1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * vsock test utilities 4 * 5 * Copyright (C) 2017 Red Hat, Inc. 6 * 7 * Author: Stefan Hajnoczi <stefanha@redhat.com> 8 */ 9 10 #include <errno.h> 11 #include <stdio.h> 12 #include <stdint.h> 13 #include <stdlib.h> 14 #include <string.h> 15 #include <signal.h> 16 #include <unistd.h> 17 #include <assert.h> 18 #include <sys/epoll.h> 19 #include <sys/mman.h> 20 21 #include "timeout.h" 22 #include "control.h" 23 #include "util.h" 24 25 /* Install signal handlers */ 26 void init_signals(void) 27 { 28 struct sigaction act = { 29 .sa_handler = sigalrm, 30 }; 31 32 sigaction(SIGALRM, &act, NULL); 33 signal(SIGPIPE, SIG_IGN); 34 } 35 36 /* Parse a CID in string representation */ 37 unsigned int parse_cid(const char *str) 38 { 39 char *endptr = NULL; 40 unsigned long n; 41 42 errno = 0; 43 n = strtoul(str, &endptr, 10); 44 if (errno || *endptr != '\0') { 45 fprintf(stderr, "malformed CID \"%s\"\n", str); 46 exit(EXIT_FAILURE); 47 } 48 return n; 49 } 50 51 /* Wait for the remote to close the connection */ 52 void vsock_wait_remote_close(int fd) 53 { 54 struct epoll_event ev; 55 int epollfd, nfds; 56 57 epollfd = epoll_create1(0); 58 if (epollfd == -1) { 59 perror("epoll_create1"); 60 exit(EXIT_FAILURE); 61 } 62 63 ev.events = EPOLLRDHUP | EPOLLHUP; 64 ev.data.fd = fd; 65 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) { 66 perror("epoll_ctl"); 67 exit(EXIT_FAILURE); 68 } 69 70 nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000); 71 if (nfds == -1) { 72 perror("epoll_wait"); 73 exit(EXIT_FAILURE); 74 } 75 76 if (nfds == 0) { 77 fprintf(stderr, "epoll_wait timed out\n"); 78 exit(EXIT_FAILURE); 79 } 80 81 assert(nfds == 1); 82 assert(ev.events & (EPOLLRDHUP | EPOLLHUP)); 83 assert(ev.data.fd == fd); 84 85 close(epollfd); 86 } 87 88 /* Connect to <cid, port> and return the file descriptor. */ 89 static int vsock_connect(unsigned int cid, unsigned int port, int type) 90 { 91 union { 92 struct sockaddr sa; 93 struct sockaddr_vm svm; 94 } addr = { 95 .svm = { 96 .svm_family = AF_VSOCK, 97 .svm_port = port, 98 .svm_cid = cid, 99 }, 100 }; 101 int ret; 102 int fd; 103 104 control_expectln("LISTENING"); 105 106 fd = socket(AF_VSOCK, type, 0); 107 108 timeout_begin(TIMEOUT); 109 do { 110 ret = connect(fd, &addr.sa, sizeof(addr.svm)); 111 timeout_check("connect"); 112 } while (ret < 0 && errno == EINTR); 113 timeout_end(); 114 115 if (ret < 0) { 116 int old_errno = errno; 117 118 close(fd); 119 fd = -1; 120 errno = old_errno; 121 } 122 return fd; 123 } 124 125 int vsock_stream_connect(unsigned int cid, unsigned int port) 126 { 127 return vsock_connect(cid, port, SOCK_STREAM); 128 } 129 130 int vsock_seqpacket_connect(unsigned int cid, unsigned int port) 131 { 132 return vsock_connect(cid, port, SOCK_SEQPACKET); 133 } 134 135 /* Listen on <cid, port> and return the first incoming connection. The remote 136 * address is stored to clientaddrp. clientaddrp may be NULL. 137 */ 138 static int vsock_accept(unsigned int cid, unsigned int port, 139 struct sockaddr_vm *clientaddrp, int type) 140 { 141 union { 142 struct sockaddr sa; 143 struct sockaddr_vm svm; 144 } addr = { 145 .svm = { 146 .svm_family = AF_VSOCK, 147 .svm_port = port, 148 .svm_cid = cid, 149 }, 150 }; 151 union { 152 struct sockaddr sa; 153 struct sockaddr_vm svm; 154 } clientaddr; 155 socklen_t clientaddr_len = sizeof(clientaddr.svm); 156 int fd; 157 int client_fd; 158 int old_errno; 159 160 fd = socket(AF_VSOCK, type, 0); 161 162 if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) { 163 perror("bind"); 164 exit(EXIT_FAILURE); 165 } 166 167 if (listen(fd, 1) < 0) { 168 perror("listen"); 169 exit(EXIT_FAILURE); 170 } 171 172 control_writeln("LISTENING"); 173 174 timeout_begin(TIMEOUT); 175 do { 176 client_fd = accept(fd, &clientaddr.sa, &clientaddr_len); 177 timeout_check("accept"); 178 } while (client_fd < 0 && errno == EINTR); 179 timeout_end(); 180 181 old_errno = errno; 182 close(fd); 183 errno = old_errno; 184 185 if (client_fd < 0) 186 return client_fd; 187 188 if (clientaddr_len != sizeof(clientaddr.svm)) { 189 fprintf(stderr, "unexpected addrlen from accept(2), %zu\n", 190 (size_t)clientaddr_len); 191 exit(EXIT_FAILURE); 192 } 193 if (clientaddr.sa.sa_family != AF_VSOCK) { 194 fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n", 195 clientaddr.sa.sa_family); 196 exit(EXIT_FAILURE); 197 } 198 199 if (clientaddrp) 200 *clientaddrp = clientaddr.svm; 201 return client_fd; 202 } 203 204 int vsock_stream_accept(unsigned int cid, unsigned int port, 205 struct sockaddr_vm *clientaddrp) 206 { 207 return vsock_accept(cid, port, clientaddrp, SOCK_STREAM); 208 } 209 210 int vsock_seqpacket_accept(unsigned int cid, unsigned int port, 211 struct sockaddr_vm *clientaddrp) 212 { 213 return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET); 214 } 215 216 /* Transmit bytes from a buffer and check the return value. 217 * 218 * expected_ret: 219 * <0 Negative errno (for testing errors) 220 * 0 End-of-file 221 * >0 Success (bytes successfully written) 222 */ 223 void send_buf(int fd, const void *buf, size_t len, int flags, 224 ssize_t expected_ret) 225 { 226 ssize_t nwritten = 0; 227 ssize_t ret; 228 229 timeout_begin(TIMEOUT); 230 do { 231 ret = send(fd, buf + nwritten, len - nwritten, flags); 232 timeout_check("send"); 233 234 if (ret == 0 || (ret < 0 && errno != EINTR)) 235 break; 236 237 nwritten += ret; 238 } while (nwritten < len); 239 timeout_end(); 240 241 if (expected_ret < 0) { 242 if (ret != -1) { 243 fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n", 244 ret, expected_ret); 245 exit(EXIT_FAILURE); 246 } 247 if (errno != -expected_ret) { 248 perror("send"); 249 exit(EXIT_FAILURE); 250 } 251 return; 252 } 253 254 if (ret < 0) { 255 perror("send"); 256 exit(EXIT_FAILURE); 257 } 258 259 if (nwritten != expected_ret) { 260 if (ret == 0) 261 fprintf(stderr, "unexpected EOF while sending bytes\n"); 262 263 fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n", 264 nwritten, expected_ret); 265 exit(EXIT_FAILURE); 266 } 267 } 268 269 /* Receive bytes in a buffer and check the return value. 270 * 271 * expected_ret: 272 * <0 Negative errno (for testing errors) 273 * 0 End-of-file 274 * >0 Success (bytes successfully read) 275 */ 276 void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret) 277 { 278 ssize_t nread = 0; 279 ssize_t ret; 280 281 timeout_begin(TIMEOUT); 282 do { 283 ret = recv(fd, buf + nread, len - nread, flags); 284 timeout_check("recv"); 285 286 if (ret == 0 || (ret < 0 && errno != EINTR)) 287 break; 288 289 nread += ret; 290 } while (nread < len); 291 timeout_end(); 292 293 if (expected_ret < 0) { 294 if (ret != -1) { 295 fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n", 296 ret, expected_ret); 297 exit(EXIT_FAILURE); 298 } 299 if (errno != -expected_ret) { 300 perror("recv"); 301 exit(EXIT_FAILURE); 302 } 303 return; 304 } 305 306 if (ret < 0) { 307 perror("recv"); 308 exit(EXIT_FAILURE); 309 } 310 311 if (nread != expected_ret) { 312 if (ret == 0) 313 fprintf(stderr, "unexpected EOF while receiving bytes\n"); 314 315 fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n", 316 nread, expected_ret); 317 exit(EXIT_FAILURE); 318 } 319 } 320 321 /* Transmit one byte and check the return value. 322 * 323 * expected_ret: 324 * <0 Negative errno (for testing errors) 325 * 0 End-of-file 326 * 1 Success 327 */ 328 void send_byte(int fd, int expected_ret, int flags) 329 { 330 const uint8_t byte = 'A'; 331 332 send_buf(fd, &byte, sizeof(byte), flags, expected_ret); 333 } 334 335 /* Receive one byte and check the return value. 336 * 337 * expected_ret: 338 * <0 Negative errno (for testing errors) 339 * 0 End-of-file 340 * 1 Success 341 */ 342 void recv_byte(int fd, int expected_ret, int flags) 343 { 344 uint8_t byte; 345 346 recv_buf(fd, &byte, sizeof(byte), flags, expected_ret); 347 348 if (byte != 'A') { 349 fprintf(stderr, "unexpected byte read %c\n", byte); 350 exit(EXIT_FAILURE); 351 } 352 } 353 354 /* Run test cases. The program terminates if a failure occurs. */ 355 void run_tests(const struct test_case *test_cases, 356 const struct test_opts *opts) 357 { 358 int i; 359 360 for (i = 0; test_cases[i].name; i++) { 361 void (*run)(const struct test_opts *opts); 362 char *line; 363 364 printf("%d - %s...", i, test_cases[i].name); 365 fflush(stdout); 366 367 /* Full barrier before executing the next test. This 368 * ensures that client and server are executing the 369 * same test case. In particular, it means whoever is 370 * faster will not see the peer still executing the 371 * last test. This is important because port numbers 372 * can be used by multiple test cases. 373 */ 374 if (test_cases[i].skip) 375 control_writeln("SKIP"); 376 else 377 control_writeln("NEXT"); 378 379 line = control_readln(); 380 if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) { 381 382 printf("skipped\n"); 383 384 free(line); 385 continue; 386 } 387 388 control_cmpln(line, "NEXT", true); 389 free(line); 390 391 if (opts->mode == TEST_MODE_CLIENT) 392 run = test_cases[i].run_client; 393 else 394 run = test_cases[i].run_server; 395 396 if (run) 397 run(opts); 398 399 printf("ok\n"); 400 } 401 } 402 403 void list_tests(const struct test_case *test_cases) 404 { 405 int i; 406 407 printf("ID\tTest name\n"); 408 409 for (i = 0; test_cases[i].name; i++) 410 printf("%d\t%s\n", i, test_cases[i].name); 411 412 exit(EXIT_FAILURE); 413 } 414 415 void skip_test(struct test_case *test_cases, size_t test_cases_len, 416 const char *test_id_str) 417 { 418 unsigned long test_id; 419 char *endptr = NULL; 420 421 errno = 0; 422 test_id = strtoul(test_id_str, &endptr, 10); 423 if (errno || *endptr != '\0') { 424 fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str); 425 exit(EXIT_FAILURE); 426 } 427 428 if (test_id >= test_cases_len) { 429 fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n", 430 test_id, test_cases_len - 1); 431 exit(EXIT_FAILURE); 432 } 433 434 test_cases[test_id].skip = true; 435 } 436 437 unsigned long hash_djb2(const void *data, size_t len) 438 { 439 unsigned long hash = 5381; 440 int i = 0; 441 442 while (i < len) { 443 hash = ((hash << 5) + hash) + ((unsigned char *)data)[i]; 444 i++; 445 } 446 447 return hash; 448 } 449 450 size_t iovec_bytes(const struct iovec *iov, size_t iovnum) 451 { 452 size_t bytes; 453 int i; 454 455 for (bytes = 0, i = 0; i < iovnum; i++) 456 bytes += iov[i].iov_len; 457 458 return bytes; 459 } 460 461 unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum) 462 { 463 unsigned long hash; 464 size_t iov_bytes; 465 size_t offs; 466 void *tmp; 467 int i; 468 469 iov_bytes = iovec_bytes(iov, iovnum); 470 471 tmp = malloc(iov_bytes); 472 if (!tmp) { 473 perror("malloc"); 474 exit(EXIT_FAILURE); 475 } 476 477 for (offs = 0, i = 0; i < iovnum; i++) { 478 memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len); 479 offs += iov[i].iov_len; 480 } 481 482 hash = hash_djb2(tmp, iov_bytes); 483 free(tmp); 484 485 return hash; 486 } 487 488 /* Allocates and returns new 'struct iovec *' according pattern 489 * in the 'test_iovec'. For each element in the 'test_iovec' it 490 * allocates new element in the resulting 'iovec'. 'iov_len' 491 * of the new element is copied from 'test_iovec'. 'iov_base' is 492 * allocated depending on the 'iov_base' of 'test_iovec': 493 * 494 * 'iov_base' == NULL -> valid buf: mmap('iov_len'). 495 * 496 * 'iov_base' == MAP_FAILED -> invalid buf: 497 * mmap('iov_len'), then munmap('iov_len'). 498 * 'iov_base' still contains result of 499 * mmap(). 500 * 501 * 'iov_base' == number -> unaligned valid buf: 502 * mmap('iov_len') + number. 503 * 504 * 'iovnum' is number of elements in 'test_iovec'. 505 * 506 * Returns new 'iovec' or calls 'exit()' on error. 507 */ 508 struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum) 509 { 510 struct iovec *iovec; 511 int i; 512 513 iovec = malloc(sizeof(*iovec) * iovnum); 514 if (!iovec) { 515 perror("malloc"); 516 exit(EXIT_FAILURE); 517 } 518 519 for (i = 0; i < iovnum; i++) { 520 iovec[i].iov_len = test_iovec[i].iov_len; 521 522 iovec[i].iov_base = mmap(NULL, iovec[i].iov_len, 523 PROT_READ | PROT_WRITE, 524 MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, 525 -1, 0); 526 if (iovec[i].iov_base == MAP_FAILED) { 527 perror("mmap"); 528 exit(EXIT_FAILURE); 529 } 530 531 if (test_iovec[i].iov_base != MAP_FAILED) 532 iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base; 533 } 534 535 /* Unmap "invalid" elements. */ 536 for (i = 0; i < iovnum; i++) { 537 if (test_iovec[i].iov_base == MAP_FAILED) { 538 if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { 539 perror("munmap"); 540 exit(EXIT_FAILURE); 541 } 542 } 543 } 544 545 for (i = 0; i < iovnum; i++) { 546 int j; 547 548 if (test_iovec[i].iov_base == MAP_FAILED) 549 continue; 550 551 for (j = 0; j < iovec[i].iov_len; j++) 552 ((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff; 553 } 554 555 return iovec; 556 } 557 558 /* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'. 559 * On error calls 'exit()'. 560 */ 561 void free_test_iovec(const struct iovec *test_iovec, 562 struct iovec *iovec, int iovnum) 563 { 564 int i; 565 566 for (i = 0; i < iovnum; i++) { 567 if (test_iovec[i].iov_base != MAP_FAILED) { 568 if (test_iovec[i].iov_base) 569 iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base; 570 571 if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { 572 perror("munmap"); 573 exit(EXIT_FAILURE); 574 } 575 } 576 } 577 578 free(iovec); 579 } 580