1 /* 2 * kvm eventfd support - use eventfd objects to signal various KVM events 3 * 4 * Copyright 2009 Novell. All Rights Reserved. 5 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 6 * 7 * Author: 8 * Gregory Haskins <ghaskins@novell.com> 9 * 10 * This file is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License 12 * as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software Foundation, 21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 22 */ 23 24 #include <linux/kvm_host.h> 25 #include <linux/kvm.h> 26 #include <linux/workqueue.h> 27 #include <linux/syscalls.h> 28 #include <linux/wait.h> 29 #include <linux/poll.h> 30 #include <linux/file.h> 31 #include <linux/list.h> 32 #include <linux/eventfd.h> 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 36 #include "iodev.h" 37 38 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 39 /* 40 * -------------------------------------------------------------------- 41 * irqfd: Allows an fd to be used to inject an interrupt to the guest 42 * 43 * Credit goes to Avi Kivity for the original idea. 44 * -------------------------------------------------------------------- 45 */ 46 47 /* 48 * Resampling irqfds are a special variety of irqfds used to emulate 49 * level triggered interrupts. The interrupt is asserted on eventfd 50 * trigger. On acknowledgement through the irq ack notifier, the 51 * interrupt is de-asserted and userspace is notified through the 52 * resamplefd. All resamplers on the same gsi are de-asserted 53 * together, so we don't need to track the state of each individual 54 * user. We can also therefore share the same irq source ID. 55 */ 56 struct _irqfd_resampler { 57 struct kvm *kvm; 58 /* 59 * List of resampling struct _irqfd objects sharing this gsi. 60 * RCU list modified under kvm->irqfds.resampler_lock 61 */ 62 struct list_head list; 63 struct kvm_irq_ack_notifier notifier; 64 /* 65 * Entry in list of kvm->irqfd.resampler_list. Use for sharing 66 * resamplers among irqfds on the same gsi. 67 * Accessed and modified under kvm->irqfds.resampler_lock 68 */ 69 struct list_head link; 70 }; 71 72 struct _irqfd { 73 /* Used for MSI fast-path */ 74 struct kvm *kvm; 75 wait_queue_t wait; 76 /* Update side is protected by irqfds.lock */ 77 struct kvm_kernel_irq_routing_entry __rcu *irq_entry; 78 /* Used for level IRQ fast-path */ 79 int gsi; 80 struct work_struct inject; 81 /* The resampler used by this irqfd (resampler-only) */ 82 struct _irqfd_resampler *resampler; 83 /* Eventfd notified on resample (resampler-only) */ 84 struct eventfd_ctx *resamplefd; 85 /* Entry in list of irqfds for a resampler (resampler-only) */ 86 struct list_head resampler_link; 87 /* Used for setup/shutdown */ 88 struct eventfd_ctx *eventfd; 89 struct list_head list; 90 poll_table pt; 91 struct work_struct shutdown; 92 }; 93 94 static struct workqueue_struct *irqfd_cleanup_wq; 95 96 static void 97 irqfd_inject(struct work_struct *work) 98 { 99 struct _irqfd *irqfd = container_of(work, struct _irqfd, inject); 100 struct kvm *kvm = irqfd->kvm; 101 102 if (!irqfd->resampler) { 103 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1, 104 false); 105 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0, 106 false); 107 } else 108 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 109 irqfd->gsi, 1, false); 110 } 111 112 /* 113 * Since resampler irqfds share an IRQ source ID, we de-assert once 114 * then notify all of the resampler irqfds using this GSI. We can't 115 * do multiple de-asserts or we risk racing with incoming re-asserts. 116 */ 117 static void 118 irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) 119 { 120 struct _irqfd_resampler *resampler; 121 struct _irqfd *irqfd; 122 123 resampler = container_of(kian, struct _irqfd_resampler, notifier); 124 125 kvm_set_irq(resampler->kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 126 resampler->notifier.gsi, 0, false); 127 128 rcu_read_lock(); 129 130 list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) 131 eventfd_signal(irqfd->resamplefd, 1); 132 133 rcu_read_unlock(); 134 } 135 136 static void 137 irqfd_resampler_shutdown(struct _irqfd *irqfd) 138 { 139 struct _irqfd_resampler *resampler = irqfd->resampler; 140 struct kvm *kvm = resampler->kvm; 141 142 mutex_lock(&kvm->irqfds.resampler_lock); 143 144 list_del_rcu(&irqfd->resampler_link); 145 synchronize_rcu(); 146 147 if (list_empty(&resampler->list)) { 148 list_del(&resampler->link); 149 kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); 150 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 151 resampler->notifier.gsi, 0, false); 152 kfree(resampler); 153 } 154 155 mutex_unlock(&kvm->irqfds.resampler_lock); 156 } 157 158 /* 159 * Race-free decouple logic (ordering is critical) 160 */ 161 static void 162 irqfd_shutdown(struct work_struct *work) 163 { 164 struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown); 165 u64 cnt; 166 167 /* 168 * Synchronize with the wait-queue and unhook ourselves to prevent 169 * further events. 170 */ 171 eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); 172 173 /* 174 * We know no new events will be scheduled at this point, so block 175 * until all previously outstanding events have completed 176 */ 177 flush_work(&irqfd->inject); 178 179 if (irqfd->resampler) { 180 irqfd_resampler_shutdown(irqfd); 181 eventfd_ctx_put(irqfd->resamplefd); 182 } 183 184 /* 185 * It is now safe to release the object's resources 186 */ 187 eventfd_ctx_put(irqfd->eventfd); 188 kfree(irqfd); 189 } 190 191 192 /* assumes kvm->irqfds.lock is held */ 193 static bool 194 irqfd_is_active(struct _irqfd *irqfd) 195 { 196 return list_empty(&irqfd->list) ? false : true; 197 } 198 199 /* 200 * Mark the irqfd as inactive and schedule it for removal 201 * 202 * assumes kvm->irqfds.lock is held 203 */ 204 static void 205 irqfd_deactivate(struct _irqfd *irqfd) 206 { 207 BUG_ON(!irqfd_is_active(irqfd)); 208 209 list_del_init(&irqfd->list); 210 211 queue_work(irqfd_cleanup_wq, &irqfd->shutdown); 212 } 213 214 /* 215 * Called with wqh->lock held and interrupts disabled 216 */ 217 static int 218 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key) 219 { 220 struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait); 221 unsigned long flags = (unsigned long)key; 222 struct kvm_kernel_irq_routing_entry *irq; 223 struct kvm *kvm = irqfd->kvm; 224 225 if (flags & POLLIN) { 226 rcu_read_lock(); 227 irq = rcu_dereference(irqfd->irq_entry); 228 /* An event has been signaled, inject an interrupt */ 229 if (irq) 230 kvm_set_msi(irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1, 231 false); 232 else 233 schedule_work(&irqfd->inject); 234 rcu_read_unlock(); 235 } 236 237 if (flags & POLLHUP) { 238 /* The eventfd is closing, detach from KVM */ 239 unsigned long flags; 240 241 spin_lock_irqsave(&kvm->irqfds.lock, flags); 242 243 /* 244 * We must check if someone deactivated the irqfd before 245 * we could acquire the irqfds.lock since the item is 246 * deactivated from the KVM side before it is unhooked from 247 * the wait-queue. If it is already deactivated, we can 248 * simply return knowing the other side will cleanup for us. 249 * We cannot race against the irqfd going away since the 250 * other side is required to acquire wqh->lock, which we hold 251 */ 252 if (irqfd_is_active(irqfd)) 253 irqfd_deactivate(irqfd); 254 255 spin_unlock_irqrestore(&kvm->irqfds.lock, flags); 256 } 257 258 return 0; 259 } 260 261 static void 262 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, 263 poll_table *pt) 264 { 265 struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt); 266 add_wait_queue(wqh, &irqfd->wait); 267 } 268 269 /* Must be called under irqfds.lock */ 270 static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd, 271 struct kvm_irq_routing_table *irq_rt) 272 { 273 struct kvm_kernel_irq_routing_entry *e; 274 275 if (irqfd->gsi >= irq_rt->nr_rt_entries) { 276 rcu_assign_pointer(irqfd->irq_entry, NULL); 277 return; 278 } 279 280 hlist_for_each_entry(e, &irq_rt->map[irqfd->gsi], link) { 281 /* Only fast-path MSI. */ 282 if (e->type == KVM_IRQ_ROUTING_MSI) 283 rcu_assign_pointer(irqfd->irq_entry, e); 284 else 285 rcu_assign_pointer(irqfd->irq_entry, NULL); 286 } 287 } 288 289 static int 290 kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) 291 { 292 struct kvm_irq_routing_table *irq_rt; 293 struct _irqfd *irqfd, *tmp; 294 struct fd f; 295 struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; 296 int ret; 297 unsigned int events; 298 299 irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); 300 if (!irqfd) 301 return -ENOMEM; 302 303 irqfd->kvm = kvm; 304 irqfd->gsi = args->gsi; 305 INIT_LIST_HEAD(&irqfd->list); 306 INIT_WORK(&irqfd->inject, irqfd_inject); 307 INIT_WORK(&irqfd->shutdown, irqfd_shutdown); 308 309 f = fdget(args->fd); 310 if (!f.file) { 311 ret = -EBADF; 312 goto out; 313 } 314 315 eventfd = eventfd_ctx_fileget(f.file); 316 if (IS_ERR(eventfd)) { 317 ret = PTR_ERR(eventfd); 318 goto fail; 319 } 320 321 irqfd->eventfd = eventfd; 322 323 if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { 324 struct _irqfd_resampler *resampler; 325 326 resamplefd = eventfd_ctx_fdget(args->resamplefd); 327 if (IS_ERR(resamplefd)) { 328 ret = PTR_ERR(resamplefd); 329 goto fail; 330 } 331 332 irqfd->resamplefd = resamplefd; 333 INIT_LIST_HEAD(&irqfd->resampler_link); 334 335 mutex_lock(&kvm->irqfds.resampler_lock); 336 337 list_for_each_entry(resampler, 338 &kvm->irqfds.resampler_list, link) { 339 if (resampler->notifier.gsi == irqfd->gsi) { 340 irqfd->resampler = resampler; 341 break; 342 } 343 } 344 345 if (!irqfd->resampler) { 346 resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); 347 if (!resampler) { 348 ret = -ENOMEM; 349 mutex_unlock(&kvm->irqfds.resampler_lock); 350 goto fail; 351 } 352 353 resampler->kvm = kvm; 354 INIT_LIST_HEAD(&resampler->list); 355 resampler->notifier.gsi = irqfd->gsi; 356 resampler->notifier.irq_acked = irqfd_resampler_ack; 357 INIT_LIST_HEAD(&resampler->link); 358 359 list_add(&resampler->link, &kvm->irqfds.resampler_list); 360 kvm_register_irq_ack_notifier(kvm, 361 &resampler->notifier); 362 irqfd->resampler = resampler; 363 } 364 365 list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); 366 synchronize_rcu(); 367 368 mutex_unlock(&kvm->irqfds.resampler_lock); 369 } 370 371 /* 372 * Install our own custom wake-up handling so we are notified via 373 * a callback whenever someone signals the underlying eventfd 374 */ 375 init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); 376 init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); 377 378 spin_lock_irq(&kvm->irqfds.lock); 379 380 ret = 0; 381 list_for_each_entry(tmp, &kvm->irqfds.items, list) { 382 if (irqfd->eventfd != tmp->eventfd) 383 continue; 384 /* This fd is used for another irq already. */ 385 ret = -EBUSY; 386 spin_unlock_irq(&kvm->irqfds.lock); 387 goto fail; 388 } 389 390 irq_rt = rcu_dereference_protected(kvm->irq_routing, 391 lockdep_is_held(&kvm->irqfds.lock)); 392 irqfd_update(kvm, irqfd, irq_rt); 393 394 list_add_tail(&irqfd->list, &kvm->irqfds.items); 395 396 spin_unlock_irq(&kvm->irqfds.lock); 397 398 /* 399 * Check if there was an event already pending on the eventfd 400 * before we registered, and trigger it as if we didn't miss it. 401 */ 402 events = f.file->f_op->poll(f.file, &irqfd->pt); 403 404 if (events & POLLIN) 405 schedule_work(&irqfd->inject); 406 407 /* 408 * do not drop the file until the irqfd is fully initialized, otherwise 409 * we might race against the POLLHUP 410 */ 411 fdput(f); 412 413 return 0; 414 415 fail: 416 if (irqfd->resampler) 417 irqfd_resampler_shutdown(irqfd); 418 419 if (resamplefd && !IS_ERR(resamplefd)) 420 eventfd_ctx_put(resamplefd); 421 422 if (eventfd && !IS_ERR(eventfd)) 423 eventfd_ctx_put(eventfd); 424 425 fdput(f); 426 427 out: 428 kfree(irqfd); 429 return ret; 430 } 431 #endif 432 433 void 434 kvm_eventfd_init(struct kvm *kvm) 435 { 436 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 437 spin_lock_init(&kvm->irqfds.lock); 438 INIT_LIST_HEAD(&kvm->irqfds.items); 439 INIT_LIST_HEAD(&kvm->irqfds.resampler_list); 440 mutex_init(&kvm->irqfds.resampler_lock); 441 #endif 442 INIT_LIST_HEAD(&kvm->ioeventfds); 443 } 444 445 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 446 /* 447 * shutdown any irqfd's that match fd+gsi 448 */ 449 static int 450 kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) 451 { 452 struct _irqfd *irqfd, *tmp; 453 struct eventfd_ctx *eventfd; 454 455 eventfd = eventfd_ctx_fdget(args->fd); 456 if (IS_ERR(eventfd)) 457 return PTR_ERR(eventfd); 458 459 spin_lock_irq(&kvm->irqfds.lock); 460 461 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { 462 if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { 463 /* 464 * This rcu_assign_pointer is needed for when 465 * another thread calls kvm_irq_routing_update before 466 * we flush workqueue below (we synchronize with 467 * kvm_irq_routing_update using irqfds.lock). 468 * It is paired with synchronize_rcu done by caller 469 * of that function. 470 */ 471 rcu_assign_pointer(irqfd->irq_entry, NULL); 472 irqfd_deactivate(irqfd); 473 } 474 } 475 476 spin_unlock_irq(&kvm->irqfds.lock); 477 eventfd_ctx_put(eventfd); 478 479 /* 480 * Block until we know all outstanding shutdown jobs have completed 481 * so that we guarantee there will not be any more interrupts on this 482 * gsi once this deassign function returns. 483 */ 484 flush_workqueue(irqfd_cleanup_wq); 485 486 return 0; 487 } 488 489 int 490 kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 491 { 492 if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) 493 return -EINVAL; 494 495 if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) 496 return kvm_irqfd_deassign(kvm, args); 497 498 return kvm_irqfd_assign(kvm, args); 499 } 500 501 /* 502 * This function is called as the kvm VM fd is being released. Shutdown all 503 * irqfds that still remain open 504 */ 505 void 506 kvm_irqfd_release(struct kvm *kvm) 507 { 508 struct _irqfd *irqfd, *tmp; 509 510 spin_lock_irq(&kvm->irqfds.lock); 511 512 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) 513 irqfd_deactivate(irqfd); 514 515 spin_unlock_irq(&kvm->irqfds.lock); 516 517 /* 518 * Block until we know all outstanding shutdown jobs have completed 519 * since we do not take a kvm* reference. 520 */ 521 flush_workqueue(irqfd_cleanup_wq); 522 523 } 524 525 /* 526 * Change irq_routing and irqfd. 527 * Caller must invoke synchronize_rcu afterwards. 528 */ 529 void kvm_irq_routing_update(struct kvm *kvm, 530 struct kvm_irq_routing_table *irq_rt) 531 { 532 struct _irqfd *irqfd; 533 534 spin_lock_irq(&kvm->irqfds.lock); 535 536 rcu_assign_pointer(kvm->irq_routing, irq_rt); 537 538 list_for_each_entry(irqfd, &kvm->irqfds.items, list) 539 irqfd_update(kvm, irqfd, irq_rt); 540 541 spin_unlock_irq(&kvm->irqfds.lock); 542 } 543 544 /* 545 * create a host-wide workqueue for issuing deferred shutdown requests 546 * aggregated from all vm* instances. We need our own isolated single-thread 547 * queue to prevent deadlock against flushing the normal work-queue. 548 */ 549 int kvm_irqfd_init(void) 550 { 551 irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup"); 552 if (!irqfd_cleanup_wq) 553 return -ENOMEM; 554 555 return 0; 556 } 557 558 void kvm_irqfd_exit(void) 559 { 560 destroy_workqueue(irqfd_cleanup_wq); 561 } 562 #endif 563 564 /* 565 * -------------------------------------------------------------------- 566 * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. 567 * 568 * userspace can register a PIO/MMIO address with an eventfd for receiving 569 * notification when the memory has been touched. 570 * -------------------------------------------------------------------- 571 */ 572 573 struct _ioeventfd { 574 struct list_head list; 575 u64 addr; 576 int length; 577 struct eventfd_ctx *eventfd; 578 u64 datamatch; 579 struct kvm_io_device dev; 580 u8 bus_idx; 581 bool wildcard; 582 }; 583 584 static inline struct _ioeventfd * 585 to_ioeventfd(struct kvm_io_device *dev) 586 { 587 return container_of(dev, struct _ioeventfd, dev); 588 } 589 590 static void 591 ioeventfd_release(struct _ioeventfd *p) 592 { 593 eventfd_ctx_put(p->eventfd); 594 list_del(&p->list); 595 kfree(p); 596 } 597 598 static bool 599 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) 600 { 601 u64 _val; 602 603 if (!(addr == p->addr && len == p->length)) 604 /* address-range must be precise for a hit */ 605 return false; 606 607 if (p->wildcard) 608 /* all else equal, wildcard is always a hit */ 609 return true; 610 611 /* otherwise, we have to actually compare the data */ 612 613 BUG_ON(!IS_ALIGNED((unsigned long)val, len)); 614 615 switch (len) { 616 case 1: 617 _val = *(u8 *)val; 618 break; 619 case 2: 620 _val = *(u16 *)val; 621 break; 622 case 4: 623 _val = *(u32 *)val; 624 break; 625 case 8: 626 _val = *(u64 *)val; 627 break; 628 default: 629 return false; 630 } 631 632 return _val == p->datamatch ? true : false; 633 } 634 635 /* MMIO/PIO writes trigger an event if the addr/val match */ 636 static int 637 ioeventfd_write(struct kvm_io_device *this, gpa_t addr, int len, 638 const void *val) 639 { 640 struct _ioeventfd *p = to_ioeventfd(this); 641 642 if (!ioeventfd_in_range(p, addr, len, val)) 643 return -EOPNOTSUPP; 644 645 eventfd_signal(p->eventfd, 1); 646 return 0; 647 } 648 649 /* 650 * This function is called as KVM is completely shutting down. We do not 651 * need to worry about locking just nuke anything we have as quickly as possible 652 */ 653 static void 654 ioeventfd_destructor(struct kvm_io_device *this) 655 { 656 struct _ioeventfd *p = to_ioeventfd(this); 657 658 ioeventfd_release(p); 659 } 660 661 static const struct kvm_io_device_ops ioeventfd_ops = { 662 .write = ioeventfd_write, 663 .destructor = ioeventfd_destructor, 664 }; 665 666 /* assumes kvm->slots_lock held */ 667 static bool 668 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) 669 { 670 struct _ioeventfd *_p; 671 672 list_for_each_entry(_p, &kvm->ioeventfds, list) 673 if (_p->bus_idx == p->bus_idx && 674 _p->addr == p->addr && _p->length == p->length && 675 (_p->wildcard || p->wildcard || 676 _p->datamatch == p->datamatch)) 677 return true; 678 679 return false; 680 } 681 682 static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags) 683 { 684 if (flags & KVM_IOEVENTFD_FLAG_PIO) 685 return KVM_PIO_BUS; 686 if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY) 687 return KVM_VIRTIO_CCW_NOTIFY_BUS; 688 return KVM_MMIO_BUS; 689 } 690 691 static int 692 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 693 { 694 enum kvm_bus bus_idx; 695 struct _ioeventfd *p; 696 struct eventfd_ctx *eventfd; 697 int ret; 698 699 bus_idx = ioeventfd_bus_from_flags(args->flags); 700 /* must be natural-word sized */ 701 switch (args->len) { 702 case 1: 703 case 2: 704 case 4: 705 case 8: 706 break; 707 default: 708 return -EINVAL; 709 } 710 711 /* check for range overflow */ 712 if (args->addr + args->len < args->addr) 713 return -EINVAL; 714 715 /* check for extra flags that we don't understand */ 716 if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) 717 return -EINVAL; 718 719 eventfd = eventfd_ctx_fdget(args->fd); 720 if (IS_ERR(eventfd)) 721 return PTR_ERR(eventfd); 722 723 p = kzalloc(sizeof(*p), GFP_KERNEL); 724 if (!p) { 725 ret = -ENOMEM; 726 goto fail; 727 } 728 729 INIT_LIST_HEAD(&p->list); 730 p->addr = args->addr; 731 p->bus_idx = bus_idx; 732 p->length = args->len; 733 p->eventfd = eventfd; 734 735 /* The datamatch feature is optional, otherwise this is a wildcard */ 736 if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) 737 p->datamatch = args->datamatch; 738 else 739 p->wildcard = true; 740 741 mutex_lock(&kvm->slots_lock); 742 743 /* Verify that there isn't a match already */ 744 if (ioeventfd_check_collision(kvm, p)) { 745 ret = -EEXIST; 746 goto unlock_fail; 747 } 748 749 kvm_iodevice_init(&p->dev, &ioeventfd_ops); 750 751 ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, 752 &p->dev); 753 if (ret < 0) 754 goto unlock_fail; 755 756 kvm->buses[bus_idx]->ioeventfd_count++; 757 list_add_tail(&p->list, &kvm->ioeventfds); 758 759 mutex_unlock(&kvm->slots_lock); 760 761 return 0; 762 763 unlock_fail: 764 mutex_unlock(&kvm->slots_lock); 765 766 fail: 767 kfree(p); 768 eventfd_ctx_put(eventfd); 769 770 return ret; 771 } 772 773 static int 774 kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 775 { 776 enum kvm_bus bus_idx; 777 struct _ioeventfd *p, *tmp; 778 struct eventfd_ctx *eventfd; 779 int ret = -ENOENT; 780 781 bus_idx = ioeventfd_bus_from_flags(args->flags); 782 eventfd = eventfd_ctx_fdget(args->fd); 783 if (IS_ERR(eventfd)) 784 return PTR_ERR(eventfd); 785 786 mutex_lock(&kvm->slots_lock); 787 788 list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { 789 bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); 790 791 if (p->bus_idx != bus_idx || 792 p->eventfd != eventfd || 793 p->addr != args->addr || 794 p->length != args->len || 795 p->wildcard != wildcard) 796 continue; 797 798 if (!p->wildcard && p->datamatch != args->datamatch) 799 continue; 800 801 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 802 kvm->buses[bus_idx]->ioeventfd_count--; 803 ioeventfd_release(p); 804 ret = 0; 805 break; 806 } 807 808 mutex_unlock(&kvm->slots_lock); 809 810 eventfd_ctx_put(eventfd); 811 812 return ret; 813 } 814 815 int 816 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 817 { 818 if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) 819 return kvm_deassign_ioeventfd(kvm, args); 820 821 return kvm_assign_ioeventfd(kvm, args); 822 } 823