xref: /linux/tools/testing/selftests/powerpc/ptrace/ptrace-pkey.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Ptrace test for Memory Protection Key registers
4  *
5  * Copyright (C) 2015 Anshuman Khandual, IBM Corporation.
6  * Copyright (C) 2018 IBM Corporation.
7  */
8 #include "ptrace.h"
9 #include "child.h"
10 
11 #ifndef __NR_pkey_alloc
12 #define __NR_pkey_alloc		384
13 #endif
14 
15 #ifndef __NR_pkey_free
16 #define __NR_pkey_free		385
17 #endif
18 
19 #ifndef NT_PPC_PKEY
20 #define NT_PPC_PKEY		0x110
21 #endif
22 
23 #ifndef PKEY_DISABLE_EXECUTE
24 #define PKEY_DISABLE_EXECUTE	0x4
25 #endif
26 
27 #define AMR_BITS_PER_PKEY 2
28 #define PKEY_REG_BITS (sizeof(u64) * 8)
29 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey + 1) * AMR_BITS_PER_PKEY))
30 
31 static const char user_read[] = "[User Read (Running)]";
32 static const char user_write[] = "[User Write (Running)]";
33 static const char ptrace_read_running[] = "[Ptrace Read (Running)]";
34 static const char ptrace_write_running[] = "[Ptrace Write (Running)]";
35 
36 /* Information shared between the parent and the child. */
37 struct shared_info {
38 	struct child_sync child_sync;
39 
40 	/* AMR value the parent expects to read from the child. */
41 	unsigned long amr1;
42 
43 	/* AMR value the parent is expected to write to the child. */
44 	unsigned long amr2;
45 
46 	/* AMR value that ptrace should refuse to write to the child. */
47 	unsigned long amr3;
48 
49 	/* IAMR value the parent expects to read from the child. */
50 	unsigned long expected_iamr;
51 
52 	/* UAMOR value the parent expects to read from the child. */
53 	unsigned long expected_uamor;
54 
55 	/*
56 	 * IAMR and UAMOR values that ptrace should refuse to write to the child
57 	 * (even though they're valid ones) because userspace doesn't have
58 	 * access to those registers.
59 	 */
60 	unsigned long new_iamr;
61 	unsigned long new_uamor;
62 };
63 
64 static int sys_pkey_alloc(unsigned long flags, unsigned long init_access_rights)
65 {
66 	return syscall(__NR_pkey_alloc, flags, init_access_rights);
67 }
68 
69 static int sys_pkey_free(int pkey)
70 {
71 	return syscall(__NR_pkey_free, pkey);
72 }
73 
74 static int child(struct shared_info *info)
75 {
76 	unsigned long reg;
77 	bool disable_execute = true;
78 	int pkey1, pkey2, pkey3;
79 	int ret;
80 
81 	/* Wait until parent fills out the initial register values. */
82 	ret = wait_parent(&info->child_sync);
83 	if (ret)
84 		return ret;
85 
86 	/* Get some pkeys so that we can change their bits in the AMR. */
87 	pkey1 = sys_pkey_alloc(0, PKEY_DISABLE_EXECUTE);
88 	if (pkey1 < 0) {
89 		pkey1 = sys_pkey_alloc(0, 0);
90 		CHILD_FAIL_IF(pkey1 < 0, &info->child_sync);
91 
92 		disable_execute = false;
93 	}
94 
95 	pkey2 = sys_pkey_alloc(0, 0);
96 	CHILD_FAIL_IF(pkey2 < 0, &info->child_sync);
97 
98 	pkey3 = sys_pkey_alloc(0, 0);
99 	CHILD_FAIL_IF(pkey3 < 0, &info->child_sync);
100 
101 	info->amr1 |= 3ul << pkeyshift(pkey1);
102 	info->amr2 |= 3ul << pkeyshift(pkey2);
103 	info->amr3 |= info->amr2 | 3ul << pkeyshift(pkey3);
104 
105 	if (disable_execute)
106 		info->expected_iamr |= 1ul << pkeyshift(pkey1);
107 	else
108 		info->expected_iamr &= ~(1ul << pkeyshift(pkey1));
109 
110 	info->expected_iamr &= ~(1ul << pkeyshift(pkey2) | 1ul << pkeyshift(pkey3));
111 
112 	info->expected_uamor |= 3ul << pkeyshift(pkey1) |
113 				3ul << pkeyshift(pkey2);
114 	info->new_iamr |= 1ul << pkeyshift(pkey1) | 1ul << pkeyshift(pkey2);
115 	info->new_uamor |= 3ul << pkeyshift(pkey1);
116 
117 	/*
118 	 * We won't use pkey3. We just want a plausible but invalid key to test
119 	 * whether ptrace will let us write to AMR bits we are not supposed to.
120 	 *
121 	 * This also tests whether the kernel restores the UAMOR permissions
122 	 * after a key is freed.
123 	 */
124 	sys_pkey_free(pkey3);
125 
126 	printf("%-30s AMR: %016lx pkey1: %d pkey2: %d pkey3: %d\n",
127 	       user_write, info->amr1, pkey1, pkey2, pkey3);
128 
129 	mtspr(SPRN_AMR, info->amr1);
130 
131 	/* Wait for parent to read our AMR value and write a new one. */
132 	ret = prod_parent(&info->child_sync);
133 	CHILD_FAIL_IF(ret, &info->child_sync);
134 
135 	ret = wait_parent(&info->child_sync);
136 	if (ret)
137 		return ret;
138 
139 	reg = mfspr(SPRN_AMR);
140 
141 	printf("%-30s AMR: %016lx\n", user_read, reg);
142 
143 	CHILD_FAIL_IF(reg != info->amr2, &info->child_sync);
144 
145 	/*
146 	 * Wait for parent to try to write an invalid AMR value.
147 	 */
148 	ret = prod_parent(&info->child_sync);
149 	CHILD_FAIL_IF(ret, &info->child_sync);
150 
151 	ret = wait_parent(&info->child_sync);
152 	if (ret)
153 		return ret;
154 
155 	reg = mfspr(SPRN_AMR);
156 
157 	printf("%-30s AMR: %016lx\n", user_read, reg);
158 
159 	CHILD_FAIL_IF(reg != info->amr2, &info->child_sync);
160 
161 	/*
162 	 * Wait for parent to try to write an IAMR and a UAMOR value. We can't
163 	 * verify them, but we can verify that the AMR didn't change.
164 	 */
165 	ret = prod_parent(&info->child_sync);
166 	CHILD_FAIL_IF(ret, &info->child_sync);
167 
168 	ret = wait_parent(&info->child_sync);
169 	if (ret)
170 		return ret;
171 
172 	reg = mfspr(SPRN_AMR);
173 
174 	printf("%-30s AMR: %016lx\n", user_read, reg);
175 
176 	CHILD_FAIL_IF(reg != info->amr2, &info->child_sync);
177 
178 	/* Now let parent now that we are finished. */
179 
180 	ret = prod_parent(&info->child_sync);
181 	CHILD_FAIL_IF(ret, &info->child_sync);
182 
183 	return TEST_PASS;
184 }
185 
186 static int parent(struct shared_info *info, pid_t pid)
187 {
188 	unsigned long regs[3];
189 	int ret, status;
190 
191 	/*
192 	 * Get the initial values for AMR, IAMR and UAMOR and communicate them
193 	 * to the child.
194 	 */
195 	ret = ptrace_read_regs(pid, NT_PPC_PKEY, regs, 3);
196 	PARENT_SKIP_IF_UNSUPPORTED(ret, &info->child_sync);
197 	PARENT_FAIL_IF(ret, &info->child_sync);
198 
199 	info->amr1 = info->amr2 = info->amr3 = regs[0];
200 	info->expected_iamr = info->new_iamr = regs[1];
201 	info->expected_uamor = info->new_uamor = regs[2];
202 
203 	/* Wake up child so that it can set itself up. */
204 	ret = prod_child(&info->child_sync);
205 	PARENT_FAIL_IF(ret, &info->child_sync);
206 
207 	ret = wait_child(&info->child_sync);
208 	if (ret)
209 		return ret;
210 
211 	/* Verify that we can read the pkey registers from the child. */
212 	ret = ptrace_read_regs(pid, NT_PPC_PKEY, regs, 3);
213 	PARENT_FAIL_IF(ret, &info->child_sync);
214 
215 	printf("%-30s AMR: %016lx IAMR: %016lx UAMOR: %016lx\n",
216 	       ptrace_read_running, regs[0], regs[1], regs[2]);
217 
218 	PARENT_FAIL_IF(regs[0] != info->amr1, &info->child_sync);
219 	PARENT_FAIL_IF(regs[1] != info->expected_iamr, &info->child_sync);
220 	PARENT_FAIL_IF(regs[2] != info->expected_uamor, &info->child_sync);
221 
222 	/* Write valid AMR value in child. */
223 	ret = ptrace_write_regs(pid, NT_PPC_PKEY, &info->amr2, 1);
224 	PARENT_FAIL_IF(ret, &info->child_sync);
225 
226 	printf("%-30s AMR: %016lx\n", ptrace_write_running, info->amr2);
227 
228 	/* Wake up child so that it can verify it changed. */
229 	ret = prod_child(&info->child_sync);
230 	PARENT_FAIL_IF(ret, &info->child_sync);
231 
232 	ret = wait_child(&info->child_sync);
233 	if (ret)
234 		return ret;
235 
236 	/* Write invalid AMR value in child. */
237 	ret = ptrace_write_regs(pid, NT_PPC_PKEY, &info->amr3, 1);
238 	PARENT_FAIL_IF(ret, &info->child_sync);
239 
240 	printf("%-30s AMR: %016lx\n", ptrace_write_running, info->amr3);
241 
242 	/* Wake up child so that it can verify it didn't change. */
243 	ret = prod_child(&info->child_sync);
244 	PARENT_FAIL_IF(ret, &info->child_sync);
245 
246 	ret = wait_child(&info->child_sync);
247 	if (ret)
248 		return ret;
249 
250 	/* Try to write to IAMR. */
251 	regs[0] = info->amr1;
252 	regs[1] = info->new_iamr;
253 	ret = ptrace_write_regs(pid, NT_PPC_PKEY, regs, 2);
254 	PARENT_FAIL_IF(!ret, &info->child_sync);
255 
256 	printf("%-30s AMR: %016lx IAMR: %016lx\n",
257 	       ptrace_write_running, regs[0], regs[1]);
258 
259 	/* Try to write to IAMR and UAMOR. */
260 	regs[2] = info->new_uamor;
261 	ret = ptrace_write_regs(pid, NT_PPC_PKEY, regs, 3);
262 	PARENT_FAIL_IF(!ret, &info->child_sync);
263 
264 	printf("%-30s AMR: %016lx IAMR: %016lx UAMOR: %016lx\n",
265 	       ptrace_write_running, regs[0], regs[1], regs[2]);
266 
267 	/* Verify that all registers still have their expected values. */
268 	ret = ptrace_read_regs(pid, NT_PPC_PKEY, regs, 3);
269 	PARENT_FAIL_IF(ret, &info->child_sync);
270 
271 	printf("%-30s AMR: %016lx IAMR: %016lx UAMOR: %016lx\n",
272 	       ptrace_read_running, regs[0], regs[1], regs[2]);
273 
274 	PARENT_FAIL_IF(regs[0] != info->amr2, &info->child_sync);
275 	PARENT_FAIL_IF(regs[1] != info->expected_iamr, &info->child_sync);
276 	PARENT_FAIL_IF(regs[2] != info->expected_uamor, &info->child_sync);
277 
278 	/* Wake up child so that it can verify AMR didn't change and wrap up. */
279 	ret = prod_child(&info->child_sync);
280 	PARENT_FAIL_IF(ret, &info->child_sync);
281 
282 	ret = wait(&status);
283 	if (ret != pid) {
284 		printf("Child's exit status not captured\n");
285 		ret = TEST_PASS;
286 	} else if (!WIFEXITED(status)) {
287 		printf("Child exited abnormally\n");
288 		ret = TEST_FAIL;
289 	} else
290 		ret = WEXITSTATUS(status) ? TEST_FAIL : TEST_PASS;
291 
292 	return ret;
293 }
294 
295 static int ptrace_pkey(void)
296 {
297 	struct shared_info *info;
298 	int shm_id;
299 	int ret;
300 	pid_t pid;
301 
302 	shm_id = shmget(IPC_PRIVATE, sizeof(*info), 0777 | IPC_CREAT);
303 	info = shmat(shm_id, NULL, 0);
304 
305 	ret = init_child_sync(&info->child_sync);
306 	if (ret)
307 		return ret;
308 
309 	pid = fork();
310 	if (pid < 0) {
311 		perror("fork() failed");
312 		ret = TEST_FAIL;
313 	} else if (pid == 0)
314 		ret = child(info);
315 	else
316 		ret = parent(info, pid);
317 
318 	shmdt(info);
319 
320 	if (pid) {
321 		destroy_child_sync(&info->child_sync);
322 		shmctl(shm_id, IPC_RMID, NULL);
323 	}
324 
325 	return ret;
326 }
327 
328 int main(int argc, char *argv[])
329 {
330 	return test_harness(ptrace_pkey, "ptrace_pkey");
331 }
332