1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * vsock test utilities 4 * 5 * Copyright (C) 2017 Red Hat, Inc. 6 * 7 * Author: Stefan Hajnoczi <stefanha@redhat.com> 8 */ 9 10 #include <errno.h> 11 #include <stdio.h> 12 #include <stdint.h> 13 #include <stdlib.h> 14 #include <string.h> 15 #include <signal.h> 16 #include <unistd.h> 17 #include <assert.h> 18 #include <sys/epoll.h> 19 #include <sys/mman.h> 20 21 #include "timeout.h" 22 #include "control.h" 23 #include "util.h" 24 25 /* Install signal handlers */ 26 void init_signals(void) 27 { 28 struct sigaction act = { 29 .sa_handler = sigalrm, 30 }; 31 32 sigaction(SIGALRM, &act, NULL); 33 signal(SIGPIPE, SIG_IGN); 34 } 35 36 /* Parse a CID in string representation */ 37 unsigned int parse_cid(const char *str) 38 { 39 char *endptr = NULL; 40 unsigned long n; 41 42 errno = 0; 43 n = strtoul(str, &endptr, 10); 44 if (errno || *endptr != '\0') { 45 fprintf(stderr, "malformed CID \"%s\"\n", str); 46 exit(EXIT_FAILURE); 47 } 48 return n; 49 } 50 51 /* Wait for the remote to close the connection */ 52 void vsock_wait_remote_close(int fd) 53 { 54 struct epoll_event ev; 55 int epollfd, nfds; 56 57 epollfd = epoll_create1(0); 58 if (epollfd == -1) { 59 perror("epoll_create1"); 60 exit(EXIT_FAILURE); 61 } 62 63 ev.events = EPOLLRDHUP | EPOLLHUP; 64 ev.data.fd = fd; 65 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) { 66 perror("epoll_ctl"); 67 exit(EXIT_FAILURE); 68 } 69 70 nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000); 71 if (nfds == -1) { 72 perror("epoll_wait"); 73 exit(EXIT_FAILURE); 74 } 75 76 if (nfds == 0) { 77 fprintf(stderr, "epoll_wait timed out\n"); 78 exit(EXIT_FAILURE); 79 } 80 81 assert(nfds == 1); 82 assert(ev.events & (EPOLLRDHUP | EPOLLHUP)); 83 assert(ev.data.fd == fd); 84 85 close(epollfd); 86 } 87 88 /* Bind to <bind_port>, connect to <cid, port> and return the file descriptor. */ 89 int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type) 90 { 91 struct sockaddr_vm sa_client = { 92 .svm_family = AF_VSOCK, 93 .svm_cid = VMADDR_CID_ANY, 94 .svm_port = bind_port, 95 }; 96 struct sockaddr_vm sa_server = { 97 .svm_family = AF_VSOCK, 98 .svm_cid = cid, 99 .svm_port = port, 100 }; 101 102 int client_fd, ret; 103 104 client_fd = socket(AF_VSOCK, type, 0); 105 if (client_fd < 0) { 106 perror("socket"); 107 exit(EXIT_FAILURE); 108 } 109 110 if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) { 111 perror("bind"); 112 exit(EXIT_FAILURE); 113 } 114 115 timeout_begin(TIMEOUT); 116 do { 117 ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server)); 118 timeout_check("connect"); 119 } while (ret < 0 && errno == EINTR); 120 timeout_end(); 121 122 if (ret < 0) { 123 perror("connect"); 124 exit(EXIT_FAILURE); 125 } 126 127 return client_fd; 128 } 129 130 /* Connect to <cid, port> and return the file descriptor. */ 131 static int vsock_connect(unsigned int cid, unsigned int port, int type) 132 { 133 union { 134 struct sockaddr sa; 135 struct sockaddr_vm svm; 136 } addr = { 137 .svm = { 138 .svm_family = AF_VSOCK, 139 .svm_port = port, 140 .svm_cid = cid, 141 }, 142 }; 143 int ret; 144 int fd; 145 146 control_expectln("LISTENING"); 147 148 fd = socket(AF_VSOCK, type, 0); 149 if (fd < 0) { 150 perror("socket"); 151 exit(EXIT_FAILURE); 152 } 153 154 timeout_begin(TIMEOUT); 155 do { 156 ret = connect(fd, &addr.sa, sizeof(addr.svm)); 157 timeout_check("connect"); 158 } while (ret < 0 && errno == EINTR); 159 timeout_end(); 160 161 if (ret < 0) { 162 int old_errno = errno; 163 164 close(fd); 165 fd = -1; 166 errno = old_errno; 167 } 168 return fd; 169 } 170 171 int vsock_stream_connect(unsigned int cid, unsigned int port) 172 { 173 return vsock_connect(cid, port, SOCK_STREAM); 174 } 175 176 int vsock_seqpacket_connect(unsigned int cid, unsigned int port) 177 { 178 return vsock_connect(cid, port, SOCK_SEQPACKET); 179 } 180 181 /* Listen on <cid, port> and return the file descriptor. */ 182 static int vsock_listen(unsigned int cid, unsigned int port, int type) 183 { 184 union { 185 struct sockaddr sa; 186 struct sockaddr_vm svm; 187 } addr = { 188 .svm = { 189 .svm_family = AF_VSOCK, 190 .svm_port = port, 191 .svm_cid = cid, 192 }, 193 }; 194 int fd; 195 196 fd = socket(AF_VSOCK, type, 0); 197 if (fd < 0) { 198 perror("socket"); 199 exit(EXIT_FAILURE); 200 } 201 202 if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) { 203 perror("bind"); 204 exit(EXIT_FAILURE); 205 } 206 207 if (listen(fd, 1) < 0) { 208 perror("listen"); 209 exit(EXIT_FAILURE); 210 } 211 212 return fd; 213 } 214 215 /* Listen on <cid, port> and return the first incoming connection. The remote 216 * address is stored to clientaddrp. clientaddrp may be NULL. 217 */ 218 static int vsock_accept(unsigned int cid, unsigned int port, 219 struct sockaddr_vm *clientaddrp, int type) 220 { 221 union { 222 struct sockaddr sa; 223 struct sockaddr_vm svm; 224 } clientaddr; 225 socklen_t clientaddr_len = sizeof(clientaddr.svm); 226 int fd, client_fd, old_errno; 227 228 fd = vsock_listen(cid, port, type); 229 230 control_writeln("LISTENING"); 231 232 timeout_begin(TIMEOUT); 233 do { 234 client_fd = accept(fd, &clientaddr.sa, &clientaddr_len); 235 timeout_check("accept"); 236 } while (client_fd < 0 && errno == EINTR); 237 timeout_end(); 238 239 old_errno = errno; 240 close(fd); 241 errno = old_errno; 242 243 if (client_fd < 0) 244 return client_fd; 245 246 if (clientaddr_len != sizeof(clientaddr.svm)) { 247 fprintf(stderr, "unexpected addrlen from accept(2), %zu\n", 248 (size_t)clientaddr_len); 249 exit(EXIT_FAILURE); 250 } 251 if (clientaddr.sa.sa_family != AF_VSOCK) { 252 fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n", 253 clientaddr.sa.sa_family); 254 exit(EXIT_FAILURE); 255 } 256 257 if (clientaddrp) 258 *clientaddrp = clientaddr.svm; 259 return client_fd; 260 } 261 262 int vsock_stream_accept(unsigned int cid, unsigned int port, 263 struct sockaddr_vm *clientaddrp) 264 { 265 return vsock_accept(cid, port, clientaddrp, SOCK_STREAM); 266 } 267 268 int vsock_stream_listen(unsigned int cid, unsigned int port) 269 { 270 return vsock_listen(cid, port, SOCK_STREAM); 271 } 272 273 int vsock_seqpacket_accept(unsigned int cid, unsigned int port, 274 struct sockaddr_vm *clientaddrp) 275 { 276 return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET); 277 } 278 279 /* Transmit bytes from a buffer and check the return value. 280 * 281 * expected_ret: 282 * <0 Negative errno (for testing errors) 283 * 0 End-of-file 284 * >0 Success (bytes successfully written) 285 */ 286 void send_buf(int fd, const void *buf, size_t len, int flags, 287 ssize_t expected_ret) 288 { 289 ssize_t nwritten = 0; 290 ssize_t ret; 291 292 timeout_begin(TIMEOUT); 293 do { 294 ret = send(fd, buf + nwritten, len - nwritten, flags); 295 timeout_check("send"); 296 297 if (ret == 0 || (ret < 0 && errno != EINTR)) 298 break; 299 300 nwritten += ret; 301 } while (nwritten < len); 302 timeout_end(); 303 304 if (expected_ret < 0) { 305 if (ret != -1) { 306 fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n", 307 ret, expected_ret); 308 exit(EXIT_FAILURE); 309 } 310 if (errno != -expected_ret) { 311 perror("send"); 312 exit(EXIT_FAILURE); 313 } 314 return; 315 } 316 317 if (ret < 0) { 318 perror("send"); 319 exit(EXIT_FAILURE); 320 } 321 322 if (nwritten != expected_ret) { 323 if (ret == 0) 324 fprintf(stderr, "unexpected EOF while sending bytes\n"); 325 326 fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n", 327 nwritten, expected_ret); 328 exit(EXIT_FAILURE); 329 } 330 } 331 332 /* Receive bytes in a buffer and check the return value. 333 * 334 * expected_ret: 335 * <0 Negative errno (for testing errors) 336 * 0 End-of-file 337 * >0 Success (bytes successfully read) 338 */ 339 void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret) 340 { 341 ssize_t nread = 0; 342 ssize_t ret; 343 344 timeout_begin(TIMEOUT); 345 do { 346 ret = recv(fd, buf + nread, len - nread, flags); 347 timeout_check("recv"); 348 349 if (ret == 0 || (ret < 0 && errno != EINTR)) 350 break; 351 352 nread += ret; 353 } while (nread < len); 354 timeout_end(); 355 356 if (expected_ret < 0) { 357 if (ret != -1) { 358 fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n", 359 ret, expected_ret); 360 exit(EXIT_FAILURE); 361 } 362 if (errno != -expected_ret) { 363 perror("recv"); 364 exit(EXIT_FAILURE); 365 } 366 return; 367 } 368 369 if (ret < 0) { 370 perror("recv"); 371 exit(EXIT_FAILURE); 372 } 373 374 if (nread != expected_ret) { 375 if (ret == 0) 376 fprintf(stderr, "unexpected EOF while receiving bytes\n"); 377 378 fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n", 379 nread, expected_ret); 380 exit(EXIT_FAILURE); 381 } 382 } 383 384 /* Transmit one byte and check the return value. 385 * 386 * expected_ret: 387 * <0 Negative errno (for testing errors) 388 * 0 End-of-file 389 * 1 Success 390 */ 391 void send_byte(int fd, int expected_ret, int flags) 392 { 393 const uint8_t byte = 'A'; 394 395 send_buf(fd, &byte, sizeof(byte), flags, expected_ret); 396 } 397 398 /* Receive one byte and check the return value. 399 * 400 * expected_ret: 401 * <0 Negative errno (for testing errors) 402 * 0 End-of-file 403 * 1 Success 404 */ 405 void recv_byte(int fd, int expected_ret, int flags) 406 { 407 uint8_t byte; 408 409 recv_buf(fd, &byte, sizeof(byte), flags, expected_ret); 410 411 if (byte != 'A') { 412 fprintf(stderr, "unexpected byte read %c\n", byte); 413 exit(EXIT_FAILURE); 414 } 415 } 416 417 /* Run test cases. The program terminates if a failure occurs. */ 418 void run_tests(const struct test_case *test_cases, 419 const struct test_opts *opts) 420 { 421 int i; 422 423 for (i = 0; test_cases[i].name; i++) { 424 void (*run)(const struct test_opts *opts); 425 char *line; 426 427 printf("%d - %s...", i, test_cases[i].name); 428 fflush(stdout); 429 430 /* Full barrier before executing the next test. This 431 * ensures that client and server are executing the 432 * same test case. In particular, it means whoever is 433 * faster will not see the peer still executing the 434 * last test. This is important because port numbers 435 * can be used by multiple test cases. 436 */ 437 if (test_cases[i].skip) 438 control_writeln("SKIP"); 439 else 440 control_writeln("NEXT"); 441 442 line = control_readln(); 443 if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) { 444 445 printf("skipped\n"); 446 447 free(line); 448 continue; 449 } 450 451 control_cmpln(line, "NEXT", true); 452 free(line); 453 454 if (opts->mode == TEST_MODE_CLIENT) 455 run = test_cases[i].run_client; 456 else 457 run = test_cases[i].run_server; 458 459 if (run) 460 run(opts); 461 462 printf("ok\n"); 463 } 464 } 465 466 void list_tests(const struct test_case *test_cases) 467 { 468 int i; 469 470 printf("ID\tTest name\n"); 471 472 for (i = 0; test_cases[i].name; i++) 473 printf("%d\t%s\n", i, test_cases[i].name); 474 475 exit(EXIT_FAILURE); 476 } 477 478 void skip_test(struct test_case *test_cases, size_t test_cases_len, 479 const char *test_id_str) 480 { 481 unsigned long test_id; 482 char *endptr = NULL; 483 484 errno = 0; 485 test_id = strtoul(test_id_str, &endptr, 10); 486 if (errno || *endptr != '\0') { 487 fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str); 488 exit(EXIT_FAILURE); 489 } 490 491 if (test_id >= test_cases_len) { 492 fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n", 493 test_id, test_cases_len - 1); 494 exit(EXIT_FAILURE); 495 } 496 497 test_cases[test_id].skip = true; 498 } 499 500 unsigned long hash_djb2(const void *data, size_t len) 501 { 502 unsigned long hash = 5381; 503 int i = 0; 504 505 while (i < len) { 506 hash = ((hash << 5) + hash) + ((unsigned char *)data)[i]; 507 i++; 508 } 509 510 return hash; 511 } 512 513 size_t iovec_bytes(const struct iovec *iov, size_t iovnum) 514 { 515 size_t bytes; 516 int i; 517 518 for (bytes = 0, i = 0; i < iovnum; i++) 519 bytes += iov[i].iov_len; 520 521 return bytes; 522 } 523 524 unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum) 525 { 526 unsigned long hash; 527 size_t iov_bytes; 528 size_t offs; 529 void *tmp; 530 int i; 531 532 iov_bytes = iovec_bytes(iov, iovnum); 533 534 tmp = malloc(iov_bytes); 535 if (!tmp) { 536 perror("malloc"); 537 exit(EXIT_FAILURE); 538 } 539 540 for (offs = 0, i = 0; i < iovnum; i++) { 541 memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len); 542 offs += iov[i].iov_len; 543 } 544 545 hash = hash_djb2(tmp, iov_bytes); 546 free(tmp); 547 548 return hash; 549 } 550 551 /* Allocates and returns new 'struct iovec *' according pattern 552 * in the 'test_iovec'. For each element in the 'test_iovec' it 553 * allocates new element in the resulting 'iovec'. 'iov_len' 554 * of the new element is copied from 'test_iovec'. 'iov_base' is 555 * allocated depending on the 'iov_base' of 'test_iovec': 556 * 557 * 'iov_base' == NULL -> valid buf: mmap('iov_len'). 558 * 559 * 'iov_base' == MAP_FAILED -> invalid buf: 560 * mmap('iov_len'), then munmap('iov_len'). 561 * 'iov_base' still contains result of 562 * mmap(). 563 * 564 * 'iov_base' == number -> unaligned valid buf: 565 * mmap('iov_len') + number. 566 * 567 * 'iovnum' is number of elements in 'test_iovec'. 568 * 569 * Returns new 'iovec' or calls 'exit()' on error. 570 */ 571 struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum) 572 { 573 struct iovec *iovec; 574 int i; 575 576 iovec = malloc(sizeof(*iovec) * iovnum); 577 if (!iovec) { 578 perror("malloc"); 579 exit(EXIT_FAILURE); 580 } 581 582 for (i = 0; i < iovnum; i++) { 583 iovec[i].iov_len = test_iovec[i].iov_len; 584 585 iovec[i].iov_base = mmap(NULL, iovec[i].iov_len, 586 PROT_READ | PROT_WRITE, 587 MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, 588 -1, 0); 589 if (iovec[i].iov_base == MAP_FAILED) { 590 perror("mmap"); 591 exit(EXIT_FAILURE); 592 } 593 594 if (test_iovec[i].iov_base != MAP_FAILED) 595 iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base; 596 } 597 598 /* Unmap "invalid" elements. */ 599 for (i = 0; i < iovnum; i++) { 600 if (test_iovec[i].iov_base == MAP_FAILED) { 601 if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { 602 perror("munmap"); 603 exit(EXIT_FAILURE); 604 } 605 } 606 } 607 608 for (i = 0; i < iovnum; i++) { 609 int j; 610 611 if (test_iovec[i].iov_base == MAP_FAILED) 612 continue; 613 614 for (j = 0; j < iovec[i].iov_len; j++) 615 ((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff; 616 } 617 618 return iovec; 619 } 620 621 /* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'. 622 * On error calls 'exit()'. 623 */ 624 void free_test_iovec(const struct iovec *test_iovec, 625 struct iovec *iovec, int iovnum) 626 { 627 int i; 628 629 for (i = 0; i < iovnum; i++) { 630 if (test_iovec[i].iov_base != MAP_FAILED) { 631 if (test_iovec[i].iov_base) 632 iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base; 633 634 if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { 635 perror("munmap"); 636 exit(EXIT_FAILURE); 637 } 638 } 639 } 640 641 free(iovec); 642 } 643