xref: /linux/tools/testing/selftests/kvm/s390x/cmma_test.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Test for s390x CMMA migration
4  *
5  * Copyright IBM Corp. 2023
6  *
7  * Authors:
8  *  Nico Boehr <nrb@linux.ibm.com>
9  */
10 #include <fcntl.h>
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <sys/ioctl.h>
15 
16 #include "test_util.h"
17 #include "kvm_util.h"
18 #include "kselftest.h"
19 #include "ucall_common.h"
20 
21 #define MAIN_PAGE_COUNT 512
22 
23 #define TEST_DATA_PAGE_COUNT 512
24 #define TEST_DATA_MEMSLOT 1
25 #define TEST_DATA_START_GFN 4096
26 
27 #define TEST_DATA_TWO_PAGE_COUNT 256
28 #define TEST_DATA_TWO_MEMSLOT 2
29 #define TEST_DATA_TWO_START_GFN 8192
30 
31 static char cmma_value_buf[MAIN_PAGE_COUNT + TEST_DATA_PAGE_COUNT];
32 
33 /**
34  * Dirty CMMA attributes of exactly one page in the TEST_DATA memslot,
35  * so use_cmma goes on and the CMMA related ioctls do something.
36  */
37 static void guest_do_one_essa(void)
38 {
39 	asm volatile(
40 		/* load TEST_DATA_START_GFN into r1 */
41 		"	llilf 1,%[start_gfn]\n"
42 		/* calculate the address from the gfn */
43 		"	sllg 1,1,12(0)\n"
44 		/* set the first page in TEST_DATA memslot to STABLE */
45 		"	.insn rrf,0xb9ab0000,2,1,1,0\n"
46 		/* hypercall */
47 		"	diag 0,0,0x501\n"
48 		"0:	j 0b"
49 		:
50 		: [start_gfn] "L"(TEST_DATA_START_GFN)
51 		: "r1", "r2", "memory", "cc"
52 	);
53 }
54 
55 /**
56  * Touch CMMA attributes of all pages in TEST_DATA memslot. Set them to stable
57  * state.
58  */
59 static void guest_dirty_test_data(void)
60 {
61 	asm volatile(
62 		/* r1 = TEST_DATA_START_GFN */
63 		"	xgr 1,1\n"
64 		"	llilf 1,%[start_gfn]\n"
65 		/* r5 = TEST_DATA_PAGE_COUNT */
66 		"	lghi 5,%[page_count]\n"
67 		/* r5 += r1 */
68 		"2:	agfr 5,1\n"
69 		/* r2 = r1 << 12 */
70 		"1:	sllg 2,1,12(0)\n"
71 		/* essa(r4, r2, SET_STABLE) */
72 		"	.insn rrf,0xb9ab0000,4,2,1,0\n"
73 		/* i++ */
74 		"	agfi 1,1\n"
75 		/* if r1 < r5 goto 1 */
76 		"	cgrjl 1,5,1b\n"
77 		/* hypercall */
78 		"	diag 0,0,0x501\n"
79 		"0:	j 0b"
80 		:
81 		: [start_gfn] "L"(TEST_DATA_START_GFN),
82 		  [page_count] "L"(TEST_DATA_PAGE_COUNT)
83 		:
84 			/* the counter in our loop over the pages */
85 			"r1",
86 			/* the calculated page physical address */
87 			"r2",
88 			/* ESSA output register */
89 			"r4",
90 			/* last page */
91 			"r5",
92 			"cc", "memory"
93 	);
94 }
95 
96 static void create_main_memslot(struct kvm_vm *vm)
97 {
98 	int i;
99 
100 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, MAIN_PAGE_COUNT, 0);
101 	/* set the array of memslots to zero like __vm_create does */
102 	for (i = 0; i < NR_MEM_REGIONS; i++)
103 		vm->memslots[i] = 0;
104 }
105 
106 static void create_test_memslot(struct kvm_vm *vm)
107 {
108 	vm_userspace_mem_region_add(vm,
109 				    VM_MEM_SRC_ANONYMOUS,
110 				    TEST_DATA_START_GFN << vm->page_shift,
111 				    TEST_DATA_MEMSLOT,
112 				    TEST_DATA_PAGE_COUNT,
113 				    0
114 				   );
115 	vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
116 }
117 
118 static void create_memslots(struct kvm_vm *vm)
119 {
120 	/*
121 	 * Our VM has the following memory layout:
122 	 * +------+---------------------------+
123 	 * | GFN  | Memslot                   |
124 	 * +------+---------------------------+
125 	 * | 0    |                           |
126 	 * | ...  | MAIN (Code, Stack, ...)   |
127 	 * | 511  |                           |
128 	 * +------+---------------------------+
129 	 * | 4096 |                           |
130 	 * | ...  | TEST_DATA                 |
131 	 * | 4607 |                           |
132 	 * +------+---------------------------+
133 	 */
134 	create_main_memslot(vm);
135 	create_test_memslot(vm);
136 }
137 
138 static void finish_vm_setup(struct kvm_vm *vm)
139 {
140 	struct userspace_mem_region *slot0;
141 
142 	kvm_vm_elf_load(vm, program_invocation_name);
143 
144 	slot0 = memslot2region(vm, 0);
145 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
146 
147 	kvm_arch_vm_post_create(vm);
148 }
149 
150 static struct kvm_vm *create_vm_two_memslots(void)
151 {
152 	struct kvm_vm *vm;
153 
154 	vm = vm_create_barebones();
155 
156 	create_memslots(vm);
157 
158 	finish_vm_setup(vm);
159 
160 	return vm;
161 }
162 
163 static void enable_cmma(struct kvm_vm *vm)
164 {
165 	int r;
166 
167 	r = __kvm_device_attr_set(vm->fd, KVM_S390_VM_MEM_CTRL, KVM_S390_VM_MEM_ENABLE_CMMA, NULL);
168 	TEST_ASSERT(!r, "enabling cmma failed r=%d errno=%d", r, errno);
169 }
170 
171 static void enable_dirty_tracking(struct kvm_vm *vm)
172 {
173 	vm_mem_region_set_flags(vm, 0, KVM_MEM_LOG_DIRTY_PAGES);
174 	vm_mem_region_set_flags(vm, TEST_DATA_MEMSLOT, KVM_MEM_LOG_DIRTY_PAGES);
175 }
176 
177 static int __enable_migration_mode(struct kvm_vm *vm)
178 {
179 	return __kvm_device_attr_set(vm->fd,
180 				     KVM_S390_VM_MIGRATION,
181 				     KVM_S390_VM_MIGRATION_START,
182 				     NULL
183 				    );
184 }
185 
186 static void enable_migration_mode(struct kvm_vm *vm)
187 {
188 	int r = __enable_migration_mode(vm);
189 
190 	TEST_ASSERT(!r, "enabling migration mode failed r=%d errno=%d", r, errno);
191 }
192 
193 static bool is_migration_mode_on(struct kvm_vm *vm)
194 {
195 	u64 out;
196 	int r;
197 
198 	r = __kvm_device_attr_get(vm->fd,
199 				  KVM_S390_VM_MIGRATION,
200 				  KVM_S390_VM_MIGRATION_STATUS,
201 				  &out
202 				 );
203 	TEST_ASSERT(!r, "getting migration mode status failed r=%d errno=%d", r, errno);
204 	return out;
205 }
206 
207 static int vm_get_cmma_bits(struct kvm_vm *vm, u64 flags, int *errno_out)
208 {
209 	struct kvm_s390_cmma_log args;
210 	int rc;
211 
212 	errno = 0;
213 
214 	args = (struct kvm_s390_cmma_log){
215 		.start_gfn = 0,
216 		.count = sizeof(cmma_value_buf),
217 		.flags = flags,
218 		.values = (__u64)&cmma_value_buf[0]
219 	};
220 	rc = __vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
221 
222 	*errno_out = errno;
223 	return rc;
224 }
225 
226 static void test_get_cmma_basic(void)
227 {
228 	struct kvm_vm *vm = create_vm_two_memslots();
229 	struct kvm_vcpu *vcpu;
230 	int rc, errno_out;
231 
232 	/* GET_CMMA_BITS without CMMA enabled should fail */
233 	rc = vm_get_cmma_bits(vm, 0, &errno_out);
234 	TEST_ASSERT_EQ(rc, -1);
235 	TEST_ASSERT_EQ(errno_out, ENXIO);
236 
237 	enable_cmma(vm);
238 	vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
239 
240 	vcpu_run(vcpu);
241 
242 	/* GET_CMMA_BITS without migration mode and without peeking should fail */
243 	rc = vm_get_cmma_bits(vm, 0, &errno_out);
244 	TEST_ASSERT_EQ(rc, -1);
245 	TEST_ASSERT_EQ(errno_out, EINVAL);
246 
247 	/* GET_CMMA_BITS without migration mode and with peeking should work */
248 	rc = vm_get_cmma_bits(vm, KVM_S390_CMMA_PEEK, &errno_out);
249 	TEST_ASSERT_EQ(rc, 0);
250 	TEST_ASSERT_EQ(errno_out, 0);
251 
252 	enable_dirty_tracking(vm);
253 	enable_migration_mode(vm);
254 
255 	/* GET_CMMA_BITS with invalid flags */
256 	rc = vm_get_cmma_bits(vm, 0xfeedc0fe, &errno_out);
257 	TEST_ASSERT_EQ(rc, -1);
258 	TEST_ASSERT_EQ(errno_out, EINVAL);
259 
260 	kvm_vm_free(vm);
261 }
262 
263 static void assert_exit_was_hypercall(struct kvm_vcpu *vcpu)
264 {
265 	TEST_ASSERT_EQ(vcpu->run->exit_reason, 13);
266 	TEST_ASSERT_EQ(vcpu->run->s390_sieic.icptcode, 4);
267 	TEST_ASSERT_EQ(vcpu->run->s390_sieic.ipa, 0x8300);
268 	TEST_ASSERT_EQ(vcpu->run->s390_sieic.ipb, 0x5010000);
269 }
270 
271 static void test_migration_mode(void)
272 {
273 	struct kvm_vm *vm = vm_create_barebones();
274 	struct kvm_vcpu *vcpu;
275 	u64 orig_psw;
276 	int rc;
277 
278 	/* enabling migration mode on a VM without memory should fail */
279 	rc = __enable_migration_mode(vm);
280 	TEST_ASSERT_EQ(rc, -1);
281 	TEST_ASSERT_EQ(errno, EINVAL);
282 	TEST_ASSERT(!is_migration_mode_on(vm), "migration mode should still be off");
283 	errno = 0;
284 
285 	create_memslots(vm);
286 	finish_vm_setup(vm);
287 
288 	enable_cmma(vm);
289 	vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
290 	orig_psw = vcpu->run->psw_addr;
291 
292 	/*
293 	 * Execute one essa instruction in the guest. Otherwise the guest will
294 	 * not have use_cmm enabled and GET_CMMA_BITS will return no pages.
295 	 */
296 	vcpu_run(vcpu);
297 	assert_exit_was_hypercall(vcpu);
298 
299 	/* migration mode when memslots have dirty tracking off should fail */
300 	rc = __enable_migration_mode(vm);
301 	TEST_ASSERT_EQ(rc, -1);
302 	TEST_ASSERT_EQ(errno, EINVAL);
303 	TEST_ASSERT(!is_migration_mode_on(vm), "migration mode should still be off");
304 	errno = 0;
305 
306 	/* enable dirty tracking */
307 	enable_dirty_tracking(vm);
308 
309 	/* enabling migration mode should work now */
310 	rc = __enable_migration_mode(vm);
311 	TEST_ASSERT_EQ(rc, 0);
312 	TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
313 	errno = 0;
314 
315 	/* execute another ESSA instruction to see this goes fine */
316 	vcpu->run->psw_addr = orig_psw;
317 	vcpu_run(vcpu);
318 	assert_exit_was_hypercall(vcpu);
319 
320 	/*
321 	 * With migration mode on, create a new memslot with dirty tracking off.
322 	 * This should turn off migration mode.
323 	 */
324 	TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
325 	vm_userspace_mem_region_add(vm,
326 				    VM_MEM_SRC_ANONYMOUS,
327 				    TEST_DATA_TWO_START_GFN << vm->page_shift,
328 				    TEST_DATA_TWO_MEMSLOT,
329 				    TEST_DATA_TWO_PAGE_COUNT,
330 				    0
331 				   );
332 	TEST_ASSERT(!is_migration_mode_on(vm),
333 		    "creating memslot without dirty tracking turns off migration mode"
334 		   );
335 
336 	/* ESSA instructions should still execute fine */
337 	vcpu->run->psw_addr = orig_psw;
338 	vcpu_run(vcpu);
339 	assert_exit_was_hypercall(vcpu);
340 
341 	/*
342 	 * Turn on dirty tracking on the new memslot.
343 	 * It should be possible to turn migration mode back on again.
344 	 */
345 	vm_mem_region_set_flags(vm, TEST_DATA_TWO_MEMSLOT, KVM_MEM_LOG_DIRTY_PAGES);
346 	rc = __enable_migration_mode(vm);
347 	TEST_ASSERT_EQ(rc, 0);
348 	TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
349 	errno = 0;
350 
351 	/*
352 	 * Turn off dirty tracking again, this time with just a flag change.
353 	 * Again, migration mode should turn off.
354 	 */
355 	TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
356 	vm_mem_region_set_flags(vm, TEST_DATA_TWO_MEMSLOT, 0);
357 	TEST_ASSERT(!is_migration_mode_on(vm),
358 		    "disabling dirty tracking should turn off migration mode"
359 		   );
360 
361 	/* ESSA instructions should still execute fine */
362 	vcpu->run->psw_addr = orig_psw;
363 	vcpu_run(vcpu);
364 	assert_exit_was_hypercall(vcpu);
365 
366 	kvm_vm_free(vm);
367 }
368 
369 /**
370  * Given a VM with the MAIN and TEST_DATA memslot, assert that both slots have
371  * CMMA attributes of all pages in both memslots and nothing more dirty.
372  * This has the useful side effect of ensuring nothing is CMMA dirty after this
373  * function.
374  */
375 static void assert_all_slots_cmma_dirty(struct kvm_vm *vm)
376 {
377 	struct kvm_s390_cmma_log args;
378 
379 	/*
380 	 * First iteration - everything should be dirty.
381 	 * Start at the main memslot...
382 	 */
383 	args = (struct kvm_s390_cmma_log){
384 		.start_gfn = 0,
385 		.count = sizeof(cmma_value_buf),
386 		.flags = 0,
387 		.values = (__u64)&cmma_value_buf[0]
388 	};
389 	memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
390 	vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
391 	TEST_ASSERT_EQ(args.count, MAIN_PAGE_COUNT);
392 	TEST_ASSERT_EQ(args.remaining, TEST_DATA_PAGE_COUNT);
393 	TEST_ASSERT_EQ(args.start_gfn, 0);
394 
395 	/* ...and then - after a hole - the TEST_DATA memslot should follow */
396 	args = (struct kvm_s390_cmma_log){
397 		.start_gfn = MAIN_PAGE_COUNT,
398 		.count = sizeof(cmma_value_buf),
399 		.flags = 0,
400 		.values = (__u64)&cmma_value_buf[0]
401 	};
402 	memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
403 	vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
404 	TEST_ASSERT_EQ(args.count, TEST_DATA_PAGE_COUNT);
405 	TEST_ASSERT_EQ(args.start_gfn, TEST_DATA_START_GFN);
406 	TEST_ASSERT_EQ(args.remaining, 0);
407 
408 	/* ...and nothing else should be there */
409 	args = (struct kvm_s390_cmma_log){
410 		.start_gfn = TEST_DATA_START_GFN + TEST_DATA_PAGE_COUNT,
411 		.count = sizeof(cmma_value_buf),
412 		.flags = 0,
413 		.values = (__u64)&cmma_value_buf[0]
414 	};
415 	memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
416 	vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
417 	TEST_ASSERT_EQ(args.count, 0);
418 	TEST_ASSERT_EQ(args.start_gfn, 0);
419 	TEST_ASSERT_EQ(args.remaining, 0);
420 }
421 
422 /**
423  * Given a VM, assert no pages are CMMA dirty.
424  */
425 static void assert_no_pages_cmma_dirty(struct kvm_vm *vm)
426 {
427 	struct kvm_s390_cmma_log args;
428 
429 	/* If we start from GFN 0 again, nothing should be dirty. */
430 	args = (struct kvm_s390_cmma_log){
431 		.start_gfn = 0,
432 		.count = sizeof(cmma_value_buf),
433 		.flags = 0,
434 		.values = (__u64)&cmma_value_buf[0]
435 	};
436 	memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
437 	vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
438 	if (args.count || args.remaining || args.start_gfn)
439 		TEST_FAIL("pages are still dirty start_gfn=0x%llx count=%u remaining=%llu",
440 			  args.start_gfn,
441 			  args.count,
442 			  args.remaining
443 			 );
444 }
445 
446 static void test_get_inital_dirty(void)
447 {
448 	struct kvm_vm *vm = create_vm_two_memslots();
449 	struct kvm_vcpu *vcpu;
450 
451 	enable_cmma(vm);
452 	vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
453 
454 	/*
455 	 * Execute one essa instruction in the guest. Otherwise the guest will
456 	 * not have use_cmm enabled and GET_CMMA_BITS will return no pages.
457 	 */
458 	vcpu_run(vcpu);
459 	assert_exit_was_hypercall(vcpu);
460 
461 	enable_dirty_tracking(vm);
462 	enable_migration_mode(vm);
463 
464 	assert_all_slots_cmma_dirty(vm);
465 
466 	/* Start from the beginning again and make sure nothing else is dirty */
467 	assert_no_pages_cmma_dirty(vm);
468 
469 	kvm_vm_free(vm);
470 }
471 
472 static void query_cmma_range(struct kvm_vm *vm,
473 			     u64 start_gfn, u64 gfn_count,
474 			     struct kvm_s390_cmma_log *res_out)
475 {
476 	*res_out = (struct kvm_s390_cmma_log){
477 		.start_gfn = start_gfn,
478 		.count = gfn_count,
479 		.flags = 0,
480 		.values = (__u64)&cmma_value_buf[0]
481 	};
482 	memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
483 	vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, res_out);
484 }
485 
486 /**
487  * Assert the given cmma_log struct that was executed by query_cmma_range()
488  * indicates the first dirty gfn is at first_dirty_gfn and contains exactly
489  * dirty_gfn_count CMMA values.
490  */
491 static void assert_cmma_dirty(u64 first_dirty_gfn,
492 			      u64 dirty_gfn_count,
493 			      const struct kvm_s390_cmma_log *res)
494 {
495 	TEST_ASSERT_EQ(res->start_gfn, first_dirty_gfn);
496 	TEST_ASSERT_EQ(res->count, dirty_gfn_count);
497 	for (size_t i = 0; i < dirty_gfn_count; i++)
498 		TEST_ASSERT_EQ(cmma_value_buf[0], 0x0); /* stable state */
499 	TEST_ASSERT_EQ(cmma_value_buf[dirty_gfn_count], 0xff); /* not touched */
500 }
501 
502 static void test_get_skip_holes(void)
503 {
504 	size_t gfn_offset;
505 	struct kvm_vm *vm = create_vm_two_memslots();
506 	struct kvm_s390_cmma_log log;
507 	struct kvm_vcpu *vcpu;
508 	u64 orig_psw;
509 
510 	enable_cmma(vm);
511 	vcpu = vm_vcpu_add(vm, 1, guest_dirty_test_data);
512 
513 	orig_psw = vcpu->run->psw_addr;
514 
515 	/*
516 	 * Execute some essa instructions in the guest. Otherwise the guest will
517 	 * not have use_cmm enabled and GET_CMMA_BITS will return no pages.
518 	 */
519 	vcpu_run(vcpu);
520 	assert_exit_was_hypercall(vcpu);
521 
522 	enable_dirty_tracking(vm);
523 	enable_migration_mode(vm);
524 
525 	/* un-dirty all pages */
526 	assert_all_slots_cmma_dirty(vm);
527 
528 	/* Then, dirty just the TEST_DATA memslot */
529 	vcpu->run->psw_addr = orig_psw;
530 	vcpu_run(vcpu);
531 
532 	gfn_offset = TEST_DATA_START_GFN;
533 	/**
534 	 * Query CMMA attributes of one page, starting at page 0. Since the
535 	 * main memslot was not touched by the VM, this should yield the first
536 	 * page of the TEST_DATA memslot.
537 	 * The dirty bitmap should now look like this:
538 	 * 0: not dirty
539 	 * [0x1, 0x200): dirty
540 	 */
541 	query_cmma_range(vm, 0, 1, &log);
542 	assert_cmma_dirty(gfn_offset, 1, &log);
543 	gfn_offset++;
544 
545 	/**
546 	 * Query CMMA attributes of 32 (0x20) pages past the end of the TEST_DATA
547 	 * memslot. This should wrap back to the beginning of the TEST_DATA
548 	 * memslot, page 1.
549 	 * The dirty bitmap should now look like this:
550 	 * [0, 0x21): not dirty
551 	 * [0x21, 0x200): dirty
552 	 */
553 	query_cmma_range(vm, TEST_DATA_START_GFN + TEST_DATA_PAGE_COUNT, 0x20, &log);
554 	assert_cmma_dirty(gfn_offset, 0x20, &log);
555 	gfn_offset += 0x20;
556 
557 	/* Skip 32 pages */
558 	gfn_offset += 0x20;
559 
560 	/**
561 	 * After skipping 32 pages, query the next 32 (0x20) pages.
562 	 * The dirty bitmap should now look like this:
563 	 * [0, 0x21): not dirty
564 	 * [0x21, 0x41): dirty
565 	 * [0x41, 0x61): not dirty
566 	 * [0x61, 0x200): dirty
567 	 */
568 	query_cmma_range(vm, gfn_offset, 0x20, &log);
569 	assert_cmma_dirty(gfn_offset, 0x20, &log);
570 	gfn_offset += 0x20;
571 
572 	/**
573 	 * Query 1 page from the beginning of the TEST_DATA memslot. This should
574 	 * yield page 0x21.
575 	 * The dirty bitmap should now look like this:
576 	 * [0, 0x22): not dirty
577 	 * [0x22, 0x41): dirty
578 	 * [0x41, 0x61): not dirty
579 	 * [0x61, 0x200): dirty
580 	 */
581 	query_cmma_range(vm, TEST_DATA_START_GFN, 1, &log);
582 	assert_cmma_dirty(TEST_DATA_START_GFN + 0x21, 1, &log);
583 	gfn_offset++;
584 
585 	/**
586 	 * Query 15 (0xF) pages from page 0x23 in TEST_DATA memslot.
587 	 * This should yield pages [0x23, 0x33).
588 	 * The dirty bitmap should now look like this:
589 	 * [0, 0x22): not dirty
590 	 * 0x22: dirty
591 	 * [0x23, 0x33): not dirty
592 	 * [0x33, 0x41): dirty
593 	 * [0x41, 0x61): not dirty
594 	 * [0x61, 0x200): dirty
595 	 */
596 	gfn_offset = TEST_DATA_START_GFN + 0x23;
597 	query_cmma_range(vm, gfn_offset, 15, &log);
598 	assert_cmma_dirty(gfn_offset, 15, &log);
599 
600 	/**
601 	 * Query 17 (0x11) pages from page 0x22 in TEST_DATA memslot.
602 	 * This should yield page [0x22, 0x33)
603 	 * The dirty bitmap should now look like this:
604 	 * [0, 0x33): not dirty
605 	 * [0x33, 0x41): dirty
606 	 * [0x41, 0x61): not dirty
607 	 * [0x61, 0x200): dirty
608 	 */
609 	gfn_offset = TEST_DATA_START_GFN + 0x22;
610 	query_cmma_range(vm, gfn_offset, 17, &log);
611 	assert_cmma_dirty(gfn_offset, 17, &log);
612 
613 	/**
614 	 * Query 25 (0x19) pages from page 0x40 in TEST_DATA memslot.
615 	 * This should yield page 0x40 and nothing more, since there are more
616 	 * than 16 non-dirty pages after page 0x40.
617 	 * The dirty bitmap should now look like this:
618 	 * [0, 0x33): not dirty
619 	 * [0x33, 0x40): dirty
620 	 * [0x40, 0x61): not dirty
621 	 * [0x61, 0x200): dirty
622 	 */
623 	gfn_offset = TEST_DATA_START_GFN + 0x40;
624 	query_cmma_range(vm, gfn_offset, 25, &log);
625 	assert_cmma_dirty(gfn_offset, 1, &log);
626 
627 	/**
628 	 * Query pages [0x33, 0x40).
629 	 * The dirty bitmap should now look like this:
630 	 * [0, 0x61): not dirty
631 	 * [0x61, 0x200): dirty
632 	 */
633 	gfn_offset = TEST_DATA_START_GFN + 0x33;
634 	query_cmma_range(vm, gfn_offset, 0x40 - 0x33, &log);
635 	assert_cmma_dirty(gfn_offset, 0x40 - 0x33, &log);
636 
637 	/**
638 	 * Query the remaining pages [0x61, 0x200).
639 	 */
640 	gfn_offset = TEST_DATA_START_GFN;
641 	query_cmma_range(vm, gfn_offset, TEST_DATA_PAGE_COUNT - 0x61, &log);
642 	assert_cmma_dirty(TEST_DATA_START_GFN + 0x61, TEST_DATA_PAGE_COUNT - 0x61, &log);
643 
644 	assert_no_pages_cmma_dirty(vm);
645 }
646 
647 struct testdef {
648 	const char *name;
649 	void (*test)(void);
650 } testlist[] = {
651 	{ "migration mode and dirty tracking", test_migration_mode },
652 	{ "GET_CMMA_BITS: basic calls", test_get_cmma_basic },
653 	{ "GET_CMMA_BITS: all pages are dirty initally", test_get_inital_dirty },
654 	{ "GET_CMMA_BITS: holes are skipped", test_get_skip_holes },
655 };
656 
657 /**
658  * The kernel may support CMMA, but the machine may not (i.e. if running as
659  * guest-3).
660  *
661  * In this case, the CMMA capabilities are all there, but the CMMA-related
662  * ioctls fail. To find out whether the machine supports CMMA, create a
663  * temporary VM and then query the CMMA feature of the VM.
664  */
665 static int machine_has_cmma(void)
666 {
667 	struct kvm_vm *vm = vm_create_barebones();
668 	int r;
669 
670 	r = !__kvm_has_device_attr(vm->fd, KVM_S390_VM_MEM_CTRL, KVM_S390_VM_MEM_ENABLE_CMMA);
671 	kvm_vm_free(vm);
672 
673 	return r;
674 }
675 
676 int main(int argc, char *argv[])
677 {
678 	int idx;
679 
680 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_SYNC_REGS));
681 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_CMMA_MIGRATION));
682 	TEST_REQUIRE(machine_has_cmma());
683 
684 	ksft_print_header();
685 
686 	ksft_set_plan(ARRAY_SIZE(testlist));
687 
688 	for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
689 		testlist[idx].test();
690 		ksft_test_result_pass("%s\n", testlist[idx].name);
691 	}
692 
693 	ksft_finished();	/* Print results and exit() accordingly */
694 }
695