xref: /linux/tools/testing/vsock/util.c (revision c7546e2c3cb739a3c1a2f5acaf9bb629d401afe5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * vsock test utilities
4  *
5  * Copyright (C) 2017 Red Hat, Inc.
6  *
7  * Author: Stefan Hajnoczi <stefanha@redhat.com>
8  */
9 
10 #include <errno.h>
11 #include <stdio.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <signal.h>
16 #include <unistd.h>
17 #include <assert.h>
18 #include <sys/epoll.h>
19 #include <sys/mman.h>
20 
21 #include "timeout.h"
22 #include "control.h"
23 #include "util.h"
24 
25 /* Install signal handlers */
26 void init_signals(void)
27 {
28 	struct sigaction act = {
29 		.sa_handler = sigalrm,
30 	};
31 
32 	sigaction(SIGALRM, &act, NULL);
33 	signal(SIGPIPE, SIG_IGN);
34 }
35 
36 static unsigned int parse_uint(const char *str, const char *err_str)
37 {
38 	char *endptr = NULL;
39 	unsigned long n;
40 
41 	errno = 0;
42 	n = strtoul(str, &endptr, 10);
43 	if (errno || *endptr != '\0') {
44 		fprintf(stderr, "malformed %s \"%s\"\n", err_str, str);
45 		exit(EXIT_FAILURE);
46 	}
47 	return n;
48 }
49 
50 /* Parse a CID in string representation */
51 unsigned int parse_cid(const char *str)
52 {
53 	return parse_uint(str, "CID");
54 }
55 
56 /* Parse a port in string representation */
57 unsigned int parse_port(const char *str)
58 {
59 	return parse_uint(str, "port");
60 }
61 
62 /* Wait for the remote to close the connection */
63 void vsock_wait_remote_close(int fd)
64 {
65 	struct epoll_event ev;
66 	int epollfd, nfds;
67 
68 	epollfd = epoll_create1(0);
69 	if (epollfd == -1) {
70 		perror("epoll_create1");
71 		exit(EXIT_FAILURE);
72 	}
73 
74 	ev.events = EPOLLRDHUP | EPOLLHUP;
75 	ev.data.fd = fd;
76 	if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
77 		perror("epoll_ctl");
78 		exit(EXIT_FAILURE);
79 	}
80 
81 	nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000);
82 	if (nfds == -1) {
83 		perror("epoll_wait");
84 		exit(EXIT_FAILURE);
85 	}
86 
87 	if (nfds == 0) {
88 		fprintf(stderr, "epoll_wait timed out\n");
89 		exit(EXIT_FAILURE);
90 	}
91 
92 	assert(nfds == 1);
93 	assert(ev.events & (EPOLLRDHUP | EPOLLHUP));
94 	assert(ev.data.fd == fd);
95 
96 	close(epollfd);
97 }
98 
99 /* Bind to <bind_port>, connect to <cid, port> and return the file descriptor. */
100 int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type)
101 {
102 	struct sockaddr_vm sa_client = {
103 		.svm_family = AF_VSOCK,
104 		.svm_cid = VMADDR_CID_ANY,
105 		.svm_port = bind_port,
106 	};
107 	struct sockaddr_vm sa_server = {
108 		.svm_family = AF_VSOCK,
109 		.svm_cid = cid,
110 		.svm_port = port,
111 	};
112 
113 	int client_fd, ret;
114 
115 	client_fd = socket(AF_VSOCK, type, 0);
116 	if (client_fd < 0) {
117 		perror("socket");
118 		exit(EXIT_FAILURE);
119 	}
120 
121 	if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) {
122 		perror("bind");
123 		exit(EXIT_FAILURE);
124 	}
125 
126 	timeout_begin(TIMEOUT);
127 	do {
128 		ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server));
129 		timeout_check("connect");
130 	} while (ret < 0 && errno == EINTR);
131 	timeout_end();
132 
133 	if (ret < 0) {
134 		perror("connect");
135 		exit(EXIT_FAILURE);
136 	}
137 
138 	return client_fd;
139 }
140 
141 /* Connect to <cid, port> and return the file descriptor. */
142 int vsock_connect(unsigned int cid, unsigned int port, int type)
143 {
144 	union {
145 		struct sockaddr sa;
146 		struct sockaddr_vm svm;
147 	} addr = {
148 		.svm = {
149 			.svm_family = AF_VSOCK,
150 			.svm_port = port,
151 			.svm_cid = cid,
152 		},
153 	};
154 	int ret;
155 	int fd;
156 
157 	control_expectln("LISTENING");
158 
159 	fd = socket(AF_VSOCK, type, 0);
160 	if (fd < 0) {
161 		perror("socket");
162 		exit(EXIT_FAILURE);
163 	}
164 
165 	timeout_begin(TIMEOUT);
166 	do {
167 		ret = connect(fd, &addr.sa, sizeof(addr.svm));
168 		timeout_check("connect");
169 	} while (ret < 0 && errno == EINTR);
170 	timeout_end();
171 
172 	if (ret < 0) {
173 		int old_errno = errno;
174 
175 		close(fd);
176 		fd = -1;
177 		errno = old_errno;
178 	}
179 	return fd;
180 }
181 
182 int vsock_stream_connect(unsigned int cid, unsigned int port)
183 {
184 	return vsock_connect(cid, port, SOCK_STREAM);
185 }
186 
187 int vsock_seqpacket_connect(unsigned int cid, unsigned int port)
188 {
189 	return vsock_connect(cid, port, SOCK_SEQPACKET);
190 }
191 
192 /* Listen on <cid, port> and return the file descriptor. */
193 static int vsock_listen(unsigned int cid, unsigned int port, int type)
194 {
195 	union {
196 		struct sockaddr sa;
197 		struct sockaddr_vm svm;
198 	} addr = {
199 		.svm = {
200 			.svm_family = AF_VSOCK,
201 			.svm_port = port,
202 			.svm_cid = cid,
203 		},
204 	};
205 	int fd;
206 
207 	fd = socket(AF_VSOCK, type, 0);
208 	if (fd < 0) {
209 		perror("socket");
210 		exit(EXIT_FAILURE);
211 	}
212 
213 	if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) {
214 		perror("bind");
215 		exit(EXIT_FAILURE);
216 	}
217 
218 	if (listen(fd, 1) < 0) {
219 		perror("listen");
220 		exit(EXIT_FAILURE);
221 	}
222 
223 	return fd;
224 }
225 
226 /* Listen on <cid, port> and return the first incoming connection.  The remote
227  * address is stored to clientaddrp.  clientaddrp may be NULL.
228  */
229 int vsock_accept(unsigned int cid, unsigned int port,
230 		 struct sockaddr_vm *clientaddrp, int type)
231 {
232 	union {
233 		struct sockaddr sa;
234 		struct sockaddr_vm svm;
235 	} clientaddr;
236 	socklen_t clientaddr_len = sizeof(clientaddr.svm);
237 	int fd, client_fd, old_errno;
238 
239 	fd = vsock_listen(cid, port, type);
240 
241 	control_writeln("LISTENING");
242 
243 	timeout_begin(TIMEOUT);
244 	do {
245 		client_fd = accept(fd, &clientaddr.sa, &clientaddr_len);
246 		timeout_check("accept");
247 	} while (client_fd < 0 && errno == EINTR);
248 	timeout_end();
249 
250 	old_errno = errno;
251 	close(fd);
252 	errno = old_errno;
253 
254 	if (client_fd < 0)
255 		return client_fd;
256 
257 	if (clientaddr_len != sizeof(clientaddr.svm)) {
258 		fprintf(stderr, "unexpected addrlen from accept(2), %zu\n",
259 			(size_t)clientaddr_len);
260 		exit(EXIT_FAILURE);
261 	}
262 	if (clientaddr.sa.sa_family != AF_VSOCK) {
263 		fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n",
264 			clientaddr.sa.sa_family);
265 		exit(EXIT_FAILURE);
266 	}
267 
268 	if (clientaddrp)
269 		*clientaddrp = clientaddr.svm;
270 	return client_fd;
271 }
272 
273 int vsock_stream_accept(unsigned int cid, unsigned int port,
274 			struct sockaddr_vm *clientaddrp)
275 {
276 	return vsock_accept(cid, port, clientaddrp, SOCK_STREAM);
277 }
278 
279 int vsock_stream_listen(unsigned int cid, unsigned int port)
280 {
281 	return vsock_listen(cid, port, SOCK_STREAM);
282 }
283 
284 int vsock_seqpacket_accept(unsigned int cid, unsigned int port,
285 			   struct sockaddr_vm *clientaddrp)
286 {
287 	return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET);
288 }
289 
290 /* Transmit bytes from a buffer and check the return value.
291  *
292  * expected_ret:
293  *  <0 Negative errno (for testing errors)
294  *   0 End-of-file
295  *  >0 Success (bytes successfully written)
296  */
297 void send_buf(int fd, const void *buf, size_t len, int flags,
298 	      ssize_t expected_ret)
299 {
300 	ssize_t nwritten = 0;
301 	ssize_t ret;
302 
303 	timeout_begin(TIMEOUT);
304 	do {
305 		ret = send(fd, buf + nwritten, len - nwritten, flags);
306 		timeout_check("send");
307 
308 		if (ret == 0 || (ret < 0 && errno != EINTR))
309 			break;
310 
311 		nwritten += ret;
312 	} while (nwritten < len);
313 	timeout_end();
314 
315 	if (expected_ret < 0) {
316 		if (ret != -1) {
317 			fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n",
318 				ret, expected_ret);
319 			exit(EXIT_FAILURE);
320 		}
321 		if (errno != -expected_ret) {
322 			perror("send");
323 			exit(EXIT_FAILURE);
324 		}
325 		return;
326 	}
327 
328 	if (ret < 0) {
329 		perror("send");
330 		exit(EXIT_FAILURE);
331 	}
332 
333 	if (nwritten != expected_ret) {
334 		if (ret == 0)
335 			fprintf(stderr, "unexpected EOF while sending bytes\n");
336 
337 		fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n",
338 			nwritten, expected_ret);
339 		exit(EXIT_FAILURE);
340 	}
341 }
342 
343 /* Receive bytes in a buffer and check the return value.
344  *
345  * expected_ret:
346  *  <0 Negative errno (for testing errors)
347  *   0 End-of-file
348  *  >0 Success (bytes successfully read)
349  */
350 void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret)
351 {
352 	ssize_t nread = 0;
353 	ssize_t ret;
354 
355 	timeout_begin(TIMEOUT);
356 	do {
357 		ret = recv(fd, buf + nread, len - nread, flags);
358 		timeout_check("recv");
359 
360 		if (ret == 0 || (ret < 0 && errno != EINTR))
361 			break;
362 
363 		nread += ret;
364 	} while (nread < len);
365 	timeout_end();
366 
367 	if (expected_ret < 0) {
368 		if (ret != -1) {
369 			fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n",
370 				ret, expected_ret);
371 			exit(EXIT_FAILURE);
372 		}
373 		if (errno != -expected_ret) {
374 			perror("recv");
375 			exit(EXIT_FAILURE);
376 		}
377 		return;
378 	}
379 
380 	if (ret < 0) {
381 		perror("recv");
382 		exit(EXIT_FAILURE);
383 	}
384 
385 	if (nread != expected_ret) {
386 		if (ret == 0)
387 			fprintf(stderr, "unexpected EOF while receiving bytes\n");
388 
389 		fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n",
390 			nread, expected_ret);
391 		exit(EXIT_FAILURE);
392 	}
393 }
394 
395 /* Transmit one byte and check the return value.
396  *
397  * expected_ret:
398  *  <0 Negative errno (for testing errors)
399  *   0 End-of-file
400  *   1 Success
401  */
402 void send_byte(int fd, int expected_ret, int flags)
403 {
404 	const uint8_t byte = 'A';
405 
406 	send_buf(fd, &byte, sizeof(byte), flags, expected_ret);
407 }
408 
409 /* Receive one byte and check the return value.
410  *
411  * expected_ret:
412  *  <0 Negative errno (for testing errors)
413  *   0 End-of-file
414  *   1 Success
415  */
416 void recv_byte(int fd, int expected_ret, int flags)
417 {
418 	uint8_t byte;
419 
420 	recv_buf(fd, &byte, sizeof(byte), flags, expected_ret);
421 
422 	if (byte != 'A') {
423 		fprintf(stderr, "unexpected byte read %c\n", byte);
424 		exit(EXIT_FAILURE);
425 	}
426 }
427 
428 /* Run test cases.  The program terminates if a failure occurs. */
429 void run_tests(const struct test_case *test_cases,
430 	       const struct test_opts *opts)
431 {
432 	int i;
433 
434 	for (i = 0; test_cases[i].name; i++) {
435 		void (*run)(const struct test_opts *opts);
436 		char *line;
437 
438 		printf("%d - %s...", i, test_cases[i].name);
439 		fflush(stdout);
440 
441 		/* Full barrier before executing the next test.  This
442 		 * ensures that client and server are executing the
443 		 * same test case.  In particular, it means whoever is
444 		 * faster will not see the peer still executing the
445 		 * last test.  This is important because port numbers
446 		 * can be used by multiple test cases.
447 		 */
448 		if (test_cases[i].skip)
449 			control_writeln("SKIP");
450 		else
451 			control_writeln("NEXT");
452 
453 		line = control_readln();
454 		if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) {
455 
456 			printf("skipped\n");
457 
458 			free(line);
459 			continue;
460 		}
461 
462 		control_cmpln(line, "NEXT", true);
463 		free(line);
464 
465 		if (opts->mode == TEST_MODE_CLIENT)
466 			run = test_cases[i].run_client;
467 		else
468 			run = test_cases[i].run_server;
469 
470 		if (run)
471 			run(opts);
472 
473 		printf("ok\n");
474 	}
475 }
476 
477 void list_tests(const struct test_case *test_cases)
478 {
479 	int i;
480 
481 	printf("ID\tTest name\n");
482 
483 	for (i = 0; test_cases[i].name; i++)
484 		printf("%d\t%s\n", i, test_cases[i].name);
485 
486 	exit(EXIT_FAILURE);
487 }
488 
489 void skip_test(struct test_case *test_cases, size_t test_cases_len,
490 	       const char *test_id_str)
491 {
492 	unsigned long test_id;
493 	char *endptr = NULL;
494 
495 	errno = 0;
496 	test_id = strtoul(test_id_str, &endptr, 10);
497 	if (errno || *endptr != '\0') {
498 		fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str);
499 		exit(EXIT_FAILURE);
500 	}
501 
502 	if (test_id >= test_cases_len) {
503 		fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n",
504 			test_id, test_cases_len - 1);
505 		exit(EXIT_FAILURE);
506 	}
507 
508 	test_cases[test_id].skip = true;
509 }
510 
511 unsigned long hash_djb2(const void *data, size_t len)
512 {
513 	unsigned long hash = 5381;
514 	int i = 0;
515 
516 	while (i < len) {
517 		hash = ((hash << 5) + hash) + ((unsigned char *)data)[i];
518 		i++;
519 	}
520 
521 	return hash;
522 }
523 
524 size_t iovec_bytes(const struct iovec *iov, size_t iovnum)
525 {
526 	size_t bytes;
527 	int i;
528 
529 	for (bytes = 0, i = 0; i < iovnum; i++)
530 		bytes += iov[i].iov_len;
531 
532 	return bytes;
533 }
534 
535 unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum)
536 {
537 	unsigned long hash;
538 	size_t iov_bytes;
539 	size_t offs;
540 	void *tmp;
541 	int i;
542 
543 	iov_bytes = iovec_bytes(iov, iovnum);
544 
545 	tmp = malloc(iov_bytes);
546 	if (!tmp) {
547 		perror("malloc");
548 		exit(EXIT_FAILURE);
549 	}
550 
551 	for (offs = 0, i = 0; i < iovnum; i++) {
552 		memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len);
553 		offs += iov[i].iov_len;
554 	}
555 
556 	hash = hash_djb2(tmp, iov_bytes);
557 	free(tmp);
558 
559 	return hash;
560 }
561 
562 /* Allocates and returns new 'struct iovec *' according pattern
563  * in the 'test_iovec'. For each element in the 'test_iovec' it
564  * allocates new element in the resulting 'iovec'. 'iov_len'
565  * of the new element is copied from 'test_iovec'. 'iov_base' is
566  * allocated depending on the 'iov_base' of 'test_iovec':
567  *
568  * 'iov_base' == NULL -> valid buf: mmap('iov_len').
569  *
570  * 'iov_base' == MAP_FAILED -> invalid buf:
571  *               mmap('iov_len'), then munmap('iov_len').
572  *               'iov_base' still contains result of
573  *               mmap().
574  *
575  * 'iov_base' == number -> unaligned valid buf:
576  *               mmap('iov_len') + number.
577  *
578  * 'iovnum' is number of elements in 'test_iovec'.
579  *
580  * Returns new 'iovec' or calls 'exit()' on error.
581  */
582 struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum)
583 {
584 	struct iovec *iovec;
585 	int i;
586 
587 	iovec = malloc(sizeof(*iovec) * iovnum);
588 	if (!iovec) {
589 		perror("malloc");
590 		exit(EXIT_FAILURE);
591 	}
592 
593 	for (i = 0; i < iovnum; i++) {
594 		iovec[i].iov_len = test_iovec[i].iov_len;
595 
596 		iovec[i].iov_base = mmap(NULL, iovec[i].iov_len,
597 					 PROT_READ | PROT_WRITE,
598 					 MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE,
599 					 -1, 0);
600 		if (iovec[i].iov_base == MAP_FAILED) {
601 			perror("mmap");
602 			exit(EXIT_FAILURE);
603 		}
604 
605 		if (test_iovec[i].iov_base != MAP_FAILED)
606 			iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base;
607 	}
608 
609 	/* Unmap "invalid" elements. */
610 	for (i = 0; i < iovnum; i++) {
611 		if (test_iovec[i].iov_base == MAP_FAILED) {
612 			if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
613 				perror("munmap");
614 				exit(EXIT_FAILURE);
615 			}
616 		}
617 	}
618 
619 	for (i = 0; i < iovnum; i++) {
620 		int j;
621 
622 		if (test_iovec[i].iov_base == MAP_FAILED)
623 			continue;
624 
625 		for (j = 0; j < iovec[i].iov_len; j++)
626 			((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff;
627 	}
628 
629 	return iovec;
630 }
631 
632 /* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'.
633  * On error calls 'exit()'.
634  */
635 void free_test_iovec(const struct iovec *test_iovec,
636 		     struct iovec *iovec, int iovnum)
637 {
638 	int i;
639 
640 	for (i = 0; i < iovnum; i++) {
641 		if (test_iovec[i].iov_base != MAP_FAILED) {
642 			if (test_iovec[i].iov_base)
643 				iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base;
644 
645 			if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
646 				perror("munmap");
647 				exit(EXIT_FAILURE);
648 			}
649 		}
650 	}
651 
652 	free(iovec);
653 }
654