xref: /linux/tools/testing/selftests/timers/set-timer-lat.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 /* set_timer latency test
2  *		John Stultz (john.stultz@linaro.org)
3  *              (C) Copyright Linaro 2014
4  *              Licensed under the GPLv2
5  *
6  *   This test makes sure the set_timer api is correct
7  *
8  *  To build:
9  *	$ gcc set-timer-lat.c -o set-timer-lat -lrt
10  *
11  *   This program is free software: you can redistribute it and/or modify
12  *   it under the terms of the GNU General Public License as published by
13  *   the Free Software Foundation, either version 2 of the License, or
14  *   (at your option) any later version.
15  *
16  *   This program is distributed in the hope that it will be useful,
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *   GNU General Public License for more details.
20  */
21 
22 
23 #include <errno.h>
24 #include <stdio.h>
25 #include <unistd.h>
26 #include <time.h>
27 #include <string.h>
28 #include <signal.h>
29 #include <stdlib.h>
30 #include <pthread.h>
31 #include <include/vdso/time64.h>
32 #include "../kselftest.h"
33 
34 /* CLOCK_HWSPECIFIC == CLOCK_SGI_CYCLE (Deprecated) */
35 #define CLOCK_HWSPECIFIC		10
36 
37 #define UNRESONABLE_LATENCY 40000000 /* 40ms in nanosecs */
38 
39 #define TIMER_SECS 1
40 int alarmcount;
41 int clock_id;
42 struct timespec start_time;
43 long long max_latency_ns;
44 int timer_fired_early;
45 
46 char *clockstring(int clockid)
47 {
48 	switch (clockid) {
49 	case CLOCK_REALTIME:
50 		return "CLOCK_REALTIME";
51 	case CLOCK_MONOTONIC:
52 		return "CLOCK_MONOTONIC";
53 	case CLOCK_PROCESS_CPUTIME_ID:
54 		return "CLOCK_PROCESS_CPUTIME_ID";
55 	case CLOCK_THREAD_CPUTIME_ID:
56 		return "CLOCK_THREAD_CPUTIME_ID";
57 	case CLOCK_MONOTONIC_RAW:
58 		return "CLOCK_MONOTONIC_RAW";
59 	case CLOCK_REALTIME_COARSE:
60 		return "CLOCK_REALTIME_COARSE";
61 	case CLOCK_MONOTONIC_COARSE:
62 		return "CLOCK_MONOTONIC_COARSE";
63 	case CLOCK_BOOTTIME:
64 		return "CLOCK_BOOTTIME";
65 	case CLOCK_REALTIME_ALARM:
66 		return "CLOCK_REALTIME_ALARM";
67 	case CLOCK_BOOTTIME_ALARM:
68 		return "CLOCK_BOOTTIME_ALARM";
69 	case CLOCK_TAI:
70 		return "CLOCK_TAI";
71 	}
72 	return "UNKNOWN_CLOCKID";
73 }
74 
75 
76 long long timespec_sub(struct timespec a, struct timespec b)
77 {
78 	long long ret = NSEC_PER_SEC * b.tv_sec + b.tv_nsec;
79 
80 	ret -= NSEC_PER_SEC * a.tv_sec + a.tv_nsec;
81 	return ret;
82 }
83 
84 
85 void sigalarm(int signo)
86 {
87 	long long delta_ns;
88 	struct timespec ts;
89 
90 	clock_gettime(clock_id, &ts);
91 	alarmcount++;
92 
93 	delta_ns = timespec_sub(start_time, ts);
94 	delta_ns -= NSEC_PER_SEC * TIMER_SECS * alarmcount;
95 
96 	if (delta_ns < 0)
97 		timer_fired_early = 1;
98 
99 	if (delta_ns > max_latency_ns)
100 		max_latency_ns = delta_ns;
101 }
102 
103 void describe_timer(int flags, int interval)
104 {
105 	printf("%-22s %s %s ",
106 			clockstring(clock_id),
107 			flags ? "ABSTIME":"RELTIME",
108 			interval ? "PERIODIC":"ONE-SHOT");
109 }
110 
111 int setup_timer(int clock_id, int flags, int interval, timer_t *tm1)
112 {
113 	struct sigevent se;
114 	struct itimerspec its1, its2;
115 	int err;
116 
117 	/* Set up timer: */
118 	memset(&se, 0, sizeof(se));
119 	se.sigev_notify = SIGEV_SIGNAL;
120 	se.sigev_signo = SIGRTMAX;
121 	se.sigev_value.sival_int = 0;
122 
123 	max_latency_ns = 0;
124 	alarmcount = 0;
125 	timer_fired_early = 0;
126 
127 	err = timer_create(clock_id, &se, tm1);
128 	if (err) {
129 		if ((clock_id == CLOCK_REALTIME_ALARM) ||
130 		    (clock_id == CLOCK_BOOTTIME_ALARM)) {
131 			printf("%-22s %s missing CAP_WAKE_ALARM?    : [UNSUPPORTED]\n",
132 					clockstring(clock_id),
133 					flags ? "ABSTIME":"RELTIME");
134 			/* Indicate timer isn't set, so caller doesn't wait */
135 			return 1;
136 		}
137 		printf("%s - timer_create() failed\n", clockstring(clock_id));
138 		return -1;
139 	}
140 
141 	clock_gettime(clock_id, &start_time);
142 	if (flags) {
143 		its1.it_value = start_time;
144 		its1.it_value.tv_sec += TIMER_SECS;
145 	} else {
146 		its1.it_value.tv_sec = TIMER_SECS;
147 		its1.it_value.tv_nsec = 0;
148 	}
149 	its1.it_interval.tv_sec = interval;
150 	its1.it_interval.tv_nsec = 0;
151 
152 	err = timer_settime(*tm1, flags, &its1, &its2);
153 	if (err) {
154 		printf("%s - timer_settime() failed\n", clockstring(clock_id));
155 		return -1;
156 	}
157 
158 	return 0;
159 }
160 
161 int check_timer_latency(int flags, int interval)
162 {
163 	int err = 0;
164 
165 	describe_timer(flags, interval);
166 	printf("timer fired early: %7d : ", timer_fired_early);
167 	if (!timer_fired_early) {
168 		printf("[OK]\n");
169 	} else {
170 		printf("[FAILED]\n");
171 		err = -1;
172 	}
173 
174 	describe_timer(flags, interval);
175 	printf("max latency: %10lld ns : ", max_latency_ns);
176 
177 	if (max_latency_ns < UNRESONABLE_LATENCY) {
178 		printf("[OK]\n");
179 	} else {
180 		printf("[FAILED]\n");
181 		err = -1;
182 	}
183 	return err;
184 }
185 
186 int check_alarmcount(int flags, int interval)
187 {
188 	describe_timer(flags, interval);
189 	printf("count: %19d : ", alarmcount);
190 	if (alarmcount == 1) {
191 		printf("[OK]\n");
192 		return 0;
193 	}
194 	printf("[FAILED]\n");
195 	return -1;
196 }
197 
198 int do_timer(int clock_id, int flags)
199 {
200 	timer_t tm1;
201 	const int interval = TIMER_SECS;
202 	int err;
203 
204 	err = setup_timer(clock_id, flags, interval, &tm1);
205 	/* Unsupported case - return 0 to not fail the test */
206 	if (err)
207 		return err == 1 ? 0 : err;
208 
209 	while (alarmcount < 5)
210 		sleep(1);
211 
212 	timer_delete(tm1);
213 	return check_timer_latency(flags, interval);
214 }
215 
216 int do_timer_oneshot(int clock_id, int flags)
217 {
218 	timer_t tm1;
219 	const int interval = 0;
220 	struct timeval timeout;
221 	int err;
222 
223 	err = setup_timer(clock_id, flags, interval, &tm1);
224 	/* Unsupported case - return 0 to not fail the test */
225 	if (err)
226 		return err == 1 ? 0 : err;
227 
228 	memset(&timeout, 0, sizeof(timeout));
229 	timeout.tv_sec = 5;
230 	do {
231 		err = select(0, NULL, NULL, NULL, &timeout);
232 	} while (err == -1 && errno == EINTR);
233 
234 	timer_delete(tm1);
235 	err = check_timer_latency(flags, interval);
236 	err |= check_alarmcount(flags, interval);
237 	return err;
238 }
239 
240 int main(void)
241 {
242 	struct sigaction act;
243 	int signum = SIGRTMAX;
244 	int ret = 0;
245 	int max_clocks = CLOCK_TAI + 1;
246 
247 	/* Set up signal handler: */
248 	sigfillset(&act.sa_mask);
249 	act.sa_flags = 0;
250 	act.sa_handler = sigalarm;
251 	sigaction(signum, &act, NULL);
252 
253 	printf("Setting timers for every %i seconds\n", TIMER_SECS);
254 	for (clock_id = 0; clock_id < max_clocks; clock_id++) {
255 
256 		if ((clock_id == CLOCK_PROCESS_CPUTIME_ID) ||
257 				(clock_id == CLOCK_THREAD_CPUTIME_ID) ||
258 				(clock_id == CLOCK_MONOTONIC_RAW) ||
259 				(clock_id == CLOCK_REALTIME_COARSE) ||
260 				(clock_id == CLOCK_MONOTONIC_COARSE) ||
261 				(clock_id == CLOCK_HWSPECIFIC))
262 			continue;
263 
264 		ret |= do_timer(clock_id, TIMER_ABSTIME);
265 		ret |= do_timer(clock_id, 0);
266 		ret |= do_timer_oneshot(clock_id, TIMER_ABSTIME);
267 		ret |= do_timer_oneshot(clock_id, 0);
268 	}
269 	if (ret)
270 		ksft_exit_fail();
271 	ksft_exit_pass();
272 }
273