1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * vma_internal.h 4 * 5 * Header providing userland wrappers and shims for the functionality provided 6 * by mm/vma_internal.h. 7 * 8 * We make the header guard the same as mm/vma_internal.h, so if this shim 9 * header is included, it precludes the inclusion of the kernel one. 10 */ 11 12 #ifndef __MM_VMA_INTERNAL_H 13 #define __MM_VMA_INTERNAL_H 14 15 #define __private 16 #define __bitwise 17 #define __randomize_layout 18 19 #define CONFIG_MMU 20 #define CONFIG_PER_VMA_LOCK 21 22 #include <stdlib.h> 23 24 #include <linux/list.h> 25 #include <linux/maple_tree.h> 26 #include <linux/mm.h> 27 #include <linux/rbtree.h> 28 #include <linux/refcount.h> 29 30 extern unsigned long stack_guard_gap; 31 #ifdef CONFIG_MMU 32 extern unsigned long mmap_min_addr; 33 extern unsigned long dac_mmap_min_addr; 34 #else 35 #define mmap_min_addr 0UL 36 #define dac_mmap_min_addr 0UL 37 #endif 38 39 #define VM_WARN_ON(_expr) (WARN_ON(_expr)) 40 #define VM_WARN_ON_ONCE(_expr) (WARN_ON_ONCE(_expr)) 41 #define VM_WARN_ON_VMG(_expr, _vmg) (WARN_ON(_expr)) 42 #define VM_BUG_ON(_expr) (BUG_ON(_expr)) 43 #define VM_BUG_ON_VMA(_expr, _vma) (BUG_ON(_expr)) 44 45 #define MMF_HAS_MDWE 28 46 47 #define VM_NONE 0x00000000 48 #define VM_READ 0x00000001 49 #define VM_WRITE 0x00000002 50 #define VM_EXEC 0x00000004 51 #define VM_SHARED 0x00000008 52 #define VM_MAYREAD 0x00000010 53 #define VM_MAYWRITE 0x00000020 54 #define VM_MAYEXEC 0x00000040 55 #define VM_GROWSDOWN 0x00000100 56 #define VM_PFNMAP 0x00000400 57 #define VM_LOCKED 0x00002000 58 #define VM_IO 0x00004000 59 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 60 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 61 #define VM_DONTEXPAND 0x00040000 62 #define VM_LOCKONFAULT 0x00080000 63 #define VM_ACCOUNT 0x00100000 64 #define VM_NORESERVE 0x00200000 65 #define VM_MIXEDMAP 0x10000000 66 #define VM_STACK VM_GROWSDOWN 67 #define VM_SHADOW_STACK VM_NONE 68 #define VM_SOFTDIRTY 0 69 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 70 #define VM_GROWSUP VM_NONE 71 72 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 73 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 74 75 #ifdef CONFIG_STACK_GROWSUP 76 #define VM_STACK VM_GROWSUP 77 #define VM_STACK_EARLY VM_GROWSDOWN 78 #else 79 #define VM_STACK VM_GROWSDOWN 80 #define VM_STACK_EARLY 0 81 #endif 82 83 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 84 #define TASK_SIZE_LOW DEFAULT_MAP_WINDOW 85 #define TASK_SIZE_MAX DEFAULT_MAP_WINDOW 86 #define STACK_TOP TASK_SIZE_LOW 87 #define STACK_TOP_MAX TASK_SIZE_MAX 88 89 /* This mask represents all the VMA flag bits used by mlock */ 90 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 91 92 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 93 94 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 95 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 96 97 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_TSK_EXEC 98 99 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 100 101 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 102 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 103 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 104 105 #define RLIMIT_STACK 3 /* max stack size */ 106 #define RLIMIT_MEMLOCK 8 /* max locked-in-memory address space */ 107 108 #define CAP_IPC_LOCK 14 109 110 #ifdef CONFIG_64BIT 111 /* VM is sealed, in vm_flags */ 112 #define VM_SEALED _BITUL(63) 113 #endif 114 115 #define FIRST_USER_ADDRESS 0UL 116 #define USER_PGTABLES_CEILING 0UL 117 118 #define vma_policy(vma) NULL 119 120 #define down_write_nest_lock(sem, nest_lock) 121 122 #define pgprot_val(x) ((x).pgprot) 123 #define __pgprot(x) ((pgprot_t) { (x) } ) 124 125 #define for_each_vma(__vmi, __vma) \ 126 while (((__vma) = vma_next(&(__vmi))) != NULL) 127 128 /* The MM code likes to work with exclusive end addresses */ 129 #define for_each_vma_range(__vmi, __vma, __end) \ 130 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 131 132 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 133 134 #define PHYS_PFN(x) ((unsigned long)((x) >> PAGE_SHIFT)) 135 136 #define test_and_set_bit(nr, addr) __test_and_set_bit(nr, addr) 137 #define test_and_clear_bit(nr, addr) __test_and_clear_bit(nr, addr) 138 139 #define TASK_SIZE ((1ul << 47)-PAGE_SIZE) 140 141 #define AS_MM_ALL_LOCKS 2 142 143 /* We hardcode this for now. */ 144 #define sysctl_max_map_count 0x1000000UL 145 146 #define pgoff_t unsigned long 147 typedef unsigned long pgprotval_t; 148 typedef struct pgprot { pgprotval_t pgprot; } pgprot_t; 149 typedef unsigned long vm_flags_t; 150 typedef __bitwise unsigned int vm_fault_t; 151 152 /* 153 * The shared stubs do not implement this, it amounts to an fprintf(STDERR,...) 154 * either way :) 155 */ 156 #define pr_warn_once pr_err 157 158 #define data_race(expr) expr 159 160 #define ASSERT_EXCLUSIVE_WRITER(x) 161 162 struct kref { 163 refcount_t refcount; 164 }; 165 166 /* 167 * Define the task command name length as enum, then it can be visible to 168 * BPF programs. 169 */ 170 enum { 171 TASK_COMM_LEN = 16, 172 }; 173 174 /* 175 * Flags for bug emulation. 176 * 177 * These occupy the top three bytes. 178 */ 179 enum { 180 READ_IMPLIES_EXEC = 0x0400000, 181 }; 182 183 struct task_struct { 184 char comm[TASK_COMM_LEN]; 185 pid_t pid; 186 struct mm_struct *mm; 187 188 /* Used for emulating ABI behavior of previous Linux versions: */ 189 unsigned int personality; 190 }; 191 192 struct task_struct *get_current(void); 193 #define current get_current() 194 195 struct anon_vma { 196 struct anon_vma *root; 197 struct rb_root_cached rb_root; 198 199 /* Test fields. */ 200 bool was_cloned; 201 bool was_unlinked; 202 }; 203 204 struct anon_vma_chain { 205 struct anon_vma *anon_vma; 206 struct list_head same_vma; 207 }; 208 209 struct anon_vma_name { 210 struct kref kref; 211 /* The name needs to be at the end because it is dynamically sized. */ 212 char name[]; 213 }; 214 215 struct vma_iterator { 216 struct ma_state mas; 217 }; 218 219 #define VMA_ITERATOR(name, __mm, __addr) \ 220 struct vma_iterator name = { \ 221 .mas = { \ 222 .tree = &(__mm)->mm_mt, \ 223 .index = __addr, \ 224 .node = NULL, \ 225 .status = ma_start, \ 226 }, \ 227 } 228 229 struct address_space { 230 struct rb_root_cached i_mmap; 231 unsigned long flags; 232 atomic_t i_mmap_writable; 233 }; 234 235 struct vm_userfaultfd_ctx {}; 236 struct mempolicy {}; 237 struct mmu_gather {}; 238 struct mutex {}; 239 #define DEFINE_MUTEX(mutexname) \ 240 struct mutex mutexname = {} 241 242 struct mm_struct { 243 struct maple_tree mm_mt; 244 int map_count; /* number of VMAs */ 245 unsigned long total_vm; /* Total pages mapped */ 246 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 247 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 248 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 249 unsigned long stack_vm; /* VM_STACK */ 250 251 unsigned long def_flags; 252 253 unsigned long flags; /* Must use atomic bitops to access */ 254 }; 255 256 struct vm_area_struct; 257 258 /* 259 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to 260 * manipulate mutable fields which will cause those fields to be updated in the 261 * resultant VMA. 262 * 263 * Helper functions are not required for manipulating any field. 264 */ 265 struct vm_area_desc { 266 /* Immutable state. */ 267 struct mm_struct *mm; 268 unsigned long start; 269 unsigned long end; 270 271 /* Mutable fields. Populated with initial state. */ 272 pgoff_t pgoff; 273 struct file *file; 274 vm_flags_t vm_flags; 275 pgprot_t page_prot; 276 277 /* Write-only fields. */ 278 const struct vm_operations_struct *vm_ops; 279 void *private_data; 280 }; 281 282 struct file_operations { 283 int (*mmap)(struct file *, struct vm_area_struct *); 284 int (*mmap_prepare)(struct vm_area_desc *); 285 }; 286 287 struct file { 288 struct address_space *f_mapping; 289 const struct file_operations *f_op; 290 }; 291 292 #define VMA_LOCK_OFFSET 0x40000000 293 294 typedef struct { unsigned long v; } freeptr_t; 295 296 struct vm_area_struct { 297 /* The first cache line has the info for VMA tree walking. */ 298 299 union { 300 struct { 301 /* VMA covers [vm_start; vm_end) addresses within mm */ 302 unsigned long vm_start; 303 unsigned long vm_end; 304 }; 305 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */ 306 }; 307 308 struct mm_struct *vm_mm; /* The address space we belong to. */ 309 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 310 311 /* 312 * Flags, see mm.h. 313 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 314 */ 315 union { 316 const vm_flags_t vm_flags; 317 vm_flags_t __private __vm_flags; 318 }; 319 320 #ifdef CONFIG_PER_VMA_LOCK 321 /* 322 * Can only be written (using WRITE_ONCE()) while holding both: 323 * - mmap_lock (in write mode) 324 * - vm_refcnt bit at VMA_LOCK_OFFSET is set 325 * Can be read reliably while holding one of: 326 * - mmap_lock (in read or write mode) 327 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1 328 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 329 * while holding nothing (except RCU to keep the VMA struct allocated). 330 * 331 * This sequence counter is explicitly allowed to overflow; sequence 332 * counter reuse can only lead to occasional unnecessary use of the 333 * slowpath. 334 */ 335 unsigned int vm_lock_seq; 336 #endif 337 338 /* 339 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 340 * list, after a COW of one of the file pages. A MAP_SHARED vma 341 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 342 * or brk vma (with NULL file) can only be in an anon_vma list. 343 */ 344 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 345 * page_table_lock */ 346 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 347 348 /* Function pointers to deal with this struct. */ 349 const struct vm_operations_struct *vm_ops; 350 351 /* Information about our backing store: */ 352 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 353 units */ 354 struct file * vm_file; /* File we map to (can be NULL). */ 355 void * vm_private_data; /* was vm_pte (shared mem) */ 356 357 #ifdef CONFIG_SWAP 358 atomic_long_t swap_readahead_info; 359 #endif 360 #ifndef CONFIG_MMU 361 struct vm_region *vm_region; /* NOMMU mapping region */ 362 #endif 363 #ifdef CONFIG_NUMA 364 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 365 #endif 366 #ifdef CONFIG_NUMA_BALANCING 367 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 368 #endif 369 #ifdef CONFIG_PER_VMA_LOCK 370 /* Unstable RCU readers are allowed to read this. */ 371 refcount_t vm_refcnt; 372 #endif 373 /* 374 * For areas with an address space and backing store, 375 * linkage into the address_space->i_mmap interval tree. 376 * 377 */ 378 struct { 379 struct rb_node rb; 380 unsigned long rb_subtree_last; 381 } shared; 382 #ifdef CONFIG_ANON_VMA_NAME 383 /* 384 * For private and shared anonymous mappings, a pointer to a null 385 * terminated string containing the name given to the vma, or NULL if 386 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 387 */ 388 struct anon_vma_name *anon_name; 389 #endif 390 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 391 } __randomize_layout; 392 393 struct vm_fault {}; 394 395 struct vm_operations_struct { 396 void (*open)(struct vm_area_struct * area); 397 /** 398 * @close: Called when the VMA is being removed from the MM. 399 * Context: User context. May sleep. Caller holds mmap_lock. 400 */ 401 void (*close)(struct vm_area_struct * area); 402 /* Called any time before splitting to check if it's allowed */ 403 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 404 int (*mremap)(struct vm_area_struct *area); 405 /* 406 * Called by mprotect() to make driver-specific permission 407 * checks before mprotect() is finalised. The VMA must not 408 * be modified. Returns 0 if mprotect() can proceed. 409 */ 410 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 411 unsigned long end, unsigned long newflags); 412 vm_fault_t (*fault)(struct vm_fault *vmf); 413 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 414 vm_fault_t (*map_pages)(struct vm_fault *vmf, 415 pgoff_t start_pgoff, pgoff_t end_pgoff); 416 unsigned long (*pagesize)(struct vm_area_struct * area); 417 418 /* notification that a previously read-only page is about to become 419 * writable, if an error is returned it will cause a SIGBUS */ 420 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 421 422 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 423 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 424 425 /* called by access_process_vm when get_user_pages() fails, typically 426 * for use by special VMAs. See also generic_access_phys() for a generic 427 * implementation useful for any iomem mapping. 428 */ 429 int (*access)(struct vm_area_struct *vma, unsigned long addr, 430 void *buf, int len, int write); 431 432 /* Called by the /proc/PID/maps code to ask the vma whether it 433 * has a special name. Returning non-NULL will also cause this 434 * vma to be dumped unconditionally. */ 435 const char *(*name)(struct vm_area_struct *vma); 436 437 #ifdef CONFIG_NUMA 438 /* 439 * set_policy() op must add a reference to any non-NULL @new mempolicy 440 * to hold the policy upon return. Caller should pass NULL @new to 441 * remove a policy and fall back to surrounding context--i.e. do not 442 * install a MPOL_DEFAULT policy, nor the task or system default 443 * mempolicy. 444 */ 445 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 446 447 /* 448 * get_policy() op must add reference [mpol_get()] to any policy at 449 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 450 * in mm/mempolicy.c will do this automatically. 451 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 452 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 453 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 454 * must return NULL--i.e., do not "fallback" to task or system default 455 * policy. 456 */ 457 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 458 unsigned long addr, pgoff_t *ilx); 459 #endif 460 /* 461 * Called by vm_normal_page() for special PTEs to find the 462 * page for @addr. This is useful if the default behavior 463 * (using pte_page()) would not find the correct page. 464 */ 465 struct page *(*find_special_page)(struct vm_area_struct *vma, 466 unsigned long addr); 467 }; 468 469 struct vm_unmapped_area_info { 470 #define VM_UNMAPPED_AREA_TOPDOWN 1 471 unsigned long flags; 472 unsigned long length; 473 unsigned long low_limit; 474 unsigned long high_limit; 475 unsigned long align_mask; 476 unsigned long align_offset; 477 unsigned long start_gap; 478 }; 479 480 struct pagetable_move_control { 481 struct vm_area_struct *old; /* Source VMA. */ 482 struct vm_area_struct *new; /* Destination VMA. */ 483 unsigned long old_addr; /* Address from which the move begins. */ 484 unsigned long old_end; /* Exclusive address at which old range ends. */ 485 unsigned long new_addr; /* Address to move page tables to. */ 486 unsigned long len_in; /* Bytes to remap specified by user. */ 487 488 bool need_rmap_locks; /* Do rmap locks need to be taken? */ 489 bool for_stack; /* Is this an early temp stack being moved? */ 490 }; 491 492 #define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \ 493 struct pagetable_move_control name = { \ 494 .old = old_, \ 495 .new = new_, \ 496 .old_addr = old_addr_, \ 497 .old_end = (old_addr_) + (len_), \ 498 .new_addr = new_addr_, \ 499 .len_in = len_, \ 500 } 501 502 struct kmem_cache_args { 503 /** 504 * @align: The required alignment for the objects. 505 * 506 * %0 means no specific alignment is requested. 507 */ 508 unsigned int align; 509 /** 510 * @useroffset: Usercopy region offset. 511 * 512 * %0 is a valid offset, when @usersize is non-%0 513 */ 514 unsigned int useroffset; 515 /** 516 * @usersize: Usercopy region size. 517 * 518 * %0 means no usercopy region is specified. 519 */ 520 unsigned int usersize; 521 /** 522 * @freeptr_offset: Custom offset for the free pointer 523 * in &SLAB_TYPESAFE_BY_RCU caches 524 * 525 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer 526 * outside of the object. This might cause the object to grow in size. 527 * Cache creators that have a reason to avoid this can specify a custom 528 * free pointer offset in their struct where the free pointer will be 529 * placed. 530 * 531 * Note that placing the free pointer inside the object requires the 532 * caller to ensure that no fields are invalidated that are required to 533 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for 534 * details). 535 * 536 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset 537 * is specified, %use_freeptr_offset must be set %true. 538 * 539 * Note that @ctor currently isn't supported with custom free pointers 540 * as a @ctor requires an external free pointer. 541 */ 542 unsigned int freeptr_offset; 543 /** 544 * @use_freeptr_offset: Whether a @freeptr_offset is used. 545 */ 546 bool use_freeptr_offset; 547 /** 548 * @ctor: A constructor for the objects. 549 * 550 * The constructor is invoked for each object in a newly allocated slab 551 * page. It is the cache user's responsibility to free object in the 552 * same state as after calling the constructor, or deal appropriately 553 * with any differences between a freshly constructed and a reallocated 554 * object. 555 * 556 * %NULL means no constructor. 557 */ 558 void (*ctor)(void *); 559 }; 560 561 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 562 { 563 mas_pause(&vmi->mas); 564 } 565 566 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 567 { 568 return __pgprot(pgprot_val(oldprot) | pgprot_val(newprot)); 569 } 570 571 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 572 { 573 return __pgprot(vm_flags); 574 } 575 576 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 577 { 578 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 579 (VM_SHARED | VM_MAYWRITE); 580 } 581 582 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 583 { 584 return is_shared_maywrite(vma->vm_flags); 585 } 586 587 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 588 { 589 /* 590 * Uses mas_find() to get the first VMA when the iterator starts. 591 * Calling mas_next() could skip the first entry. 592 */ 593 return mas_find(&vmi->mas, ULONG_MAX); 594 } 595 596 /* 597 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 598 * assertions should be made either under mmap_write_lock or when the object 599 * has been isolated under mmap_write_lock, ensuring no competing writers. 600 */ 601 static inline void vma_assert_attached(struct vm_area_struct *vma) 602 { 603 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 604 } 605 606 static inline void vma_assert_detached(struct vm_area_struct *vma) 607 { 608 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 609 } 610 611 static inline void vma_assert_write_locked(struct vm_area_struct *); 612 static inline void vma_mark_attached(struct vm_area_struct *vma) 613 { 614 vma_assert_write_locked(vma); 615 vma_assert_detached(vma); 616 refcount_set_release(&vma->vm_refcnt, 1); 617 } 618 619 static inline void vma_mark_detached(struct vm_area_struct *vma) 620 { 621 vma_assert_write_locked(vma); 622 vma_assert_attached(vma); 623 /* We are the only writer, so no need to use vma_refcount_put(). */ 624 if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) { 625 /* 626 * Reader must have temporarily raised vm_refcnt but it will 627 * drop it without using the vma since vma is write-locked. 628 */ 629 } 630 } 631 632 extern const struct vm_operations_struct vma_dummy_vm_ops; 633 634 extern unsigned long rlimit(unsigned int limit); 635 636 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 637 { 638 memset(vma, 0, sizeof(*vma)); 639 vma->vm_mm = mm; 640 vma->vm_ops = &vma_dummy_vm_ops; 641 INIT_LIST_HEAD(&vma->anon_vma_chain); 642 vma->vm_lock_seq = UINT_MAX; 643 } 644 645 struct kmem_cache { 646 const char *name; 647 size_t object_size; 648 struct kmem_cache_args *args; 649 }; 650 651 static inline struct kmem_cache *__kmem_cache_create(const char *name, 652 size_t object_size, 653 struct kmem_cache_args *args) 654 { 655 struct kmem_cache *ret = malloc(sizeof(struct kmem_cache)); 656 657 ret->name = name; 658 ret->object_size = object_size; 659 ret->args = args; 660 661 return ret; 662 } 663 664 #define kmem_cache_create(__name, __object_size, __args, ...) \ 665 __kmem_cache_create((__name), (__object_size), (__args)) 666 667 static inline void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 668 { 669 (void)gfpflags; 670 671 return calloc(s->object_size, 1); 672 } 673 674 static inline void kmem_cache_free(struct kmem_cache *s, void *x) 675 { 676 free(x); 677 } 678 679 /* 680 * These are defined in vma.h, but sadly vm_stat_account() is referenced by 681 * kernel/fork.c, so we have to these broadly available there, and temporarily 682 * define them here to resolve the dependency cycle. 683 */ 684 685 #define is_exec_mapping(flags) \ 686 ((flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC) 687 688 #define is_stack_mapping(flags) \ 689 (((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK)) 690 691 #define is_data_mapping(flags) \ 692 ((flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE) 693 694 static inline void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, 695 long npages) 696 { 697 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 698 699 if (is_exec_mapping(flags)) 700 mm->exec_vm += npages; 701 else if (is_stack_mapping(flags)) 702 mm->stack_vm += npages; 703 else if (is_data_mapping(flags)) 704 mm->data_vm += npages; 705 } 706 707 #undef is_exec_mapping 708 #undef is_stack_mapping 709 #undef is_data_mapping 710 711 /* Currently stubbed but we may later wish to un-stub. */ 712 static inline void vm_acct_memory(long pages); 713 static inline void vm_unacct_memory(long pages) 714 { 715 vm_acct_memory(-pages); 716 } 717 718 static inline void mapping_allow_writable(struct address_space *mapping) 719 { 720 atomic_inc(&mapping->i_mmap_writable); 721 } 722 723 static inline void vma_set_range(struct vm_area_struct *vma, 724 unsigned long start, unsigned long end, 725 pgoff_t pgoff) 726 { 727 vma->vm_start = start; 728 vma->vm_end = end; 729 vma->vm_pgoff = pgoff; 730 } 731 732 static inline 733 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 734 { 735 return mas_find(&vmi->mas, max - 1); 736 } 737 738 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 739 unsigned long start, unsigned long end, gfp_t gfp) 740 { 741 __mas_set_range(&vmi->mas, start, end - 1); 742 mas_store_gfp(&vmi->mas, NULL, gfp); 743 if (unlikely(mas_is_err(&vmi->mas))) 744 return -ENOMEM; 745 746 return 0; 747 } 748 749 static inline void mmap_assert_locked(struct mm_struct *); 750 static inline struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 751 unsigned long start_addr, 752 unsigned long end_addr) 753 { 754 unsigned long index = start_addr; 755 756 mmap_assert_locked(mm); 757 return mt_find(&mm->mm_mt, &index, end_addr - 1); 758 } 759 760 static inline 761 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 762 { 763 return mtree_load(&mm->mm_mt, addr); 764 } 765 766 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 767 { 768 return mas_prev(&vmi->mas, 0); 769 } 770 771 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 772 { 773 mas_set(&vmi->mas, addr); 774 } 775 776 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 777 { 778 return !vma->vm_ops; 779 } 780 781 /* Defined in vma.h, so temporarily define here to avoid circular dependency. */ 782 #define vma_iter_load(vmi) \ 783 mas_walk(&(vmi)->mas) 784 785 static inline struct vm_area_struct * 786 find_vma_prev(struct mm_struct *mm, unsigned long addr, 787 struct vm_area_struct **pprev) 788 { 789 struct vm_area_struct *vma; 790 VMA_ITERATOR(vmi, mm, addr); 791 792 vma = vma_iter_load(&vmi); 793 *pprev = vma_prev(&vmi); 794 if (!vma) 795 vma = vma_next(&vmi); 796 return vma; 797 } 798 799 #undef vma_iter_load 800 801 static inline void vma_iter_init(struct vma_iterator *vmi, 802 struct mm_struct *mm, unsigned long addr) 803 { 804 mas_init(&vmi->mas, &mm->mm_mt, addr); 805 } 806 807 /* Stubbed functions. */ 808 809 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 810 { 811 return NULL; 812 } 813 814 static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma, 815 struct vm_userfaultfd_ctx vm_ctx) 816 { 817 return true; 818 } 819 820 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1, 821 struct anon_vma_name *anon_name2) 822 { 823 return true; 824 } 825 826 static inline void might_sleep(void) 827 { 828 } 829 830 static inline unsigned long vma_pages(struct vm_area_struct *vma) 831 { 832 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 833 } 834 835 static inline void fput(struct file *) 836 { 837 } 838 839 static inline void mpol_put(struct mempolicy *) 840 { 841 } 842 843 static inline void lru_add_drain(void) 844 { 845 } 846 847 static inline void tlb_gather_mmu(struct mmu_gather *, struct mm_struct *) 848 { 849 } 850 851 static inline void update_hiwater_rss(struct mm_struct *) 852 { 853 } 854 855 static inline void update_hiwater_vm(struct mm_struct *) 856 { 857 } 858 859 static inline void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 860 struct vm_area_struct *vma, unsigned long start_addr, 861 unsigned long end_addr, unsigned long tree_end, 862 bool mm_wr_locked) 863 { 864 (void)tlb; 865 (void)mas; 866 (void)vma; 867 (void)start_addr; 868 (void)end_addr; 869 (void)tree_end; 870 (void)mm_wr_locked; 871 } 872 873 static inline void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 874 struct vm_area_struct *vma, unsigned long floor, 875 unsigned long ceiling, bool mm_wr_locked) 876 { 877 (void)tlb; 878 (void)mas; 879 (void)vma; 880 (void)floor; 881 (void)ceiling; 882 (void)mm_wr_locked; 883 } 884 885 static inline void mapping_unmap_writable(struct address_space *) 886 { 887 } 888 889 static inline void flush_dcache_mmap_lock(struct address_space *) 890 { 891 } 892 893 static inline void tlb_finish_mmu(struct mmu_gather *) 894 { 895 } 896 897 static inline struct file *get_file(struct file *f) 898 { 899 return f; 900 } 901 902 static inline int vma_dup_policy(struct vm_area_struct *, struct vm_area_struct *) 903 { 904 return 0; 905 } 906 907 static inline int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 908 { 909 /* For testing purposes. We indicate that an anon_vma has been cloned. */ 910 if (src->anon_vma != NULL) { 911 dst->anon_vma = src->anon_vma; 912 dst->anon_vma->was_cloned = true; 913 } 914 915 return 0; 916 } 917 918 static inline void vma_start_write(struct vm_area_struct *vma) 919 { 920 /* Used to indicate to tests that a write operation has begun. */ 921 vma->vm_lock_seq++; 922 } 923 924 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 925 unsigned long start, 926 unsigned long end, 927 struct vm_area_struct *next) 928 { 929 (void)vma; 930 (void)start; 931 (void)end; 932 (void)next; 933 } 934 935 static inline void vma_iter_free(struct vma_iterator *vmi) 936 { 937 mas_destroy(&vmi->mas); 938 } 939 940 static inline 941 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 942 { 943 return mas_next_range(&vmi->mas, ULONG_MAX); 944 } 945 946 static inline void vm_acct_memory(long pages) 947 { 948 } 949 950 static inline void vma_interval_tree_insert(struct vm_area_struct *, 951 struct rb_root_cached *) 952 { 953 } 954 955 static inline void vma_interval_tree_remove(struct vm_area_struct *, 956 struct rb_root_cached *) 957 { 958 } 959 960 static inline void flush_dcache_mmap_unlock(struct address_space *) 961 { 962 } 963 964 static inline void anon_vma_interval_tree_insert(struct anon_vma_chain*, 965 struct rb_root_cached *) 966 { 967 } 968 969 static inline void anon_vma_interval_tree_remove(struct anon_vma_chain*, 970 struct rb_root_cached *) 971 { 972 } 973 974 static inline void uprobe_mmap(struct vm_area_struct *) 975 { 976 } 977 978 static inline void uprobe_munmap(struct vm_area_struct *vma, 979 unsigned long start, unsigned long end) 980 { 981 (void)vma; 982 (void)start; 983 (void)end; 984 } 985 986 static inline void i_mmap_lock_write(struct address_space *) 987 { 988 } 989 990 static inline void anon_vma_lock_write(struct anon_vma *) 991 { 992 } 993 994 static inline void vma_assert_write_locked(struct vm_area_struct *) 995 { 996 } 997 998 static inline void unlink_anon_vmas(struct vm_area_struct *vma) 999 { 1000 /* For testing purposes, indicate that the anon_vma was unlinked. */ 1001 vma->anon_vma->was_unlinked = true; 1002 } 1003 1004 static inline void anon_vma_unlock_write(struct anon_vma *) 1005 { 1006 } 1007 1008 static inline void i_mmap_unlock_write(struct address_space *) 1009 { 1010 } 1011 1012 static inline void anon_vma_merge(struct vm_area_struct *, 1013 struct vm_area_struct *) 1014 { 1015 } 1016 1017 static inline int userfaultfd_unmap_prep(struct vm_area_struct *vma, 1018 unsigned long start, 1019 unsigned long end, 1020 struct list_head *unmaps) 1021 { 1022 (void)vma; 1023 (void)start; 1024 (void)end; 1025 (void)unmaps; 1026 1027 return 0; 1028 } 1029 1030 static inline void mmap_write_downgrade(struct mm_struct *) 1031 { 1032 } 1033 1034 static inline void mmap_read_unlock(struct mm_struct *) 1035 { 1036 } 1037 1038 static inline void mmap_write_unlock(struct mm_struct *) 1039 { 1040 } 1041 1042 static inline int mmap_write_lock_killable(struct mm_struct *) 1043 { 1044 return 0; 1045 } 1046 1047 static inline bool can_modify_mm(struct mm_struct *mm, 1048 unsigned long start, 1049 unsigned long end) 1050 { 1051 (void)mm; 1052 (void)start; 1053 (void)end; 1054 1055 return true; 1056 } 1057 1058 static inline void arch_unmap(struct mm_struct *mm, 1059 unsigned long start, 1060 unsigned long end) 1061 { 1062 (void)mm; 1063 (void)start; 1064 (void)end; 1065 } 1066 1067 static inline void mmap_assert_locked(struct mm_struct *) 1068 { 1069 } 1070 1071 static inline bool mpol_equal(struct mempolicy *, struct mempolicy *) 1072 { 1073 return true; 1074 } 1075 1076 static inline void khugepaged_enter_vma(struct vm_area_struct *vma, 1077 unsigned long vm_flags) 1078 { 1079 (void)vma; 1080 (void)vm_flags; 1081 } 1082 1083 static inline bool mapping_can_writeback(struct address_space *) 1084 { 1085 return true; 1086 } 1087 1088 static inline bool is_vm_hugetlb_page(struct vm_area_struct *) 1089 { 1090 return false; 1091 } 1092 1093 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *) 1094 { 1095 return false; 1096 } 1097 1098 static inline bool userfaultfd_wp(struct vm_area_struct *) 1099 { 1100 return false; 1101 } 1102 1103 static inline void mmap_assert_write_locked(struct mm_struct *) 1104 { 1105 } 1106 1107 static inline void mutex_lock(struct mutex *) 1108 { 1109 } 1110 1111 static inline void mutex_unlock(struct mutex *) 1112 { 1113 } 1114 1115 static inline bool mutex_is_locked(struct mutex *) 1116 { 1117 return true; 1118 } 1119 1120 static inline bool signal_pending(void *) 1121 { 1122 return false; 1123 } 1124 1125 static inline bool is_file_hugepages(struct file *) 1126 { 1127 return false; 1128 } 1129 1130 static inline int security_vm_enough_memory_mm(struct mm_struct *, long) 1131 { 1132 return 0; 1133 } 1134 1135 static inline bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long) 1136 { 1137 return true; 1138 } 1139 1140 static inline void vm_flags_init(struct vm_area_struct *vma, 1141 vm_flags_t flags) 1142 { 1143 vma->__vm_flags = flags; 1144 } 1145 1146 static inline void vm_flags_set(struct vm_area_struct *vma, 1147 vm_flags_t flags) 1148 { 1149 vma_start_write(vma); 1150 vma->__vm_flags |= flags; 1151 } 1152 1153 static inline void vm_flags_clear(struct vm_area_struct *vma, 1154 vm_flags_t flags) 1155 { 1156 vma_start_write(vma); 1157 vma->__vm_flags &= ~flags; 1158 } 1159 1160 static inline int shmem_zero_setup(struct vm_area_struct *) 1161 { 1162 return 0; 1163 } 1164 1165 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1166 { 1167 vma->vm_ops = NULL; 1168 } 1169 1170 static inline void ksm_add_vma(struct vm_area_struct *) 1171 { 1172 } 1173 1174 static inline void perf_event_mmap(struct vm_area_struct *) 1175 { 1176 } 1177 1178 static inline bool vma_is_dax(struct vm_area_struct *) 1179 { 1180 return false; 1181 } 1182 1183 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *) 1184 { 1185 return NULL; 1186 } 1187 1188 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1189 1190 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 1191 static inline void vma_set_page_prot(struct vm_area_struct *vma) 1192 { 1193 unsigned long vm_flags = vma->vm_flags; 1194 pgprot_t vm_page_prot; 1195 1196 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */ 1197 vm_page_prot = pgprot_modify(vma->vm_page_prot, vm_get_page_prot(vm_flags)); 1198 1199 if (vma_wants_writenotify(vma, vm_page_prot)) { 1200 vm_flags &= ~VM_SHARED; 1201 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */ 1202 vm_page_prot = pgprot_modify(vm_page_prot, vm_get_page_prot(vm_flags)); 1203 } 1204 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 1205 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 1206 } 1207 1208 static inline bool arch_validate_flags(unsigned long) 1209 { 1210 return true; 1211 } 1212 1213 static inline void vma_close(struct vm_area_struct *) 1214 { 1215 } 1216 1217 static inline int mmap_file(struct file *, struct vm_area_struct *) 1218 { 1219 return 0; 1220 } 1221 1222 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 1223 { 1224 if (vma->vm_flags & VM_GROWSDOWN) 1225 return stack_guard_gap; 1226 1227 /* See reasoning around the VM_SHADOW_STACK definition */ 1228 if (vma->vm_flags & VM_SHADOW_STACK) 1229 return PAGE_SIZE; 1230 1231 return 0; 1232 } 1233 1234 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 1235 { 1236 unsigned long gap = stack_guard_start_gap(vma); 1237 unsigned long vm_start = vma->vm_start; 1238 1239 vm_start -= gap; 1240 if (vm_start > vma->vm_start) 1241 vm_start = 0; 1242 return vm_start; 1243 } 1244 1245 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 1246 { 1247 unsigned long vm_end = vma->vm_end; 1248 1249 if (vma->vm_flags & VM_GROWSUP) { 1250 vm_end += stack_guard_gap; 1251 if (vm_end < vma->vm_end) 1252 vm_end = -PAGE_SIZE; 1253 } 1254 return vm_end; 1255 } 1256 1257 static inline int is_hugepage_only_range(struct mm_struct *mm, 1258 unsigned long addr, unsigned long len) 1259 { 1260 return 0; 1261 } 1262 1263 static inline bool vma_is_accessible(struct vm_area_struct *vma) 1264 { 1265 return vma->vm_flags & VM_ACCESS_FLAGS; 1266 } 1267 1268 static inline bool capable(int cap) 1269 { 1270 return true; 1271 } 1272 1273 static inline bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1274 unsigned long bytes) 1275 { 1276 unsigned long locked_pages, limit_pages; 1277 1278 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1279 return true; 1280 1281 locked_pages = bytes >> PAGE_SHIFT; 1282 locked_pages += mm->locked_vm; 1283 1284 limit_pages = rlimit(RLIMIT_MEMLOCK); 1285 limit_pages >>= PAGE_SHIFT; 1286 1287 return locked_pages <= limit_pages; 1288 } 1289 1290 static inline int __anon_vma_prepare(struct vm_area_struct *vma) 1291 { 1292 struct anon_vma *anon_vma = calloc(1, sizeof(struct anon_vma)); 1293 1294 if (!anon_vma) 1295 return -ENOMEM; 1296 1297 anon_vma->root = anon_vma; 1298 vma->anon_vma = anon_vma; 1299 1300 return 0; 1301 } 1302 1303 static inline int anon_vma_prepare(struct vm_area_struct *vma) 1304 { 1305 if (likely(vma->anon_vma)) 1306 return 0; 1307 1308 return __anon_vma_prepare(vma); 1309 } 1310 1311 static inline void userfaultfd_unmap_complete(struct mm_struct *mm, 1312 struct list_head *uf) 1313 { 1314 } 1315 1316 /* 1317 * Denies creating a writable executable mapping or gaining executable permissions. 1318 * 1319 * This denies the following: 1320 * 1321 * a) mmap(PROT_WRITE | PROT_EXEC) 1322 * 1323 * b) mmap(PROT_WRITE) 1324 * mprotect(PROT_EXEC) 1325 * 1326 * c) mmap(PROT_WRITE) 1327 * mprotect(PROT_READ) 1328 * mprotect(PROT_EXEC) 1329 * 1330 * But allows the following: 1331 * 1332 * d) mmap(PROT_READ | PROT_EXEC) 1333 * mmap(PROT_READ | PROT_EXEC | PROT_BTI) 1334 * 1335 * This is only applicable if the user has set the Memory-Deny-Write-Execute 1336 * (MDWE) protection mask for the current process. 1337 * 1338 * @old specifies the VMA flags the VMA originally possessed, and @new the ones 1339 * we propose to set. 1340 * 1341 * Return: false if proposed change is OK, true if not ok and should be denied. 1342 */ 1343 static inline bool map_deny_write_exec(unsigned long old, unsigned long new) 1344 { 1345 /* If MDWE is disabled, we have nothing to deny. */ 1346 if (!test_bit(MMF_HAS_MDWE, ¤t->mm->flags)) 1347 return false; 1348 1349 /* If the new VMA is not executable, we have nothing to deny. */ 1350 if (!(new & VM_EXEC)) 1351 return false; 1352 1353 /* Under MDWE we do not accept newly writably executable VMAs... */ 1354 if (new & VM_WRITE) 1355 return true; 1356 1357 /* ...nor previously non-executable VMAs becoming executable. */ 1358 if (!(old & VM_EXEC)) 1359 return true; 1360 1361 return false; 1362 } 1363 1364 static inline int mapping_map_writable(struct address_space *mapping) 1365 { 1366 int c = atomic_read(&mapping->i_mmap_writable); 1367 1368 /* Derived from the raw_atomic_inc_unless_negative() implementation. */ 1369 do { 1370 if (c < 0) 1371 return -EPERM; 1372 } while (!__sync_bool_compare_and_swap(&mapping->i_mmap_writable, c, c+1)); 1373 1374 return 0; 1375 } 1376 1377 static inline unsigned long move_page_tables(struct pagetable_move_control *pmc) 1378 { 1379 (void)pmc; 1380 1381 return 0; 1382 } 1383 1384 static inline void free_pgd_range(struct mmu_gather *tlb, 1385 unsigned long addr, unsigned long end, 1386 unsigned long floor, unsigned long ceiling) 1387 { 1388 (void)tlb; 1389 (void)addr; 1390 (void)end; 1391 (void)floor; 1392 (void)ceiling; 1393 } 1394 1395 static inline int ksm_execve(struct mm_struct *mm) 1396 { 1397 (void)mm; 1398 1399 return 0; 1400 } 1401 1402 static inline void ksm_exit(struct mm_struct *mm) 1403 { 1404 (void)mm; 1405 } 1406 1407 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 1408 { 1409 (void)vma; 1410 (void)reset_refcnt; 1411 } 1412 1413 static inline void vma_numab_state_init(struct vm_area_struct *vma) 1414 { 1415 (void)vma; 1416 } 1417 1418 static inline void vma_numab_state_free(struct vm_area_struct *vma) 1419 { 1420 (void)vma; 1421 } 1422 1423 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma, 1424 struct vm_area_struct *new_vma) 1425 { 1426 (void)orig_vma; 1427 (void)new_vma; 1428 } 1429 1430 static inline void free_anon_vma_name(struct vm_area_struct *vma) 1431 { 1432 (void)vma; 1433 } 1434 1435 /* Did the driver provide valid mmap hook configuration? */ 1436 static inline bool file_has_valid_mmap_hooks(struct file *file) 1437 { 1438 bool has_mmap = file->f_op->mmap; 1439 bool has_mmap_prepare = file->f_op->mmap_prepare; 1440 1441 /* Hooks are mutually exclusive. */ 1442 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare)) 1443 return false; 1444 if (WARN_ON_ONCE(!has_mmap && !has_mmap_prepare)) 1445 return false; 1446 1447 return true; 1448 } 1449 1450 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 1451 { 1452 if (WARN_ON_ONCE(file->f_op->mmap_prepare)) 1453 return -EINVAL; 1454 1455 return file->f_op->mmap(file, vma); 1456 } 1457 1458 static inline int __call_mmap_prepare(struct file *file, 1459 struct vm_area_desc *desc) 1460 { 1461 return file->f_op->mmap_prepare(desc); 1462 } 1463 1464 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma) 1465 { 1466 (void)vma; 1467 } 1468 1469 #endif /* __MM_VMA_INTERNAL_H */ 1470