xref: /linux/tools/thermal/tmon/pid.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * pid.c PID controller for testing cooling devices
3  *
4  *
5  *
6  * Copyright (C) 2012 Intel Corporation. All rights reserved.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 or later as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * Author Name Jacob Pan <jacob.jun.pan@linux.intel.com>
18  *
19  */
20 
21 #include <unistd.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <stdint.h>
26 #include <sys/types.h>
27 #include <dirent.h>
28 #include <libintl.h>
29 #include <ctype.h>
30 #include <assert.h>
31 #include <time.h>
32 #include <limits.h>
33 #include <math.h>
34 #include <sys/stat.h>
35 #include <syslog.h>
36 
37 #include "tmon.h"
38 
39 /**************************************************************************
40  * PID (Proportional-Integral-Derivative) controller is commonly used in
41  * linear control system, consider the the process.
42  * G(s) = U(s)/E(s)
43  * kp = proportional gain
44  * ki = integral gain
45  * kd = derivative gain
46  * Ts
47  * We use type C Alan Bradley equation which takes set point off the
48  * output dependency in P and D term.
49  *
50  *   y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k]
51  *          - 2*x[k-1]+x[k-2])/Ts
52  *
53  *
54  ***********************************************************************/
55 struct pid_params p_param;
56 /* cached data from previous loop */
57 static double xk_1, xk_2; /* input temperature x[k-#] */
58 
59 /*
60  * TODO: make PID parameters tuned automatically,
61  * 1. use CPU burn to produce open loop unit step response
62  * 2. calculate PID based on Ziegler-Nichols rule
63  *
64  * add a flag for tuning PID
65  */
66 int init_thermal_controller(void)
67 {
68 	int ret = 0;
69 
70 	/* init pid params */
71 	p_param.ts = ticktime;
72 	/* TODO: get it from TUI tuning tab */
73 	p_param.kp = .36;
74 	p_param.ki = 5.0;
75 	p_param.kd = 0.19;
76 
77 	p_param.t_target = target_temp_user;
78 
79 	return ret;
80 }
81 
82 void controller_reset(void)
83 {
84 	/* TODO: relax control data when not over thermal limit */
85 	syslog(LOG_DEBUG, "TC inactive, relax p-state\n");
86 	p_param.y_k = 0.0;
87 	xk_1 = 0.0;
88 	xk_2 = 0.0;
89 	set_ctrl_state(0);
90 }
91 
92 /* To be called at time interval Ts. Type C PID controller.
93  *    y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k]
94  *          - 2*x[k-1]+x[k-2])/Ts
95  * TODO: add low pass filter for D term
96  */
97 #define GUARD_BAND (2)
98 void controller_handler(const double xk, double *yk)
99 {
100 	double ek;
101 	double p_term, i_term, d_term;
102 
103 	ek = p_param.t_target - xk; /* error */
104 	if (ek >= 3.0) {
105 		syslog(LOG_DEBUG, "PID: %3.1f Below set point %3.1f, stop\n",
106 			xk, p_param.t_target);
107 		controller_reset();
108 		*yk = 0.0;
109 		return;
110 	}
111 	/* compute intermediate PID terms */
112 	p_term = -p_param.kp * (xk - xk_1);
113 	i_term = p_param.kp * p_param.ki * p_param.ts * ek;
114 	d_term = -p_param.kp * p_param.kd * (xk - 2 * xk_1 + xk_2) / p_param.ts;
115 	/* compute output */
116 	*yk += p_term + i_term + d_term;
117 	/* update sample data */
118 	xk_1 = xk;
119 	xk_2 = xk_1;
120 
121 	/* clamp output adjustment range */
122 	if (*yk < -LIMIT_HIGH)
123 		*yk = -LIMIT_HIGH;
124 	else if (*yk > -LIMIT_LOW)
125 		*yk = -LIMIT_LOW;
126 
127 	p_param.y_k = *yk;
128 
129 	set_ctrl_state(lround(fabs(p_param.y_k)));
130 
131 }
132