1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * vma_internal.h
4 *
5 * Header providing userland wrappers and shims for the functionality provided
6 * by mm/vma_internal.h.
7 *
8 * We make the header guard the same as mm/vma_internal.h, so if this shim
9 * header is included, it precludes the inclusion of the kernel one.
10 */
11
12 #ifndef __MM_VMA_INTERNAL_H
13 #define __MM_VMA_INTERNAL_H
14
15 #define __private
16 #define __bitwise
17 #define __randomize_layout
18
19 #define CONFIG_MMU
20 #define CONFIG_PER_VMA_LOCK
21
22 #include <stdlib.h>
23
24 #include <linux/atomic.h>
25 #include <linux/list.h>
26 #include <linux/maple_tree.h>
27 #include <linux/mm.h>
28 #include <linux/rbtree.h>
29 #include <linux/refcount.h>
30 #include <linux/slab.h>
31
32 extern unsigned long stack_guard_gap;
33 #ifdef CONFIG_MMU
34 extern unsigned long mmap_min_addr;
35 extern unsigned long dac_mmap_min_addr;
36 #else
37 #define mmap_min_addr 0UL
38 #define dac_mmap_min_addr 0UL
39 #endif
40
41 #define VM_WARN_ON(_expr) (WARN_ON(_expr))
42 #define VM_WARN_ON_ONCE(_expr) (WARN_ON_ONCE(_expr))
43 #define VM_WARN_ON_VMG(_expr, _vmg) (WARN_ON(_expr))
44 #define VM_BUG_ON(_expr) (BUG_ON(_expr))
45 #define VM_BUG_ON_VMA(_expr, _vma) (BUG_ON(_expr))
46
47 #define MMF_HAS_MDWE 28
48
49 /*
50 * vm_flags in vm_area_struct, see mm_types.h.
51 * When changing, update also include/trace/events/mmflags.h
52 */
53
54 #define VM_NONE 0x00000000
55
56 /**
57 * typedef vma_flag_t - specifies an individual VMA flag by bit number.
58 *
59 * This value is made type safe by sparse to avoid passing invalid flag values
60 * around.
61 */
62 typedef int __bitwise vma_flag_t;
63
64 #define DECLARE_VMA_BIT(name, bitnum) \
65 VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum)
66 #define DECLARE_VMA_BIT_ALIAS(name, aliased) \
67 VMA_ ## name ## _BIT = VMA_ ## aliased ## _BIT
68 enum {
69 DECLARE_VMA_BIT(READ, 0),
70 DECLARE_VMA_BIT(WRITE, 1),
71 DECLARE_VMA_BIT(EXEC, 2),
72 DECLARE_VMA_BIT(SHARED, 3),
73 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
74 DECLARE_VMA_BIT(MAYREAD, 4), /* limits for mprotect() etc. */
75 DECLARE_VMA_BIT(MAYWRITE, 5),
76 DECLARE_VMA_BIT(MAYEXEC, 6),
77 DECLARE_VMA_BIT(MAYSHARE, 7),
78 DECLARE_VMA_BIT(GROWSDOWN, 8), /* general info on the segment */
79 #ifdef CONFIG_MMU
80 DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */
81 #else
82 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
83 DECLARE_VMA_BIT(MAYOVERLAY, 9),
84 #endif /* CONFIG_MMU */
85 /* Page-ranges managed without "struct page", just pure PFN */
86 DECLARE_VMA_BIT(PFNMAP, 10),
87 DECLARE_VMA_BIT(MAYBE_GUARD, 11),
88 DECLARE_VMA_BIT(UFFD_WP, 12), /* wrprotect pages tracking */
89 DECLARE_VMA_BIT(LOCKED, 13),
90 DECLARE_VMA_BIT(IO, 14), /* Memory mapped I/O or similar */
91 DECLARE_VMA_BIT(SEQ_READ, 15), /* App will access data sequentially */
92 DECLARE_VMA_BIT(RAND_READ, 16), /* App will not benefit from clustered reads */
93 DECLARE_VMA_BIT(DONTCOPY, 17), /* Do not copy this vma on fork */
94 DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */
95 DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */
96 DECLARE_VMA_BIT(ACCOUNT, 20), /* Is a VM accounted object */
97 DECLARE_VMA_BIT(NORESERVE, 21), /* should the VM suppress accounting */
98 DECLARE_VMA_BIT(HUGETLB, 22), /* Huge TLB Page VM */
99 DECLARE_VMA_BIT(SYNC, 23), /* Synchronous page faults */
100 DECLARE_VMA_BIT(ARCH_1, 24), /* Architecture-specific flag */
101 DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */
102 DECLARE_VMA_BIT(DONTDUMP, 26), /* Do not include in the core dump */
103 DECLARE_VMA_BIT(SOFTDIRTY, 27), /* NOT soft dirty clean area */
104 DECLARE_VMA_BIT(MIXEDMAP, 28), /* Can contain struct page and pure PFN pages */
105 DECLARE_VMA_BIT(HUGEPAGE, 29), /* MADV_HUGEPAGE marked this vma */
106 DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */
107 DECLARE_VMA_BIT(MERGEABLE, 31), /* KSM may merge identical pages */
108 /* These bits are reused, we define specific uses below. */
109 DECLARE_VMA_BIT(HIGH_ARCH_0, 32),
110 DECLARE_VMA_BIT(HIGH_ARCH_1, 33),
111 DECLARE_VMA_BIT(HIGH_ARCH_2, 34),
112 DECLARE_VMA_BIT(HIGH_ARCH_3, 35),
113 DECLARE_VMA_BIT(HIGH_ARCH_4, 36),
114 DECLARE_VMA_BIT(HIGH_ARCH_5, 37),
115 DECLARE_VMA_BIT(HIGH_ARCH_6, 38),
116 /*
117 * This flag is used to connect VFIO to arch specific KVM code. It
118 * indicates that the memory under this VMA is safe for use with any
119 * non-cachable memory type inside KVM. Some VFIO devices, on some
120 * platforms, are thought to be unsafe and can cause machine crashes
121 * if KVM does not lock down the memory type.
122 */
123 DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39),
124 #ifdef CONFIG_PPC32
125 DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1),
126 #else
127 DECLARE_VMA_BIT(DROPPABLE, 40),
128 #endif
129 DECLARE_VMA_BIT(UFFD_MINOR, 41),
130 DECLARE_VMA_BIT(SEALED, 42),
131 /* Flags that reuse flags above. */
132 DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0),
133 DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1),
134 DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2),
135 DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3),
136 DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4),
137 #if defined(CONFIG_X86_USER_SHADOW_STACK)
138 /*
139 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
140 * support core mm.
141 *
142 * These VMAs will get a single end guard page. This helps userspace
143 * protect itself from attacks. A single page is enough for current
144 * shadow stack archs (x86). See the comments near alloc_shstk() in
145 * arch/x86/kernel/shstk.c for more details on the guard size.
146 */
147 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5),
148 #elif defined(CONFIG_ARM64_GCS)
149 /*
150 * arm64's Guarded Control Stack implements similar functionality and
151 * has similar constraints to shadow stacks.
152 */
153 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6),
154 #endif
155 DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1), /* Strong Access Ordering (powerpc) */
156 DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1), /* parisc */
157 DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1), /* sparc64 */
158 DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1), /* arm64 */
159 DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1), /* sparc64, arm64 */
160 DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1), /* !CONFIG_MMU */
161 DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4), /* arm64 */
162 DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */
163 #ifdef CONFIG_STACK_GROWSUP
164 DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP),
165 DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN),
166 #else
167 DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN),
168 #endif
169 };
170
171 #define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT)
172 #define VM_READ INIT_VM_FLAG(READ)
173 #define VM_WRITE INIT_VM_FLAG(WRITE)
174 #define VM_EXEC INIT_VM_FLAG(EXEC)
175 #define VM_SHARED INIT_VM_FLAG(SHARED)
176 #define VM_MAYREAD INIT_VM_FLAG(MAYREAD)
177 #define VM_MAYWRITE INIT_VM_FLAG(MAYWRITE)
178 #define VM_MAYEXEC INIT_VM_FLAG(MAYEXEC)
179 #define VM_MAYSHARE INIT_VM_FLAG(MAYSHARE)
180 #define VM_GROWSDOWN INIT_VM_FLAG(GROWSDOWN)
181 #ifdef CONFIG_MMU
182 #define VM_UFFD_MISSING INIT_VM_FLAG(UFFD_MISSING)
183 #else
184 #define VM_UFFD_MISSING VM_NONE
185 #define VM_MAYOVERLAY INIT_VM_FLAG(MAYOVERLAY)
186 #endif
187 #define VM_PFNMAP INIT_VM_FLAG(PFNMAP)
188 #define VM_MAYBE_GUARD INIT_VM_FLAG(MAYBE_GUARD)
189 #define VM_UFFD_WP INIT_VM_FLAG(UFFD_WP)
190 #define VM_LOCKED INIT_VM_FLAG(LOCKED)
191 #define VM_IO INIT_VM_FLAG(IO)
192 #define VM_SEQ_READ INIT_VM_FLAG(SEQ_READ)
193 #define VM_RAND_READ INIT_VM_FLAG(RAND_READ)
194 #define VM_DONTCOPY INIT_VM_FLAG(DONTCOPY)
195 #define VM_DONTEXPAND INIT_VM_FLAG(DONTEXPAND)
196 #define VM_LOCKONFAULT INIT_VM_FLAG(LOCKONFAULT)
197 #define VM_ACCOUNT INIT_VM_FLAG(ACCOUNT)
198 #define VM_NORESERVE INIT_VM_FLAG(NORESERVE)
199 #define VM_HUGETLB INIT_VM_FLAG(HUGETLB)
200 #define VM_SYNC INIT_VM_FLAG(SYNC)
201 #define VM_ARCH_1 INIT_VM_FLAG(ARCH_1)
202 #define VM_WIPEONFORK INIT_VM_FLAG(WIPEONFORK)
203 #define VM_DONTDUMP INIT_VM_FLAG(DONTDUMP)
204 #ifdef CONFIG_MEM_SOFT_DIRTY
205 #define VM_SOFTDIRTY INIT_VM_FLAG(SOFTDIRTY)
206 #else
207 #define VM_SOFTDIRTY VM_NONE
208 #endif
209 #define VM_MIXEDMAP INIT_VM_FLAG(MIXEDMAP)
210 #define VM_HUGEPAGE INIT_VM_FLAG(HUGEPAGE)
211 #define VM_NOHUGEPAGE INIT_VM_FLAG(NOHUGEPAGE)
212 #define VM_MERGEABLE INIT_VM_FLAG(MERGEABLE)
213 #define VM_STACK INIT_VM_FLAG(STACK)
214 #ifdef CONFIG_STACK_GROWS_UP
215 #define VM_STACK_EARLY INIT_VM_FLAG(STACK_EARLY)
216 #else
217 #define VM_STACK_EARLY VM_NONE
218 #endif
219 #ifdef CONFIG_ARCH_HAS_PKEYS
220 #define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT)
221 /* Despite the naming, these are FLAGS not bits. */
222 #define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0)
223 #define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1)
224 #define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2)
225 #if CONFIG_ARCH_PKEY_BITS > 3
226 #define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3)
227 #else
228 #define VM_PKEY_BIT3 VM_NONE
229 #endif /* CONFIG_ARCH_PKEY_BITS > 3 */
230 #if CONFIG_ARCH_PKEY_BITS > 4
231 #define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4)
232 #else
233 #define VM_PKEY_BIT4 VM_NONE
234 #endif /* CONFIG_ARCH_PKEY_BITS > 4 */
235 #endif /* CONFIG_ARCH_HAS_PKEYS */
236 #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS)
237 #define VM_SHADOW_STACK INIT_VM_FLAG(SHADOW_STACK)
238 #else
239 #define VM_SHADOW_STACK VM_NONE
240 #endif
241 #if defined(CONFIG_PPC64)
242 #define VM_SAO INIT_VM_FLAG(SAO)
243 #elif defined(CONFIG_PARISC)
244 #define VM_GROWSUP INIT_VM_FLAG(GROWSUP)
245 #elif defined(CONFIG_SPARC64)
246 #define VM_SPARC_ADI INIT_VM_FLAG(SPARC_ADI)
247 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR)
248 #elif defined(CONFIG_ARM64)
249 #define VM_ARM64_BTI INIT_VM_FLAG(ARM64_BTI)
250 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR)
251 #elif !defined(CONFIG_MMU)
252 #define VM_MAPPED_COPY INIT_VM_FLAG(MAPPED_COPY)
253 #endif
254 #ifndef VM_GROWSUP
255 #define VM_GROWSUP VM_NONE
256 #endif
257 #ifdef CONFIG_ARM64_MTE
258 #define VM_MTE INIT_VM_FLAG(MTE)
259 #define VM_MTE_ALLOWED INIT_VM_FLAG(MTE_ALLOWED)
260 #else
261 #define VM_MTE VM_NONE
262 #define VM_MTE_ALLOWED VM_NONE
263 #endif
264 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
265 #define VM_UFFD_MINOR INIT_VM_FLAG(UFFD_MINOR)
266 #else
267 #define VM_UFFD_MINOR VM_NONE
268 #endif
269 #ifdef CONFIG_64BIT
270 #define VM_ALLOW_ANY_UNCACHED INIT_VM_FLAG(ALLOW_ANY_UNCACHED)
271 #define VM_SEALED INIT_VM_FLAG(SEALED)
272 #else
273 #define VM_ALLOW_ANY_UNCACHED VM_NONE
274 #define VM_SEALED VM_NONE
275 #endif
276 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
277 #define VM_DROPPABLE INIT_VM_FLAG(DROPPABLE)
278 #else
279 #define VM_DROPPABLE VM_NONE
280 #endif
281
282 /* Bits set in the VMA until the stack is in its final location */
283 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
284
285 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
286
287 /* Common data flag combinations */
288 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
289 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
290 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
291 VM_MAYWRITE | VM_MAYEXEC)
292 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
293 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
294
295 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
296 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
297 #endif
298
299 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
300 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
301 #endif
302
303 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
304
305 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
306
307 /* VMA basic access permission flags */
308 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
309
310 /*
311 * Special vmas that are non-mergable, non-mlock()able.
312 */
313 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
314
315 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
316 #define TASK_SIZE_LOW DEFAULT_MAP_WINDOW
317 #define TASK_SIZE_MAX DEFAULT_MAP_WINDOW
318 #define STACK_TOP TASK_SIZE_LOW
319 #define STACK_TOP_MAX TASK_SIZE_MAX
320
321 /* This mask represents all the VMA flag bits used by mlock */
322 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
323
324 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
325
326 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
327 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
328
329 #define RLIMIT_STACK 3 /* max stack size */
330 #define RLIMIT_MEMLOCK 8 /* max locked-in-memory address space */
331
332 #define CAP_IPC_LOCK 14
333
334 /*
335 * Flags which should be 'sticky' on merge - that is, flags which, when one VMA
336 * possesses it but the other does not, the merged VMA should nonetheless have
337 * applied to it:
338 *
339 * VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its
340 * references cleared via /proc/$pid/clear_refs, any merged VMA
341 * should be considered soft-dirty also as it operates at a VMA
342 * granularity.
343 */
344 #define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD)
345
346 /*
347 * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one
348 * of these flags and the other not does not preclude a merge.
349 *
350 * VM_STICKY - When merging VMAs, VMA flags must match, unless they are
351 * 'sticky'. If any sticky flags exist in either VMA, we simply
352 * set all of them on the merged VMA.
353 */
354 #define VM_IGNORE_MERGE VM_STICKY
355
356 /*
357 * Flags which should result in page tables being copied on fork. These are
358 * flags which indicate that the VMA maps page tables which cannot be
359 * reconsistuted upon page fault, so necessitate page table copying upon
360 *
361 * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be
362 * reasonably reconstructed on page fault.
363 *
364 * VM_UFFD_WP - Encodes metadata about an installed uffd
365 * write protect handler, which cannot be
366 * reconstructed on page fault.
367 *
368 * We always copy pgtables when dst_vma has uffd-wp
369 * enabled even if it's file-backed
370 * (e.g. shmem). Because when uffd-wp is enabled,
371 * pgtable contains uffd-wp protection information,
372 * that's something we can't retrieve from page cache,
373 * and skip copying will lose those info.
374 *
375 * VM_MAYBE_GUARD - Could contain page guard region markers which
376 * by design are a property of the page tables
377 * only and thus cannot be reconstructed on page
378 * fault.
379 */
380 #define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD)
381
382 #define FIRST_USER_ADDRESS 0UL
383 #define USER_PGTABLES_CEILING 0UL
384
385 #define vma_policy(vma) NULL
386
387 #define down_write_nest_lock(sem, nest_lock)
388
389 #define pgprot_val(x) ((x).pgprot)
390 #define __pgprot(x) ((pgprot_t) { (x) } )
391
392 #define for_each_vma(__vmi, __vma) \
393 while (((__vma) = vma_next(&(__vmi))) != NULL)
394
395 /* The MM code likes to work with exclusive end addresses */
396 #define for_each_vma_range(__vmi, __vma, __end) \
397 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
398
399 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
400
401 #define PHYS_PFN(x) ((unsigned long)((x) >> PAGE_SHIFT))
402
403 #define test_and_set_bit(nr, addr) __test_and_set_bit(nr, addr)
404 #define test_and_clear_bit(nr, addr) __test_and_clear_bit(nr, addr)
405
406 #define TASK_SIZE ((1ul << 47)-PAGE_SIZE)
407
408 #define AS_MM_ALL_LOCKS 2
409
410 /* We hardcode this for now. */
411 #define sysctl_max_map_count 0x1000000UL
412
413 #define pgoff_t unsigned long
414 typedef unsigned long pgprotval_t;
415 typedef struct pgprot { pgprotval_t pgprot; } pgprot_t;
416 typedef unsigned long vm_flags_t;
417 typedef __bitwise unsigned int vm_fault_t;
418
419 /*
420 * The shared stubs do not implement this, it amounts to an fprintf(STDERR,...)
421 * either way :)
422 */
423 #define pr_warn_once pr_err
424
425 #define data_race(expr) expr
426
427 #define ASSERT_EXCLUSIVE_WRITER(x)
428
429 #define pgtable_supports_soft_dirty() 1
430
431 /**
432 * swap - swap values of @a and @b
433 * @a: first value
434 * @b: second value
435 */
436 #define swap(a, b) \
437 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
438
439 struct kref {
440 refcount_t refcount;
441 };
442
443 /*
444 * Define the task command name length as enum, then it can be visible to
445 * BPF programs.
446 */
447 enum {
448 TASK_COMM_LEN = 16,
449 };
450
451 /*
452 * Flags for bug emulation.
453 *
454 * These occupy the top three bytes.
455 */
456 enum {
457 READ_IMPLIES_EXEC = 0x0400000,
458 };
459
460 struct task_struct {
461 char comm[TASK_COMM_LEN];
462 pid_t pid;
463 struct mm_struct *mm;
464
465 /* Used for emulating ABI behavior of previous Linux versions: */
466 unsigned int personality;
467 };
468
469 struct task_struct *get_current(void);
470 #define current get_current()
471
472 struct anon_vma {
473 struct anon_vma *root;
474 struct rb_root_cached rb_root;
475
476 /* Test fields. */
477 bool was_cloned;
478 bool was_unlinked;
479 };
480
481 struct anon_vma_chain {
482 struct anon_vma *anon_vma;
483 struct list_head same_vma;
484 };
485
486 struct anon_vma_name {
487 struct kref kref;
488 /* The name needs to be at the end because it is dynamically sized. */
489 char name[];
490 };
491
492 struct vma_iterator {
493 struct ma_state mas;
494 };
495
496 #define VMA_ITERATOR(name, __mm, __addr) \
497 struct vma_iterator name = { \
498 .mas = { \
499 .tree = &(__mm)->mm_mt, \
500 .index = __addr, \
501 .node = NULL, \
502 .status = ma_start, \
503 }, \
504 }
505
506 struct address_space {
507 struct rb_root_cached i_mmap;
508 unsigned long flags;
509 atomic_t i_mmap_writable;
510 };
511
512 struct vm_userfaultfd_ctx {};
513 struct mempolicy {};
514 struct mmu_gather {};
515 struct mutex {};
516 #define DEFINE_MUTEX(mutexname) \
517 struct mutex mutexname = {}
518
519 #define DECLARE_BITMAP(name, bits) \
520 unsigned long name[BITS_TO_LONGS(bits)]
521
522 #define NUM_MM_FLAG_BITS (64)
523 typedef struct {
524 __private DECLARE_BITMAP(__mm_flags, NUM_MM_FLAG_BITS);
525 } mm_flags_t;
526
527 /*
528 * Opaque type representing current VMA (vm_area_struct) flag state. Must be
529 * accessed via vma_flags_xxx() helper functions.
530 */
531 #define NUM_VMA_FLAG_BITS BITS_PER_LONG
532 typedef struct {
533 DECLARE_BITMAP(__vma_flags, NUM_VMA_FLAG_BITS);
534 } __private vma_flags_t;
535
536 struct mm_struct {
537 struct maple_tree mm_mt;
538 int map_count; /* number of VMAs */
539 unsigned long total_vm; /* Total pages mapped */
540 unsigned long locked_vm; /* Pages that have PG_mlocked set */
541 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
542 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
543 unsigned long stack_vm; /* VM_STACK */
544
545 unsigned long def_flags;
546
547 mm_flags_t flags; /* Must use mm_flags_* helpers to access */
548 };
549
550 struct vm_area_struct;
551
552
553 /* What action should be taken after an .mmap_prepare call is complete? */
554 enum mmap_action_type {
555 MMAP_NOTHING, /* Mapping is complete, no further action. */
556 MMAP_REMAP_PFN, /* Remap PFN range. */
557 MMAP_IO_REMAP_PFN, /* I/O remap PFN range. */
558 };
559
560 /*
561 * Describes an action an mmap_prepare hook can instruct to be taken to complete
562 * the mapping of a VMA. Specified in vm_area_desc.
563 */
564 struct mmap_action {
565 union {
566 /* Remap range. */
567 struct {
568 unsigned long start;
569 unsigned long start_pfn;
570 unsigned long size;
571 pgprot_t pgprot;
572 } remap;
573 };
574 enum mmap_action_type type;
575
576 /*
577 * If specified, this hook is invoked after the selected action has been
578 * successfully completed. Note that the VMA write lock still held.
579 *
580 * The absolute minimum ought to be done here.
581 *
582 * Returns 0 on success, or an error code.
583 */
584 int (*success_hook)(const struct vm_area_struct *vma);
585
586 /*
587 * If specified, this hook is invoked when an error occurred when
588 * attempting the selection action.
589 *
590 * The hook can return an error code in order to filter the error, but
591 * it is not valid to clear the error here.
592 */
593 int (*error_hook)(int err);
594
595 /*
596 * This should be set in rare instances where the operation required
597 * that the rmap should not be able to access the VMA until
598 * completely set up.
599 */
600 bool hide_from_rmap_until_complete :1;
601 };
602
603 /*
604 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to
605 * manipulate mutable fields which will cause those fields to be updated in the
606 * resultant VMA.
607 *
608 * Helper functions are not required for manipulating any field.
609 */
610 struct vm_area_desc {
611 /* Immutable state. */
612 const struct mm_struct *const mm;
613 struct file *const file; /* May vary from vm_file in stacked callers. */
614 unsigned long start;
615 unsigned long end;
616
617 /* Mutable fields. Populated with initial state. */
618 pgoff_t pgoff;
619 struct file *vm_file;
620 union {
621 vm_flags_t vm_flags;
622 vma_flags_t vma_flags;
623 };
624 pgprot_t page_prot;
625
626 /* Write-only fields. */
627 const struct vm_operations_struct *vm_ops;
628 void *private_data;
629
630 /* Take further action? */
631 struct mmap_action action;
632 };
633
634 struct file_operations {
635 int (*mmap)(struct file *, struct vm_area_struct *);
636 int (*mmap_prepare)(struct vm_area_desc *);
637 };
638
639 struct file {
640 struct address_space *f_mapping;
641 const struct file_operations *f_op;
642 };
643
644 #define VMA_LOCK_OFFSET 0x40000000
645
646 typedef struct { unsigned long v; } freeptr_t;
647
648 struct vm_area_struct {
649 /* The first cache line has the info for VMA tree walking. */
650
651 union {
652 struct {
653 /* VMA covers [vm_start; vm_end) addresses within mm */
654 unsigned long vm_start;
655 unsigned long vm_end;
656 };
657 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */
658 };
659
660 struct mm_struct *vm_mm; /* The address space we belong to. */
661 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
662
663 /*
664 * Flags, see mm.h.
665 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
666 */
667 union {
668 const vm_flags_t vm_flags;
669 vma_flags_t flags;
670 };
671
672 #ifdef CONFIG_PER_VMA_LOCK
673 /*
674 * Can only be written (using WRITE_ONCE()) while holding both:
675 * - mmap_lock (in write mode)
676 * - vm_refcnt bit at VMA_LOCK_OFFSET is set
677 * Can be read reliably while holding one of:
678 * - mmap_lock (in read or write mode)
679 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1
680 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
681 * while holding nothing (except RCU to keep the VMA struct allocated).
682 *
683 * This sequence counter is explicitly allowed to overflow; sequence
684 * counter reuse can only lead to occasional unnecessary use of the
685 * slowpath.
686 */
687 unsigned int vm_lock_seq;
688 #endif
689
690 /*
691 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
692 * list, after a COW of one of the file pages. A MAP_SHARED vma
693 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
694 * or brk vma (with NULL file) can only be in an anon_vma list.
695 */
696 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
697 * page_table_lock */
698 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
699
700 /* Function pointers to deal with this struct. */
701 const struct vm_operations_struct *vm_ops;
702
703 /* Information about our backing store: */
704 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
705 units */
706 struct file * vm_file; /* File we map to (can be NULL). */
707 void * vm_private_data; /* was vm_pte (shared mem) */
708
709 #ifdef CONFIG_SWAP
710 atomic_long_t swap_readahead_info;
711 #endif
712 #ifndef CONFIG_MMU
713 struct vm_region *vm_region; /* NOMMU mapping region */
714 #endif
715 #ifdef CONFIG_NUMA
716 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
717 #endif
718 #ifdef CONFIG_NUMA_BALANCING
719 struct vma_numab_state *numab_state; /* NUMA Balancing state */
720 #endif
721 #ifdef CONFIG_PER_VMA_LOCK
722 /* Unstable RCU readers are allowed to read this. */
723 refcount_t vm_refcnt;
724 #endif
725 /*
726 * For areas with an address space and backing store,
727 * linkage into the address_space->i_mmap interval tree.
728 *
729 */
730 struct {
731 struct rb_node rb;
732 unsigned long rb_subtree_last;
733 } shared;
734 #ifdef CONFIG_ANON_VMA_NAME
735 /*
736 * For private and shared anonymous mappings, a pointer to a null
737 * terminated string containing the name given to the vma, or NULL if
738 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
739 */
740 struct anon_vma_name *anon_name;
741 #endif
742 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
743 } __randomize_layout;
744
745 struct vm_fault {};
746
747 struct vm_operations_struct {
748 void (*open)(struct vm_area_struct * area);
749 /**
750 * @close: Called when the VMA is being removed from the MM.
751 * Context: User context. May sleep. Caller holds mmap_lock.
752 */
753 void (*close)(struct vm_area_struct * area);
754 /* Called any time before splitting to check if it's allowed */
755 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
756 int (*mremap)(struct vm_area_struct *area);
757 /*
758 * Called by mprotect() to make driver-specific permission
759 * checks before mprotect() is finalised. The VMA must not
760 * be modified. Returns 0 if mprotect() can proceed.
761 */
762 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
763 unsigned long end, unsigned long newflags);
764 vm_fault_t (*fault)(struct vm_fault *vmf);
765 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
766 vm_fault_t (*map_pages)(struct vm_fault *vmf,
767 pgoff_t start_pgoff, pgoff_t end_pgoff);
768 unsigned long (*pagesize)(struct vm_area_struct * area);
769
770 /* notification that a previously read-only page is about to become
771 * writable, if an error is returned it will cause a SIGBUS */
772 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
773
774 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
775 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
776
777 /* called by access_process_vm when get_user_pages() fails, typically
778 * for use by special VMAs. See also generic_access_phys() for a generic
779 * implementation useful for any iomem mapping.
780 */
781 int (*access)(struct vm_area_struct *vma, unsigned long addr,
782 void *buf, int len, int write);
783
784 /* Called by the /proc/PID/maps code to ask the vma whether it
785 * has a special name. Returning non-NULL will also cause this
786 * vma to be dumped unconditionally. */
787 const char *(*name)(struct vm_area_struct *vma);
788
789 #ifdef CONFIG_NUMA
790 /*
791 * set_policy() op must add a reference to any non-NULL @new mempolicy
792 * to hold the policy upon return. Caller should pass NULL @new to
793 * remove a policy and fall back to surrounding context--i.e. do not
794 * install a MPOL_DEFAULT policy, nor the task or system default
795 * mempolicy.
796 */
797 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
798
799 /*
800 * get_policy() op must add reference [mpol_get()] to any policy at
801 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
802 * in mm/mempolicy.c will do this automatically.
803 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
804 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
805 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
806 * must return NULL--i.e., do not "fallback" to task or system default
807 * policy.
808 */
809 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
810 unsigned long addr, pgoff_t *ilx);
811 #endif
812 #ifdef CONFIG_FIND_NORMAL_PAGE
813 /*
814 * Called by vm_normal_page() for special PTEs in @vma at @addr. This
815 * allows for returning a "normal" page from vm_normal_page() even
816 * though the PTE indicates that the "struct page" either does not exist
817 * or should not be touched: "special".
818 *
819 * Do not add new users: this really only works when a "normal" page
820 * was mapped, but then the PTE got changed to something weird (+
821 * marked special) that would not make pte_pfn() identify the originally
822 * inserted page.
823 */
824 struct page *(*find_normal_page)(struct vm_area_struct *vma,
825 unsigned long addr);
826 #endif /* CONFIG_FIND_NORMAL_PAGE */
827 };
828
829 struct vm_unmapped_area_info {
830 #define VM_UNMAPPED_AREA_TOPDOWN 1
831 unsigned long flags;
832 unsigned long length;
833 unsigned long low_limit;
834 unsigned long high_limit;
835 unsigned long align_mask;
836 unsigned long align_offset;
837 unsigned long start_gap;
838 };
839
840 struct pagetable_move_control {
841 struct vm_area_struct *old; /* Source VMA. */
842 struct vm_area_struct *new; /* Destination VMA. */
843 unsigned long old_addr; /* Address from which the move begins. */
844 unsigned long old_end; /* Exclusive address at which old range ends. */
845 unsigned long new_addr; /* Address to move page tables to. */
846 unsigned long len_in; /* Bytes to remap specified by user. */
847
848 bool need_rmap_locks; /* Do rmap locks need to be taken? */
849 bool for_stack; /* Is this an early temp stack being moved? */
850 };
851
852 #define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \
853 struct pagetable_move_control name = { \
854 .old = old_, \
855 .new = new_, \
856 .old_addr = old_addr_, \
857 .old_end = (old_addr_) + (len_), \
858 .new_addr = new_addr_, \
859 .len_in = len_, \
860 }
861
vma_iter_invalidate(struct vma_iterator * vmi)862 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
863 {
864 mas_pause(&vmi->mas);
865 }
866
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)867 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
868 {
869 return __pgprot(pgprot_val(oldprot) | pgprot_val(newprot));
870 }
871
vm_get_page_prot(vm_flags_t vm_flags)872 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
873 {
874 return __pgprot(vm_flags);
875 }
876
is_shared_maywrite(vm_flags_t vm_flags)877 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
878 {
879 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
880 (VM_SHARED | VM_MAYWRITE);
881 }
882
vma_is_shared_maywrite(struct vm_area_struct * vma)883 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
884 {
885 return is_shared_maywrite(vma->vm_flags);
886 }
887
vma_next(struct vma_iterator * vmi)888 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
889 {
890 /*
891 * Uses mas_find() to get the first VMA when the iterator starts.
892 * Calling mas_next() could skip the first entry.
893 */
894 return mas_find(&vmi->mas, ULONG_MAX);
895 }
896
897 /*
898 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
899 * assertions should be made either under mmap_write_lock or when the object
900 * has been isolated under mmap_write_lock, ensuring no competing writers.
901 */
vma_assert_attached(struct vm_area_struct * vma)902 static inline void vma_assert_attached(struct vm_area_struct *vma)
903 {
904 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
905 }
906
vma_assert_detached(struct vm_area_struct * vma)907 static inline void vma_assert_detached(struct vm_area_struct *vma)
908 {
909 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
910 }
911
912 static inline void vma_assert_write_locked(struct vm_area_struct *);
vma_mark_attached(struct vm_area_struct * vma)913 static inline void vma_mark_attached(struct vm_area_struct *vma)
914 {
915 vma_assert_write_locked(vma);
916 vma_assert_detached(vma);
917 refcount_set_release(&vma->vm_refcnt, 1);
918 }
919
vma_mark_detached(struct vm_area_struct * vma)920 static inline void vma_mark_detached(struct vm_area_struct *vma)
921 {
922 vma_assert_write_locked(vma);
923 vma_assert_attached(vma);
924 /* We are the only writer, so no need to use vma_refcount_put(). */
925 if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) {
926 /*
927 * Reader must have temporarily raised vm_refcnt but it will
928 * drop it without using the vma since vma is write-locked.
929 */
930 }
931 }
932
933 extern const struct vm_operations_struct vma_dummy_vm_ops;
934
935 extern unsigned long rlimit(unsigned int limit);
936
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)937 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
938 {
939 memset(vma, 0, sizeof(*vma));
940 vma->vm_mm = mm;
941 vma->vm_ops = &vma_dummy_vm_ops;
942 INIT_LIST_HEAD(&vma->anon_vma_chain);
943 vma->vm_lock_seq = UINT_MAX;
944 }
945
946 /*
947 * These are defined in vma.h, but sadly vm_stat_account() is referenced by
948 * kernel/fork.c, so we have to these broadly available there, and temporarily
949 * define them here to resolve the dependency cycle.
950 */
951
952 #define is_exec_mapping(flags) \
953 ((flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC)
954
955 #define is_stack_mapping(flags) \
956 (((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK))
957
958 #define is_data_mapping(flags) \
959 ((flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE)
960
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)961 static inline void vm_stat_account(struct mm_struct *mm, vm_flags_t flags,
962 long npages)
963 {
964 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
965
966 if (is_exec_mapping(flags))
967 mm->exec_vm += npages;
968 else if (is_stack_mapping(flags))
969 mm->stack_vm += npages;
970 else if (is_data_mapping(flags))
971 mm->data_vm += npages;
972 }
973
974 #undef is_exec_mapping
975 #undef is_stack_mapping
976 #undef is_data_mapping
977
978 /* Currently stubbed but we may later wish to un-stub. */
979 static inline void vm_acct_memory(long pages);
vm_unacct_memory(long pages)980 static inline void vm_unacct_memory(long pages)
981 {
982 vm_acct_memory(-pages);
983 }
984
mapping_allow_writable(struct address_space * mapping)985 static inline void mapping_allow_writable(struct address_space *mapping)
986 {
987 atomic_inc(&mapping->i_mmap_writable);
988 }
989
vma_set_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)990 static inline void vma_set_range(struct vm_area_struct *vma,
991 unsigned long start, unsigned long end,
992 pgoff_t pgoff)
993 {
994 vma->vm_start = start;
995 vma->vm_end = end;
996 vma->vm_pgoff = pgoff;
997 }
998
999 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)1000 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1001 {
1002 return mas_find(&vmi->mas, max - 1);
1003 }
1004
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1005 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1006 unsigned long start, unsigned long end, gfp_t gfp)
1007 {
1008 __mas_set_range(&vmi->mas, start, end - 1);
1009 mas_store_gfp(&vmi->mas, NULL, gfp);
1010 if (unlikely(mas_is_err(&vmi->mas)))
1011 return -ENOMEM;
1012
1013 return 0;
1014 }
1015
1016 static inline void mmap_assert_locked(struct mm_struct *);
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1017 static inline struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1018 unsigned long start_addr,
1019 unsigned long end_addr)
1020 {
1021 unsigned long index = start_addr;
1022
1023 mmap_assert_locked(mm);
1024 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1025 }
1026
1027 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)1028 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
1029 {
1030 return mtree_load(&mm->mm_mt, addr);
1031 }
1032
vma_prev(struct vma_iterator * vmi)1033 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1034 {
1035 return mas_prev(&vmi->mas, 0);
1036 }
1037
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1038 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1039 {
1040 mas_set(&vmi->mas, addr);
1041 }
1042
vma_is_anonymous(struct vm_area_struct * vma)1043 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1044 {
1045 return !vma->vm_ops;
1046 }
1047
1048 /* Defined in vma.h, so temporarily define here to avoid circular dependency. */
1049 #define vma_iter_load(vmi) \
1050 mas_walk(&(vmi)->mas)
1051
1052 static inline struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1053 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1054 struct vm_area_struct **pprev)
1055 {
1056 struct vm_area_struct *vma;
1057 VMA_ITERATOR(vmi, mm, addr);
1058
1059 vma = vma_iter_load(&vmi);
1060 *pprev = vma_prev(&vmi);
1061 if (!vma)
1062 vma = vma_next(&vmi);
1063 return vma;
1064 }
1065
1066 #undef vma_iter_load
1067
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1068 static inline void vma_iter_init(struct vma_iterator *vmi,
1069 struct mm_struct *mm, unsigned long addr)
1070 {
1071 mas_init(&vmi->mas, &mm->mm_mt, addr);
1072 }
1073
1074 /* Stubbed functions. */
1075
anon_vma_name(struct vm_area_struct * vma)1076 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
1077 {
1078 return NULL;
1079 }
1080
is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct * vma,struct vm_userfaultfd_ctx vm_ctx)1081 static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma,
1082 struct vm_userfaultfd_ctx vm_ctx)
1083 {
1084 return true;
1085 }
1086
anon_vma_name_eq(struct anon_vma_name * anon_name1,struct anon_vma_name * anon_name2)1087 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
1088 struct anon_vma_name *anon_name2)
1089 {
1090 return true;
1091 }
1092
might_sleep(void)1093 static inline void might_sleep(void)
1094 {
1095 }
1096
vma_pages(struct vm_area_struct * vma)1097 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1098 {
1099 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1100 }
1101
fput(struct file * file)1102 static inline void fput(struct file *file)
1103 {
1104 }
1105
mpol_put(struct mempolicy * pol)1106 static inline void mpol_put(struct mempolicy *pol)
1107 {
1108 }
1109
lru_add_drain(void)1110 static inline void lru_add_drain(void)
1111 {
1112 }
1113
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm)1114 static inline void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
1115 {
1116 }
1117
update_hiwater_rss(struct mm_struct * mm)1118 static inline void update_hiwater_rss(struct mm_struct *mm)
1119 {
1120 }
1121
update_hiwater_vm(struct mm_struct * mm)1122 static inline void update_hiwater_vm(struct mm_struct *mm)
1123 {
1124 }
1125
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end)1126 static inline void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1127 struct vm_area_struct *vma, unsigned long start_addr,
1128 unsigned long end_addr, unsigned long tree_end)
1129 {
1130 }
1131
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)1132 static inline void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
1133 struct vm_area_struct *vma, unsigned long floor,
1134 unsigned long ceiling, bool mm_wr_locked)
1135 {
1136 }
1137
mapping_unmap_writable(struct address_space * mapping)1138 static inline void mapping_unmap_writable(struct address_space *mapping)
1139 {
1140 }
1141
flush_dcache_mmap_lock(struct address_space * mapping)1142 static inline void flush_dcache_mmap_lock(struct address_space *mapping)
1143 {
1144 }
1145
tlb_finish_mmu(struct mmu_gather * tlb)1146 static inline void tlb_finish_mmu(struct mmu_gather *tlb)
1147 {
1148 }
1149
get_file(struct file * f)1150 static inline struct file *get_file(struct file *f)
1151 {
1152 return f;
1153 }
1154
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)1155 static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
1156 {
1157 return 0;
1158 }
1159
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)1160 static inline int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1161 {
1162 /* For testing purposes. We indicate that an anon_vma has been cloned. */
1163 if (src->anon_vma != NULL) {
1164 dst->anon_vma = src->anon_vma;
1165 dst->anon_vma->was_cloned = true;
1166 }
1167
1168 return 0;
1169 }
1170
vma_start_write(struct vm_area_struct * vma)1171 static inline void vma_start_write(struct vm_area_struct *vma)
1172 {
1173 /* Used to indicate to tests that a write operation has begun. */
1174 vma->vm_lock_seq++;
1175 }
1176
1177 static inline __must_check
vma_start_write_killable(struct vm_area_struct * vma)1178 int vma_start_write_killable(struct vm_area_struct *vma)
1179 {
1180 /* Used to indicate to tests that a write operation has begun. */
1181 vma->vm_lock_seq++;
1182 return 0;
1183 }
1184
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct vm_area_struct * next)1185 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
1186 unsigned long start,
1187 unsigned long end,
1188 struct vm_area_struct *next)
1189 {
1190 }
1191
hugetlb_split(struct vm_area_struct *,unsigned long)1192 static inline void hugetlb_split(struct vm_area_struct *, unsigned long) {}
1193
vma_iter_free(struct vma_iterator * vmi)1194 static inline void vma_iter_free(struct vma_iterator *vmi)
1195 {
1196 mas_destroy(&vmi->mas);
1197 }
1198
1199 static inline
vma_iter_next_range(struct vma_iterator * vmi)1200 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1201 {
1202 return mas_next_range(&vmi->mas, ULONG_MAX);
1203 }
1204
vm_acct_memory(long pages)1205 static inline void vm_acct_memory(long pages)
1206 {
1207 }
1208
vma_interval_tree_insert(struct vm_area_struct * vma,struct rb_root_cached * rb)1209 static inline void vma_interval_tree_insert(struct vm_area_struct *vma,
1210 struct rb_root_cached *rb)
1211 {
1212 }
1213
vma_interval_tree_remove(struct vm_area_struct * vma,struct rb_root_cached * rb)1214 static inline void vma_interval_tree_remove(struct vm_area_struct *vma,
1215 struct rb_root_cached *rb)
1216 {
1217 }
1218
flush_dcache_mmap_unlock(struct address_space * mapping)1219 static inline void flush_dcache_mmap_unlock(struct address_space *mapping)
1220 {
1221 }
1222
anon_vma_interval_tree_insert(struct anon_vma_chain * avc,struct rb_root_cached * rb)1223 static inline void anon_vma_interval_tree_insert(struct anon_vma_chain *avc,
1224 struct rb_root_cached *rb)
1225 {
1226 }
1227
anon_vma_interval_tree_remove(struct anon_vma_chain * avc,struct rb_root_cached * rb)1228 static inline void anon_vma_interval_tree_remove(struct anon_vma_chain *avc,
1229 struct rb_root_cached *rb)
1230 {
1231 }
1232
uprobe_mmap(struct vm_area_struct * vma)1233 static inline void uprobe_mmap(struct vm_area_struct *vma)
1234 {
1235 }
1236
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1237 static inline void uprobe_munmap(struct vm_area_struct *vma,
1238 unsigned long start, unsigned long end)
1239 {
1240 }
1241
i_mmap_lock_write(struct address_space * mapping)1242 static inline void i_mmap_lock_write(struct address_space *mapping)
1243 {
1244 }
1245
anon_vma_lock_write(struct anon_vma * anon_vma)1246 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
1247 {
1248 }
1249
vma_assert_write_locked(struct vm_area_struct * vma)1250 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
1251 {
1252 }
1253
unlink_anon_vmas(struct vm_area_struct * vma)1254 static inline void unlink_anon_vmas(struct vm_area_struct *vma)
1255 {
1256 /* For testing purposes, indicate that the anon_vma was unlinked. */
1257 vma->anon_vma->was_unlinked = true;
1258 }
1259
anon_vma_unlock_write(struct anon_vma * anon_vma)1260 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
1261 {
1262 }
1263
i_mmap_unlock_write(struct address_space * mapping)1264 static inline void i_mmap_unlock_write(struct address_space *mapping)
1265 {
1266 }
1267
anon_vma_merge(struct vm_area_struct * vma,struct vm_area_struct * next)1268 static inline void anon_vma_merge(struct vm_area_struct *vma,
1269 struct vm_area_struct *next)
1270 {
1271 }
1272
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)1273 static inline int userfaultfd_unmap_prep(struct vm_area_struct *vma,
1274 unsigned long start,
1275 unsigned long end,
1276 struct list_head *unmaps)
1277 {
1278 return 0;
1279 }
1280
mmap_write_downgrade(struct mm_struct * mm)1281 static inline void mmap_write_downgrade(struct mm_struct *mm)
1282 {
1283 }
1284
mmap_read_unlock(struct mm_struct * mm)1285 static inline void mmap_read_unlock(struct mm_struct *mm)
1286 {
1287 }
1288
mmap_write_unlock(struct mm_struct * mm)1289 static inline void mmap_write_unlock(struct mm_struct *mm)
1290 {
1291 }
1292
mmap_write_lock_killable(struct mm_struct * mm)1293 static inline int mmap_write_lock_killable(struct mm_struct *mm)
1294 {
1295 return 0;
1296 }
1297
can_modify_mm(struct mm_struct * mm,unsigned long start,unsigned long end)1298 static inline bool can_modify_mm(struct mm_struct *mm,
1299 unsigned long start,
1300 unsigned long end)
1301 {
1302 return true;
1303 }
1304
arch_unmap(struct mm_struct * mm,unsigned long start,unsigned long end)1305 static inline void arch_unmap(struct mm_struct *mm,
1306 unsigned long start,
1307 unsigned long end)
1308 {
1309 }
1310
mmap_assert_locked(struct mm_struct * mm)1311 static inline void mmap_assert_locked(struct mm_struct *mm)
1312 {
1313 }
1314
mpol_equal(struct mempolicy * a,struct mempolicy * b)1315 static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b)
1316 {
1317 return true;
1318 }
1319
khugepaged_enter_vma(struct vm_area_struct * vma,vm_flags_t vm_flags)1320 static inline void khugepaged_enter_vma(struct vm_area_struct *vma,
1321 vm_flags_t vm_flags)
1322 {
1323 }
1324
mapping_can_writeback(struct address_space * mapping)1325 static inline bool mapping_can_writeback(struct address_space *mapping)
1326 {
1327 return true;
1328 }
1329
is_vm_hugetlb_page(struct vm_area_struct * vma)1330 static inline bool is_vm_hugetlb_page(struct vm_area_struct *vma)
1331 {
1332 return false;
1333 }
1334
vma_soft_dirty_enabled(struct vm_area_struct * vma)1335 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1336 {
1337 return false;
1338 }
1339
userfaultfd_wp(struct vm_area_struct * vma)1340 static inline bool userfaultfd_wp(struct vm_area_struct *vma)
1341 {
1342 return false;
1343 }
1344
mmap_assert_write_locked(struct mm_struct * mm)1345 static inline void mmap_assert_write_locked(struct mm_struct *mm)
1346 {
1347 }
1348
mutex_lock(struct mutex * lock)1349 static inline void mutex_lock(struct mutex *lock)
1350 {
1351 }
1352
mutex_unlock(struct mutex * lock)1353 static inline void mutex_unlock(struct mutex *lock)
1354 {
1355 }
1356
mutex_is_locked(struct mutex * lock)1357 static inline bool mutex_is_locked(struct mutex *lock)
1358 {
1359 return true;
1360 }
1361
signal_pending(void * p)1362 static inline bool signal_pending(void *p)
1363 {
1364 return false;
1365 }
1366
is_file_hugepages(struct file * file)1367 static inline bool is_file_hugepages(struct file *file)
1368 {
1369 return false;
1370 }
1371
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)1372 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1373 {
1374 return 0;
1375 }
1376
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)1377 static inline bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags,
1378 unsigned long npages)
1379 {
1380 return true;
1381 }
1382
shmem_zero_setup(struct vm_area_struct * vma)1383 static inline int shmem_zero_setup(struct vm_area_struct *vma)
1384 {
1385 return 0;
1386 }
1387
vma_set_anonymous(struct vm_area_struct * vma)1388 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1389 {
1390 vma->vm_ops = NULL;
1391 }
1392
ksm_add_vma(struct vm_area_struct * vma)1393 static inline void ksm_add_vma(struct vm_area_struct *vma)
1394 {
1395 }
1396
perf_event_mmap(struct vm_area_struct * vma)1397 static inline void perf_event_mmap(struct vm_area_struct *vma)
1398 {
1399 }
1400
vma_is_dax(struct vm_area_struct * vma)1401 static inline bool vma_is_dax(struct vm_area_struct *vma)
1402 {
1403 return false;
1404 }
1405
get_gate_vma(struct mm_struct * mm)1406 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1407 {
1408 return NULL;
1409 }
1410
1411 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1412
1413 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)1414 static inline void vma_set_page_prot(struct vm_area_struct *vma)
1415 {
1416 vm_flags_t vm_flags = vma->vm_flags;
1417 pgprot_t vm_page_prot;
1418
1419 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */
1420 vm_page_prot = pgprot_modify(vma->vm_page_prot, vm_get_page_prot(vm_flags));
1421
1422 if (vma_wants_writenotify(vma, vm_page_prot)) {
1423 vm_flags &= ~VM_SHARED;
1424 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */
1425 vm_page_prot = pgprot_modify(vm_page_prot, vm_get_page_prot(vm_flags));
1426 }
1427 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
1428 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
1429 }
1430
arch_validate_flags(vm_flags_t flags)1431 static inline bool arch_validate_flags(vm_flags_t flags)
1432 {
1433 return true;
1434 }
1435
vma_close(struct vm_area_struct * vma)1436 static inline void vma_close(struct vm_area_struct *vma)
1437 {
1438 }
1439
mmap_file(struct file * file,struct vm_area_struct * vma)1440 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
1441 {
1442 return 0;
1443 }
1444
stack_guard_start_gap(struct vm_area_struct * vma)1445 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
1446 {
1447 if (vma->vm_flags & VM_GROWSDOWN)
1448 return stack_guard_gap;
1449
1450 /* See reasoning around the VM_SHADOW_STACK definition */
1451 if (vma->vm_flags & VM_SHADOW_STACK)
1452 return PAGE_SIZE;
1453
1454 return 0;
1455 }
1456
vm_start_gap(struct vm_area_struct * vma)1457 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1458 {
1459 unsigned long gap = stack_guard_start_gap(vma);
1460 unsigned long vm_start = vma->vm_start;
1461
1462 vm_start -= gap;
1463 if (vm_start > vma->vm_start)
1464 vm_start = 0;
1465 return vm_start;
1466 }
1467
vm_end_gap(struct vm_area_struct * vma)1468 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1469 {
1470 unsigned long vm_end = vma->vm_end;
1471
1472 if (vma->vm_flags & VM_GROWSUP) {
1473 vm_end += stack_guard_gap;
1474 if (vm_end < vma->vm_end)
1475 vm_end = -PAGE_SIZE;
1476 }
1477 return vm_end;
1478 }
1479
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)1480 static inline int is_hugepage_only_range(struct mm_struct *mm,
1481 unsigned long addr, unsigned long len)
1482 {
1483 return 0;
1484 }
1485
vma_is_accessible(struct vm_area_struct * vma)1486 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1487 {
1488 return vma->vm_flags & VM_ACCESS_FLAGS;
1489 }
1490
capable(int cap)1491 static inline bool capable(int cap)
1492 {
1493 return true;
1494 }
1495
mlock_future_ok(const struct mm_struct * mm,vm_flags_t vm_flags,unsigned long bytes)1496 static inline bool mlock_future_ok(const struct mm_struct *mm,
1497 vm_flags_t vm_flags, unsigned long bytes)
1498 {
1499 unsigned long locked_pages, limit_pages;
1500
1501 if (!(vm_flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1502 return true;
1503
1504 locked_pages = bytes >> PAGE_SHIFT;
1505 locked_pages += mm->locked_vm;
1506
1507 limit_pages = rlimit(RLIMIT_MEMLOCK);
1508 limit_pages >>= PAGE_SHIFT;
1509
1510 return locked_pages <= limit_pages;
1511 }
1512
__anon_vma_prepare(struct vm_area_struct * vma)1513 static inline int __anon_vma_prepare(struct vm_area_struct *vma)
1514 {
1515 struct anon_vma *anon_vma = calloc(1, sizeof(struct anon_vma));
1516
1517 if (!anon_vma)
1518 return -ENOMEM;
1519
1520 anon_vma->root = anon_vma;
1521 vma->anon_vma = anon_vma;
1522
1523 return 0;
1524 }
1525
anon_vma_prepare(struct vm_area_struct * vma)1526 static inline int anon_vma_prepare(struct vm_area_struct *vma)
1527 {
1528 if (likely(vma->anon_vma))
1529 return 0;
1530
1531 return __anon_vma_prepare(vma);
1532 }
1533
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)1534 static inline void userfaultfd_unmap_complete(struct mm_struct *mm,
1535 struct list_head *uf)
1536 {
1537 }
1538
1539 #define ACCESS_PRIVATE(p, member) ((p)->member)
1540
1541 #define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
1542
bitmap_zero(unsigned long * dst,unsigned int nbits)1543 static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
1544 {
1545 unsigned int len = bitmap_size(nbits);
1546
1547 if (small_const_nbits(nbits))
1548 *dst = 0;
1549 else
1550 memset(dst, 0, len);
1551 }
1552
mm_flags_test(int flag,const struct mm_struct * mm)1553 static inline bool mm_flags_test(int flag, const struct mm_struct *mm)
1554 {
1555 return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
1556 }
1557
1558 /* Clears all bits in the VMA flags bitmap, non-atomically. */
vma_flags_clear_all(vma_flags_t * flags)1559 static inline void vma_flags_clear_all(vma_flags_t *flags)
1560 {
1561 bitmap_zero(ACCESS_PRIVATE(flags, __vma_flags), NUM_VMA_FLAG_BITS);
1562 }
1563
1564 /*
1565 * Copy value to the first system word of VMA flags, non-atomically.
1566 *
1567 * IMPORTANT: This does not overwrite bytes past the first system word. The
1568 * caller must account for this.
1569 */
vma_flags_overwrite_word(vma_flags_t * flags,unsigned long value)1570 static inline void vma_flags_overwrite_word(vma_flags_t *flags, unsigned long value)
1571 {
1572 *ACCESS_PRIVATE(flags, __vma_flags) = value;
1573 }
1574
1575 /*
1576 * Copy value to the first system word of VMA flags ONCE, non-atomically.
1577 *
1578 * IMPORTANT: This does not overwrite bytes past the first system word. The
1579 * caller must account for this.
1580 */
vma_flags_overwrite_word_once(vma_flags_t * flags,unsigned long value)1581 static inline void vma_flags_overwrite_word_once(vma_flags_t *flags, unsigned long value)
1582 {
1583 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags);
1584
1585 WRITE_ONCE(*bitmap, value);
1586 }
1587
1588 /* Update the first system word of VMA flags setting bits, non-atomically. */
vma_flags_set_word(vma_flags_t * flags,unsigned long value)1589 static inline void vma_flags_set_word(vma_flags_t *flags, unsigned long value)
1590 {
1591 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags);
1592
1593 *bitmap |= value;
1594 }
1595
1596 /* Update the first system word of VMA flags clearing bits, non-atomically. */
vma_flags_clear_word(vma_flags_t * flags,unsigned long value)1597 static inline void vma_flags_clear_word(vma_flags_t *flags, unsigned long value)
1598 {
1599 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags);
1600
1601 *bitmap &= ~value;
1602 }
1603
1604
1605 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)1606 static inline void vm_flags_init(struct vm_area_struct *vma,
1607 vm_flags_t flags)
1608 {
1609 vma_flags_clear_all(&vma->flags);
1610 vma_flags_overwrite_word(&vma->flags, flags);
1611 }
1612
1613 /*
1614 * Use when VMA is part of the VMA tree and modifications need coordination
1615 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
1616 * it should be locked explicitly beforehand.
1617 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)1618 static inline void vm_flags_reset(struct vm_area_struct *vma,
1619 vm_flags_t flags)
1620 {
1621 vma_assert_write_locked(vma);
1622 vm_flags_init(vma, flags);
1623 }
1624
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)1625 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
1626 vm_flags_t flags)
1627 {
1628 vma_assert_write_locked(vma);
1629 /*
1630 * The user should only be interested in avoiding reordering of
1631 * assignment to the first word.
1632 */
1633 vma_flags_clear_all(&vma->flags);
1634 vma_flags_overwrite_word_once(&vma->flags, flags);
1635 }
1636
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)1637 static inline void vm_flags_set(struct vm_area_struct *vma,
1638 vm_flags_t flags)
1639 {
1640 vma_start_write(vma);
1641 vma_flags_set_word(&vma->flags, flags);
1642 }
1643
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)1644 static inline void vm_flags_clear(struct vm_area_struct *vma,
1645 vm_flags_t flags)
1646 {
1647 vma_start_write(vma);
1648 vma_flags_clear_word(&vma->flags, flags);
1649 }
1650
1651 /*
1652 * Denies creating a writable executable mapping or gaining executable permissions.
1653 *
1654 * This denies the following:
1655 *
1656 * a) mmap(PROT_WRITE | PROT_EXEC)
1657 *
1658 * b) mmap(PROT_WRITE)
1659 * mprotect(PROT_EXEC)
1660 *
1661 * c) mmap(PROT_WRITE)
1662 * mprotect(PROT_READ)
1663 * mprotect(PROT_EXEC)
1664 *
1665 * But allows the following:
1666 *
1667 * d) mmap(PROT_READ | PROT_EXEC)
1668 * mmap(PROT_READ | PROT_EXEC | PROT_BTI)
1669 *
1670 * This is only applicable if the user has set the Memory-Deny-Write-Execute
1671 * (MDWE) protection mask for the current process.
1672 *
1673 * @old specifies the VMA flags the VMA originally possessed, and @new the ones
1674 * we propose to set.
1675 *
1676 * Return: false if proposed change is OK, true if not ok and should be denied.
1677 */
map_deny_write_exec(unsigned long old,unsigned long new)1678 static inline bool map_deny_write_exec(unsigned long old, unsigned long new)
1679 {
1680 /* If MDWE is disabled, we have nothing to deny. */
1681 if (mm_flags_test(MMF_HAS_MDWE, current->mm))
1682 return false;
1683
1684 /* If the new VMA is not executable, we have nothing to deny. */
1685 if (!(new & VM_EXEC))
1686 return false;
1687
1688 /* Under MDWE we do not accept newly writably executable VMAs... */
1689 if (new & VM_WRITE)
1690 return true;
1691
1692 /* ...nor previously non-executable VMAs becoming executable. */
1693 if (!(old & VM_EXEC))
1694 return true;
1695
1696 return false;
1697 }
1698
mapping_map_writable(struct address_space * mapping)1699 static inline int mapping_map_writable(struct address_space *mapping)
1700 {
1701 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
1702 0 : -EPERM;
1703 }
1704
move_page_tables(struct pagetable_move_control * pmc)1705 static inline unsigned long move_page_tables(struct pagetable_move_control *pmc)
1706 {
1707 return 0;
1708 }
1709
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1710 static inline void free_pgd_range(struct mmu_gather *tlb,
1711 unsigned long addr, unsigned long end,
1712 unsigned long floor, unsigned long ceiling)
1713 {
1714 }
1715
ksm_execve(struct mm_struct * mm)1716 static inline int ksm_execve(struct mm_struct *mm)
1717 {
1718 return 0;
1719 }
1720
ksm_exit(struct mm_struct * mm)1721 static inline void ksm_exit(struct mm_struct *mm)
1722 {
1723 }
1724
vma_lock_init(struct vm_area_struct * vma,bool reset_refcnt)1725 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
1726 {
1727 if (reset_refcnt)
1728 refcount_set(&vma->vm_refcnt, 0);
1729 }
1730
vma_numab_state_init(struct vm_area_struct * vma)1731 static inline void vma_numab_state_init(struct vm_area_struct *vma)
1732 {
1733 }
1734
vma_numab_state_free(struct vm_area_struct * vma)1735 static inline void vma_numab_state_free(struct vm_area_struct *vma)
1736 {
1737 }
1738
dup_anon_vma_name(struct vm_area_struct * orig_vma,struct vm_area_struct * new_vma)1739 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
1740 struct vm_area_struct *new_vma)
1741 {
1742 }
1743
free_anon_vma_name(struct vm_area_struct * vma)1744 static inline void free_anon_vma_name(struct vm_area_struct *vma)
1745 {
1746 }
1747
1748 /* Declared in vma.h. */
1749 static inline void set_vma_from_desc(struct vm_area_struct *vma,
1750 struct vm_area_desc *desc);
1751
mmap_action_prepare(struct mmap_action * action,struct vm_area_desc * desc)1752 static inline void mmap_action_prepare(struct mmap_action *action,
1753 struct vm_area_desc *desc)
1754 {
1755 }
1756
mmap_action_complete(struct mmap_action * action,struct vm_area_struct * vma)1757 static inline int mmap_action_complete(struct mmap_action *action,
1758 struct vm_area_struct *vma)
1759 {
1760 return 0;
1761 }
1762
__compat_vma_mmap(const struct file_operations * f_op,struct file * file,struct vm_area_struct * vma)1763 static inline int __compat_vma_mmap(const struct file_operations *f_op,
1764 struct file *file, struct vm_area_struct *vma)
1765 {
1766 struct vm_area_desc desc = {
1767 .mm = vma->vm_mm,
1768 .file = file,
1769 .start = vma->vm_start,
1770 .end = vma->vm_end,
1771
1772 .pgoff = vma->vm_pgoff,
1773 .vm_file = vma->vm_file,
1774 .vm_flags = vma->vm_flags,
1775 .page_prot = vma->vm_page_prot,
1776
1777 .action.type = MMAP_NOTHING, /* Default */
1778 };
1779 int err;
1780
1781 err = f_op->mmap_prepare(&desc);
1782 if (err)
1783 return err;
1784
1785 mmap_action_prepare(&desc.action, &desc);
1786 set_vma_from_desc(vma, &desc);
1787 return mmap_action_complete(&desc.action, vma);
1788 }
1789
compat_vma_mmap(struct file * file,struct vm_area_struct * vma)1790 static inline int compat_vma_mmap(struct file *file,
1791 struct vm_area_struct *vma)
1792 {
1793 return __compat_vma_mmap(file->f_op, file, vma);
1794 }
1795
1796 /* Did the driver provide valid mmap hook configuration? */
can_mmap_file(struct file * file)1797 static inline bool can_mmap_file(struct file *file)
1798 {
1799 bool has_mmap = file->f_op->mmap;
1800 bool has_mmap_prepare = file->f_op->mmap_prepare;
1801
1802 /* Hooks are mutually exclusive. */
1803 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare))
1804 return false;
1805 if (!has_mmap && !has_mmap_prepare)
1806 return false;
1807
1808 return true;
1809 }
1810
vfs_mmap(struct file * file,struct vm_area_struct * vma)1811 static inline int vfs_mmap(struct file *file, struct vm_area_struct *vma)
1812 {
1813 if (file->f_op->mmap_prepare)
1814 return compat_vma_mmap(file, vma);
1815
1816 return file->f_op->mmap(file, vma);
1817 }
1818
vfs_mmap_prepare(struct file * file,struct vm_area_desc * desc)1819 static inline int vfs_mmap_prepare(struct file *file, struct vm_area_desc *desc)
1820 {
1821 return file->f_op->mmap_prepare(desc);
1822 }
1823
fixup_hugetlb_reservations(struct vm_area_struct * vma)1824 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
1825 {
1826 }
1827
vma_set_file(struct vm_area_struct * vma,struct file * file)1828 static inline void vma_set_file(struct vm_area_struct *vma, struct file *file)
1829 {
1830 /* Changing an anonymous vma with this is illegal */
1831 get_file(file);
1832 swap(vma->vm_file, file);
1833 fput(file);
1834 }
1835
shmem_file(struct file * file)1836 static inline bool shmem_file(struct file *file)
1837 {
1838 return false;
1839 }
1840
ksm_vma_flags(const struct mm_struct * mm,const struct file * file,vm_flags_t vm_flags)1841 static inline vm_flags_t ksm_vma_flags(const struct mm_struct *mm,
1842 const struct file *file, vm_flags_t vm_flags)
1843 {
1844 return vm_flags;
1845 }
1846
remap_pfn_range_prepare(struct vm_area_desc * desc,unsigned long pfn)1847 static inline void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn)
1848 {
1849 }
1850
remap_pfn_range_complete(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t pgprot)1851 static inline int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
1852 unsigned long pfn, unsigned long size, pgprot_t pgprot)
1853 {
1854 return 0;
1855 }
1856
do_munmap(struct mm_struct *,unsigned long,size_t,struct list_head * uf)1857 static inline int do_munmap(struct mm_struct *, unsigned long, size_t,
1858 struct list_head *uf)
1859 {
1860 return 0;
1861 }
1862
1863 #endif /* __MM_VMA_INTERNAL_H */
1864