xref: /linux/tools/testing/vsock/util.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * vsock test utilities
4  *
5  * Copyright (C) 2017 Red Hat, Inc.
6  *
7  * Author: Stefan Hajnoczi <stefanha@redhat.com>
8  */
9 
10 #include <errno.h>
11 #include <stdio.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <signal.h>
15 #include <unistd.h>
16 #include <assert.h>
17 #include <sys/epoll.h>
18 
19 #include "timeout.h"
20 #include "control.h"
21 #include "util.h"
22 
23 /* Install signal handlers */
24 void init_signals(void)
25 {
26 	struct sigaction act = {
27 		.sa_handler = sigalrm,
28 	};
29 
30 	sigaction(SIGALRM, &act, NULL);
31 	signal(SIGPIPE, SIG_IGN);
32 }
33 
34 /* Parse a CID in string representation */
35 unsigned int parse_cid(const char *str)
36 {
37 	char *endptr = NULL;
38 	unsigned long n;
39 
40 	errno = 0;
41 	n = strtoul(str, &endptr, 10);
42 	if (errno || *endptr != '\0') {
43 		fprintf(stderr, "malformed CID \"%s\"\n", str);
44 		exit(EXIT_FAILURE);
45 	}
46 	return n;
47 }
48 
49 /* Wait for the remote to close the connection */
50 void vsock_wait_remote_close(int fd)
51 {
52 	struct epoll_event ev;
53 	int epollfd, nfds;
54 
55 	epollfd = epoll_create1(0);
56 	if (epollfd == -1) {
57 		perror("epoll_create1");
58 		exit(EXIT_FAILURE);
59 	}
60 
61 	ev.events = EPOLLRDHUP | EPOLLHUP;
62 	ev.data.fd = fd;
63 	if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
64 		perror("epoll_ctl");
65 		exit(EXIT_FAILURE);
66 	}
67 
68 	nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000);
69 	if (nfds == -1) {
70 		perror("epoll_wait");
71 		exit(EXIT_FAILURE);
72 	}
73 
74 	if (nfds == 0) {
75 		fprintf(stderr, "epoll_wait timed out\n");
76 		exit(EXIT_FAILURE);
77 	}
78 
79 	assert(nfds == 1);
80 	assert(ev.events & (EPOLLRDHUP | EPOLLHUP));
81 	assert(ev.data.fd == fd);
82 
83 	close(epollfd);
84 }
85 
86 /* Connect to <cid, port> and return the file descriptor. */
87 static int vsock_connect(unsigned int cid, unsigned int port, int type)
88 {
89 	union {
90 		struct sockaddr sa;
91 		struct sockaddr_vm svm;
92 	} addr = {
93 		.svm = {
94 			.svm_family = AF_VSOCK,
95 			.svm_port = port,
96 			.svm_cid = cid,
97 		},
98 	};
99 	int ret;
100 	int fd;
101 
102 	control_expectln("LISTENING");
103 
104 	fd = socket(AF_VSOCK, type, 0);
105 
106 	timeout_begin(TIMEOUT);
107 	do {
108 		ret = connect(fd, &addr.sa, sizeof(addr.svm));
109 		timeout_check("connect");
110 	} while (ret < 0 && errno == EINTR);
111 	timeout_end();
112 
113 	if (ret < 0) {
114 		int old_errno = errno;
115 
116 		close(fd);
117 		fd = -1;
118 		errno = old_errno;
119 	}
120 	return fd;
121 }
122 
123 int vsock_stream_connect(unsigned int cid, unsigned int port)
124 {
125 	return vsock_connect(cid, port, SOCK_STREAM);
126 }
127 
128 int vsock_seqpacket_connect(unsigned int cid, unsigned int port)
129 {
130 	return vsock_connect(cid, port, SOCK_SEQPACKET);
131 }
132 
133 /* Listen on <cid, port> and return the first incoming connection.  The remote
134  * address is stored to clientaddrp.  clientaddrp may be NULL.
135  */
136 static int vsock_accept(unsigned int cid, unsigned int port,
137 			struct sockaddr_vm *clientaddrp, int type)
138 {
139 	union {
140 		struct sockaddr sa;
141 		struct sockaddr_vm svm;
142 	} addr = {
143 		.svm = {
144 			.svm_family = AF_VSOCK,
145 			.svm_port = port,
146 			.svm_cid = cid,
147 		},
148 	};
149 	union {
150 		struct sockaddr sa;
151 		struct sockaddr_vm svm;
152 	} clientaddr;
153 	socklen_t clientaddr_len = sizeof(clientaddr.svm);
154 	int fd;
155 	int client_fd;
156 	int old_errno;
157 
158 	fd = socket(AF_VSOCK, type, 0);
159 
160 	if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) {
161 		perror("bind");
162 		exit(EXIT_FAILURE);
163 	}
164 
165 	if (listen(fd, 1) < 0) {
166 		perror("listen");
167 		exit(EXIT_FAILURE);
168 	}
169 
170 	control_writeln("LISTENING");
171 
172 	timeout_begin(TIMEOUT);
173 	do {
174 		client_fd = accept(fd, &clientaddr.sa, &clientaddr_len);
175 		timeout_check("accept");
176 	} while (client_fd < 0 && errno == EINTR);
177 	timeout_end();
178 
179 	old_errno = errno;
180 	close(fd);
181 	errno = old_errno;
182 
183 	if (client_fd < 0)
184 		return client_fd;
185 
186 	if (clientaddr_len != sizeof(clientaddr.svm)) {
187 		fprintf(stderr, "unexpected addrlen from accept(2), %zu\n",
188 			(size_t)clientaddr_len);
189 		exit(EXIT_FAILURE);
190 	}
191 	if (clientaddr.sa.sa_family != AF_VSOCK) {
192 		fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n",
193 			clientaddr.sa.sa_family);
194 		exit(EXIT_FAILURE);
195 	}
196 
197 	if (clientaddrp)
198 		*clientaddrp = clientaddr.svm;
199 	return client_fd;
200 }
201 
202 int vsock_stream_accept(unsigned int cid, unsigned int port,
203 			struct sockaddr_vm *clientaddrp)
204 {
205 	return vsock_accept(cid, port, clientaddrp, SOCK_STREAM);
206 }
207 
208 int vsock_seqpacket_accept(unsigned int cid, unsigned int port,
209 			   struct sockaddr_vm *clientaddrp)
210 {
211 	return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET);
212 }
213 
214 /* Transmit one byte and check the return value.
215  *
216  * expected_ret:
217  *  <0 Negative errno (for testing errors)
218  *   0 End-of-file
219  *   1 Success
220  */
221 void send_byte(int fd, int expected_ret, int flags)
222 {
223 	const uint8_t byte = 'A';
224 	ssize_t nwritten;
225 
226 	timeout_begin(TIMEOUT);
227 	do {
228 		nwritten = send(fd, &byte, sizeof(byte), flags);
229 		timeout_check("write");
230 	} while (nwritten < 0 && errno == EINTR);
231 	timeout_end();
232 
233 	if (expected_ret < 0) {
234 		if (nwritten != -1) {
235 			fprintf(stderr, "bogus send(2) return value %zd\n",
236 				nwritten);
237 			exit(EXIT_FAILURE);
238 		}
239 		if (errno != -expected_ret) {
240 			perror("write");
241 			exit(EXIT_FAILURE);
242 		}
243 		return;
244 	}
245 
246 	if (nwritten < 0) {
247 		perror("write");
248 		exit(EXIT_FAILURE);
249 	}
250 	if (nwritten == 0) {
251 		if (expected_ret == 0)
252 			return;
253 
254 		fprintf(stderr, "unexpected EOF while sending byte\n");
255 		exit(EXIT_FAILURE);
256 	}
257 	if (nwritten != sizeof(byte)) {
258 		fprintf(stderr, "bogus send(2) return value %zd\n", nwritten);
259 		exit(EXIT_FAILURE);
260 	}
261 }
262 
263 /* Receive one byte and check the return value.
264  *
265  * expected_ret:
266  *  <0 Negative errno (for testing errors)
267  *   0 End-of-file
268  *   1 Success
269  */
270 void recv_byte(int fd, int expected_ret, int flags)
271 {
272 	uint8_t byte;
273 	ssize_t nread;
274 
275 	timeout_begin(TIMEOUT);
276 	do {
277 		nread = recv(fd, &byte, sizeof(byte), flags);
278 		timeout_check("read");
279 	} while (nread < 0 && errno == EINTR);
280 	timeout_end();
281 
282 	if (expected_ret < 0) {
283 		if (nread != -1) {
284 			fprintf(stderr, "bogus recv(2) return value %zd\n",
285 				nread);
286 			exit(EXIT_FAILURE);
287 		}
288 		if (errno != -expected_ret) {
289 			perror("read");
290 			exit(EXIT_FAILURE);
291 		}
292 		return;
293 	}
294 
295 	if (nread < 0) {
296 		perror("read");
297 		exit(EXIT_FAILURE);
298 	}
299 	if (nread == 0) {
300 		if (expected_ret == 0)
301 			return;
302 
303 		fprintf(stderr, "unexpected EOF while receiving byte\n");
304 		exit(EXIT_FAILURE);
305 	}
306 	if (nread != sizeof(byte)) {
307 		fprintf(stderr, "bogus recv(2) return value %zd\n", nread);
308 		exit(EXIT_FAILURE);
309 	}
310 	if (byte != 'A') {
311 		fprintf(stderr, "unexpected byte read %c\n", byte);
312 		exit(EXIT_FAILURE);
313 	}
314 }
315 
316 /* Run test cases.  The program terminates if a failure occurs. */
317 void run_tests(const struct test_case *test_cases,
318 	       const struct test_opts *opts)
319 {
320 	int i;
321 
322 	for (i = 0; test_cases[i].name; i++) {
323 		void (*run)(const struct test_opts *opts);
324 		char *line;
325 
326 		printf("%d - %s...", i, test_cases[i].name);
327 		fflush(stdout);
328 
329 		/* Full barrier before executing the next test.  This
330 		 * ensures that client and server are executing the
331 		 * same test case.  In particular, it means whoever is
332 		 * faster will not see the peer still executing the
333 		 * last test.  This is important because port numbers
334 		 * can be used by multiple test cases.
335 		 */
336 		if (test_cases[i].skip)
337 			control_writeln("SKIP");
338 		else
339 			control_writeln("NEXT");
340 
341 		line = control_readln();
342 		if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) {
343 
344 			printf("skipped\n");
345 
346 			free(line);
347 			continue;
348 		}
349 
350 		control_cmpln(line, "NEXT", true);
351 		free(line);
352 
353 		if (opts->mode == TEST_MODE_CLIENT)
354 			run = test_cases[i].run_client;
355 		else
356 			run = test_cases[i].run_server;
357 
358 		if (run)
359 			run(opts);
360 
361 		printf("ok\n");
362 	}
363 }
364 
365 void list_tests(const struct test_case *test_cases)
366 {
367 	int i;
368 
369 	printf("ID\tTest name\n");
370 
371 	for (i = 0; test_cases[i].name; i++)
372 		printf("%d\t%s\n", i, test_cases[i].name);
373 
374 	exit(EXIT_FAILURE);
375 }
376 
377 void skip_test(struct test_case *test_cases, size_t test_cases_len,
378 	       const char *test_id_str)
379 {
380 	unsigned long test_id;
381 	char *endptr = NULL;
382 
383 	errno = 0;
384 	test_id = strtoul(test_id_str, &endptr, 10);
385 	if (errno || *endptr != '\0') {
386 		fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str);
387 		exit(EXIT_FAILURE);
388 	}
389 
390 	if (test_id >= test_cases_len) {
391 		fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n",
392 			test_id, test_cases_len - 1);
393 		exit(EXIT_FAILURE);
394 	}
395 
396 	test_cases[test_id].skip = true;
397 }
398