xref: /linux/tools/testing/selftests/net/nat6to4.bpf.c (revision 621cde16e49b3ecf7d59a8106a20aaebfb4a59a9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This code is taken from the Android Open Source Project and the author
4  * (Maciej Żenczykowski) has gave permission to relicense it under the
5  * GPLv2. Therefore this program is free software;
6  * You can redistribute it and/or modify it under the terms of the GNU
7  * General Public License version 2 as published by the Free Software
8  * Foundation
9 
10  * The original headers, including the original license headers, are
11  * included below for completeness.
12  *
13  * Copyright (C) 2019 The Android Open Source Project
14  *
15  * Licensed under the Apache License, Version 2.0 (the "License");
16  * you may not use this file except in compliance with the License.
17  * You may obtain a copy of the License at
18  *
19  *      http://www.apache.org/licenses/LICENSE-2.0
20  *
21  * Unless required by applicable law or agreed to in writing, software
22  * distributed under the License is distributed on an "AS IS" BASIS,
23  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
24  * See the License for the specific language governing permissions and
25  * limitations under the License.
26  */
27 #include <linux/bpf.h>
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/in.h>
32 #include <linux/in6.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/pkt_cls.h>
36 #include <linux/swab.h>
37 #include <stdbool.h>
38 #include <stdint.h>
39 
40 
41 #include <linux/udp.h>
42 
43 #include <bpf/bpf_helpers.h>
44 #include <bpf/bpf_endian.h>
45 
46 #define IP_DF 0x4000  // Flag: "Don't Fragment"
47 
48 SEC("schedcls/ingress6/nat_6")
sched_cls_ingress6_nat_6_prog(struct __sk_buff * skb)49 int sched_cls_ingress6_nat_6_prog(struct __sk_buff *skb)
50 {
51 	const int l2_header_size =  sizeof(struct ethhdr);
52 	void *data = (void *)(long)skb->data;
53 	const void *data_end = (void *)(long)skb->data_end;
54 	const struct ethhdr * const eth = data;  // used iff is_ethernet
55 	const struct ipv6hdr * const ip6 =  (void *)(eth + 1);
56 
57 	// Require ethernet dst mac address to be our unicast address.
58 	if  (skb->pkt_type != PACKET_HOST)
59 		return TC_ACT_OK;
60 
61 	// Must be meta-ethernet IPv6 frame
62 	if (skb->protocol != bpf_htons(ETH_P_IPV6))
63 		return TC_ACT_OK;
64 
65 	// Must have (ethernet and) ipv6 header
66 	if (data + l2_header_size + sizeof(*ip6) > data_end)
67 		return TC_ACT_OK;
68 
69 	// Ethertype - if present - must be IPv6
70 	if (eth->h_proto != bpf_htons(ETH_P_IPV6))
71 		return TC_ACT_OK;
72 
73 	// IP version must be 6
74 	if (ip6->version != 6)
75 		return TC_ACT_OK;
76 	// Maximum IPv6 payload length that can be translated to IPv4
77 	if (bpf_ntohs(ip6->payload_len) > 0xFFFF - sizeof(struct iphdr))
78 		return TC_ACT_OK;
79 	switch (ip6->nexthdr) {
80 	case IPPROTO_TCP:  // For TCP & UDP the checksum neutrality of the chosen IPv6
81 	case IPPROTO_UDP:  // address means there is no need to update their checksums.
82 	case IPPROTO_GRE:  // We do not need to bother looking at GRE/ESP headers,
83 	case IPPROTO_ESP:  // since there is never a checksum to update.
84 		break;
85 	default:  // do not know how to handle anything else
86 		return TC_ACT_OK;
87 	}
88 
89 	struct ethhdr eth2;  // used iff is_ethernet
90 
91 	eth2 = *eth;                     // Copy over the ethernet header (src/dst mac)
92 	eth2.h_proto = bpf_htons(ETH_P_IP);  // But replace the ethertype
93 
94 	struct iphdr ip = {
95 		.version = 4,                                                      // u4
96 		.ihl = sizeof(struct iphdr) / sizeof(__u32),                       // u4
97 		.tos = (ip6->priority << 4) + (ip6->flow_lbl[0] >> 4),             // u8
98 		.tot_len = bpf_htons(bpf_ntohs(ip6->payload_len) + sizeof(struct iphdr)),  // u16
99 		.id = 0,                                                           // u16
100 		.frag_off = bpf_htons(IP_DF),                                          // u16
101 		.ttl = ip6->hop_limit,                                             // u8
102 		.protocol = ip6->nexthdr,                                          // u8
103 		.check = 0,                                                        // u16
104 		.saddr = 0x0201a8c0,                            // u32
105 		.daddr = 0x0101a8c0,                                         // u32
106 	};
107 
108 	// Calculate the IPv4 one's complement checksum of the IPv4 header.
109 	__wsum sum4 = 0;
110 
111 	for (int i = 0; i < sizeof(ip) / sizeof(__u16); ++i)
112 		sum4 += ((__u16 *)&ip)[i];
113 
114 	// Note that sum4 is guaranteed to be non-zero by virtue of ip.version == 4
115 	sum4 = (sum4 & 0xFFFF) + (sum4 >> 16);  // collapse u32 into range 1 .. 0x1FFFE
116 	sum4 = (sum4 & 0xFFFF) + (sum4 >> 16);  // collapse any potential carry into u16
117 	ip.check = (__u16)~sum4;                // sum4 cannot be zero, so this is never 0xFFFF
118 
119 	// Calculate the *negative* IPv6 16-bit one's complement checksum of the IPv6 header.
120 	__wsum sum6 = 0;
121 	// We'll end up with a non-zero sum due to ip6->version == 6 (which has '0' bits)
122 	for (int i = 0; i < sizeof(*ip6) / sizeof(__u16); ++i)
123 		sum6 += ~((__u16 *)ip6)[i];  // note the bitwise negation
124 
125 	// Note that there is no L4 checksum update: we are relying on the checksum neutrality
126 	// of the ipv6 address chosen by netd's ClatdController.
127 
128 	// Packet mutations begin - point of no return, but if this first modification fails
129 	// the packet is probably still pristine, so let clatd handle it.
130 	if (bpf_skb_change_proto(skb, bpf_htons(ETH_P_IP), 0))
131 		return TC_ACT_OK;
132 	bpf_csum_update(skb, sum6);
133 
134 	data = (void *)(long)skb->data;
135 	data_end = (void *)(long)skb->data_end;
136 	if (data + l2_header_size + sizeof(struct iphdr) > data_end)
137 		return TC_ACT_SHOT;
138 
139 	struct ethhdr *new_eth = data;
140 
141 	// Copy over the updated ethernet header
142 	*new_eth = eth2;
143 
144 	// Copy over the new ipv4 header.
145 	*(struct iphdr *)(new_eth + 1) = ip;
146 	return bpf_redirect(skb->ifindex, BPF_F_INGRESS);
147 }
148 
149 SEC("schedcls/egress4/snat4")
sched_cls_egress4_snat4_prog(struct __sk_buff * skb)150 int sched_cls_egress4_snat4_prog(struct __sk_buff *skb)
151 {
152 	const int l2_header_size =  sizeof(struct ethhdr);
153 	void *data = (void *)(long)skb->data;
154 	const void *data_end = (void *)(long)skb->data_end;
155 	const struct ethhdr *const eth = data;  // used iff is_ethernet
156 	const struct iphdr *const ip4 = (void *)(eth + 1);
157 
158 	// Must be meta-ethernet IPv4 frame
159 	if (skb->protocol != bpf_htons(ETH_P_IP))
160 		return TC_ACT_OK;
161 
162 	// Must have ipv4 header
163 	if (data + l2_header_size + sizeof(struct ipv6hdr) > data_end)
164 		return TC_ACT_OK;
165 
166 	// Ethertype - if present - must be IPv4
167 	if (eth->h_proto != bpf_htons(ETH_P_IP))
168 		return TC_ACT_OK;
169 
170 	// IP version must be 4
171 	if (ip4->version != 4)
172 		return TC_ACT_OK;
173 
174 	// We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header
175 	if (ip4->ihl != 5)
176 		return TC_ACT_OK;
177 
178 	// Maximum IPv6 payload length that can be translated to IPv4
179 	if (bpf_htons(ip4->tot_len) > 0xFFFF - sizeof(struct ipv6hdr))
180 		return TC_ACT_OK;
181 
182 	// Calculate the IPv4 one's complement checksum of the IPv4 header.
183 	__wsum sum4 = 0;
184 
185 	for (int i = 0; i < sizeof(*ip4) / sizeof(__u16); ++i)
186 		sum4 += ((__u16 *)ip4)[i];
187 
188 	// Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4
189 	sum4 = (sum4 & 0xFFFF) + (sum4 >> 16);  // collapse u32 into range 1 .. 0x1FFFE
190 	sum4 = (sum4 & 0xFFFF) + (sum4 >> 16);  // collapse any potential carry into u16
191 	// for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF
192 	if (sum4 != 0xFFFF)
193 		return TC_ACT_OK;
194 
195 	// Minimum IPv4 total length is the size of the header
196 	if (bpf_ntohs(ip4->tot_len) < sizeof(*ip4))
197 		return TC_ACT_OK;
198 
199 	// We are incapable of dealing with IPv4 fragments
200 	if (ip4->frag_off & ~bpf_htons(IP_DF))
201 		return TC_ACT_OK;
202 
203 	switch (ip4->protocol) {
204 	case IPPROTO_TCP:  // For TCP & UDP the checksum neutrality of the chosen IPv6
205 	case IPPROTO_GRE:  // address means there is no need to update their checksums.
206 	case IPPROTO_ESP:  // We do not need to bother looking at GRE/ESP headers,
207 		break;         // since there is never a checksum to update.
208 
209 	case IPPROTO_UDP:  // See above comment, but must also have UDP header...
210 		if (data + sizeof(*ip4) + sizeof(struct udphdr) > data_end)
211 			return TC_ACT_OK;
212 		const struct udphdr *uh = (const struct udphdr *)(ip4 + 1);
213 		// If IPv4/UDP checksum is 0 then fallback to clatd so it can calculate the
214 		// checksum.  Otherwise the network or more likely the NAT64 gateway might
215 		// drop the packet because in most cases IPv6/UDP packets with a zero checksum
216 		// are invalid. See RFC 6935.  TODO: calculate checksum via bpf_csum_diff()
217 		if (!uh->check)
218 			return TC_ACT_OK;
219 		break;
220 
221 	default:  // do not know how to handle anything else
222 		return TC_ACT_OK;
223 	}
224 	struct ethhdr eth2;  // used iff is_ethernet
225 
226 	eth2 = *eth;                     // Copy over the ethernet header (src/dst mac)
227 	eth2.h_proto = bpf_htons(ETH_P_IPV6);  // But replace the ethertype
228 
229 	struct ipv6hdr ip6 = {
230 		.version = 6,                                    // __u8:4
231 		.priority = ip4->tos >> 4,                       // __u8:4
232 		.flow_lbl = {(ip4->tos & 0xF) << 4, 0, 0},       // __u8[3]
233 		.payload_len = bpf_htons(bpf_ntohs(ip4->tot_len) - 20),  // __be16
234 		.nexthdr = ip4->protocol,                        // __u8
235 		.hop_limit = ip4->ttl,                           // __u8
236 	};
237 	ip6.saddr.in6_u.u6_addr32[0] = bpf_htonl(0x20010db8);
238 	ip6.saddr.in6_u.u6_addr32[1] = 0;
239 	ip6.saddr.in6_u.u6_addr32[2] = 0;
240 	ip6.saddr.in6_u.u6_addr32[3] = bpf_htonl(1);
241 	ip6.daddr.in6_u.u6_addr32[0] = bpf_htonl(0x20010db8);
242 	ip6.daddr.in6_u.u6_addr32[1] = 0;
243 	ip6.daddr.in6_u.u6_addr32[2] = 0;
244 	ip6.daddr.in6_u.u6_addr32[3] = bpf_htonl(2);
245 
246 	// Calculate the IPv6 16-bit one's complement checksum of the IPv6 header.
247 	__wsum sum6 = 0;
248 	// We'll end up with a non-zero sum due to ip6.version == 6
249 	for (int i = 0; i < sizeof(ip6) / sizeof(__u16); ++i)
250 		sum6 += ((__u16 *)&ip6)[i];
251 
252 	// Packet mutations begin - point of no return, but if this first modification fails
253 	// the packet is probably still pristine, so let clatd handle it.
254 	if (bpf_skb_change_proto(skb, bpf_htons(ETH_P_IPV6), 0))
255 		return TC_ACT_OK;
256 
257 	// This takes care of updating the skb->csum field for a CHECKSUM_COMPLETE packet.
258 	// In such a case, skb->csum is a 16-bit one's complement sum of the entire payload,
259 	// thus we need to subtract out the ipv4 header's sum, and add in the ipv6 header's sum.
260 	// However, we've already verified the ipv4 checksum is correct and thus 0.
261 	// Thus we only need to add the ipv6 header's sum.
262 	//
263 	// bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error
264 	// (-ENOTSUPP) if it isn't.  So we just ignore the return code (see above for more details).
265 	bpf_csum_update(skb, sum6);
266 
267 	// bpf_skb_change_proto() invalidates all pointers - reload them.
268 	data = (void *)(long)skb->data;
269 	data_end = (void *)(long)skb->data_end;
270 
271 	// I cannot think of any valid way for this error condition to trigger, however I do
272 	// believe the explicit check is required to keep the in kernel ebpf verifier happy.
273 	if (data + l2_header_size + sizeof(ip6) > data_end)
274 		return TC_ACT_SHOT;
275 
276 	struct ethhdr *new_eth = data;
277 
278 	// Copy over the updated ethernet header
279 	*new_eth = eth2;
280 	// Copy over the new ipv4 header.
281 	*(struct ipv6hdr *)(new_eth + 1) = ip6;
282 	return TC_ACT_OK;
283 }
284 
285 char _license[] SEC("license") = ("GPL");
286