xref: /linux/tools/testing/selftests/rseq/param_test.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 // SPDX-License-Identifier: LGPL-2.1
2 #define _GNU_SOURCE
3 #include <assert.h>
4 #include <pthread.h>
5 #include <sched.h>
6 #include <stdint.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <syscall.h>
11 #include <unistd.h>
12 #include <poll.h>
13 #include <sys/types.h>
14 #include <signal.h>
15 #include <errno.h>
16 #include <stddef.h>
17 
18 static inline pid_t gettid(void)
19 {
20 	return syscall(__NR_gettid);
21 }
22 
23 #define NR_INJECT	9
24 static int loop_cnt[NR_INJECT + 1];
25 
26 static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
27 static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
28 static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
29 static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
30 static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
31 static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
32 
33 static int opt_modulo, verbose;
34 
35 static int opt_yield, opt_signal, opt_sleep,
36 		opt_disable_rseq, opt_threads = 200,
37 		opt_disable_mod = 0, opt_test = 's', opt_mb = 0;
38 
39 #ifndef RSEQ_SKIP_FASTPATH
40 static long long opt_reps = 5000;
41 #else
42 static long long opt_reps = 100;
43 #endif
44 
45 static __thread __attribute__((tls_model("initial-exec")))
46 unsigned int signals_delivered;
47 
48 #ifndef BENCHMARK
49 
50 static __thread __attribute__((tls_model("initial-exec"), unused))
51 unsigned int yield_mod_cnt, nr_abort;
52 
53 #define printf_verbose(fmt, ...)			\
54 	do {						\
55 		if (verbose)				\
56 			printf(fmt, ## __VA_ARGS__);	\
57 	} while (0)
58 
59 #if defined(__x86_64__) || defined(__i386__)
60 
61 #define INJECT_ASM_REG	"eax"
62 
63 #define RSEQ_INJECT_CLOBBER \
64 	, INJECT_ASM_REG
65 
66 #ifdef __i386__
67 
68 #define RSEQ_INJECT_ASM(n) \
69 	"mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
70 	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
71 	"jz 333f\n\t" \
72 	"222:\n\t" \
73 	"dec %%" INJECT_ASM_REG "\n\t" \
74 	"jnz 222b\n\t" \
75 	"333:\n\t"
76 
77 #elif defined(__x86_64__)
78 
79 #define RSEQ_INJECT_ASM(n) \
80 	"lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG "\n\t" \
81 	"mov (%%" INJECT_ASM_REG "), %%" INJECT_ASM_REG "\n\t" \
82 	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
83 	"jz 333f\n\t" \
84 	"222:\n\t" \
85 	"dec %%" INJECT_ASM_REG "\n\t" \
86 	"jnz 222b\n\t" \
87 	"333:\n\t"
88 
89 #else
90 #error "Unsupported architecture"
91 #endif
92 
93 #elif defined(__s390__)
94 
95 #define RSEQ_INJECT_INPUT \
96 	, [loop_cnt_1]"m"(loop_cnt[1]) \
97 	, [loop_cnt_2]"m"(loop_cnt[2]) \
98 	, [loop_cnt_3]"m"(loop_cnt[3]) \
99 	, [loop_cnt_4]"m"(loop_cnt[4]) \
100 	, [loop_cnt_5]"m"(loop_cnt[5]) \
101 	, [loop_cnt_6]"m"(loop_cnt[6])
102 
103 #define INJECT_ASM_REG	"r12"
104 
105 #define RSEQ_INJECT_CLOBBER \
106 	, INJECT_ASM_REG
107 
108 #define RSEQ_INJECT_ASM(n) \
109 	"l %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
110 	"ltr %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG "\n\t" \
111 	"je 333f\n\t" \
112 	"222:\n\t" \
113 	"ahi %%" INJECT_ASM_REG ", -1\n\t" \
114 	"jnz 222b\n\t" \
115 	"333:\n\t"
116 
117 #elif defined(__ARMEL__)
118 
119 #define RSEQ_INJECT_INPUT \
120 	, [loop_cnt_1]"m"(loop_cnt[1]) \
121 	, [loop_cnt_2]"m"(loop_cnt[2]) \
122 	, [loop_cnt_3]"m"(loop_cnt[3]) \
123 	, [loop_cnt_4]"m"(loop_cnt[4]) \
124 	, [loop_cnt_5]"m"(loop_cnt[5]) \
125 	, [loop_cnt_6]"m"(loop_cnt[6])
126 
127 #define INJECT_ASM_REG	"r4"
128 
129 #define RSEQ_INJECT_CLOBBER \
130 	, INJECT_ASM_REG
131 
132 #define RSEQ_INJECT_ASM(n) \
133 	"ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
134 	"cmp " INJECT_ASM_REG ", #0\n\t" \
135 	"beq 333f\n\t" \
136 	"222:\n\t" \
137 	"subs " INJECT_ASM_REG ", #1\n\t" \
138 	"bne 222b\n\t" \
139 	"333:\n\t"
140 
141 #elif __PPC__
142 
143 #define RSEQ_INJECT_INPUT \
144 	, [loop_cnt_1]"m"(loop_cnt[1]) \
145 	, [loop_cnt_2]"m"(loop_cnt[2]) \
146 	, [loop_cnt_3]"m"(loop_cnt[3]) \
147 	, [loop_cnt_4]"m"(loop_cnt[4]) \
148 	, [loop_cnt_5]"m"(loop_cnt[5]) \
149 	, [loop_cnt_6]"m"(loop_cnt[6])
150 
151 #define INJECT_ASM_REG	"r18"
152 
153 #define RSEQ_INJECT_CLOBBER \
154 	, INJECT_ASM_REG
155 
156 #define RSEQ_INJECT_ASM(n) \
157 	"lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
158 	"cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
159 	"beq 333f\n\t" \
160 	"222:\n\t" \
161 	"subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
162 	"bne 222b\n\t" \
163 	"333:\n\t"
164 
165 #elif defined(__mips__)
166 
167 #define RSEQ_INJECT_INPUT \
168 	, [loop_cnt_1]"m"(loop_cnt[1]) \
169 	, [loop_cnt_2]"m"(loop_cnt[2]) \
170 	, [loop_cnt_3]"m"(loop_cnt[3]) \
171 	, [loop_cnt_4]"m"(loop_cnt[4]) \
172 	, [loop_cnt_5]"m"(loop_cnt[5]) \
173 	, [loop_cnt_6]"m"(loop_cnt[6])
174 
175 #define INJECT_ASM_REG	"$5"
176 
177 #define RSEQ_INJECT_CLOBBER \
178 	, INJECT_ASM_REG
179 
180 #define RSEQ_INJECT_ASM(n) \
181 	"lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
182 	"beqz " INJECT_ASM_REG ", 333f\n\t" \
183 	"222:\n\t" \
184 	"addiu " INJECT_ASM_REG ", -1\n\t" \
185 	"bnez " INJECT_ASM_REG ", 222b\n\t" \
186 	"333:\n\t"
187 
188 #else
189 #error unsupported target
190 #endif
191 
192 #define RSEQ_INJECT_FAILED \
193 	nr_abort++;
194 
195 #define RSEQ_INJECT_C(n) \
196 { \
197 	int loc_i, loc_nr_loops = loop_cnt[n]; \
198 	\
199 	for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
200 		rseq_barrier(); \
201 	} \
202 	if (loc_nr_loops == -1 && opt_modulo) { \
203 		if (yield_mod_cnt == opt_modulo - 1) { \
204 			if (opt_sleep > 0) \
205 				poll(NULL, 0, opt_sleep); \
206 			if (opt_yield) \
207 				sched_yield(); \
208 			if (opt_signal) \
209 				raise(SIGUSR1); \
210 			yield_mod_cnt = 0; \
211 		} else { \
212 			yield_mod_cnt++; \
213 		} \
214 	} \
215 }
216 
217 #else
218 
219 #define printf_verbose(fmt, ...)
220 
221 #endif /* BENCHMARK */
222 
223 #include "rseq.h"
224 
225 struct percpu_lock_entry {
226 	intptr_t v;
227 } __attribute__((aligned(128)));
228 
229 struct percpu_lock {
230 	struct percpu_lock_entry c[CPU_SETSIZE];
231 };
232 
233 struct test_data_entry {
234 	intptr_t count;
235 } __attribute__((aligned(128)));
236 
237 struct spinlock_test_data {
238 	struct percpu_lock lock;
239 	struct test_data_entry c[CPU_SETSIZE];
240 };
241 
242 struct spinlock_thread_test_data {
243 	struct spinlock_test_data *data;
244 	long long reps;
245 	int reg;
246 };
247 
248 struct inc_test_data {
249 	struct test_data_entry c[CPU_SETSIZE];
250 };
251 
252 struct inc_thread_test_data {
253 	struct inc_test_data *data;
254 	long long reps;
255 	int reg;
256 };
257 
258 struct percpu_list_node {
259 	intptr_t data;
260 	struct percpu_list_node *next;
261 };
262 
263 struct percpu_list_entry {
264 	struct percpu_list_node *head;
265 } __attribute__((aligned(128)));
266 
267 struct percpu_list {
268 	struct percpu_list_entry c[CPU_SETSIZE];
269 };
270 
271 #define BUFFER_ITEM_PER_CPU	100
272 
273 struct percpu_buffer_node {
274 	intptr_t data;
275 };
276 
277 struct percpu_buffer_entry {
278 	intptr_t offset;
279 	intptr_t buflen;
280 	struct percpu_buffer_node **array;
281 } __attribute__((aligned(128)));
282 
283 struct percpu_buffer {
284 	struct percpu_buffer_entry c[CPU_SETSIZE];
285 };
286 
287 #define MEMCPY_BUFFER_ITEM_PER_CPU	100
288 
289 struct percpu_memcpy_buffer_node {
290 	intptr_t data1;
291 	uint64_t data2;
292 };
293 
294 struct percpu_memcpy_buffer_entry {
295 	intptr_t offset;
296 	intptr_t buflen;
297 	struct percpu_memcpy_buffer_node *array;
298 } __attribute__((aligned(128)));
299 
300 struct percpu_memcpy_buffer {
301 	struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
302 };
303 
304 /* A simple percpu spinlock. Grabs lock on current cpu. */
305 static int rseq_this_cpu_lock(struct percpu_lock *lock)
306 {
307 	int cpu;
308 
309 	for (;;) {
310 		int ret;
311 
312 		cpu = rseq_cpu_start();
313 		ret = rseq_cmpeqv_storev(&lock->c[cpu].v,
314 					 0, 1, cpu);
315 		if (rseq_likely(!ret))
316 			break;
317 		/* Retry if comparison fails or rseq aborts. */
318 	}
319 	/*
320 	 * Acquire semantic when taking lock after control dependency.
321 	 * Matches rseq_smp_store_release().
322 	 */
323 	rseq_smp_acquire__after_ctrl_dep();
324 	return cpu;
325 }
326 
327 static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
328 {
329 	assert(lock->c[cpu].v == 1);
330 	/*
331 	 * Release lock, with release semantic. Matches
332 	 * rseq_smp_acquire__after_ctrl_dep().
333 	 */
334 	rseq_smp_store_release(&lock->c[cpu].v, 0);
335 }
336 
337 void *test_percpu_spinlock_thread(void *arg)
338 {
339 	struct spinlock_thread_test_data *thread_data = arg;
340 	struct spinlock_test_data *data = thread_data->data;
341 	long long i, reps;
342 
343 	if (!opt_disable_rseq && thread_data->reg &&
344 	    rseq_register_current_thread())
345 		abort();
346 	reps = thread_data->reps;
347 	for (i = 0; i < reps; i++) {
348 		int cpu = rseq_cpu_start();
349 
350 		cpu = rseq_this_cpu_lock(&data->lock);
351 		data->c[cpu].count++;
352 		rseq_percpu_unlock(&data->lock, cpu);
353 #ifndef BENCHMARK
354 		if (i != 0 && !(i % (reps / 10)))
355 			printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
356 #endif
357 	}
358 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
359 		       (int) gettid(), nr_abort, signals_delivered);
360 	if (!opt_disable_rseq && thread_data->reg &&
361 	    rseq_unregister_current_thread())
362 		abort();
363 	return NULL;
364 }
365 
366 /*
367  * A simple test which implements a sharded counter using a per-cpu
368  * lock.  Obviously real applications might prefer to simply use a
369  * per-cpu increment; however, this is reasonable for a test and the
370  * lock can be extended to synchronize more complicated operations.
371  */
372 void test_percpu_spinlock(void)
373 {
374 	const int num_threads = opt_threads;
375 	int i, ret;
376 	uint64_t sum;
377 	pthread_t test_threads[num_threads];
378 	struct spinlock_test_data data;
379 	struct spinlock_thread_test_data thread_data[num_threads];
380 
381 	memset(&data, 0, sizeof(data));
382 	for (i = 0; i < num_threads; i++) {
383 		thread_data[i].reps = opt_reps;
384 		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
385 			thread_data[i].reg = 1;
386 		else
387 			thread_data[i].reg = 0;
388 		thread_data[i].data = &data;
389 		ret = pthread_create(&test_threads[i], NULL,
390 				     test_percpu_spinlock_thread,
391 				     &thread_data[i]);
392 		if (ret) {
393 			errno = ret;
394 			perror("pthread_create");
395 			abort();
396 		}
397 	}
398 
399 	for (i = 0; i < num_threads; i++) {
400 		ret = pthread_join(test_threads[i], NULL);
401 		if (ret) {
402 			errno = ret;
403 			perror("pthread_join");
404 			abort();
405 		}
406 	}
407 
408 	sum = 0;
409 	for (i = 0; i < CPU_SETSIZE; i++)
410 		sum += data.c[i].count;
411 
412 	assert(sum == (uint64_t)opt_reps * num_threads);
413 }
414 
415 void *test_percpu_inc_thread(void *arg)
416 {
417 	struct inc_thread_test_data *thread_data = arg;
418 	struct inc_test_data *data = thread_data->data;
419 	long long i, reps;
420 
421 	if (!opt_disable_rseq && thread_data->reg &&
422 	    rseq_register_current_thread())
423 		abort();
424 	reps = thread_data->reps;
425 	for (i = 0; i < reps; i++) {
426 		int ret;
427 
428 		do {
429 			int cpu;
430 
431 			cpu = rseq_cpu_start();
432 			ret = rseq_addv(&data->c[cpu].count, 1, cpu);
433 		} while (rseq_unlikely(ret));
434 #ifndef BENCHMARK
435 		if (i != 0 && !(i % (reps / 10)))
436 			printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
437 #endif
438 	}
439 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
440 		       (int) gettid(), nr_abort, signals_delivered);
441 	if (!opt_disable_rseq && thread_data->reg &&
442 	    rseq_unregister_current_thread())
443 		abort();
444 	return NULL;
445 }
446 
447 void test_percpu_inc(void)
448 {
449 	const int num_threads = opt_threads;
450 	int i, ret;
451 	uint64_t sum;
452 	pthread_t test_threads[num_threads];
453 	struct inc_test_data data;
454 	struct inc_thread_test_data thread_data[num_threads];
455 
456 	memset(&data, 0, sizeof(data));
457 	for (i = 0; i < num_threads; i++) {
458 		thread_data[i].reps = opt_reps;
459 		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
460 			thread_data[i].reg = 1;
461 		else
462 			thread_data[i].reg = 0;
463 		thread_data[i].data = &data;
464 		ret = pthread_create(&test_threads[i], NULL,
465 				     test_percpu_inc_thread,
466 				     &thread_data[i]);
467 		if (ret) {
468 			errno = ret;
469 			perror("pthread_create");
470 			abort();
471 		}
472 	}
473 
474 	for (i = 0; i < num_threads; i++) {
475 		ret = pthread_join(test_threads[i], NULL);
476 		if (ret) {
477 			errno = ret;
478 			perror("pthread_join");
479 			abort();
480 		}
481 	}
482 
483 	sum = 0;
484 	for (i = 0; i < CPU_SETSIZE; i++)
485 		sum += data.c[i].count;
486 
487 	assert(sum == (uint64_t)opt_reps * num_threads);
488 }
489 
490 void this_cpu_list_push(struct percpu_list *list,
491 			struct percpu_list_node *node,
492 			int *_cpu)
493 {
494 	int cpu;
495 
496 	for (;;) {
497 		intptr_t *targetptr, newval, expect;
498 		int ret;
499 
500 		cpu = rseq_cpu_start();
501 		/* Load list->c[cpu].head with single-copy atomicity. */
502 		expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
503 		newval = (intptr_t)node;
504 		targetptr = (intptr_t *)&list->c[cpu].head;
505 		node->next = (struct percpu_list_node *)expect;
506 		ret = rseq_cmpeqv_storev(targetptr, expect, newval, cpu);
507 		if (rseq_likely(!ret))
508 			break;
509 		/* Retry if comparison fails or rseq aborts. */
510 	}
511 	if (_cpu)
512 		*_cpu = cpu;
513 }
514 
515 /*
516  * Unlike a traditional lock-less linked list; the availability of a
517  * rseq primitive allows us to implement pop without concerns over
518  * ABA-type races.
519  */
520 struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
521 					   int *_cpu)
522 {
523 	struct percpu_list_node *node = NULL;
524 	int cpu;
525 
526 	for (;;) {
527 		struct percpu_list_node *head;
528 		intptr_t *targetptr, expectnot, *load;
529 		off_t offset;
530 		int ret;
531 
532 		cpu = rseq_cpu_start();
533 		targetptr = (intptr_t *)&list->c[cpu].head;
534 		expectnot = (intptr_t)NULL;
535 		offset = offsetof(struct percpu_list_node, next);
536 		load = (intptr_t *)&head;
537 		ret = rseq_cmpnev_storeoffp_load(targetptr, expectnot,
538 						   offset, load, cpu);
539 		if (rseq_likely(!ret)) {
540 			node = head;
541 			break;
542 		}
543 		if (ret > 0)
544 			break;
545 		/* Retry if rseq aborts. */
546 	}
547 	if (_cpu)
548 		*_cpu = cpu;
549 	return node;
550 }
551 
552 /*
553  * __percpu_list_pop is not safe against concurrent accesses. Should
554  * only be used on lists that are not concurrently modified.
555  */
556 struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
557 {
558 	struct percpu_list_node *node;
559 
560 	node = list->c[cpu].head;
561 	if (!node)
562 		return NULL;
563 	list->c[cpu].head = node->next;
564 	return node;
565 }
566 
567 void *test_percpu_list_thread(void *arg)
568 {
569 	long long i, reps;
570 	struct percpu_list *list = (struct percpu_list *)arg;
571 
572 	if (!opt_disable_rseq && rseq_register_current_thread())
573 		abort();
574 
575 	reps = opt_reps;
576 	for (i = 0; i < reps; i++) {
577 		struct percpu_list_node *node;
578 
579 		node = this_cpu_list_pop(list, NULL);
580 		if (opt_yield)
581 			sched_yield();  /* encourage shuffling */
582 		if (node)
583 			this_cpu_list_push(list, node, NULL);
584 	}
585 
586 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
587 		       (int) gettid(), nr_abort, signals_delivered);
588 	if (!opt_disable_rseq && rseq_unregister_current_thread())
589 		abort();
590 
591 	return NULL;
592 }
593 
594 /* Simultaneous modification to a per-cpu linked list from many threads.  */
595 void test_percpu_list(void)
596 {
597 	const int num_threads = opt_threads;
598 	int i, j, ret;
599 	uint64_t sum = 0, expected_sum = 0;
600 	struct percpu_list list;
601 	pthread_t test_threads[num_threads];
602 	cpu_set_t allowed_cpus;
603 
604 	memset(&list, 0, sizeof(list));
605 
606 	/* Generate list entries for every usable cpu. */
607 	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
608 	for (i = 0; i < CPU_SETSIZE; i++) {
609 		if (!CPU_ISSET(i, &allowed_cpus))
610 			continue;
611 		for (j = 1; j <= 100; j++) {
612 			struct percpu_list_node *node;
613 
614 			expected_sum += j;
615 
616 			node = malloc(sizeof(*node));
617 			assert(node);
618 			node->data = j;
619 			node->next = list.c[i].head;
620 			list.c[i].head = node;
621 		}
622 	}
623 
624 	for (i = 0; i < num_threads; i++) {
625 		ret = pthread_create(&test_threads[i], NULL,
626 				     test_percpu_list_thread, &list);
627 		if (ret) {
628 			errno = ret;
629 			perror("pthread_create");
630 			abort();
631 		}
632 	}
633 
634 	for (i = 0; i < num_threads; i++) {
635 		ret = pthread_join(test_threads[i], NULL);
636 		if (ret) {
637 			errno = ret;
638 			perror("pthread_join");
639 			abort();
640 		}
641 	}
642 
643 	for (i = 0; i < CPU_SETSIZE; i++) {
644 		struct percpu_list_node *node;
645 
646 		if (!CPU_ISSET(i, &allowed_cpus))
647 			continue;
648 
649 		while ((node = __percpu_list_pop(&list, i))) {
650 			sum += node->data;
651 			free(node);
652 		}
653 	}
654 
655 	/*
656 	 * All entries should now be accounted for (unless some external
657 	 * actor is interfering with our allowed affinity while this
658 	 * test is running).
659 	 */
660 	assert(sum == expected_sum);
661 }
662 
663 bool this_cpu_buffer_push(struct percpu_buffer *buffer,
664 			  struct percpu_buffer_node *node,
665 			  int *_cpu)
666 {
667 	bool result = false;
668 	int cpu;
669 
670 	for (;;) {
671 		intptr_t *targetptr_spec, newval_spec;
672 		intptr_t *targetptr_final, newval_final;
673 		intptr_t offset;
674 		int ret;
675 
676 		cpu = rseq_cpu_start();
677 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
678 		if (offset == buffer->c[cpu].buflen)
679 			break;
680 		newval_spec = (intptr_t)node;
681 		targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
682 		newval_final = offset + 1;
683 		targetptr_final = &buffer->c[cpu].offset;
684 		if (opt_mb)
685 			ret = rseq_cmpeqv_trystorev_storev_release(
686 				targetptr_final, offset, targetptr_spec,
687 				newval_spec, newval_final, cpu);
688 		else
689 			ret = rseq_cmpeqv_trystorev_storev(targetptr_final,
690 				offset, targetptr_spec, newval_spec,
691 				newval_final, cpu);
692 		if (rseq_likely(!ret)) {
693 			result = true;
694 			break;
695 		}
696 		/* Retry if comparison fails or rseq aborts. */
697 	}
698 	if (_cpu)
699 		*_cpu = cpu;
700 	return result;
701 }
702 
703 struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
704 					       int *_cpu)
705 {
706 	struct percpu_buffer_node *head;
707 	int cpu;
708 
709 	for (;;) {
710 		intptr_t *targetptr, newval;
711 		intptr_t offset;
712 		int ret;
713 
714 		cpu = rseq_cpu_start();
715 		/* Load offset with single-copy atomicity. */
716 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
717 		if (offset == 0) {
718 			head = NULL;
719 			break;
720 		}
721 		head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
722 		newval = offset - 1;
723 		targetptr = (intptr_t *)&buffer->c[cpu].offset;
724 		ret = rseq_cmpeqv_cmpeqv_storev(targetptr, offset,
725 			(intptr_t *)&buffer->c[cpu].array[offset - 1],
726 			(intptr_t)head, newval, cpu);
727 		if (rseq_likely(!ret))
728 			break;
729 		/* Retry if comparison fails or rseq aborts. */
730 	}
731 	if (_cpu)
732 		*_cpu = cpu;
733 	return head;
734 }
735 
736 /*
737  * __percpu_buffer_pop is not safe against concurrent accesses. Should
738  * only be used on buffers that are not concurrently modified.
739  */
740 struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
741 					       int cpu)
742 {
743 	struct percpu_buffer_node *head;
744 	intptr_t offset;
745 
746 	offset = buffer->c[cpu].offset;
747 	if (offset == 0)
748 		return NULL;
749 	head = buffer->c[cpu].array[offset - 1];
750 	buffer->c[cpu].offset = offset - 1;
751 	return head;
752 }
753 
754 void *test_percpu_buffer_thread(void *arg)
755 {
756 	long long i, reps;
757 	struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
758 
759 	if (!opt_disable_rseq && rseq_register_current_thread())
760 		abort();
761 
762 	reps = opt_reps;
763 	for (i = 0; i < reps; i++) {
764 		struct percpu_buffer_node *node;
765 
766 		node = this_cpu_buffer_pop(buffer, NULL);
767 		if (opt_yield)
768 			sched_yield();  /* encourage shuffling */
769 		if (node) {
770 			if (!this_cpu_buffer_push(buffer, node, NULL)) {
771 				/* Should increase buffer size. */
772 				abort();
773 			}
774 		}
775 	}
776 
777 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
778 		       (int) gettid(), nr_abort, signals_delivered);
779 	if (!opt_disable_rseq && rseq_unregister_current_thread())
780 		abort();
781 
782 	return NULL;
783 }
784 
785 /* Simultaneous modification to a per-cpu buffer from many threads.  */
786 void test_percpu_buffer(void)
787 {
788 	const int num_threads = opt_threads;
789 	int i, j, ret;
790 	uint64_t sum = 0, expected_sum = 0;
791 	struct percpu_buffer buffer;
792 	pthread_t test_threads[num_threads];
793 	cpu_set_t allowed_cpus;
794 
795 	memset(&buffer, 0, sizeof(buffer));
796 
797 	/* Generate list entries for every usable cpu. */
798 	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
799 	for (i = 0; i < CPU_SETSIZE; i++) {
800 		if (!CPU_ISSET(i, &allowed_cpus))
801 			continue;
802 		/* Worse-case is every item in same CPU. */
803 		buffer.c[i].array =
804 			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
805 			       BUFFER_ITEM_PER_CPU);
806 		assert(buffer.c[i].array);
807 		buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
808 		for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
809 			struct percpu_buffer_node *node;
810 
811 			expected_sum += j;
812 
813 			/*
814 			 * We could theoretically put the word-sized
815 			 * "data" directly in the buffer. However, we
816 			 * want to model objects that would not fit
817 			 * within a single word, so allocate an object
818 			 * for each node.
819 			 */
820 			node = malloc(sizeof(*node));
821 			assert(node);
822 			node->data = j;
823 			buffer.c[i].array[j - 1] = node;
824 			buffer.c[i].offset++;
825 		}
826 	}
827 
828 	for (i = 0; i < num_threads; i++) {
829 		ret = pthread_create(&test_threads[i], NULL,
830 				     test_percpu_buffer_thread, &buffer);
831 		if (ret) {
832 			errno = ret;
833 			perror("pthread_create");
834 			abort();
835 		}
836 	}
837 
838 	for (i = 0; i < num_threads; i++) {
839 		ret = pthread_join(test_threads[i], NULL);
840 		if (ret) {
841 			errno = ret;
842 			perror("pthread_join");
843 			abort();
844 		}
845 	}
846 
847 	for (i = 0; i < CPU_SETSIZE; i++) {
848 		struct percpu_buffer_node *node;
849 
850 		if (!CPU_ISSET(i, &allowed_cpus))
851 			continue;
852 
853 		while ((node = __percpu_buffer_pop(&buffer, i))) {
854 			sum += node->data;
855 			free(node);
856 		}
857 		free(buffer.c[i].array);
858 	}
859 
860 	/*
861 	 * All entries should now be accounted for (unless some external
862 	 * actor is interfering with our allowed affinity while this
863 	 * test is running).
864 	 */
865 	assert(sum == expected_sum);
866 }
867 
868 bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
869 				 struct percpu_memcpy_buffer_node item,
870 				 int *_cpu)
871 {
872 	bool result = false;
873 	int cpu;
874 
875 	for (;;) {
876 		intptr_t *targetptr_final, newval_final, offset;
877 		char *destptr, *srcptr;
878 		size_t copylen;
879 		int ret;
880 
881 		cpu = rseq_cpu_start();
882 		/* Load offset with single-copy atomicity. */
883 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
884 		if (offset == buffer->c[cpu].buflen)
885 			break;
886 		destptr = (char *)&buffer->c[cpu].array[offset];
887 		srcptr = (char *)&item;
888 		/* copylen must be <= 4kB. */
889 		copylen = sizeof(item);
890 		newval_final = offset + 1;
891 		targetptr_final = &buffer->c[cpu].offset;
892 		if (opt_mb)
893 			ret = rseq_cmpeqv_trymemcpy_storev_release(
894 				targetptr_final, offset,
895 				destptr, srcptr, copylen,
896 				newval_final, cpu);
897 		else
898 			ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
899 				offset, destptr, srcptr, copylen,
900 				newval_final, cpu);
901 		if (rseq_likely(!ret)) {
902 			result = true;
903 			break;
904 		}
905 		/* Retry if comparison fails or rseq aborts. */
906 	}
907 	if (_cpu)
908 		*_cpu = cpu;
909 	return result;
910 }
911 
912 bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
913 				struct percpu_memcpy_buffer_node *item,
914 				int *_cpu)
915 {
916 	bool result = false;
917 	int cpu;
918 
919 	for (;;) {
920 		intptr_t *targetptr_final, newval_final, offset;
921 		char *destptr, *srcptr;
922 		size_t copylen;
923 		int ret;
924 
925 		cpu = rseq_cpu_start();
926 		/* Load offset with single-copy atomicity. */
927 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
928 		if (offset == 0)
929 			break;
930 		destptr = (char *)item;
931 		srcptr = (char *)&buffer->c[cpu].array[offset - 1];
932 		/* copylen must be <= 4kB. */
933 		copylen = sizeof(*item);
934 		newval_final = offset - 1;
935 		targetptr_final = &buffer->c[cpu].offset;
936 		ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
937 			offset, destptr, srcptr, copylen,
938 			newval_final, cpu);
939 		if (rseq_likely(!ret)) {
940 			result = true;
941 			break;
942 		}
943 		/* Retry if comparison fails or rseq aborts. */
944 	}
945 	if (_cpu)
946 		*_cpu = cpu;
947 	return result;
948 }
949 
950 /*
951  * __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
952  * only be used on buffers that are not concurrently modified.
953  */
954 bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
955 				struct percpu_memcpy_buffer_node *item,
956 				int cpu)
957 {
958 	intptr_t offset;
959 
960 	offset = buffer->c[cpu].offset;
961 	if (offset == 0)
962 		return false;
963 	memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
964 	buffer->c[cpu].offset = offset - 1;
965 	return true;
966 }
967 
968 void *test_percpu_memcpy_buffer_thread(void *arg)
969 {
970 	long long i, reps;
971 	struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
972 
973 	if (!opt_disable_rseq && rseq_register_current_thread())
974 		abort();
975 
976 	reps = opt_reps;
977 	for (i = 0; i < reps; i++) {
978 		struct percpu_memcpy_buffer_node item;
979 		bool result;
980 
981 		result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
982 		if (opt_yield)
983 			sched_yield();  /* encourage shuffling */
984 		if (result) {
985 			if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
986 				/* Should increase buffer size. */
987 				abort();
988 			}
989 		}
990 	}
991 
992 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
993 		       (int) gettid(), nr_abort, signals_delivered);
994 	if (!opt_disable_rseq && rseq_unregister_current_thread())
995 		abort();
996 
997 	return NULL;
998 }
999 
1000 /* Simultaneous modification to a per-cpu buffer from many threads.  */
1001 void test_percpu_memcpy_buffer(void)
1002 {
1003 	const int num_threads = opt_threads;
1004 	int i, j, ret;
1005 	uint64_t sum = 0, expected_sum = 0;
1006 	struct percpu_memcpy_buffer buffer;
1007 	pthread_t test_threads[num_threads];
1008 	cpu_set_t allowed_cpus;
1009 
1010 	memset(&buffer, 0, sizeof(buffer));
1011 
1012 	/* Generate list entries for every usable cpu. */
1013 	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
1014 	for (i = 0; i < CPU_SETSIZE; i++) {
1015 		if (!CPU_ISSET(i, &allowed_cpus))
1016 			continue;
1017 		/* Worse-case is every item in same CPU. */
1018 		buffer.c[i].array =
1019 			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
1020 			       MEMCPY_BUFFER_ITEM_PER_CPU);
1021 		assert(buffer.c[i].array);
1022 		buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
1023 		for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
1024 			expected_sum += 2 * j + 1;
1025 
1026 			/*
1027 			 * We could theoretically put the word-sized
1028 			 * "data" directly in the buffer. However, we
1029 			 * want to model objects that would not fit
1030 			 * within a single word, so allocate an object
1031 			 * for each node.
1032 			 */
1033 			buffer.c[i].array[j - 1].data1 = j;
1034 			buffer.c[i].array[j - 1].data2 = j + 1;
1035 			buffer.c[i].offset++;
1036 		}
1037 	}
1038 
1039 	for (i = 0; i < num_threads; i++) {
1040 		ret = pthread_create(&test_threads[i], NULL,
1041 				     test_percpu_memcpy_buffer_thread,
1042 				     &buffer);
1043 		if (ret) {
1044 			errno = ret;
1045 			perror("pthread_create");
1046 			abort();
1047 		}
1048 	}
1049 
1050 	for (i = 0; i < num_threads; i++) {
1051 		ret = pthread_join(test_threads[i], NULL);
1052 		if (ret) {
1053 			errno = ret;
1054 			perror("pthread_join");
1055 			abort();
1056 		}
1057 	}
1058 
1059 	for (i = 0; i < CPU_SETSIZE; i++) {
1060 		struct percpu_memcpy_buffer_node item;
1061 
1062 		if (!CPU_ISSET(i, &allowed_cpus))
1063 			continue;
1064 
1065 		while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
1066 			sum += item.data1;
1067 			sum += item.data2;
1068 		}
1069 		free(buffer.c[i].array);
1070 	}
1071 
1072 	/*
1073 	 * All entries should now be accounted for (unless some external
1074 	 * actor is interfering with our allowed affinity while this
1075 	 * test is running).
1076 	 */
1077 	assert(sum == expected_sum);
1078 }
1079 
1080 static void test_signal_interrupt_handler(int signo)
1081 {
1082 	signals_delivered++;
1083 }
1084 
1085 static int set_signal_handler(void)
1086 {
1087 	int ret = 0;
1088 	struct sigaction sa;
1089 	sigset_t sigset;
1090 
1091 	ret = sigemptyset(&sigset);
1092 	if (ret < 0) {
1093 		perror("sigemptyset");
1094 		return ret;
1095 	}
1096 
1097 	sa.sa_handler = test_signal_interrupt_handler;
1098 	sa.sa_mask = sigset;
1099 	sa.sa_flags = 0;
1100 	ret = sigaction(SIGUSR1, &sa, NULL);
1101 	if (ret < 0) {
1102 		perror("sigaction");
1103 		return ret;
1104 	}
1105 
1106 	printf_verbose("Signal handler set for SIGUSR1\n");
1107 
1108 	return ret;
1109 }
1110 
1111 static void show_usage(int argc, char **argv)
1112 {
1113 	printf("Usage : %s <OPTIONS>\n",
1114 		argv[0]);
1115 	printf("OPTIONS:\n");
1116 	printf("	[-1 loops] Number of loops for delay injection 1\n");
1117 	printf("	[-2 loops] Number of loops for delay injection 2\n");
1118 	printf("	[-3 loops] Number of loops for delay injection 3\n");
1119 	printf("	[-4 loops] Number of loops for delay injection 4\n");
1120 	printf("	[-5 loops] Number of loops for delay injection 5\n");
1121 	printf("	[-6 loops] Number of loops for delay injection 6\n");
1122 	printf("	[-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
1123 	printf("	[-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
1124 	printf("	[-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
1125 	printf("	[-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
1126 	printf("	[-y] Yield\n");
1127 	printf("	[-k] Kill thread with signal\n");
1128 	printf("	[-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
1129 	printf("	[-t N] Number of threads (default 200)\n");
1130 	printf("	[-r N] Number of repetitions per thread (default 5000)\n");
1131 	printf("	[-d] Disable rseq system call (no initialization)\n");
1132 	printf("	[-D M] Disable rseq for each M threads\n");
1133 	printf("	[-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement\n");
1134 	printf("	[-M] Push into buffer and memcpy buffer with memory barriers.\n");
1135 	printf("	[-v] Verbose output.\n");
1136 	printf("	[-h] Show this help.\n");
1137 	printf("\n");
1138 }
1139 
1140 int main(int argc, char **argv)
1141 {
1142 	int i;
1143 
1144 	for (i = 1; i < argc; i++) {
1145 		if (argv[i][0] != '-')
1146 			continue;
1147 		switch (argv[i][1]) {
1148 		case '1':
1149 		case '2':
1150 		case '3':
1151 		case '4':
1152 		case '5':
1153 		case '6':
1154 		case '7':
1155 		case '8':
1156 		case '9':
1157 			if (argc < i + 2) {
1158 				show_usage(argc, argv);
1159 				goto error;
1160 			}
1161 			loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
1162 			i++;
1163 			break;
1164 		case 'm':
1165 			if (argc < i + 2) {
1166 				show_usage(argc, argv);
1167 				goto error;
1168 			}
1169 			opt_modulo = atol(argv[i + 1]);
1170 			if (opt_modulo < 0) {
1171 				show_usage(argc, argv);
1172 				goto error;
1173 			}
1174 			i++;
1175 			break;
1176 		case 's':
1177 			if (argc < i + 2) {
1178 				show_usage(argc, argv);
1179 				goto error;
1180 			}
1181 			opt_sleep = atol(argv[i + 1]);
1182 			if (opt_sleep < 0) {
1183 				show_usage(argc, argv);
1184 				goto error;
1185 			}
1186 			i++;
1187 			break;
1188 		case 'y':
1189 			opt_yield = 1;
1190 			break;
1191 		case 'k':
1192 			opt_signal = 1;
1193 			break;
1194 		case 'd':
1195 			opt_disable_rseq = 1;
1196 			break;
1197 		case 'D':
1198 			if (argc < i + 2) {
1199 				show_usage(argc, argv);
1200 				goto error;
1201 			}
1202 			opt_disable_mod = atol(argv[i + 1]);
1203 			if (opt_disable_mod < 0) {
1204 				show_usage(argc, argv);
1205 				goto error;
1206 			}
1207 			i++;
1208 			break;
1209 		case 't':
1210 			if (argc < i + 2) {
1211 				show_usage(argc, argv);
1212 				goto error;
1213 			}
1214 			opt_threads = atol(argv[i + 1]);
1215 			if (opt_threads < 0) {
1216 				show_usage(argc, argv);
1217 				goto error;
1218 			}
1219 			i++;
1220 			break;
1221 		case 'r':
1222 			if (argc < i + 2) {
1223 				show_usage(argc, argv);
1224 				goto error;
1225 			}
1226 			opt_reps = atoll(argv[i + 1]);
1227 			if (opt_reps < 0) {
1228 				show_usage(argc, argv);
1229 				goto error;
1230 			}
1231 			i++;
1232 			break;
1233 		case 'h':
1234 			show_usage(argc, argv);
1235 			goto end;
1236 		case 'T':
1237 			if (argc < i + 2) {
1238 				show_usage(argc, argv);
1239 				goto error;
1240 			}
1241 			opt_test = *argv[i + 1];
1242 			switch (opt_test) {
1243 			case 's':
1244 			case 'l':
1245 			case 'i':
1246 			case 'b':
1247 			case 'm':
1248 				break;
1249 			default:
1250 				show_usage(argc, argv);
1251 				goto error;
1252 			}
1253 			i++;
1254 			break;
1255 		case 'v':
1256 			verbose = 1;
1257 			break;
1258 		case 'M':
1259 			opt_mb = 1;
1260 			break;
1261 		default:
1262 			show_usage(argc, argv);
1263 			goto error;
1264 		}
1265 	}
1266 
1267 	loop_cnt_1 = loop_cnt[1];
1268 	loop_cnt_2 = loop_cnt[2];
1269 	loop_cnt_3 = loop_cnt[3];
1270 	loop_cnt_4 = loop_cnt[4];
1271 	loop_cnt_5 = loop_cnt[5];
1272 	loop_cnt_6 = loop_cnt[6];
1273 
1274 	if (set_signal_handler())
1275 		goto error;
1276 
1277 	if (!opt_disable_rseq && rseq_register_current_thread())
1278 		goto error;
1279 	switch (opt_test) {
1280 	case 's':
1281 		printf_verbose("spinlock\n");
1282 		test_percpu_spinlock();
1283 		break;
1284 	case 'l':
1285 		printf_verbose("linked list\n");
1286 		test_percpu_list();
1287 		break;
1288 	case 'b':
1289 		printf_verbose("buffer\n");
1290 		test_percpu_buffer();
1291 		break;
1292 	case 'm':
1293 		printf_verbose("memcpy buffer\n");
1294 		test_percpu_memcpy_buffer();
1295 		break;
1296 	case 'i':
1297 		printf_verbose("counter increment\n");
1298 		test_percpu_inc();
1299 		break;
1300 	}
1301 	if (!opt_disable_rseq && rseq_unregister_current_thread())
1302 		abort();
1303 end:
1304 	return 0;
1305 
1306 error:
1307 	return -1;
1308 }
1309