1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * vma_internal.h 4 * 5 * Header providing userland wrappers and shims for the functionality provided 6 * by mm/vma_internal.h. 7 * 8 * We make the header guard the same as mm/vma_internal.h, so if this shim 9 * header is included, it precludes the inclusion of the kernel one. 10 */ 11 12 #ifndef __MM_VMA_INTERNAL_H 13 #define __MM_VMA_INTERNAL_H 14 15 #define __private 16 #define __bitwise 17 #define __randomize_layout 18 19 #define CONFIG_MMU 20 #define CONFIG_PER_VMA_LOCK 21 22 #include <stdlib.h> 23 24 #include <linux/atomic.h> 25 #include <linux/list.h> 26 #include <linux/maple_tree.h> 27 #include <linux/mm.h> 28 #include <linux/rbtree.h> 29 #include <linux/refcount.h> 30 #include <linux/slab.h> 31 32 extern unsigned long stack_guard_gap; 33 #ifdef CONFIG_MMU 34 extern unsigned long mmap_min_addr; 35 extern unsigned long dac_mmap_min_addr; 36 #else 37 #define mmap_min_addr 0UL 38 #define dac_mmap_min_addr 0UL 39 #endif 40 41 #define VM_WARN_ON(_expr) (WARN_ON(_expr)) 42 #define VM_WARN_ON_ONCE(_expr) (WARN_ON_ONCE(_expr)) 43 #define VM_WARN_ON_VMG(_expr, _vmg) (WARN_ON(_expr)) 44 #define VM_BUG_ON(_expr) (BUG_ON(_expr)) 45 #define VM_BUG_ON_VMA(_expr, _vma) (BUG_ON(_expr)) 46 47 #define MMF_HAS_MDWE 28 48 49 /* 50 * vm_flags in vm_area_struct, see mm_types.h. 51 * When changing, update also include/trace/events/mmflags.h 52 */ 53 54 #define VM_NONE 0x00000000 55 56 /** 57 * typedef vma_flag_t - specifies an individual VMA flag by bit number. 58 * 59 * This value is made type safe by sparse to avoid passing invalid flag values 60 * around. 61 */ 62 typedef int __bitwise vma_flag_t; 63 64 #define DECLARE_VMA_BIT(name, bitnum) \ 65 VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum) 66 #define DECLARE_VMA_BIT_ALIAS(name, aliased) \ 67 VMA_ ## name ## _BIT = VMA_ ## aliased ## _BIT 68 enum { 69 DECLARE_VMA_BIT(READ, 0), 70 DECLARE_VMA_BIT(WRITE, 1), 71 DECLARE_VMA_BIT(EXEC, 2), 72 DECLARE_VMA_BIT(SHARED, 3), 73 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 74 DECLARE_VMA_BIT(MAYREAD, 4), /* limits for mprotect() etc. */ 75 DECLARE_VMA_BIT(MAYWRITE, 5), 76 DECLARE_VMA_BIT(MAYEXEC, 6), 77 DECLARE_VMA_BIT(MAYSHARE, 7), 78 DECLARE_VMA_BIT(GROWSDOWN, 8), /* general info on the segment */ 79 #ifdef CONFIG_MMU 80 DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */ 81 #else 82 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 83 DECLARE_VMA_BIT(MAYOVERLAY, 9), 84 #endif /* CONFIG_MMU */ 85 /* Page-ranges managed without "struct page", just pure PFN */ 86 DECLARE_VMA_BIT(PFNMAP, 10), 87 DECLARE_VMA_BIT(MAYBE_GUARD, 11), 88 DECLARE_VMA_BIT(UFFD_WP, 12), /* wrprotect pages tracking */ 89 DECLARE_VMA_BIT(LOCKED, 13), 90 DECLARE_VMA_BIT(IO, 14), /* Memory mapped I/O or similar */ 91 DECLARE_VMA_BIT(SEQ_READ, 15), /* App will access data sequentially */ 92 DECLARE_VMA_BIT(RAND_READ, 16), /* App will not benefit from clustered reads */ 93 DECLARE_VMA_BIT(DONTCOPY, 17), /* Do not copy this vma on fork */ 94 DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */ 95 DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */ 96 DECLARE_VMA_BIT(ACCOUNT, 20), /* Is a VM accounted object */ 97 DECLARE_VMA_BIT(NORESERVE, 21), /* should the VM suppress accounting */ 98 DECLARE_VMA_BIT(HUGETLB, 22), /* Huge TLB Page VM */ 99 DECLARE_VMA_BIT(SYNC, 23), /* Synchronous page faults */ 100 DECLARE_VMA_BIT(ARCH_1, 24), /* Architecture-specific flag */ 101 DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */ 102 DECLARE_VMA_BIT(DONTDUMP, 26), /* Do not include in the core dump */ 103 DECLARE_VMA_BIT(SOFTDIRTY, 27), /* NOT soft dirty clean area */ 104 DECLARE_VMA_BIT(MIXEDMAP, 28), /* Can contain struct page and pure PFN pages */ 105 DECLARE_VMA_BIT(HUGEPAGE, 29), /* MADV_HUGEPAGE marked this vma */ 106 DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */ 107 DECLARE_VMA_BIT(MERGEABLE, 31), /* KSM may merge identical pages */ 108 /* These bits are reused, we define specific uses below. */ 109 DECLARE_VMA_BIT(HIGH_ARCH_0, 32), 110 DECLARE_VMA_BIT(HIGH_ARCH_1, 33), 111 DECLARE_VMA_BIT(HIGH_ARCH_2, 34), 112 DECLARE_VMA_BIT(HIGH_ARCH_3, 35), 113 DECLARE_VMA_BIT(HIGH_ARCH_4, 36), 114 DECLARE_VMA_BIT(HIGH_ARCH_5, 37), 115 DECLARE_VMA_BIT(HIGH_ARCH_6, 38), 116 /* 117 * This flag is used to connect VFIO to arch specific KVM code. It 118 * indicates that the memory under this VMA is safe for use with any 119 * non-cachable memory type inside KVM. Some VFIO devices, on some 120 * platforms, are thought to be unsafe and can cause machine crashes 121 * if KVM does not lock down the memory type. 122 */ 123 DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39), 124 #ifdef CONFIG_PPC32 125 DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1), 126 #else 127 DECLARE_VMA_BIT(DROPPABLE, 40), 128 #endif 129 DECLARE_VMA_BIT(UFFD_MINOR, 41), 130 DECLARE_VMA_BIT(SEALED, 42), 131 /* Flags that reuse flags above. */ 132 DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0), 133 DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1), 134 DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2), 135 DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3), 136 DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4), 137 #if defined(CONFIG_X86_USER_SHADOW_STACK) 138 /* 139 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 140 * support core mm. 141 * 142 * These VMAs will get a single end guard page. This helps userspace 143 * protect itself from attacks. A single page is enough for current 144 * shadow stack archs (x86). See the comments near alloc_shstk() in 145 * arch/x86/kernel/shstk.c for more details on the guard size. 146 */ 147 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5), 148 #elif defined(CONFIG_ARM64_GCS) 149 /* 150 * arm64's Guarded Control Stack implements similar functionality and 151 * has similar constraints to shadow stacks. 152 */ 153 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6), 154 #endif 155 DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1), /* Strong Access Ordering (powerpc) */ 156 DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1), /* parisc */ 157 DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1), /* sparc64 */ 158 DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1), /* arm64 */ 159 DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1), /* sparc64, arm64 */ 160 DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1), /* !CONFIG_MMU */ 161 DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4), /* arm64 */ 162 DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */ 163 #ifdef CONFIG_STACK_GROWSUP 164 DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP), 165 DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN), 166 #else 167 DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN), 168 #endif 169 }; 170 171 #define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT) 172 #define VM_READ INIT_VM_FLAG(READ) 173 #define VM_WRITE INIT_VM_FLAG(WRITE) 174 #define VM_EXEC INIT_VM_FLAG(EXEC) 175 #define VM_SHARED INIT_VM_FLAG(SHARED) 176 #define VM_MAYREAD INIT_VM_FLAG(MAYREAD) 177 #define VM_MAYWRITE INIT_VM_FLAG(MAYWRITE) 178 #define VM_MAYEXEC INIT_VM_FLAG(MAYEXEC) 179 #define VM_MAYSHARE INIT_VM_FLAG(MAYSHARE) 180 #define VM_GROWSDOWN INIT_VM_FLAG(GROWSDOWN) 181 #ifdef CONFIG_MMU 182 #define VM_UFFD_MISSING INIT_VM_FLAG(UFFD_MISSING) 183 #else 184 #define VM_UFFD_MISSING VM_NONE 185 #define VM_MAYOVERLAY INIT_VM_FLAG(MAYOVERLAY) 186 #endif 187 #define VM_PFNMAP INIT_VM_FLAG(PFNMAP) 188 #define VM_MAYBE_GUARD INIT_VM_FLAG(MAYBE_GUARD) 189 #define VM_UFFD_WP INIT_VM_FLAG(UFFD_WP) 190 #define VM_LOCKED INIT_VM_FLAG(LOCKED) 191 #define VM_IO INIT_VM_FLAG(IO) 192 #define VM_SEQ_READ INIT_VM_FLAG(SEQ_READ) 193 #define VM_RAND_READ INIT_VM_FLAG(RAND_READ) 194 #define VM_DONTCOPY INIT_VM_FLAG(DONTCOPY) 195 #define VM_DONTEXPAND INIT_VM_FLAG(DONTEXPAND) 196 #define VM_LOCKONFAULT INIT_VM_FLAG(LOCKONFAULT) 197 #define VM_ACCOUNT INIT_VM_FLAG(ACCOUNT) 198 #define VM_NORESERVE INIT_VM_FLAG(NORESERVE) 199 #define VM_HUGETLB INIT_VM_FLAG(HUGETLB) 200 #define VM_SYNC INIT_VM_FLAG(SYNC) 201 #define VM_ARCH_1 INIT_VM_FLAG(ARCH_1) 202 #define VM_WIPEONFORK INIT_VM_FLAG(WIPEONFORK) 203 #define VM_DONTDUMP INIT_VM_FLAG(DONTDUMP) 204 #ifdef CONFIG_MEM_SOFT_DIRTY 205 #define VM_SOFTDIRTY INIT_VM_FLAG(SOFTDIRTY) 206 #else 207 #define VM_SOFTDIRTY VM_NONE 208 #endif 209 #define VM_MIXEDMAP INIT_VM_FLAG(MIXEDMAP) 210 #define VM_HUGEPAGE INIT_VM_FLAG(HUGEPAGE) 211 #define VM_NOHUGEPAGE INIT_VM_FLAG(NOHUGEPAGE) 212 #define VM_MERGEABLE INIT_VM_FLAG(MERGEABLE) 213 #define VM_STACK INIT_VM_FLAG(STACK) 214 #ifdef CONFIG_STACK_GROWS_UP 215 #define VM_STACK_EARLY INIT_VM_FLAG(STACK_EARLY) 216 #else 217 #define VM_STACK_EARLY VM_NONE 218 #endif 219 #ifdef CONFIG_ARCH_HAS_PKEYS 220 #define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT) 221 /* Despite the naming, these are FLAGS not bits. */ 222 #define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0) 223 #define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1) 224 #define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2) 225 #if CONFIG_ARCH_PKEY_BITS > 3 226 #define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3) 227 #else 228 #define VM_PKEY_BIT3 VM_NONE 229 #endif /* CONFIG_ARCH_PKEY_BITS > 3 */ 230 #if CONFIG_ARCH_PKEY_BITS > 4 231 #define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4) 232 #else 233 #define VM_PKEY_BIT4 VM_NONE 234 #endif /* CONFIG_ARCH_PKEY_BITS > 4 */ 235 #endif /* CONFIG_ARCH_HAS_PKEYS */ 236 #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS) 237 #define VM_SHADOW_STACK INIT_VM_FLAG(SHADOW_STACK) 238 #else 239 #define VM_SHADOW_STACK VM_NONE 240 #endif 241 #if defined(CONFIG_PPC64) 242 #define VM_SAO INIT_VM_FLAG(SAO) 243 #elif defined(CONFIG_PARISC) 244 #define VM_GROWSUP INIT_VM_FLAG(GROWSUP) 245 #elif defined(CONFIG_SPARC64) 246 #define VM_SPARC_ADI INIT_VM_FLAG(SPARC_ADI) 247 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 248 #elif defined(CONFIG_ARM64) 249 #define VM_ARM64_BTI INIT_VM_FLAG(ARM64_BTI) 250 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 251 #elif !defined(CONFIG_MMU) 252 #define VM_MAPPED_COPY INIT_VM_FLAG(MAPPED_COPY) 253 #endif 254 #ifndef VM_GROWSUP 255 #define VM_GROWSUP VM_NONE 256 #endif 257 #ifdef CONFIG_ARM64_MTE 258 #define VM_MTE INIT_VM_FLAG(MTE) 259 #define VM_MTE_ALLOWED INIT_VM_FLAG(MTE_ALLOWED) 260 #else 261 #define VM_MTE VM_NONE 262 #define VM_MTE_ALLOWED VM_NONE 263 #endif 264 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 265 #define VM_UFFD_MINOR INIT_VM_FLAG(UFFD_MINOR) 266 #else 267 #define VM_UFFD_MINOR VM_NONE 268 #endif 269 #ifdef CONFIG_64BIT 270 #define VM_ALLOW_ANY_UNCACHED INIT_VM_FLAG(ALLOW_ANY_UNCACHED) 271 #define VM_SEALED INIT_VM_FLAG(SEALED) 272 #else 273 #define VM_ALLOW_ANY_UNCACHED VM_NONE 274 #define VM_SEALED VM_NONE 275 #endif 276 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 277 #define VM_DROPPABLE INIT_VM_FLAG(DROPPABLE) 278 #else 279 #define VM_DROPPABLE VM_NONE 280 #endif 281 282 /* Bits set in the VMA until the stack is in its final location */ 283 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 284 285 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 286 287 /* Common data flag combinations */ 288 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 289 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 290 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 291 VM_MAYWRITE | VM_MAYEXEC) 292 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 293 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 294 295 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 296 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 297 #endif 298 299 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 300 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 301 #endif 302 303 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 304 305 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 306 307 /* VMA basic access permission flags */ 308 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 309 310 /* 311 * Special vmas that are non-mergable, non-mlock()able. 312 */ 313 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 314 315 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 316 #define TASK_SIZE_LOW DEFAULT_MAP_WINDOW 317 #define TASK_SIZE_MAX DEFAULT_MAP_WINDOW 318 #define STACK_TOP TASK_SIZE_LOW 319 #define STACK_TOP_MAX TASK_SIZE_MAX 320 321 /* This mask represents all the VMA flag bits used by mlock */ 322 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 323 324 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 325 326 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 327 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 328 329 #define RLIMIT_STACK 3 /* max stack size */ 330 #define RLIMIT_MEMLOCK 8 /* max locked-in-memory address space */ 331 332 #define CAP_IPC_LOCK 14 333 334 /* 335 * Flags which should be 'sticky' on merge - that is, flags which, when one VMA 336 * possesses it but the other does not, the merged VMA should nonetheless have 337 * applied to it: 338 * 339 * VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its 340 * references cleared via /proc/$pid/clear_refs, any merged VMA 341 * should be considered soft-dirty also as it operates at a VMA 342 * granularity. 343 */ 344 #define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD) 345 346 /* 347 * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one 348 * of these flags and the other not does not preclude a merge. 349 * 350 * VM_STICKY - When merging VMAs, VMA flags must match, unless they are 351 * 'sticky'. If any sticky flags exist in either VMA, we simply 352 * set all of them on the merged VMA. 353 */ 354 #define VM_IGNORE_MERGE VM_STICKY 355 356 /* 357 * Flags which should result in page tables being copied on fork. These are 358 * flags which indicate that the VMA maps page tables which cannot be 359 * reconsistuted upon page fault, so necessitate page table copying upon 360 * 361 * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be 362 * reasonably reconstructed on page fault. 363 * 364 * VM_UFFD_WP - Encodes metadata about an installed uffd 365 * write protect handler, which cannot be 366 * reconstructed on page fault. 367 * 368 * We always copy pgtables when dst_vma has uffd-wp 369 * enabled even if it's file-backed 370 * (e.g. shmem). Because when uffd-wp is enabled, 371 * pgtable contains uffd-wp protection information, 372 * that's something we can't retrieve from page cache, 373 * and skip copying will lose those info. 374 * 375 * VM_MAYBE_GUARD - Could contain page guard region markers which 376 * by design are a property of the page tables 377 * only and thus cannot be reconstructed on page 378 * fault. 379 */ 380 #define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD) 381 382 #define FIRST_USER_ADDRESS 0UL 383 #define USER_PGTABLES_CEILING 0UL 384 385 #define vma_policy(vma) NULL 386 387 #define down_write_nest_lock(sem, nest_lock) 388 389 #define pgprot_val(x) ((x).pgprot) 390 #define __pgprot(x) ((pgprot_t) { (x) } ) 391 392 #define for_each_vma(__vmi, __vma) \ 393 while (((__vma) = vma_next(&(__vmi))) != NULL) 394 395 /* The MM code likes to work with exclusive end addresses */ 396 #define for_each_vma_range(__vmi, __vma, __end) \ 397 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 398 399 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 400 401 #define PHYS_PFN(x) ((unsigned long)((x) >> PAGE_SHIFT)) 402 403 #define test_and_set_bit(nr, addr) __test_and_set_bit(nr, addr) 404 #define test_and_clear_bit(nr, addr) __test_and_clear_bit(nr, addr) 405 406 #define TASK_SIZE ((1ul << 47)-PAGE_SIZE) 407 408 #define AS_MM_ALL_LOCKS 2 409 410 /* We hardcode this for now. */ 411 #define sysctl_max_map_count 0x1000000UL 412 413 #define pgoff_t unsigned long 414 typedef unsigned long pgprotval_t; 415 typedef struct pgprot { pgprotval_t pgprot; } pgprot_t; 416 typedef unsigned long vm_flags_t; 417 typedef __bitwise unsigned int vm_fault_t; 418 419 /* 420 * The shared stubs do not implement this, it amounts to an fprintf(STDERR,...) 421 * either way :) 422 */ 423 #define pr_warn_once pr_err 424 425 #define data_race(expr) expr 426 427 #define ASSERT_EXCLUSIVE_WRITER(x) 428 429 #define pgtable_supports_soft_dirty() 1 430 431 /** 432 * swap - swap values of @a and @b 433 * @a: first value 434 * @b: second value 435 */ 436 #define swap(a, b) \ 437 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 438 439 struct kref { 440 refcount_t refcount; 441 }; 442 443 /* 444 * Define the task command name length as enum, then it can be visible to 445 * BPF programs. 446 */ 447 enum { 448 TASK_COMM_LEN = 16, 449 }; 450 451 /* 452 * Flags for bug emulation. 453 * 454 * These occupy the top three bytes. 455 */ 456 enum { 457 READ_IMPLIES_EXEC = 0x0400000, 458 }; 459 460 struct task_struct { 461 char comm[TASK_COMM_LEN]; 462 pid_t pid; 463 struct mm_struct *mm; 464 465 /* Used for emulating ABI behavior of previous Linux versions: */ 466 unsigned int personality; 467 }; 468 469 struct task_struct *get_current(void); 470 #define current get_current() 471 472 struct anon_vma { 473 struct anon_vma *root; 474 struct rb_root_cached rb_root; 475 476 /* Test fields. */ 477 bool was_cloned; 478 bool was_unlinked; 479 }; 480 481 struct anon_vma_chain { 482 struct anon_vma *anon_vma; 483 struct list_head same_vma; 484 }; 485 486 struct anon_vma_name { 487 struct kref kref; 488 /* The name needs to be at the end because it is dynamically sized. */ 489 char name[]; 490 }; 491 492 struct vma_iterator { 493 struct ma_state mas; 494 }; 495 496 #define VMA_ITERATOR(name, __mm, __addr) \ 497 struct vma_iterator name = { \ 498 .mas = { \ 499 .tree = &(__mm)->mm_mt, \ 500 .index = __addr, \ 501 .node = NULL, \ 502 .status = ma_start, \ 503 }, \ 504 } 505 506 struct address_space { 507 struct rb_root_cached i_mmap; 508 unsigned long flags; 509 atomic_t i_mmap_writable; 510 }; 511 512 struct vm_userfaultfd_ctx {}; 513 struct mempolicy {}; 514 struct mmu_gather {}; 515 struct mutex {}; 516 #define DEFINE_MUTEX(mutexname) \ 517 struct mutex mutexname = {} 518 519 #define DECLARE_BITMAP(name, bits) \ 520 unsigned long name[BITS_TO_LONGS(bits)] 521 522 #define NUM_MM_FLAG_BITS (64) 523 typedef struct { 524 __private DECLARE_BITMAP(__mm_flags, NUM_MM_FLAG_BITS); 525 } mm_flags_t; 526 527 /* 528 * Opaque type representing current VMA (vm_area_struct) flag state. Must be 529 * accessed via vma_flags_xxx() helper functions. 530 */ 531 #define NUM_VMA_FLAG_BITS BITS_PER_LONG 532 typedef struct { 533 DECLARE_BITMAP(__vma_flags, NUM_VMA_FLAG_BITS); 534 } __private vma_flags_t; 535 536 struct mm_struct { 537 struct maple_tree mm_mt; 538 int map_count; /* number of VMAs */ 539 unsigned long total_vm; /* Total pages mapped */ 540 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 541 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 542 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 543 unsigned long stack_vm; /* VM_STACK */ 544 545 unsigned long def_flags; 546 547 mm_flags_t flags; /* Must use mm_flags_* helpers to access */ 548 }; 549 550 struct vm_area_struct; 551 552 553 /* What action should be taken after an .mmap_prepare call is complete? */ 554 enum mmap_action_type { 555 MMAP_NOTHING, /* Mapping is complete, no further action. */ 556 MMAP_REMAP_PFN, /* Remap PFN range. */ 557 MMAP_IO_REMAP_PFN, /* I/O remap PFN range. */ 558 }; 559 560 /* 561 * Describes an action an mmap_prepare hook can instruct to be taken to complete 562 * the mapping of a VMA. Specified in vm_area_desc. 563 */ 564 struct mmap_action { 565 union { 566 /* Remap range. */ 567 struct { 568 unsigned long start; 569 unsigned long start_pfn; 570 unsigned long size; 571 pgprot_t pgprot; 572 } remap; 573 }; 574 enum mmap_action_type type; 575 576 /* 577 * If specified, this hook is invoked after the selected action has been 578 * successfully completed. Note that the VMA write lock still held. 579 * 580 * The absolute minimum ought to be done here. 581 * 582 * Returns 0 on success, or an error code. 583 */ 584 int (*success_hook)(const struct vm_area_struct *vma); 585 586 /* 587 * If specified, this hook is invoked when an error occurred when 588 * attempting the selection action. 589 * 590 * The hook can return an error code in order to filter the error, but 591 * it is not valid to clear the error here. 592 */ 593 int (*error_hook)(int err); 594 595 /* 596 * This should be set in rare instances where the operation required 597 * that the rmap should not be able to access the VMA until 598 * completely set up. 599 */ 600 bool hide_from_rmap_until_complete :1; 601 }; 602 603 /* 604 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to 605 * manipulate mutable fields which will cause those fields to be updated in the 606 * resultant VMA. 607 * 608 * Helper functions are not required for manipulating any field. 609 */ 610 struct vm_area_desc { 611 /* Immutable state. */ 612 const struct mm_struct *const mm; 613 struct file *const file; /* May vary from vm_file in stacked callers. */ 614 unsigned long start; 615 unsigned long end; 616 617 /* Mutable fields. Populated with initial state. */ 618 pgoff_t pgoff; 619 struct file *vm_file; 620 union { 621 vm_flags_t vm_flags; 622 vma_flags_t vma_flags; 623 }; 624 pgprot_t page_prot; 625 626 /* Write-only fields. */ 627 const struct vm_operations_struct *vm_ops; 628 void *private_data; 629 630 /* Take further action? */ 631 struct mmap_action action; 632 }; 633 634 struct file_operations { 635 int (*mmap)(struct file *, struct vm_area_struct *); 636 int (*mmap_prepare)(struct vm_area_desc *); 637 }; 638 639 struct file { 640 struct address_space *f_mapping; 641 const struct file_operations *f_op; 642 }; 643 644 #define VMA_LOCK_OFFSET 0x40000000 645 646 typedef struct { unsigned long v; } freeptr_t; 647 648 struct vm_area_struct { 649 /* The first cache line has the info for VMA tree walking. */ 650 651 union { 652 struct { 653 /* VMA covers [vm_start; vm_end) addresses within mm */ 654 unsigned long vm_start; 655 unsigned long vm_end; 656 }; 657 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */ 658 }; 659 660 struct mm_struct *vm_mm; /* The address space we belong to. */ 661 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 662 663 /* 664 * Flags, see mm.h. 665 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 666 */ 667 union { 668 const vm_flags_t vm_flags; 669 vma_flags_t flags; 670 }; 671 672 #ifdef CONFIG_PER_VMA_LOCK 673 /* 674 * Can only be written (using WRITE_ONCE()) while holding both: 675 * - mmap_lock (in write mode) 676 * - vm_refcnt bit at VMA_LOCK_OFFSET is set 677 * Can be read reliably while holding one of: 678 * - mmap_lock (in read or write mode) 679 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1 680 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 681 * while holding nothing (except RCU to keep the VMA struct allocated). 682 * 683 * This sequence counter is explicitly allowed to overflow; sequence 684 * counter reuse can only lead to occasional unnecessary use of the 685 * slowpath. 686 */ 687 unsigned int vm_lock_seq; 688 #endif 689 690 /* 691 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 692 * list, after a COW of one of the file pages. A MAP_SHARED vma 693 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 694 * or brk vma (with NULL file) can only be in an anon_vma list. 695 */ 696 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 697 * page_table_lock */ 698 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 699 700 /* Function pointers to deal with this struct. */ 701 const struct vm_operations_struct *vm_ops; 702 703 /* Information about our backing store: */ 704 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 705 units */ 706 struct file * vm_file; /* File we map to (can be NULL). */ 707 void * vm_private_data; /* was vm_pte (shared mem) */ 708 709 #ifdef CONFIG_SWAP 710 atomic_long_t swap_readahead_info; 711 #endif 712 #ifndef CONFIG_MMU 713 struct vm_region *vm_region; /* NOMMU mapping region */ 714 #endif 715 #ifdef CONFIG_NUMA 716 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 717 #endif 718 #ifdef CONFIG_NUMA_BALANCING 719 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 720 #endif 721 #ifdef CONFIG_PER_VMA_LOCK 722 /* Unstable RCU readers are allowed to read this. */ 723 refcount_t vm_refcnt; 724 #endif 725 /* 726 * For areas with an address space and backing store, 727 * linkage into the address_space->i_mmap interval tree. 728 * 729 */ 730 struct { 731 struct rb_node rb; 732 unsigned long rb_subtree_last; 733 } shared; 734 #ifdef CONFIG_ANON_VMA_NAME 735 /* 736 * For private and shared anonymous mappings, a pointer to a null 737 * terminated string containing the name given to the vma, or NULL if 738 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 739 */ 740 struct anon_vma_name *anon_name; 741 #endif 742 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 743 } __randomize_layout; 744 745 struct vm_fault {}; 746 747 struct vm_operations_struct { 748 void (*open)(struct vm_area_struct * area); 749 /** 750 * @close: Called when the VMA is being removed from the MM. 751 * Context: User context. May sleep. Caller holds mmap_lock. 752 */ 753 void (*close)(struct vm_area_struct * area); 754 /* Called any time before splitting to check if it's allowed */ 755 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 756 int (*mremap)(struct vm_area_struct *area); 757 /* 758 * Called by mprotect() to make driver-specific permission 759 * checks before mprotect() is finalised. The VMA must not 760 * be modified. Returns 0 if mprotect() can proceed. 761 */ 762 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 763 unsigned long end, unsigned long newflags); 764 vm_fault_t (*fault)(struct vm_fault *vmf); 765 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 766 vm_fault_t (*map_pages)(struct vm_fault *vmf, 767 pgoff_t start_pgoff, pgoff_t end_pgoff); 768 unsigned long (*pagesize)(struct vm_area_struct * area); 769 770 /* notification that a previously read-only page is about to become 771 * writable, if an error is returned it will cause a SIGBUS */ 772 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 773 774 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 775 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 776 777 /* called by access_process_vm when get_user_pages() fails, typically 778 * for use by special VMAs. See also generic_access_phys() for a generic 779 * implementation useful for any iomem mapping. 780 */ 781 int (*access)(struct vm_area_struct *vma, unsigned long addr, 782 void *buf, int len, int write); 783 784 /* Called by the /proc/PID/maps code to ask the vma whether it 785 * has a special name. Returning non-NULL will also cause this 786 * vma to be dumped unconditionally. */ 787 const char *(*name)(struct vm_area_struct *vma); 788 789 #ifdef CONFIG_NUMA 790 /* 791 * set_policy() op must add a reference to any non-NULL @new mempolicy 792 * to hold the policy upon return. Caller should pass NULL @new to 793 * remove a policy and fall back to surrounding context--i.e. do not 794 * install a MPOL_DEFAULT policy, nor the task or system default 795 * mempolicy. 796 */ 797 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 798 799 /* 800 * get_policy() op must add reference [mpol_get()] to any policy at 801 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 802 * in mm/mempolicy.c will do this automatically. 803 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 804 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 805 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 806 * must return NULL--i.e., do not "fallback" to task or system default 807 * policy. 808 */ 809 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 810 unsigned long addr, pgoff_t *ilx); 811 #endif 812 #ifdef CONFIG_FIND_NORMAL_PAGE 813 /* 814 * Called by vm_normal_page() for special PTEs in @vma at @addr. This 815 * allows for returning a "normal" page from vm_normal_page() even 816 * though the PTE indicates that the "struct page" either does not exist 817 * or should not be touched: "special". 818 * 819 * Do not add new users: this really only works when a "normal" page 820 * was mapped, but then the PTE got changed to something weird (+ 821 * marked special) that would not make pte_pfn() identify the originally 822 * inserted page. 823 */ 824 struct page *(*find_normal_page)(struct vm_area_struct *vma, 825 unsigned long addr); 826 #endif /* CONFIG_FIND_NORMAL_PAGE */ 827 }; 828 829 struct vm_unmapped_area_info { 830 #define VM_UNMAPPED_AREA_TOPDOWN 1 831 unsigned long flags; 832 unsigned long length; 833 unsigned long low_limit; 834 unsigned long high_limit; 835 unsigned long align_mask; 836 unsigned long align_offset; 837 unsigned long start_gap; 838 }; 839 840 struct pagetable_move_control { 841 struct vm_area_struct *old; /* Source VMA. */ 842 struct vm_area_struct *new; /* Destination VMA. */ 843 unsigned long old_addr; /* Address from which the move begins. */ 844 unsigned long old_end; /* Exclusive address at which old range ends. */ 845 unsigned long new_addr; /* Address to move page tables to. */ 846 unsigned long len_in; /* Bytes to remap specified by user. */ 847 848 bool need_rmap_locks; /* Do rmap locks need to be taken? */ 849 bool for_stack; /* Is this an early temp stack being moved? */ 850 }; 851 852 #define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \ 853 struct pagetable_move_control name = { \ 854 .old = old_, \ 855 .new = new_, \ 856 .old_addr = old_addr_, \ 857 .old_end = (old_addr_) + (len_), \ 858 .new_addr = new_addr_, \ 859 .len_in = len_, \ 860 } 861 862 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 863 { 864 mas_pause(&vmi->mas); 865 } 866 867 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 868 { 869 return __pgprot(pgprot_val(oldprot) | pgprot_val(newprot)); 870 } 871 872 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 873 { 874 return __pgprot(vm_flags); 875 } 876 877 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 878 { 879 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 880 (VM_SHARED | VM_MAYWRITE); 881 } 882 883 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 884 { 885 return is_shared_maywrite(vma->vm_flags); 886 } 887 888 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 889 { 890 /* 891 * Uses mas_find() to get the first VMA when the iterator starts. 892 * Calling mas_next() could skip the first entry. 893 */ 894 return mas_find(&vmi->mas, ULONG_MAX); 895 } 896 897 /* 898 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 899 * assertions should be made either under mmap_write_lock or when the object 900 * has been isolated under mmap_write_lock, ensuring no competing writers. 901 */ 902 static inline void vma_assert_attached(struct vm_area_struct *vma) 903 { 904 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 905 } 906 907 static inline void vma_assert_detached(struct vm_area_struct *vma) 908 { 909 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 910 } 911 912 static inline void vma_assert_write_locked(struct vm_area_struct *); 913 static inline void vma_mark_attached(struct vm_area_struct *vma) 914 { 915 vma_assert_write_locked(vma); 916 vma_assert_detached(vma); 917 refcount_set_release(&vma->vm_refcnt, 1); 918 } 919 920 static inline void vma_mark_detached(struct vm_area_struct *vma) 921 { 922 vma_assert_write_locked(vma); 923 vma_assert_attached(vma); 924 /* We are the only writer, so no need to use vma_refcount_put(). */ 925 if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) { 926 /* 927 * Reader must have temporarily raised vm_refcnt but it will 928 * drop it without using the vma since vma is write-locked. 929 */ 930 } 931 } 932 933 extern const struct vm_operations_struct vma_dummy_vm_ops; 934 935 extern unsigned long rlimit(unsigned int limit); 936 937 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 938 { 939 memset(vma, 0, sizeof(*vma)); 940 vma->vm_mm = mm; 941 vma->vm_ops = &vma_dummy_vm_ops; 942 INIT_LIST_HEAD(&vma->anon_vma_chain); 943 vma->vm_lock_seq = UINT_MAX; 944 } 945 946 /* 947 * These are defined in vma.h, but sadly vm_stat_account() is referenced by 948 * kernel/fork.c, so we have to these broadly available there, and temporarily 949 * define them here to resolve the dependency cycle. 950 */ 951 952 #define is_exec_mapping(flags) \ 953 ((flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC) 954 955 #define is_stack_mapping(flags) \ 956 (((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK)) 957 958 #define is_data_mapping(flags) \ 959 ((flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE) 960 961 static inline void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, 962 long npages) 963 { 964 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 965 966 if (is_exec_mapping(flags)) 967 mm->exec_vm += npages; 968 else if (is_stack_mapping(flags)) 969 mm->stack_vm += npages; 970 else if (is_data_mapping(flags)) 971 mm->data_vm += npages; 972 } 973 974 #undef is_exec_mapping 975 #undef is_stack_mapping 976 #undef is_data_mapping 977 978 /* Currently stubbed but we may later wish to un-stub. */ 979 static inline void vm_acct_memory(long pages); 980 static inline void vm_unacct_memory(long pages) 981 { 982 vm_acct_memory(-pages); 983 } 984 985 static inline void mapping_allow_writable(struct address_space *mapping) 986 { 987 atomic_inc(&mapping->i_mmap_writable); 988 } 989 990 static inline void vma_set_range(struct vm_area_struct *vma, 991 unsigned long start, unsigned long end, 992 pgoff_t pgoff) 993 { 994 vma->vm_start = start; 995 vma->vm_end = end; 996 vma->vm_pgoff = pgoff; 997 } 998 999 static inline 1000 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1001 { 1002 return mas_find(&vmi->mas, max - 1); 1003 } 1004 1005 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1006 unsigned long start, unsigned long end, gfp_t gfp) 1007 { 1008 __mas_set_range(&vmi->mas, start, end - 1); 1009 mas_store_gfp(&vmi->mas, NULL, gfp); 1010 if (unlikely(mas_is_err(&vmi->mas))) 1011 return -ENOMEM; 1012 1013 return 0; 1014 } 1015 1016 static inline void mmap_assert_locked(struct mm_struct *); 1017 static inline struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1018 unsigned long start_addr, 1019 unsigned long end_addr) 1020 { 1021 unsigned long index = start_addr; 1022 1023 mmap_assert_locked(mm); 1024 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1025 } 1026 1027 static inline 1028 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 1029 { 1030 return mtree_load(&mm->mm_mt, addr); 1031 } 1032 1033 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1034 { 1035 return mas_prev(&vmi->mas, 0); 1036 } 1037 1038 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1039 { 1040 mas_set(&vmi->mas, addr); 1041 } 1042 1043 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1044 { 1045 return !vma->vm_ops; 1046 } 1047 1048 /* Defined in vma.h, so temporarily define here to avoid circular dependency. */ 1049 #define vma_iter_load(vmi) \ 1050 mas_walk(&(vmi)->mas) 1051 1052 static inline struct vm_area_struct * 1053 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1054 struct vm_area_struct **pprev) 1055 { 1056 struct vm_area_struct *vma; 1057 VMA_ITERATOR(vmi, mm, addr); 1058 1059 vma = vma_iter_load(&vmi); 1060 *pprev = vma_prev(&vmi); 1061 if (!vma) 1062 vma = vma_next(&vmi); 1063 return vma; 1064 } 1065 1066 #undef vma_iter_load 1067 1068 static inline void vma_iter_init(struct vma_iterator *vmi, 1069 struct mm_struct *mm, unsigned long addr) 1070 { 1071 mas_init(&vmi->mas, &mm->mm_mt, addr); 1072 } 1073 1074 /* Stubbed functions. */ 1075 1076 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 1077 { 1078 return NULL; 1079 } 1080 1081 static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma, 1082 struct vm_userfaultfd_ctx vm_ctx) 1083 { 1084 return true; 1085 } 1086 1087 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1, 1088 struct anon_vma_name *anon_name2) 1089 { 1090 return true; 1091 } 1092 1093 static inline void might_sleep(void) 1094 { 1095 } 1096 1097 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1098 { 1099 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1100 } 1101 1102 static inline void fput(struct file *file) 1103 { 1104 } 1105 1106 static inline void mpol_put(struct mempolicy *pol) 1107 { 1108 } 1109 1110 static inline void lru_add_drain(void) 1111 { 1112 } 1113 1114 static inline void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm) 1115 { 1116 } 1117 1118 static inline void update_hiwater_rss(struct mm_struct *mm) 1119 { 1120 } 1121 1122 static inline void update_hiwater_vm(struct mm_struct *mm) 1123 { 1124 } 1125 1126 static inline void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1127 struct vm_area_struct *vma, unsigned long start_addr, 1128 unsigned long end_addr, unsigned long tree_end) 1129 { 1130 } 1131 1132 static inline void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 1133 struct vm_area_struct *vma, unsigned long floor, 1134 unsigned long ceiling, bool mm_wr_locked) 1135 { 1136 } 1137 1138 static inline void mapping_unmap_writable(struct address_space *mapping) 1139 { 1140 } 1141 1142 static inline void flush_dcache_mmap_lock(struct address_space *mapping) 1143 { 1144 } 1145 1146 static inline void tlb_finish_mmu(struct mmu_gather *tlb) 1147 { 1148 } 1149 1150 static inline struct file *get_file(struct file *f) 1151 { 1152 return f; 1153 } 1154 1155 static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 1156 { 1157 return 0; 1158 } 1159 1160 static inline int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 1161 { 1162 /* For testing purposes. We indicate that an anon_vma has been cloned. */ 1163 if (src->anon_vma != NULL) { 1164 dst->anon_vma = src->anon_vma; 1165 dst->anon_vma->was_cloned = true; 1166 } 1167 1168 return 0; 1169 } 1170 1171 static inline void vma_start_write(struct vm_area_struct *vma) 1172 { 1173 /* Used to indicate to tests that a write operation has begun. */ 1174 vma->vm_lock_seq++; 1175 } 1176 1177 static inline __must_check 1178 int vma_start_write_killable(struct vm_area_struct *vma) 1179 { 1180 /* Used to indicate to tests that a write operation has begun. */ 1181 vma->vm_lock_seq++; 1182 return 0; 1183 } 1184 1185 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 1186 unsigned long start, 1187 unsigned long end, 1188 struct vm_area_struct *next) 1189 { 1190 } 1191 1192 static inline void hugetlb_split(struct vm_area_struct *, unsigned long) {} 1193 1194 static inline void vma_iter_free(struct vma_iterator *vmi) 1195 { 1196 mas_destroy(&vmi->mas); 1197 } 1198 1199 static inline 1200 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1201 { 1202 return mas_next_range(&vmi->mas, ULONG_MAX); 1203 } 1204 1205 static inline void vm_acct_memory(long pages) 1206 { 1207 } 1208 1209 static inline void vma_interval_tree_insert(struct vm_area_struct *vma, 1210 struct rb_root_cached *rb) 1211 { 1212 } 1213 1214 static inline void vma_interval_tree_remove(struct vm_area_struct *vma, 1215 struct rb_root_cached *rb) 1216 { 1217 } 1218 1219 static inline void flush_dcache_mmap_unlock(struct address_space *mapping) 1220 { 1221 } 1222 1223 static inline void anon_vma_interval_tree_insert(struct anon_vma_chain *avc, 1224 struct rb_root_cached *rb) 1225 { 1226 } 1227 1228 static inline void anon_vma_interval_tree_remove(struct anon_vma_chain *avc, 1229 struct rb_root_cached *rb) 1230 { 1231 } 1232 1233 static inline void uprobe_mmap(struct vm_area_struct *vma) 1234 { 1235 } 1236 1237 static inline void uprobe_munmap(struct vm_area_struct *vma, 1238 unsigned long start, unsigned long end) 1239 { 1240 } 1241 1242 static inline void i_mmap_lock_write(struct address_space *mapping) 1243 { 1244 } 1245 1246 static inline void anon_vma_lock_write(struct anon_vma *anon_vma) 1247 { 1248 } 1249 1250 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 1251 { 1252 } 1253 1254 static inline void unlink_anon_vmas(struct vm_area_struct *vma) 1255 { 1256 /* For testing purposes, indicate that the anon_vma was unlinked. */ 1257 vma->anon_vma->was_unlinked = true; 1258 } 1259 1260 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) 1261 { 1262 } 1263 1264 static inline void i_mmap_unlock_write(struct address_space *mapping) 1265 { 1266 } 1267 1268 static inline void anon_vma_merge(struct vm_area_struct *vma, 1269 struct vm_area_struct *next) 1270 { 1271 } 1272 1273 static inline int userfaultfd_unmap_prep(struct vm_area_struct *vma, 1274 unsigned long start, 1275 unsigned long end, 1276 struct list_head *unmaps) 1277 { 1278 return 0; 1279 } 1280 1281 static inline void mmap_write_downgrade(struct mm_struct *mm) 1282 { 1283 } 1284 1285 static inline void mmap_read_unlock(struct mm_struct *mm) 1286 { 1287 } 1288 1289 static inline void mmap_write_unlock(struct mm_struct *mm) 1290 { 1291 } 1292 1293 static inline int mmap_write_lock_killable(struct mm_struct *mm) 1294 { 1295 return 0; 1296 } 1297 1298 static inline bool can_modify_mm(struct mm_struct *mm, 1299 unsigned long start, 1300 unsigned long end) 1301 { 1302 return true; 1303 } 1304 1305 static inline void arch_unmap(struct mm_struct *mm, 1306 unsigned long start, 1307 unsigned long end) 1308 { 1309 } 1310 1311 static inline void mmap_assert_locked(struct mm_struct *mm) 1312 { 1313 } 1314 1315 static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) 1316 { 1317 return true; 1318 } 1319 1320 static inline void khugepaged_enter_vma(struct vm_area_struct *vma, 1321 vm_flags_t vm_flags) 1322 { 1323 } 1324 1325 static inline bool mapping_can_writeback(struct address_space *mapping) 1326 { 1327 return true; 1328 } 1329 1330 static inline bool is_vm_hugetlb_page(struct vm_area_struct *vma) 1331 { 1332 return false; 1333 } 1334 1335 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1336 { 1337 return false; 1338 } 1339 1340 static inline bool userfaultfd_wp(struct vm_area_struct *vma) 1341 { 1342 return false; 1343 } 1344 1345 static inline void mmap_assert_write_locked(struct mm_struct *mm) 1346 { 1347 } 1348 1349 static inline void mutex_lock(struct mutex *lock) 1350 { 1351 } 1352 1353 static inline void mutex_unlock(struct mutex *lock) 1354 { 1355 } 1356 1357 static inline bool mutex_is_locked(struct mutex *lock) 1358 { 1359 return true; 1360 } 1361 1362 static inline bool signal_pending(void *p) 1363 { 1364 return false; 1365 } 1366 1367 static inline bool is_file_hugepages(struct file *file) 1368 { 1369 return false; 1370 } 1371 1372 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1373 { 1374 return 0; 1375 } 1376 1377 static inline bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, 1378 unsigned long npages) 1379 { 1380 return true; 1381 } 1382 1383 static inline int shmem_zero_setup(struct vm_area_struct *vma) 1384 { 1385 return 0; 1386 } 1387 1388 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1389 { 1390 vma->vm_ops = NULL; 1391 } 1392 1393 static inline void ksm_add_vma(struct vm_area_struct *vma) 1394 { 1395 } 1396 1397 static inline void perf_event_mmap(struct vm_area_struct *vma) 1398 { 1399 } 1400 1401 static inline bool vma_is_dax(struct vm_area_struct *vma) 1402 { 1403 return false; 1404 } 1405 1406 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 1407 { 1408 return NULL; 1409 } 1410 1411 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1412 1413 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 1414 static inline void vma_set_page_prot(struct vm_area_struct *vma) 1415 { 1416 vm_flags_t vm_flags = vma->vm_flags; 1417 pgprot_t vm_page_prot; 1418 1419 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */ 1420 vm_page_prot = pgprot_modify(vma->vm_page_prot, vm_get_page_prot(vm_flags)); 1421 1422 if (vma_wants_writenotify(vma, vm_page_prot)) { 1423 vm_flags &= ~VM_SHARED; 1424 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */ 1425 vm_page_prot = pgprot_modify(vm_page_prot, vm_get_page_prot(vm_flags)); 1426 } 1427 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 1428 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 1429 } 1430 1431 static inline bool arch_validate_flags(vm_flags_t flags) 1432 { 1433 return true; 1434 } 1435 1436 static inline void vma_close(struct vm_area_struct *vma) 1437 { 1438 } 1439 1440 static inline int mmap_file(struct file *file, struct vm_area_struct *vma) 1441 { 1442 return 0; 1443 } 1444 1445 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 1446 { 1447 if (vma->vm_flags & VM_GROWSDOWN) 1448 return stack_guard_gap; 1449 1450 /* See reasoning around the VM_SHADOW_STACK definition */ 1451 if (vma->vm_flags & VM_SHADOW_STACK) 1452 return PAGE_SIZE; 1453 1454 return 0; 1455 } 1456 1457 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 1458 { 1459 unsigned long gap = stack_guard_start_gap(vma); 1460 unsigned long vm_start = vma->vm_start; 1461 1462 vm_start -= gap; 1463 if (vm_start > vma->vm_start) 1464 vm_start = 0; 1465 return vm_start; 1466 } 1467 1468 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 1469 { 1470 unsigned long vm_end = vma->vm_end; 1471 1472 if (vma->vm_flags & VM_GROWSUP) { 1473 vm_end += stack_guard_gap; 1474 if (vm_end < vma->vm_end) 1475 vm_end = -PAGE_SIZE; 1476 } 1477 return vm_end; 1478 } 1479 1480 static inline int is_hugepage_only_range(struct mm_struct *mm, 1481 unsigned long addr, unsigned long len) 1482 { 1483 return 0; 1484 } 1485 1486 static inline bool vma_is_accessible(struct vm_area_struct *vma) 1487 { 1488 return vma->vm_flags & VM_ACCESS_FLAGS; 1489 } 1490 1491 static inline bool capable(int cap) 1492 { 1493 return true; 1494 } 1495 1496 static inline bool mlock_future_ok(const struct mm_struct *mm, 1497 vm_flags_t vm_flags, unsigned long bytes) 1498 { 1499 unsigned long locked_pages, limit_pages; 1500 1501 if (!(vm_flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1502 return true; 1503 1504 locked_pages = bytes >> PAGE_SHIFT; 1505 locked_pages += mm->locked_vm; 1506 1507 limit_pages = rlimit(RLIMIT_MEMLOCK); 1508 limit_pages >>= PAGE_SHIFT; 1509 1510 return locked_pages <= limit_pages; 1511 } 1512 1513 static inline int __anon_vma_prepare(struct vm_area_struct *vma) 1514 { 1515 struct anon_vma *anon_vma = calloc(1, sizeof(struct anon_vma)); 1516 1517 if (!anon_vma) 1518 return -ENOMEM; 1519 1520 anon_vma->root = anon_vma; 1521 vma->anon_vma = anon_vma; 1522 1523 return 0; 1524 } 1525 1526 static inline int anon_vma_prepare(struct vm_area_struct *vma) 1527 { 1528 if (likely(vma->anon_vma)) 1529 return 0; 1530 1531 return __anon_vma_prepare(vma); 1532 } 1533 1534 static inline void userfaultfd_unmap_complete(struct mm_struct *mm, 1535 struct list_head *uf) 1536 { 1537 } 1538 1539 #define ACCESS_PRIVATE(p, member) ((p)->member) 1540 1541 #define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE) 1542 1543 static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits) 1544 { 1545 unsigned int len = bitmap_size(nbits); 1546 1547 if (small_const_nbits(nbits)) 1548 *dst = 0; 1549 else 1550 memset(dst, 0, len); 1551 } 1552 1553 static inline bool mm_flags_test(int flag, const struct mm_struct *mm) 1554 { 1555 return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 1556 } 1557 1558 /* Clears all bits in the VMA flags bitmap, non-atomically. */ 1559 static inline void vma_flags_clear_all(vma_flags_t *flags) 1560 { 1561 bitmap_zero(ACCESS_PRIVATE(flags, __vma_flags), NUM_VMA_FLAG_BITS); 1562 } 1563 1564 /* 1565 * Copy value to the first system word of VMA flags, non-atomically. 1566 * 1567 * IMPORTANT: This does not overwrite bytes past the first system word. The 1568 * caller must account for this. 1569 */ 1570 static inline void vma_flags_overwrite_word(vma_flags_t *flags, unsigned long value) 1571 { 1572 *ACCESS_PRIVATE(flags, __vma_flags) = value; 1573 } 1574 1575 /* 1576 * Copy value to the first system word of VMA flags ONCE, non-atomically. 1577 * 1578 * IMPORTANT: This does not overwrite bytes past the first system word. The 1579 * caller must account for this. 1580 */ 1581 static inline void vma_flags_overwrite_word_once(vma_flags_t *flags, unsigned long value) 1582 { 1583 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags); 1584 1585 WRITE_ONCE(*bitmap, value); 1586 } 1587 1588 /* Update the first system word of VMA flags setting bits, non-atomically. */ 1589 static inline void vma_flags_set_word(vma_flags_t *flags, unsigned long value) 1590 { 1591 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags); 1592 1593 *bitmap |= value; 1594 } 1595 1596 /* Update the first system word of VMA flags clearing bits, non-atomically. */ 1597 static inline void vma_flags_clear_word(vma_flags_t *flags, unsigned long value) 1598 { 1599 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags); 1600 1601 *bitmap &= ~value; 1602 } 1603 1604 1605 /* Use when VMA is not part of the VMA tree and needs no locking */ 1606 static inline void vm_flags_init(struct vm_area_struct *vma, 1607 vm_flags_t flags) 1608 { 1609 vma_flags_clear_all(&vma->flags); 1610 vma_flags_overwrite_word(&vma->flags, flags); 1611 } 1612 1613 /* 1614 * Use when VMA is part of the VMA tree and modifications need coordination 1615 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 1616 * it should be locked explicitly beforehand. 1617 */ 1618 static inline void vm_flags_reset(struct vm_area_struct *vma, 1619 vm_flags_t flags) 1620 { 1621 vma_assert_write_locked(vma); 1622 vm_flags_init(vma, flags); 1623 } 1624 1625 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 1626 vm_flags_t flags) 1627 { 1628 vma_assert_write_locked(vma); 1629 /* 1630 * The user should only be interested in avoiding reordering of 1631 * assignment to the first word. 1632 */ 1633 vma_flags_clear_all(&vma->flags); 1634 vma_flags_overwrite_word_once(&vma->flags, flags); 1635 } 1636 1637 static inline void vm_flags_set(struct vm_area_struct *vma, 1638 vm_flags_t flags) 1639 { 1640 vma_start_write(vma); 1641 vma_flags_set_word(&vma->flags, flags); 1642 } 1643 1644 static inline void vm_flags_clear(struct vm_area_struct *vma, 1645 vm_flags_t flags) 1646 { 1647 vma_start_write(vma); 1648 vma_flags_clear_word(&vma->flags, flags); 1649 } 1650 1651 /* 1652 * Denies creating a writable executable mapping or gaining executable permissions. 1653 * 1654 * This denies the following: 1655 * 1656 * a) mmap(PROT_WRITE | PROT_EXEC) 1657 * 1658 * b) mmap(PROT_WRITE) 1659 * mprotect(PROT_EXEC) 1660 * 1661 * c) mmap(PROT_WRITE) 1662 * mprotect(PROT_READ) 1663 * mprotect(PROT_EXEC) 1664 * 1665 * But allows the following: 1666 * 1667 * d) mmap(PROT_READ | PROT_EXEC) 1668 * mmap(PROT_READ | PROT_EXEC | PROT_BTI) 1669 * 1670 * This is only applicable if the user has set the Memory-Deny-Write-Execute 1671 * (MDWE) protection mask for the current process. 1672 * 1673 * @old specifies the VMA flags the VMA originally possessed, and @new the ones 1674 * we propose to set. 1675 * 1676 * Return: false if proposed change is OK, true if not ok and should be denied. 1677 */ 1678 static inline bool map_deny_write_exec(unsigned long old, unsigned long new) 1679 { 1680 /* If MDWE is disabled, we have nothing to deny. */ 1681 if (mm_flags_test(MMF_HAS_MDWE, current->mm)) 1682 return false; 1683 1684 /* If the new VMA is not executable, we have nothing to deny. */ 1685 if (!(new & VM_EXEC)) 1686 return false; 1687 1688 /* Under MDWE we do not accept newly writably executable VMAs... */ 1689 if (new & VM_WRITE) 1690 return true; 1691 1692 /* ...nor previously non-executable VMAs becoming executable. */ 1693 if (!(old & VM_EXEC)) 1694 return true; 1695 1696 return false; 1697 } 1698 1699 static inline int mapping_map_writable(struct address_space *mapping) 1700 { 1701 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 1702 0 : -EPERM; 1703 } 1704 1705 static inline unsigned long move_page_tables(struct pagetable_move_control *pmc) 1706 { 1707 return 0; 1708 } 1709 1710 static inline void free_pgd_range(struct mmu_gather *tlb, 1711 unsigned long addr, unsigned long end, 1712 unsigned long floor, unsigned long ceiling) 1713 { 1714 } 1715 1716 static inline int ksm_execve(struct mm_struct *mm) 1717 { 1718 return 0; 1719 } 1720 1721 static inline void ksm_exit(struct mm_struct *mm) 1722 { 1723 } 1724 1725 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 1726 { 1727 if (reset_refcnt) 1728 refcount_set(&vma->vm_refcnt, 0); 1729 } 1730 1731 static inline void vma_numab_state_init(struct vm_area_struct *vma) 1732 { 1733 } 1734 1735 static inline void vma_numab_state_free(struct vm_area_struct *vma) 1736 { 1737 } 1738 1739 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma, 1740 struct vm_area_struct *new_vma) 1741 { 1742 } 1743 1744 static inline void free_anon_vma_name(struct vm_area_struct *vma) 1745 { 1746 } 1747 1748 /* Declared in vma.h. */ 1749 static inline void set_vma_from_desc(struct vm_area_struct *vma, 1750 struct vm_area_desc *desc); 1751 1752 static inline void mmap_action_prepare(struct mmap_action *action, 1753 struct vm_area_desc *desc) 1754 { 1755 } 1756 1757 static inline int mmap_action_complete(struct mmap_action *action, 1758 struct vm_area_struct *vma) 1759 { 1760 return 0; 1761 } 1762 1763 static inline int __compat_vma_mmap(const struct file_operations *f_op, 1764 struct file *file, struct vm_area_struct *vma) 1765 { 1766 struct vm_area_desc desc = { 1767 .mm = vma->vm_mm, 1768 .file = file, 1769 .start = vma->vm_start, 1770 .end = vma->vm_end, 1771 1772 .pgoff = vma->vm_pgoff, 1773 .vm_file = vma->vm_file, 1774 .vm_flags = vma->vm_flags, 1775 .page_prot = vma->vm_page_prot, 1776 1777 .action.type = MMAP_NOTHING, /* Default */ 1778 }; 1779 int err; 1780 1781 err = f_op->mmap_prepare(&desc); 1782 if (err) 1783 return err; 1784 1785 mmap_action_prepare(&desc.action, &desc); 1786 set_vma_from_desc(vma, &desc); 1787 return mmap_action_complete(&desc.action, vma); 1788 } 1789 1790 static inline int compat_vma_mmap(struct file *file, 1791 struct vm_area_struct *vma) 1792 { 1793 return __compat_vma_mmap(file->f_op, file, vma); 1794 } 1795 1796 /* Did the driver provide valid mmap hook configuration? */ 1797 static inline bool can_mmap_file(struct file *file) 1798 { 1799 bool has_mmap = file->f_op->mmap; 1800 bool has_mmap_prepare = file->f_op->mmap_prepare; 1801 1802 /* Hooks are mutually exclusive. */ 1803 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare)) 1804 return false; 1805 if (!has_mmap && !has_mmap_prepare) 1806 return false; 1807 1808 return true; 1809 } 1810 1811 static inline int vfs_mmap(struct file *file, struct vm_area_struct *vma) 1812 { 1813 if (file->f_op->mmap_prepare) 1814 return compat_vma_mmap(file, vma); 1815 1816 return file->f_op->mmap(file, vma); 1817 } 1818 1819 static inline int vfs_mmap_prepare(struct file *file, struct vm_area_desc *desc) 1820 { 1821 return file->f_op->mmap_prepare(desc); 1822 } 1823 1824 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma) 1825 { 1826 } 1827 1828 static inline void vma_set_file(struct vm_area_struct *vma, struct file *file) 1829 { 1830 /* Changing an anonymous vma with this is illegal */ 1831 get_file(file); 1832 swap(vma->vm_file, file); 1833 fput(file); 1834 } 1835 1836 static inline bool shmem_file(struct file *file) 1837 { 1838 return false; 1839 } 1840 1841 static inline vm_flags_t ksm_vma_flags(const struct mm_struct *mm, 1842 const struct file *file, vm_flags_t vm_flags) 1843 { 1844 return vm_flags; 1845 } 1846 1847 static inline void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn) 1848 { 1849 } 1850 1851 static inline int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr, 1852 unsigned long pfn, unsigned long size, pgprot_t pgprot) 1853 { 1854 return 0; 1855 } 1856 1857 static inline int do_munmap(struct mm_struct *, unsigned long, size_t, 1858 struct list_head *uf) 1859 { 1860 return 0; 1861 } 1862 1863 #endif /* __MM_VMA_INTERNAL_H */ 1864