1 /* 2 * kvm eventfd support - use eventfd objects to signal various KVM events 3 * 4 * Copyright 2009 Novell. All Rights Reserved. 5 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 6 * 7 * Author: 8 * Gregory Haskins <ghaskins@novell.com> 9 * 10 * This file is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License 12 * as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software Foundation, 21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 22 */ 23 24 #include <linux/kvm_host.h> 25 #include <linux/kvm.h> 26 #include <linux/workqueue.h> 27 #include <linux/syscalls.h> 28 #include <linux/wait.h> 29 #include <linux/poll.h> 30 #include <linux/file.h> 31 #include <linux/list.h> 32 #include <linux/eventfd.h> 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 36 #include "iodev.h" 37 38 /* 39 * -------------------------------------------------------------------- 40 * irqfd: Allows an fd to be used to inject an interrupt to the guest 41 * 42 * Credit goes to Avi Kivity for the original idea. 43 * -------------------------------------------------------------------- 44 */ 45 46 /* 47 * Resampling irqfds are a special variety of irqfds used to emulate 48 * level triggered interrupts. The interrupt is asserted on eventfd 49 * trigger. On acknowledgement through the irq ack notifier, the 50 * interrupt is de-asserted and userspace is notified through the 51 * resamplefd. All resamplers on the same gsi are de-asserted 52 * together, so we don't need to track the state of each individual 53 * user. We can also therefore share the same irq source ID. 54 */ 55 struct _irqfd_resampler { 56 struct kvm *kvm; 57 /* 58 * List of resampling struct _irqfd objects sharing this gsi. 59 * RCU list modified under kvm->irqfds.resampler_lock 60 */ 61 struct list_head list; 62 struct kvm_irq_ack_notifier notifier; 63 /* 64 * Entry in list of kvm->irqfd.resampler_list. Use for sharing 65 * resamplers among irqfds on the same gsi. 66 * Accessed and modified under kvm->irqfds.resampler_lock 67 */ 68 struct list_head link; 69 }; 70 71 struct _irqfd { 72 /* Used for MSI fast-path */ 73 struct kvm *kvm; 74 wait_queue_t wait; 75 /* Update side is protected by irqfds.lock */ 76 struct kvm_kernel_irq_routing_entry __rcu *irq_entry; 77 /* Used for level IRQ fast-path */ 78 int gsi; 79 struct work_struct inject; 80 /* The resampler used by this irqfd (resampler-only) */ 81 struct _irqfd_resampler *resampler; 82 /* Eventfd notified on resample (resampler-only) */ 83 struct eventfd_ctx *resamplefd; 84 /* Entry in list of irqfds for a resampler (resampler-only) */ 85 struct list_head resampler_link; 86 /* Used for setup/shutdown */ 87 struct eventfd_ctx *eventfd; 88 struct list_head list; 89 poll_table pt; 90 struct work_struct shutdown; 91 }; 92 93 static struct workqueue_struct *irqfd_cleanup_wq; 94 95 static void 96 irqfd_inject(struct work_struct *work) 97 { 98 struct _irqfd *irqfd = container_of(work, struct _irqfd, inject); 99 struct kvm *kvm = irqfd->kvm; 100 101 if (!irqfd->resampler) { 102 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1); 103 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0); 104 } else 105 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 106 irqfd->gsi, 1); 107 } 108 109 /* 110 * Since resampler irqfds share an IRQ source ID, we de-assert once 111 * then notify all of the resampler irqfds using this GSI. We can't 112 * do multiple de-asserts or we risk racing with incoming re-asserts. 113 */ 114 static void 115 irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) 116 { 117 struct _irqfd_resampler *resampler; 118 struct _irqfd *irqfd; 119 120 resampler = container_of(kian, struct _irqfd_resampler, notifier); 121 122 kvm_set_irq(resampler->kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 123 resampler->notifier.gsi, 0); 124 125 rcu_read_lock(); 126 127 list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) 128 eventfd_signal(irqfd->resamplefd, 1); 129 130 rcu_read_unlock(); 131 } 132 133 static void 134 irqfd_resampler_shutdown(struct _irqfd *irqfd) 135 { 136 struct _irqfd_resampler *resampler = irqfd->resampler; 137 struct kvm *kvm = resampler->kvm; 138 139 mutex_lock(&kvm->irqfds.resampler_lock); 140 141 list_del_rcu(&irqfd->resampler_link); 142 synchronize_rcu(); 143 144 if (list_empty(&resampler->list)) { 145 list_del(&resampler->link); 146 kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); 147 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 148 resampler->notifier.gsi, 0); 149 kfree(resampler); 150 } 151 152 mutex_unlock(&kvm->irqfds.resampler_lock); 153 } 154 155 /* 156 * Race-free decouple logic (ordering is critical) 157 */ 158 static void 159 irqfd_shutdown(struct work_struct *work) 160 { 161 struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown); 162 u64 cnt; 163 164 /* 165 * Synchronize with the wait-queue and unhook ourselves to prevent 166 * further events. 167 */ 168 eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); 169 170 /* 171 * We know no new events will be scheduled at this point, so block 172 * until all previously outstanding events have completed 173 */ 174 flush_work(&irqfd->inject); 175 176 if (irqfd->resampler) { 177 irqfd_resampler_shutdown(irqfd); 178 eventfd_ctx_put(irqfd->resamplefd); 179 } 180 181 /* 182 * It is now safe to release the object's resources 183 */ 184 eventfd_ctx_put(irqfd->eventfd); 185 kfree(irqfd); 186 } 187 188 189 /* assumes kvm->irqfds.lock is held */ 190 static bool 191 irqfd_is_active(struct _irqfd *irqfd) 192 { 193 return list_empty(&irqfd->list) ? false : true; 194 } 195 196 /* 197 * Mark the irqfd as inactive and schedule it for removal 198 * 199 * assumes kvm->irqfds.lock is held 200 */ 201 static void 202 irqfd_deactivate(struct _irqfd *irqfd) 203 { 204 BUG_ON(!irqfd_is_active(irqfd)); 205 206 list_del_init(&irqfd->list); 207 208 queue_work(irqfd_cleanup_wq, &irqfd->shutdown); 209 } 210 211 /* 212 * Called with wqh->lock held and interrupts disabled 213 */ 214 static int 215 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key) 216 { 217 struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait); 218 unsigned long flags = (unsigned long)key; 219 struct kvm_kernel_irq_routing_entry *irq; 220 struct kvm *kvm = irqfd->kvm; 221 222 if (flags & POLLIN) { 223 rcu_read_lock(); 224 irq = rcu_dereference(irqfd->irq_entry); 225 /* An event has been signaled, inject an interrupt */ 226 if (irq) 227 kvm_set_msi(irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1); 228 else 229 schedule_work(&irqfd->inject); 230 rcu_read_unlock(); 231 } 232 233 if (flags & POLLHUP) { 234 /* The eventfd is closing, detach from KVM */ 235 unsigned long flags; 236 237 spin_lock_irqsave(&kvm->irqfds.lock, flags); 238 239 /* 240 * We must check if someone deactivated the irqfd before 241 * we could acquire the irqfds.lock since the item is 242 * deactivated from the KVM side before it is unhooked from 243 * the wait-queue. If it is already deactivated, we can 244 * simply return knowing the other side will cleanup for us. 245 * We cannot race against the irqfd going away since the 246 * other side is required to acquire wqh->lock, which we hold 247 */ 248 if (irqfd_is_active(irqfd)) 249 irqfd_deactivate(irqfd); 250 251 spin_unlock_irqrestore(&kvm->irqfds.lock, flags); 252 } 253 254 return 0; 255 } 256 257 static void 258 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, 259 poll_table *pt) 260 { 261 struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt); 262 add_wait_queue(wqh, &irqfd->wait); 263 } 264 265 /* Must be called under irqfds.lock */ 266 static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd, 267 struct kvm_irq_routing_table *irq_rt) 268 { 269 struct kvm_kernel_irq_routing_entry *e; 270 struct hlist_node *n; 271 272 if (irqfd->gsi >= irq_rt->nr_rt_entries) { 273 rcu_assign_pointer(irqfd->irq_entry, NULL); 274 return; 275 } 276 277 hlist_for_each_entry(e, n, &irq_rt->map[irqfd->gsi], link) { 278 /* Only fast-path MSI. */ 279 if (e->type == KVM_IRQ_ROUTING_MSI) 280 rcu_assign_pointer(irqfd->irq_entry, e); 281 else 282 rcu_assign_pointer(irqfd->irq_entry, NULL); 283 } 284 } 285 286 static int 287 kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) 288 { 289 struct kvm_irq_routing_table *irq_rt; 290 struct _irqfd *irqfd, *tmp; 291 struct file *file = NULL; 292 struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; 293 int ret; 294 unsigned int events; 295 296 irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); 297 if (!irqfd) 298 return -ENOMEM; 299 300 irqfd->kvm = kvm; 301 irqfd->gsi = args->gsi; 302 INIT_LIST_HEAD(&irqfd->list); 303 INIT_WORK(&irqfd->inject, irqfd_inject); 304 INIT_WORK(&irqfd->shutdown, irqfd_shutdown); 305 306 file = eventfd_fget(args->fd); 307 if (IS_ERR(file)) { 308 ret = PTR_ERR(file); 309 goto fail; 310 } 311 312 eventfd = eventfd_ctx_fileget(file); 313 if (IS_ERR(eventfd)) { 314 ret = PTR_ERR(eventfd); 315 goto fail; 316 } 317 318 irqfd->eventfd = eventfd; 319 320 if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { 321 struct _irqfd_resampler *resampler; 322 323 resamplefd = eventfd_ctx_fdget(args->resamplefd); 324 if (IS_ERR(resamplefd)) { 325 ret = PTR_ERR(resamplefd); 326 goto fail; 327 } 328 329 irqfd->resamplefd = resamplefd; 330 INIT_LIST_HEAD(&irqfd->resampler_link); 331 332 mutex_lock(&kvm->irqfds.resampler_lock); 333 334 list_for_each_entry(resampler, 335 &kvm->irqfds.resampler_list, list) { 336 if (resampler->notifier.gsi == irqfd->gsi) { 337 irqfd->resampler = resampler; 338 break; 339 } 340 } 341 342 if (!irqfd->resampler) { 343 resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); 344 if (!resampler) { 345 ret = -ENOMEM; 346 mutex_unlock(&kvm->irqfds.resampler_lock); 347 goto fail; 348 } 349 350 resampler->kvm = kvm; 351 INIT_LIST_HEAD(&resampler->list); 352 resampler->notifier.gsi = irqfd->gsi; 353 resampler->notifier.irq_acked = irqfd_resampler_ack; 354 INIT_LIST_HEAD(&resampler->link); 355 356 list_add(&resampler->link, &kvm->irqfds.resampler_list); 357 kvm_register_irq_ack_notifier(kvm, 358 &resampler->notifier); 359 irqfd->resampler = resampler; 360 } 361 362 list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); 363 synchronize_rcu(); 364 365 mutex_unlock(&kvm->irqfds.resampler_lock); 366 } 367 368 /* 369 * Install our own custom wake-up handling so we are notified via 370 * a callback whenever someone signals the underlying eventfd 371 */ 372 init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); 373 init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); 374 375 spin_lock_irq(&kvm->irqfds.lock); 376 377 ret = 0; 378 list_for_each_entry(tmp, &kvm->irqfds.items, list) { 379 if (irqfd->eventfd != tmp->eventfd) 380 continue; 381 /* This fd is used for another irq already. */ 382 ret = -EBUSY; 383 spin_unlock_irq(&kvm->irqfds.lock); 384 goto fail; 385 } 386 387 irq_rt = rcu_dereference_protected(kvm->irq_routing, 388 lockdep_is_held(&kvm->irqfds.lock)); 389 irqfd_update(kvm, irqfd, irq_rt); 390 391 events = file->f_op->poll(file, &irqfd->pt); 392 393 list_add_tail(&irqfd->list, &kvm->irqfds.items); 394 395 /* 396 * Check if there was an event already pending on the eventfd 397 * before we registered, and trigger it as if we didn't miss it. 398 */ 399 if (events & POLLIN) 400 schedule_work(&irqfd->inject); 401 402 spin_unlock_irq(&kvm->irqfds.lock); 403 404 /* 405 * do not drop the file until the irqfd is fully initialized, otherwise 406 * we might race against the POLLHUP 407 */ 408 fput(file); 409 410 return 0; 411 412 fail: 413 if (irqfd->resampler) 414 irqfd_resampler_shutdown(irqfd); 415 416 if (resamplefd && !IS_ERR(resamplefd)) 417 eventfd_ctx_put(resamplefd); 418 419 if (eventfd && !IS_ERR(eventfd)) 420 eventfd_ctx_put(eventfd); 421 422 if (!IS_ERR(file)) 423 fput(file); 424 425 kfree(irqfd); 426 return ret; 427 } 428 429 void 430 kvm_eventfd_init(struct kvm *kvm) 431 { 432 spin_lock_init(&kvm->irqfds.lock); 433 INIT_LIST_HEAD(&kvm->irqfds.items); 434 INIT_LIST_HEAD(&kvm->irqfds.resampler_list); 435 mutex_init(&kvm->irqfds.resampler_lock); 436 INIT_LIST_HEAD(&kvm->ioeventfds); 437 } 438 439 /* 440 * shutdown any irqfd's that match fd+gsi 441 */ 442 static int 443 kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) 444 { 445 struct _irqfd *irqfd, *tmp; 446 struct eventfd_ctx *eventfd; 447 448 eventfd = eventfd_ctx_fdget(args->fd); 449 if (IS_ERR(eventfd)) 450 return PTR_ERR(eventfd); 451 452 spin_lock_irq(&kvm->irqfds.lock); 453 454 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { 455 if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { 456 /* 457 * This rcu_assign_pointer is needed for when 458 * another thread calls kvm_irq_routing_update before 459 * we flush workqueue below (we synchronize with 460 * kvm_irq_routing_update using irqfds.lock). 461 * It is paired with synchronize_rcu done by caller 462 * of that function. 463 */ 464 rcu_assign_pointer(irqfd->irq_entry, NULL); 465 irqfd_deactivate(irqfd); 466 } 467 } 468 469 spin_unlock_irq(&kvm->irqfds.lock); 470 eventfd_ctx_put(eventfd); 471 472 /* 473 * Block until we know all outstanding shutdown jobs have completed 474 * so that we guarantee there will not be any more interrupts on this 475 * gsi once this deassign function returns. 476 */ 477 flush_workqueue(irqfd_cleanup_wq); 478 479 return 0; 480 } 481 482 int 483 kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 484 { 485 if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) 486 return -EINVAL; 487 488 if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) 489 return kvm_irqfd_deassign(kvm, args); 490 491 return kvm_irqfd_assign(kvm, args); 492 } 493 494 /* 495 * This function is called as the kvm VM fd is being released. Shutdown all 496 * irqfds that still remain open 497 */ 498 void 499 kvm_irqfd_release(struct kvm *kvm) 500 { 501 struct _irqfd *irqfd, *tmp; 502 503 spin_lock_irq(&kvm->irqfds.lock); 504 505 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) 506 irqfd_deactivate(irqfd); 507 508 spin_unlock_irq(&kvm->irqfds.lock); 509 510 /* 511 * Block until we know all outstanding shutdown jobs have completed 512 * since we do not take a kvm* reference. 513 */ 514 flush_workqueue(irqfd_cleanup_wq); 515 516 } 517 518 /* 519 * Change irq_routing and irqfd. 520 * Caller must invoke synchronize_rcu afterwards. 521 */ 522 void kvm_irq_routing_update(struct kvm *kvm, 523 struct kvm_irq_routing_table *irq_rt) 524 { 525 struct _irqfd *irqfd; 526 527 spin_lock_irq(&kvm->irqfds.lock); 528 529 rcu_assign_pointer(kvm->irq_routing, irq_rt); 530 531 list_for_each_entry(irqfd, &kvm->irqfds.items, list) 532 irqfd_update(kvm, irqfd, irq_rt); 533 534 spin_unlock_irq(&kvm->irqfds.lock); 535 } 536 537 /* 538 * create a host-wide workqueue for issuing deferred shutdown requests 539 * aggregated from all vm* instances. We need our own isolated single-thread 540 * queue to prevent deadlock against flushing the normal work-queue. 541 */ 542 static int __init irqfd_module_init(void) 543 { 544 irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup"); 545 if (!irqfd_cleanup_wq) 546 return -ENOMEM; 547 548 return 0; 549 } 550 551 static void __exit irqfd_module_exit(void) 552 { 553 destroy_workqueue(irqfd_cleanup_wq); 554 } 555 556 module_init(irqfd_module_init); 557 module_exit(irqfd_module_exit); 558 559 /* 560 * -------------------------------------------------------------------- 561 * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. 562 * 563 * userspace can register a PIO/MMIO address with an eventfd for receiving 564 * notification when the memory has been touched. 565 * -------------------------------------------------------------------- 566 */ 567 568 struct _ioeventfd { 569 struct list_head list; 570 u64 addr; 571 int length; 572 struct eventfd_ctx *eventfd; 573 u64 datamatch; 574 struct kvm_io_device dev; 575 bool wildcard; 576 }; 577 578 static inline struct _ioeventfd * 579 to_ioeventfd(struct kvm_io_device *dev) 580 { 581 return container_of(dev, struct _ioeventfd, dev); 582 } 583 584 static void 585 ioeventfd_release(struct _ioeventfd *p) 586 { 587 eventfd_ctx_put(p->eventfd); 588 list_del(&p->list); 589 kfree(p); 590 } 591 592 static bool 593 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) 594 { 595 u64 _val; 596 597 if (!(addr == p->addr && len == p->length)) 598 /* address-range must be precise for a hit */ 599 return false; 600 601 if (p->wildcard) 602 /* all else equal, wildcard is always a hit */ 603 return true; 604 605 /* otherwise, we have to actually compare the data */ 606 607 BUG_ON(!IS_ALIGNED((unsigned long)val, len)); 608 609 switch (len) { 610 case 1: 611 _val = *(u8 *)val; 612 break; 613 case 2: 614 _val = *(u16 *)val; 615 break; 616 case 4: 617 _val = *(u32 *)val; 618 break; 619 case 8: 620 _val = *(u64 *)val; 621 break; 622 default: 623 return false; 624 } 625 626 return _val == p->datamatch ? true : false; 627 } 628 629 /* MMIO/PIO writes trigger an event if the addr/val match */ 630 static int 631 ioeventfd_write(struct kvm_io_device *this, gpa_t addr, int len, 632 const void *val) 633 { 634 struct _ioeventfd *p = to_ioeventfd(this); 635 636 if (!ioeventfd_in_range(p, addr, len, val)) 637 return -EOPNOTSUPP; 638 639 eventfd_signal(p->eventfd, 1); 640 return 0; 641 } 642 643 /* 644 * This function is called as KVM is completely shutting down. We do not 645 * need to worry about locking just nuke anything we have as quickly as possible 646 */ 647 static void 648 ioeventfd_destructor(struct kvm_io_device *this) 649 { 650 struct _ioeventfd *p = to_ioeventfd(this); 651 652 ioeventfd_release(p); 653 } 654 655 static const struct kvm_io_device_ops ioeventfd_ops = { 656 .write = ioeventfd_write, 657 .destructor = ioeventfd_destructor, 658 }; 659 660 /* assumes kvm->slots_lock held */ 661 static bool 662 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) 663 { 664 struct _ioeventfd *_p; 665 666 list_for_each_entry(_p, &kvm->ioeventfds, list) 667 if (_p->addr == p->addr && _p->length == p->length && 668 (_p->wildcard || p->wildcard || 669 _p->datamatch == p->datamatch)) 670 return true; 671 672 return false; 673 } 674 675 static int 676 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 677 { 678 int pio = args->flags & KVM_IOEVENTFD_FLAG_PIO; 679 enum kvm_bus bus_idx = pio ? KVM_PIO_BUS : KVM_MMIO_BUS; 680 struct _ioeventfd *p; 681 struct eventfd_ctx *eventfd; 682 int ret; 683 684 /* must be natural-word sized */ 685 switch (args->len) { 686 case 1: 687 case 2: 688 case 4: 689 case 8: 690 break; 691 default: 692 return -EINVAL; 693 } 694 695 /* check for range overflow */ 696 if (args->addr + args->len < args->addr) 697 return -EINVAL; 698 699 /* check for extra flags that we don't understand */ 700 if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) 701 return -EINVAL; 702 703 eventfd = eventfd_ctx_fdget(args->fd); 704 if (IS_ERR(eventfd)) 705 return PTR_ERR(eventfd); 706 707 p = kzalloc(sizeof(*p), GFP_KERNEL); 708 if (!p) { 709 ret = -ENOMEM; 710 goto fail; 711 } 712 713 INIT_LIST_HEAD(&p->list); 714 p->addr = args->addr; 715 p->length = args->len; 716 p->eventfd = eventfd; 717 718 /* The datamatch feature is optional, otherwise this is a wildcard */ 719 if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) 720 p->datamatch = args->datamatch; 721 else 722 p->wildcard = true; 723 724 mutex_lock(&kvm->slots_lock); 725 726 /* Verify that there isn't a match already */ 727 if (ioeventfd_check_collision(kvm, p)) { 728 ret = -EEXIST; 729 goto unlock_fail; 730 } 731 732 kvm_iodevice_init(&p->dev, &ioeventfd_ops); 733 734 ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, 735 &p->dev); 736 if (ret < 0) 737 goto unlock_fail; 738 739 list_add_tail(&p->list, &kvm->ioeventfds); 740 741 mutex_unlock(&kvm->slots_lock); 742 743 return 0; 744 745 unlock_fail: 746 mutex_unlock(&kvm->slots_lock); 747 748 fail: 749 kfree(p); 750 eventfd_ctx_put(eventfd); 751 752 return ret; 753 } 754 755 static int 756 kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 757 { 758 int pio = args->flags & KVM_IOEVENTFD_FLAG_PIO; 759 enum kvm_bus bus_idx = pio ? KVM_PIO_BUS : KVM_MMIO_BUS; 760 struct _ioeventfd *p, *tmp; 761 struct eventfd_ctx *eventfd; 762 int ret = -ENOENT; 763 764 eventfd = eventfd_ctx_fdget(args->fd); 765 if (IS_ERR(eventfd)) 766 return PTR_ERR(eventfd); 767 768 mutex_lock(&kvm->slots_lock); 769 770 list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { 771 bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); 772 773 if (p->eventfd != eventfd || 774 p->addr != args->addr || 775 p->length != args->len || 776 p->wildcard != wildcard) 777 continue; 778 779 if (!p->wildcard && p->datamatch != args->datamatch) 780 continue; 781 782 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 783 ioeventfd_release(p); 784 ret = 0; 785 break; 786 } 787 788 mutex_unlock(&kvm->slots_lock); 789 790 eventfd_ctx_put(eventfd); 791 792 return ret; 793 } 794 795 int 796 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 797 { 798 if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) 799 return kvm_deassign_ioeventfd(kvm, args); 800 801 return kvm_assign_ioeventfd(kvm, args); 802 } 803