1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * vsock test utilities 4 * 5 * Copyright (C) 2017 Red Hat, Inc. 6 * 7 * Author: Stefan Hajnoczi <stefanha@redhat.com> 8 */ 9 10 #include <errno.h> 11 #include <stdio.h> 12 #include <stdint.h> 13 #include <stdlib.h> 14 #include <signal.h> 15 #include <unistd.h> 16 #include <assert.h> 17 #include <sys/epoll.h> 18 19 #include "timeout.h" 20 #include "control.h" 21 #include "util.h" 22 23 /* Install signal handlers */ 24 void init_signals(void) 25 { 26 struct sigaction act = { 27 .sa_handler = sigalrm, 28 }; 29 30 sigaction(SIGALRM, &act, NULL); 31 signal(SIGPIPE, SIG_IGN); 32 } 33 34 /* Parse a CID in string representation */ 35 unsigned int parse_cid(const char *str) 36 { 37 char *endptr = NULL; 38 unsigned long n; 39 40 errno = 0; 41 n = strtoul(str, &endptr, 10); 42 if (errno || *endptr != '\0') { 43 fprintf(stderr, "malformed CID \"%s\"\n", str); 44 exit(EXIT_FAILURE); 45 } 46 return n; 47 } 48 49 /* Wait for the remote to close the connection */ 50 void vsock_wait_remote_close(int fd) 51 { 52 struct epoll_event ev; 53 int epollfd, nfds; 54 55 epollfd = epoll_create1(0); 56 if (epollfd == -1) { 57 perror("epoll_create1"); 58 exit(EXIT_FAILURE); 59 } 60 61 ev.events = EPOLLRDHUP | EPOLLHUP; 62 ev.data.fd = fd; 63 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) { 64 perror("epoll_ctl"); 65 exit(EXIT_FAILURE); 66 } 67 68 nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000); 69 if (nfds == -1) { 70 perror("epoll_wait"); 71 exit(EXIT_FAILURE); 72 } 73 74 if (nfds == 0) { 75 fprintf(stderr, "epoll_wait timed out\n"); 76 exit(EXIT_FAILURE); 77 } 78 79 assert(nfds == 1); 80 assert(ev.events & (EPOLLRDHUP | EPOLLHUP)); 81 assert(ev.data.fd == fd); 82 83 close(epollfd); 84 } 85 86 /* Connect to <cid, port> and return the file descriptor. */ 87 static int vsock_connect(unsigned int cid, unsigned int port, int type) 88 { 89 union { 90 struct sockaddr sa; 91 struct sockaddr_vm svm; 92 } addr = { 93 .svm = { 94 .svm_family = AF_VSOCK, 95 .svm_port = port, 96 .svm_cid = cid, 97 }, 98 }; 99 int ret; 100 int fd; 101 102 control_expectln("LISTENING"); 103 104 fd = socket(AF_VSOCK, type, 0); 105 106 timeout_begin(TIMEOUT); 107 do { 108 ret = connect(fd, &addr.sa, sizeof(addr.svm)); 109 timeout_check("connect"); 110 } while (ret < 0 && errno == EINTR); 111 timeout_end(); 112 113 if (ret < 0) { 114 int old_errno = errno; 115 116 close(fd); 117 fd = -1; 118 errno = old_errno; 119 } 120 return fd; 121 } 122 123 int vsock_stream_connect(unsigned int cid, unsigned int port) 124 { 125 return vsock_connect(cid, port, SOCK_STREAM); 126 } 127 128 int vsock_seqpacket_connect(unsigned int cid, unsigned int port) 129 { 130 return vsock_connect(cid, port, SOCK_SEQPACKET); 131 } 132 133 /* Listen on <cid, port> and return the first incoming connection. The remote 134 * address is stored to clientaddrp. clientaddrp may be NULL. 135 */ 136 static int vsock_accept(unsigned int cid, unsigned int port, 137 struct sockaddr_vm *clientaddrp, int type) 138 { 139 union { 140 struct sockaddr sa; 141 struct sockaddr_vm svm; 142 } addr = { 143 .svm = { 144 .svm_family = AF_VSOCK, 145 .svm_port = port, 146 .svm_cid = cid, 147 }, 148 }; 149 union { 150 struct sockaddr sa; 151 struct sockaddr_vm svm; 152 } clientaddr; 153 socklen_t clientaddr_len = sizeof(clientaddr.svm); 154 int fd; 155 int client_fd; 156 int old_errno; 157 158 fd = socket(AF_VSOCK, type, 0); 159 160 if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) { 161 perror("bind"); 162 exit(EXIT_FAILURE); 163 } 164 165 if (listen(fd, 1) < 0) { 166 perror("listen"); 167 exit(EXIT_FAILURE); 168 } 169 170 control_writeln("LISTENING"); 171 172 timeout_begin(TIMEOUT); 173 do { 174 client_fd = accept(fd, &clientaddr.sa, &clientaddr_len); 175 timeout_check("accept"); 176 } while (client_fd < 0 && errno == EINTR); 177 timeout_end(); 178 179 old_errno = errno; 180 close(fd); 181 errno = old_errno; 182 183 if (client_fd < 0) 184 return client_fd; 185 186 if (clientaddr_len != sizeof(clientaddr.svm)) { 187 fprintf(stderr, "unexpected addrlen from accept(2), %zu\n", 188 (size_t)clientaddr_len); 189 exit(EXIT_FAILURE); 190 } 191 if (clientaddr.sa.sa_family != AF_VSOCK) { 192 fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n", 193 clientaddr.sa.sa_family); 194 exit(EXIT_FAILURE); 195 } 196 197 if (clientaddrp) 198 *clientaddrp = clientaddr.svm; 199 return client_fd; 200 } 201 202 int vsock_stream_accept(unsigned int cid, unsigned int port, 203 struct sockaddr_vm *clientaddrp) 204 { 205 return vsock_accept(cid, port, clientaddrp, SOCK_STREAM); 206 } 207 208 int vsock_seqpacket_accept(unsigned int cid, unsigned int port, 209 struct sockaddr_vm *clientaddrp) 210 { 211 return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET); 212 } 213 214 /* Transmit one byte and check the return value. 215 * 216 * expected_ret: 217 * <0 Negative errno (for testing errors) 218 * 0 End-of-file 219 * 1 Success 220 */ 221 void send_byte(int fd, int expected_ret, int flags) 222 { 223 const uint8_t byte = 'A'; 224 ssize_t nwritten; 225 226 timeout_begin(TIMEOUT); 227 do { 228 nwritten = send(fd, &byte, sizeof(byte), flags); 229 timeout_check("write"); 230 } while (nwritten < 0 && errno == EINTR); 231 timeout_end(); 232 233 if (expected_ret < 0) { 234 if (nwritten != -1) { 235 fprintf(stderr, "bogus send(2) return value %zd\n", 236 nwritten); 237 exit(EXIT_FAILURE); 238 } 239 if (errno != -expected_ret) { 240 perror("write"); 241 exit(EXIT_FAILURE); 242 } 243 return; 244 } 245 246 if (nwritten < 0) { 247 perror("write"); 248 exit(EXIT_FAILURE); 249 } 250 if (nwritten == 0) { 251 if (expected_ret == 0) 252 return; 253 254 fprintf(stderr, "unexpected EOF while sending byte\n"); 255 exit(EXIT_FAILURE); 256 } 257 if (nwritten != sizeof(byte)) { 258 fprintf(stderr, "bogus send(2) return value %zd\n", nwritten); 259 exit(EXIT_FAILURE); 260 } 261 } 262 263 /* Receive one byte and check the return value. 264 * 265 * expected_ret: 266 * <0 Negative errno (for testing errors) 267 * 0 End-of-file 268 * 1 Success 269 */ 270 void recv_byte(int fd, int expected_ret, int flags) 271 { 272 uint8_t byte; 273 ssize_t nread; 274 275 timeout_begin(TIMEOUT); 276 do { 277 nread = recv(fd, &byte, sizeof(byte), flags); 278 timeout_check("read"); 279 } while (nread < 0 && errno == EINTR); 280 timeout_end(); 281 282 if (expected_ret < 0) { 283 if (nread != -1) { 284 fprintf(stderr, "bogus recv(2) return value %zd\n", 285 nread); 286 exit(EXIT_FAILURE); 287 } 288 if (errno != -expected_ret) { 289 perror("read"); 290 exit(EXIT_FAILURE); 291 } 292 return; 293 } 294 295 if (nread < 0) { 296 perror("read"); 297 exit(EXIT_FAILURE); 298 } 299 if (nread == 0) { 300 if (expected_ret == 0) 301 return; 302 303 fprintf(stderr, "unexpected EOF while receiving byte\n"); 304 exit(EXIT_FAILURE); 305 } 306 if (nread != sizeof(byte)) { 307 fprintf(stderr, "bogus recv(2) return value %zd\n", nread); 308 exit(EXIT_FAILURE); 309 } 310 if (byte != 'A') { 311 fprintf(stderr, "unexpected byte read %c\n", byte); 312 exit(EXIT_FAILURE); 313 } 314 } 315 316 /* Run test cases. The program terminates if a failure occurs. */ 317 void run_tests(const struct test_case *test_cases, 318 const struct test_opts *opts) 319 { 320 int i; 321 322 for (i = 0; test_cases[i].name; i++) { 323 void (*run)(const struct test_opts *opts); 324 char *line; 325 326 printf("%d - %s...", i, test_cases[i].name); 327 fflush(stdout); 328 329 /* Full barrier before executing the next test. This 330 * ensures that client and server are executing the 331 * same test case. In particular, it means whoever is 332 * faster will not see the peer still executing the 333 * last test. This is important because port numbers 334 * can be used by multiple test cases. 335 */ 336 if (test_cases[i].skip) 337 control_writeln("SKIP"); 338 else 339 control_writeln("NEXT"); 340 341 line = control_readln(); 342 if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) { 343 344 printf("skipped\n"); 345 346 free(line); 347 continue; 348 } 349 350 control_cmpln(line, "NEXT", true); 351 free(line); 352 353 if (opts->mode == TEST_MODE_CLIENT) 354 run = test_cases[i].run_client; 355 else 356 run = test_cases[i].run_server; 357 358 if (run) 359 run(opts); 360 361 printf("ok\n"); 362 } 363 } 364 365 void list_tests(const struct test_case *test_cases) 366 { 367 int i; 368 369 printf("ID\tTest name\n"); 370 371 for (i = 0; test_cases[i].name; i++) 372 printf("%d\t%s\n", i, test_cases[i].name); 373 374 exit(EXIT_FAILURE); 375 } 376 377 void skip_test(struct test_case *test_cases, size_t test_cases_len, 378 const char *test_id_str) 379 { 380 unsigned long test_id; 381 char *endptr = NULL; 382 383 errno = 0; 384 test_id = strtoul(test_id_str, &endptr, 10); 385 if (errno || *endptr != '\0') { 386 fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str); 387 exit(EXIT_FAILURE); 388 } 389 390 if (test_id >= test_cases_len) { 391 fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n", 392 test_id, test_cases_len - 1); 393 exit(EXIT_FAILURE); 394 } 395 396 test_cases[test_id].skip = true; 397 } 398 399 unsigned long hash_djb2(const void *data, size_t len) 400 { 401 unsigned long hash = 5381; 402 int i = 0; 403 404 while (i < len) { 405 hash = ((hash << 5) + hash) + ((unsigned char *)data)[i]; 406 i++; 407 } 408 409 return hash; 410 } 411