xref: /linux/tools/testing/selftests/mm/protection_keys.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
4  *
5  * There are examples in here of:
6  *  * how to set protection keys on memory
7  *  * how to set/clear bits in pkey registers (the rights register)
8  *  * how to handle SEGV_PKUERR signals and extract pkey-relevant
9  *    information from the siginfo
10  *
11  * Things to add:
12  *	make sure KSM and KSM COW breaking works
13  *	prefault pages in at malloc, or not
14  *	protect MPX bounds tables with protection keys?
15  *	make sure VMA splitting/merging is working correctly
16  *	OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17  *	look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18  *	do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19  *
20  * Compile like this:
21  *	gcc -mxsave      -o protection_keys    -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22  *	gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23  */
24 #define _GNU_SOURCE
25 #define __SANE_USERSPACE_TYPES__
26 #include <errno.h>
27 #include <linux/elf.h>
28 #include <linux/futex.h>
29 #include <time.h>
30 #include <sys/time.h>
31 #include <sys/syscall.h>
32 #include <string.h>
33 #include <stdio.h>
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <signal.h>
37 #include <assert.h>
38 #include <stdlib.h>
39 #include <ucontext.h>
40 #include <sys/mman.h>
41 #include <sys/types.h>
42 #include <sys/wait.h>
43 #include <sys/stat.h>
44 #include <fcntl.h>
45 #include <unistd.h>
46 #include <sys/ptrace.h>
47 #include <setjmp.h>
48 
49 #include "pkey-helpers.h"
50 
51 int iteration_nr = 1;
52 int test_nr;
53 
54 u64 shadow_pkey_reg;
55 int dprint_in_signal;
56 char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
57 char buf[256];
58 
59 void cat_into_file(char *str, char *file)
60 {
61 	int fd = open(file, O_RDWR);
62 	int ret;
63 
64 	dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
65 	/*
66 	 * these need to be raw because they are called under
67 	 * pkey_assert()
68 	 */
69 	if (fd < 0) {
70 		fprintf(stderr, "error opening '%s'\n", str);
71 		perror("error: ");
72 		exit(__LINE__);
73 	}
74 
75 	ret = write(fd, str, strlen(str));
76 	if (ret != strlen(str)) {
77 		perror("write to file failed");
78 		fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
79 		exit(__LINE__);
80 	}
81 	close(fd);
82 }
83 
84 #if CONTROL_TRACING > 0
85 static int warned_tracing;
86 int tracing_root_ok(void)
87 {
88 	if (geteuid() != 0) {
89 		if (!warned_tracing)
90 			fprintf(stderr, "WARNING: not run as root, "
91 					"can not do tracing control\n");
92 		warned_tracing = 1;
93 		return 0;
94 	}
95 	return 1;
96 }
97 #endif
98 
99 void tracing_on(void)
100 {
101 #if CONTROL_TRACING > 0
102 #define TRACEDIR "/sys/kernel/tracing"
103 	char pidstr[32];
104 
105 	if (!tracing_root_ok())
106 		return;
107 
108 	sprintf(pidstr, "%d", getpid());
109 	cat_into_file("0", TRACEDIR "/tracing_on");
110 	cat_into_file("\n", TRACEDIR "/trace");
111 	if (1) {
112 		cat_into_file("function_graph", TRACEDIR "/current_tracer");
113 		cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
114 	} else {
115 		cat_into_file("nop", TRACEDIR "/current_tracer");
116 	}
117 	cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
118 	cat_into_file("1", TRACEDIR "/tracing_on");
119 	dprintf1("enabled tracing\n");
120 #endif
121 }
122 
123 void tracing_off(void)
124 {
125 #if CONTROL_TRACING > 0
126 	if (!tracing_root_ok())
127 		return;
128 	cat_into_file("0", "/sys/kernel/tracing/tracing_on");
129 #endif
130 }
131 
132 void abort_hooks(void)
133 {
134 	fprintf(stderr, "running %s()...\n", __func__);
135 	tracing_off();
136 #ifdef SLEEP_ON_ABORT
137 	sleep(SLEEP_ON_ABORT);
138 #endif
139 }
140 
141 /*
142  * This attempts to have roughly a page of instructions followed by a few
143  * instructions that do a write, and another page of instructions.  That
144  * way, we are pretty sure that the write is in the second page of
145  * instructions and has at least a page of padding behind it.
146  *
147  * *That* lets us be sure to madvise() away the write instruction, which
148  * will then fault, which makes sure that the fault code handles
149  * execute-only memory properly.
150  */
151 #ifdef __powerpc64__
152 /* This way, both 4K and 64K alignment are maintained */
153 __attribute__((__aligned__(65536)))
154 #else
155 __attribute__((__aligned__(PAGE_SIZE)))
156 #endif
157 void lots_o_noops_around_write(int *write_to_me)
158 {
159 	dprintf3("running %s()\n", __func__);
160 	__page_o_noops();
161 	/* Assume this happens in the second page of instructions: */
162 	*write_to_me = __LINE__;
163 	/* pad out by another page: */
164 	__page_o_noops();
165 	dprintf3("%s() done\n", __func__);
166 }
167 
168 void dump_mem(void *dumpme, int len_bytes)
169 {
170 	char *c = (void *)dumpme;
171 	int i;
172 
173 	for (i = 0; i < len_bytes; i += sizeof(u64)) {
174 		u64 *ptr = (u64 *)(c + i);
175 		dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
176 	}
177 }
178 
179 static u32 hw_pkey_get(int pkey, unsigned long flags)
180 {
181 	u64 pkey_reg = __read_pkey_reg();
182 
183 	dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
184 			__func__, pkey, flags, 0, 0);
185 	dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
186 
187 	return (u32) get_pkey_bits(pkey_reg, pkey);
188 }
189 
190 static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
191 {
192 	u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
193 	u64 old_pkey_reg = __read_pkey_reg();
194 	u64 new_pkey_reg;
195 
196 	/* make sure that 'rights' only contains the bits we expect: */
197 	assert(!(rights & ~mask));
198 
199 	/* modify bits accordingly in old pkey_reg and assign it */
200 	new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
201 
202 	__write_pkey_reg(new_pkey_reg);
203 
204 	dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
205 		" pkey_reg now: %016llx old_pkey_reg: %016llx\n",
206 		__func__, pkey, rights, flags, 0, __read_pkey_reg(),
207 		old_pkey_reg);
208 	return 0;
209 }
210 
211 void pkey_disable_set(int pkey, int flags)
212 {
213 	unsigned long syscall_flags = 0;
214 	int ret;
215 	int pkey_rights;
216 	u64 orig_pkey_reg = read_pkey_reg();
217 
218 	dprintf1("START->%s(%d, 0x%x)\n", __func__,
219 		pkey, flags);
220 	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
221 
222 	pkey_rights = hw_pkey_get(pkey, syscall_flags);
223 
224 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
225 			pkey, pkey, pkey_rights);
226 
227 	pkey_assert(pkey_rights >= 0);
228 
229 	pkey_rights |= flags;
230 
231 	ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
232 	assert(!ret);
233 	/* pkey_reg and flags have the same format */
234 	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
235 	dprintf1("%s(%d) shadow: 0x%016llx\n",
236 		__func__, pkey, shadow_pkey_reg);
237 
238 	pkey_assert(ret >= 0);
239 
240 	pkey_rights = hw_pkey_get(pkey, syscall_flags);
241 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
242 			pkey, pkey, pkey_rights);
243 
244 	dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
245 		__func__, pkey, read_pkey_reg());
246 	if (flags)
247 		pkey_assert(read_pkey_reg() >= orig_pkey_reg);
248 	dprintf1("END<---%s(%d, 0x%x)\n", __func__,
249 		pkey, flags);
250 }
251 
252 void pkey_disable_clear(int pkey, int flags)
253 {
254 	unsigned long syscall_flags = 0;
255 	int ret;
256 	int pkey_rights = hw_pkey_get(pkey, syscall_flags);
257 	u64 orig_pkey_reg = read_pkey_reg();
258 
259 	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
260 
261 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
262 			pkey, pkey, pkey_rights);
263 	pkey_assert(pkey_rights >= 0);
264 
265 	pkey_rights &= ~flags;
266 
267 	ret = hw_pkey_set(pkey, pkey_rights, 0);
268 	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
269 	pkey_assert(ret >= 0);
270 
271 	pkey_rights = hw_pkey_get(pkey, syscall_flags);
272 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
273 			pkey, pkey, pkey_rights);
274 
275 	dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
276 			pkey, read_pkey_reg());
277 	if (flags)
278 		assert(read_pkey_reg() <= orig_pkey_reg);
279 }
280 
281 void pkey_write_allow(int pkey)
282 {
283 	pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
284 }
285 void pkey_write_deny(int pkey)
286 {
287 	pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
288 }
289 void pkey_access_allow(int pkey)
290 {
291 	pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
292 }
293 void pkey_access_deny(int pkey)
294 {
295 	pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
296 }
297 
298 static char *si_code_str(int si_code)
299 {
300 	if (si_code == SEGV_MAPERR)
301 		return "SEGV_MAPERR";
302 	if (si_code == SEGV_ACCERR)
303 		return "SEGV_ACCERR";
304 	if (si_code == SEGV_BNDERR)
305 		return "SEGV_BNDERR";
306 	if (si_code == SEGV_PKUERR)
307 		return "SEGV_PKUERR";
308 	return "UNKNOWN";
309 }
310 
311 int pkey_faults;
312 int last_si_pkey = -1;
313 void signal_handler(int signum, siginfo_t *si, void *vucontext)
314 {
315 	ucontext_t *uctxt = vucontext;
316 	int trapno;
317 	unsigned long ip;
318 	char *fpregs;
319 #if defined(__i386__) || defined(__x86_64__) /* arch */
320 	u32 *pkey_reg_ptr;
321 	int pkey_reg_offset;
322 #endif /* arch */
323 	u64 siginfo_pkey;
324 	u32 *si_pkey_ptr;
325 
326 	dprint_in_signal = 1;
327 	dprintf1(">>>>===============SIGSEGV============================\n");
328 	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
329 			__func__, __LINE__,
330 			__read_pkey_reg(), shadow_pkey_reg);
331 
332 	trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
333 	ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
334 	fpregs = (char *) uctxt->uc_mcontext.fpregs;
335 
336 	dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
337 			__func__, trapno, ip, si_code_str(si->si_code),
338 			si->si_code);
339 
340 #if defined(__i386__) || defined(__x86_64__) /* arch */
341 #ifdef __i386__
342 	/*
343 	 * 32-bit has some extra padding so that userspace can tell whether
344 	 * the XSTATE header is present in addition to the "legacy" FPU
345 	 * state.  We just assume that it is here.
346 	 */
347 	fpregs += 0x70;
348 #endif /* i386 */
349 	pkey_reg_offset = pkey_reg_xstate_offset();
350 	pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
351 
352 	/*
353 	 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
354 	 * here.
355 	 */
356 	dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
357 	if (DEBUG_LEVEL > 4)
358 		dump_mem(pkey_reg_ptr - 128, 256);
359 	pkey_assert(*pkey_reg_ptr);
360 #endif /* arch */
361 
362 	dprintf1("siginfo: %p\n", si);
363 	dprintf1(" fpregs: %p\n", fpregs);
364 
365 	if ((si->si_code == SEGV_MAPERR) ||
366 	    (si->si_code == SEGV_ACCERR) ||
367 	    (si->si_code == SEGV_BNDERR)) {
368 		printf("non-PK si_code, exiting...\n");
369 		exit(4);
370 	}
371 
372 	si_pkey_ptr = siginfo_get_pkey_ptr(si);
373 	dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
374 	dump_mem((u8 *)si_pkey_ptr - 8, 24);
375 	siginfo_pkey = *si_pkey_ptr;
376 	pkey_assert(siginfo_pkey < NR_PKEYS);
377 	last_si_pkey = siginfo_pkey;
378 
379 	/*
380 	 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
381 	 * checking
382 	 */
383 	dprintf1("signal pkey_reg from  pkey_reg: %016llx\n",
384 			__read_pkey_reg());
385 	dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
386 #if defined(__i386__) || defined(__x86_64__) /* arch */
387 	dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
388 	*(u64 *)pkey_reg_ptr = 0x00000000;
389 	dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
390 #elif defined(__powerpc64__) /* arch */
391 	/* restore access and let the faulting instruction continue */
392 	pkey_access_allow(siginfo_pkey);
393 #endif /* arch */
394 	pkey_faults++;
395 	dprintf1("<<<<==================================================\n");
396 	dprint_in_signal = 0;
397 }
398 
399 int wait_all_children(void)
400 {
401 	int status;
402 	return waitpid(-1, &status, 0);
403 }
404 
405 void sig_chld(int x)
406 {
407 	dprint_in_signal = 1;
408 	dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
409 	dprint_in_signal = 0;
410 }
411 
412 void setup_sigsegv_handler(void)
413 {
414 	int r, rs;
415 	struct sigaction newact;
416 	struct sigaction oldact;
417 
418 	/* #PF is mapped to sigsegv */
419 	int signum  = SIGSEGV;
420 
421 	newact.sa_handler = 0;
422 	newact.sa_sigaction = signal_handler;
423 
424 	/*sigset_t - signals to block while in the handler */
425 	/* get the old signal mask. */
426 	rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
427 	pkey_assert(rs == 0);
428 
429 	/* call sa_sigaction, not sa_handler*/
430 	newact.sa_flags = SA_SIGINFO;
431 
432 	newact.sa_restorer = 0;  /* void(*)(), obsolete */
433 	r = sigaction(signum, &newact, &oldact);
434 	r = sigaction(SIGALRM, &newact, &oldact);
435 	pkey_assert(r == 0);
436 }
437 
438 void setup_handlers(void)
439 {
440 	signal(SIGCHLD, &sig_chld);
441 	setup_sigsegv_handler();
442 }
443 
444 pid_t fork_lazy_child(void)
445 {
446 	pid_t forkret;
447 
448 	forkret = fork();
449 	pkey_assert(forkret >= 0);
450 	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
451 
452 	if (!forkret) {
453 		/* in the child */
454 		while (1) {
455 			dprintf1("child sleeping...\n");
456 			sleep(30);
457 		}
458 	}
459 	return forkret;
460 }
461 
462 int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
463 		unsigned long pkey)
464 {
465 	int sret;
466 
467 	dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
468 			ptr, size, orig_prot, pkey);
469 
470 	errno = 0;
471 	sret = syscall(__NR_pkey_mprotect, ptr, size, orig_prot, pkey);
472 	if (errno) {
473 		dprintf2("SYS_mprotect_key sret: %d\n", sret);
474 		dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
475 		dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
476 		if (DEBUG_LEVEL >= 2)
477 			perror("SYS_mprotect_pkey");
478 	}
479 	return sret;
480 }
481 
482 int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
483 {
484 	int ret = syscall(SYS_pkey_alloc, flags, init_val);
485 	dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
486 			__func__, flags, init_val, ret, errno);
487 	return ret;
488 }
489 
490 int alloc_pkey(void)
491 {
492 	int ret;
493 	unsigned long init_val = 0x0;
494 
495 	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
496 			__func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
497 	ret = sys_pkey_alloc(0, init_val);
498 	/*
499 	 * pkey_alloc() sets PKEY register, so we need to reflect it in
500 	 * shadow_pkey_reg:
501 	 */
502 	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
503 			" shadow: 0x%016llx\n",
504 			__func__, __LINE__, ret, __read_pkey_reg(),
505 			shadow_pkey_reg);
506 	if (ret > 0) {
507 		/* clear both the bits: */
508 		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
509 						~PKEY_MASK);
510 		dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
511 				" shadow: 0x%016llx\n",
512 				__func__,
513 				__LINE__, ret, __read_pkey_reg(),
514 				shadow_pkey_reg);
515 		/*
516 		 * move the new state in from init_val
517 		 * (remember, we cheated and init_val == pkey_reg format)
518 		 */
519 		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
520 						init_val);
521 	}
522 	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
523 			" shadow: 0x%016llx\n",
524 			__func__, __LINE__, ret, __read_pkey_reg(),
525 			shadow_pkey_reg);
526 	dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
527 	/* for shadow checking: */
528 	read_pkey_reg();
529 	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
530 		 " shadow: 0x%016llx\n",
531 		__func__, __LINE__, ret, __read_pkey_reg(),
532 		shadow_pkey_reg);
533 	return ret;
534 }
535 
536 int sys_pkey_free(unsigned long pkey)
537 {
538 	int ret = syscall(SYS_pkey_free, pkey);
539 	dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
540 	return ret;
541 }
542 
543 /*
544  * I had a bug where pkey bits could be set by mprotect() but
545  * not cleared.  This ensures we get lots of random bit sets
546  * and clears on the vma and pte pkey bits.
547  */
548 int alloc_random_pkey(void)
549 {
550 	int max_nr_pkey_allocs;
551 	int ret;
552 	int i;
553 	int alloced_pkeys[NR_PKEYS];
554 	int nr_alloced = 0;
555 	int random_index;
556 	memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
557 
558 	/* allocate every possible key and make a note of which ones we got */
559 	max_nr_pkey_allocs = NR_PKEYS;
560 	for (i = 0; i < max_nr_pkey_allocs; i++) {
561 		int new_pkey = alloc_pkey();
562 		if (new_pkey < 0)
563 			break;
564 		alloced_pkeys[nr_alloced++] = new_pkey;
565 	}
566 
567 	pkey_assert(nr_alloced > 0);
568 	/* select a random one out of the allocated ones */
569 	random_index = rand() % nr_alloced;
570 	ret = alloced_pkeys[random_index];
571 	/* now zero it out so we don't free it next */
572 	alloced_pkeys[random_index] = 0;
573 
574 	/* go through the allocated ones that we did not want and free them */
575 	for (i = 0; i < nr_alloced; i++) {
576 		int free_ret;
577 		if (!alloced_pkeys[i])
578 			continue;
579 		free_ret = sys_pkey_free(alloced_pkeys[i]);
580 		pkey_assert(!free_ret);
581 	}
582 	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
583 			 " shadow: 0x%016llx\n", __func__,
584 			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
585 	return ret;
586 }
587 
588 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
589 		unsigned long pkey)
590 {
591 	int nr_iterations = random() % 100;
592 	int ret;
593 
594 	while (0) {
595 		int rpkey = alloc_random_pkey();
596 		ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
597 		dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
598 				ptr, size, orig_prot, pkey, ret);
599 		if (nr_iterations-- < 0)
600 			break;
601 
602 		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
603 			" shadow: 0x%016llx\n",
604 			__func__, __LINE__, ret, __read_pkey_reg(),
605 			shadow_pkey_reg);
606 		sys_pkey_free(rpkey);
607 		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
608 			" shadow: 0x%016llx\n",
609 			__func__, __LINE__, ret, __read_pkey_reg(),
610 			shadow_pkey_reg);
611 	}
612 	pkey_assert(pkey < NR_PKEYS);
613 
614 	ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
615 	dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
616 			ptr, size, orig_prot, pkey, ret);
617 	pkey_assert(!ret);
618 	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
619 			" shadow: 0x%016llx\n", __func__,
620 			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
621 	return ret;
622 }
623 
624 struct pkey_malloc_record {
625 	void *ptr;
626 	long size;
627 	int prot;
628 };
629 struct pkey_malloc_record *pkey_malloc_records;
630 struct pkey_malloc_record *pkey_last_malloc_record;
631 long nr_pkey_malloc_records;
632 void record_pkey_malloc(void *ptr, long size, int prot)
633 {
634 	long i;
635 	struct pkey_malloc_record *rec = NULL;
636 
637 	for (i = 0; i < nr_pkey_malloc_records; i++) {
638 		rec = &pkey_malloc_records[i];
639 		/* find a free record */
640 		if (rec)
641 			break;
642 	}
643 	if (!rec) {
644 		/* every record is full */
645 		size_t old_nr_records = nr_pkey_malloc_records;
646 		size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
647 		size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
648 		dprintf2("new_nr_records: %zd\n", new_nr_records);
649 		dprintf2("new_size: %zd\n", new_size);
650 		pkey_malloc_records = realloc(pkey_malloc_records, new_size);
651 		pkey_assert(pkey_malloc_records != NULL);
652 		rec = &pkey_malloc_records[nr_pkey_malloc_records];
653 		/*
654 		 * realloc() does not initialize memory, so zero it from
655 		 * the first new record all the way to the end.
656 		 */
657 		for (i = 0; i < new_nr_records - old_nr_records; i++)
658 			memset(rec + i, 0, sizeof(*rec));
659 	}
660 	dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
661 		(int)(rec - pkey_malloc_records), rec, ptr, size);
662 	rec->ptr = ptr;
663 	rec->size = size;
664 	rec->prot = prot;
665 	pkey_last_malloc_record = rec;
666 	nr_pkey_malloc_records++;
667 }
668 
669 void free_pkey_malloc(void *ptr)
670 {
671 	long i;
672 	int ret;
673 	dprintf3("%s(%p)\n", __func__, ptr);
674 	for (i = 0; i < nr_pkey_malloc_records; i++) {
675 		struct pkey_malloc_record *rec = &pkey_malloc_records[i];
676 		dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
677 				ptr, i, rec, rec->ptr, rec->size);
678 		if ((ptr <  rec->ptr) ||
679 		    (ptr >= rec->ptr + rec->size))
680 			continue;
681 
682 		dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
683 				ptr, i, rec, rec->ptr, rec->size);
684 		nr_pkey_malloc_records--;
685 		ret = munmap(rec->ptr, rec->size);
686 		dprintf3("munmap ret: %d\n", ret);
687 		pkey_assert(!ret);
688 		dprintf3("clearing rec->ptr, rec: %p\n", rec);
689 		rec->ptr = NULL;
690 		dprintf3("done clearing rec->ptr, rec: %p\n", rec);
691 		return;
692 	}
693 	pkey_assert(false);
694 }
695 
696 
697 void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
698 {
699 	void *ptr;
700 	int ret;
701 
702 	read_pkey_reg();
703 	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
704 			size, prot, pkey);
705 	pkey_assert(pkey < NR_PKEYS);
706 	ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
707 	pkey_assert(ptr != (void *)-1);
708 	ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
709 	pkey_assert(!ret);
710 	record_pkey_malloc(ptr, size, prot);
711 	read_pkey_reg();
712 
713 	dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
714 	return ptr;
715 }
716 
717 void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
718 {
719 	int ret;
720 	void *ptr;
721 
722 	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
723 			size, prot, pkey);
724 	/*
725 	 * Guarantee we can fit at least one huge page in the resulting
726 	 * allocation by allocating space for 2:
727 	 */
728 	size = ALIGN_UP(size, HPAGE_SIZE * 2);
729 	ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
730 	pkey_assert(ptr != (void *)-1);
731 	record_pkey_malloc(ptr, size, prot);
732 	mprotect_pkey(ptr, size, prot, pkey);
733 
734 	dprintf1("unaligned ptr: %p\n", ptr);
735 	ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
736 	dprintf1("  aligned ptr: %p\n", ptr);
737 	ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
738 	dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
739 	ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
740 	dprintf1("MADV_WILLNEED ret: %d\n", ret);
741 	memset(ptr, 0, HPAGE_SIZE);
742 
743 	dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
744 	return ptr;
745 }
746 
747 int hugetlb_setup_ok;
748 #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
749 #define GET_NR_HUGE_PAGES 10
750 void setup_hugetlbfs(void)
751 {
752 	int err;
753 	int fd;
754 	char buf[256];
755 	long hpagesz_kb;
756 	long hpagesz_mb;
757 
758 	if (geteuid() != 0) {
759 		fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
760 		return;
761 	}
762 
763 	cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
764 
765 	/*
766 	 * Now go make sure that we got the pages and that they
767 	 * are PMD-level pages. Someone might have made PUD-level
768 	 * pages the default.
769 	 */
770 	hpagesz_kb = HPAGE_SIZE / 1024;
771 	hpagesz_mb = hpagesz_kb / 1024;
772 	sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
773 	fd = open(buf, O_RDONLY);
774 	if (fd < 0) {
775 		fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
776 			hpagesz_mb, strerror(errno));
777 		return;
778 	}
779 
780 	/* -1 to guarantee leaving the trailing \0 */
781 	err = read(fd, buf, sizeof(buf)-1);
782 	close(fd);
783 	if (err <= 0) {
784 		fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
785 			hpagesz_mb, strerror(errno));
786 		return;
787 	}
788 
789 	if (atoi(buf) != GET_NR_HUGE_PAGES) {
790 		fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
791 			hpagesz_mb, buf, GET_NR_HUGE_PAGES);
792 		return;
793 	}
794 
795 	hugetlb_setup_ok = 1;
796 }
797 
798 void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
799 {
800 	void *ptr;
801 	int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
802 
803 	if (!hugetlb_setup_ok)
804 		return PTR_ERR_ENOTSUP;
805 
806 	dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
807 	size = ALIGN_UP(size, HPAGE_SIZE * 2);
808 	pkey_assert(pkey < NR_PKEYS);
809 	ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
810 	pkey_assert(ptr != (void *)-1);
811 	mprotect_pkey(ptr, size, prot, pkey);
812 
813 	record_pkey_malloc(ptr, size, prot);
814 
815 	dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
816 	return ptr;
817 }
818 
819 void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
820 {
821 	void *ptr;
822 	int fd;
823 
824 	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
825 			size, prot, pkey);
826 	pkey_assert(pkey < NR_PKEYS);
827 	fd = open("/dax/foo", O_RDWR);
828 	pkey_assert(fd >= 0);
829 
830 	ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
831 	pkey_assert(ptr != (void *)-1);
832 
833 	mprotect_pkey(ptr, size, prot, pkey);
834 
835 	record_pkey_malloc(ptr, size, prot);
836 
837 	dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
838 	close(fd);
839 	return ptr;
840 }
841 
842 void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
843 
844 	malloc_pkey_with_mprotect,
845 	malloc_pkey_with_mprotect_subpage,
846 	malloc_pkey_anon_huge,
847 	malloc_pkey_hugetlb
848 /* can not do direct with the pkey_mprotect() API:
849 	malloc_pkey_mmap_direct,
850 	malloc_pkey_mmap_dax,
851 */
852 };
853 
854 void *malloc_pkey(long size, int prot, u16 pkey)
855 {
856 	void *ret;
857 	static int malloc_type;
858 	int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
859 
860 	pkey_assert(pkey < NR_PKEYS);
861 
862 	while (1) {
863 		pkey_assert(malloc_type < nr_malloc_types);
864 
865 		ret = pkey_malloc[malloc_type](size, prot, pkey);
866 		pkey_assert(ret != (void *)-1);
867 
868 		malloc_type++;
869 		if (malloc_type >= nr_malloc_types)
870 			malloc_type = (random()%nr_malloc_types);
871 
872 		/* try again if the malloc_type we tried is unsupported */
873 		if (ret == PTR_ERR_ENOTSUP)
874 			continue;
875 
876 		break;
877 	}
878 
879 	dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
880 			size, prot, pkey, ret);
881 	return ret;
882 }
883 
884 int last_pkey_faults;
885 #define UNKNOWN_PKEY -2
886 void expected_pkey_fault(int pkey)
887 {
888 	dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
889 			__func__, last_pkey_faults, pkey_faults);
890 	dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
891 	pkey_assert(last_pkey_faults + 1 == pkey_faults);
892 
893        /*
894 	* For exec-only memory, we do not know the pkey in
895 	* advance, so skip this check.
896 	*/
897 	if (pkey != UNKNOWN_PKEY)
898 		pkey_assert(last_si_pkey == pkey);
899 
900 #if defined(__i386__) || defined(__x86_64__) /* arch */
901 	/*
902 	 * The signal handler shold have cleared out PKEY register to let the
903 	 * test program continue.  We now have to restore it.
904 	 */
905 	if (__read_pkey_reg() != 0)
906 #else /* arch */
907 	if (__read_pkey_reg() != shadow_pkey_reg)
908 #endif /* arch */
909 		pkey_assert(0);
910 
911 	__write_pkey_reg(shadow_pkey_reg);
912 	dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
913 		       "nuked it\n", __func__, shadow_pkey_reg);
914 	last_pkey_faults = pkey_faults;
915 	last_si_pkey = -1;
916 }
917 
918 #define do_not_expect_pkey_fault(msg)	do {			\
919 	if (last_pkey_faults != pkey_faults)			\
920 		dprintf0("unexpected PKey fault: %s\n", msg);	\
921 	pkey_assert(last_pkey_faults == pkey_faults);		\
922 } while (0)
923 
924 int test_fds[10] = { -1 };
925 int nr_test_fds;
926 void __save_test_fd(int fd)
927 {
928 	pkey_assert(fd >= 0);
929 	pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
930 	test_fds[nr_test_fds] = fd;
931 	nr_test_fds++;
932 }
933 
934 int get_test_read_fd(void)
935 {
936 	int test_fd = open("/etc/passwd", O_RDONLY);
937 	__save_test_fd(test_fd);
938 	return test_fd;
939 }
940 
941 void close_test_fds(void)
942 {
943 	int i;
944 
945 	for (i = 0; i < nr_test_fds; i++) {
946 		if (test_fds[i] < 0)
947 			continue;
948 		close(test_fds[i]);
949 		test_fds[i] = -1;
950 	}
951 	nr_test_fds = 0;
952 }
953 
954 #define barrier() __asm__ __volatile__("": : :"memory")
955 __attribute__((noinline)) int read_ptr(int *ptr)
956 {
957 	/*
958 	 * Keep GCC from optimizing this away somehow
959 	 */
960 	barrier();
961 	return *ptr;
962 }
963 
964 void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
965 {
966 	int i, err;
967 	int max_nr_pkey_allocs;
968 	int alloced_pkeys[NR_PKEYS];
969 	int nr_alloced = 0;
970 	long size;
971 
972 	pkey_assert(pkey_last_malloc_record);
973 	size = pkey_last_malloc_record->size;
974 	/*
975 	 * This is a bit of a hack.  But mprotect() requires
976 	 * huge-page-aligned sizes when operating on hugetlbfs.
977 	 * So, make sure that we use something that's a multiple
978 	 * of a huge page when we can.
979 	 */
980 	if (size >= HPAGE_SIZE)
981 		size = HPAGE_SIZE;
982 
983 	/* allocate every possible key and make sure key-0 never got allocated */
984 	max_nr_pkey_allocs = NR_PKEYS;
985 	for (i = 0; i < max_nr_pkey_allocs; i++) {
986 		int new_pkey = alloc_pkey();
987 		pkey_assert(new_pkey != 0);
988 
989 		if (new_pkey < 0)
990 			break;
991 		alloced_pkeys[nr_alloced++] = new_pkey;
992 	}
993 	/* free all the allocated keys */
994 	for (i = 0; i < nr_alloced; i++) {
995 		int free_ret;
996 
997 		if (!alloced_pkeys[i])
998 			continue;
999 		free_ret = sys_pkey_free(alloced_pkeys[i]);
1000 		pkey_assert(!free_ret);
1001 	}
1002 
1003 	/* attach key-0 in various modes */
1004 	err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
1005 	pkey_assert(!err);
1006 	err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
1007 	pkey_assert(!err);
1008 	err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
1009 	pkey_assert(!err);
1010 	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
1011 	pkey_assert(!err);
1012 	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
1013 	pkey_assert(!err);
1014 }
1015 
1016 void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1017 {
1018 	int ptr_contents;
1019 
1020 	dprintf1("disabling write access to PKEY[1], doing read\n");
1021 	pkey_write_deny(pkey);
1022 	ptr_contents = read_ptr(ptr);
1023 	dprintf1("*ptr: %d\n", ptr_contents);
1024 	dprintf1("\n");
1025 }
1026 void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1027 {
1028 	int ptr_contents;
1029 
1030 	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1031 	read_pkey_reg();
1032 	pkey_access_deny(pkey);
1033 	ptr_contents = read_ptr(ptr);
1034 	dprintf1("*ptr: %d\n", ptr_contents);
1035 	expected_pkey_fault(pkey);
1036 }
1037 
1038 void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
1039 		u16 pkey)
1040 {
1041 	int ptr_contents;
1042 
1043 	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
1044 				pkey, ptr);
1045 	ptr_contents = read_ptr(ptr);
1046 	dprintf1("reading ptr before disabling the read : %d\n",
1047 			ptr_contents);
1048 	read_pkey_reg();
1049 	pkey_access_deny(pkey);
1050 	ptr_contents = read_ptr(ptr);
1051 	dprintf1("*ptr: %d\n", ptr_contents);
1052 	expected_pkey_fault(pkey);
1053 }
1054 
1055 void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
1056 		u16 pkey)
1057 {
1058 	*ptr = __LINE__;
1059 	dprintf1("disabling write access; after accessing the page, "
1060 		"to PKEY[%02d], doing write\n", pkey);
1061 	pkey_write_deny(pkey);
1062 	*ptr = __LINE__;
1063 	expected_pkey_fault(pkey);
1064 }
1065 
1066 void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1067 {
1068 	dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1069 	pkey_write_deny(pkey);
1070 	*ptr = __LINE__;
1071 	expected_pkey_fault(pkey);
1072 }
1073 void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1074 {
1075 	dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1076 	pkey_access_deny(pkey);
1077 	*ptr = __LINE__;
1078 	expected_pkey_fault(pkey);
1079 }
1080 
1081 void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1082 			u16 pkey)
1083 {
1084 	*ptr = __LINE__;
1085 	dprintf1("disabling access; after accessing the page, "
1086 		" to PKEY[%02d], doing write\n", pkey);
1087 	pkey_access_deny(pkey);
1088 	*ptr = __LINE__;
1089 	expected_pkey_fault(pkey);
1090 }
1091 
1092 void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1093 {
1094 	int ret;
1095 	int test_fd = get_test_read_fd();
1096 
1097 	dprintf1("disabling access to PKEY[%02d], "
1098 		 "having kernel read() to buffer\n", pkey);
1099 	pkey_access_deny(pkey);
1100 	ret = read(test_fd, ptr, 1);
1101 	dprintf1("read ret: %d\n", ret);
1102 	pkey_assert(ret);
1103 }
1104 void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1105 {
1106 	int ret;
1107 	int test_fd = get_test_read_fd();
1108 
1109 	pkey_write_deny(pkey);
1110 	ret = read(test_fd, ptr, 100);
1111 	dprintf1("read ret: %d\n", ret);
1112 	if (ret < 0 && (DEBUG_LEVEL > 0))
1113 		perror("verbose read result (OK for this to be bad)");
1114 	pkey_assert(ret);
1115 }
1116 
1117 void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1118 {
1119 	int pipe_ret, vmsplice_ret;
1120 	struct iovec iov;
1121 	int pipe_fds[2];
1122 
1123 	pipe_ret = pipe(pipe_fds);
1124 
1125 	pkey_assert(pipe_ret == 0);
1126 	dprintf1("disabling access to PKEY[%02d], "
1127 		 "having kernel vmsplice from buffer\n", pkey);
1128 	pkey_access_deny(pkey);
1129 	iov.iov_base = ptr;
1130 	iov.iov_len = PAGE_SIZE;
1131 	vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1132 	dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1133 	pkey_assert(vmsplice_ret == -1);
1134 
1135 	close(pipe_fds[0]);
1136 	close(pipe_fds[1]);
1137 }
1138 
1139 void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1140 {
1141 	int ignored = 0xdada;
1142 	int futex_ret;
1143 	int some_int = __LINE__;
1144 
1145 	dprintf1("disabling write to PKEY[%02d], "
1146 		 "doing futex gunk in buffer\n", pkey);
1147 	*ptr = some_int;
1148 	pkey_write_deny(pkey);
1149 	futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1150 			&ignored, ignored);
1151 	if (DEBUG_LEVEL > 0)
1152 		perror("futex");
1153 	dprintf1("futex() ret: %d\n", futex_ret);
1154 }
1155 
1156 /* Assumes that all pkeys other than 'pkey' are unallocated */
1157 void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1158 {
1159 	int err;
1160 	int i;
1161 
1162 	/* Note: 0 is the default pkey, so don't mess with it */
1163 	for (i = 1; i < NR_PKEYS; i++) {
1164 		if (pkey == i)
1165 			continue;
1166 
1167 		dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1168 		err = sys_pkey_free(i);
1169 		pkey_assert(err);
1170 
1171 		err = sys_pkey_free(i);
1172 		pkey_assert(err);
1173 
1174 		err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1175 		pkey_assert(err);
1176 	}
1177 }
1178 
1179 /* Assumes that all pkeys other than 'pkey' are unallocated */
1180 void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1181 {
1182 	int err;
1183 	int bad_pkey = NR_PKEYS+99;
1184 
1185 	/* pass a known-invalid pkey in: */
1186 	err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1187 	pkey_assert(err);
1188 }
1189 
1190 void become_child(void)
1191 {
1192 	pid_t forkret;
1193 
1194 	forkret = fork();
1195 	pkey_assert(forkret >= 0);
1196 	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1197 
1198 	if (!forkret) {
1199 		/* in the child */
1200 		return;
1201 	}
1202 	exit(0);
1203 }
1204 
1205 /* Assumes that all pkeys other than 'pkey' are unallocated */
1206 void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1207 {
1208 	int err;
1209 	int allocated_pkeys[NR_PKEYS] = {0};
1210 	int nr_allocated_pkeys = 0;
1211 	int i;
1212 
1213 	for (i = 0; i < NR_PKEYS*3; i++) {
1214 		int new_pkey;
1215 		dprintf1("%s() alloc loop: %d\n", __func__, i);
1216 		new_pkey = alloc_pkey();
1217 		dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1218 				" shadow: 0x%016llx\n",
1219 				__func__, __LINE__, err, __read_pkey_reg(),
1220 				shadow_pkey_reg);
1221 		read_pkey_reg(); /* for shadow checking */
1222 		dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1223 		if ((new_pkey == -1) && (errno == ENOSPC)) {
1224 			dprintf2("%s() failed to allocate pkey after %d tries\n",
1225 				__func__, nr_allocated_pkeys);
1226 		} else {
1227 			/*
1228 			 * Ensure the number of successes never
1229 			 * exceeds the number of keys supported
1230 			 * in the hardware.
1231 			 */
1232 			pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1233 			allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1234 		}
1235 
1236 		/*
1237 		 * Make sure that allocation state is properly
1238 		 * preserved across fork().
1239 		 */
1240 		if (i == NR_PKEYS*2)
1241 			become_child();
1242 	}
1243 
1244 	dprintf3("%s()::%d\n", __func__, __LINE__);
1245 
1246 	/*
1247 	 * On x86:
1248 	 * There are 16 pkeys supported in hardware.  Three are
1249 	 * allocated by the time we get here:
1250 	 *   1. The default key (0)
1251 	 *   2. One possibly consumed by an execute-only mapping.
1252 	 *   3. One allocated by the test code and passed in via
1253 	 *      'pkey' to this function.
1254 	 * Ensure that we can allocate at least another 13 (16-3).
1255 	 *
1256 	 * On powerpc:
1257 	 * There are either 5, 28, 29 or 32 pkeys supported in
1258 	 * hardware depending on the page size (4K or 64K) and
1259 	 * platform (powernv or powervm). Four are allocated by
1260 	 * the time we get here. These include pkey-0, pkey-1,
1261 	 * exec-only pkey and the one allocated by the test code.
1262 	 * Ensure that we can allocate the remaining.
1263 	 */
1264 	pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1265 
1266 	for (i = 0; i < nr_allocated_pkeys; i++) {
1267 		err = sys_pkey_free(allocated_pkeys[i]);
1268 		pkey_assert(!err);
1269 		read_pkey_reg(); /* for shadow checking */
1270 	}
1271 }
1272 
1273 void arch_force_pkey_reg_init(void)
1274 {
1275 #if defined(__i386__) || defined(__x86_64__) /* arch */
1276 	u64 *buf;
1277 
1278 	/*
1279 	 * All keys should be allocated and set to allow reads and
1280 	 * writes, so the register should be all 0.  If not, just
1281 	 * skip the test.
1282 	 */
1283 	if (read_pkey_reg())
1284 		return;
1285 
1286 	/*
1287 	 * Just allocate an absurd about of memory rather than
1288 	 * doing the XSAVE size enumeration dance.
1289 	 */
1290 	buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1291 
1292 	/* These __builtins require compiling with -mxsave */
1293 
1294 	/* XSAVE to build a valid buffer: */
1295 	__builtin_ia32_xsave(buf, XSTATE_PKEY);
1296 	/* Clear XSTATE_BV[PKRU]: */
1297 	buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
1298 	/* XRSTOR will likely get PKRU back to the init state: */
1299 	__builtin_ia32_xrstor(buf, XSTATE_PKEY);
1300 
1301 	munmap(buf, 1*MB);
1302 #endif
1303 }
1304 
1305 
1306 /*
1307  * This is mostly useless on ppc for now.  But it will not
1308  * hurt anything and should give some better coverage as
1309  * a long-running test that continually checks the pkey
1310  * register.
1311  */
1312 void test_pkey_init_state(int *ptr, u16 pkey)
1313 {
1314 	int err;
1315 	int allocated_pkeys[NR_PKEYS] = {0};
1316 	int nr_allocated_pkeys = 0;
1317 	int i;
1318 
1319 	for (i = 0; i < NR_PKEYS; i++) {
1320 		int new_pkey = alloc_pkey();
1321 
1322 		if (new_pkey < 0)
1323 			continue;
1324 		allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1325 	}
1326 
1327 	dprintf3("%s()::%d\n", __func__, __LINE__);
1328 
1329 	arch_force_pkey_reg_init();
1330 
1331 	/*
1332 	 * Loop for a bit, hoping to get exercise the kernel
1333 	 * context switch code.
1334 	 */
1335 	for (i = 0; i < 1000000; i++)
1336 		read_pkey_reg();
1337 
1338 	for (i = 0; i < nr_allocated_pkeys; i++) {
1339 		err = sys_pkey_free(allocated_pkeys[i]);
1340 		pkey_assert(!err);
1341 		read_pkey_reg(); /* for shadow checking */
1342 	}
1343 }
1344 
1345 /*
1346  * pkey 0 is special.  It is allocated by default, so you do not
1347  * have to call pkey_alloc() to use it first.  Make sure that it
1348  * is usable.
1349  */
1350 void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1351 {
1352 	long size;
1353 	int prot;
1354 
1355 	assert(pkey_last_malloc_record);
1356 	size = pkey_last_malloc_record->size;
1357 	/*
1358 	 * This is a bit of a hack.  But mprotect() requires
1359 	 * huge-page-aligned sizes when operating on hugetlbfs.
1360 	 * So, make sure that we use something that's a multiple
1361 	 * of a huge page when we can.
1362 	 */
1363 	if (size >= HPAGE_SIZE)
1364 		size = HPAGE_SIZE;
1365 	prot = pkey_last_malloc_record->prot;
1366 
1367 	/* Use pkey 0 */
1368 	mprotect_pkey(ptr, size, prot, 0);
1369 
1370 	/* Make sure that we can set it back to the original pkey. */
1371 	mprotect_pkey(ptr, size, prot, pkey);
1372 }
1373 
1374 void test_ptrace_of_child(int *ptr, u16 pkey)
1375 {
1376 	__attribute__((__unused__)) int peek_result;
1377 	pid_t child_pid;
1378 	void *ignored = 0;
1379 	long ret;
1380 	int status;
1381 	/*
1382 	 * This is the "control" for our little expermient.  Make sure
1383 	 * we can always access it when ptracing.
1384 	 */
1385 	int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1386 	int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1387 
1388 	/*
1389 	 * Fork a child which is an exact copy of this process, of course.
1390 	 * That means we can do all of our tests via ptrace() and then plain
1391 	 * memory access and ensure they work differently.
1392 	 */
1393 	child_pid = fork_lazy_child();
1394 	dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1395 
1396 	ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1397 	if (ret)
1398 		perror("attach");
1399 	dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1400 	pkey_assert(ret != -1);
1401 	ret = waitpid(child_pid, &status, WUNTRACED);
1402 	if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1403 		fprintf(stderr, "weird waitpid result %ld stat %x\n",
1404 				ret, status);
1405 		pkey_assert(0);
1406 	}
1407 	dprintf2("waitpid ret: %ld\n", ret);
1408 	dprintf2("waitpid status: %d\n", status);
1409 
1410 	pkey_access_deny(pkey);
1411 	pkey_write_deny(pkey);
1412 
1413 	/* Write access, untested for now:
1414 	ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1415 	pkey_assert(ret != -1);
1416 	dprintf1("poke at %p: %ld\n", peek_at, ret);
1417 	*/
1418 
1419 	/*
1420 	 * Try to access the pkey-protected "ptr" via ptrace:
1421 	 */
1422 	ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1423 	/* expect it to work, without an error: */
1424 	pkey_assert(ret != -1);
1425 	/* Now access from the current task, and expect an exception: */
1426 	peek_result = read_ptr(ptr);
1427 	expected_pkey_fault(pkey);
1428 
1429 	/*
1430 	 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1431 	 */
1432 	ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1433 	/* expect it to work, without an error: */
1434 	pkey_assert(ret != -1);
1435 	/* Now access from the current task, and expect NO exception: */
1436 	peek_result = read_ptr(plain_ptr);
1437 	do_not_expect_pkey_fault("read plain pointer after ptrace");
1438 
1439 	ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1440 	pkey_assert(ret != -1);
1441 
1442 	ret = kill(child_pid, SIGKILL);
1443 	pkey_assert(ret != -1);
1444 
1445 	wait(&status);
1446 
1447 	free(plain_ptr_unaligned);
1448 }
1449 
1450 void *get_pointer_to_instructions(void)
1451 {
1452 	void *p1;
1453 
1454 	p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1455 	dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1456 	/* lots_o_noops_around_write should be page-aligned already */
1457 	assert(p1 == &lots_o_noops_around_write);
1458 
1459 	/* Point 'p1' at the *second* page of the function: */
1460 	p1 += PAGE_SIZE;
1461 
1462 	/*
1463 	 * Try to ensure we fault this in on next touch to ensure
1464 	 * we get an instruction fault as opposed to a data one
1465 	 */
1466 	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1467 
1468 	return p1;
1469 }
1470 
1471 void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1472 {
1473 	void *p1;
1474 	int scratch;
1475 	int ptr_contents;
1476 	int ret;
1477 
1478 	p1 = get_pointer_to_instructions();
1479 	lots_o_noops_around_write(&scratch);
1480 	ptr_contents = read_ptr(p1);
1481 	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1482 
1483 	ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1484 	pkey_assert(!ret);
1485 	pkey_access_deny(pkey);
1486 
1487 	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1488 
1489 	/*
1490 	 * Make sure this is an *instruction* fault
1491 	 */
1492 	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1493 	lots_o_noops_around_write(&scratch);
1494 	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1495 	expect_fault_on_read_execonly_key(p1, pkey);
1496 }
1497 
1498 void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1499 {
1500 	void *p1;
1501 	int scratch;
1502 	int ptr_contents;
1503 	int ret;
1504 
1505 	dprintf1("%s() start\n", __func__);
1506 
1507 	p1 = get_pointer_to_instructions();
1508 	lots_o_noops_around_write(&scratch);
1509 	ptr_contents = read_ptr(p1);
1510 	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1511 
1512 	/* Use a *normal* mprotect(), not mprotect_pkey(): */
1513 	ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1514 	pkey_assert(!ret);
1515 
1516 	/*
1517 	 * Reset the shadow, assuming that the above mprotect()
1518 	 * correctly changed PKRU, but to an unknown value since
1519 	 * the actual allocated pkey is unknown.
1520 	 */
1521 	shadow_pkey_reg = __read_pkey_reg();
1522 
1523 	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1524 
1525 	/* Make sure this is an *instruction* fault */
1526 	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1527 	lots_o_noops_around_write(&scratch);
1528 	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1529 	expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1530 
1531 	/*
1532 	 * Put the memory back to non-PROT_EXEC.  Should clear the
1533 	 * exec-only pkey off the VMA and allow it to be readable
1534 	 * again.  Go to PROT_NONE first to check for a kernel bug
1535 	 * that did not clear the pkey when doing PROT_NONE.
1536 	 */
1537 	ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1538 	pkey_assert(!ret);
1539 
1540 	ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1541 	pkey_assert(!ret);
1542 	ptr_contents = read_ptr(p1);
1543 	do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1544 }
1545 
1546 #if defined(__i386__) || defined(__x86_64__)
1547 void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
1548 {
1549 	u32 new_pkru;
1550 	pid_t child;
1551 	int status, ret;
1552 	int pkey_offset = pkey_reg_xstate_offset();
1553 	size_t xsave_size = cpu_max_xsave_size();
1554 	void *xsave;
1555 	u32 *pkey_register;
1556 	u64 *xstate_bv;
1557 	struct iovec iov;
1558 
1559 	new_pkru = ~read_pkey_reg();
1560 	/* Don't make PROT_EXEC mappings inaccessible */
1561 	new_pkru &= ~3;
1562 
1563 	child = fork();
1564 	pkey_assert(child >= 0);
1565 	dprintf3("[%d] fork() ret: %d\n", getpid(), child);
1566 	if (!child) {
1567 		ptrace(PTRACE_TRACEME, 0, 0, 0);
1568 		/* Stop and allow the tracer to modify PKRU directly */
1569 		raise(SIGSTOP);
1570 
1571 		/*
1572 		 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
1573 		 * checking
1574 		 */
1575 		if (__read_pkey_reg() != new_pkru)
1576 			exit(1);
1577 
1578 		/* Stop and allow the tracer to clear XSTATE_BV for PKRU */
1579 		raise(SIGSTOP);
1580 
1581 		if (__read_pkey_reg() != 0)
1582 			exit(1);
1583 
1584 		/* Stop and allow the tracer to examine PKRU */
1585 		raise(SIGSTOP);
1586 
1587 		exit(0);
1588 	}
1589 
1590 	pkey_assert(child == waitpid(child, &status, 0));
1591 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1592 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1593 
1594 	xsave = (void *)malloc(xsave_size);
1595 	pkey_assert(xsave > 0);
1596 
1597 	/* Modify the PKRU register directly */
1598 	iov.iov_base = xsave;
1599 	iov.iov_len = xsave_size;
1600 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1601 	pkey_assert(ret == 0);
1602 
1603 	pkey_register = (u32 *)(xsave + pkey_offset);
1604 	pkey_assert(*pkey_register == read_pkey_reg());
1605 
1606 	*pkey_register = new_pkru;
1607 
1608 	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1609 	pkey_assert(ret == 0);
1610 
1611 	/* Test that the modification is visible in ptrace before any execution */
1612 	memset(xsave, 0xCC, xsave_size);
1613 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1614 	pkey_assert(ret == 0);
1615 	pkey_assert(*pkey_register == new_pkru);
1616 
1617 	/* Execute the tracee */
1618 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1619 	pkey_assert(ret == 0);
1620 
1621 	/* Test that the tracee saw the PKRU value change */
1622 	pkey_assert(child == waitpid(child, &status, 0));
1623 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1624 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1625 
1626 	/* Test that the modification is visible in ptrace after execution */
1627 	memset(xsave, 0xCC, xsave_size);
1628 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1629 	pkey_assert(ret == 0);
1630 	pkey_assert(*pkey_register == new_pkru);
1631 
1632 	/* Clear the PKRU bit from XSTATE_BV */
1633 	xstate_bv = (u64 *)(xsave + 512);
1634 	*xstate_bv &= ~(1 << 9);
1635 
1636 	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1637 	pkey_assert(ret == 0);
1638 
1639 	/* Test that the modification is visible in ptrace before any execution */
1640 	memset(xsave, 0xCC, xsave_size);
1641 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1642 	pkey_assert(ret == 0);
1643 	pkey_assert(*pkey_register == 0);
1644 
1645 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1646 	pkey_assert(ret == 0);
1647 
1648 	/* Test that the tracee saw the PKRU value go to 0 */
1649 	pkey_assert(child == waitpid(child, &status, 0));
1650 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1651 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1652 
1653 	/* Test that the modification is visible in ptrace after execution */
1654 	memset(xsave, 0xCC, xsave_size);
1655 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1656 	pkey_assert(ret == 0);
1657 	pkey_assert(*pkey_register == 0);
1658 
1659 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1660 	pkey_assert(ret == 0);
1661 	pkey_assert(child == waitpid(child, &status, 0));
1662 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1663 	pkey_assert(WIFEXITED(status));
1664 	pkey_assert(WEXITSTATUS(status) == 0);
1665 	free(xsave);
1666 }
1667 #endif
1668 
1669 void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1670 {
1671 	int size = PAGE_SIZE;
1672 	int sret;
1673 
1674 	if (cpu_has_pkeys()) {
1675 		dprintf1("SKIP: %s: no CPU support\n", __func__);
1676 		return;
1677 	}
1678 
1679 	sret = syscall(__NR_pkey_mprotect, ptr, size, PROT_READ, pkey);
1680 	pkey_assert(sret < 0);
1681 }
1682 
1683 void (*pkey_tests[])(int *ptr, u16 pkey) = {
1684 	test_read_of_write_disabled_region,
1685 	test_read_of_access_disabled_region,
1686 	test_read_of_access_disabled_region_with_page_already_mapped,
1687 	test_write_of_write_disabled_region,
1688 	test_write_of_write_disabled_region_with_page_already_mapped,
1689 	test_write_of_access_disabled_region,
1690 	test_write_of_access_disabled_region_with_page_already_mapped,
1691 	test_kernel_write_of_access_disabled_region,
1692 	test_kernel_write_of_write_disabled_region,
1693 	test_kernel_gup_of_access_disabled_region,
1694 	test_kernel_gup_write_to_write_disabled_region,
1695 	test_executing_on_unreadable_memory,
1696 	test_implicit_mprotect_exec_only_memory,
1697 	test_mprotect_with_pkey_0,
1698 	test_ptrace_of_child,
1699 	test_pkey_init_state,
1700 	test_pkey_syscalls_on_non_allocated_pkey,
1701 	test_pkey_syscalls_bad_args,
1702 	test_pkey_alloc_exhaust,
1703 	test_pkey_alloc_free_attach_pkey0,
1704 #if defined(__i386__) || defined(__x86_64__)
1705 	test_ptrace_modifies_pkru,
1706 #endif
1707 };
1708 
1709 void run_tests_once(void)
1710 {
1711 	int *ptr;
1712 	int prot = PROT_READ|PROT_WRITE;
1713 
1714 	for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1715 		int pkey;
1716 		int orig_pkey_faults = pkey_faults;
1717 
1718 		dprintf1("======================\n");
1719 		dprintf1("test %d preparing...\n", test_nr);
1720 
1721 		tracing_on();
1722 		pkey = alloc_random_pkey();
1723 		dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1724 		ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1725 		dprintf1("test %d starting...\n", test_nr);
1726 		pkey_tests[test_nr](ptr, pkey);
1727 		dprintf1("freeing test memory: %p\n", ptr);
1728 		free_pkey_malloc(ptr);
1729 		sys_pkey_free(pkey);
1730 
1731 		dprintf1("pkey_faults: %d\n", pkey_faults);
1732 		dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1733 
1734 		tracing_off();
1735 		close_test_fds();
1736 
1737 		printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1738 		dprintf1("======================\n\n");
1739 	}
1740 	iteration_nr++;
1741 }
1742 
1743 void pkey_setup_shadow(void)
1744 {
1745 	shadow_pkey_reg = __read_pkey_reg();
1746 }
1747 
1748 void restore_settings_atexit(void)
1749 {
1750 	cat_into_file(buf, "/proc/sys/vm/nr_hugepages");
1751 }
1752 
1753 void save_settings(void)
1754 {
1755 	int fd;
1756 	int err;
1757 
1758 	if (geteuid())
1759 		return;
1760 
1761 	fd = open("/proc/sys/vm/nr_hugepages", O_RDONLY);
1762 	if (fd < 0) {
1763 		fprintf(stderr, "error opening\n");
1764 		perror("error: ");
1765 		exit(__LINE__);
1766 	}
1767 
1768 	/* -1 to guarantee leaving the trailing \0 */
1769 	err = read(fd, buf, sizeof(buf)-1);
1770 	if (err < 0) {
1771 		fprintf(stderr, "error reading\n");
1772 		perror("error: ");
1773 		exit(__LINE__);
1774 	}
1775 
1776 	atexit(restore_settings_atexit);
1777 	close(fd);
1778 }
1779 
1780 int main(void)
1781 {
1782 	int nr_iterations = 22;
1783 	int pkeys_supported = is_pkeys_supported();
1784 
1785 	srand((unsigned int)time(NULL));
1786 
1787 	save_settings();
1788 	setup_handlers();
1789 
1790 	printf("has pkeys: %d\n", pkeys_supported);
1791 
1792 	if (!pkeys_supported) {
1793 		int size = PAGE_SIZE;
1794 		int *ptr;
1795 
1796 		printf("running PKEY tests for unsupported CPU/OS\n");
1797 
1798 		ptr  = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1799 		assert(ptr != (void *)-1);
1800 		test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1801 		exit(0);
1802 	}
1803 
1804 	pkey_setup_shadow();
1805 	printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1806 	setup_hugetlbfs();
1807 
1808 	while (nr_iterations-- > 0)
1809 		run_tests_once();
1810 
1811 	printf("done (all tests OK)\n");
1812 	return 0;
1813 }
1814