xref: /linux/tools/testing/selftests/kvm/s390x/resets.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Test for s390x CPU resets
4  *
5  * Copyright (C) 2020, IBM
6  */
7 
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <sys/ioctl.h>
12 
13 #include "test_util.h"
14 #include "kvm_util.h"
15 #include "kselftest.h"
16 
17 #define LOCAL_IRQS 32
18 
19 #define ARBITRARY_NON_ZERO_VCPU_ID 3
20 
21 struct kvm_s390_irq buf[ARBITRARY_NON_ZERO_VCPU_ID + LOCAL_IRQS];
22 
23 static uint8_t regs_null[512];
24 
25 static void guest_code_initial(void)
26 {
27 	/* set several CRs to "safe" value */
28 	unsigned long cr2_59 = 0x10;	/* enable guarded storage */
29 	unsigned long cr8_63 = 0x1;	/* monitor mask = 1 */
30 	unsigned long cr10 = 1;		/* PER START */
31 	unsigned long cr11 = -1;	/* PER END */
32 
33 
34 	/* Dirty registers */
35 	asm volatile (
36 		"	lghi	2,0x11\n"	/* Round toward 0 */
37 		"	sfpc	2\n"		/* set fpc to !=0 */
38 		"	lctlg	2,2,%0\n"
39 		"	lctlg	8,8,%1\n"
40 		"	lctlg	10,10,%2\n"
41 		"	lctlg	11,11,%3\n"
42 		/* now clobber some general purpose regs */
43 		"	llihh	0,0xffff\n"
44 		"	llihl	1,0x5555\n"
45 		"	llilh	2,0xaaaa\n"
46 		"	llill	3,0x0000\n"
47 		/* now clobber a floating point reg */
48 		"	lghi	4,0x1\n"
49 		"	cdgbr	0,4\n"
50 		/* now clobber an access reg */
51 		"	sar	9,4\n"
52 		/* We embed diag 501 here to control register content */
53 		"	diag 0,0,0x501\n"
54 		:
55 		: "m" (cr2_59), "m" (cr8_63), "m" (cr10), "m" (cr11)
56 		/* no clobber list as this should not return */
57 		);
58 }
59 
60 static void test_one_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t value)
61 {
62 	uint64_t eval_reg;
63 
64 	vcpu_get_reg(vcpu, id, &eval_reg);
65 	TEST_ASSERT(eval_reg == value, "value == 0x%lx", value);
66 }
67 
68 static void assert_noirq(struct kvm_vcpu *vcpu)
69 {
70 	struct kvm_s390_irq_state irq_state;
71 	int irqs;
72 
73 	irq_state.len = sizeof(buf);
74 	irq_state.buf = (unsigned long)buf;
75 	irqs = __vcpu_ioctl(vcpu, KVM_S390_GET_IRQ_STATE, &irq_state);
76 	/*
77 	 * irqs contains the number of retrieved interrupts. Any interrupt
78 	 * (notably, the emergency call interrupt we have injected) should
79 	 * be cleared by the resets, so this should be 0.
80 	 */
81 	TEST_ASSERT(irqs >= 0, "Could not fetch IRQs: errno %d\n", errno);
82 	TEST_ASSERT(!irqs, "IRQ pending");
83 }
84 
85 static void assert_clear(struct kvm_vcpu *vcpu)
86 {
87 	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
88 	struct kvm_sregs sregs;
89 	struct kvm_regs regs;
90 	struct kvm_fpu fpu;
91 
92 	vcpu_regs_get(vcpu, &regs);
93 	TEST_ASSERT(!memcmp(&regs.gprs, regs_null, sizeof(regs.gprs)), "grs == 0");
94 
95 	vcpu_sregs_get(vcpu, &sregs);
96 	TEST_ASSERT(!memcmp(&sregs.acrs, regs_null, sizeof(sregs.acrs)), "acrs == 0");
97 
98 	vcpu_fpu_get(vcpu, &fpu);
99 	TEST_ASSERT(!memcmp(&fpu.fprs, regs_null, sizeof(fpu.fprs)), "fprs == 0");
100 
101 	/* sync regs */
102 	TEST_ASSERT(!memcmp(sync_regs->gprs, regs_null, sizeof(sync_regs->gprs)),
103 		    "gprs0-15 == 0 (sync_regs)");
104 
105 	TEST_ASSERT(!memcmp(sync_regs->acrs, regs_null, sizeof(sync_regs->acrs)),
106 		    "acrs0-15 == 0 (sync_regs)");
107 
108 	TEST_ASSERT(!memcmp(sync_regs->vrs, regs_null, sizeof(sync_regs->vrs)),
109 		    "vrs0-15 == 0 (sync_regs)");
110 }
111 
112 static void assert_initial_noclear(struct kvm_vcpu *vcpu)
113 {
114 	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
115 
116 	TEST_ASSERT(sync_regs->gprs[0] == 0xffff000000000000UL,
117 		    "gpr0 == 0xffff000000000000 (sync_regs)");
118 	TEST_ASSERT(sync_regs->gprs[1] == 0x0000555500000000UL,
119 		    "gpr1 == 0x0000555500000000 (sync_regs)");
120 	TEST_ASSERT(sync_regs->gprs[2] == 0x00000000aaaa0000UL,
121 		    "gpr2 == 0x00000000aaaa0000 (sync_regs)");
122 	TEST_ASSERT(sync_regs->gprs[3] == 0x0000000000000000UL,
123 		    "gpr3 == 0x0000000000000000 (sync_regs)");
124 	TEST_ASSERT(sync_regs->fprs[0] == 0x3ff0000000000000UL,
125 		    "fpr0 == 0f1 (sync_regs)");
126 	TEST_ASSERT(sync_regs->acrs[9] == 1, "ar9 == 1 (sync_regs)");
127 }
128 
129 static void assert_initial(struct kvm_vcpu *vcpu)
130 {
131 	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
132 	struct kvm_sregs sregs;
133 	struct kvm_fpu fpu;
134 
135 	/* KVM_GET_SREGS */
136 	vcpu_sregs_get(vcpu, &sregs);
137 	TEST_ASSERT(sregs.crs[0] == 0xE0UL, "cr0 == 0xE0 (KVM_GET_SREGS)");
138 	TEST_ASSERT(sregs.crs[14] == 0xC2000000UL,
139 		    "cr14 == 0xC2000000 (KVM_GET_SREGS)");
140 	TEST_ASSERT(!memcmp(&sregs.crs[1], regs_null, sizeof(sregs.crs[1]) * 12),
141 		    "cr1-13 == 0 (KVM_GET_SREGS)");
142 	TEST_ASSERT(sregs.crs[15] == 0, "cr15 == 0 (KVM_GET_SREGS)");
143 
144 	/* sync regs */
145 	TEST_ASSERT(sync_regs->crs[0] == 0xE0UL, "cr0 == 0xE0 (sync_regs)");
146 	TEST_ASSERT(sync_regs->crs[14] == 0xC2000000UL,
147 		    "cr14 == 0xC2000000 (sync_regs)");
148 	TEST_ASSERT(!memcmp(&sync_regs->crs[1], regs_null, 8 * 12),
149 		    "cr1-13 == 0 (sync_regs)");
150 	TEST_ASSERT(sync_regs->crs[15] == 0, "cr15 == 0 (sync_regs)");
151 	TEST_ASSERT(sync_regs->fpc == 0, "fpc == 0 (sync_regs)");
152 	TEST_ASSERT(sync_regs->todpr == 0, "todpr == 0 (sync_regs)");
153 	TEST_ASSERT(sync_regs->cputm == 0, "cputm == 0 (sync_regs)");
154 	TEST_ASSERT(sync_regs->ckc == 0, "ckc == 0 (sync_regs)");
155 	TEST_ASSERT(sync_regs->pp == 0, "pp == 0 (sync_regs)");
156 	TEST_ASSERT(sync_regs->gbea == 1, "gbea == 1 (sync_regs)");
157 
158 	/* kvm_run */
159 	TEST_ASSERT(vcpu->run->psw_addr == 0, "psw_addr == 0 (kvm_run)");
160 	TEST_ASSERT(vcpu->run->psw_mask == 0, "psw_mask == 0 (kvm_run)");
161 
162 	vcpu_fpu_get(vcpu, &fpu);
163 	TEST_ASSERT(!fpu.fpc, "fpc == 0");
164 
165 	test_one_reg(vcpu, KVM_REG_S390_GBEA, 1);
166 	test_one_reg(vcpu, KVM_REG_S390_PP, 0);
167 	test_one_reg(vcpu, KVM_REG_S390_TODPR, 0);
168 	test_one_reg(vcpu, KVM_REG_S390_CPU_TIMER, 0);
169 	test_one_reg(vcpu, KVM_REG_S390_CLOCK_COMP, 0);
170 }
171 
172 static void assert_normal_noclear(struct kvm_vcpu *vcpu)
173 {
174 	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
175 
176 	TEST_ASSERT(sync_regs->crs[2] == 0x10, "cr2 == 10 (sync_regs)");
177 	TEST_ASSERT(sync_regs->crs[8] == 1, "cr10 == 1 (sync_regs)");
178 	TEST_ASSERT(sync_regs->crs[10] == 1, "cr10 == 1 (sync_regs)");
179 	TEST_ASSERT(sync_regs->crs[11] == -1, "cr11 == -1 (sync_regs)");
180 }
181 
182 static void assert_normal(struct kvm_vcpu *vcpu)
183 {
184 	test_one_reg(vcpu, KVM_REG_S390_PFTOKEN, KVM_S390_PFAULT_TOKEN_INVALID);
185 	TEST_ASSERT(vcpu->run->s.regs.pft == KVM_S390_PFAULT_TOKEN_INVALID,
186 			"pft == 0xff.....  (sync_regs)");
187 	assert_noirq(vcpu);
188 }
189 
190 static void inject_irq(struct kvm_vcpu *vcpu)
191 {
192 	struct kvm_s390_irq_state irq_state;
193 	struct kvm_s390_irq *irq = &buf[0];
194 	int irqs;
195 
196 	/* Inject IRQ */
197 	irq_state.len = sizeof(struct kvm_s390_irq);
198 	irq_state.buf = (unsigned long)buf;
199 	irq->type = KVM_S390_INT_EMERGENCY;
200 	irq->u.emerg.code = vcpu->id;
201 	irqs = __vcpu_ioctl(vcpu, KVM_S390_SET_IRQ_STATE, &irq_state);
202 	TEST_ASSERT(irqs >= 0, "Error injecting EMERGENCY IRQ errno %d\n", errno);
203 }
204 
205 static struct kvm_vm *create_vm(struct kvm_vcpu **vcpu)
206 {
207 	struct kvm_vm *vm;
208 
209 	vm = vm_create(1);
210 
211 	*vcpu = vm_vcpu_add(vm, ARBITRARY_NON_ZERO_VCPU_ID, guest_code_initial);
212 
213 	return vm;
214 }
215 
216 static void test_normal(void)
217 {
218 	struct kvm_vcpu *vcpu;
219 	struct kvm_vm *vm;
220 
221 	ksft_print_msg("Testing normal reset\n");
222 	vm = create_vm(&vcpu);
223 
224 	vcpu_run(vcpu);
225 
226 	inject_irq(vcpu);
227 
228 	vcpu_ioctl(vcpu, KVM_S390_NORMAL_RESET, NULL);
229 
230 	/* must clears */
231 	assert_normal(vcpu);
232 	/* must not clears */
233 	assert_normal_noclear(vcpu);
234 	assert_initial_noclear(vcpu);
235 
236 	kvm_vm_free(vm);
237 }
238 
239 static void test_initial(void)
240 {
241 	struct kvm_vcpu *vcpu;
242 	struct kvm_vm *vm;
243 
244 	ksft_print_msg("Testing initial reset\n");
245 	vm = create_vm(&vcpu);
246 
247 	vcpu_run(vcpu);
248 
249 	inject_irq(vcpu);
250 
251 	vcpu_ioctl(vcpu, KVM_S390_INITIAL_RESET, NULL);
252 
253 	/* must clears */
254 	assert_normal(vcpu);
255 	assert_initial(vcpu);
256 	/* must not clears */
257 	assert_initial_noclear(vcpu);
258 
259 	kvm_vm_free(vm);
260 }
261 
262 static void test_clear(void)
263 {
264 	struct kvm_vcpu *vcpu;
265 	struct kvm_vm *vm;
266 
267 	ksft_print_msg("Testing clear reset\n");
268 	vm = create_vm(&vcpu);
269 
270 	vcpu_run(vcpu);
271 
272 	inject_irq(vcpu);
273 
274 	vcpu_ioctl(vcpu, KVM_S390_CLEAR_RESET, NULL);
275 
276 	/* must clears */
277 	assert_normal(vcpu);
278 	assert_initial(vcpu);
279 	assert_clear(vcpu);
280 
281 	kvm_vm_free(vm);
282 }
283 
284 struct testdef {
285 	const char *name;
286 	void (*test)(void);
287 	bool needs_cap;
288 } testlist[] = {
289 	{ "initial", test_initial, false },
290 	{ "normal", test_normal, true },
291 	{ "clear", test_clear, true },
292 };
293 
294 int main(int argc, char *argv[])
295 {
296 	bool has_s390_vcpu_resets = kvm_check_cap(KVM_CAP_S390_VCPU_RESETS);
297 	int idx;
298 
299 	ksft_print_header();
300 	ksft_set_plan(ARRAY_SIZE(testlist));
301 
302 	for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
303 		if (!testlist[idx].needs_cap || has_s390_vcpu_resets) {
304 			testlist[idx].test();
305 			ksft_test_result_pass("%s\n", testlist[idx].name);
306 		} else {
307 			ksft_test_result_skip("%s - no VCPU_RESETS capability\n",
308 					      testlist[idx].name);
309 		}
310 	}
311 
312 	ksft_finished();	/* Print results and exit() accordingly */
313 }
314