xref: /linux/tools/testing/selftests/kvm/x86_64/ucna_injection_test.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ucna_injection_test
4  *
5  * Copyright (C) 2022, Google LLC.
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2.
8  *
9  * Test that user space can inject UnCorrectable No Action required (UCNA)
10  * memory errors to the guest.
11  *
12  * The test starts one vCPU with the MCG_CMCI_P enabled. It verifies that
13  * proper UCNA errors can be injected to a vCPU with MCG_CMCI_P and
14  * corresponding per-bank control register (MCI_CTL2) bit enabled.
15  * The test also checks that the UCNA errors get recorded in the
16  * Machine Check bank registers no matter the error signal interrupts get
17  * delivered into the guest or not.
18  *
19  */
20 #include <pthread.h>
21 #include <inttypes.h>
22 #include <string.h>
23 #include <time.h>
24 
25 #include "kvm_util.h"
26 #include "mce.h"
27 #include "processor.h"
28 #include "test_util.h"
29 #include "apic.h"
30 
31 #define SYNC_FIRST_UCNA 9
32 #define SYNC_SECOND_UCNA 10
33 #define SYNC_GP 11
34 #define FIRST_UCNA_ADDR 0xdeadbeef
35 #define SECOND_UCNA_ADDR 0xcafeb0ba
36 
37 /*
38  * Vector for the CMCI interrupt.
39  * Value is arbitrary. Any value in 0x20-0xFF should work:
40  * https://wiki.osdev.org/Interrupt_Vector_Table
41  */
42 #define CMCI_VECTOR  0xa9
43 
44 #define UCNA_BANK  0x7	// IMC0 bank
45 
46 #define MCI_CTL2_RESERVED_BIT BIT_ULL(29)
47 
48 static uint64_t supported_mcg_caps;
49 
50 /*
51  * Record states about the injected UCNA.
52  * The variables started with the 'i_' prefixes are recorded in interrupt
53  * handler. Variables without the 'i_' prefixes are recorded in guest main
54  * execution thread.
55  */
56 static volatile uint64_t i_ucna_rcvd;
57 static volatile uint64_t i_ucna_addr;
58 static volatile uint64_t ucna_addr;
59 static volatile uint64_t ucna_addr2;
60 
61 struct thread_params {
62 	struct kvm_vcpu *vcpu;
63 	uint64_t *p_i_ucna_rcvd;
64 	uint64_t *p_i_ucna_addr;
65 	uint64_t *p_ucna_addr;
66 	uint64_t *p_ucna_addr2;
67 };
68 
69 static void verify_apic_base_addr(void)
70 {
71 	uint64_t msr = rdmsr(MSR_IA32_APICBASE);
72 	uint64_t base = GET_APIC_BASE(msr);
73 
74 	GUEST_ASSERT(base == APIC_DEFAULT_GPA);
75 }
76 
77 static void ucna_injection_guest_code(void)
78 {
79 	uint64_t ctl2;
80 	verify_apic_base_addr();
81 	xapic_enable();
82 
83 	/* Sets up the interrupt vector and enables per-bank CMCI sigaling. */
84 	xapic_write_reg(APIC_LVTCMCI, CMCI_VECTOR | APIC_DM_FIXED);
85 	ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK));
86 	wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 | MCI_CTL2_CMCI_EN);
87 
88 	/* Enables interrupt in guest. */
89 	asm volatile("sti");
90 
91 	/* Let user space inject the first UCNA */
92 	GUEST_SYNC(SYNC_FIRST_UCNA);
93 
94 	ucna_addr = rdmsr(MSR_IA32_MCx_ADDR(UCNA_BANK));
95 
96 	/* Disables the per-bank CMCI signaling. */
97 	ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK));
98 	wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 & ~MCI_CTL2_CMCI_EN);
99 
100 	/* Let the user space inject the second UCNA */
101 	GUEST_SYNC(SYNC_SECOND_UCNA);
102 
103 	ucna_addr2 = rdmsr(MSR_IA32_MCx_ADDR(UCNA_BANK));
104 	GUEST_DONE();
105 }
106 
107 static void cmci_disabled_guest_code(void)
108 {
109 	uint64_t ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK));
110 	wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 | MCI_CTL2_CMCI_EN);
111 
112 	GUEST_DONE();
113 }
114 
115 static void cmci_enabled_guest_code(void)
116 {
117 	uint64_t ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK));
118 	wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 | MCI_CTL2_RESERVED_BIT);
119 
120 	GUEST_DONE();
121 }
122 
123 static void guest_cmci_handler(struct ex_regs *regs)
124 {
125 	i_ucna_rcvd++;
126 	i_ucna_addr = rdmsr(MSR_IA32_MCx_ADDR(UCNA_BANK));
127 	xapic_write_reg(APIC_EOI, 0);
128 }
129 
130 static void guest_gp_handler(struct ex_regs *regs)
131 {
132 	GUEST_SYNC(SYNC_GP);
133 }
134 
135 static void run_vcpu_expect_gp(struct kvm_vcpu *vcpu)
136 {
137 	struct ucall uc;
138 
139 	vcpu_run(vcpu);
140 
141 	TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
142 	TEST_ASSERT(get_ucall(vcpu, &uc) == UCALL_SYNC,
143 		    "Expect UCALL_SYNC");
144 	TEST_ASSERT(uc.args[1] == SYNC_GP, "#GP is expected.");
145 	printf("vCPU received GP in guest.\n");
146 }
147 
148 static void inject_ucna(struct kvm_vcpu *vcpu, uint64_t addr) {
149 	/*
150 	 * A UCNA error is indicated with VAL=1, UC=1, PCC=0, S=0 and AR=0 in
151 	 * the IA32_MCi_STATUS register.
152 	 * MSCOD=1 (BIT[16] - MscodDataRdErr).
153 	 * MCACOD=0x0090 (Memory controller error format, channel 0)
154 	 */
155 	uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
156 			  MCI_STATUS_MISCV | MCI_STATUS_ADDRV | 0x10090;
157 	struct kvm_x86_mce mce = {};
158 	mce.status = status;
159 	mce.mcg_status = 0;
160 	/*
161 	 * MCM_ADDR_PHYS indicates the reported address is a physical address.
162 	 * Lowest 6 bits is the recoverable address LSB, i.e., the injected MCE
163 	 * is at 4KB granularity.
164 	 */
165 	mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
166 	mce.addr = addr;
167 	mce.bank = UCNA_BANK;
168 
169 	vcpu_ioctl(vcpu, KVM_X86_SET_MCE, &mce);
170 }
171 
172 static void *run_ucna_injection(void *arg)
173 {
174 	struct thread_params *params = (struct thread_params *)arg;
175 	struct ucall uc;
176 	int old;
177 	int r;
178 
179 	r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
180 	TEST_ASSERT(r == 0,
181 		    "pthread_setcanceltype failed with errno=%d",
182 		    r);
183 
184 	vcpu_run(params->vcpu);
185 
186 	TEST_ASSERT_KVM_EXIT_REASON(params->vcpu, KVM_EXIT_IO);
187 	TEST_ASSERT(get_ucall(params->vcpu, &uc) == UCALL_SYNC,
188 		    "Expect UCALL_SYNC");
189 	TEST_ASSERT(uc.args[1] == SYNC_FIRST_UCNA, "Injecting first UCNA.");
190 
191 	printf("Injecting first UCNA at %#x.\n", FIRST_UCNA_ADDR);
192 
193 	inject_ucna(params->vcpu, FIRST_UCNA_ADDR);
194 	vcpu_run(params->vcpu);
195 
196 	TEST_ASSERT_KVM_EXIT_REASON(params->vcpu, KVM_EXIT_IO);
197 	TEST_ASSERT(get_ucall(params->vcpu, &uc) == UCALL_SYNC,
198 		    "Expect UCALL_SYNC");
199 	TEST_ASSERT(uc.args[1] == SYNC_SECOND_UCNA, "Injecting second UCNA.");
200 
201 	printf("Injecting second UCNA at %#x.\n", SECOND_UCNA_ADDR);
202 
203 	inject_ucna(params->vcpu, SECOND_UCNA_ADDR);
204 	vcpu_run(params->vcpu);
205 
206 	TEST_ASSERT_KVM_EXIT_REASON(params->vcpu, KVM_EXIT_IO);
207 	if (get_ucall(params->vcpu, &uc) == UCALL_ABORT) {
208 		TEST_ASSERT(false, "vCPU assertion failure: %s.",
209 			    (const char *)uc.args[0]);
210 	}
211 
212 	return NULL;
213 }
214 
215 static void test_ucna_injection(struct kvm_vcpu *vcpu, struct thread_params *params)
216 {
217 	struct kvm_vm *vm = vcpu->vm;
218 	params->vcpu = vcpu;
219 	params->p_i_ucna_rcvd = (uint64_t *)addr_gva2hva(vm, (uint64_t)&i_ucna_rcvd);
220 	params->p_i_ucna_addr = (uint64_t *)addr_gva2hva(vm, (uint64_t)&i_ucna_addr);
221 	params->p_ucna_addr = (uint64_t *)addr_gva2hva(vm, (uint64_t)&ucna_addr);
222 	params->p_ucna_addr2 = (uint64_t *)addr_gva2hva(vm, (uint64_t)&ucna_addr2);
223 
224 	run_ucna_injection(params);
225 
226 	TEST_ASSERT(*params->p_i_ucna_rcvd == 1, "Only first UCNA get signaled.");
227 	TEST_ASSERT(*params->p_i_ucna_addr == FIRST_UCNA_ADDR,
228 		    "Only first UCNA reported addr get recorded via interrupt.");
229 	TEST_ASSERT(*params->p_ucna_addr == FIRST_UCNA_ADDR,
230 		    "First injected UCNAs should get exposed via registers.");
231 	TEST_ASSERT(*params->p_ucna_addr2 == SECOND_UCNA_ADDR,
232 		    "Second injected UCNAs should get exposed via registers.");
233 
234 	printf("Test successful.\n"
235 	       "UCNA CMCI interrupts received: %ld\n"
236 	       "Last UCNA address received via CMCI: %lx\n"
237 	       "First UCNA address in vCPU thread: %lx\n"
238 	       "Second UCNA address in vCPU thread: %lx\n",
239 	       *params->p_i_ucna_rcvd, *params->p_i_ucna_addr,
240 	       *params->p_ucna_addr, *params->p_ucna_addr2);
241 }
242 
243 static void setup_mce_cap(struct kvm_vcpu *vcpu, bool enable_cmci_p)
244 {
245 	uint64_t mcg_caps = MCG_CTL_P | MCG_SER_P | MCG_LMCE_P | KVM_MAX_MCE_BANKS;
246 	if (enable_cmci_p)
247 		mcg_caps |= MCG_CMCI_P;
248 
249 	mcg_caps &= supported_mcg_caps | MCG_CAP_BANKS_MASK;
250 	vcpu_ioctl(vcpu, KVM_X86_SETUP_MCE, &mcg_caps);
251 }
252 
253 static struct kvm_vcpu *create_vcpu_with_mce_cap(struct kvm_vm *vm, uint32_t vcpuid,
254 						 bool enable_cmci_p, void *guest_code)
255 {
256 	struct kvm_vcpu *vcpu = vm_vcpu_add(vm, vcpuid, guest_code);
257 	setup_mce_cap(vcpu, enable_cmci_p);
258 	return vcpu;
259 }
260 
261 int main(int argc, char *argv[])
262 {
263 	struct thread_params params;
264 	struct kvm_vm *vm;
265 	struct kvm_vcpu *ucna_vcpu;
266 	struct kvm_vcpu *cmcidis_vcpu;
267 	struct kvm_vcpu *cmci_vcpu;
268 
269 	kvm_check_cap(KVM_CAP_MCE);
270 
271 	vm = __vm_create(VM_SHAPE_DEFAULT, 3, 0);
272 
273 	kvm_ioctl(vm->kvm_fd, KVM_X86_GET_MCE_CAP_SUPPORTED,
274 		  &supported_mcg_caps);
275 
276 	if (!(supported_mcg_caps & MCG_CMCI_P)) {
277 		print_skip("MCG_CMCI_P is not supported");
278 		exit(KSFT_SKIP);
279 	}
280 
281 	ucna_vcpu = create_vcpu_with_mce_cap(vm, 0, true, ucna_injection_guest_code);
282 	cmcidis_vcpu = create_vcpu_with_mce_cap(vm, 1, false, cmci_disabled_guest_code);
283 	cmci_vcpu = create_vcpu_with_mce_cap(vm, 2, true, cmci_enabled_guest_code);
284 
285 	vm_install_exception_handler(vm, CMCI_VECTOR, guest_cmci_handler);
286 	vm_install_exception_handler(vm, GP_VECTOR, guest_gp_handler);
287 
288 	virt_pg_map(vm, APIC_DEFAULT_GPA, APIC_DEFAULT_GPA);
289 
290 	test_ucna_injection(ucna_vcpu, &params);
291 	run_vcpu_expect_gp(cmcidis_vcpu);
292 	run_vcpu_expect_gp(cmci_vcpu);
293 
294 	kvm_vm_free(vm);
295 }
296