xref: /linux/tools/testing/selftests/kvm/x86_64/nested_exceptions_test.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "test_util.h"
3 #include "kvm_util.h"
4 #include "processor.h"
5 #include "vmx.h"
6 #include "svm_util.h"
7 
8 #define L2_GUEST_STACK_SIZE 256
9 
10 /*
11  * Arbitrary, never shoved into KVM/hardware, just need to avoid conflict with
12  * the "real" exceptions used, #SS/#GP/#DF (12/13/8).
13  */
14 #define FAKE_TRIPLE_FAULT_VECTOR	0xaa
15 
16 /* Arbitrary 32-bit error code injected by this test. */
17 #define SS_ERROR_CODE 0xdeadbeef
18 
19 /*
20  * Bit '0' is set on Intel if the exception occurs while delivering a previous
21  * event/exception.  AMD's wording is ambiguous, but presumably the bit is set
22  * if the exception occurs while delivering an external event, e.g. NMI or INTR,
23  * but not for exceptions that occur when delivering other exceptions or
24  * software interrupts.
25  *
26  * Note, Intel's name for it, "External event", is misleading and much more
27  * aligned with AMD's behavior, but the SDM is quite clear on its behavior.
28  */
29 #define ERROR_CODE_EXT_FLAG	BIT(0)
30 
31 /*
32  * Bit '1' is set if the fault occurred when looking up a descriptor in the
33  * IDT, which is the case here as the IDT is empty/NULL.
34  */
35 #define ERROR_CODE_IDT_FLAG	BIT(1)
36 
37 /*
38  * The #GP that occurs when vectoring #SS should show the index into the IDT
39  * for #SS, plus have the "IDT flag" set.
40  */
41 #define GP_ERROR_CODE_AMD ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG)
42 #define GP_ERROR_CODE_INTEL ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG | ERROR_CODE_EXT_FLAG)
43 
44 /*
45  * Intel and AMD both shove '0' into the error code on #DF, regardless of what
46  * led to the double fault.
47  */
48 #define DF_ERROR_CODE 0
49 
50 #define INTERCEPT_SS		(BIT_ULL(SS_VECTOR))
51 #define INTERCEPT_SS_DF		(INTERCEPT_SS | BIT_ULL(DF_VECTOR))
52 #define INTERCEPT_SS_GP_DF	(INTERCEPT_SS_DF | BIT_ULL(GP_VECTOR))
53 
54 static void l2_ss_pending_test(void)
55 {
56 	GUEST_SYNC(SS_VECTOR);
57 }
58 
59 static void l2_ss_injected_gp_test(void)
60 {
61 	GUEST_SYNC(GP_VECTOR);
62 }
63 
64 static void l2_ss_injected_df_test(void)
65 {
66 	GUEST_SYNC(DF_VECTOR);
67 }
68 
69 static void l2_ss_injected_tf_test(void)
70 {
71 	GUEST_SYNC(FAKE_TRIPLE_FAULT_VECTOR);
72 }
73 
74 static void svm_run_l2(struct svm_test_data *svm, void *l2_code, int vector,
75 		       uint32_t error_code)
76 {
77 	struct vmcb *vmcb = svm->vmcb;
78 	struct vmcb_control_area *ctrl = &vmcb->control;
79 
80 	vmcb->save.rip = (u64)l2_code;
81 	run_guest(vmcb, svm->vmcb_gpa);
82 
83 	if (vector == FAKE_TRIPLE_FAULT_VECTOR)
84 		return;
85 
86 	GUEST_ASSERT_EQ(ctrl->exit_code, (SVM_EXIT_EXCP_BASE + vector));
87 	GUEST_ASSERT_EQ(ctrl->exit_info_1, error_code);
88 }
89 
90 static void l1_svm_code(struct svm_test_data *svm)
91 {
92 	struct vmcb_control_area *ctrl = &svm->vmcb->control;
93 	unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
94 
95 	generic_svm_setup(svm, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
96 	svm->vmcb->save.idtr.limit = 0;
97 	ctrl->intercept |= BIT_ULL(INTERCEPT_SHUTDOWN);
98 
99 	ctrl->intercept_exceptions = INTERCEPT_SS_GP_DF;
100 	svm_run_l2(svm, l2_ss_pending_test, SS_VECTOR, SS_ERROR_CODE);
101 	svm_run_l2(svm, l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_AMD);
102 
103 	ctrl->intercept_exceptions = INTERCEPT_SS_DF;
104 	svm_run_l2(svm, l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE);
105 
106 	ctrl->intercept_exceptions = INTERCEPT_SS;
107 	svm_run_l2(svm, l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0);
108 	GUEST_ASSERT_EQ(ctrl->exit_code, SVM_EXIT_SHUTDOWN);
109 
110 	GUEST_DONE();
111 }
112 
113 static void vmx_run_l2(void *l2_code, int vector, uint32_t error_code)
114 {
115 	GUEST_ASSERT(!vmwrite(GUEST_RIP, (u64)l2_code));
116 
117 	GUEST_ASSERT_EQ(vector == SS_VECTOR ? vmlaunch() : vmresume(), 0);
118 
119 	if (vector == FAKE_TRIPLE_FAULT_VECTOR)
120 		return;
121 
122 	GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_EXCEPTION_NMI);
123 	GUEST_ASSERT_EQ((vmreadz(VM_EXIT_INTR_INFO) & 0xff), vector);
124 	GUEST_ASSERT_EQ(vmreadz(VM_EXIT_INTR_ERROR_CODE), error_code);
125 }
126 
127 static void l1_vmx_code(struct vmx_pages *vmx)
128 {
129 	unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
130 
131 	GUEST_ASSERT_EQ(prepare_for_vmx_operation(vmx), true);
132 
133 	GUEST_ASSERT_EQ(load_vmcs(vmx), true);
134 
135 	prepare_vmcs(vmx, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
136 	GUEST_ASSERT_EQ(vmwrite(GUEST_IDTR_LIMIT, 0), 0);
137 
138 	/*
139 	 * VMX disallows injecting an exception with error_code[31:16] != 0,
140 	 * and hardware will never generate a VM-Exit with bits 31:16 set.
141 	 * KVM should likewise truncate the "bad" userspace value.
142 	 */
143 	GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_GP_DF), 0);
144 	vmx_run_l2(l2_ss_pending_test, SS_VECTOR, (u16)SS_ERROR_CODE);
145 	vmx_run_l2(l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_INTEL);
146 
147 	GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_DF), 0);
148 	vmx_run_l2(l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE);
149 
150 	GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS), 0);
151 	vmx_run_l2(l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0);
152 	GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_TRIPLE_FAULT);
153 
154 	GUEST_DONE();
155 }
156 
157 static void __attribute__((__flatten__)) l1_guest_code(void *test_data)
158 {
159 	if (this_cpu_has(X86_FEATURE_SVM))
160 		l1_svm_code(test_data);
161 	else
162 		l1_vmx_code(test_data);
163 }
164 
165 static void assert_ucall_vector(struct kvm_vcpu *vcpu, int vector)
166 {
167 	struct ucall uc;
168 
169 	TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
170 
171 	switch (get_ucall(vcpu, &uc)) {
172 	case UCALL_SYNC:
173 		TEST_ASSERT(vector == uc.args[1],
174 			    "Expected L2 to ask for %d, got %ld", vector, uc.args[1]);
175 		break;
176 	case UCALL_DONE:
177 		TEST_ASSERT(vector == -1,
178 			    "Expected L2 to ask for %d, L2 says it's done", vector);
179 		break;
180 	case UCALL_ABORT:
181 		REPORT_GUEST_ASSERT(uc);
182 		break;
183 	default:
184 		TEST_FAIL("Expected L2 to ask for %d, got unexpected ucall %lu", vector, uc.cmd);
185 	}
186 }
187 
188 static void queue_ss_exception(struct kvm_vcpu *vcpu, bool inject)
189 {
190 	struct kvm_vcpu_events events;
191 
192 	vcpu_events_get(vcpu, &events);
193 
194 	TEST_ASSERT(!events.exception.pending,
195 		    "Vector %d unexpectedlt pending", events.exception.nr);
196 	TEST_ASSERT(!events.exception.injected,
197 		    "Vector %d unexpectedly injected", events.exception.nr);
198 
199 	events.flags = KVM_VCPUEVENT_VALID_PAYLOAD;
200 	events.exception.pending = !inject;
201 	events.exception.injected = inject;
202 	events.exception.nr = SS_VECTOR;
203 	events.exception.has_error_code = true;
204 	events.exception.error_code = SS_ERROR_CODE;
205 	vcpu_events_set(vcpu, &events);
206 }
207 
208 /*
209  * Verify KVM_{G,S}ET_EVENTS play nice with pending vs. injected exceptions
210  * when an exception is being queued for L2.  Specifically, verify that KVM
211  * honors L1 exception intercept controls when a #SS is pending/injected,
212  * triggers a #GP on vectoring the #SS, morphs to #DF if #GP isn't intercepted
213  * by L1, and finally causes (nested) SHUTDOWN if #DF isn't intercepted by L1.
214  */
215 int main(int argc, char *argv[])
216 {
217 	vm_vaddr_t nested_test_data_gva;
218 	struct kvm_vcpu_events events;
219 	struct kvm_vcpu *vcpu;
220 	struct kvm_vm *vm;
221 
222 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_EXCEPTION_PAYLOAD));
223 	TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_SVM) || kvm_cpu_has(X86_FEATURE_VMX));
224 
225 	vm = vm_create_with_one_vcpu(&vcpu, l1_guest_code);
226 	vm_enable_cap(vm, KVM_CAP_EXCEPTION_PAYLOAD, -2ul);
227 
228 	if (kvm_cpu_has(X86_FEATURE_SVM))
229 		vcpu_alloc_svm(vm, &nested_test_data_gva);
230 	else
231 		vcpu_alloc_vmx(vm, &nested_test_data_gva);
232 
233 	vcpu_args_set(vcpu, 1, nested_test_data_gva);
234 
235 	/* Run L1 => L2.  L2 should sync and request #SS. */
236 	vcpu_run(vcpu);
237 	assert_ucall_vector(vcpu, SS_VECTOR);
238 
239 	/* Pend #SS and request immediate exit.  #SS should still be pending. */
240 	queue_ss_exception(vcpu, false);
241 	vcpu->run->immediate_exit = true;
242 	vcpu_run_complete_io(vcpu);
243 
244 	/* Verify the pending events comes back out the same as it went in. */
245 	vcpu_events_get(vcpu, &events);
246 	TEST_ASSERT_EQ(events.flags & KVM_VCPUEVENT_VALID_PAYLOAD,
247 			KVM_VCPUEVENT_VALID_PAYLOAD);
248 	TEST_ASSERT_EQ(events.exception.pending, true);
249 	TEST_ASSERT_EQ(events.exception.nr, SS_VECTOR);
250 	TEST_ASSERT_EQ(events.exception.has_error_code, true);
251 	TEST_ASSERT_EQ(events.exception.error_code, SS_ERROR_CODE);
252 
253 	/*
254 	 * Run for real with the pending #SS, L1 should get a VM-Exit due to
255 	 * #SS interception and re-enter L2 to request #GP (via injected #SS).
256 	 */
257 	vcpu->run->immediate_exit = false;
258 	vcpu_run(vcpu);
259 	assert_ucall_vector(vcpu, GP_VECTOR);
260 
261 	/*
262 	 * Inject #SS, the #SS should bypass interception and cause #GP, which
263 	 * L1 should intercept before KVM morphs it to #DF.  L1 should then
264 	 * disable #GP interception and run L2 to request #DF (via #SS => #GP).
265 	 */
266 	queue_ss_exception(vcpu, true);
267 	vcpu_run(vcpu);
268 	assert_ucall_vector(vcpu, DF_VECTOR);
269 
270 	/*
271 	 * Inject #SS, the #SS should bypass interception and cause #GP, which
272 	 * L1 is no longer interception, and so should see a #DF VM-Exit.  L1
273 	 * should then signal that is done.
274 	 */
275 	queue_ss_exception(vcpu, true);
276 	vcpu_run(vcpu);
277 	assert_ucall_vector(vcpu, FAKE_TRIPLE_FAULT_VECTOR);
278 
279 	/*
280 	 * Inject #SS yet again.  L1 is not intercepting #GP or #DF, and so
281 	 * should see nested TRIPLE_FAULT / SHUTDOWN.
282 	 */
283 	queue_ss_exception(vcpu, true);
284 	vcpu_run(vcpu);
285 	assert_ucall_vector(vcpu, -1);
286 
287 	kvm_vm_free(vm);
288 }
289