1 /* Make sure timers don't return early 2 * by: john stultz (johnstul@us.ibm.com) 3 * John Stultz (john.stultz@linaro.org) 4 * (C) Copyright IBM 2012 5 * (C) Copyright Linaro 2013 2015 6 * Licensed under the GPLv2 7 * 8 * To build: 9 * $ gcc nanosleep.c -o nanosleep -lrt 10 * 11 * This program is free software: you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation, either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <errno.h> 23 #include <stdio.h> 24 #include <stdlib.h> 25 #include <time.h> 26 #include <sys/time.h> 27 #include <sys/timex.h> 28 #include <string.h> 29 #include <signal.h> 30 #include <include/vdso/time64.h> 31 #include "../kselftest.h" 32 33 /* CLOCK_HWSPECIFIC == CLOCK_SGI_CYCLE (Deprecated) */ 34 #define CLOCK_HWSPECIFIC 10 35 36 #define UNSUPPORTED 0xf00f 37 38 char *clockstring(int clockid) 39 { 40 switch (clockid) { 41 case CLOCK_REALTIME: 42 return "CLOCK_REALTIME"; 43 case CLOCK_MONOTONIC: 44 return "CLOCK_MONOTONIC"; 45 case CLOCK_PROCESS_CPUTIME_ID: 46 return "CLOCK_PROCESS_CPUTIME_ID"; 47 case CLOCK_THREAD_CPUTIME_ID: 48 return "CLOCK_THREAD_CPUTIME_ID"; 49 case CLOCK_MONOTONIC_RAW: 50 return "CLOCK_MONOTONIC_RAW"; 51 case CLOCK_REALTIME_COARSE: 52 return "CLOCK_REALTIME_COARSE"; 53 case CLOCK_MONOTONIC_COARSE: 54 return "CLOCK_MONOTONIC_COARSE"; 55 case CLOCK_BOOTTIME: 56 return "CLOCK_BOOTTIME"; 57 case CLOCK_REALTIME_ALARM: 58 return "CLOCK_REALTIME_ALARM"; 59 case CLOCK_BOOTTIME_ALARM: 60 return "CLOCK_BOOTTIME_ALARM"; 61 case CLOCK_TAI: 62 return "CLOCK_TAI"; 63 }; 64 return "UNKNOWN_CLOCKID"; 65 } 66 67 /* returns 1 if a <= b, 0 otherwise */ 68 static inline int in_order(struct timespec a, struct timespec b) 69 { 70 if (a.tv_sec < b.tv_sec) 71 return 1; 72 if (a.tv_sec > b.tv_sec) 73 return 0; 74 if (a.tv_nsec > b.tv_nsec) 75 return 0; 76 return 1; 77 } 78 79 struct timespec timespec_add(struct timespec ts, unsigned long long ns) 80 { 81 ts.tv_nsec += ns; 82 while (ts.tv_nsec >= NSEC_PER_SEC) { 83 ts.tv_nsec -= NSEC_PER_SEC; 84 ts.tv_sec++; 85 } 86 return ts; 87 } 88 89 int nanosleep_test(int clockid, long long ns) 90 { 91 struct timespec now, target, rel; 92 93 /* First check abs time */ 94 if (clock_gettime(clockid, &now)) 95 return UNSUPPORTED; 96 target = timespec_add(now, ns); 97 98 if (clock_nanosleep(clockid, TIMER_ABSTIME, &target, NULL)) 99 return UNSUPPORTED; 100 clock_gettime(clockid, &now); 101 102 if (!in_order(target, now)) 103 return -1; 104 105 /* Second check reltime */ 106 clock_gettime(clockid, &now); 107 rel.tv_sec = 0; 108 rel.tv_nsec = 0; 109 rel = timespec_add(rel, ns); 110 target = timespec_add(now, ns); 111 clock_nanosleep(clockid, 0, &rel, NULL); 112 clock_gettime(clockid, &now); 113 114 if (!in_order(target, now)) 115 return -1; 116 return 0; 117 } 118 119 static void dummy_event_handler(int val) 120 { 121 /* No action needed */ 122 } 123 124 static int nanosleep_test_remaining(int clockid) 125 { 126 struct timespec rqtp = {}, rmtp = {}; 127 struct itimerspec itimer = {}; 128 struct sigaction sa = {}; 129 timer_t timer; 130 int ret; 131 132 sa.sa_handler = dummy_event_handler; 133 ret = sigaction(SIGALRM, &sa, NULL); 134 if (ret) 135 return -1; 136 137 ret = timer_create(clockid, NULL, &timer); 138 if (ret) 139 return -1; 140 141 itimer.it_value.tv_nsec = NSEC_PER_SEC / 4; 142 ret = timer_settime(timer, 0, &itimer, NULL); 143 if (ret) 144 return -1; 145 146 rqtp.tv_nsec = NSEC_PER_SEC / 2; 147 ret = clock_nanosleep(clockid, 0, &rqtp, &rmtp); 148 if (ret != EINTR) 149 return -1; 150 151 ret = timer_delete(timer); 152 if (ret) 153 return -1; 154 155 sa.sa_handler = SIG_DFL; 156 ret = sigaction(SIGALRM, &sa, NULL); 157 if (ret) 158 return -1; 159 160 if (!in_order((struct timespec) {}, rmtp)) 161 return -1; 162 163 if (!in_order(rmtp, rqtp)) 164 return -1; 165 166 return 0; 167 } 168 169 int main(int argc, char **argv) 170 { 171 long long length; 172 int clockid, ret; 173 int max_clocks = CLOCK_TAI + 1; 174 175 ksft_print_header(); 176 ksft_set_plan(max_clocks); 177 178 for (clockid = CLOCK_REALTIME; clockid < max_clocks; clockid++) { 179 180 /* Skip cputime clockids since nanosleep won't increment cputime */ 181 if (clockid == CLOCK_PROCESS_CPUTIME_ID || 182 clockid == CLOCK_THREAD_CPUTIME_ID || 183 clockid == CLOCK_HWSPECIFIC) { 184 ksft_test_result_skip("%-31s\n", clockstring(clockid)); 185 continue; 186 } 187 188 fflush(stdout); 189 190 length = 10; 191 while (length <= (NSEC_PER_SEC * 10)) { 192 ret = nanosleep_test(clockid, length); 193 if (ret == UNSUPPORTED) { 194 ksft_test_result_skip("%-31s\n", clockstring(clockid)); 195 goto next; 196 } 197 if (ret < 0) { 198 ksft_test_result_fail("%-31s\n", clockstring(clockid)); 199 ksft_exit_fail(); 200 } 201 length *= 100; 202 } 203 ret = nanosleep_test_remaining(clockid); 204 if (ret < 0) { 205 ksft_test_result_fail("%-31s\n", clockstring(clockid)); 206 ksft_exit_fail(); 207 } 208 ksft_test_result_pass("%-31s\n", clockstring(clockid)); 209 next: 210 ret = 0; 211 } 212 ksft_exit_pass(); 213 } 214