1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 24 #include <test_util.h> 25 #include <kvm_util.h> 26 #include <processor.h> 27 28 #define MEM_SIZE ((512U << 20) + 4096) 29 #define MEM_SIZE_PAGES (MEM_SIZE / 4096) 30 #define MEM_GPA 0x10000000UL 31 #define MEM_AUX_GPA MEM_GPA 32 #define MEM_SYNC_GPA MEM_AUX_GPA 33 #define MEM_TEST_GPA (MEM_AUX_GPA + 4096) 34 #define MEM_TEST_SIZE (MEM_SIZE - 4096) 35 static_assert(MEM_SIZE % 4096 == 0, "invalid mem size"); 36 static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size"); 37 38 /* 39 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 40 * Considering that each slot needs to have at least one page up to 41 * 8194 slots in use can then be tested (although with slightly 42 * limited resolution). 43 */ 44 #define MEM_SIZE_MAP ((32U << 20) + 4096) 45 #define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096) 46 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096) 47 #define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096) 48 static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size"); 49 static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size"); 50 static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size"); 51 static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size"); 52 53 /* 54 * 128 MiB is min size that fills 32k slots with at least one page in each 55 * while at the same time gets 100+ iterations in such test 56 */ 57 #define MEM_TEST_UNMAP_SIZE (128U << 20) 58 #define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096) 59 /* 2 MiB chunk size like a typical huge page */ 60 #define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12)) 61 static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE, 62 "invalid unmap test region size"); 63 static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0, 64 "invalid unmap test region size"); 65 static_assert(MEM_TEST_UNMAP_SIZE_PAGES % 66 (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0, 67 "invalid unmap test region size"); 68 69 /* 70 * For the move active test the middle of the test area is placed on 71 * a memslot boundary: half lies in the memslot being moved, half in 72 * other memslot(s). 73 * 74 * When running this test with 32k memslots (32764, really) each memslot 75 * contains 4 pages. 76 * The last one additionally contains the remaining 21 pages of memory, 77 * for the total size of 25 pages. 78 * Hence, the maximum size here is 50 pages. 79 */ 80 #define MEM_TEST_MOVE_SIZE_PAGES (50) 81 #define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096) 82 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 83 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 84 "invalid move test region size"); 85 86 #define MEM_TEST_VAL_1 0x1122334455667788 87 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 88 89 struct vm_data { 90 struct kvm_vm *vm; 91 struct kvm_vcpu *vcpu; 92 pthread_t vcpu_thread; 93 uint32_t nslots; 94 uint64_t npages; 95 uint64_t pages_per_slot; 96 void **hva_slots; 97 bool mmio_ok; 98 uint64_t mmio_gpa_min; 99 uint64_t mmio_gpa_max; 100 }; 101 102 struct sync_area { 103 atomic_bool start_flag; 104 atomic_bool exit_flag; 105 atomic_bool sync_flag; 106 void *move_area_ptr; 107 }; 108 109 /* 110 * Technically, we need also for the atomic bool to be address-free, which 111 * is recommended, but not strictly required, by C11 for lockless 112 * implementations. 113 * However, in practice both GCC and Clang fulfill this requirement on 114 * all KVM-supported platforms. 115 */ 116 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 117 118 static sem_t vcpu_ready; 119 120 static bool map_unmap_verify; 121 122 static bool verbose; 123 #define pr_info_v(...) \ 124 do { \ 125 if (verbose) \ 126 pr_info(__VA_ARGS__); \ 127 } while (0) 128 129 static void check_mmio_access(struct vm_data *data, struct kvm_run *run) 130 { 131 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); 132 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 133 TEST_ASSERT(run->mmio.len == 8, 134 "Unexpected exit mmio size = %u", run->mmio.len); 135 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && 136 run->mmio.phys_addr <= data->mmio_gpa_max, 137 "Unexpected exit mmio address = 0x%llx", 138 run->mmio.phys_addr); 139 } 140 141 static void *vcpu_worker(void *__data) 142 { 143 struct vm_data *data = __data; 144 struct kvm_vcpu *vcpu = data->vcpu; 145 struct kvm_run *run = vcpu->run; 146 struct ucall uc; 147 148 while (1) { 149 vcpu_run(vcpu); 150 151 switch (get_ucall(vcpu, &uc)) { 152 case UCALL_SYNC: 153 TEST_ASSERT(uc.args[1] == 0, 154 "Unexpected sync ucall, got %lx", 155 (ulong)uc.args[1]); 156 sem_post(&vcpu_ready); 157 continue; 158 case UCALL_NONE: 159 if (run->exit_reason == KVM_EXIT_MMIO) 160 check_mmio_access(data, run); 161 else 162 goto done; 163 break; 164 case UCALL_ABORT: 165 REPORT_GUEST_ASSERT_1(uc, "val = %lu"); 166 break; 167 case UCALL_DONE: 168 goto done; 169 default: 170 TEST_FAIL("Unknown ucall %lu", uc.cmd); 171 } 172 } 173 174 done: 175 return NULL; 176 } 177 178 static void wait_for_vcpu(void) 179 { 180 struct timespec ts; 181 182 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 183 "clock_gettime() failed: %d\n", errno); 184 185 ts.tv_sec += 2; 186 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 187 "sem_timedwait() failed: %d\n", errno); 188 } 189 190 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 191 { 192 uint64_t gpage, pgoffs; 193 uint32_t slot, slotoffs; 194 void *base; 195 196 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 197 TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096, 198 "Too high gpa to translate"); 199 gpa -= MEM_GPA; 200 201 gpage = gpa / 4096; 202 pgoffs = gpa % 4096; 203 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 204 slotoffs = gpage - (slot * data->pages_per_slot); 205 206 if (rempages) { 207 uint64_t slotpages; 208 209 if (slot == data->nslots - 1) 210 slotpages = data->npages - slot * data->pages_per_slot; 211 else 212 slotpages = data->pages_per_slot; 213 214 TEST_ASSERT(!pgoffs, 215 "Asking for remaining pages in slot but gpa not page aligned"); 216 *rempages = slotpages - slotoffs; 217 } 218 219 base = data->hva_slots[slot]; 220 return (uint8_t *)base + slotoffs * 4096 + pgoffs; 221 } 222 223 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 224 { 225 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 226 227 return MEM_GPA + slot * data->pages_per_slot * 4096; 228 } 229 230 static struct vm_data *alloc_vm(void) 231 { 232 struct vm_data *data; 233 234 data = malloc(sizeof(*data)); 235 TEST_ASSERT(data, "malloc(vmdata) failed"); 236 237 data->vm = NULL; 238 data->vcpu = NULL; 239 data->hva_slots = NULL; 240 241 return data; 242 } 243 244 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 245 void *guest_code, uint64_t mempages, 246 struct timespec *slot_runtime) 247 { 248 uint32_t max_mem_slots; 249 uint64_t rempages; 250 uint64_t guest_addr; 251 uint32_t slot; 252 struct timespec tstart; 253 struct sync_area *sync; 254 255 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 256 TEST_ASSERT(max_mem_slots > 1, 257 "KVM_CAP_NR_MEMSLOTS should be greater than 1"); 258 TEST_ASSERT(nslots > 1 || nslots == -1, 259 "Slot count cap should be greater than 1"); 260 if (nslots != -1) 261 max_mem_slots = min(max_mem_slots, (uint32_t)nslots); 262 pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots); 263 264 TEST_ASSERT(mempages > 1, 265 "Can't test without any memory"); 266 267 data->npages = mempages; 268 data->nslots = max_mem_slots - 1; 269 data->pages_per_slot = mempages / data->nslots; 270 if (!data->pages_per_slot) { 271 *maxslots = mempages + 1; 272 return false; 273 } 274 275 rempages = mempages % data->nslots; 276 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 277 TEST_ASSERT(data->hva_slots, "malloc() fail"); 278 279 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 280 281 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 282 max_mem_slots - 1, data->pages_per_slot, rempages); 283 284 clock_gettime(CLOCK_MONOTONIC, &tstart); 285 for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) { 286 uint64_t npages; 287 288 npages = data->pages_per_slot; 289 if (slot == max_mem_slots - 1) 290 npages += rempages; 291 292 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 293 guest_addr, slot, npages, 294 0); 295 guest_addr += npages * 4096; 296 } 297 *slot_runtime = timespec_elapsed(tstart); 298 299 for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) { 300 uint64_t npages; 301 uint64_t gpa; 302 303 npages = data->pages_per_slot; 304 if (slot == max_mem_slots - 2) 305 npages += rempages; 306 307 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, 308 slot + 1); 309 TEST_ASSERT(gpa == guest_addr, 310 "vm_phy_pages_alloc() failed\n"); 311 312 data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr); 313 memset(data->hva_slots[slot], 0, npages * 4096); 314 315 guest_addr += npages * 4096; 316 } 317 318 virt_map(data->vm, MEM_GPA, MEM_GPA, mempages); 319 320 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 321 atomic_init(&sync->start_flag, false); 322 atomic_init(&sync->exit_flag, false); 323 atomic_init(&sync->sync_flag, false); 324 325 data->mmio_ok = false; 326 327 return true; 328 } 329 330 static void launch_vm(struct vm_data *data) 331 { 332 pr_info_v("Launching the test VM\n"); 333 334 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 335 336 /* Ensure the guest thread is spun up. */ 337 wait_for_vcpu(); 338 } 339 340 static void free_vm(struct vm_data *data) 341 { 342 kvm_vm_free(data->vm); 343 free(data->hva_slots); 344 free(data); 345 } 346 347 static void wait_guest_exit(struct vm_data *data) 348 { 349 pthread_join(data->vcpu_thread, NULL); 350 } 351 352 static void let_guest_run(struct sync_area *sync) 353 { 354 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 355 } 356 357 static void guest_spin_until_start(void) 358 { 359 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 360 361 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 362 ; 363 } 364 365 static void make_guest_exit(struct sync_area *sync) 366 { 367 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 368 } 369 370 static bool _guest_should_exit(void) 371 { 372 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 373 374 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 375 } 376 377 #define guest_should_exit() unlikely(_guest_should_exit()) 378 379 /* 380 * noinline so we can easily see how much time the host spends waiting 381 * for the guest. 382 * For the same reason use alarm() instead of polling clock_gettime() 383 * to implement a wait timeout. 384 */ 385 static noinline void host_perform_sync(struct sync_area *sync) 386 { 387 alarm(2); 388 389 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 390 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 391 ; 392 393 alarm(0); 394 } 395 396 static bool guest_perform_sync(void) 397 { 398 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 399 bool expected; 400 401 do { 402 if (guest_should_exit()) 403 return false; 404 405 expected = true; 406 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 407 &expected, false, 408 memory_order_acq_rel, 409 memory_order_relaxed)); 410 411 return true; 412 } 413 414 static void guest_code_test_memslot_move(void) 415 { 416 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 417 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 418 419 GUEST_SYNC(0); 420 421 guest_spin_until_start(); 422 423 while (!guest_should_exit()) { 424 uintptr_t ptr; 425 426 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 427 ptr += 4096) 428 *(uint64_t *)ptr = MEM_TEST_VAL_1; 429 430 /* 431 * No host sync here since the MMIO exits are so expensive 432 * that the host would spend most of its time waiting for 433 * the guest and so instead of measuring memslot move 434 * performance we would measure the performance and 435 * likelihood of MMIO exits 436 */ 437 } 438 439 GUEST_DONE(); 440 } 441 442 static void guest_code_test_memslot_map(void) 443 { 444 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 445 446 GUEST_SYNC(0); 447 448 guest_spin_until_start(); 449 450 while (1) { 451 uintptr_t ptr; 452 453 for (ptr = MEM_TEST_GPA; 454 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096) 455 *(uint64_t *)ptr = MEM_TEST_VAL_1; 456 457 if (!guest_perform_sync()) 458 break; 459 460 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 461 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096) 462 *(uint64_t *)ptr = MEM_TEST_VAL_2; 463 464 if (!guest_perform_sync()) 465 break; 466 } 467 468 GUEST_DONE(); 469 } 470 471 static void guest_code_test_memslot_unmap(void) 472 { 473 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 474 475 GUEST_SYNC(0); 476 477 guest_spin_until_start(); 478 479 while (1) { 480 uintptr_t ptr = MEM_TEST_GPA; 481 482 /* 483 * We can afford to access (map) just a small number of pages 484 * per host sync as otherwise the host will spend 485 * a significant amount of its time waiting for the guest 486 * (instead of doing unmap operations), so this will 487 * effectively turn this test into a map performance test. 488 * 489 * Just access a single page to be on the safe side. 490 */ 491 *(uint64_t *)ptr = MEM_TEST_VAL_1; 492 493 if (!guest_perform_sync()) 494 break; 495 496 ptr += MEM_TEST_UNMAP_SIZE / 2; 497 *(uint64_t *)ptr = MEM_TEST_VAL_2; 498 499 if (!guest_perform_sync()) 500 break; 501 } 502 503 GUEST_DONE(); 504 } 505 506 static void guest_code_test_memslot_rw(void) 507 { 508 GUEST_SYNC(0); 509 510 guest_spin_until_start(); 511 512 while (1) { 513 uintptr_t ptr; 514 515 for (ptr = MEM_TEST_GPA; 516 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) 517 *(uint64_t *)ptr = MEM_TEST_VAL_1; 518 519 if (!guest_perform_sync()) 520 break; 521 522 for (ptr = MEM_TEST_GPA + 4096 / 2; 523 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) { 524 uint64_t val = *(uint64_t *)ptr; 525 526 GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val); 527 *(uint64_t *)ptr = 0; 528 } 529 530 if (!guest_perform_sync()) 531 break; 532 } 533 534 GUEST_DONE(); 535 } 536 537 static bool test_memslot_move_prepare(struct vm_data *data, 538 struct sync_area *sync, 539 uint64_t *maxslots, bool isactive) 540 { 541 uint64_t movesrcgpa, movetestgpa; 542 543 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 544 545 if (isactive) { 546 uint64_t lastpages; 547 548 vm_gpa2hva(data, movesrcgpa, &lastpages); 549 if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) { 550 *maxslots = 0; 551 return false; 552 } 553 } 554 555 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 556 sync->move_area_ptr = (void *)movetestgpa; 557 558 if (isactive) { 559 data->mmio_ok = true; 560 data->mmio_gpa_min = movesrcgpa; 561 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 562 } 563 564 return true; 565 } 566 567 static bool test_memslot_move_prepare_active(struct vm_data *data, 568 struct sync_area *sync, 569 uint64_t *maxslots) 570 { 571 return test_memslot_move_prepare(data, sync, maxslots, true); 572 } 573 574 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 575 struct sync_area *sync, 576 uint64_t *maxslots) 577 { 578 return test_memslot_move_prepare(data, sync, maxslots, false); 579 } 580 581 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 582 { 583 uint64_t movesrcgpa; 584 585 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 586 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 587 MEM_TEST_MOVE_GPA_DEST); 588 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 589 } 590 591 static void test_memslot_do_unmap(struct vm_data *data, 592 uint64_t offsp, uint64_t count) 593 { 594 uint64_t gpa, ctr; 595 596 for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) { 597 uint64_t npages; 598 void *hva; 599 int ret; 600 601 hva = vm_gpa2hva(data, gpa, &npages); 602 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 603 npages = min(npages, count - ctr); 604 ret = madvise(hva, npages * 4096, MADV_DONTNEED); 605 TEST_ASSERT(!ret, 606 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 607 hva, gpa); 608 ctr += npages; 609 gpa += npages * 4096; 610 } 611 TEST_ASSERT(ctr == count, 612 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 613 } 614 615 static void test_memslot_map_unmap_check(struct vm_data *data, 616 uint64_t offsp, uint64_t valexp) 617 { 618 uint64_t gpa; 619 uint64_t *val; 620 621 if (!map_unmap_verify) 622 return; 623 624 gpa = MEM_TEST_GPA + offsp * 4096; 625 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 626 TEST_ASSERT(*val == valexp, 627 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 628 *val, valexp, gpa); 629 *val = 0; 630 } 631 632 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 633 { 634 /* 635 * Unmap the second half of the test area while guest writes to (maps) 636 * the first half. 637 */ 638 test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2, 639 MEM_TEST_MAP_SIZE_PAGES / 2); 640 641 /* 642 * Wait for the guest to finish writing the first half of the test 643 * area, verify the written value on the first and the last page of 644 * this area and then unmap it. 645 * Meanwhile, the guest is writing to (mapping) the second half of 646 * the test area. 647 */ 648 host_perform_sync(sync); 649 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 650 test_memslot_map_unmap_check(data, 651 MEM_TEST_MAP_SIZE_PAGES / 2 - 1, 652 MEM_TEST_VAL_1); 653 test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2); 654 655 656 /* 657 * Wait for the guest to finish writing the second half of the test 658 * area and verify the written value on the first and the last page 659 * of this area. 660 * The area will be unmapped at the beginning of the next loop 661 * iteration. 662 * Meanwhile, the guest is writing to (mapping) the first half of 663 * the test area. 664 */ 665 host_perform_sync(sync); 666 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2, 667 MEM_TEST_VAL_2); 668 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1, 669 MEM_TEST_VAL_2); 670 } 671 672 static void test_memslot_unmap_loop_common(struct vm_data *data, 673 struct sync_area *sync, 674 uint64_t chunk) 675 { 676 uint64_t ctr; 677 678 /* 679 * Wait for the guest to finish mapping page(s) in the first half 680 * of the test area, verify the written value and then perform unmap 681 * of this area. 682 * Meanwhile, the guest is writing to (mapping) page(s) in the second 683 * half of the test area. 684 */ 685 host_perform_sync(sync); 686 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 687 for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk) 688 test_memslot_do_unmap(data, ctr, chunk); 689 690 /* Likewise, but for the opposite host / guest areas */ 691 host_perform_sync(sync); 692 test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2, 693 MEM_TEST_VAL_2); 694 for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2; 695 ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk) 696 test_memslot_do_unmap(data, ctr, chunk); 697 } 698 699 static void test_memslot_unmap_loop(struct vm_data *data, 700 struct sync_area *sync) 701 { 702 test_memslot_unmap_loop_common(data, sync, 1); 703 } 704 705 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 706 struct sync_area *sync) 707 { 708 test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES); 709 } 710 711 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 712 { 713 uint64_t gptr; 714 715 for (gptr = MEM_TEST_GPA + 4096 / 2; 716 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) 717 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 718 719 host_perform_sync(sync); 720 721 for (gptr = MEM_TEST_GPA; 722 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) { 723 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 724 uint64_t val = *vptr; 725 726 TEST_ASSERT(val == MEM_TEST_VAL_1, 727 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 728 val, gptr); 729 *vptr = 0; 730 } 731 732 host_perform_sync(sync); 733 } 734 735 struct test_data { 736 const char *name; 737 uint64_t mem_size; 738 void (*guest_code)(void); 739 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 740 uint64_t *maxslots); 741 void (*loop)(struct vm_data *data, struct sync_area *sync); 742 }; 743 744 static bool test_execute(int nslots, uint64_t *maxslots, 745 unsigned int maxtime, 746 const struct test_data *tdata, 747 uint64_t *nloops, 748 struct timespec *slot_runtime, 749 struct timespec *guest_runtime) 750 { 751 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES; 752 struct vm_data *data; 753 struct sync_area *sync; 754 struct timespec tstart; 755 bool ret = true; 756 757 data = alloc_vm(); 758 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 759 mem_size, slot_runtime)) { 760 ret = false; 761 goto exit_free; 762 } 763 764 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 765 766 if (tdata->prepare && 767 !tdata->prepare(data, sync, maxslots)) { 768 ret = false; 769 goto exit_free; 770 } 771 772 launch_vm(data); 773 774 clock_gettime(CLOCK_MONOTONIC, &tstart); 775 let_guest_run(sync); 776 777 while (1) { 778 *guest_runtime = timespec_elapsed(tstart); 779 if (guest_runtime->tv_sec >= maxtime) 780 break; 781 782 tdata->loop(data, sync); 783 784 (*nloops)++; 785 } 786 787 make_guest_exit(sync); 788 wait_guest_exit(data); 789 790 exit_free: 791 free_vm(data); 792 793 return ret; 794 } 795 796 static const struct test_data tests[] = { 797 { 798 .name = "map", 799 .mem_size = MEM_SIZE_MAP_PAGES, 800 .guest_code = guest_code_test_memslot_map, 801 .loop = test_memslot_map_loop, 802 }, 803 { 804 .name = "unmap", 805 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 806 .guest_code = guest_code_test_memslot_unmap, 807 .loop = test_memslot_unmap_loop, 808 }, 809 { 810 .name = "unmap chunked", 811 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 812 .guest_code = guest_code_test_memslot_unmap, 813 .loop = test_memslot_unmap_loop_chunked, 814 }, 815 { 816 .name = "move active area", 817 .guest_code = guest_code_test_memslot_move, 818 .prepare = test_memslot_move_prepare_active, 819 .loop = test_memslot_move_loop, 820 }, 821 { 822 .name = "move inactive area", 823 .guest_code = guest_code_test_memslot_move, 824 .prepare = test_memslot_move_prepare_inactive, 825 .loop = test_memslot_move_loop, 826 }, 827 { 828 .name = "RW", 829 .guest_code = guest_code_test_memslot_rw, 830 .loop = test_memslot_rw_loop 831 }, 832 }; 833 834 #define NTESTS ARRAY_SIZE(tests) 835 836 struct test_args { 837 int tfirst; 838 int tlast; 839 int nslots; 840 int seconds; 841 int runs; 842 }; 843 844 static void help(char *name, struct test_args *targs) 845 { 846 int ctr; 847 848 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 849 name); 850 pr_info(" -h: print this help screen.\n"); 851 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 852 pr_info(" -d: enable extra debug checks.\n"); 853 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 854 targs->nslots); 855 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 856 targs->tfirst, NTESTS - 1); 857 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 858 targs->tlast, NTESTS - 1); 859 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 860 targs->seconds); 861 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 862 targs->runs); 863 864 pr_info("\nAvailable tests:\n"); 865 for (ctr = 0; ctr < NTESTS; ctr++) 866 pr_info("%d: %s\n", ctr, tests[ctr].name); 867 } 868 869 static bool parse_args(int argc, char *argv[], 870 struct test_args *targs) 871 { 872 int opt; 873 874 while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { 875 switch (opt) { 876 case 'h': 877 default: 878 help(argv[0], targs); 879 return false; 880 case 'v': 881 verbose = true; 882 break; 883 case 'd': 884 map_unmap_verify = true; 885 break; 886 case 's': 887 targs->nslots = atoi_paranoid(optarg); 888 if (targs->nslots <= 0 && targs->nslots != -1) { 889 pr_info("Slot count cap has to be positive or -1 for no cap\n"); 890 return false; 891 } 892 break; 893 case 'f': 894 targs->tfirst = atoi_non_negative("First test", optarg); 895 break; 896 case 'e': 897 targs->tlast = atoi_non_negative("Last test", optarg); 898 if (targs->tlast >= NTESTS) { 899 pr_info("Last test to run has to be non-negative and less than %zu\n", 900 NTESTS); 901 return false; 902 } 903 break; 904 case 'l': 905 targs->seconds = atoi_non_negative("Test length", optarg); 906 break; 907 case 'r': 908 targs->runs = atoi_positive("Runs per test", optarg); 909 break; 910 } 911 } 912 913 if (optind < argc) { 914 help(argv[0], targs); 915 return false; 916 } 917 918 if (targs->tfirst > targs->tlast) { 919 pr_info("First test to run cannot be greater than the last test to run\n"); 920 return false; 921 } 922 923 return true; 924 } 925 926 struct test_result { 927 struct timespec slot_runtime, guest_runtime, iter_runtime; 928 int64_t slottimens, runtimens; 929 uint64_t nloops; 930 }; 931 932 static bool test_loop(const struct test_data *data, 933 const struct test_args *targs, 934 struct test_result *rbestslottime, 935 struct test_result *rbestruntime) 936 { 937 uint64_t maxslots; 938 struct test_result result; 939 940 result.nloops = 0; 941 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 942 &result.nloops, 943 &result.slot_runtime, &result.guest_runtime)) { 944 if (maxslots) 945 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 946 maxslots); 947 else 948 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 949 950 return false; 951 } 952 953 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 954 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 955 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 956 if (!result.nloops) { 957 pr_info("No full loops done - too short test time or system too loaded?\n"); 958 return true; 959 } 960 961 result.iter_runtime = timespec_div(result.guest_runtime, 962 result.nloops); 963 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 964 result.nloops, 965 result.iter_runtime.tv_sec, 966 result.iter_runtime.tv_nsec); 967 result.slottimens = timespec_to_ns(result.slot_runtime); 968 result.runtimens = timespec_to_ns(result.iter_runtime); 969 970 /* 971 * Only rank the slot setup time for tests using the whole test memory 972 * area so they are comparable 973 */ 974 if (!data->mem_size && 975 (!rbestslottime->slottimens || 976 result.slottimens < rbestslottime->slottimens)) 977 *rbestslottime = result; 978 if (!rbestruntime->runtimens || 979 result.runtimens < rbestruntime->runtimens) 980 *rbestruntime = result; 981 982 return true; 983 } 984 985 int main(int argc, char *argv[]) 986 { 987 struct test_args targs = { 988 .tfirst = 0, 989 .tlast = NTESTS - 1, 990 .nslots = -1, 991 .seconds = 5, 992 .runs = 1, 993 }; 994 struct test_result rbestslottime; 995 int tctr; 996 997 /* Tell stdout not to buffer its content */ 998 setbuf(stdout, NULL); 999 1000 if (!parse_args(argc, argv, &targs)) 1001 return -1; 1002 1003 rbestslottime.slottimens = 0; 1004 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1005 const struct test_data *data = &tests[tctr]; 1006 unsigned int runctr; 1007 struct test_result rbestruntime; 1008 1009 if (tctr > targs.tfirst) 1010 pr_info("\n"); 1011 1012 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1013 data->name, targs.runs, targs.seconds); 1014 1015 rbestruntime.runtimens = 0; 1016 for (runctr = 0; runctr < targs.runs; runctr++) 1017 if (!test_loop(data, &targs, 1018 &rbestslottime, &rbestruntime)) 1019 break; 1020 1021 if (rbestruntime.runtimens) 1022 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1023 rbestruntime.iter_runtime.tv_sec, 1024 rbestruntime.iter_runtime.tv_nsec, 1025 rbestruntime.nloops); 1026 } 1027 1028 if (rbestslottime.slottimens) 1029 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1030 rbestslottime.slot_runtime.tv_sec, 1031 rbestslottime.slot_runtime.tv_nsec); 1032 1033 return 0; 1034 } 1035