xref: /linux/tools/testing/selftests/kvm/s390x/memop.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Test for s390x KVM_S390_MEM_OP
4  *
5  * Copyright (C) 2019, Red Hat, Inc.
6  */
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <sys/ioctl.h>
11 #include <pthread.h>
12 
13 #include <linux/bits.h>
14 
15 #include "test_util.h"
16 #include "kvm_util.h"
17 #include "kselftest.h"
18 #include "ucall_common.h"
19 
20 enum mop_target {
21 	LOGICAL,
22 	SIDA,
23 	ABSOLUTE,
24 	INVALID,
25 };
26 
27 enum mop_access_mode {
28 	READ,
29 	WRITE,
30 	CMPXCHG,
31 };
32 
33 struct mop_desc {
34 	uintptr_t gaddr;
35 	uintptr_t gaddr_v;
36 	uint64_t set_flags;
37 	unsigned int f_check : 1;
38 	unsigned int f_inject : 1;
39 	unsigned int f_key : 1;
40 	unsigned int _gaddr_v : 1;
41 	unsigned int _set_flags : 1;
42 	unsigned int _sida_offset : 1;
43 	unsigned int _ar : 1;
44 	uint32_t size;
45 	enum mop_target target;
46 	enum mop_access_mode mode;
47 	void *buf;
48 	uint32_t sida_offset;
49 	void *old;
50 	uint8_t old_value[16];
51 	bool *cmpxchg_success;
52 	uint8_t ar;
53 	uint8_t key;
54 };
55 
56 const uint8_t NO_KEY = 0xff;
57 
58 static struct kvm_s390_mem_op ksmo_from_desc(struct mop_desc *desc)
59 {
60 	struct kvm_s390_mem_op ksmo = {
61 		.gaddr = (uintptr_t)desc->gaddr,
62 		.size = desc->size,
63 		.buf = ((uintptr_t)desc->buf),
64 		.reserved = "ignored_ignored_ignored_ignored"
65 	};
66 
67 	switch (desc->target) {
68 	case LOGICAL:
69 		if (desc->mode == READ)
70 			ksmo.op = KVM_S390_MEMOP_LOGICAL_READ;
71 		if (desc->mode == WRITE)
72 			ksmo.op = KVM_S390_MEMOP_LOGICAL_WRITE;
73 		break;
74 	case SIDA:
75 		if (desc->mode == READ)
76 			ksmo.op = KVM_S390_MEMOP_SIDA_READ;
77 		if (desc->mode == WRITE)
78 			ksmo.op = KVM_S390_MEMOP_SIDA_WRITE;
79 		break;
80 	case ABSOLUTE:
81 		if (desc->mode == READ)
82 			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_READ;
83 		if (desc->mode == WRITE)
84 			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_WRITE;
85 		if (desc->mode == CMPXCHG) {
86 			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_CMPXCHG;
87 			ksmo.old_addr = (uint64_t)desc->old;
88 			memcpy(desc->old_value, desc->old, desc->size);
89 		}
90 		break;
91 	case INVALID:
92 		ksmo.op = -1;
93 	}
94 	if (desc->f_check)
95 		ksmo.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
96 	if (desc->f_inject)
97 		ksmo.flags |= KVM_S390_MEMOP_F_INJECT_EXCEPTION;
98 	if (desc->_set_flags)
99 		ksmo.flags = desc->set_flags;
100 	if (desc->f_key && desc->key != NO_KEY) {
101 		ksmo.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
102 		ksmo.key = desc->key;
103 	}
104 	if (desc->_ar)
105 		ksmo.ar = desc->ar;
106 	else
107 		ksmo.ar = 0;
108 	if (desc->_sida_offset)
109 		ksmo.sida_offset = desc->sida_offset;
110 
111 	return ksmo;
112 }
113 
114 struct test_info {
115 	struct kvm_vm *vm;
116 	struct kvm_vcpu *vcpu;
117 };
118 
119 #define PRINT_MEMOP false
120 static void print_memop(struct kvm_vcpu *vcpu, const struct kvm_s390_mem_op *ksmo)
121 {
122 	if (!PRINT_MEMOP)
123 		return;
124 
125 	if (!vcpu)
126 		printf("vm memop(");
127 	else
128 		printf("vcpu memop(");
129 	switch (ksmo->op) {
130 	case KVM_S390_MEMOP_LOGICAL_READ:
131 		printf("LOGICAL, READ, ");
132 		break;
133 	case KVM_S390_MEMOP_LOGICAL_WRITE:
134 		printf("LOGICAL, WRITE, ");
135 		break;
136 	case KVM_S390_MEMOP_SIDA_READ:
137 		printf("SIDA, READ, ");
138 		break;
139 	case KVM_S390_MEMOP_SIDA_WRITE:
140 		printf("SIDA, WRITE, ");
141 		break;
142 	case KVM_S390_MEMOP_ABSOLUTE_READ:
143 		printf("ABSOLUTE, READ, ");
144 		break;
145 	case KVM_S390_MEMOP_ABSOLUTE_WRITE:
146 		printf("ABSOLUTE, WRITE, ");
147 		break;
148 	case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
149 		printf("ABSOLUTE, CMPXCHG, ");
150 		break;
151 	}
152 	printf("gaddr=%llu, size=%u, buf=%llu, ar=%u, key=%u, old_addr=%llx",
153 	       ksmo->gaddr, ksmo->size, ksmo->buf, ksmo->ar, ksmo->key,
154 	       ksmo->old_addr);
155 	if (ksmo->flags & KVM_S390_MEMOP_F_CHECK_ONLY)
156 		printf(", CHECK_ONLY");
157 	if (ksmo->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION)
158 		printf(", INJECT_EXCEPTION");
159 	if (ksmo->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION)
160 		printf(", SKEY_PROTECTION");
161 	puts(")");
162 }
163 
164 static int err_memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
165 			   struct mop_desc *desc)
166 {
167 	struct kvm_vcpu *vcpu = info.vcpu;
168 
169 	if (!vcpu)
170 		return __vm_ioctl(info.vm, KVM_S390_MEM_OP, ksmo);
171 	else
172 		return __vcpu_ioctl(vcpu, KVM_S390_MEM_OP, ksmo);
173 }
174 
175 static void memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
176 			struct mop_desc *desc)
177 {
178 	int r;
179 
180 	r = err_memop_ioctl(info, ksmo, desc);
181 	if (ksmo->op == KVM_S390_MEMOP_ABSOLUTE_CMPXCHG) {
182 		if (desc->cmpxchg_success) {
183 			int diff = memcmp(desc->old_value, desc->old, desc->size);
184 			*desc->cmpxchg_success = !diff;
185 		}
186 	}
187 	TEST_ASSERT(!r, __KVM_IOCTL_ERROR("KVM_S390_MEM_OP", r));
188 }
189 
190 #define MEMOP(err, info_p, mop_target_p, access_mode_p, buf_p, size_p, ...)	\
191 ({										\
192 	struct test_info __info = (info_p);					\
193 	struct mop_desc __desc = {						\
194 		.target = (mop_target_p),					\
195 		.mode = (access_mode_p),					\
196 		.buf = (buf_p),							\
197 		.size = (size_p),						\
198 		__VA_ARGS__							\
199 	};									\
200 	struct kvm_s390_mem_op __ksmo;						\
201 										\
202 	if (__desc._gaddr_v) {							\
203 		if (__desc.target == ABSOLUTE)					\
204 			__desc.gaddr = addr_gva2gpa(__info.vm, __desc.gaddr_v);	\
205 		else								\
206 			__desc.gaddr = __desc.gaddr_v;				\
207 	}									\
208 	__ksmo = ksmo_from_desc(&__desc);					\
209 	print_memop(__info.vcpu, &__ksmo);					\
210 	err##memop_ioctl(__info, &__ksmo, &__desc);				\
211 })
212 
213 #define MOP(...) MEMOP(, __VA_ARGS__)
214 #define ERR_MOP(...) MEMOP(err_, __VA_ARGS__)
215 
216 #define GADDR(a) .gaddr = ((uintptr_t)a)
217 #define GADDR_V(v) ._gaddr_v = 1, .gaddr_v = ((uintptr_t)v)
218 #define CHECK_ONLY .f_check = 1
219 #define SET_FLAGS(f) ._set_flags = 1, .set_flags = (f)
220 #define SIDA_OFFSET(o) ._sida_offset = 1, .sida_offset = (o)
221 #define AR(a) ._ar = 1, .ar = (a)
222 #define KEY(a) .f_key = 1, .key = (a)
223 #define INJECT .f_inject = 1
224 #define CMPXCHG_OLD(o) .old = (o)
225 #define CMPXCHG_SUCCESS(s) .cmpxchg_success = (s)
226 
227 #define CHECK_N_DO(f, ...) ({ f(__VA_ARGS__, CHECK_ONLY); f(__VA_ARGS__); })
228 
229 #define PAGE_SHIFT 12
230 #define PAGE_SIZE (1ULL << PAGE_SHIFT)
231 #define PAGE_MASK (~(PAGE_SIZE - 1))
232 #define CR0_FETCH_PROTECTION_OVERRIDE	(1UL << (63 - 38))
233 #define CR0_STORAGE_PROTECTION_OVERRIDE	(1UL << (63 - 39))
234 
235 static uint8_t __aligned(PAGE_SIZE) mem1[65536];
236 static uint8_t __aligned(PAGE_SIZE) mem2[65536];
237 
238 struct test_default {
239 	struct kvm_vm *kvm_vm;
240 	struct test_info vm;
241 	struct test_info vcpu;
242 	struct kvm_run *run;
243 	int size;
244 };
245 
246 static struct test_default test_default_init(void *guest_code)
247 {
248 	struct kvm_vcpu *vcpu;
249 	struct test_default t;
250 
251 	t.size = min((size_t)kvm_check_cap(KVM_CAP_S390_MEM_OP), sizeof(mem1));
252 	t.kvm_vm = vm_create_with_one_vcpu(&vcpu, guest_code);
253 	t.vm = (struct test_info) { t.kvm_vm, NULL };
254 	t.vcpu = (struct test_info) { t.kvm_vm, vcpu };
255 	t.run = vcpu->run;
256 	return t;
257 }
258 
259 enum stage {
260 	/* Synced state set by host, e.g. DAT */
261 	STAGE_INITED,
262 	/* Guest did nothing */
263 	STAGE_IDLED,
264 	/* Guest set storage keys (specifics up to test case) */
265 	STAGE_SKEYS_SET,
266 	/* Guest copied memory (locations up to test case) */
267 	STAGE_COPIED,
268 	/* End of guest code reached */
269 	STAGE_DONE,
270 };
271 
272 #define HOST_SYNC(info_p, stage)					\
273 ({									\
274 	struct test_info __info = (info_p);				\
275 	struct kvm_vcpu *__vcpu = __info.vcpu;				\
276 	struct ucall uc;						\
277 	int __stage = (stage);						\
278 									\
279 	vcpu_run(__vcpu);						\
280 	get_ucall(__vcpu, &uc);						\
281 	if (uc.cmd == UCALL_ABORT) {					\
282 		REPORT_GUEST_ASSERT(uc);				\
283 	}								\
284 	TEST_ASSERT_EQ(uc.cmd, UCALL_SYNC);				\
285 	TEST_ASSERT_EQ(uc.args[1], __stage);				\
286 })									\
287 
288 static void prepare_mem12(void)
289 {
290 	int i;
291 
292 	for (i = 0; i < sizeof(mem1); i++)
293 		mem1[i] = rand();
294 	memset(mem2, 0xaa, sizeof(mem2));
295 }
296 
297 #define ASSERT_MEM_EQ(p1, p2, size) \
298 	TEST_ASSERT(!memcmp(p1, p2, size), "Memory contents do not match!")
299 
300 static void default_write_read(struct test_info copy_cpu, struct test_info mop_cpu,
301 			       enum mop_target mop_target, uint32_t size, uint8_t key)
302 {
303 	prepare_mem12();
304 	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size,
305 		   GADDR_V(mem1), KEY(key));
306 	HOST_SYNC(copy_cpu, STAGE_COPIED);
307 	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
308 		   GADDR_V(mem2), KEY(key));
309 	ASSERT_MEM_EQ(mem1, mem2, size);
310 }
311 
312 static void default_read(struct test_info copy_cpu, struct test_info mop_cpu,
313 			 enum mop_target mop_target, uint32_t size, uint8_t key)
314 {
315 	prepare_mem12();
316 	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size, GADDR_V(mem1));
317 	HOST_SYNC(copy_cpu, STAGE_COPIED);
318 	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
319 		   GADDR_V(mem2), KEY(key));
320 	ASSERT_MEM_EQ(mem1, mem2, size);
321 }
322 
323 static void default_cmpxchg(struct test_default *test, uint8_t key)
324 {
325 	for (int size = 1; size <= 16; size *= 2) {
326 		for (int offset = 0; offset < 16; offset += size) {
327 			uint8_t __aligned(16) new[16] = {};
328 			uint8_t __aligned(16) old[16];
329 			bool succ;
330 
331 			prepare_mem12();
332 			default_write_read(test->vcpu, test->vcpu, LOGICAL, 16, NO_KEY);
333 
334 			memcpy(&old, mem1, 16);
335 			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
336 			    size, GADDR_V(mem1 + offset),
337 			    CMPXCHG_OLD(old + offset),
338 			    CMPXCHG_SUCCESS(&succ), KEY(key));
339 			HOST_SYNC(test->vcpu, STAGE_COPIED);
340 			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
341 			TEST_ASSERT(succ, "exchange of values should succeed");
342 			memcpy(mem1 + offset, new + offset, size);
343 			ASSERT_MEM_EQ(mem1, mem2, 16);
344 
345 			memcpy(&old, mem1, 16);
346 			new[offset]++;
347 			old[offset]++;
348 			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
349 			    size, GADDR_V(mem1 + offset),
350 			    CMPXCHG_OLD(old + offset),
351 			    CMPXCHG_SUCCESS(&succ), KEY(key));
352 			HOST_SYNC(test->vcpu, STAGE_COPIED);
353 			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
354 			TEST_ASSERT(!succ, "exchange of values should not succeed");
355 			ASSERT_MEM_EQ(mem1, mem2, 16);
356 			ASSERT_MEM_EQ(&old, mem1, 16);
357 		}
358 	}
359 }
360 
361 static void guest_copy(void)
362 {
363 	GUEST_SYNC(STAGE_INITED);
364 	memcpy(&mem2, &mem1, sizeof(mem2));
365 	GUEST_SYNC(STAGE_COPIED);
366 }
367 
368 static void test_copy(void)
369 {
370 	struct test_default t = test_default_init(guest_copy);
371 
372 	HOST_SYNC(t.vcpu, STAGE_INITED);
373 
374 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, NO_KEY);
375 
376 	kvm_vm_free(t.kvm_vm);
377 }
378 
379 static void test_copy_access_register(void)
380 {
381 	struct test_default t = test_default_init(guest_copy);
382 
383 	HOST_SYNC(t.vcpu, STAGE_INITED);
384 
385 	prepare_mem12();
386 	t.run->psw_mask &= ~(3UL << (63 - 17));
387 	t.run->psw_mask |= 1UL << (63 - 17);  /* Enable AR mode */
388 
389 	/*
390 	 * Primary address space gets used if an access register
391 	 * contains zero. The host makes use of AR[1] so is a good
392 	 * candidate to ensure the guest AR (of zero) is used.
393 	 */
394 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size,
395 		   GADDR_V(mem1), AR(1));
396 	HOST_SYNC(t.vcpu, STAGE_COPIED);
397 
398 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, t.size,
399 		   GADDR_V(mem2), AR(1));
400 	ASSERT_MEM_EQ(mem1, mem2, t.size);
401 
402 	kvm_vm_free(t.kvm_vm);
403 }
404 
405 static void set_storage_key_range(void *addr, size_t len, uint8_t key)
406 {
407 	uintptr_t _addr, abs, i;
408 	int not_mapped = 0;
409 
410 	_addr = (uintptr_t)addr;
411 	for (i = _addr & PAGE_MASK; i < _addr + len; i += PAGE_SIZE) {
412 		abs = i;
413 		asm volatile (
414 			       "lra	%[abs], 0(0,%[abs])\n"
415 			"	jz	0f\n"
416 			"	llill	%[not_mapped],1\n"
417 			"	j	1f\n"
418 			"0:	sske	%[key], %[abs]\n"
419 			"1:"
420 			: [abs] "+&a" (abs), [not_mapped] "+r" (not_mapped)
421 			: [key] "r" (key)
422 			: "cc"
423 		);
424 		GUEST_ASSERT_EQ(not_mapped, 0);
425 	}
426 }
427 
428 static void guest_copy_key(void)
429 {
430 	set_storage_key_range(mem1, sizeof(mem1), 0x90);
431 	set_storage_key_range(mem2, sizeof(mem2), 0x90);
432 	GUEST_SYNC(STAGE_SKEYS_SET);
433 
434 	for (;;) {
435 		memcpy(&mem2, &mem1, sizeof(mem2));
436 		GUEST_SYNC(STAGE_COPIED);
437 	}
438 }
439 
440 static void test_copy_key(void)
441 {
442 	struct test_default t = test_default_init(guest_copy_key);
443 
444 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
445 
446 	/* vm, no key */
447 	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, NO_KEY);
448 
449 	/* vm/vcpu, machting key or key 0 */
450 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 0);
451 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
452 	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 0);
453 	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
454 	/*
455 	 * There used to be different code paths for key handling depending on
456 	 * if the region crossed a page boundary.
457 	 * There currently are not, but the more tests the merrier.
458 	 */
459 	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 0);
460 	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 9);
461 	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 0);
462 	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 9);
463 
464 	/* vm/vcpu, mismatching keys on read, but no fetch protection */
465 	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
466 	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 2);
467 
468 	kvm_vm_free(t.kvm_vm);
469 }
470 
471 static void test_cmpxchg_key(void)
472 {
473 	struct test_default t = test_default_init(guest_copy_key);
474 
475 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
476 
477 	default_cmpxchg(&t, NO_KEY);
478 	default_cmpxchg(&t, 0);
479 	default_cmpxchg(&t, 9);
480 
481 	kvm_vm_free(t.kvm_vm);
482 }
483 
484 static __uint128_t cut_to_size(int size, __uint128_t val)
485 {
486 	switch (size) {
487 	case 1:
488 		return (uint8_t)val;
489 	case 2:
490 		return (uint16_t)val;
491 	case 4:
492 		return (uint32_t)val;
493 	case 8:
494 		return (uint64_t)val;
495 	case 16:
496 		return val;
497 	}
498 	GUEST_FAIL("Invalid size = %u", size);
499 	return 0;
500 }
501 
502 static bool popcount_eq(__uint128_t a, __uint128_t b)
503 {
504 	unsigned int count_a, count_b;
505 
506 	count_a = __builtin_popcountl((uint64_t)(a >> 64)) +
507 		  __builtin_popcountl((uint64_t)a);
508 	count_b = __builtin_popcountl((uint64_t)(b >> 64)) +
509 		  __builtin_popcountl((uint64_t)b);
510 	return count_a == count_b;
511 }
512 
513 static __uint128_t rotate(int size, __uint128_t val, int amount)
514 {
515 	unsigned int bits = size * 8;
516 
517 	amount = (amount + bits) % bits;
518 	val = cut_to_size(size, val);
519 	if (!amount)
520 		return val;
521 	return (val << (bits - amount)) | (val >> amount);
522 }
523 
524 const unsigned int max_block = 16;
525 
526 static void choose_block(bool guest, int i, int *size, int *offset)
527 {
528 	unsigned int rand;
529 
530 	rand = i;
531 	if (guest) {
532 		rand = rand * 19 + 11;
533 		*size = 1 << ((rand % 3) + 2);
534 		rand = rand * 19 + 11;
535 		*offset = (rand % max_block) & ~(*size - 1);
536 	} else {
537 		rand = rand * 17 + 5;
538 		*size = 1 << (rand % 5);
539 		rand = rand * 17 + 5;
540 		*offset = (rand % max_block) & ~(*size - 1);
541 	}
542 }
543 
544 static __uint128_t permutate_bits(bool guest, int i, int size, __uint128_t old)
545 {
546 	unsigned int rand;
547 	int amount;
548 	bool swap;
549 
550 	rand = i;
551 	rand = rand * 3 + 1;
552 	if (guest)
553 		rand = rand * 3 + 1;
554 	swap = rand % 2 == 0;
555 	if (swap) {
556 		int i, j;
557 		__uint128_t new;
558 		uint8_t byte0, byte1;
559 
560 		rand = rand * 3 + 1;
561 		i = rand % size;
562 		rand = rand * 3 + 1;
563 		j = rand % size;
564 		if (i == j)
565 			return old;
566 		new = rotate(16, old, i * 8);
567 		byte0 = new & 0xff;
568 		new &= ~0xff;
569 		new = rotate(16, new, -i * 8);
570 		new = rotate(16, new, j * 8);
571 		byte1 = new & 0xff;
572 		new = (new & ~0xff) | byte0;
573 		new = rotate(16, new, -j * 8);
574 		new = rotate(16, new, i * 8);
575 		new = new | byte1;
576 		new = rotate(16, new, -i * 8);
577 		return new;
578 	}
579 	rand = rand * 3 + 1;
580 	amount = rand % (size * 8);
581 	return rotate(size, old, amount);
582 }
583 
584 static bool _cmpxchg(int size, void *target, __uint128_t *old_addr, __uint128_t new)
585 {
586 	bool ret;
587 
588 	switch (size) {
589 	case 4: {
590 			uint32_t old = *old_addr;
591 
592 			asm volatile ("cs %[old],%[new],%[address]"
593 			    : [old] "+d" (old),
594 			      [address] "+Q" (*(uint32_t *)(target))
595 			    : [new] "d" ((uint32_t)new)
596 			    : "cc"
597 			);
598 			ret = old == (uint32_t)*old_addr;
599 			*old_addr = old;
600 			return ret;
601 		}
602 	case 8: {
603 			uint64_t old = *old_addr;
604 
605 			asm volatile ("csg %[old],%[new],%[address]"
606 			    : [old] "+d" (old),
607 			      [address] "+Q" (*(uint64_t *)(target))
608 			    : [new] "d" ((uint64_t)new)
609 			    : "cc"
610 			);
611 			ret = old == (uint64_t)*old_addr;
612 			*old_addr = old;
613 			return ret;
614 		}
615 	case 16: {
616 			__uint128_t old = *old_addr;
617 
618 			asm volatile ("cdsg %[old],%[new],%[address]"
619 			    : [old] "+d" (old),
620 			      [address] "+Q" (*(__uint128_t *)(target))
621 			    : [new] "d" (new)
622 			    : "cc"
623 			);
624 			ret = old == *old_addr;
625 			*old_addr = old;
626 			return ret;
627 		}
628 	}
629 	GUEST_FAIL("Invalid size = %u", size);
630 	return 0;
631 }
632 
633 const unsigned int cmpxchg_iter_outer = 100, cmpxchg_iter_inner = 10000;
634 
635 static void guest_cmpxchg_key(void)
636 {
637 	int size, offset;
638 	__uint128_t old, new;
639 
640 	set_storage_key_range(mem1, max_block, 0x10);
641 	set_storage_key_range(mem2, max_block, 0x10);
642 	GUEST_SYNC(STAGE_SKEYS_SET);
643 
644 	for (int i = 0; i < cmpxchg_iter_outer; i++) {
645 		do {
646 			old = 1;
647 		} while (!_cmpxchg(16, mem1, &old, 0));
648 		for (int j = 0; j < cmpxchg_iter_inner; j++) {
649 			choose_block(true, i + j, &size, &offset);
650 			do {
651 				new = permutate_bits(true, i + j, size, old);
652 			} while (!_cmpxchg(size, mem2 + offset, &old, new));
653 		}
654 	}
655 
656 	GUEST_SYNC(STAGE_DONE);
657 }
658 
659 static void *run_guest(void *data)
660 {
661 	struct test_info *info = data;
662 
663 	HOST_SYNC(*info, STAGE_DONE);
664 	return NULL;
665 }
666 
667 static char *quad_to_char(__uint128_t *quad, int size)
668 {
669 	return ((char *)quad) + (sizeof(*quad) - size);
670 }
671 
672 static void test_cmpxchg_key_concurrent(void)
673 {
674 	struct test_default t = test_default_init(guest_cmpxchg_key);
675 	int size, offset;
676 	__uint128_t old, new;
677 	bool success;
678 	pthread_t thread;
679 
680 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
681 	prepare_mem12();
682 	MOP(t.vcpu, LOGICAL, WRITE, mem1, max_block, GADDR_V(mem2));
683 	pthread_create(&thread, NULL, run_guest, &t.vcpu);
684 
685 	for (int i = 0; i < cmpxchg_iter_outer; i++) {
686 		do {
687 			old = 0;
688 			new = 1;
689 			MOP(t.vm, ABSOLUTE, CMPXCHG, &new,
690 			    sizeof(new), GADDR_V(mem1),
691 			    CMPXCHG_OLD(&old),
692 			    CMPXCHG_SUCCESS(&success), KEY(1));
693 		} while (!success);
694 		for (int j = 0; j < cmpxchg_iter_inner; j++) {
695 			choose_block(false, i + j, &size, &offset);
696 			do {
697 				new = permutate_bits(false, i + j, size, old);
698 				MOP(t.vm, ABSOLUTE, CMPXCHG, quad_to_char(&new, size),
699 				    size, GADDR_V(mem2 + offset),
700 				    CMPXCHG_OLD(quad_to_char(&old, size)),
701 				    CMPXCHG_SUCCESS(&success), KEY(1));
702 			} while (!success);
703 		}
704 	}
705 
706 	pthread_join(thread, NULL);
707 
708 	MOP(t.vcpu, LOGICAL, READ, mem2, max_block, GADDR_V(mem2));
709 	TEST_ASSERT(popcount_eq(*(__uint128_t *)mem1, *(__uint128_t *)mem2),
710 		    "Must retain number of set bits");
711 
712 	kvm_vm_free(t.kvm_vm);
713 }
714 
715 static void guest_copy_key_fetch_prot(void)
716 {
717 	/*
718 	 * For some reason combining the first sync with override enablement
719 	 * results in an exception when calling HOST_SYNC.
720 	 */
721 	GUEST_SYNC(STAGE_INITED);
722 	/* Storage protection override applies to both store and fetch. */
723 	set_storage_key_range(mem1, sizeof(mem1), 0x98);
724 	set_storage_key_range(mem2, sizeof(mem2), 0x98);
725 	GUEST_SYNC(STAGE_SKEYS_SET);
726 
727 	for (;;) {
728 		memcpy(&mem2, &mem1, sizeof(mem2));
729 		GUEST_SYNC(STAGE_COPIED);
730 	}
731 }
732 
733 static void test_copy_key_storage_prot_override(void)
734 {
735 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
736 
737 	HOST_SYNC(t.vcpu, STAGE_INITED);
738 	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
739 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
740 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
741 
742 	/* vcpu, mismatching keys, storage protection override in effect */
743 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
744 
745 	kvm_vm_free(t.kvm_vm);
746 }
747 
748 static void test_copy_key_fetch_prot(void)
749 {
750 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
751 
752 	HOST_SYNC(t.vcpu, STAGE_INITED);
753 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
754 
755 	/* vm/vcpu, matching key, fetch protection in effect */
756 	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
757 	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
758 
759 	kvm_vm_free(t.kvm_vm);
760 }
761 
762 #define ERR_PROT_MOP(...)							\
763 ({										\
764 	int rv;									\
765 										\
766 	rv = ERR_MOP(__VA_ARGS__);						\
767 	TEST_ASSERT(rv == 4, "Should result in protection exception");		\
768 })
769 
770 static void guest_error_key(void)
771 {
772 	GUEST_SYNC(STAGE_INITED);
773 	set_storage_key_range(mem1, PAGE_SIZE, 0x18);
774 	set_storage_key_range(mem1 + PAGE_SIZE, sizeof(mem1) - PAGE_SIZE, 0x98);
775 	GUEST_SYNC(STAGE_SKEYS_SET);
776 	GUEST_SYNC(STAGE_IDLED);
777 }
778 
779 static void test_errors_key(void)
780 {
781 	struct test_default t = test_default_init(guest_error_key);
782 
783 	HOST_SYNC(t.vcpu, STAGE_INITED);
784 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
785 
786 	/* vm/vcpu, mismatching keys, fetch protection in effect */
787 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
788 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
789 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
790 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
791 
792 	kvm_vm_free(t.kvm_vm);
793 }
794 
795 static void test_errors_cmpxchg_key(void)
796 {
797 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
798 	int i;
799 
800 	HOST_SYNC(t.vcpu, STAGE_INITED);
801 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
802 
803 	for (i = 1; i <= 16; i *= 2) {
804 		__uint128_t old = 0;
805 
806 		ERR_PROT_MOP(t.vm, ABSOLUTE, CMPXCHG, mem2, i, GADDR_V(mem2),
807 			     CMPXCHG_OLD(&old), KEY(2));
808 	}
809 
810 	kvm_vm_free(t.kvm_vm);
811 }
812 
813 static void test_termination(void)
814 {
815 	struct test_default t = test_default_init(guest_error_key);
816 	uint64_t prefix;
817 	uint64_t teid;
818 	uint64_t teid_mask = BIT(63 - 56) | BIT(63 - 60) | BIT(63 - 61);
819 	uint64_t psw[2];
820 
821 	HOST_SYNC(t.vcpu, STAGE_INITED);
822 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
823 
824 	/* vcpu, mismatching keys after first page */
825 	ERR_PROT_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(1), INJECT);
826 	/*
827 	 * The memop injected a program exception and the test needs to check the
828 	 * Translation-Exception Identification (TEID). It is necessary to run
829 	 * the guest in order to be able to read the TEID from guest memory.
830 	 * Set the guest program new PSW, so the guest state is not clobbered.
831 	 */
832 	prefix = t.run->s.regs.prefix;
833 	psw[0] = t.run->psw_mask;
834 	psw[1] = t.run->psw_addr;
835 	MOP(t.vm, ABSOLUTE, WRITE, psw, sizeof(psw), GADDR(prefix + 464));
836 	HOST_SYNC(t.vcpu, STAGE_IDLED);
837 	MOP(t.vm, ABSOLUTE, READ, &teid, sizeof(teid), GADDR(prefix + 168));
838 	/* Bits 56, 60, 61 form a code, 0 being the only one allowing for termination */
839 	TEST_ASSERT_EQ(teid & teid_mask, 0);
840 
841 	kvm_vm_free(t.kvm_vm);
842 }
843 
844 static void test_errors_key_storage_prot_override(void)
845 {
846 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
847 
848 	HOST_SYNC(t.vcpu, STAGE_INITED);
849 	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
850 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
851 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
852 
853 	/* vm, mismatching keys, storage protection override not applicable to vm */
854 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
855 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2));
856 
857 	kvm_vm_free(t.kvm_vm);
858 }
859 
860 const uint64_t last_page_addr = -PAGE_SIZE;
861 
862 static void guest_copy_key_fetch_prot_override(void)
863 {
864 	int i;
865 	char *page_0 = 0;
866 
867 	GUEST_SYNC(STAGE_INITED);
868 	set_storage_key_range(0, PAGE_SIZE, 0x18);
869 	set_storage_key_range((void *)last_page_addr, PAGE_SIZE, 0x0);
870 	asm volatile ("sske %[key],%[addr]\n" :: [addr] "r"(0L), [key] "r"(0x18) : "cc");
871 	GUEST_SYNC(STAGE_SKEYS_SET);
872 
873 	for (;;) {
874 		for (i = 0; i < PAGE_SIZE; i++)
875 			page_0[i] = mem1[i];
876 		GUEST_SYNC(STAGE_COPIED);
877 	}
878 }
879 
880 static void test_copy_key_fetch_prot_override(void)
881 {
882 	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
883 	vm_vaddr_t guest_0_page, guest_last_page;
884 
885 	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
886 	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
887 	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
888 		print_skip("did not allocate guest pages at required positions");
889 		goto out;
890 	}
891 
892 	HOST_SYNC(t.vcpu, STAGE_INITED);
893 	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
894 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
895 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
896 
897 	/* vcpu, mismatching keys on fetch, fetch protection override applies */
898 	prepare_mem12();
899 	MOP(t.vcpu, LOGICAL, WRITE, mem1, PAGE_SIZE, GADDR_V(mem1));
900 	HOST_SYNC(t.vcpu, STAGE_COPIED);
901 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
902 	ASSERT_MEM_EQ(mem1, mem2, 2048);
903 
904 	/*
905 	 * vcpu, mismatching keys on fetch, fetch protection override applies,
906 	 * wraparound
907 	 */
908 	prepare_mem12();
909 	MOP(t.vcpu, LOGICAL, WRITE, mem1, 2 * PAGE_SIZE, GADDR_V(guest_last_page));
910 	HOST_SYNC(t.vcpu, STAGE_COPIED);
911 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048,
912 		   GADDR_V(guest_last_page), KEY(2));
913 	ASSERT_MEM_EQ(mem1, mem2, 2048);
914 
915 out:
916 	kvm_vm_free(t.kvm_vm);
917 }
918 
919 static void test_errors_key_fetch_prot_override_not_enabled(void)
920 {
921 	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
922 	vm_vaddr_t guest_0_page, guest_last_page;
923 
924 	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
925 	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
926 	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
927 		print_skip("did not allocate guest pages at required positions");
928 		goto out;
929 	}
930 	HOST_SYNC(t.vcpu, STAGE_INITED);
931 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
932 
933 	/* vcpu, mismatching keys on fetch, fetch protection override not enabled */
934 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(0), KEY(2));
935 
936 out:
937 	kvm_vm_free(t.kvm_vm);
938 }
939 
940 static void test_errors_key_fetch_prot_override_enabled(void)
941 {
942 	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
943 	vm_vaddr_t guest_0_page, guest_last_page;
944 
945 	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
946 	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
947 	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
948 		print_skip("did not allocate guest pages at required positions");
949 		goto out;
950 	}
951 	HOST_SYNC(t.vcpu, STAGE_INITED);
952 	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
953 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
954 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
955 
956 	/*
957 	 * vcpu, mismatching keys on fetch,
958 	 * fetch protection override does not apply because memory range exceeded
959 	 */
960 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048 + 1, GADDR_V(0), KEY(2));
961 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048 + 1,
962 		   GADDR_V(guest_last_page), KEY(2));
963 	/* vm, fetch protected override does not apply */
964 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR(0), KEY(2));
965 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
966 
967 out:
968 	kvm_vm_free(t.kvm_vm);
969 }
970 
971 static void guest_idle(void)
972 {
973 	GUEST_SYNC(STAGE_INITED); /* for consistency's sake */
974 	for (;;)
975 		GUEST_SYNC(STAGE_IDLED);
976 }
977 
978 static void _test_errors_common(struct test_info info, enum mop_target target, int size)
979 {
980 	int rv;
981 
982 	/* Bad size: */
983 	rv = ERR_MOP(info, target, WRITE, mem1, -1, GADDR_V(mem1));
984 	TEST_ASSERT(rv == -1 && errno == E2BIG, "ioctl allows insane sizes");
985 
986 	/* Zero size: */
987 	rv = ERR_MOP(info, target, WRITE, mem1, 0, GADDR_V(mem1));
988 	TEST_ASSERT(rv == -1 && (errno == EINVAL || errno == ENOMEM),
989 		    "ioctl allows 0 as size");
990 
991 	/* Bad flags: */
992 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), SET_FLAGS(-1));
993 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows all flags");
994 
995 	/* Bad guest address: */
996 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL), CHECK_ONLY);
997 	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address with CHECK_ONLY");
998 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL));
999 	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address on write");
1000 
1001 	/* Bad host address: */
1002 	rv = ERR_MOP(info, target, WRITE, 0, size, GADDR_V(mem1));
1003 	TEST_ASSERT(rv == -1 && errno == EFAULT,
1004 		    "ioctl does not report bad host memory address");
1005 
1006 	/* Bad key: */
1007 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), KEY(17));
1008 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows invalid key");
1009 }
1010 
1011 static void test_errors(void)
1012 {
1013 	struct test_default t = test_default_init(guest_idle);
1014 	int rv;
1015 
1016 	HOST_SYNC(t.vcpu, STAGE_INITED);
1017 
1018 	_test_errors_common(t.vcpu, LOGICAL, t.size);
1019 	_test_errors_common(t.vm, ABSOLUTE, t.size);
1020 
1021 	/* Bad operation: */
1022 	rv = ERR_MOP(t.vcpu, INVALID, WRITE, mem1, t.size, GADDR_V(mem1));
1023 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
1024 	/* virtual addresses are not translated when passing INVALID */
1025 	rv = ERR_MOP(t.vm, INVALID, WRITE, mem1, PAGE_SIZE, GADDR(0));
1026 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
1027 
1028 	/* Bad access register: */
1029 	t.run->psw_mask &= ~(3UL << (63 - 17));
1030 	t.run->psw_mask |= 1UL << (63 - 17);  /* Enable AR mode */
1031 	HOST_SYNC(t.vcpu, STAGE_IDLED); /* To sync new state to SIE block */
1032 	rv = ERR_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), AR(17));
1033 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows ARs > 15");
1034 	t.run->psw_mask &= ~(3UL << (63 - 17));   /* Disable AR mode */
1035 	HOST_SYNC(t.vcpu, STAGE_IDLED); /* Run to sync new state */
1036 
1037 	/* Check that the SIDA calls are rejected for non-protected guests */
1038 	rv = ERR_MOP(t.vcpu, SIDA, READ, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
1039 	TEST_ASSERT(rv == -1 && errno == EINVAL,
1040 		    "ioctl does not reject SIDA_READ in non-protected mode");
1041 	rv = ERR_MOP(t.vcpu, SIDA, WRITE, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
1042 	TEST_ASSERT(rv == -1 && errno == EINVAL,
1043 		    "ioctl does not reject SIDA_WRITE in non-protected mode");
1044 
1045 	kvm_vm_free(t.kvm_vm);
1046 }
1047 
1048 static void test_errors_cmpxchg(void)
1049 {
1050 	struct test_default t = test_default_init(guest_idle);
1051 	__uint128_t old;
1052 	int rv, i, power = 1;
1053 
1054 	HOST_SYNC(t.vcpu, STAGE_INITED);
1055 
1056 	for (i = 0; i < 32; i++) {
1057 		if (i == power) {
1058 			power *= 2;
1059 			continue;
1060 		}
1061 		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1),
1062 			     CMPXCHG_OLD(&old));
1063 		TEST_ASSERT(rv == -1 && errno == EINVAL,
1064 			    "ioctl allows bad size for cmpxchg");
1065 	}
1066 	for (i = 1; i <= 16; i *= 2) {
1067 		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR((void *)~0xfffUL),
1068 			     CMPXCHG_OLD(&old));
1069 		TEST_ASSERT(rv > 0, "ioctl allows bad guest address for cmpxchg");
1070 	}
1071 	for (i = 2; i <= 16; i *= 2) {
1072 		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1 + 1),
1073 			     CMPXCHG_OLD(&old));
1074 		TEST_ASSERT(rv == -1 && errno == EINVAL,
1075 			    "ioctl allows bad alignment for cmpxchg");
1076 	}
1077 
1078 	kvm_vm_free(t.kvm_vm);
1079 }
1080 
1081 int main(int argc, char *argv[])
1082 {
1083 	int extension_cap, idx;
1084 
1085 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_MEM_OP));
1086 	extension_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP_EXTENSION);
1087 
1088 	struct testdef {
1089 		const char *name;
1090 		void (*test)(void);
1091 		bool requirements_met;
1092 	} testlist[] = {
1093 		{
1094 			.name = "simple copy",
1095 			.test = test_copy,
1096 			.requirements_met = true,
1097 		},
1098 		{
1099 			.name = "generic error checks",
1100 			.test = test_errors,
1101 			.requirements_met = true,
1102 		},
1103 		{
1104 			.name = "copy with storage keys",
1105 			.test = test_copy_key,
1106 			.requirements_met = extension_cap > 0,
1107 		},
1108 		{
1109 			.name = "cmpxchg with storage keys",
1110 			.test = test_cmpxchg_key,
1111 			.requirements_met = extension_cap & 0x2,
1112 		},
1113 		{
1114 			.name = "concurrently cmpxchg with storage keys",
1115 			.test = test_cmpxchg_key_concurrent,
1116 			.requirements_met = extension_cap & 0x2,
1117 		},
1118 		{
1119 			.name = "copy with key storage protection override",
1120 			.test = test_copy_key_storage_prot_override,
1121 			.requirements_met = extension_cap > 0,
1122 		},
1123 		{
1124 			.name = "copy with key fetch protection",
1125 			.test = test_copy_key_fetch_prot,
1126 			.requirements_met = extension_cap > 0,
1127 		},
1128 		{
1129 			.name = "copy with key fetch protection override",
1130 			.test = test_copy_key_fetch_prot_override,
1131 			.requirements_met = extension_cap > 0,
1132 		},
1133 		{
1134 			.name = "copy with access register mode",
1135 			.test = test_copy_access_register,
1136 			.requirements_met = true,
1137 		},
1138 		{
1139 			.name = "error checks with key",
1140 			.test = test_errors_key,
1141 			.requirements_met = extension_cap > 0,
1142 		},
1143 		{
1144 			.name = "error checks for cmpxchg with key",
1145 			.test = test_errors_cmpxchg_key,
1146 			.requirements_met = extension_cap & 0x2,
1147 		},
1148 		{
1149 			.name = "error checks for cmpxchg",
1150 			.test = test_errors_cmpxchg,
1151 			.requirements_met = extension_cap & 0x2,
1152 		},
1153 		{
1154 			.name = "termination",
1155 			.test = test_termination,
1156 			.requirements_met = extension_cap > 0,
1157 		},
1158 		{
1159 			.name = "error checks with key storage protection override",
1160 			.test = test_errors_key_storage_prot_override,
1161 			.requirements_met = extension_cap > 0,
1162 		},
1163 		{
1164 			.name = "error checks without key fetch prot override",
1165 			.test = test_errors_key_fetch_prot_override_not_enabled,
1166 			.requirements_met = extension_cap > 0,
1167 		},
1168 		{
1169 			.name = "error checks with key fetch prot override",
1170 			.test = test_errors_key_fetch_prot_override_enabled,
1171 			.requirements_met = extension_cap > 0,
1172 		},
1173 	};
1174 
1175 	ksft_print_header();
1176 	ksft_set_plan(ARRAY_SIZE(testlist));
1177 
1178 	for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
1179 		if (testlist[idx].requirements_met) {
1180 			testlist[idx].test();
1181 			ksft_test_result_pass("%s\n", testlist[idx].name);
1182 		} else {
1183 			ksft_test_result_skip("%s - requirements not met (kernel has extension cap %#x)\n",
1184 					      testlist[idx].name, extension_cap);
1185 		}
1186 	}
1187 
1188 	ksft_finished();	/* Print results and exit() accordingly */
1189 }
1190