose
1929 	 * changes made to the previous memslots.
1930 	 */
1931 	mutex_lock(&kvm->slots_arch_lock);
1932 
1933 	/*
1934 	 * Invalidate the old slot if it's being deleted or moved.  This is
1935 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1936 	 * continue running by ensuring there are no mappings or shadow pages
1937 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1938 	 * (and without a lock), a window would exist between effecting the
1939 	 * delete/move and committing the changes in arch code where KVM or a
1940 	 * guest could access a non-existent memslot.
1941 	 *
1942 	 * Modifications are done on a temporary, unreachable slot.  The old
1943 	 * slot needs to be preserved in case a later step fails and the
1944 	 * invalidation needs to be reverted.
1945 	 */
1946 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1947 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1948 		if (!invalid_slot) {
1949 			mutex_unlock(&kvm->slots_arch_lock);
1950 			return -ENOMEM;
1951 		}
1952 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1953 	}
1954 
1955 	r = kvm_prepare_memory_region(kvm, old, new, change);
1956 	if (r) {
1957 		/*
1958 		 * For DELETE/MOVE, revert the above INVALID change.  No
1959 		 * modifications required since the original slot was preserved
1960 		 * in the inactive slots.  Changing the active memslots also
1961 		 * release slots_arch_lock.
1962 		 */
1963 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1964 			kvm_activate_memslot(kvm, invalid_slot, old);
1965 			kfree(invalid_slot);
1966 		} else {
1967 			mutex_unlock(&kvm->slots_arch_lock);
1968 		}
1969 		return r;
1970 	}
1971 
1972 	/*
1973 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1974 	 * version of the old slot.  MOVE is particularly special as it reuses
1975 	 * the old slot and returns a copy of the old slot (in working_slot).
1976 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1977 	 * old slot is detached but otherwise preserved.
1978 	 */
1979 	if (change == KVM_MR_CREATE)
1980 		kvm_create_memslot(kvm, new);
1981 	else if (change == KVM_MR_DELETE)
1982 		kvm_delete_memslot(kvm, old, invalid_slot);
1983 	else if (change == KVM_MR_MOVE)
1984 		kvm_move_memslot(kvm, old, new, invalid_slot);
1985 	else if (change == KVM_MR_FLAGS_ONLY)
1986 		kvm_update_flags_memslot(kvm, old, new);
1987 	else
1988 		BUG();
1989 
1990 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1991 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1992 		kfree(invalid_slot);
1993 
1994 	/*
1995 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1996 	 * will directly hit the final, active memslot.  Architectures are
1997 	 * responsible for knowing that new->arch may be stale.
1998 	 */
1999 	kvm_commit_memory_region(kvm, old, new, change);
2000 
2001 	return 0;
2002 }
2003 
2004 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2005 				      gfn_t start, gfn_t end)
2006 {
2007 	struct kvm_memslot_iter iter;
2008 
2009 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2010 		if (iter.slot->id != id)
2011 			return true;
2012 	}
2013 
2014 	return false;
2015 }
2016 
2017 static int kvm_set_memory_region(struct kvm *kvm,
2018 				 const struct kvm_userspace_memory_region2 *mem)
2019 {
2020 	struct kvm_memory_slot *old, *new;
2021 	struct kvm_memslots *slots;
2022 	enum kvm_mr_change change;
2023 	unsigned long npages;
2024 	gfn_t base_gfn;
2025 	int as_id, id;
2026 	int r;
2027 
2028 	lockdep_assert_held(&kvm->slots_lock);
2029 
2030 	r = check_memory_region_flags(kvm, mem);
2031 	if (r)
2032 		return r;
2033 
2034 	as_id = mem->slot >> 16;
2035 	id = (u16)mem->slot;
2036 
2037 	/* General sanity checks */
2038 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2039 	    (mem->memory_size != (unsigned long)mem->memory_size))
2040 		return -EINVAL;
2041 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2042 		return -EINVAL;
2043 	/* We can read the guest memory with __xxx_user() later on. */
2044 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2045 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2046 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2047 			mem->memory_size))
2048 		return -EINVAL;
2049 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2050 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2051 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2052 		return -EINVAL;
2053 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2054 		return -EINVAL;
2055 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2056 		return -EINVAL;
2057 
2058 	/*
2059 	 * The size of userspace-defined memory regions is restricted in order
2060 	 * to play nice with dirty bitmap operations, which are indexed with an
2061 	 * "unsigned int".  KVM's internal memory regions don't support dirty
2062 	 * logging, and so are exempt.
2063 	 */
2064 	if (id < KVM_USER_MEM_SLOTS &&
2065 	    (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2066 		return -EINVAL;
2067 
2068 	slots = __kvm_memslots(kvm, as_id);
2069 
2070 	/*
2071 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2072 	 * and/or destroyed by kvm_set_memslot().
2073 	 */
2074 	old = id_to_memslot(slots, id);
2075 
2076 	if (!mem->memory_size) {
2077 		if (!old || !old->npages)
2078 			return -EINVAL;
2079 
2080 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2081 			return -EIO;
2082 
2083 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2084 	}
2085 
2086 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2087 	npages = (mem->memory_size >> PAGE_SHIFT);
2088 
2089 	if (!old || !old->npages) {
2090 		change = KVM_MR_CREATE;
2091 
2092 		/*
2093 		 * To simplify KVM internals, the total number of pages across
2094 		 * all memslots must fit in an unsigned long.
2095 		 */
2096 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2097 			return -EINVAL;
2098 	} else { /* Modify an existing slot. */
2099 		/* Private memslots are immutable, they can only be deleted. */
2100 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2101 			return -EINVAL;
2102 		if ((mem->userspace_addr != old->userspace_addr) ||
2103 		    (npages != old->npages) ||
2104 		    ((mem->flags ^ old->flags) & (KVM_MEM_READONLY | KVM_MEM_GUEST_MEMFD)))
2105 			return -EINVAL;
2106 
2107 		if (base_gfn != old->base_gfn)
2108 			change = KVM_MR_MOVE;
2109 		else if (mem->flags != old->flags)
2110 			change = KVM_MR_FLAGS_ONLY;
2111 		else /* Nothing to change. */
2112 			return 0;
2113 	}
2114 
2115 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2116 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2117 		return -EEXIST;
2118 
2119 	/* Allocate a slot that will persist in the memslot. */
2120 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2121 	if (!new)
2122 		return -ENOMEM;
2123 
2124 	new->as_id = as_id;
2125 	new->id = id;
2126 	new->base_gfn = base_gfn;
2127 	new->npages = npages;
2128 	new->flags = mem->flags;
2129 	new->userspace_addr = mem->userspace_addr;
2130 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2131 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2132 		if (r)
2133 			goto out;
2134 	}
2135 
2136 	r = kvm_set_memslot(kvm, old, new, change);
2137 	if (r)
2138 		goto out_unbind;
2139 
2140 	return 0;
2141 
2142 out_unbind:
2143 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2144 		kvm_gmem_unbind(new);
2145 out:
2146 	kfree(new);
2147 	return r;
2148 }
2149 
2150 int kvm_set_internal_memslot(struct kvm *kvm,
2151 			     const struct kvm_userspace_memory_region2 *mem)
2152 {
2153 	if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2154 		return -EINVAL;
2155 
2156 	if (WARN_ON_ONCE(mem->flags))
2157 		return -EINVAL;
2158 
2159 	return kvm_set_memory_region(kvm, mem);
2160 }
2161 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot);
2162 
2163 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2164 					  struct kvm_userspace_memory_region2 *mem)
2165 {
2166 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2167 		return -EINVAL;
2168 
2169 	guard(mutex)(&kvm->slots_lock);
2170 	return kvm_set_memory_region(kvm, mem);
2171 }
2172 
2173 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2174 /**
2175  * kvm_get_dirty_log - get a snapshot of dirty pages
2176  * @kvm:	pointer to kvm instance
2177  * @log:	slot id and address to which we copy the log
2178  * @is_dirty:	set to '1' if any dirty pages were found
2179  * @memslot:	set to the associated memslot, always valid on success
2180  */
2181 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2182 		      int *is_dirty, struct kvm_memory_slot **memslot)
2183 {
2184 	struct kvm_memslots *slots;
2185 	int i, as_id, id;
2186 	unsigned long n;
2187 	unsigned long any = 0;
2188 
2189 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2190 	if (!kvm_use_dirty_bitmap(kvm))
2191 		return -ENXIO;
2192 
2193 	*memslot = NULL;
2194 	*is_dirty = 0;
2195 
2196 	as_id = log->slot >> 16;
2197 	id = (u16)log->slot;
2198 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2199 		return -EINVAL;
2200 
2201 	slots = __kvm_memslots(kvm, as_id);
2202 	*memslot = id_to_memslot(slots, id);
2203 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2204 		return -ENOENT;
2205 
2206 	kvm_arch_sync_dirty_log(kvm, *memslot);
2207 
2208 	n = kvm_dirty_bitmap_bytes(*memslot);
2209 
2210 	for (i = 0; !any && i < n/sizeof(long); ++i)
2211 		any = (*memslot)->dirty_bitmap[i];
2212 
2213 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2214 		return -EFAULT;
2215 
2216 	if (any)
2217 		*is_dirty = 1;
2218 	return 0;
2219 }
2220 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log);
2221 
2222 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2223 /**
2224  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2225  *	and reenable dirty page tracking for the corresponding pages.
2226  * @kvm:	pointer to kvm instance
2227  * @log:	slot id and address to which we copy the log
2228  *
2229  * We need to keep it in mind that VCPU threads can write to the bitmap
2230  * concurrently. So, to avoid losing track of dirty pages we keep the
2231  * following order:
2232  *
2233  *    1. Take a snapshot of the bit and clear it if needed.
2234  *    2. Write protect the corresponding page.
2235  *    3. Copy the snapshot to the userspace.
2236  *    4. Upon return caller flushes TLB's if needed.
2237  *
2238  * Between 2 and 4, the guest may write to the page using the remaining TLB
2239  * entry.  This is not a problem because the page is reported dirty using
2240  * the snapshot taken before and step 4 ensures that writes done after
2241  * exiting to userspace will be logged for the next call.
2242  *
2243  */
2244 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2245 {
2246 	struct kvm_memslots *slots;
2247 	struct kvm_memory_slot *memslot;
2248 	int i, as_id, id;
2249 	unsigned long n;
2250 	unsigned long *dirty_bitmap;
2251 	unsigned long *dirty_bitmap_buffer;
2252 	bool flush;
2253 
2254 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2255 	if (!kvm_use_dirty_bitmap(kvm))
2256 		return -ENXIO;
2257 
2258 	as_id = log->slot >> 16;
2259 	id = (u16)log->slot;
2260 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2261 		return -EINVAL;
2262 
2263 	slots = __kvm_memslots(kvm, as_id);
2264 	memslot = id_to_memslot(slots, id);
2265 	if (!memslot || !memslot->dirty_bitmap)
2266 		return -ENOENT;
2267 
2268 	dirty_bitmap = memslot->dirty_bitmap;
2269 
2270 	kvm_arch_sync_dirty_log(kvm, memslot);
2271 
2272 	n = kvm_dirty_bitmap_bytes(memslot);
2273 	flush = false;
2274 	if (kvm->manual_dirty_log_protect) {
2275 		/*
2276 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2277 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2278 		 * is some code duplication between this function and
2279 		 * kvm_get_dirty_log, but hopefully all architecture
2280 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2281 		 * can be eliminated.
2282 		 */
2283 		dirty_bitmap_buffer = dirty_bitmap;
2284 	} else {
2285 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2286 		memset(dirty_bitmap_buffer, 0, n);
2287 
2288 		KVM_MMU_LOCK(kvm);
2289 		for (i = 0; i < n / sizeof(long); i++) {
2290 			unsigned long mask;
2291 			gfn_t offset;
2292 
2293 			if (!dirty_bitmap[i])
2294 				continue;
2295 
2296 			flush = true;
2297 			mask = xchg(&dirty_bitmap[i], 0);
2298 			dirty_bitmap_buffer[i] = mask;
2299 
2300 			offset = i * BITS_PER_LONG;
2301 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2302 								offset, mask);
2303 		}
2304 		KVM_MMU_UNLOCK(kvm);
2305 	}
2306 
2307 	if (flush)
2308 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2309 
2310 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2311 		return -EFAULT;
2312 	return 0;
2313 }
2314 
2315 
2316 /**
2317  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2318  * @kvm: kvm instance
2319  * @log: slot id and address to which we copy the log
2320  *
2321  * Steps 1-4 below provide general overview of dirty page logging. See
2322  * kvm_get_dirty_log_protect() function description for additional details.
2323  *
2324  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2325  * always flush the TLB (step 4) even if previous step failed  and the dirty
2326  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2327  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2328  * writes will be marked dirty for next log read.
2329  *
2330  *   1. Take a snapshot of the bit and clear it if needed.
2331  *   2. Write protect the corresponding page.
2332  *   3. Copy the snapshot to the userspace.
2333  *   4. Flush TLB's if needed.
2334  */
2335 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2336 				      struct kvm_dirty_log *log)
2337 {
2338 	int r;
2339 
2340 	mutex_lock(&kvm->slots_lock);
2341 
2342 	r = kvm_get_dirty_log_protect(kvm, log);
2343 
2344 	mutex_unlock(&kvm->slots_lock);
2345 	return r;
2346 }
2347 
2348 /**
2349  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2350  *	and reenable dirty page tracking for the corresponding pages.
2351  * @kvm:	pointer to kvm instance
2352  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2353  */
2354 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2355 				       struct kvm_clear_dirty_log *log)
2356 {
2357 	struct kvm_memslots *slots;
2358 	struct kvm_memory_slot *memslot;
2359 	int as_id, id;
2360 	gfn_t offset;
2361 	unsigned long i, n;
2362 	unsigned long *dirty_bitmap;
2363 	unsigned long *dirty_bitmap_buffer;
2364 	bool flush;
2365 
2366 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2367 	if (!kvm_use_dirty_bitmap(kvm))
2368 		return -ENXIO;
2369 
2370 	as_id = log->slot >> 16;
2371 	id = (u16)log->slot;
2372 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2373 		return -EINVAL;
2374 
2375 	if (log->first_page & 63)
2376 		return -EINVAL;
2377 
2378 	slots = __kvm_memslots(kvm, as_id);
2379 	memslot = id_to_memslot(slots, id);
2380 	if (!memslot || !memslot->dirty_bitmap)
2381 		return -ENOENT;
2382 
2383 	dirty_bitmap = memslot->dirty_bitmap;
2384 
2385 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2386 
2387 	if (log->first_page > memslot->npages ||
2388 	    log->num_pages > memslot->npages - log->first_page ||
2389 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2390 	    return -EINVAL;
2391 
2392 	kvm_arch_sync_dirty_log(kvm, memslot);
2393 
2394 	flush = false;
2395 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2396 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2397 		return -EFAULT;
2398 
2399 	KVM_MMU_LOCK(kvm);
2400 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2401 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2402 	     i++, offset += BITS_PER_LONG) {
2403 		unsigned long mask = *dirty_bitmap_buffer++;
2404 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2405 		if (!mask)
2406 			continue;
2407 
2408 		mask &= atomic_long_fetch_andnot(mask, p);
2409 
2410 		/*
2411 		 * mask contains the bits that really have been cleared.  This
2412 		 * never includes any bits beyond the length of the memslot (if
2413 		 * the length is not aligned to 64 pages), therefore it is not
2414 		 * a problem if userspace sets them in log->dirty_bitmap.
2415 		*/
2416 		if (mask) {
2417 			flush = true;
2418 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2419 								offset, mask);
2420 		}
2421 	}
2422 	KVM_MMU_UNLOCK(kvm);
2423 
2424 	if (flush)
2425 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2426 
2427 	return 0;
2428 }
2429 
2430 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2431 					struct kvm_clear_dirty_log *log)
2432 {
2433 	int r;
2434 
2435 	mutex_lock(&kvm->slots_lock);
2436 
2437 	r = kvm_clear_dirty_log_protect(kvm, log);
2438 
2439 	mutex_unlock(&kvm->slots_lock);
2440 	return r;
2441 }
2442 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2443 
2444 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2445 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2446 {
2447 	if (!kvm || kvm_arch_has_private_mem(kvm))
2448 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2449 
2450 	return 0;
2451 }
2452 
2453 /*
2454  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2455  * such that the bits in @mask match @attrs.
2456  */
2457 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2458 				     unsigned long mask, unsigned long attrs)
2459 {
2460 	XA_STATE(xas, &kvm->mem_attr_array, start);
2461 	unsigned long index;
2462 	void *entry;
2463 
2464 	mask &= kvm_supported_mem_attributes(kvm);
2465 	if (attrs & ~mask)
2466 		return false;
2467 
2468 	if (end == start + 1)
2469 		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2470 
2471 	guard(rcu)();
2472 	if (!attrs)
2473 		return !xas_find(&xas, end - 1);
2474 
2475 	for (index = start; index < end; index++) {
2476 		do {
2477 			entry = xas_next(&xas);
2478 		} while (xas_retry(&xas, entry));
2479 
2480 		if (xas.xa_index != index ||
2481 		    (xa_to_value(entry) & mask) != attrs)
2482 			return false;
2483 	}
2484 
2485 	return true;
2486 }
2487 
2488 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2489 						 struct kvm_mmu_notifier_range *range)
2490 {
2491 	struct kvm_gfn_range gfn_range;
2492 	struct kvm_memory_slot *slot;
2493 	struct kvm_memslots *slots;
2494 	struct kvm_memslot_iter iter;
2495 	bool found_memslot = false;
2496 	bool ret = false;
2497 	int i;
2498 
2499 	gfn_range.arg = range->arg;
2500 	gfn_range.may_block = range->may_block;
2501 
2502 	/*
2503 	 * If/when KVM supports more attributes beyond private .vs shared, this
2504 	 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2505 	 * range already has the desired private vs. shared state (it's unclear
2506 	 * if that is a net win).  For now, KVM reaches this point if and only
2507 	 * if the private flag is being toggled, i.e. all mappings are in play.
2508 	 */
2509 
2510 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2511 		slots = __kvm_memslots(kvm, i);
2512 
2513 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2514 			slot = iter.slot;
2515 			gfn_range.slot = slot;
2516 
2517 			gfn_range.start = max(range->start, slot->base_gfn);
2518 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2519 			if (gfn_range.start >= gfn_range.end)
2520 				continue;
2521 
2522 			if (!found_memslot) {
2523 				found_memslot = true;
2524 				KVM_MMU_LOCK(kvm);
2525 				if (!IS_KVM_NULL_FN(range->on_lock))
2526 					range->on_lock(kvm);
2527 			}
2528 
2529 			ret |= range->handler(kvm, &gfn_range);
2530 		}
2531 	}
2532 
2533 	if (range->flush_on_ret && ret)
2534 		kvm_flush_remote_tlbs(kvm);
2535 
2536 	if (found_memslot)
2537 		KVM_MMU_UNLOCK(kvm);
2538 }
2539 
2540 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2541 					  struct kvm_gfn_range *range)
2542 {
2543 	/*
2544 	 * Unconditionally add the range to the invalidation set, regardless of
2545 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2546 	 * if KVM supports RWX attributes in the future and the attributes are
2547 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2548 	 * adding the range allows KVM to require that MMU invalidations add at
2549 	 * least one range between begin() and end(), e.g. allows KVM to detect
2550 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2551 	 * but it's not obvious that allowing new mappings while the attributes
2552 	 * are in flux is desirable or worth the complexity.
2553 	 */
2554 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2555 
2556 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2557 }
2558 
2559 /* Set @attributes for the gfn range [@start, @end). */
2560 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2561 				     unsigned long attributes)
2562 {
2563 	struct kvm_mmu_notifier_range pre_set_range = {
2564 		.start = start,
2565 		.end = end,
2566 		.arg.attributes = attributes,
2567 		.handler = kvm_pre_set_memory_attributes,
2568 		.on_lock = kvm_mmu_invalidate_begin,
2569 		.flush_on_ret = true,
2570 		.may_block = true,
2571 	};
2572 	struct kvm_mmu_notifier_range post_set_range = {
2573 		.start = start,
2574 		.end = end,
2575 		.arg.attributes = attributes,
2576 		.handler = kvm_arch_post_set_memory_attributes,
2577 		.on_lock = kvm_mmu_invalidate_end,
2578 		.may_block = true,
2579 	};
2580 	unsigned long i;
2581 	void *entry;
2582 	int r = 0;
2583 
2584 	entry = attributes ? xa_mk_value(attributes) : NULL;
2585 
2586 	trace_kvm_vm_set_mem_attributes(start, end, attributes);
2587 
2588 	mutex_lock(&kvm->slots_lock);
2589 
2590 	/* Nothing to do if the entire range has the desired attributes. */
2591 	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2592 		goto out_unlock;
2593 
2594 	/*
2595 	 * Reserve memory ahead of time to avoid having to deal with failures
2596 	 * partway through setting the new attributes.
2597 	 */
2598 	for (i = start; i < end; i++) {
2599 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2600 		if (r)
2601 			goto out_unlock;
2602 
2603 		cond_resched();
2604 	}
2605 
2606 	kvm_handle_gfn_range(kvm, &pre_set_range);
2607 
2608 	for (i = start; i < end; i++) {
2609 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2610 				    GFP_KERNEL_ACCOUNT));
2611 		KVM_BUG_ON(r, kvm);
2612 		cond_resched();
2613 	}
2614 
2615 	kvm_handle_gfn_range(kvm, &post_set_range);
2616 
2617 out_unlock:
2618 	mutex_unlock(&kvm->slots_lock);
2619 
2620 	return r;
2621 }
2622 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2623 					   struct kvm_memory_attributes *attrs)
2624 {
2625 	gfn_t start, end;
2626 
2627 	/* flags is currently not used. */
2628 	if (attrs->flags)
2629 		return -EINVAL;
2630 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2631 		return -EINVAL;
2632 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2633 		return -EINVAL;
2634 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2635 		return -EINVAL;
2636 
2637 	start = attrs->address >> PAGE_SHIFT;
2638 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2639 
2640 	/*
2641 	 * xarray tracks data using "unsigned long", and as a result so does
2642 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2643 	 * architectures.
2644 	 */
2645 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2646 
2647 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2648 }
2649 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2650 
2651 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2652 {
2653 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2654 }
2655 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot);
2656 
2657 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2658 {
2659 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2660 	u64 gen = slots->generation;
2661 	struct kvm_memory_slot *slot;
2662 
2663 	/*
2664 	 * This also protects against using a memslot from a different address space,
2665 	 * since different address spaces have different generation numbers.
2666 	 */
2667 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2668 		vcpu->last_used_slot = NULL;
2669 		vcpu->last_used_slot_gen = gen;
2670 	}
2671 
2672 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2673 	if (slot)
2674 		return slot;
2675 
2676 	/*
2677 	 * Fall back to searching all memslots. We purposely use
2678 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2679 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2680 	 */
2681 	slot = search_memslots(slots, gfn, false);
2682 	if (slot) {
2683 		vcpu->last_used_slot = slot;
2684 		return slot;
2685 	}
2686 
2687 	return NULL;
2688 }
2689 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot);
2690 
2691 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2692 {
2693 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2694 
2695 	return kvm_is_visible_memslot(memslot);
2696 }
2697 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn);
2698 
2699 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2700 {
2701 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2702 
2703 	return kvm_is_visible_memslot(memslot);
2704 }
2705 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn);
2706 
2707 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2708 {
2709 	struct vm_area_struct *vma;
2710 	unsigned long addr, size;
2711 
2712 	size = PAGE_SIZE;
2713 
2714 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2715 	if (kvm_is_error_hva(addr))
2716 		return PAGE_SIZE;
2717 
2718 	mmap_read_lock(current->mm);
2719 	vma = find_vma(current->mm, addr);
2720 	if (!vma)
2721 		goto out;
2722 
2723 	size = vma_kernel_pagesize(vma);
2724 
2725 out:
2726 	mmap_read_unlock(current->mm);
2727 
2728 	return size;
2729 }
2730 
2731 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2732 {
2733 	return slot->flags & KVM_MEM_READONLY;
2734 }
2735 
2736 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2737 				       gfn_t *nr_pages, bool write)
2738 {
2739 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2740 		return KVM_HVA_ERR_BAD;
2741 
2742 	if (memslot_is_readonly(slot) && write)
2743 		return KVM_HVA_ERR_RO_BAD;
2744 
2745 	if (nr_pages)
2746 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2747 
2748 	return __gfn_to_hva_memslot(slot, gfn);
2749 }
2750 
2751 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2752 				     gfn_t *nr_pages)
2753 {
2754 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2755 }
2756 
2757 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2758 					gfn_t gfn)
2759 {
2760 	return gfn_to_hva_many(slot, gfn, NULL);
2761 }
2762 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot);
2763 
2764 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2765 {
2766 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2767 }
2768 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva);
2769 
2770 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2771 {
2772 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2773 }
2774 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva);
2775 
2776 /*
2777  * Return the hva of a @gfn and the R/W attribute if possible.
2778  *
2779  * @slot: the kvm_memory_slot which contains @gfn
2780  * @gfn: the gfn to be translated
2781  * @writable: used to return the read/write attribute of the @slot if the hva
2782  * is valid and @writable is not NULL
2783  */
2784 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2785 				      gfn_t gfn, bool *writable)
2786 {
2787 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2788 
2789 	if (!kvm_is_error_hva(hva) && writable)
2790 		*writable = !memslot_is_readonly(slot);
2791 
2792 	return hva;
2793 }
2794 
2795 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2796 {
2797 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2798 
2799 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2800 }
2801 
2802 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2803 {
2804 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2805 
2806 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2807 }
2808 
2809 static bool kvm_is_ad_tracked_page(struct page *page)
2810 {
2811 	/*
2812 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2813 	 * touched (e.g. set dirty) except by its owner".
2814 	 */
2815 	return !PageReserved(page);
2816 }
2817 
2818 static void kvm_set_page_dirty(struct page *page)
2819 {
2820 	if (kvm_is_ad_tracked_page(page))
2821 		SetPageDirty(page);
2822 }
2823 
2824 static void kvm_set_page_accessed(struct page *page)
2825 {
2826 	if (kvm_is_ad_tracked_page(page))
2827 		mark_page_accessed(page);
2828 }
2829 
2830 void kvm_release_page_clean(struct page *page)
2831 {
2832 	if (!page)
2833 		return;
2834 
2835 	kvm_set_page_accessed(page);
2836 	put_page(page);
2837 }
2838 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean);
2839 
2840 void kvm_release_page_dirty(struct page *page)
2841 {
2842 	if (!page)
2843 		return;
2844 
2845 	kvm_set_page_dirty(page);
2846 	kvm_release_page_clean(page);
2847 }
2848 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty);
2849 
2850 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2851 				 struct follow_pfnmap_args *map, bool writable)
2852 {
2853 	kvm_pfn_t pfn;
2854 
2855 	WARN_ON_ONCE(!!page == !!map);
2856 
2857 	if (kfp->map_writable)
2858 		*kfp->map_writable = writable;
2859 
2860 	if (map)
2861 		pfn = map->pfn;
2862 	else
2863 		pfn = page_to_pfn(page);
2864 
2865 	*kfp->refcounted_page = page;
2866 
2867 	return pfn;
2868 }
2869 
2870 /*
2871  * The fast path to get the writable pfn which will be stored in @pfn,
2872  * true indicates success, otherwise false is returned.
2873  */
2874 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2875 {
2876 	struct page *page;
2877 	bool r;
2878 
2879 	/*
2880 	 * Try the fast-only path when the caller wants to pin/get the page for
2881 	 * writing.  If the caller only wants to read the page, KVM must go
2882 	 * down the full, slow path in order to avoid racing an operation that
2883 	 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2884 	 * at the old, read-only page while mm/ points at a new, writable page.
2885 	 */
2886 	if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2887 		return false;
2888 
2889 	if (kfp->pin)
2890 		r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2891 	else
2892 		r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2893 
2894 	if (r) {
2895 		*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2896 		return true;
2897 	}
2898 
2899 	return false;
2900 }
2901 
2902 /*
2903  * The slow path to get the pfn of the specified host virtual address,
2904  * 1 indicates success, -errno is returned if error is detected.
2905  */
2906 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2907 {
2908 	/*
2909 	 * When a VCPU accesses a page that is not mapped into the secondary
2910 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2911 	 * make progress. We always want to honor NUMA hinting faults in that
2912 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2913 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2914 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2915 	 *
2916 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2917 	 * implicitly honor NUMA hinting faults and don't need this flag.
2918 	 */
2919 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2920 	struct page *page, *wpage;
2921 	int npages;
2922 
2923 	if (kfp->pin)
2924 		npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2925 	else
2926 		npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2927 	if (npages != 1)
2928 		return npages;
2929 
2930 	/*
2931 	 * Pinning is mutually exclusive with opportunistically mapping a read
2932 	 * fault as writable, as KVM should never pin pages when mapping memory
2933 	 * into the guest (pinning is only for direct accesses from KVM).
2934 	 */
2935 	if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2936 		goto out;
2937 
2938 	/* map read fault as writable if possible */
2939 	if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2940 	    get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2941 		put_page(page);
2942 		page = wpage;
2943 		flags |= FOLL_WRITE;
2944 	}
2945 
2946 out:
2947 	*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2948 	return npages;
2949 }
2950 
2951 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2952 {
2953 	if (unlikely(!(vma->vm_flags & VM_READ)))
2954 		return false;
2955 
2956 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2957 		return false;
2958 
2959 	return true;
2960 }
2961 
2962 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2963 			       struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2964 {
2965 	struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2966 	bool write_fault = kfp->flags & FOLL_WRITE;
2967 	int r;
2968 
2969 	/*
2970 	 * Remapped memory cannot be pinned in any meaningful sense.  Bail if
2971 	 * the caller wants to pin the page, i.e. access the page outside of
2972 	 * MMU notifier protection, and unsafe umappings are disallowed.
2973 	 */
2974 	if (kfp->pin && !allow_unsafe_mappings)
2975 		return -EINVAL;
2976 
2977 	r = follow_pfnmap_start(&args);
2978 	if (r) {
2979 		/*
2980 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2981 		 * not call the fault handler, so do it here.
2982 		 */
2983 		bool unlocked = false;
2984 		r = fixup_user_fault(current->mm, kfp->hva,
2985 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2986 				     &unlocked);
2987 		if (unlocked)
2988 			return -EAGAIN;
2989 		if (r)
2990 			return r;
2991 
2992 		r = follow_pfnmap_start(&args);
2993 		if (r)
2994 			return r;
2995 	}
2996 
2997 	if (write_fault && !args.writable) {
2998 		*p_pfn = KVM_PFN_ERR_RO_FAULT;
2999 		goto out;
3000 	}
3001 
3002 	*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
3003 out:
3004 	follow_pfnmap_end(&args);
3005 	return r;
3006 }
3007 
3008 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
3009 {
3010 	struct vm_area_struct *vma;
3011 	kvm_pfn_t pfn;
3012 	int npages, r;
3013 
3014 	might_sleep();
3015 
3016 	if (WARN_ON_ONCE(!kfp->refcounted_page))
3017 		return KVM_PFN_ERR_FAULT;
3018 
3019 	if (hva_to_pfn_fast(kfp, &pfn))
3020 		return pfn;
3021 
3022 	npages = hva_to_pfn_slow(kfp, &pfn);
3023 	if (npages == 1)
3024 		return pfn;
3025 	if (npages == -EINTR || npages == -EAGAIN)
3026 		return KVM_PFN_ERR_SIGPENDING;
3027 	if (npages == -EHWPOISON)
3028 		return KVM_PFN_ERR_HWPOISON;
3029 
3030 	mmap_read_lock(current->mm);
3031 retry:
3032 	vma = vma_lookup(current->mm, kfp->hva);
3033 
3034 	if (vma == NULL)
3035 		pfn = KVM_PFN_ERR_FAULT;
3036 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3037 		r = hva_to_pfn_remapped(vma, kfp, &pfn);
3038 		if (r == -EAGAIN)
3039 			goto retry;
3040 		if (r < 0)
3041 			pfn = KVM_PFN_ERR_FAULT;
3042 	} else {
3043 		if ((kfp->flags & FOLL_NOWAIT) &&
3044 		    vma_is_valid(vma, kfp->flags & FOLL_WRITE))
3045 			pfn = KVM_PFN_ERR_NEEDS_IO;
3046 		else
3047 			pfn = KVM_PFN_ERR_FAULT;
3048 	}
3049 	mmap_read_unlock(current->mm);
3050 	return pfn;
3051 }
3052 
3053 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
3054 {
3055 	kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
3056 				     kfp->flags & FOLL_WRITE);
3057 
3058 	if (kfp->hva == KVM_HVA_ERR_RO_BAD)
3059 		return KVM_PFN_ERR_RO_FAULT;
3060 
3061 	if (kvm_is_error_hva(kfp->hva))
3062 		return KVM_PFN_NOSLOT;
3063 
3064 	if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
3065 		*kfp->map_writable = false;
3066 		kfp->map_writable = NULL;
3067 	}
3068 
3069 	return hva_to_pfn(kfp);
3070 }
3071 
3072 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
3073 			    unsigned int foll, bool *writable,
3074 			    struct page **refcounted_page)
3075 {
3076 	struct kvm_follow_pfn kfp = {
3077 		.slot = slot,
3078 		.gfn = gfn,
3079 		.flags = foll,
3080 		.map_writable = writable,
3081 		.refcounted_page = refcounted_page,
3082 	};
3083 
3084 	if (WARN_ON_ONCE(!writable || !refcounted_page))
3085 		return KVM_PFN_ERR_FAULT;
3086 
3087 	*writable = false;
3088 	*refcounted_page = NULL;
3089 
3090 	return kvm_follow_pfn(&kfp);
3091 }
3092 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn);
3093 
3094 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3095 		       struct page **pages, int nr_pages)
3096 {
3097 	unsigned long addr;
3098 	gfn_t entry = 0;
3099 
3100 	addr = gfn_to_hva_many(slot, gfn, &entry);
3101 	if (kvm_is_error_hva(addr))
3102 		return -1;
3103 
3104 	if (entry < nr_pages)
3105 		return 0;
3106 
3107 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3108 }
3109 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages);
3110 
3111 /*
3112  * Don't use this API unless you are absolutely, positively certain that KVM
3113  * needs to get a struct page, e.g. to pin the page for firmware DMA.
3114  *
3115  * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3116  *	  its refcount.
3117  */
3118 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3119 {
3120 	struct page *refcounted_page = NULL;
3121 	struct kvm_follow_pfn kfp = {
3122 		.slot = gfn_to_memslot(kvm, gfn),
3123 		.gfn = gfn,
3124 		.flags = write ? FOLL_WRITE : 0,
3125 		.refcounted_page = &refcounted_page,
3126 	};
3127 
3128 	(void)kvm_follow_pfn(&kfp);
3129 	return refcounted_page;
3130 }
3131 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page);
3132 
3133 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3134 		   bool writable)
3135 {
3136 	struct kvm_follow_pfn kfp = {
3137 		.slot = gfn_to_memslot(vcpu->kvm, gfn),
3138 		.gfn = gfn,
3139 		.flags = writable ? FOLL_WRITE : 0,
3140 		.refcounted_page = &map->pinned_page,
3141 		.pin = true,
3142 	};
3143 
3144 	map->pinned_page = NULL;
3145 	map->page = NULL;
3146 	map->hva = NULL;
3147 	map->gfn = gfn;
3148 	map->writable = writable;
3149 
3150 	map->pfn = kvm_follow_pfn(&kfp);
3151 	if (is_error_noslot_pfn(map->pfn))
3152 		return -EINVAL;
3153 
3154 	if (pfn_valid(map->pfn)) {
3155 		map->page = pfn_to_page(map->pfn);
3156 		map->hva = kmap(map->page);
3157 #ifdef CONFIG_HAS_IOMEM
3158 	} else {
3159 		map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3160 #endif
3161 	}
3162 
3163 	return map->hva ? 0 : -EFAULT;
3164 }
3165 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map);
3166 
3167 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3168 {
3169 	if (!map->hva)
3170 		return;
3171 
3172 	if (map->page)
3173 		kunmap(map->page);
3174 #ifdef CONFIG_HAS_IOMEM
3175 	else
3176 		memunmap(map->hva);
3177 #endif
3178 
3179 	if (map->writable)
3180 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3181 
3182 	if (map->pinned_page) {
3183 		if (map->writable)
3184 			kvm_set_page_dirty(map->pinned_page);
3185 		kvm_set_page_accessed(map->pinned_page);
3186 		unpin_user_page(map->pinned_page);
3187 	}
3188 
3189 	map->hva = NULL;
3190 	map->page = NULL;
3191 	map->pinned_page = NULL;
3192 }
3193 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap);
3194 
3195 static int next_segment(unsigned long len, int offset)
3196 {
3197 	if (len > PAGE_SIZE - offset)
3198 		return PAGE_SIZE - offset;
3199 	else
3200 		return len;
3201 }
3202 
3203 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3204 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3205 				 void *data, int offset, int len)
3206 {
3207 	int r;
3208 	unsigned long addr;
3209 
3210 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3211 		return -EFAULT;
3212 
3213 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3214 	if (kvm_is_error_hva(addr))
3215 		return -EFAULT;
3216 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3217 	if (r)
3218 		return -EFAULT;
3219 	return 0;
3220 }
3221 
3222 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3223 			int len)
3224 {
3225 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3226 
3227 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3228 }
3229 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page);
3230 
3231 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3232 			     int offset, int len)
3233 {
3234 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3235 
3236 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3237 }
3238 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page);
3239 
3240 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3241 {
3242 	gfn_t gfn = gpa >> PAGE_SHIFT;
3243 	int seg;
3244 	int offset = offset_in_page(gpa);
3245 	int ret;
3246 
3247 	while ((seg = next_segment(len, offset)) != 0) {
3248 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3249 		if (ret < 0)
3250 			return ret;
3251 		offset = 0;
3252 		len -= seg;
3253 		data += seg;
3254 		++gfn;
3255 	}
3256 	return 0;
3257 }
3258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest);
3259 
3260 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3261 {
3262 	gfn_t gfn = gpa >> PAGE_SHIFT;
3263 	int seg;
3264 	int offset = offset_in_page(gpa);
3265 	int ret;
3266 
3267 	while ((seg = next_segment(len, offset)) != 0) {
3268 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3269 		if (ret < 0)
3270 			return ret;
3271 		offset = 0;
3272 		len -= seg;
3273 		data += seg;
3274 		++gfn;
3275 	}
3276 	return 0;
3277 }
3278 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest);
3279 
3280 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3281 			           void *data, int offset, unsigned long len)
3282 {
3283 	int r;
3284 	unsigned long addr;
3285 
3286 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3287 		return -EFAULT;
3288 
3289 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3290 	if (kvm_is_error_hva(addr))
3291 		return -EFAULT;
3292 	pagefault_disable();
3293 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3294 	pagefault_enable();
3295 	if (r)
3296 		return -EFAULT;
3297 	return 0;
3298 }
3299 
3300 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3301 			       void *data, unsigned long len)
3302 {
3303 	gfn_t gfn = gpa >> PAGE_SHIFT;
3304 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3305 	int offset = offset_in_page(gpa);
3306 
3307 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3308 }
3309 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic);
3310 
3311 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3312 static int __kvm_write_guest_page(struct kvm *kvm,
3313 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3314 			          const void *data, int offset, int len)
3315 {
3316 	int r;
3317 	unsigned long addr;
3318 
3319 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3320 		return -EFAULT;
3321 
3322 	addr = gfn_to_hva_memslot(memslot, gfn);
3323 	if (kvm_is_error_hva(addr))
3324 		return -EFAULT;
3325 	r = __copy_to_user((void __user *)addr + offset, data, len);
3326 	if (r)
3327 		return -EFAULT;
3328 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3329 	return 0;
3330 }
3331 
3332 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3333 			 const void *data, int offset, int len)
3334 {
3335 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3336 
3337 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3338 }
3339 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page);
3340 
3341 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3342 			      const void *data, int offset, int len)
3343 {
3344 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3345 
3346 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3347 }
3348 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page);
3349 
3350 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3351 		    unsigned long len)
3352 {
3353 	gfn_t gfn = gpa >> PAGE_SHIFT;
3354 	int seg;
3355 	int offset = offset_in_page(gpa);
3356 	int ret;
3357 
3358 	while ((seg = next_segment(len, offset)) != 0) {
3359 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3360 		if (ret < 0)
3361 			return ret;
3362 		offset = 0;
3363 		len -= seg;
3364 		data += seg;
3365 		++gfn;
3366 	}
3367 	return 0;
3368 }
3369 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest);
3370 
3371 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3372 		         unsigned long len)
3373 {
3374 	gfn_t gfn = gpa >> PAGE_SHIFT;
3375 	int seg;
3376 	int offset = offset_in_page(gpa);
3377 	int ret;
3378 
3379 	while ((seg = next_segment(len, offset)) != 0) {
3380 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3381 		if (ret < 0)
3382 			return ret;
3383 		offset = 0;
3384 		len -= seg;
3385 		data += seg;
3386 		++gfn;
3387 	}
3388 	return 0;
3389 }
3390 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest);
3391 
3392 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3393 				       struct gfn_to_hva_cache *ghc,
3394 				       gpa_t gpa, unsigned long len)
3395 {
3396 	int offset = offset_in_page(gpa);
3397 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3398 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3399 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3400 	gfn_t nr_pages_avail;
3401 
3402 	/* Update ghc->generation before performing any error checks. */
3403 	ghc->generation = slots->generation;
3404 
3405 	if (start_gfn > end_gfn) {
3406 		ghc->hva = KVM_HVA_ERR_BAD;
3407 		return -EINVAL;
3408 	}
3409 
3410 	/*
3411 	 * If the requested region crosses two memslots, we still
3412 	 * verify that the entire region is valid here.
3413 	 */
3414 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3415 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3416 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3417 					   &nr_pages_avail);
3418 		if (kvm_is_error_hva(ghc->hva))
3419 			return -EFAULT;
3420 	}
3421 
3422 	/* Use the slow path for cross page reads and writes. */
3423 	if (nr_pages_needed == 1)
3424 		ghc->hva += offset;
3425 	else
3426 		ghc->memslot = NULL;
3427 
3428 	ghc->gpa = gpa;
3429 	ghc->len = len;
3430 	return 0;
3431 }
3432 
3433 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3434 			      gpa_t gpa, unsigned long len)
3435 {
3436 	struct kvm_memslots *slots = kvm_memslots(kvm);
3437 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3438 }
3439 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init);
3440 
3441 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3442 				  void *data, unsigned int offset,
3443 				  unsigned long len)
3444 {
3445 	struct kvm_memslots *slots = kvm_memslots(kvm);
3446 	int r;
3447 	gpa_t gpa = ghc->gpa + offset;
3448 
3449 	if (WARN_ON_ONCE(len + offset > ghc->len))
3450 		return -EINVAL;
3451 
3452 	if (slots->generation != ghc->generation) {
3453 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3454 			return -EFAULT;
3455 	}
3456 
3457 	if (kvm_is_error_hva(ghc->hva))
3458 		return -EFAULT;
3459 
3460 	if (unlikely(!ghc->memslot))
3461 		return kvm_write_guest(kvm, gpa, data, len);
3462 
3463 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3464 	if (r)
3465 		return -EFAULT;
3466 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3467 
3468 	return 0;
3469 }
3470 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached);
3471 
3472 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3473 			   void *data, unsigned long len)
3474 {
3475 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3476 }
3477 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached);
3478 
3479 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3480 				 void *data, unsigned int offset,
3481 				 unsigned long len)
3482 {
3483 	struct kvm_memslots *slots = kvm_memslots(kvm);
3484 	int r;
3485 	gpa_t gpa = ghc->gpa + offset;
3486 
3487 	if (WARN_ON_ONCE(len + offset > ghc->len))
3488 		return -EINVAL;
3489 
3490 	if (slots->generation != ghc->generation) {
3491 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3492 			return -EFAULT;
3493 	}
3494 
3495 	if (kvm_is_error_hva(ghc->hva))
3496 		return -EFAULT;
3497 
3498 	if (unlikely(!ghc->memslot))
3499 		return kvm_read_guest(kvm, gpa, data, len);
3500 
3501 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3502 	if (r)
3503 		return -EFAULT;
3504 
3505 	return 0;
3506 }
3507 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached);
3508 
3509 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3510 			  void *data, unsigned long len)
3511 {
3512 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3513 }
3514 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached);
3515 
3516 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3517 {
3518 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3519 	gfn_t gfn = gpa >> PAGE_SHIFT;
3520 	int seg;
3521 	int offset = offset_in_page(gpa);
3522 	int ret;
3523 
3524 	while ((seg = next_segment(len, offset)) != 0) {
3525 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3526 		if (ret < 0)
3527 			return ret;
3528 		offset = 0;
3529 		len -= seg;
3530 		++gfn;
3531 	}
3532 	return 0;
3533 }
3534 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest);
3535 
3536 void mark_page_dirty_in_slot(struct kvm *kvm,
3537 			     const struct kvm_memory_slot *memslot,
3538 		 	     gfn_t gfn)
3539 {
3540 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3541 
3542 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3543 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3544 		return;
3545 
3546 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3547 #endif
3548 
3549 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3550 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3551 		u32 slot = (memslot->as_id << 16) | memslot->id;
3552 
3553 		if (kvm->dirty_ring_size && vcpu)
3554 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3555 		else if (memslot->dirty_bitmap)
3556 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3557 	}
3558 }
3559 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot);
3560 
3561 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3562 {
3563 	struct kvm_memory_slot *memslot;
3564 
3565 	memslot = gfn_to_memslot(kvm, gfn);
3566 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3567 }
3568 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty);
3569 
3570 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3571 {
3572 	struct kvm_memory_slot *memslot;
3573 
3574 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3575 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3576 }
3577 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty);
3578 
3579 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3580 {
3581 	if (!vcpu->sigset_active)
3582 		return;
3583 
3584 	/*
3585 	 * This does a lockless modification of ->real_blocked, which is fine
3586 	 * because, only current can change ->real_blocked and all readers of
3587 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3588 	 * of ->blocked.
3589 	 */
3590 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3591 }
3592 
3593 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3594 {
3595 	if (!vcpu->sigset_active)
3596 		return;
3597 
3598 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3599 	sigemptyset(&current->real_blocked);
3600 }
3601 
3602 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3603 {
3604 	unsigned int old, val, grow, grow_start;
3605 
3606 	old = val = vcpu->halt_poll_ns;
3607 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3608 	grow = READ_ONCE(halt_poll_ns_grow);
3609 	if (!grow)
3610 		goto out;
3611 
3612 	val *= grow;
3613 	if (val < grow_start)
3614 		val = grow_start;
3615 
3616 	vcpu->halt_poll_ns = val;
3617 out:
3618 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3619 }
3620 
3621 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3622 {
3623 	unsigned int old, val, shrink, grow_start;
3624 
3625 	old = val = vcpu->halt_poll_ns;
3626 	shrink = READ_ONCE(halt_poll_ns_shrink);
3627 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3628 	if (shrink == 0)
3629 		val = 0;
3630 	else
3631 		val /= shrink;
3632 
3633 	if (val < grow_start)
3634 		val = 0;
3635 
3636 	vcpu->halt_poll_ns = val;
3637 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3638 }
3639 
3640 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3641 {
3642 	int ret = -EINTR;
3643 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3644 
3645 	if (kvm_arch_vcpu_runnable(vcpu))
3646 		goto out;
3647 	if (kvm_cpu_has_pending_timer(vcpu))
3648 		goto out;
3649 	if (signal_pending(current))
3650 		goto out;
3651 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3652 		goto out;
3653 
3654 	ret = 0;
3655 out:
3656 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3657 	return ret;
3658 }
3659 
3660 /*
3661  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3662  * pending.  This is mostly used when halting a vCPU, but may also be used
3663  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3664  */
3665 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3666 {
3667 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3668 	bool waited = false;
3669 
3670 	vcpu->stat.generic.blocking = 1;
3671 
3672 	preempt_disable();
3673 	kvm_arch_vcpu_blocking(vcpu);
3674 	prepare_to_rcuwait(wait);
3675 	preempt_enable();
3676 
3677 	for (;;) {
3678 		set_current_state(TASK_INTERRUPTIBLE);
3679 
3680 		if (kvm_vcpu_check_block(vcpu) < 0)
3681 			break;
3682 
3683 		waited = true;
3684 		schedule();
3685 	}
3686 
3687 	preempt_disable();
3688 	finish_rcuwait(wait);
3689 	kvm_arch_vcpu_unblocking(vcpu);
3690 	preempt_enable();
3691 
3692 	vcpu->stat.generic.blocking = 0;
3693 
3694 	return waited;
3695 }
3696 
3697 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3698 					  ktime_t end, bool success)
3699 {
3700 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3701 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3702 
3703 	++vcpu->stat.generic.halt_attempted_poll;
3704 
3705 	if (success) {
3706 		++vcpu->stat.generic.halt_successful_poll;
3707 
3708 		if (!vcpu_valid_wakeup(vcpu))
3709 			++vcpu->stat.generic.halt_poll_invalid;
3710 
3711 		stats->halt_poll_success_ns += poll_ns;
3712 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3713 	} else {
3714 		stats->halt_poll_fail_ns += poll_ns;
3715 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3716 	}
3717 }
3718 
3719 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3720 {
3721 	struct kvm *kvm = vcpu->kvm;
3722 
3723 	if (kvm->override_halt_poll_ns) {
3724 		/*
3725 		 * Ensure kvm->max_halt_poll_ns is not read before
3726 		 * kvm->override_halt_poll_ns.
3727 		 *
3728 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3729 		 */
3730 		smp_rmb();
3731 		return READ_ONCE(kvm->max_halt_poll_ns);
3732 	}
3733 
3734 	return READ_ONCE(halt_poll_ns);
3735 }
3736 
3737 /*
3738  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3739  * polling is enabled, busy wait for a short time before blocking to avoid the
3740  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3741  * is halted.
3742  */
3743 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3744 {
3745 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3746 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3747 	ktime_t start, cur, poll_end;
3748 	bool waited = false;
3749 	bool do_halt_poll;
3750 	u64 halt_ns;
3751 
3752 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3753 		vcpu->halt_poll_ns = max_halt_poll_ns;
3754 
3755 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3756 
3757 	start = cur = poll_end = ktime_get();
3758 	if (do_halt_poll) {
3759 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3760 
3761 		do {
3762 			if (kvm_vcpu_check_block(vcpu) < 0)
3763 				goto out;
3764 			cpu_relax();
3765 			poll_end = cur = ktime_get();
3766 		} while (kvm_vcpu_can_poll(cur, stop));
3767 	}
3768 
3769 	waited = kvm_vcpu_block(vcpu);
3770 
3771 	cur = ktime_get();
3772 	if (waited) {
3773 		vcpu->stat.generic.halt_wait_ns +=
3774 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3775 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3776 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3777 	}
3778 out:
3779 	/* The total time the vCPU was "halted", including polling time. */
3780 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3781 
3782 	/*
3783 	 * Note, halt-polling is considered successful so long as the vCPU was
3784 	 * never actually scheduled out, i.e. even if the wake event arrived
3785 	 * after of the halt-polling loop itself, but before the full wait.
3786 	 */
3787 	if (do_halt_poll)
3788 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3789 
3790 	if (halt_poll_allowed) {
3791 		/* Recompute the max halt poll time in case it changed. */
3792 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3793 
3794 		if (!vcpu_valid_wakeup(vcpu)) {
3795 			shrink_halt_poll_ns(vcpu);
3796 		} else if (max_halt_poll_ns) {
3797 			if (halt_ns <= vcpu->halt_poll_ns)
3798 				;
3799 			/* we had a long block, shrink polling */
3800 			else if (vcpu->halt_poll_ns &&
3801 				 halt_ns > max_halt_poll_ns)
3802 				shrink_halt_poll_ns(vcpu);
3803 			/* we had a short halt and our poll time is too small */
3804 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3805 				 halt_ns < max_halt_poll_ns)
3806 				grow_halt_poll_ns(vcpu);
3807 		} else {
3808 			vcpu->halt_poll_ns = 0;
3809 		}
3810 	}
3811 
3812 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3813 }
3814 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt);
3815 
3816 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3817 {
3818 	if (__kvm_vcpu_wake_up(vcpu)) {
3819 		WRITE_ONCE(vcpu->ready, true);
3820 		++vcpu->stat.generic.halt_wakeup;
3821 		return true;
3822 	}
3823 
3824 	return false;
3825 }
3826 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up);
3827 
3828 #ifndef CONFIG_S390
3829 /*
3830  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3831  */
3832 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait)
3833 {
3834 	int me, cpu;
3835 
3836 	if (kvm_vcpu_wake_up(vcpu))
3837 		return;
3838 
3839 	me = get_cpu();
3840 	/*
3841 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3842 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3843 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3844 	 * within the vCPU thread itself.
3845 	 */
3846 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3847 		if (vcpu->mode == IN_GUEST_MODE)
3848 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3849 		goto out;
3850 	}
3851 
3852 	/*
3853 	 * Note, the vCPU could get migrated to a different pCPU at any point
3854 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3855 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3856 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3857 	 * vCPU also requires it to leave IN_GUEST_MODE.
3858 	 */
3859 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3860 		cpu = READ_ONCE(vcpu->cpu);
3861 		if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) {
3862 			/*
3863 			 * Use a reschedule IPI to kick the vCPU if the caller
3864 			 * doesn't need to wait for a response, as KVM allows
3865 			 * kicking vCPUs while IRQs are disabled, but using the
3866 			 * SMP function call framework with IRQs disabled can
3867 			 * deadlock due to taking cross-CPU locks.
3868 			 */
3869 			if (wait)
3870 				smp_call_function_single(cpu, ack_kick, NULL, wait);
3871 			else
3872 				smp_send_reschedule(cpu);
3873 		}
3874 	}
3875 out:
3876 	put_cpu();
3877 }
3878 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick);
3879 #endif /* !CONFIG_S390 */
3880 
3881 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3882 {
3883 	struct task_struct *task = NULL;
3884 	int ret;
3885 
3886 	if (!read_trylock(&target->pid_lock))
3887 		return 0;
3888 
3889 	if (target->pid)
3890 		task = get_pid_task(target->pid, PIDTYPE_PID);
3891 
3892 	read_unlock(&target->pid_lock);
3893 
3894 	if (!task)
3895 		return 0;
3896 	ret = yield_to(task, 1);
3897 	put_task_struct(task);
3898 
3899 	return ret;
3900 }
3901 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to);
3902 
3903 /*
3904  * Helper that checks whether a VCPU is eligible for directed yield.
3905  * Most eligible candidate to yield is decided by following heuristics:
3906  *
3907  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3908  *  (preempted lock holder), indicated by @in_spin_loop.
3909  *  Set at the beginning and cleared at the end of interception/PLE handler.
3910  *
3911  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3912  *  chance last time (mostly it has become eligible now since we have probably
3913  *  yielded to lockholder in last iteration. This is done by toggling
3914  *  @dy_eligible each time a VCPU checked for eligibility.)
3915  *
3916  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3917  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3918  *  burning. Giving priority for a potential lock-holder increases lock
3919  *  progress.
3920  *
3921  *  Since algorithm is based on heuristics, accessing another VCPU data without
3922  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3923  *  and continue with next VCPU and so on.
3924  */
3925 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3926 {
3927 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3928 	bool eligible;
3929 
3930 	eligible = !vcpu->spin_loop.in_spin_loop ||
3931 		    vcpu->spin_loop.dy_eligible;
3932 
3933 	if (vcpu->spin_loop.in_spin_loop)
3934 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3935 
3936 	return eligible;
3937 #else
3938 	return true;
3939 #endif
3940 }
3941 
3942 /*
3943  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3944  * a vcpu_load/vcpu_put pair.  However, for most architectures
3945  * kvm_arch_vcpu_runnable does not require vcpu_load.
3946  */
3947 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3948 {
3949 	return kvm_arch_vcpu_runnable(vcpu);
3950 }
3951 
3952 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3953 {
3954 	if (kvm_arch_dy_runnable(vcpu))
3955 		return true;
3956 
3957 #ifdef CONFIG_KVM_ASYNC_PF
3958 	if (!list_empty_careful(&vcpu->async_pf.done))
3959 		return true;
3960 #endif
3961 
3962 	return false;
3963 }
3964 
3965 /*
3966  * By default, simply query the target vCPU's current mode when checking if a
3967  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
3968  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3969  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3970  * directly for cross-vCPU checks is functionally correct and accurate.
3971  */
3972 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3973 {
3974 	return kvm_arch_vcpu_in_kernel(vcpu);
3975 }
3976 
3977 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3978 {
3979 	return false;
3980 }
3981 
3982 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3983 {
3984 	int nr_vcpus, start, i, idx, yielded;
3985 	struct kvm *kvm = me->kvm;
3986 	struct kvm_vcpu *vcpu;
3987 	int try = 3;
3988 
3989 	nr_vcpus = atomic_read(&kvm->online_vcpus);
3990 	if (nr_vcpus < 2)
3991 		return;
3992 
3993 	/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3994 	smp_rmb();
3995 
3996 	kvm_vcpu_set_in_spin_loop(me, true);
3997 
3998 	/*
3999 	 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
4000 	 * waiting for a resource to become available.  Attempt to yield to a
4001 	 * vCPU that is runnable, but not currently running, e.g. because the
4002 	 * vCPU was preempted by a higher priority task.  With luck, the vCPU
4003 	 * that was preempted is holding a lock or some other resource that the
4004 	 * current vCPU is waiting to acquire, and yielding to the other vCPU
4005 	 * will allow it to make forward progress and release the lock (or kick
4006 	 * the spinning vCPU, etc).
4007 	 *
4008 	 * Since KVM has no insight into what exactly the guest is doing,
4009 	 * approximate a round-robin selection by iterating over all vCPUs,
4010 	 * starting at the last boosted vCPU.  I.e. if N=kvm->last_boosted_vcpu,
4011 	 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
4012 	 *
4013 	 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
4014 	 * they may all try to yield to the same vCPU(s).  But as above, this
4015 	 * is all best effort due to KVM's lack of visibility into the guest.
4016 	 */
4017 	start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
4018 	for (i = 0; i < nr_vcpus; i++) {
4019 		idx = (start + i) % nr_vcpus;
4020 		if (idx == me->vcpu_idx)
4021 			continue;
4022 
4023 		vcpu = xa_load(&kvm->vcpu_array, idx);
4024 		if (!READ_ONCE(vcpu->ready))
4025 			continue;
4026 		if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4027 			continue;
4028 
4029 		/*
4030 		 * Treat the target vCPU as being in-kernel if it has a pending
4031 		 * interrupt, as the vCPU trying to yield may be spinning
4032 		 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
4033 		 * for the purposes of directed yield.
4034 		 */
4035 		if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4036 		    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4037 		    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4038 			continue;
4039 
4040 		if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4041 			continue;
4042 
4043 		yielded = kvm_vcpu_yield_to(vcpu);
4044 		if (yielded > 0) {
4045 			WRITE_ONCE(kvm->last_boosted_vcpu, idx);
4046 			break;
4047 		} else if (yielded < 0 && !--try) {
4048 			break;
4049 		}
4050 	}
4051 	kvm_vcpu_set_in_spin_loop(me, false);
4052 
4053 	/* Ensure vcpu is not eligible during next spinloop */
4054 	kvm_vcpu_set_dy_eligible(me, false);
4055 }
4056 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin);
4057 
4058 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4059 {
4060 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4061 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4062 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4063 	     kvm->dirty_ring_size / PAGE_SIZE);
4064 #else
4065 	return false;
4066 #endif
4067 }
4068 
4069 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4070 {
4071 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4072 	struct page *page;
4073 
4074 	if (vmf->pgoff == 0)
4075 		page = virt_to_page(vcpu->run);
4076 #ifdef CONFIG_X86
4077 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4078 		page = virt_to_page(vcpu->arch.pio_data);
4079 #endif
4080 #ifdef CONFIG_KVM_MMIO
4081 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4082 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4083 #endif
4084 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4085 		page = kvm_dirty_ring_get_page(
4086 		    &vcpu->dirty_ring,
4087 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4088 	else
4089 		return kvm_arch_vcpu_fault(vcpu, vmf);
4090 	get_page(page);
4091 	vmf->page = page;
4092 	return 0;
4093 }
4094 
4095 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4096 	.fault = kvm_vcpu_fault,
4097 };
4098 
4099 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4100 {
4101 	struct kvm_vcpu *vcpu = file->private_data;
4102 	unsigned long pages = vma_pages(vma);
4103 
4104 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4105 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4106 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4107 		return -EINVAL;
4108 
4109 	vma->vm_ops = &kvm_vcpu_vm_ops;
4110 	return 0;
4111 }
4112 
4113 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4114 {
4115 	struct kvm_vcpu *vcpu = filp->private_data;
4116 
4117 	kvm_put_kvm(vcpu->kvm);
4118 	return 0;
4119 }
4120 
4121 static struct file_operations kvm_vcpu_fops = {
4122 	.release        = kvm_vcpu_release,
4123 	.unlocked_ioctl = kvm_vcpu_ioctl,
4124 	.mmap           = kvm_vcpu_mmap,
4125 	.llseek		= noop_llseek,
4126 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4127 };
4128 
4129 /*
4130  * Allocates an inode for the vcpu.
4131  */
4132 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4133 {
4134 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4135 
4136 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4137 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4138 }
4139 
4140 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4141 static int vcpu_get_pid(void *data, u64 *val)
4142 {
4143 	struct kvm_vcpu *vcpu = data;
4144 
4145 	read_lock(&vcpu->pid_lock);
4146 	*val = pid_nr(vcpu->pid);
4147 	read_unlock(&vcpu->pid_lock);
4148 	return 0;
4149 }
4150 
4151 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4152 
4153 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4154 {
4155 	struct dentry *debugfs_dentry;
4156 	char dir_name[ITOA_MAX_LEN * 2];
4157 
4158 	if (!debugfs_initialized())
4159 		return;
4160 
4161 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4162 	debugfs_dentry = debugfs_create_dir(dir_name,
4163 					    vcpu->kvm->debugfs_dentry);
4164 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4165 			    &vcpu_get_pid_fops);
4166 
4167 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4168 }
4169 #endif
4170 
4171 /*
4172  * Creates some virtual cpus.  Good luck creating more than one.
4173  */
4174 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4175 {
4176 	int r;
4177 	struct kvm_vcpu *vcpu;
4178 	struct page *page;
4179 
4180 	/*
4181 	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4182 	 * too-large values instead of silently truncating.
4183 	 *
4184 	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4185 	 * changing the storage type (at the very least, IDs should be tracked
4186 	 * as unsigned ints).
4187 	 */
4188 	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4189 	if (id >= KVM_MAX_VCPU_IDS)
4190 		return -EINVAL;
4191 
4192 	mutex_lock(&kvm->lock);
4193 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4194 		mutex_unlock(&kvm->lock);
4195 		return -EINVAL;
4196 	}
4197 
4198 	r = kvm_arch_vcpu_precreate(kvm, id);
4199 	if (r) {
4200 		mutex_unlock(&kvm->lock);
4201 		return r;
4202 	}
4203 
4204 	kvm->created_vcpus++;
4205 	mutex_unlock(&kvm->lock);
4206 
4207 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4208 	if (!vcpu) {
4209 		r = -ENOMEM;
4210 		goto vcpu_decrement;
4211 	}
4212 
4213 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4214 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4215 	if (!page) {
4216 		r = -ENOMEM;
4217 		goto vcpu_free;
4218 	}
4219 	vcpu->run = page_address(page);
4220 
4221 	kvm_vcpu_init(vcpu, kvm, id);
4222 
4223 	r = kvm_arch_vcpu_create(vcpu);
4224 	if (r)
4225 		goto vcpu_free_run_page;
4226 
4227 	if (kvm->dirty_ring_size) {
4228 		r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
4229 					 id, kvm->dirty_ring_size);
4230 		if (r)
4231 			goto arch_vcpu_destroy;
4232 	}
4233 
4234 	mutex_lock(&kvm->lock);
4235 
4236 	if (kvm_get_vcpu_by_id(kvm, id)) {
4237 		r = -EEXIST;
4238 		goto unlock_vcpu_destroy;
4239 	}
4240 
4241 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4242 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4243 	WARN_ON_ONCE(r == -EBUSY);
4244 	if (r)
4245 		goto unlock_vcpu_destroy;
4246 
4247 	/*
4248 	 * Now it's all set up, let userspace reach it.  Grab the vCPU's mutex
4249 	 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4250 	 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4251 	 * into a NULL-pointer dereference because KVM thinks the _current_
4252 	 * vCPU doesn't exist.  As a bonus, taking vcpu->mutex ensures lockdep
4253 	 * knows it's taken *inside* kvm->lock.
4254 	 */
4255 	mutex_lock(&vcpu->mutex);
4256 	kvm_get_kvm(kvm);
4257 	r = create_vcpu_fd(vcpu);
4258 	if (r < 0)
4259 		goto kvm_put_xa_erase;
4260 
4261 	/*
4262 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4263 	 * pointer before kvm->online_vcpu's incremented value.
4264 	 */
4265 	smp_wmb();
4266 	atomic_inc(&kvm->online_vcpus);
4267 	mutex_unlock(&vcpu->mutex);
4268 
4269 	mutex_unlock(&kvm->lock);
4270 	kvm_arch_vcpu_postcreate(vcpu);
4271 	kvm_create_vcpu_debugfs(vcpu);
4272 	return r;
4273 
4274 kvm_put_xa_erase:
4275 	mutex_unlock(&vcpu->mutex);
4276 	kvm_put_kvm_no_destroy(kvm);
4277 	xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4278 unlock_vcpu_destroy:
4279 	mutex_unlock(&kvm->lock);
4280 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4281 arch_vcpu_destroy:
4282 	kvm_arch_vcpu_destroy(vcpu);
4283 vcpu_free_run_page:
4284 	free_page((unsigned long)vcpu->run);
4285 vcpu_free:
4286 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4287 vcpu_decrement:
4288 	mutex_lock(&kvm->lock);
4289 	kvm->created_vcpus--;
4290 	mutex_unlock(&kvm->lock);
4291 	return r;
4292 }
4293 
4294 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4295 {
4296 	if (sigset) {
4297 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4298 		vcpu->sigset_active = 1;
4299 		vcpu->sigset = *sigset;
4300 	} else
4301 		vcpu->sigset_active = 0;
4302 	return 0;
4303 }
4304 
4305 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4306 			      size_t size, loff_t *offset)
4307 {
4308 	struct kvm_vcpu *vcpu = file->private_data;
4309 
4310 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4311 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4312 			sizeof(vcpu->stat), user_buffer, size, offset);
4313 }
4314 
4315 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4316 {
4317 	struct kvm_vcpu *vcpu = file->private_data;
4318 
4319 	kvm_put_kvm(vcpu->kvm);
4320 	return 0;
4321 }
4322 
4323 static const struct file_operations kvm_vcpu_stats_fops = {
4324 	.owner = THIS_MODULE,
4325 	.read = kvm_vcpu_stats_read,
4326 	.release = kvm_vcpu_stats_release,
4327 	.llseek = noop_llseek,
4328 };
4329 
4330 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4331 {
4332 	int fd;
4333 	struct file *file;
4334 	char name[15 + ITOA_MAX_LEN + 1];
4335 
4336 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4337 
4338 	fd = get_unused_fd_flags(O_CLOEXEC);
4339 	if (fd < 0)
4340 		return fd;
4341 
4342 	file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4343 					O_RDONLY, FMODE_PREAD);
4344 	if (IS_ERR(file)) {
4345 		put_unused_fd(fd);
4346 		return PTR_ERR(file);
4347 	}
4348 
4349 	kvm_get_kvm(vcpu->kvm);
4350 	fd_install(fd, file);
4351 
4352 	return fd;
4353 }
4354 
4355 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4356 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4357 				     struct kvm_pre_fault_memory *range)
4358 {
4359 	int idx;
4360 	long r;
4361 	u64 full_size;
4362 
4363 	if (range->flags)
4364 		return -EINVAL;
4365 
4366 	if (!PAGE_ALIGNED(range->gpa) ||
4367 	    !PAGE_ALIGNED(range->size) ||
4368 	    range->gpa + range->size <= range->gpa)
4369 		return -EINVAL;
4370 
4371 	vcpu_load(vcpu);
4372 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4373 
4374 	full_size = range->size;
4375 	do {
4376 		if (signal_pending(current)) {
4377 			r = -EINTR;
4378 			break;
4379 		}
4380 
4381 		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4382 		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4383 			break;
4384 
4385 		if (r < 0)
4386 			break;
4387 
4388 		range->size -= r;
4389 		range->gpa += r;
4390 		cond_resched();
4391 	} while (range->size);
4392 
4393 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4394 	vcpu_put(vcpu);
4395 
4396 	/* Return success if at least one page was mapped successfully.  */
4397 	return full_size == range->size ? r : 0;
4398 }
4399 #endif
4400 
4401 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4402 {
4403 	struct kvm *kvm = vcpu->kvm;
4404 
4405 	/*
4406 	 * In practice, this happy path will always be taken, as a well-behaved
4407 	 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4408 	 */
4409 	if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4410 		return 0;
4411 
4412 	/*
4413 	 * Acquire and release the vCPU's mutex to wait for vCPU creation to
4414 	 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4415 	 * is fully online).
4416 	 */
4417 	if (mutex_lock_killable(&vcpu->mutex))
4418 		return -EINTR;
4419 
4420 	mutex_unlock(&vcpu->mutex);
4421 
4422 	if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4423 		return -EIO;
4424 
4425 	return 0;
4426 }
4427 
4428 static long kvm_vcpu_ioctl(struct file *filp,
4429 			   unsigned int ioctl, unsigned long arg)
4430 {
4431 	struct kvm_vcpu *vcpu = filp->private_data;
4432 	void __user *argp = (void __user *)arg;
4433 	int r;
4434 	struct kvm_fpu *fpu = NULL;
4435 	struct kvm_sregs *kvm_sregs = NULL;
4436 
4437 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4438 		return -EIO;
4439 
4440 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4441 		return -EINVAL;
4442 
4443 	/*
4444 	 * Wait for the vCPU to be online before handling the ioctl(), as KVM
4445 	 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4446 	 * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4447 	 */
4448 	r = kvm_wait_for_vcpu_online(vcpu);
4449 	if (r)
4450 		return r;
4451 
4452 	/*
4453 	 * Let arch code handle select vCPU ioctls without holding vcpu->mutex,
4454 	 * e.g. to support ioctls that can run asynchronous to vCPU execution.
4455 	 */
4456 	r = kvm_arch_vcpu_unlocked_ioctl(filp, ioctl, arg);
4457 	if (r != -ENOIOCTLCMD)
4458 		return r;
4459 
4460 	if (mutex_lock_killable(&vcpu->mutex))
4461 		return -EINTR;
4462 	switch (ioctl) {
4463 	case KVM_RUN: {
4464 		struct pid *oldpid;
4465 		r = -EINVAL;
4466 		if (arg)
4467 			goto out;
4468 
4469 		/*
4470 		 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4471 		 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4472 		 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4473 		 * directly to this vCPU
4474 		 */
4475 		oldpid = vcpu->pid;
4476 		if (unlikely(oldpid != task_pid(current))) {
4477 			/* The thread running this VCPU changed. */
4478 			struct pid *newpid;
4479 
4480 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4481 			if (r)
4482 				break;
4483 
4484 			newpid = get_task_pid(current, PIDTYPE_PID);
4485 			write_lock(&vcpu->pid_lock);
4486 			vcpu->pid = newpid;
4487 			write_unlock(&vcpu->pid_lock);
4488 
4489 			put_pid(oldpid);
4490 		}
4491 		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4492 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4493 		vcpu->wants_to_run = false;
4494 
4495 		/*
4496 		 * FIXME: Remove this hack once all KVM architectures
4497 		 * support the generic TIF bits, i.e. a dedicated TIF_RSEQ.
4498 		 */
4499 		rseq_virt_userspace_exit();
4500 
4501 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4502 		break;
4503 	}
4504 	case KVM_GET_REGS: {
4505 		struct kvm_regs *kvm_regs;
4506 
4507 		r = -ENOMEM;
4508 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4509 		if (!kvm_regs)
4510 			goto out;
4511 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4512 		if (r)
4513 			goto out_free1;
4514 		r = -EFAULT;
4515 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4516 			goto out_free1;
4517 		r = 0;
4518 out_free1:
4519 		kfree(kvm_regs);
4520 		break;
4521 	}
4522 	case KVM_SET_REGS: {
4523 		struct kvm_regs *kvm_regs;
4524 
4525 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4526 		if (IS_ERR(kvm_regs)) {
4527 			r = PTR_ERR(kvm_regs);
4528 			goto out;
4529 		}
4530 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4531 		kfree(kvm_regs);
4532 		break;
4533 	}
4534 	case KVM_GET_SREGS: {
4535 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4536 		r = -ENOMEM;
4537 		if (!kvm_sregs)
4538 			goto out;
4539 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4540 		if (r)
4541 			goto out;
4542 		r = -EFAULT;
4543 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4544 			goto out;
4545 		r = 0;
4546 		break;
4547 	}
4548 	case KVM_SET_SREGS: {
4549 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4550 		if (IS_ERR(kvm_sregs)) {
4551 			r = PTR_ERR(kvm_sregs);
4552 			kvm_sregs = NULL;
4553 			goto out;
4554 		}
4555 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4556 		break;
4557 	}
4558 	case KVM_GET_MP_STATE: {
4559 		struct kvm_mp_state mp_state;
4560 
4561 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4562 		if (r)
4563 			goto out;
4564 		r = -EFAULT;
4565 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4566 			goto out;
4567 		r = 0;
4568 		break;
4569 	}
4570 	case KVM_SET_MP_STATE: {
4571 		struct kvm_mp_state mp_state;
4572 
4573 		r = -EFAULT;
4574 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4575 			goto out;
4576 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4577 		break;
4578 	}
4579 	case KVM_TRANSLATE: {
4580 		struct kvm_translation tr;
4581 
4582 		r = -EFAULT;
4583 		if (copy_from_user(&tr, argp, sizeof(tr)))
4584 			goto out;
4585 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4586 		if (r)
4587 			goto out;
4588 		r = -EFAULT;
4589 		if (copy_to_user(argp, &tr, sizeof(tr)))
4590 			goto out;
4591 		r = 0;
4592 		break;
4593 	}
4594 	case KVM_SET_GUEST_DEBUG: {
4595 		struct kvm_guest_debug dbg;
4596 
4597 		r = -EFAULT;
4598 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4599 			goto out;
4600 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4601 		break;
4602 	}
4603 	case KVM_SET_SIGNAL_MASK: {
4604 		struct kvm_signal_mask __user *sigmask_arg = argp;
4605 		struct kvm_signal_mask kvm_sigmask;
4606 		sigset_t sigset, *p;
4607 
4608 		p = NULL;
4609 		if (argp) {
4610 			r = -EFAULT;
4611 			if (copy_from_user(&kvm_sigmask, argp,
4612 					   sizeof(kvm_sigmask)))
4613 				goto out;
4614 			r = -EINVAL;
4615 			if (kvm_sigmask.len != sizeof(sigset))
4616 				goto out;
4617 			r = -EFAULT;
4618 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4619 					   sizeof(sigset)))
4620 				goto out;
4621 			p = &sigset;
4622 		}
4623 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4624 		break;
4625 	}
4626 	case KVM_GET_FPU: {
4627 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4628 		r = -ENOMEM;
4629 		if (!fpu)
4630 			goto out;
4631 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4632 		if (r)
4633 			goto out;
4634 		r = -EFAULT;
4635 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4636 			goto out;
4637 		r = 0;
4638 		break;
4639 	}
4640 	case KVM_SET_FPU: {
4641 		fpu = memdup_user(argp, sizeof(*fpu));
4642 		if (IS_ERR(fpu)) {
4643 			r = PTR_ERR(fpu);
4644 			fpu = NULL;
4645 			goto out;
4646 		}
4647 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4648 		break;
4649 	}
4650 	case KVM_GET_STATS_FD: {
4651 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4652 		break;
4653 	}
4654 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4655 	case KVM_PRE_FAULT_MEMORY: {
4656 		struct kvm_pre_fault_memory range;
4657 
4658 		r = -EFAULT;
4659 		if (copy_from_user(&range, argp, sizeof(range)))
4660 			break;
4661 		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4662 		/* Pass back leftover range. */
4663 		if (copy_to_user(argp, &range, sizeof(range)))
4664 			r = -EFAULT;
4665 		break;
4666 	}
4667 #endif
4668 	default:
4669 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4670 	}
4671 out:
4672 	mutex_unlock(&vcpu->mutex);
4673 	kfree(fpu);
4674 	kfree(kvm_sregs);
4675 	return r;
4676 }
4677 
4678 #ifdef CONFIG_KVM_COMPAT
4679 static long kvm_vcpu_compat_ioctl(struct file *filp,
4680 				  unsigned int ioctl, unsigned long arg)
4681 {
4682 	struct kvm_vcpu *vcpu = filp->private_data;
4683 	void __user *argp = compat_ptr(arg);
4684 	int r;
4685 
4686 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4687 		return -EIO;
4688 
4689 	switch (ioctl) {
4690 	case KVM_SET_SIGNAL_MASK: {
4691 		struct kvm_signal_mask __user *sigmask_arg = argp;
4692 		struct kvm_signal_mask kvm_sigmask;
4693 		sigset_t sigset;
4694 
4695 		if (argp) {
4696 			r = -EFAULT;
4697 			if (copy_from_user(&kvm_sigmask, argp,
4698 					   sizeof(kvm_sigmask)))
4699 				goto out;
4700 			r = -EINVAL;
4701 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4702 				goto out;
4703 			r = -EFAULT;
4704 			if (get_compat_sigset(&sigset,
4705 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4706 				goto out;
4707 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4708 		} else
4709 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4710 		break;
4711 	}
4712 	default:
4713 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4714 	}
4715 
4716 out:
4717 	return r;
4718 }
4719 #endif
4720 
4721 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4722 {
4723 	struct kvm_device *dev = filp->private_data;
4724 
4725 	if (dev->ops->mmap)
4726 		return dev->ops->mmap(dev, vma);
4727 
4728 	return -ENODEV;
4729 }
4730 
4731 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4732 				 int (*accessor)(struct kvm_device *dev,
4733 						 struct kvm_device_attr *attr),
4734 				 unsigned long arg)
4735 {
4736 	struct kvm_device_attr attr;
4737 
4738 	if (!accessor)
4739 		return -EPERM;
4740 
4741 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4742 		return -EFAULT;
4743 
4744 	return accessor(dev, &attr);
4745 }
4746 
4747 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4748 			     unsigned long arg)
4749 {
4750 	struct kvm_device *dev = filp->private_data;
4751 
4752 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4753 		return -EIO;
4754 
4755 	switch (ioctl) {
4756 	case KVM_SET_DEVICE_ATTR:
4757 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4758 	case KVM_GET_DEVICE_ATTR:
4759 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4760 	case KVM_HAS_DEVICE_ATTR:
4761 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4762 	default:
4763 		if (dev->ops->ioctl)
4764 			return dev->ops->ioctl(dev, ioctl, arg);
4765 
4766 		return -ENOTTY;
4767 	}
4768 }
4769 
4770 static int kvm_device_release(struct inode *inode, struct file *filp)
4771 {
4772 	struct kvm_device *dev = filp->private_data;
4773 	struct kvm *kvm = dev->kvm;
4774 
4775 	if (dev->ops->release) {
4776 		mutex_lock(&kvm->lock);
4777 		list_del_rcu(&dev->vm_node);
4778 		synchronize_rcu();
4779 		dev->ops->release(dev);
4780 		mutex_unlock(&kvm->lock);
4781 	}
4782 
4783 	kvm_put_kvm(kvm);
4784 	return 0;
4785 }
4786 
4787 static struct file_operations kvm_device_fops = {
4788 	.unlocked_ioctl = kvm_device_ioctl,
4789 	.release = kvm_device_release,
4790 	KVM_COMPAT(kvm_device_ioctl),
4791 	.mmap = kvm_device_mmap,
4792 };
4793 
4794 struct kvm_device *kvm_device_from_filp(struct file *filp)
4795 {
4796 	if (filp->f_op != &kvm_device_fops)
4797 		return NULL;
4798 
4799 	return filp->private_data;
4800 }
4801 
4802 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4803 #ifdef CONFIG_KVM_MPIC
4804 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4805 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4806 #endif
4807 };
4808 
4809 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4810 {
4811 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4812 		return -ENOSPC;
4813 
4814 	if (kvm_device_ops_table[type] != NULL)
4815 		return -EEXIST;
4816 
4817 	kvm_device_ops_table[type] = ops;
4818 	return 0;
4819 }
4820 
4821 void kvm_unregister_device_ops(u32 type)
4822 {
4823 	if (kvm_device_ops_table[type] != NULL)
4824 		kvm_device_ops_table[type] = NULL;
4825 }
4826 
4827 static int kvm_ioctl_create_device(struct kvm *kvm,
4828 				   struct kvm_create_device *cd)
4829 {
4830 	const struct kvm_device_ops *ops;
4831 	struct kvm_device *dev;
4832 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4833 	int type;
4834 	int ret;
4835 
4836 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4837 		return -ENODEV;
4838 
4839 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4840 	ops = kvm_device_ops_table[type];
4841 	if (ops == NULL)
4842 		return -ENODEV;
4843 
4844 	if (test)
4845 		return 0;
4846 
4847 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4848 	if (!dev)
4849 		return -ENOMEM;
4850 
4851 	dev->ops = ops;
4852 	dev->kvm = kvm;
4853 
4854 	mutex_lock(&kvm->lock);
4855 	ret = ops->create(dev, type);
4856 	if (ret < 0) {
4857 		mutex_unlock(&kvm->lock);
4858 		kfree(dev);
4859 		return ret;
4860 	}
4861 	list_add_rcu(&dev->vm_node, &kvm->devices);
4862 	mutex_unlock(&kvm->lock);
4863 
4864 	if (ops->init)
4865 		ops->init(dev);
4866 
4867 	kvm_get_kvm(kvm);
4868 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4869 	if (ret < 0) {
4870 		kvm_put_kvm_no_destroy(kvm);
4871 		mutex_lock(&kvm->lock);
4872 		list_del_rcu(&dev->vm_node);
4873 		synchronize_rcu();
4874 		if (ops->release)
4875 			ops->release(dev);
4876 		mutex_unlock(&kvm->lock);
4877 		if (ops->destroy)
4878 			ops->destroy(dev);
4879 		return ret;
4880 	}
4881 
4882 	cd->fd = ret;
4883 	return 0;
4884 }
4885 
4886 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4887 {
4888 	switch (arg) {
4889 	case KVM_CAP_USER_MEMORY:
4890 	case KVM_CAP_USER_MEMORY2:
4891 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4892 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4893 	case KVM_CAP_INTERNAL_ERROR_DATA:
4894 #ifdef CONFIG_HAVE_KVM_MSI
4895 	case KVM_CAP_SIGNAL_MSI:
4896 #endif
4897 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4898 	case KVM_CAP_IRQFD:
4899 #endif
4900 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4901 	case KVM_CAP_CHECK_EXTENSION_VM:
4902 	case KVM_CAP_ENABLE_CAP_VM:
4903 	case KVM_CAP_HALT_POLL:
4904 		return 1;
4905 #ifdef CONFIG_KVM_MMIO
4906 	case KVM_CAP_COALESCED_MMIO:
4907 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4908 	case KVM_CAP_COALESCED_PIO:
4909 		return 1;
4910 #endif
4911 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4912 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4913 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4914 #endif
4915 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4916 	case KVM_CAP_IRQ_ROUTING:
4917 		return KVM_MAX_IRQ_ROUTES;
4918 #endif
4919 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4920 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4921 		if (kvm)
4922 			return kvm_arch_nr_memslot_as_ids(kvm);
4923 		return KVM_MAX_NR_ADDRESS_SPACES;
4924 #endif
4925 	case KVM_CAP_NR_MEMSLOTS:
4926 		return KVM_USER_MEM_SLOTS;
4927 	case KVM_CAP_DIRTY_LOG_RING:
4928 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4929 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4930 #else
4931 		return 0;
4932 #endif
4933 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4934 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4935 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4936 #else
4937 		return 0;
4938 #endif
4939 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4940 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4941 #endif
4942 	case KVM_CAP_BINARY_STATS_FD:
4943 	case KVM_CAP_SYSTEM_EVENT_DATA:
4944 	case KVM_CAP_DEVICE_CTRL:
4945 		return 1;
4946 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4947 	case KVM_CAP_MEMORY_ATTRIBUTES:
4948 		return kvm_supported_mem_attributes(kvm);
4949 #endif
4950 #ifdef CONFIG_KVM_GUEST_MEMFD
4951 	case KVM_CAP_GUEST_MEMFD:
4952 		return 1;
4953 	case KVM_CAP_GUEST_MEMFD_FLAGS:
4954 		return kvm_gmem_get_supported_flags(kvm);
4955 #endif
4956 	default:
4957 		break;
4958 	}
4959 	return kvm_vm_ioctl_check_extension(kvm, arg);
4960 }
4961 
4962 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4963 {
4964 	int r;
4965 
4966 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4967 		return -EINVAL;
4968 
4969 	/* the size should be power of 2 */
4970 	if (!size || (size & (size - 1)))
4971 		return -EINVAL;
4972 
4973 	/* Should be bigger to keep the reserved entries, or a page */
4974 	if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
4975 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4976 		return -EINVAL;
4977 
4978 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4979 	    sizeof(struct kvm_dirty_gfn))
4980 		return -E2BIG;
4981 
4982 	/* We only allow it to set once */
4983 	if (kvm->dirty_ring_size)
4984 		return -EINVAL;
4985 
4986 	mutex_lock(&kvm->lock);
4987 
4988 	if (kvm->created_vcpus) {
4989 		/* We don't allow to change this value after vcpu created */
4990 		r = -EINVAL;
4991 	} else {
4992 		kvm->dirty_ring_size = size;
4993 		r = 0;
4994 	}
4995 
4996 	mutex_unlock(&kvm->lock);
4997 	return r;
4998 }
4999 
5000 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
5001 {
5002 	unsigned long i;
5003 	struct kvm_vcpu *vcpu;
5004 	int cleared = 0, r;
5005 
5006 	if (!kvm->dirty_ring_size)
5007 		return -EINVAL;
5008 
5009 	mutex_lock(&kvm->slots_lock);
5010 
5011 	kvm_for_each_vcpu(i, vcpu, kvm) {
5012 		r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared);
5013 		if (r)
5014 			break;
5015 	}
5016 
5017 	mutex_unlock(&kvm->slots_lock);
5018 
5019 	if (cleared)
5020 		kvm_flush_remote_tlbs(kvm);
5021 
5022 	return cleared;
5023 }
5024 
5025 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5026 						  struct kvm_enable_cap *cap)
5027 {
5028 	return -EINVAL;
5029 }
5030 
5031 bool kvm_are_all_memslots_empty(struct kvm *kvm)
5032 {
5033 	int i;
5034 
5035 	lockdep_assert_held(&kvm->slots_lock);
5036 
5037 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5038 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5039 			return false;
5040 	}
5041 
5042 	return true;
5043 }
5044 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty);
5045 
5046 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5047 					   struct kvm_enable_cap *cap)
5048 {
5049 	switch (cap->cap) {
5050 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5051 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5052 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5053 
5054 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5055 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5056 
5057 		if (cap->flags || (cap->args[0] & ~allowed_options))
5058 			return -EINVAL;
5059 		kvm->manual_dirty_log_protect = cap->args[0];
5060 		return 0;
5061 	}
5062 #endif
5063 	case KVM_CAP_HALT_POLL: {
5064 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5065 			return -EINVAL;
5066 
5067 		kvm->max_halt_poll_ns = cap->args[0];
5068 
5069 		/*
5070 		 * Ensure kvm->override_halt_poll_ns does not become visible
5071 		 * before kvm->max_halt_poll_ns.
5072 		 *
5073 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5074 		 */
5075 		smp_wmb();
5076 		kvm->override_halt_poll_ns = true;
5077 
5078 		return 0;
5079 	}
5080 	case KVM_CAP_DIRTY_LOG_RING:
5081 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5082 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5083 			return -EINVAL;
5084 
5085 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5086 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5087 		int r = -EINVAL;
5088 
5089 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5090 		    !kvm->dirty_ring_size || cap->flags)
5091 			return r;
5092 
5093 		mutex_lock(&kvm->slots_lock);
5094 
5095 		/*
5096 		 * For simplicity, allow enabling ring+bitmap if and only if
5097 		 * there are no memslots, e.g. to ensure all memslots allocate
5098 		 * a bitmap after the capability is enabled.
5099 		 */
5100 		if (kvm_are_all_memslots_empty(kvm)) {
5101 			kvm->dirty_ring_with_bitmap = true;
5102 			r = 0;
5103 		}
5104 
5105 		mutex_unlock(&kvm->slots_lock);
5106 
5107 		return r;
5108 	}
5109 	default:
5110 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5111 	}
5112 }
5113 
5114 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5115 			      size_t size, loff_t *offset)
5116 {
5117 	struct kvm *kvm = file->private_data;
5118 
5119 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5120 				&kvm_vm_stats_desc[0], &kvm->stat,
5121 				sizeof(kvm->stat), user_buffer, size, offset);
5122 }
5123 
5124 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5125 {
5126 	struct kvm *kvm = file->private_data;
5127 
5128 	kvm_put_kvm(kvm);
5129 	return 0;
5130 }
5131 
5132 static const struct file_operations kvm_vm_stats_fops = {
5133 	.owner = THIS_MODULE,
5134 	.read = kvm_vm_stats_read,
5135 	.release = kvm_vm_stats_release,
5136 	.llseek = noop_llseek,
5137 };
5138 
5139 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5140 {
5141 	int fd;
5142 	struct file *file;
5143 
5144 	fd = get_unused_fd_flags(O_CLOEXEC);
5145 	if (fd < 0)
5146 		return fd;
5147 
5148 	file = anon_inode_getfile_fmode("kvm-vm-stats",
5149 			&kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5150 	if (IS_ERR(file)) {
5151 		put_unused_fd(fd);
5152 		return PTR_ERR(file);
5153 	}
5154 
5155 	kvm_get_kvm(kvm);
5156 	fd_install(fd, file);
5157 
5158 	return fd;
5159 }
5160 
5161 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5162 do {										\
5163 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5164 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5165 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5166 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5167 } while (0)
5168 
5169 static long kvm_vm_ioctl(struct file *filp,
5170 			   unsigned int ioctl, unsigned long arg)
5171 {
5172 	struct kvm *kvm = filp->private_data;
5173 	void __user *argp = (void __user *)arg;
5174 	int r;
5175 
5176 	if (kvm->mm != current->mm || kvm->vm_dead)
5177 		return -EIO;
5178 	switch (ioctl) {
5179 	case KVM_CREATE_VCPU:
5180 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5181 		break;
5182 	case KVM_ENABLE_CAP: {
5183 		struct kvm_enable_cap cap;
5184 
5185 		r = -EFAULT;
5186 		if (copy_from_user(&cap, argp, sizeof(cap)))
5187 			goto out;
5188 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5189 		break;
5190 	}
5191 	case KVM_SET_USER_MEMORY_REGION2:
5192 	case KVM_SET_USER_MEMORY_REGION: {
5193 		struct kvm_userspace_memory_region2 mem;
5194 		unsigned long size;
5195 
5196 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5197 			/*
5198 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5199 			 * accessed, but avoid leaking kernel memory in case of a bug.
5200 			 */
5201 			memset(&mem, 0, sizeof(mem));
5202 			size = sizeof(struct kvm_userspace_memory_region);
5203 		} else {
5204 			size = sizeof(struct kvm_userspace_memory_region2);
5205 		}
5206 
5207 		/* Ensure the common parts of the two structs are identical. */
5208 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5209 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5210 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5211 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5212 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5213 
5214 		r = -EFAULT;
5215 		if (copy_from_user(&mem, argp, size))
5216 			goto out;
5217 
5218 		r = -EINVAL;
5219 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5220 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5221 			goto out;
5222 
5223 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5224 		break;
5225 	}
5226 	case KVM_GET_DIRTY_LOG: {
5227 		struct kvm_dirty_log log;
5228 
5229 		r = -EFAULT;
5230 		if (copy_from_user(&log, argp, sizeof(log)))
5231 			goto out;
5232 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5233 		break;
5234 	}
5235 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5236 	case KVM_CLEAR_DIRTY_LOG: {
5237 		struct kvm_clear_dirty_log log;
5238 
5239 		r = -EFAULT;
5240 		if (copy_from_user(&log, argp, sizeof(log)))
5241 			goto out;
5242 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5243 		break;
5244 	}
5245 #endif
5246 #ifdef CONFIG_KVM_MMIO
5247 	case KVM_REGISTER_COALESCED_MMIO: {
5248 		struct kvm_coalesced_mmio_zone zone;
5249 
5250 		r = -EFAULT;
5251 		if (copy_from_user(&zone, argp, sizeof(zone)))
5252 			goto out;
5253 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5254 		break;
5255 	}
5256 	case KVM_UNREGISTER_COALESCED_MMIO: {
5257 		struct kvm_coalesced_mmio_zone zone;
5258 
5259 		r = -EFAULT;
5260 		if (copy_from_user(&zone, argp, sizeof(zone)))
5261 			goto out;
5262 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5263 		break;
5264 	}
5265 #endif
5266 	case KVM_IRQFD: {
5267 		struct kvm_irqfd data;
5268 
5269 		r = -EFAULT;
5270 		if (copy_from_user(&data, argp, sizeof(data)))
5271 			goto out;
5272 		r = kvm_irqfd(kvm, &data);
5273 		break;
5274 	}
5275 	case KVM_IOEVENTFD: {
5276 		struct kvm_ioeventfd data;
5277 
5278 		r = -EFAULT;
5279 		if (copy_from_user(&data, argp, sizeof(data)))
5280 			goto out;
5281 		r = kvm_ioeventfd(kvm, &data);
5282 		break;
5283 	}
5284 #ifdef CONFIG_HAVE_KVM_MSI
5285 	case KVM_SIGNAL_MSI: {
5286 		struct kvm_msi msi;
5287 
5288 		r = -EFAULT;
5289 		if (copy_from_user(&msi, argp, sizeof(msi)))
5290 			goto out;
5291 		r = kvm_send_userspace_msi(kvm, &msi);
5292 		break;
5293 	}
5294 #endif
5295 #ifdef __KVM_HAVE_IRQ_LINE
5296 	case KVM_IRQ_LINE_STATUS:
5297 	case KVM_IRQ_LINE: {
5298 		struct kvm_irq_level irq_event;
5299 
5300 		r = -EFAULT;
5301 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5302 			goto out;
5303 
5304 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5305 					ioctl == KVM_IRQ_LINE_STATUS);
5306 		if (r)
5307 			goto out;
5308 
5309 		r = -EFAULT;
5310 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5311 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5312 				goto out;
5313 		}
5314 
5315 		r = 0;
5316 		break;
5317 	}
5318 #endif
5319 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5320 	case KVM_SET_GSI_ROUTING: {
5321 		struct kvm_irq_routing routing;
5322 		struct kvm_irq_routing __user *urouting;
5323 		struct kvm_irq_routing_entry *entries = NULL;
5324 
5325 		r = -EFAULT;
5326 		if (copy_from_user(&routing, argp, sizeof(routing)))
5327 			goto out;
5328 		r = -EINVAL;
5329 		if (!kvm_arch_can_set_irq_routing(kvm))
5330 			goto out;
5331 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5332 			goto out;
5333 		if (routing.flags)
5334 			goto out;
5335 		if (routing.nr) {
5336 			urouting = argp;
5337 			entries = vmemdup_array_user(urouting->entries,
5338 						     routing.nr, sizeof(*entries));
5339 			if (IS_ERR(entries)) {
5340 				r = PTR_ERR(entries);
5341 				goto out;
5342 			}
5343 		}
5344 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5345 					routing.flags);
5346 		kvfree(entries);
5347 		break;
5348 	}
5349 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5350 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5351 	case KVM_SET_MEMORY_ATTRIBUTES: {
5352 		struct kvm_memory_attributes attrs;
5353 
5354 		r = -EFAULT;
5355 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5356 			goto out;
5357 
5358 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5359 		break;
5360 	}
5361 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5362 	case KVM_CREATE_DEVICE: {
5363 		struct kvm_create_device cd;
5364 
5365 		r = -EFAULT;
5366 		if (copy_from_user(&cd, argp, sizeof(cd)))
5367 			goto out;
5368 
5369 		r = kvm_ioctl_create_device(kvm, &cd);
5370 		if (r)
5371 			goto out;
5372 
5373 		r = -EFAULT;
5374 		if (copy_to_user(argp, &cd, sizeof(cd)))
5375 			goto out;
5376 
5377 		r = 0;
5378 		break;
5379 	}
5380 	case KVM_CHECK_EXTENSION:
5381 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5382 		break;
5383 	case KVM_RESET_DIRTY_RINGS:
5384 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5385 		break;
5386 	case KVM_GET_STATS_FD:
5387 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5388 		break;
5389 #ifdef CONFIG_KVM_GUEST_MEMFD
5390 	case KVM_CREATE_GUEST_MEMFD: {
5391 		struct kvm_create_guest_memfd guest_memfd;
5392 
5393 		r = -EFAULT;
5394 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5395 			goto out;
5396 
5397 		r = kvm_gmem_create(kvm, &guest_memfd);
5398 		break;
5399 	}
5400 #endif
5401 	default:
5402 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5403 	}
5404 out:
5405 	return r;
5406 }
5407 
5408 #ifdef CONFIG_KVM_COMPAT
5409 struct compat_kvm_dirty_log {
5410 	__u32 slot;
5411 	__u32 padding1;
5412 	union {
5413 		compat_uptr_t dirty_bitmap; /* one bit per page */
5414 		__u64 padding2;
5415 	};
5416 };
5417 
5418 struct compat_kvm_clear_dirty_log {
5419 	__u32 slot;
5420 	__u32 num_pages;
5421 	__u64 first_page;
5422 	union {
5423 		compat_uptr_t dirty_bitmap; /* one bit per page */
5424 		__u64 padding2;
5425 	};
5426 };
5427 
5428 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5429 				     unsigned long arg)
5430 {
5431 	return -ENOTTY;
5432 }
5433 
5434 static long kvm_vm_compat_ioctl(struct file *filp,
5435 			   unsigned int ioctl, unsigned long arg)
5436 {
5437 	struct kvm *kvm = filp->private_data;
5438 	int r;
5439 
5440 	if (kvm->mm != current->mm || kvm->vm_dead)
5441 		return -EIO;
5442 
5443 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5444 	if (r != -ENOTTY)
5445 		return r;
5446 
5447 	switch (ioctl) {
5448 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5449 	case KVM_CLEAR_DIRTY_LOG: {
5450 		struct compat_kvm_clear_dirty_log compat_log;
5451 		struct kvm_clear_dirty_log log;
5452 
5453 		if (copy_from_user(&compat_log, (void __user *)arg,
5454 				   sizeof(compat_log)))
5455 			return -EFAULT;
5456 		log.slot	 = compat_log.slot;
5457 		log.num_pages	 = compat_log.num_pages;
5458 		log.first_page	 = compat_log.first_page;
5459 		log.padding2	 = compat_log.padding2;
5460 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5461 
5462 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5463 		break;
5464 	}
5465 #endif
5466 	case KVM_GET_DIRTY_LOG: {
5467 		struct compat_kvm_dirty_log compat_log;
5468 		struct kvm_dirty_log log;
5469 
5470 		if (copy_from_user(&compat_log, (void __user *)arg,
5471 				   sizeof(compat_log)))
5472 			return -EFAULT;
5473 		log.slot	 = compat_log.slot;
5474 		log.padding1	 = compat_log.padding1;
5475 		log.padding2	 = compat_log.padding2;
5476 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5477 
5478 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5479 		break;
5480 	}
5481 	default:
5482 		r = kvm_vm_ioctl(filp, ioctl, arg);
5483 	}
5484 	return r;
5485 }
5486 #endif
5487 
5488 static struct file_operations kvm_vm_fops = {
5489 	.release        = kvm_vm_release,
5490 	.unlocked_ioctl = kvm_vm_ioctl,
5491 	.llseek		= noop_llseek,
5492 	KVM_COMPAT(kvm_vm_compat_ioctl),
5493 };
5494 
5495 bool file_is_kvm(struct file *file)
5496 {
5497 	return file && file->f_op == &kvm_vm_fops;
5498 }
5499 EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm);
5500 
5501 static int kvm_dev_ioctl_create_vm(unsigned long type)
5502 {
5503 	char fdname[ITOA_MAX_LEN + 1];
5504 	int r, fd;
5505 	struct kvm *kvm;
5506 	struct file *file;
5507 
5508 	fd = get_unused_fd_flags(O_CLOEXEC);
5509 	if (fd < 0)
5510 		return fd;
5511 
5512 	snprintf(fdname, sizeof(fdname), "%d", fd);
5513 
5514 	kvm = kvm_create_vm(type, fdname);
5515 	if (IS_ERR(kvm)) {
5516 		r = PTR_ERR(kvm);
5517 		goto put_fd;
5518 	}
5519 
5520 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5521 	if (IS_ERR(file)) {
5522 		r = PTR_ERR(file);
5523 		goto put_kvm;
5524 	}
5525 
5526 	/*
5527 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5528 	 * already set, with ->release() being kvm_vm_release().  In error
5529 	 * cases it will be called by the final fput(file) and will take
5530 	 * care of doing kvm_put_kvm(kvm).
5531 	 */
5532 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5533 
5534 	fd_install(fd, file);
5535 	return fd;
5536 
5537 put_kvm:
5538 	kvm_put_kvm(kvm);
5539 put_fd:
5540 	put_unused_fd(fd);
5541 	return r;
5542 }
5543 
5544 static long kvm_dev_ioctl(struct file *filp,
5545 			  unsigned int ioctl, unsigned long arg)
5546 {
5547 	int r = -EINVAL;
5548 
5549 	switch (ioctl) {
5550 	case KVM_GET_API_VERSION:
5551 		if (arg)
5552 			goto out;
5553 		r = KVM_API_VERSION;
5554 		break;
5555 	case KVM_CREATE_VM:
5556 		r = kvm_dev_ioctl_create_vm(arg);
5557 		break;
5558 	case KVM_CHECK_EXTENSION:
5559 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5560 		break;
5561 	case KVM_GET_VCPU_MMAP_SIZE:
5562 		if (arg)
5563 			goto out;
5564 		r = PAGE_SIZE;     /* struct kvm_run */
5565 #ifdef CONFIG_X86
5566 		r += PAGE_SIZE;    /* pio data page */
5567 #endif
5568 #ifdef CONFIG_KVM_MMIO
5569 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5570 #endif
5571 		break;
5572 	default:
5573 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5574 	}
5575 out:
5576 	return r;
5577 }
5578 
5579 static struct file_operations kvm_chardev_ops = {
5580 	.unlocked_ioctl = kvm_dev_ioctl,
5581 	.llseek		= noop_llseek,
5582 	KVM_COMPAT(kvm_dev_ioctl),
5583 };
5584 
5585 static struct miscdevice kvm_dev = {
5586 	KVM_MINOR,
5587 	"kvm",
5588 	&kvm_chardev_ops,
5589 };
5590 
5591 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5592 bool enable_virt_at_load = true;
5593 module_param(enable_virt_at_load, bool, 0444);
5594 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load);
5595 
5596 __visible bool kvm_rebooting;
5597 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting);
5598 
5599 static DEFINE_PER_CPU(bool, virtualization_enabled);
5600 static DEFINE_MUTEX(kvm_usage_lock);
5601 static int kvm_usage_count;
5602 
5603 __weak void kvm_arch_enable_virtualization(void)
5604 {
5605 
5606 }
5607 
5608 __weak void kvm_arch_disable_virtualization(void)
5609 {
5610 
5611 }
5612 
5613 static int kvm_enable_virtualization_cpu(void)
5614 {
5615 	if (__this_cpu_read(virtualization_enabled))
5616 		return 0;
5617 
5618 	if (kvm_arch_enable_virtualization_cpu()) {
5619 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5620 			raw_smp_processor_id());
5621 		return -EIO;
5622 	}
5623 
5624 	__this_cpu_write(virtualization_enabled, true);
5625 	return 0;
5626 }
5627 
5628 static int kvm_online_cpu(unsigned int cpu)
5629 {
5630 	/*
5631 	 * Abort the CPU online process if hardware virtualization cannot
5632 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5633 	 * errors when scheduled to this CPU.
5634 	 */
5635 	return kvm_enable_virtualization_cpu();
5636 }
5637 
5638 static void kvm_disable_virtualization_cpu(void *ign)
5639 {
5640 	if (!__this_cpu_read(virtualization_enabled))
5641 		return;
5642 
5643 	kvm_arch_disable_virtualization_cpu();
5644 
5645 	__this_cpu_write(virtualization_enabled, false);
5646 }
5647 
5648 static int kvm_offline_cpu(unsigned int cpu)
5649 {
5650 	kvm_disable_virtualization_cpu(NULL);
5651 	return 0;
5652 }
5653 
5654 static void kvm_shutdown(void *data)
5655 {
5656 	/*
5657 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5658 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5659 	 * that relevant errors and exceptions aren't entirely unexpected.
5660 	 * Some flavors of hardware virtualization need to be disabled before
5661 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5662 	 * on x86, virtualization can block INIT interrupts, which are used by
5663 	 * firmware to pull APs back under firmware control.  Note, this path
5664 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5665 	 * 100% comprehensive.
5666 	 */
5667 	pr_info("kvm: exiting hardware virtualization\n");
5668 	kvm_rebooting = true;
5669 	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5670 }
5671 
5672 static int kvm_suspend(void *data)
5673 {
5674 	/*
5675 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5676 	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5677 	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5678 	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5679 	 * enabling can be preempted, but the task cannot be frozen until it has
5680 	 * dropped all locks (userspace tasks are frozen via a fake signal).
5681 	 */
5682 	lockdep_assert_not_held(&kvm_usage_lock);
5683 	lockdep_assert_irqs_disabled();
5684 
5685 	kvm_disable_virtualization_cpu(NULL);
5686 	return 0;
5687 }
5688 
5689 static void kvm_resume(void *data)
5690 {
5691 	lockdep_assert_not_held(&kvm_usage_lock);
5692 	lockdep_assert_irqs_disabled();
5693 
5694 	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5695 }
5696 
5697 static const struct syscore_ops kvm_syscore_ops = {
5698 	.suspend = kvm_suspend,
5699 	.resume = kvm_resume,
5700 	.shutdown = kvm_shutdown,
5701 };
5702 
5703 static struct syscore kvm_syscore = {
5704 	.ops = &kvm_syscore_ops,
5705 };
5706 
5707 int kvm_enable_virtualization(void)
5708 {
5709 	int r;
5710 
5711 	guard(mutex)(&kvm_usage_lock);
5712 
5713 	if (kvm_usage_count++)
5714 		return 0;
5715 
5716 	kvm_arch_enable_virtualization();
5717 
5718 	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5719 			      kvm_online_cpu, kvm_offline_cpu);
5720 	if (r)
5721 		goto err_cpuhp;
5722 
5723 	register_syscore(&kvm_syscore);
5724 
5725 	/*
5726 	 * Undo virtualization enabling and bail if the system is going down.
5727 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5728 	 * possible for an in-flight operation to enable virtualization after
5729 	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5730 	 * invoked.  Note, this relies on system_state being set _before_
5731 	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5732 	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5733 	 * a syscore ops hook instead of registering a dedicated reboot
5734 	 * notifier (the latter runs before system_state is updated).
5735 	 */
5736 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5737 	    system_state == SYSTEM_RESTART) {
5738 		r = -EBUSY;
5739 		goto err_rebooting;
5740 	}
5741 
5742 	return 0;
5743 
5744 err_rebooting:
5745 	unregister_syscore(&kvm_syscore);
5746 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5747 err_cpuhp:
5748 	kvm_arch_disable_virtualization();
5749 	--kvm_usage_count;
5750 	return r;
5751 }
5752 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization);
5753 
5754 void kvm_disable_virtualization(void)
5755 {
5756 	guard(mutex)(&kvm_usage_lock);
5757 
5758 	if (--kvm_usage_count)
5759 		return;
5760 
5761 	unregister_syscore(&kvm_syscore);
5762 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5763 	kvm_arch_disable_virtualization();
5764 }
5765 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization);
5766 
5767 static int kvm_init_virtualization(void)
5768 {
5769 	if (enable_virt_at_load)
5770 		return kvm_enable_virtualization();
5771 
5772 	return 0;
5773 }
5774 
5775 static void kvm_uninit_virtualization(void)
5776 {
5777 	if (enable_virt_at_load)
5778 		kvm_disable_virtualization();
5779 }
5780 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5781 static int kvm_init_virtualization(void)
5782 {
5783 	return 0;
5784 }
5785 
5786 static void kvm_uninit_virtualization(void)
5787 {
5788 
5789 }
5790 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5791 
5792 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5793 {
5794 	if (dev->ops->destructor)
5795 		dev->ops->destructor(dev);
5796 }
5797 
5798 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5799 {
5800 	int i;
5801 
5802 	for (i = 0; i < bus->dev_count; i++) {
5803 		struct kvm_io_device *pos = bus->range[i].dev;
5804 
5805 		kvm_iodevice_destructor(pos);
5806 	}
5807 	kfree(bus);
5808 }
5809 
5810 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5811 				 const struct kvm_io_range *r2)
5812 {
5813 	gpa_t addr1 = r1->addr;
5814 	gpa_t addr2 = r2->addr;
5815 
5816 	if (addr1 < addr2)
5817 		return -1;
5818 
5819 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5820 	 * accept any overlapping write.  Any order is acceptable for
5821 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5822 	 * we process all of them.
5823 	 */
5824 	if (r2->len) {
5825 		addr1 += r1->len;
5826 		addr2 += r2->len;
5827 	}
5828 
5829 	if (addr1 > addr2)
5830 		return 1;
5831 
5832 	return 0;
5833 }
5834 
5835 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5836 {
5837 	return kvm_io_bus_cmp(p1, p2);
5838 }
5839 
5840 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5841 			     gpa_t addr, int len)
5842 {
5843 	struct kvm_io_range *range, key;
5844 	int off;
5845 
5846 	key = (struct kvm_io_range) {
5847 		.addr = addr,
5848 		.len = len,
5849 	};
5850 
5851 	range = bsearch(&key, bus->range, bus->dev_count,
5852 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5853 	if (range == NULL)
5854 		return -ENOENT;
5855 
5856 	off = range - bus->range;
5857 
5858 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5859 		off--;
5860 
5861 	return off;
5862 }
5863 
5864 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5865 			      struct kvm_io_range *range, const void *val)
5866 {
5867 	int idx;
5868 
5869 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5870 	if (idx < 0)
5871 		return -EOPNOTSUPP;
5872 
5873 	while (idx < bus->dev_count &&
5874 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5875 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5876 					range->len, val))
5877 			return idx;
5878 		idx++;
5879 	}
5880 
5881 	return -EOPNOTSUPP;
5882 }
5883 
5884 static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx)
5885 {
5886 	/*
5887 	 * Ensure that any updates to kvm_buses[] observed by the previous vCPU
5888 	 * machine instruction are also visible to the vCPU machine instruction
5889 	 * that triggered this call.
5890 	 */
5891 	smp_mb__after_srcu_read_lock();
5892 
5893 	return srcu_dereference(kvm->buses[idx], &kvm->srcu);
5894 }
5895 
5896 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5897 		     int len, const void *val)
5898 {
5899 	struct kvm_io_bus *bus;
5900 	struct kvm_io_range range;
5901 	int r;
5902 
5903 	range = (struct kvm_io_range) {
5904 		.addr = addr,
5905 		.len = len,
5906 	};
5907 
5908 	bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5909 	if (!bus)
5910 		return -ENOMEM;
5911 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5912 	return r < 0 ? r : 0;
5913 }
5914 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write);
5915 
5916 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5917 			    gpa_t addr, int len, const void *val, long cookie)
5918 {
5919 	struct kvm_io_bus *bus;
5920 	struct kvm_io_range range;
5921 
5922 	range = (struct kvm_io_range) {
5923 		.addr = addr,
5924 		.len = len,
5925 	};
5926 
5927 	bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5928 	if (!bus)
5929 		return -ENOMEM;
5930 
5931 	/* First try the device referenced by cookie. */
5932 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5933 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5934 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5935 					val))
5936 			return cookie;
5937 
5938 	/*
5939 	 * cookie contained garbage; fall back to search and return the
5940 	 * correct cookie value.
5941 	 */
5942 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5943 }
5944 
5945 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5946 			     struct kvm_io_range *range, void *val)
5947 {
5948 	int idx;
5949 
5950 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5951 	if (idx < 0)
5952 		return -EOPNOTSUPP;
5953 
5954 	while (idx < bus->dev_count &&
5955 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5956 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5957 				       range->len, val))
5958 			return idx;
5959 		idx++;
5960 	}
5961 
5962 	return -EOPNOTSUPP;
5963 }
5964 
5965 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5966 		    int len, void *val)
5967 {
5968 	struct kvm_io_bus *bus;
5969 	struct kvm_io_range range;
5970 	int r;
5971 
5972 	range = (struct kvm_io_range) {
5973 		.addr = addr,
5974 		.len = len,
5975 	};
5976 
5977 	bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5978 	if (!bus)
5979 		return -ENOMEM;
5980 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5981 	return r < 0 ? r : 0;
5982 }
5983 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read);
5984 
5985 static void __free_bus(struct rcu_head *rcu)
5986 {
5987 	struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu);
5988 
5989 	kfree(bus);
5990 }
5991 
5992 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5993 			    int len, struct kvm_io_device *dev)
5994 {
5995 	int i;
5996 	struct kvm_io_bus *new_bus, *bus;
5997 	struct kvm_io_range range;
5998 
5999 	lockdep_assert_held(&kvm->slots_lock);
6000 
6001 	bus = kvm_get_bus(kvm, bus_idx);
6002 	if (!bus)
6003 		return -ENOMEM;
6004 
6005 	/* exclude ioeventfd which is limited by maximum fd */
6006 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
6007 		return -ENOSPC;
6008 
6009 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
6010 			  GFP_KERNEL_ACCOUNT);
6011 	if (!new_bus)
6012 		return -ENOMEM;
6013 
6014 	range = (struct kvm_io_range) {
6015 		.addr = addr,
6016 		.len = len,
6017 		.dev = dev,
6018 	};
6019 
6020 	for (i = 0; i < bus->dev_count; i++)
6021 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
6022 			break;
6023 
6024 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
6025 	new_bus->dev_count++;
6026 	new_bus->range[i] = range;
6027 	memcpy(new_bus->range + i + 1, bus->range + i,
6028 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
6029 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6030 	call_srcu(&kvm->srcu, &bus->rcu, __free_bus);
6031 
6032 	return 0;
6033 }
6034 
6035 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6036 			      struct kvm_io_device *dev)
6037 {
6038 	int i;
6039 	struct kvm_io_bus *new_bus, *bus;
6040 
6041 	lockdep_assert_held(&kvm->slots_lock);
6042 
6043 	bus = kvm_get_bus(kvm, bus_idx);
6044 	if (!bus)
6045 		return 0;
6046 
6047 	for (i = 0; i < bus->dev_count; i++) {
6048 		if (bus->range[i].dev == dev) {
6049 			break;
6050 		}
6051 	}
6052 
6053 	if (i == bus->dev_count)
6054 		return 0;
6055 
6056 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6057 			  GFP_KERNEL_ACCOUNT);
6058 	if (new_bus) {
6059 		memcpy(new_bus, bus, struct_size(bus, range, i));
6060 		new_bus->dev_count--;
6061 		memcpy(new_bus->range + i, bus->range + i + 1,
6062 				flex_array_size(new_bus, range, new_bus->dev_count - i));
6063 	}
6064 
6065 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6066 	synchronize_srcu_expedited(&kvm->srcu);
6067 
6068 	/*
6069 	 * If NULL bus is installed, destroy the old bus, including all the
6070 	 * attached devices. Otherwise, destroy the caller's device only.
6071 	 */
6072 	if (!new_bus) {
6073 		pr_err("kvm: failed to shrink bus, removing it completely\n");
6074 		kvm_io_bus_destroy(bus);
6075 		return -ENOMEM;
6076 	}
6077 
6078 	kvm_iodevice_destructor(dev);
6079 	kfree(bus);
6080 	return 0;
6081 }
6082 
6083 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6084 					 gpa_t addr)
6085 {
6086 	struct kvm_io_bus *bus;
6087 	int dev_idx, srcu_idx;
6088 	struct kvm_io_device *iodev = NULL;
6089 
6090 	srcu_idx = srcu_read_lock(&kvm->srcu);
6091 
6092 	bus = kvm_get_bus_srcu(kvm, bus_idx);
6093 	if (!bus)
6094 		goto out_unlock;
6095 
6096 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6097 	if (dev_idx < 0)
6098 		goto out_unlock;
6099 
6100 	iodev = bus->range[dev_idx].dev;
6101 
6102 out_unlock:
6103 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6104 
6105 	return iodev;
6106 }
6107 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev);
6108 
6109 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6110 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6111 			   const char *fmt)
6112 {
6113 	int ret;
6114 	struct kvm_stat_data *stat_data = inode->i_private;
6115 
6116 	/*
6117 	 * The debugfs files are a reference to the kvm struct which
6118         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6119         * avoids the race between open and the removal of the debugfs directory.
6120 	 */
6121 	if (!kvm_get_kvm_safe(stat_data->kvm))
6122 		return -ENOENT;
6123 
6124 	ret = simple_attr_open(inode, file, get,
6125 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6126 			       ? set : NULL, fmt);
6127 	if (ret)
6128 		kvm_put_kvm(stat_data->kvm);
6129 
6130 	return ret;
6131 }
6132 
6133 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6134 {
6135 	struct kvm_stat_data *stat_data = inode->i_private;
6136 
6137 	simple_attr_release(inode, file);
6138 	kvm_put_kvm(stat_data->kvm);
6139 
6140 	return 0;
6141 }
6142 
6143 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6144 {
6145 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6146 
6147 	return 0;
6148 }
6149 
6150 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6151 {
6152 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6153 
6154 	return 0;
6155 }
6156 
6157 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6158 {
6159 	unsigned long i;
6160 	struct kvm_vcpu *vcpu;
6161 
6162 	*val = 0;
6163 
6164 	kvm_for_each_vcpu(i, vcpu, kvm)
6165 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6166 
6167 	return 0;
6168 }
6169 
6170 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6171 {
6172 	unsigned long i;
6173 	struct kvm_vcpu *vcpu;
6174 
6175 	kvm_for_each_vcpu(i, vcpu, kvm)
6176 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6177 
6178 	return 0;
6179 }
6180 
6181 static int kvm_stat_data_get(void *data, u64 *val)
6182 {
6183 	int r = -EFAULT;
6184 	struct kvm_stat_data *stat_data = data;
6185 
6186 	switch (stat_data->kind) {
6187 	case KVM_STAT_VM:
6188 		r = kvm_get_stat_per_vm(stat_data->kvm,
6189 					stat_data->desc->desc.offset, val);
6190 		break;
6191 	case KVM_STAT_VCPU:
6192 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6193 					  stat_data->desc->desc.offset, val);
6194 		break;
6195 	}
6196 
6197 	return r;
6198 }
6199 
6200 static int kvm_stat_data_clear(void *data, u64 val)
6201 {
6202 	int r = -EFAULT;
6203 	struct kvm_stat_data *stat_data = data;
6204 
6205 	if (val)
6206 		return -EINVAL;
6207 
6208 	switch (stat_data->kind) {
6209 	case KVM_STAT_VM:
6210 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6211 					  stat_data->desc->desc.offset);
6212 		break;
6213 	case KVM_STAT_VCPU:
6214 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6215 					    stat_data->desc->desc.offset);
6216 		break;
6217 	}
6218 
6219 	return r;
6220 }
6221 
6222 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6223 {
6224 	__simple_attr_check_format("%llu\n", 0ull);
6225 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6226 				kvm_stat_data_clear, "%llu\n");
6227 }
6228 
6229 static const struct file_operations stat_fops_per_vm = {
6230 	.owner = THIS_MODULE,
6231 	.open = kvm_stat_data_open,
6232 	.release = kvm_debugfs_release,
6233 	.read = simple_attr_read,
6234 	.write = simple_attr_write,
6235 };
6236 
6237 static int vm_stat_get(void *_offset, u64 *val)
6238 {
6239 	unsigned offset = (long)_offset;
6240 	struct kvm *kvm;
6241 	u64 tmp_val;
6242 
6243 	*val = 0;
6244 	mutex_lock(&kvm_lock);
6245 	list_for_each_entry(kvm, &vm_list, vm_list) {
6246 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6247 		*val += tmp_val;
6248 	}
6249 	mutex_unlock(&kvm_lock);
6250 	return 0;
6251 }
6252 
6253 static int vm_stat_clear(void *_offset, u64 val)
6254 {
6255 	unsigned offset = (long)_offset;
6256 	struct kvm *kvm;
6257 
6258 	if (val)
6259 		return -EINVAL;
6260 
6261 	mutex_lock(&kvm_lock);
6262 	list_for_each_entry(kvm, &vm_list, vm_list) {
6263 		kvm_clear_stat_per_vm(kvm, offset);
6264 	}
6265 	mutex_unlock(&kvm_lock);
6266 
6267 	return 0;
6268 }
6269 
6270 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6271 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6272 
6273 static int vcpu_stat_get(void *_offset, u64 *val)
6274 {
6275 	unsigned offset = (long)_offset;
6276 	struct kvm *kvm;
6277 	u64 tmp_val;
6278 
6279 	*val = 0;
6280 	mutex_lock(&kvm_lock);
6281 	list_for_each_entry(kvm, &vm_list, vm_list) {
6282 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6283 		*val += tmp_val;
6284 	}
6285 	mutex_unlock(&kvm_lock);
6286 	return 0;
6287 }
6288 
6289 static int vcpu_stat_clear(void *_offset, u64 val)
6290 {
6291 	unsigned offset = (long)_offset;
6292 	struct kvm *kvm;
6293 
6294 	if (val)
6295 		return -EINVAL;
6296 
6297 	mutex_lock(&kvm_lock);
6298 	list_for_each_entry(kvm, &vm_list, vm_list) {
6299 		kvm_clear_stat_per_vcpu(kvm, offset);
6300 	}
6301 	mutex_unlock(&kvm_lock);
6302 
6303 	return 0;
6304 }
6305 
6306 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6307 			"%llu\n");
6308 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6309 
6310 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6311 {
6312 	struct kobj_uevent_env *env;
6313 	unsigned long long created, active;
6314 
6315 	if (!kvm_dev.this_device || !kvm)
6316 		return;
6317 
6318 	mutex_lock(&kvm_lock);
6319 	if (type == KVM_EVENT_CREATE_VM) {
6320 		kvm_createvm_count++;
6321 		kvm_active_vms++;
6322 	} else if (type == KVM_EVENT_DESTROY_VM) {
6323 		kvm_active_vms--;
6324 	}
6325 	created = kvm_createvm_count;
6326 	active = kvm_active_vms;
6327 	mutex_unlock(&kvm_lock);
6328 
6329 	env = kzalloc(sizeof(*env), GFP_KERNEL);
6330 	if (!env)
6331 		return;
6332 
6333 	add_uevent_var(env, "CREATED=%llu", created);
6334 	add_uevent_var(env, "COUNT=%llu", active);
6335 
6336 	if (type == KVM_EVENT_CREATE_VM) {
6337 		add_uevent_var(env, "EVENT=create");
6338 		kvm->userspace_pid = task_pid_nr(current);
6339 	} else if (type == KVM_EVENT_DESTROY_VM) {
6340 		add_uevent_var(env, "EVENT=destroy");
6341 	}
6342 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6343 
6344 	if (!IS_ERR(kvm->debugfs_dentry)) {
6345 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6346 
6347 		if (p) {
6348 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6349 			if (!IS_ERR(tmp))
6350 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6351 			kfree(p);
6352 		}
6353 	}
6354 	/* no need for checks, since we are adding at most only 5 keys */
6355 	env->envp[env->envp_idx++] = NULL;
6356 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6357 	kfree(env);
6358 }
6359 
6360 static void kvm_init_debug(void)
6361 {
6362 	const struct file_operations *fops;
6363 	const struct _kvm_stats_desc *pdesc;
6364 	int i;
6365 
6366 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6367 
6368 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6369 		pdesc = &kvm_vm_stats_desc[i];
6370 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6371 			fops = &vm_stat_fops;
6372 		else
6373 			fops = &vm_stat_readonly_fops;
6374 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6375 				kvm_debugfs_dir,
6376 				(void *)(long)pdesc->desc.offset, fops);
6377 	}
6378 
6379 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6380 		pdesc = &kvm_vcpu_stats_desc[i];
6381 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6382 			fops = &vcpu_stat_fops;
6383 		else
6384 			fops = &vcpu_stat_readonly_fops;
6385 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6386 				kvm_debugfs_dir,
6387 				(void *)(long)pdesc->desc.offset, fops);
6388 	}
6389 }
6390 
6391 static inline
6392 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6393 {
6394 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6395 }
6396 
6397 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6398 {
6399 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6400 
6401 	WRITE_ONCE(vcpu->preempted, false);
6402 	WRITE_ONCE(vcpu->ready, false);
6403 
6404 	__this_cpu_write(kvm_running_vcpu, vcpu);
6405 	kvm_arch_vcpu_load(vcpu, cpu);
6406 
6407 	WRITE_ONCE(vcpu->scheduled_out, false);
6408 }
6409 
6410 static void kvm_sched_out(struct preempt_notifier *pn,
6411 			  struct task_struct *next)
6412 {
6413 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6414 
6415 	WRITE_ONCE(vcpu->scheduled_out, true);
6416 
6417 	if (task_is_runnable(current) && vcpu->wants_to_run) {
6418 		WRITE_ONCE(vcpu->preempted, true);
6419 		WRITE_ONCE(vcpu->ready, true);
6420 	}
6421 	kvm_arch_vcpu_put(vcpu);
6422 	__this_cpu_write(kvm_running_vcpu, NULL);
6423 }
6424 
6425 /**
6426  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6427  *
6428  * We can disable preemption locally around accessing the per-CPU variable,
6429  * and use the resolved vcpu pointer after enabling preemption again,
6430  * because even if the current thread is migrated to another CPU, reading
6431  * the per-CPU value later will give us the same value as we update the
6432  * per-CPU variable in the preempt notifier handlers.
6433  */
6434 struct kvm_vcpu *kvm_get_running_vcpu(void)
6435 {
6436 	struct kvm_vcpu *vcpu;
6437 
6438 	preempt_disable();
6439 	vcpu = __this_cpu_read(kvm_running_vcpu);
6440 	preempt_enable();
6441 
6442 	return vcpu;
6443 }
6444 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu);
6445 
6446 /**
6447  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6448  */
6449 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6450 {
6451         return &kvm_running_vcpu;
6452 }
6453 
6454 #ifdef CONFIG_GUEST_PERF_EVENTS
6455 static unsigned int kvm_guest_state(void)
6456 {
6457 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6458 	unsigned int state;
6459 
6460 	if (!kvm_arch_pmi_in_guest(vcpu))
6461 		return 0;
6462 
6463 	state = PERF_GUEST_ACTIVE;
6464 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6465 		state |= PERF_GUEST_USER;
6466 
6467 	return state;
6468 }
6469 
6470 static unsigned long kvm_guest_get_ip(void)
6471 {
6472 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6473 
6474 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6475 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6476 		return 0;
6477 
6478 	return kvm_arch_vcpu_get_ip(vcpu);
6479 }
6480 
6481 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6482 	.state			= kvm_guest_state,
6483 	.get_ip			= kvm_guest_get_ip,
6484 	.handle_intel_pt_intr	= NULL,
6485 };
6486 
6487 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6488 {
6489 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6490 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6491 }
6492 void kvm_unregister_perf_callbacks(void)
6493 {
6494 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6495 }
6496 #endif
6497 
6498 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6499 {
6500 	int r;
6501 	int cpu;
6502 
6503 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6504 	if (!vcpu_align)
6505 		vcpu_align = __alignof__(struct kvm_vcpu);
6506 	kvm_vcpu_cache =
6507 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6508 					   SLAB_ACCOUNT,
6509 					   offsetof(struct kvm_vcpu, arch),
6510 					   offsetofend(struct kvm_vcpu, stats_id)
6511 					   - offsetof(struct kvm_vcpu, arch),
6512 					   NULL);
6513 	if (!kvm_vcpu_cache)
6514 		return -ENOMEM;
6515 
6516 	for_each_possible_cpu(cpu) {
6517 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6518 					    GFP_KERNEL, cpu_to_node(cpu))) {
6519 			r = -ENOMEM;
6520 			goto err_cpu_kick_mask;
6521 		}
6522 	}
6523 
6524 	r = kvm_irqfd_init();
6525 	if (r)
6526 		goto err_irqfd;
6527 
6528 	r = kvm_async_pf_init();
6529 	if (r)
6530 		goto err_async_pf;
6531 
6532 	kvm_chardev_ops.owner = module;
6533 	kvm_vm_fops.owner = module;
6534 	kvm_vcpu_fops.owner = module;
6535 	kvm_device_fops.owner = module;
6536 
6537 	kvm_preempt_ops.sched_in = kvm_sched_in;
6538 	kvm_preempt_ops.sched_out = kvm_sched_out;
6539 
6540 	kvm_init_debug();
6541 
6542 	r = kvm_vfio_ops_init();
6543 	if (WARN_ON_ONCE(r))
6544 		goto err_vfio;
6545 
6546 	r = kvm_gmem_init(module);
6547 	if (r)
6548 		goto err_gmem;
6549 
6550 	r = kvm_init_virtualization();
6551 	if (r)
6552 		goto err_virt;
6553 
6554 	/*
6555 	 * Registration _must_ be the very last thing done, as this exposes
6556 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6557 	 */
6558 	r = misc_register(&kvm_dev);
6559 	if (r) {
6560 		pr_err("kvm: misc device register failed\n");
6561 		goto err_register;
6562 	}
6563 
6564 	return 0;
6565 
6566 err_register:
6567 	kvm_uninit_virtualization();
6568 err_virt:
6569 	kvm_gmem_exit();
6570 err_gmem:
6571 	kvm_vfio_ops_exit();
6572 err_vfio:
6573 	kvm_async_pf_deinit();
6574 err_async_pf:
6575 	kvm_irqfd_exit();
6576 err_irqfd:
6577 err_cpu_kick_mask:
6578 	for_each_possible_cpu(cpu)
6579 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6580 	kmem_cache_destroy(kvm_vcpu_cache);
6581 	return r;
6582 }
6583 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init);
6584 
6585 void kvm_exit(void)
6586 {
6587 	int cpu;
6588 
6589 	/*
6590 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6591 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6592 	 * to KVM while the module is being stopped.
6593 	 */
6594 	misc_deregister(&kvm_dev);
6595 
6596 	kvm_uninit_virtualization();
6597 
6598 	debugfs_remove_recursive(kvm_debugfs_dir);
6599 	for_each_possible_cpu(cpu)
6600 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6601 	kmem_cache_destroy(kvm_vcpu_cache);
6602 	kvm_gmem_exit();
6603 	kvm_vfio_ops_exit();
6604 	kvm_async_pf_deinit();
6605 	kvm_irqfd_exit();
6606 }
6607 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit);
6608