xref: /linux/tools/testing/selftests/seccomp/seccomp_benchmark.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 /*
2  * Strictly speaking, this is not a test. But it can report during test
3  * runs so relative performace can be measured.
4  */
5 #define _GNU_SOURCE
6 #include <assert.h>
7 #include <err.h>
8 #include <limits.h>
9 #include <sched.h>
10 #include <stdbool.h>
11 #include <stddef.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <time.h>
15 #include <unistd.h>
16 #include <linux/filter.h>
17 #include <linux/seccomp.h>
18 #include <sys/param.h>
19 #include <sys/prctl.h>
20 #include <sys/syscall.h>
21 #include <sys/types.h>
22 
23 #include "../kselftest.h"
24 
25 unsigned long long timing(clockid_t clk_id, unsigned long long samples)
26 {
27 	struct timespec start, finish;
28 	unsigned long long i;
29 	pid_t pid, ret;
30 
31 	pid = getpid();
32 	assert(clock_gettime(clk_id, &start) == 0);
33 	for (i = 0; i < samples; i++) {
34 		ret = syscall(__NR_getpid);
35 		assert(pid == ret);
36 	}
37 	assert(clock_gettime(clk_id, &finish) == 0);
38 
39 	i = finish.tv_sec - start.tv_sec;
40 	i *= 1000000000ULL;
41 	i += finish.tv_nsec - start.tv_nsec;
42 
43 	ksft_print_msg("%lu.%09lu - %lu.%09lu = %llu (%.1fs)\n",
44 		       finish.tv_sec, finish.tv_nsec,
45 		       start.tv_sec, start.tv_nsec,
46 		       i, (double)i / 1000000000.0);
47 
48 	return i;
49 }
50 
51 unsigned long long calibrate(void)
52 {
53 	struct timespec start, finish;
54 	unsigned long long i, samples, step = 9973;
55 	pid_t pid, ret;
56 	int seconds = 15;
57 
58 	ksft_print_msg("Calibrating sample size for %d seconds worth of syscalls ...\n", seconds);
59 
60 	samples = 0;
61 	pid = getpid();
62 	assert(clock_gettime(CLOCK_MONOTONIC, &start) == 0);
63 	do {
64 		for (i = 0; i < step; i++) {
65 			ret = syscall(__NR_getpid);
66 			assert(pid == ret);
67 		}
68 		assert(clock_gettime(CLOCK_MONOTONIC, &finish) == 0);
69 
70 		samples += step;
71 		i = finish.tv_sec - start.tv_sec;
72 		i *= 1000000000ULL;
73 		i += finish.tv_nsec - start.tv_nsec;
74 	} while (i < 1000000000ULL);
75 
76 	return samples * seconds;
77 }
78 
79 bool approx(int i_one, int i_two)
80 {
81 	/*
82 	 * This continues to be a noisy test. Instead of a 1% comparison
83 	 * go with 10%.
84 	 */
85 	double one = i_one, one_bump = one * 0.1;
86 	double two = i_two, two_bump = two * 0.1;
87 
88 	one_bump = one + MAX(one_bump, 2.0);
89 	two_bump = two + MAX(two_bump, 2.0);
90 
91 	/* Equal to, or within 1% or 2 digits */
92 	if (one == two ||
93 	    (one > two && one <= two_bump) ||
94 	    (two > one && two <= one_bump))
95 		return true;
96 	return false;
97 }
98 
99 bool le(int i_one, int i_two)
100 {
101 	if (i_one <= i_two)
102 		return true;
103 	return false;
104 }
105 
106 long compare(const char *name_one, const char *name_eval, const char *name_two,
107 	     unsigned long long one, bool (*eval)(int, int), unsigned long long two,
108 	     bool skip)
109 {
110 	bool good;
111 
112 	if (skip) {
113 		ksft_test_result_skip("%s %s %s\n", name_one, name_eval,
114 				      name_two);
115 		return 0;
116 	}
117 
118 	ksft_print_msg("\t%s %s %s (%lld %s %lld): ", name_one, name_eval, name_two,
119 		       (long long)one, name_eval, (long long)two);
120 	if (one > INT_MAX) {
121 		ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)one);
122 		good = false;
123 		goto out;
124 	}
125 	if (two > INT_MAX) {
126 		ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)two);
127 		good = false;
128 		goto out;
129 	}
130 
131 	good = eval(one, two);
132 	printf("%s\n", good ? "✔️" : "❌");
133 
134 out:
135 	ksft_test_result(good, "%s %s %s\n", name_one, name_eval, name_two);
136 
137 	return good ? 0 : 1;
138 }
139 
140 /* Pin to a single CPU so the benchmark won't bounce around the system. */
141 void affinity(void)
142 {
143 	long cpu;
144 	ulong ncores = sysconf(_SC_NPROCESSORS_CONF);
145 	cpu_set_t *setp = CPU_ALLOC(ncores);
146 	ulong setsz = CPU_ALLOC_SIZE(ncores);
147 
148 	/*
149 	 * Totally unscientific way to avoid CPUs that might be busier:
150 	 * choose the highest CPU instead of the lowest.
151 	 */
152 	for (cpu = ncores - 1; cpu >= 0; cpu--) {
153 		CPU_ZERO_S(setsz, setp);
154 		CPU_SET_S(cpu, setsz, setp);
155 		if (sched_setaffinity(getpid(), setsz, setp) == -1)
156 			continue;
157 		printf("Pinned to CPU %lu of %lu\n", cpu + 1, ncores);
158 		goto out;
159 	}
160 	fprintf(stderr, "Could not set CPU affinity -- calibration may not work well");
161 
162 out:
163 	CPU_FREE(setp);
164 }
165 
166 int main(int argc, char *argv[])
167 {
168 	struct sock_filter bitmap_filter[] = {
169 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)),
170 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
171 	};
172 	struct sock_fprog bitmap_prog = {
173 		.len = (unsigned short)ARRAY_SIZE(bitmap_filter),
174 		.filter = bitmap_filter,
175 	};
176 	struct sock_filter filter[] = {
177 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, args[0])),
178 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
179 	};
180 	struct sock_fprog prog = {
181 		.len = (unsigned short)ARRAY_SIZE(filter),
182 		.filter = filter,
183 	};
184 
185 	long ret, bits;
186 	unsigned long long samples, calc;
187 	unsigned long long native, filter1, filter2, bitmap1, bitmap2;
188 	unsigned long long entry, per_filter1, per_filter2;
189 	bool skip = false;
190 
191 	setbuf(stdout, NULL);
192 
193 	ksft_print_header();
194 	ksft_set_plan(7);
195 
196 	ksft_print_msg("Running on:\n");
197 	ksft_print_msg("%s", "");
198 	system("uname -a");
199 
200 	ksft_print_msg("Current BPF sysctl settings:\n");
201 	/* Avoid using "sysctl" which may not be installed. */
202 	ksft_print_msg("%s", "");
203 	system("grep -H . /proc/sys/net/core/bpf_jit_enable");
204 	ksft_print_msg("%s", "");
205 	system("grep -H . /proc/sys/net/core/bpf_jit_harden");
206 
207 	affinity();
208 
209 	if (argc > 1)
210 		samples = strtoull(argv[1], NULL, 0);
211 	else
212 		samples = calibrate();
213 
214 	ksft_print_msg("Benchmarking %llu syscalls...\n", samples);
215 
216 	/* Native call */
217 	native = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
218 	ksft_print_msg("getpid native: %llu ns\n", native);
219 
220 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
221 	assert(ret == 0);
222 
223 	/* One filter resulting in a bitmap */
224 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
225 	assert(ret == 0);
226 
227 	bitmap1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
228 	ksft_print_msg("getpid RET_ALLOW 1 filter (bitmap): %llu ns\n", bitmap1);
229 
230 	/* Second filter resulting in a bitmap */
231 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
232 	assert(ret == 0);
233 
234 	bitmap2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
235 	ksft_print_msg("getpid RET_ALLOW 2 filters (bitmap): %llu ns\n", bitmap2);
236 
237 	/* Third filter, can no longer be converted to bitmap */
238 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
239 	assert(ret == 0);
240 
241 	filter1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
242 	ksft_print_msg("getpid RET_ALLOW 3 filters (full): %llu ns\n", filter1);
243 
244 	/* Fourth filter, can not be converted to bitmap because of filter 3 */
245 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
246 	assert(ret == 0);
247 
248 	filter2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
249 	ksft_print_msg("getpid RET_ALLOW 4 filters (full): %llu ns\n", filter2);
250 
251 	/* Estimations */
252 #define ESTIMATE(fmt, var, what)	do {			\
253 		var = (what);					\
254 		ksft_print_msg("Estimated " fmt ": %llu ns\n", var);	\
255 		if (var > INT_MAX) {				\
256 			skip = true;				\
257 			ret |= 1;				\
258 		}						\
259 	} while (0)
260 
261 	ESTIMATE("total seccomp overhead for 1 bitmapped filter", calc,
262 		 bitmap1 - native);
263 	ESTIMATE("total seccomp overhead for 2 bitmapped filters", calc,
264 		 bitmap2 - native);
265 	ESTIMATE("total seccomp overhead for 3 full filters", calc,
266 		 filter1 - native);
267 	ESTIMATE("total seccomp overhead for 4 full filters", calc,
268 		 filter2 - native);
269 	ESTIMATE("seccomp entry overhead", entry,
270 		 bitmap1 - native - (bitmap2 - bitmap1));
271 	ESTIMATE("seccomp per-filter overhead (last 2 diff)", per_filter1,
272 		 filter2 - filter1);
273 	ESTIMATE("seccomp per-filter overhead (filters / 4)", per_filter2,
274 		 (filter2 - native - entry) / 4);
275 
276 	ksft_print_msg("Expectations:\n");
277 	ret |= compare("native", "≤", "1 bitmap", native, le, bitmap1,
278 		       skip);
279 	bits = compare("native", "≤", "1 filter", native, le, filter1,
280 		       skip);
281 	if (bits)
282 		skip = true;
283 
284 	ret |= compare("per-filter (last 2 diff)", "≈", "per-filter (filters / 4)",
285 		       per_filter1, approx, per_filter2, skip);
286 
287 	bits = compare("1 bitmapped", "≈", "2 bitmapped",
288 		       bitmap1 - native, approx, bitmap2 - native, skip);
289 	if (bits) {
290 		ksft_print_msg("Skipping constant action bitmap expectations: they appear unsupported.\n");
291 		skip = true;
292 	}
293 
294 	ret |= compare("entry", "≈", "1 bitmapped", entry, approx,
295 		       bitmap1 - native, skip);
296 	ret |= compare("entry", "≈", "2 bitmapped", entry, approx,
297 		       bitmap2 - native, skip);
298 	ret |= compare("native + entry + (per filter * 4)", "≈", "4 filters total",
299 		       entry + (per_filter1 * 4) + native, approx, filter2,
300 		       skip);
301 
302 	if (ret)
303 		ksft_print_msg("Saw unexpected benchmark result. Try running again with more samples?\n");
304 
305 	ksft_finished();
306 }
307