1 // SPDX-License-Identifier: GPL-2.0-only 2 #define _GNU_SOURCE /* for program_invocation_short_name */ 3 #include <errno.h> 4 #include <fcntl.h> 5 #include <pthread.h> 6 #include <sched.h> 7 #include <stdio.h> 8 #include <stdlib.h> 9 #include <string.h> 10 #include <signal.h> 11 #include <syscall.h> 12 #include <sys/ioctl.h> 13 #include <sys/sysinfo.h> 14 #include <asm/barrier.h> 15 #include <linux/atomic.h> 16 #include <linux/rseq.h> 17 #include <linux/unistd.h> 18 19 #include "kvm_util.h" 20 #include "processor.h" 21 #include "test_util.h" 22 23 #include "../rseq/rseq.c" 24 25 /* 26 * Any bug related to task migration is likely to be timing-dependent; perform 27 * a large number of migrations to reduce the odds of a false negative. 28 */ 29 #define NR_TASK_MIGRATIONS 100000 30 31 static pthread_t migration_thread; 32 static cpu_set_t possible_mask; 33 static int min_cpu, max_cpu; 34 static bool done; 35 36 static atomic_t seq_cnt; 37 38 static void guest_code(void) 39 { 40 for (;;) 41 GUEST_SYNC(0); 42 } 43 44 static int next_cpu(int cpu) 45 { 46 /* 47 * Advance to the next CPU, skipping those that weren't in the original 48 * affinity set. Sadly, there is no CPU_SET_FOR_EACH, and cpu_set_t's 49 * data storage is considered as opaque. Note, if this task is pinned 50 * to a small set of discontigous CPUs, e.g. 2 and 1023, this loop will 51 * burn a lot cycles and the test will take longer than normal to 52 * complete. 53 */ 54 do { 55 cpu++; 56 if (cpu > max_cpu) { 57 cpu = min_cpu; 58 TEST_ASSERT(CPU_ISSET(cpu, &possible_mask), 59 "Min CPU = %d must always be usable", cpu); 60 break; 61 } 62 } while (!CPU_ISSET(cpu, &possible_mask)); 63 64 return cpu; 65 } 66 67 static void *migration_worker(void *__rseq_tid) 68 { 69 pid_t rseq_tid = (pid_t)(unsigned long)__rseq_tid; 70 cpu_set_t allowed_mask; 71 int r, i, cpu; 72 73 CPU_ZERO(&allowed_mask); 74 75 for (i = 0, cpu = min_cpu; i < NR_TASK_MIGRATIONS; i++, cpu = next_cpu(cpu)) { 76 CPU_SET(cpu, &allowed_mask); 77 78 /* 79 * Bump the sequence count twice to allow the reader to detect 80 * that a migration may have occurred in between rseq and sched 81 * CPU ID reads. An odd sequence count indicates a migration 82 * is in-progress, while a completely different count indicates 83 * a migration occurred since the count was last read. 84 */ 85 atomic_inc(&seq_cnt); 86 87 /* 88 * Ensure the odd count is visible while getcpu() isn't 89 * stable, i.e. while changing affinity is in-progress. 90 */ 91 smp_wmb(); 92 r = sched_setaffinity(rseq_tid, sizeof(allowed_mask), &allowed_mask); 93 TEST_ASSERT(!r, "sched_setaffinity failed, errno = %d (%s)", 94 errno, strerror(errno)); 95 smp_wmb(); 96 atomic_inc(&seq_cnt); 97 98 CPU_CLR(cpu, &allowed_mask); 99 100 /* 101 * Wait 1-10us before proceeding to the next iteration and more 102 * specifically, before bumping seq_cnt again. A delay is 103 * needed on three fronts: 104 * 105 * 1. To allow sched_setaffinity() to prompt migration before 106 * ioctl(KVM_RUN) enters the guest so that TIF_NOTIFY_RESUME 107 * (or TIF_NEED_RESCHED, which indirectly leads to handling 108 * NOTIFY_RESUME) is handled in KVM context. 109 * 110 * If NOTIFY_RESUME/NEED_RESCHED is set after KVM enters 111 * the guest, the guest will trigger a IO/MMIO exit all the 112 * way to userspace and the TIF flags will be handled by 113 * the generic "exit to userspace" logic, not by KVM. The 114 * exit to userspace is necessary to give the test a chance 115 * to check the rseq CPU ID (see #2). 116 * 117 * Alternatively, guest_code() could include an instruction 118 * to trigger an exit that is handled by KVM, but any such 119 * exit requires architecture specific code. 120 * 121 * 2. To let ioctl(KVM_RUN) make its way back to the test 122 * before the next round of migration. The test's check on 123 * the rseq CPU ID must wait for migration to complete in 124 * order to avoid false positive, thus any kernel rseq bug 125 * will be missed if the next migration starts before the 126 * check completes. 127 * 128 * 3. To ensure the read-side makes efficient forward progress, 129 * e.g. if getcpu() involves a syscall. Stalling the read-side 130 * means the test will spend more time waiting for getcpu() 131 * to stabilize and less time trying to hit the timing-dependent 132 * bug. 133 * 134 * Because any bug in this area is likely to be timing-dependent, 135 * run with a range of delays at 1us intervals from 1us to 10us 136 * as a best effort to avoid tuning the test to the point where 137 * it can hit _only_ the original bug and not detect future 138 * regressions. 139 * 140 * The original bug can reproduce with a delay up to ~500us on 141 * x86-64, but starts to require more iterations to reproduce 142 * as the delay creeps above ~10us, and the average runtime of 143 * each iteration obviously increases as well. Cap the delay 144 * at 10us to keep test runtime reasonable while minimizing 145 * potential coverage loss. 146 * 147 * The lower bound for reproducing the bug is likely below 1us, 148 * e.g. failures occur on x86-64 with nanosleep(0), but at that 149 * point the overhead of the syscall likely dominates the delay. 150 * Use usleep() for simplicity and to avoid unnecessary kernel 151 * dependencies. 152 */ 153 usleep((i % 10) + 1); 154 } 155 done = true; 156 return NULL; 157 } 158 159 static void calc_min_max_cpu(void) 160 { 161 int i, cnt, nproc; 162 163 TEST_REQUIRE(CPU_COUNT(&possible_mask) >= 2); 164 165 /* 166 * CPU_SET doesn't provide a FOR_EACH helper, get the min/max CPU that 167 * this task is affined to in order to reduce the time spent querying 168 * unusable CPUs, e.g. if this task is pinned to a small percentage of 169 * total CPUs. 170 */ 171 nproc = get_nprocs_conf(); 172 min_cpu = -1; 173 max_cpu = -1; 174 cnt = 0; 175 176 for (i = 0; i < nproc; i++) { 177 if (!CPU_ISSET(i, &possible_mask)) 178 continue; 179 if (min_cpu == -1) 180 min_cpu = i; 181 max_cpu = i; 182 cnt++; 183 } 184 185 __TEST_REQUIRE(cnt >= 2, 186 "Only one usable CPU, task migration not possible"); 187 } 188 189 int main(int argc, char *argv[]) 190 { 191 int r, i, snapshot; 192 struct kvm_vm *vm; 193 struct kvm_vcpu *vcpu; 194 u32 cpu, rseq_cpu; 195 196 r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask); 197 TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno, 198 strerror(errno)); 199 200 calc_min_max_cpu(); 201 202 r = rseq_register_current_thread(); 203 TEST_ASSERT(!r, "rseq_register_current_thread failed, errno = %d (%s)", 204 errno, strerror(errno)); 205 206 /* 207 * Create and run a dummy VM that immediately exits to userspace via 208 * GUEST_SYNC, while concurrently migrating the process by setting its 209 * CPU affinity. 210 */ 211 vm = vm_create_with_one_vcpu(&vcpu, guest_code); 212 213 pthread_create(&migration_thread, NULL, migration_worker, 214 (void *)(unsigned long)syscall(SYS_gettid)); 215 216 for (i = 0; !done; i++) { 217 vcpu_run(vcpu); 218 TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, 219 "Guest failed?"); 220 221 /* 222 * Verify rseq's CPU matches sched's CPU. Ensure migration 223 * doesn't occur between getcpu() and reading the rseq cpu_id 224 * by rereading both if the sequence count changes, or if the 225 * count is odd (migration in-progress). 226 */ 227 do { 228 /* 229 * Drop bit 0 to force a mismatch if the count is odd, 230 * i.e. if a migration is in-progress. 231 */ 232 snapshot = atomic_read(&seq_cnt) & ~1; 233 234 /* 235 * Ensure calling getcpu() and reading rseq.cpu_id complete 236 * in a single "no migration" window, i.e. are not reordered 237 * across the seq_cnt reads. 238 */ 239 smp_rmb(); 240 r = sys_getcpu(&cpu, NULL); 241 TEST_ASSERT(!r, "getcpu failed, errno = %d (%s)", 242 errno, strerror(errno)); 243 rseq_cpu = rseq_current_cpu_raw(); 244 smp_rmb(); 245 } while (snapshot != atomic_read(&seq_cnt)); 246 247 TEST_ASSERT(rseq_cpu == cpu, 248 "rseq CPU = %d, sched CPU = %d", rseq_cpu, cpu); 249 } 250 251 /* 252 * Sanity check that the test was able to enter the guest a reasonable 253 * number of times, e.g. didn't get stalled too often/long waiting for 254 * getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a fairly 255 * conservative ratio on x86-64, which can do _more_ KVM_RUNs than 256 * migrations given the 1us+ delay in the migration task. 257 */ 258 TEST_ASSERT(i > (NR_TASK_MIGRATIONS / 2), 259 "Only performed %d KVM_RUNs, task stalled too much?", i); 260 261 pthread_join(migration_thread, NULL); 262 263 kvm_vm_free(vm); 264 265 rseq_unregister_current_thread(); 266 267 return 0; 268 } 269