xref: /linux/tools/testing/selftests/kvm/memslot_perf_test.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A memslot-related performance benchmark.
4  *
5  * Copyright (C) 2021 Oracle and/or its affiliates.
6  *
7  * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
8  */
9 #include <pthread.h>
10 #include <sched.h>
11 #include <semaphore.h>
12 #include <stdatomic.h>
13 #include <stdbool.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <sys/mman.h>
19 #include <time.h>
20 #include <unistd.h>
21 
22 #include <linux/compiler.h>
23 #include <linux/sizes.h>
24 
25 #include <test_util.h>
26 #include <kvm_util.h>
27 #include <processor.h>
28 
29 #define MEM_EXTRA_SIZE		SZ_64K
30 
31 #define MEM_SIZE		(SZ_512M + MEM_EXTRA_SIZE)
32 #define MEM_GPA			SZ_256M
33 #define MEM_AUX_GPA		MEM_GPA
34 #define MEM_SYNC_GPA		MEM_AUX_GPA
35 #define MEM_TEST_GPA		(MEM_AUX_GPA + MEM_EXTRA_SIZE)
36 #define MEM_TEST_SIZE		(MEM_SIZE - MEM_EXTRA_SIZE)
37 
38 /*
39  * 32 MiB is max size that gets well over 100 iterations on 509 slots.
40  * Considering that each slot needs to have at least one page up to
41  * 8194 slots in use can then be tested (although with slightly
42  * limited resolution).
43  */
44 #define MEM_SIZE_MAP		(SZ_32M + MEM_EXTRA_SIZE)
45 #define MEM_TEST_MAP_SIZE	(MEM_SIZE_MAP - MEM_EXTRA_SIZE)
46 
47 /*
48  * 128 MiB is min size that fills 32k slots with at least one page in each
49  * while at the same time gets 100+ iterations in such test
50  *
51  * 2 MiB chunk size like a typical huge page
52  */
53 #define MEM_TEST_UNMAP_SIZE		SZ_128M
54 #define MEM_TEST_UNMAP_CHUNK_SIZE	SZ_2M
55 
56 /*
57  * For the move active test the middle of the test area is placed on
58  * a memslot boundary: half lies in the memslot being moved, half in
59  * other memslot(s).
60  *
61  * We have different number of memory slots, excluding the reserved
62  * memory slot 0, on various architectures and configurations. The
63  * memory size in this test is calculated by picking the maximal
64  * last memory slot's memory size, with alignment to the largest
65  * supported page size (64KB). In this way, the selected memory
66  * size for this test is compatible with test_memslot_move_prepare().
67  *
68  * architecture   slots    memory-per-slot    memory-on-last-slot
69  * --------------------------------------------------------------
70  * x86-4KB        32763    16KB               160KB
71  * arm64-4KB      32766    16KB               112KB
72  * arm64-16KB     32766    16KB               112KB
73  * arm64-64KB     8192     64KB               128KB
74  */
75 #define MEM_TEST_MOVE_SIZE		(3 * SZ_64K)
76 #define MEM_TEST_MOVE_GPA_DEST		(MEM_GPA + MEM_SIZE)
77 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
78 	      "invalid move test region size");
79 
80 #define MEM_TEST_VAL_1 0x1122334455667788
81 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
82 
83 struct vm_data {
84 	struct kvm_vm *vm;
85 	struct kvm_vcpu *vcpu;
86 	pthread_t vcpu_thread;
87 	uint32_t nslots;
88 	uint64_t npages;
89 	uint64_t pages_per_slot;
90 	void **hva_slots;
91 	bool mmio_ok;
92 	uint64_t mmio_gpa_min;
93 	uint64_t mmio_gpa_max;
94 };
95 
96 struct sync_area {
97 	uint32_t    guest_page_size;
98 	atomic_bool start_flag;
99 	atomic_bool exit_flag;
100 	atomic_bool sync_flag;
101 	void *move_area_ptr;
102 };
103 
104 /*
105  * Technically, we need also for the atomic bool to be address-free, which
106  * is recommended, but not strictly required, by C11 for lockless
107  * implementations.
108  * However, in practice both GCC and Clang fulfill this requirement on
109  * all KVM-supported platforms.
110  */
111 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
112 
113 static sem_t vcpu_ready;
114 
115 static bool map_unmap_verify;
116 #ifdef __x86_64__
117 static bool disable_slot_zap_quirk;
118 #endif
119 
120 static bool verbose;
121 #define pr_info_v(...)				\
122 	do {					\
123 		if (verbose)			\
124 			pr_info(__VA_ARGS__);	\
125 	} while (0)
126 
127 static void check_mmio_access(struct vm_data *data, struct kvm_run *run)
128 {
129 	TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit");
130 	TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
131 	TEST_ASSERT(run->mmio.len == 8,
132 		    "Unexpected exit mmio size = %u", run->mmio.len);
133 	TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min &&
134 		    run->mmio.phys_addr <= data->mmio_gpa_max,
135 		    "Unexpected exit mmio address = 0x%llx",
136 		    run->mmio.phys_addr);
137 }
138 
139 static void *vcpu_worker(void *__data)
140 {
141 	struct vm_data *data = __data;
142 	struct kvm_vcpu *vcpu = data->vcpu;
143 	struct kvm_run *run = vcpu->run;
144 	struct ucall uc;
145 
146 	while (1) {
147 		vcpu_run(vcpu);
148 
149 		switch (get_ucall(vcpu, &uc)) {
150 		case UCALL_SYNC:
151 			TEST_ASSERT(uc.args[1] == 0,
152 				"Unexpected sync ucall, got %lx",
153 				(ulong)uc.args[1]);
154 			sem_post(&vcpu_ready);
155 			continue;
156 		case UCALL_NONE:
157 			if (run->exit_reason == KVM_EXIT_MMIO)
158 				check_mmio_access(data, run);
159 			else
160 				goto done;
161 			break;
162 		case UCALL_ABORT:
163 			REPORT_GUEST_ASSERT(uc);
164 			break;
165 		case UCALL_DONE:
166 			goto done;
167 		default:
168 			TEST_FAIL("Unknown ucall %lu", uc.cmd);
169 		}
170 	}
171 
172 done:
173 	return NULL;
174 }
175 
176 static void wait_for_vcpu(void)
177 {
178 	struct timespec ts;
179 
180 	TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
181 		    "clock_gettime() failed: %d", errno);
182 
183 	ts.tv_sec += 2;
184 	TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
185 		    "sem_timedwait() failed: %d", errno);
186 }
187 
188 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
189 {
190 	uint64_t gpage, pgoffs;
191 	uint32_t slot, slotoffs;
192 	void *base;
193 	uint32_t guest_page_size = data->vm->page_size;
194 
195 	TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
196 	TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size,
197 		    "Too high gpa to translate");
198 	gpa -= MEM_GPA;
199 
200 	gpage = gpa / guest_page_size;
201 	pgoffs = gpa % guest_page_size;
202 	slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
203 	slotoffs = gpage - (slot * data->pages_per_slot);
204 
205 	if (rempages) {
206 		uint64_t slotpages;
207 
208 		if (slot == data->nslots - 1)
209 			slotpages = data->npages - slot * data->pages_per_slot;
210 		else
211 			slotpages = data->pages_per_slot;
212 
213 		TEST_ASSERT(!pgoffs,
214 			    "Asking for remaining pages in slot but gpa not page aligned");
215 		*rempages = slotpages - slotoffs;
216 	}
217 
218 	base = data->hva_slots[slot];
219 	return (uint8_t *)base + slotoffs * guest_page_size + pgoffs;
220 }
221 
222 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
223 {
224 	uint32_t guest_page_size = data->vm->page_size;
225 
226 	TEST_ASSERT(slot < data->nslots, "Too high slot number");
227 
228 	return MEM_GPA + slot * data->pages_per_slot * guest_page_size;
229 }
230 
231 static struct vm_data *alloc_vm(void)
232 {
233 	struct vm_data *data;
234 
235 	data = malloc(sizeof(*data));
236 	TEST_ASSERT(data, "malloc(vmdata) failed");
237 
238 	data->vm = NULL;
239 	data->vcpu = NULL;
240 	data->hva_slots = NULL;
241 
242 	return data;
243 }
244 
245 static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size,
246 			     uint64_t pages_per_slot, uint64_t rempages)
247 {
248 	if (!pages_per_slot)
249 		return false;
250 
251 	if ((pages_per_slot * guest_page_size) % host_page_size)
252 		return false;
253 
254 	if ((rempages * guest_page_size) % host_page_size)
255 		return false;
256 
257 	return true;
258 }
259 
260 
261 static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size)
262 {
263 	uint32_t guest_page_size = data->vm->page_size;
264 	uint64_t mempages, pages_per_slot, rempages;
265 	uint64_t slots;
266 
267 	mempages = data->npages;
268 	slots = data->nslots;
269 	while (--slots > 1) {
270 		pages_per_slot = mempages / slots;
271 		if (!pages_per_slot)
272 			continue;
273 
274 		rempages = mempages % pages_per_slot;
275 		if (check_slot_pages(host_page_size, guest_page_size,
276 				     pages_per_slot, rempages))
277 			return slots + 1;	/* slot 0 is reserved */
278 	}
279 
280 	return 0;
281 }
282 
283 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
284 		       void *guest_code, uint64_t mem_size,
285 		       struct timespec *slot_runtime)
286 {
287 	uint64_t mempages, rempages;
288 	uint64_t guest_addr;
289 	uint32_t slot, host_page_size, guest_page_size;
290 	struct timespec tstart;
291 	struct sync_area *sync;
292 
293 	host_page_size = getpagesize();
294 	guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
295 	mempages = mem_size / guest_page_size;
296 
297 	data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code);
298 	TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size");
299 
300 	data->npages = mempages;
301 	TEST_ASSERT(data->npages > 1, "Can't test without any memory");
302 	data->nslots = nslots;
303 	data->pages_per_slot = data->npages / data->nslots;
304 	rempages = data->npages % data->nslots;
305 	if (!check_slot_pages(host_page_size, guest_page_size,
306 			      data->pages_per_slot, rempages)) {
307 		*maxslots = get_max_slots(data, host_page_size);
308 		return false;
309 	}
310 
311 	data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
312 	TEST_ASSERT(data->hva_slots, "malloc() fail");
313 
314 	pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
315 		data->nslots, data->pages_per_slot, rempages);
316 
317 	clock_gettime(CLOCK_MONOTONIC, &tstart);
318 	for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
319 		uint64_t npages;
320 
321 		npages = data->pages_per_slot;
322 		if (slot == data->nslots)
323 			npages += rempages;
324 
325 		vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
326 					    guest_addr, slot, npages,
327 					    0);
328 		guest_addr += npages * guest_page_size;
329 	}
330 	*slot_runtime = timespec_elapsed(tstart);
331 
332 	for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
333 		uint64_t npages;
334 		uint64_t gpa;
335 
336 		npages = data->pages_per_slot;
337 		if (slot == data->nslots)
338 			npages += rempages;
339 
340 		gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot);
341 		TEST_ASSERT(gpa == guest_addr,
342 			    "vm_phy_pages_alloc() failed");
343 
344 		data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr);
345 		memset(data->hva_slots[slot - 1], 0, npages * guest_page_size);
346 
347 		guest_addr += npages * guest_page_size;
348 	}
349 
350 	virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages);
351 
352 	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
353 	sync->guest_page_size = data->vm->page_size;
354 	atomic_init(&sync->start_flag, false);
355 	atomic_init(&sync->exit_flag, false);
356 	atomic_init(&sync->sync_flag, false);
357 
358 	data->mmio_ok = false;
359 
360 	return true;
361 }
362 
363 static void launch_vm(struct vm_data *data)
364 {
365 	pr_info_v("Launching the test VM\n");
366 
367 	pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
368 
369 	/* Ensure the guest thread is spun up. */
370 	wait_for_vcpu();
371 }
372 
373 static void free_vm(struct vm_data *data)
374 {
375 	kvm_vm_free(data->vm);
376 	free(data->hva_slots);
377 	free(data);
378 }
379 
380 static void wait_guest_exit(struct vm_data *data)
381 {
382 	pthread_join(data->vcpu_thread, NULL);
383 }
384 
385 static void let_guest_run(struct sync_area *sync)
386 {
387 	atomic_store_explicit(&sync->start_flag, true, memory_order_release);
388 }
389 
390 static void guest_spin_until_start(void)
391 {
392 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
393 
394 	while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
395 		;
396 }
397 
398 static void make_guest_exit(struct sync_area *sync)
399 {
400 	atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
401 }
402 
403 static bool _guest_should_exit(void)
404 {
405 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
406 
407 	return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
408 }
409 
410 #define guest_should_exit() unlikely(_guest_should_exit())
411 
412 /*
413  * noinline so we can easily see how much time the host spends waiting
414  * for the guest.
415  * For the same reason use alarm() instead of polling clock_gettime()
416  * to implement a wait timeout.
417  */
418 static noinline void host_perform_sync(struct sync_area *sync)
419 {
420 	alarm(10);
421 
422 	atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
423 	while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
424 		;
425 
426 	alarm(0);
427 }
428 
429 static bool guest_perform_sync(void)
430 {
431 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
432 	bool expected;
433 
434 	do {
435 		if (guest_should_exit())
436 			return false;
437 
438 		expected = true;
439 	} while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
440 							&expected, false,
441 							memory_order_acq_rel,
442 							memory_order_relaxed));
443 
444 	return true;
445 }
446 
447 static void guest_code_test_memslot_move(void)
448 {
449 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
450 	uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
451 	uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
452 
453 	GUEST_SYNC(0);
454 
455 	guest_spin_until_start();
456 
457 	while (!guest_should_exit()) {
458 		uintptr_t ptr;
459 
460 		for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
461 		     ptr += page_size)
462 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
463 
464 		/*
465 		 * No host sync here since the MMIO exits are so expensive
466 		 * that the host would spend most of its time waiting for
467 		 * the guest and so instead of measuring memslot move
468 		 * performance we would measure the performance and
469 		 * likelihood of MMIO exits
470 		 */
471 	}
472 
473 	GUEST_DONE();
474 }
475 
476 static void guest_code_test_memslot_map(void)
477 {
478 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
479 	uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
480 
481 	GUEST_SYNC(0);
482 
483 	guest_spin_until_start();
484 
485 	while (1) {
486 		uintptr_t ptr;
487 
488 		for (ptr = MEM_TEST_GPA;
489 		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
490 		     ptr += page_size)
491 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
492 
493 		if (!guest_perform_sync())
494 			break;
495 
496 		for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
497 		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE;
498 		     ptr += page_size)
499 			*(uint64_t *)ptr = MEM_TEST_VAL_2;
500 
501 		if (!guest_perform_sync())
502 			break;
503 	}
504 
505 	GUEST_DONE();
506 }
507 
508 static void guest_code_test_memslot_unmap(void)
509 {
510 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
511 
512 	GUEST_SYNC(0);
513 
514 	guest_spin_until_start();
515 
516 	while (1) {
517 		uintptr_t ptr = MEM_TEST_GPA;
518 
519 		/*
520 		 * We can afford to access (map) just a small number of pages
521 		 * per host sync as otherwise the host will spend
522 		 * a significant amount of its time waiting for the guest
523 		 * (instead of doing unmap operations), so this will
524 		 * effectively turn this test into a map performance test.
525 		 *
526 		 * Just access a single page to be on the safe side.
527 		 */
528 		*(uint64_t *)ptr = MEM_TEST_VAL_1;
529 
530 		if (!guest_perform_sync())
531 			break;
532 
533 		ptr += MEM_TEST_UNMAP_SIZE / 2;
534 		*(uint64_t *)ptr = MEM_TEST_VAL_2;
535 
536 		if (!guest_perform_sync())
537 			break;
538 	}
539 
540 	GUEST_DONE();
541 }
542 
543 static void guest_code_test_memslot_rw(void)
544 {
545 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
546 	uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
547 
548 	GUEST_SYNC(0);
549 
550 	guest_spin_until_start();
551 
552 	while (1) {
553 		uintptr_t ptr;
554 
555 		for (ptr = MEM_TEST_GPA;
556 		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size)
557 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
558 
559 		if (!guest_perform_sync())
560 			break;
561 
562 		for (ptr = MEM_TEST_GPA + page_size / 2;
563 		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) {
564 			uint64_t val = *(uint64_t *)ptr;
565 
566 			GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2);
567 			*(uint64_t *)ptr = 0;
568 		}
569 
570 		if (!guest_perform_sync())
571 			break;
572 	}
573 
574 	GUEST_DONE();
575 }
576 
577 static bool test_memslot_move_prepare(struct vm_data *data,
578 				      struct sync_area *sync,
579 				      uint64_t *maxslots, bool isactive)
580 {
581 	uint32_t guest_page_size = data->vm->page_size;
582 	uint64_t movesrcgpa, movetestgpa;
583 
584 #ifdef __x86_64__
585 	if (disable_slot_zap_quirk)
586 		vm_enable_cap(data->vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL);
587 #endif
588 
589 	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
590 
591 	if (isactive) {
592 		uint64_t lastpages;
593 
594 		vm_gpa2hva(data, movesrcgpa, &lastpages);
595 		if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) {
596 			*maxslots = 0;
597 			return false;
598 		}
599 	}
600 
601 	movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
602 	sync->move_area_ptr = (void *)movetestgpa;
603 
604 	if (isactive) {
605 		data->mmio_ok = true;
606 		data->mmio_gpa_min = movesrcgpa;
607 		data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
608 	}
609 
610 	return true;
611 }
612 
613 static bool test_memslot_move_prepare_active(struct vm_data *data,
614 					     struct sync_area *sync,
615 					     uint64_t *maxslots)
616 {
617 	return test_memslot_move_prepare(data, sync, maxslots, true);
618 }
619 
620 static bool test_memslot_move_prepare_inactive(struct vm_data *data,
621 					       struct sync_area *sync,
622 					       uint64_t *maxslots)
623 {
624 	return test_memslot_move_prepare(data, sync, maxslots, false);
625 }
626 
627 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
628 {
629 	uint64_t movesrcgpa;
630 
631 	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
632 	vm_mem_region_move(data->vm, data->nslots - 1 + 1,
633 			   MEM_TEST_MOVE_GPA_DEST);
634 	vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
635 }
636 
637 static void test_memslot_do_unmap(struct vm_data *data,
638 				  uint64_t offsp, uint64_t count)
639 {
640 	uint64_t gpa, ctr;
641 	uint32_t guest_page_size = data->vm->page_size;
642 
643 	for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) {
644 		uint64_t npages;
645 		void *hva;
646 		int ret;
647 
648 		hva = vm_gpa2hva(data, gpa, &npages);
649 		TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
650 		npages = min(npages, count - ctr);
651 		ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED);
652 		TEST_ASSERT(!ret,
653 			    "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
654 			    hva, gpa);
655 		ctr += npages;
656 		gpa += npages * guest_page_size;
657 	}
658 	TEST_ASSERT(ctr == count,
659 		    "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
660 }
661 
662 static void test_memslot_map_unmap_check(struct vm_data *data,
663 					 uint64_t offsp, uint64_t valexp)
664 {
665 	uint64_t gpa;
666 	uint64_t *val;
667 	uint32_t guest_page_size = data->vm->page_size;
668 
669 	if (!map_unmap_verify)
670 		return;
671 
672 	gpa = MEM_TEST_GPA + offsp * guest_page_size;
673 	val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
674 	TEST_ASSERT(*val == valexp,
675 		    "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
676 		    *val, valexp, gpa);
677 	*val = 0;
678 }
679 
680 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
681 {
682 	uint32_t guest_page_size = data->vm->page_size;
683 	uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size;
684 
685 	/*
686 	 * Unmap the second half of the test area while guest writes to (maps)
687 	 * the first half.
688 	 */
689 	test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2);
690 
691 	/*
692 	 * Wait for the guest to finish writing the first half of the test
693 	 * area, verify the written value on the first and the last page of
694 	 * this area and then unmap it.
695 	 * Meanwhile, the guest is writing to (mapping) the second half of
696 	 * the test area.
697 	 */
698 	host_perform_sync(sync);
699 	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
700 	test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1);
701 	test_memslot_do_unmap(data, 0, guest_pages / 2);
702 
703 
704 	/*
705 	 * Wait for the guest to finish writing the second half of the test
706 	 * area and verify the written value on the first and the last page
707 	 * of this area.
708 	 * The area will be unmapped at the beginning of the next loop
709 	 * iteration.
710 	 * Meanwhile, the guest is writing to (mapping) the first half of
711 	 * the test area.
712 	 */
713 	host_perform_sync(sync);
714 	test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
715 	test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2);
716 }
717 
718 static void test_memslot_unmap_loop_common(struct vm_data *data,
719 					   struct sync_area *sync,
720 					   uint64_t chunk)
721 {
722 	uint32_t guest_page_size = data->vm->page_size;
723 	uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size;
724 	uint64_t ctr;
725 
726 	/*
727 	 * Wait for the guest to finish mapping page(s) in the first half
728 	 * of the test area, verify the written value and then perform unmap
729 	 * of this area.
730 	 * Meanwhile, the guest is writing to (mapping) page(s) in the second
731 	 * half of the test area.
732 	 */
733 	host_perform_sync(sync);
734 	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
735 	for (ctr = 0; ctr < guest_pages / 2; ctr += chunk)
736 		test_memslot_do_unmap(data, ctr, chunk);
737 
738 	/* Likewise, but for the opposite host / guest areas */
739 	host_perform_sync(sync);
740 	test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
741 	for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk)
742 		test_memslot_do_unmap(data, ctr, chunk);
743 }
744 
745 static void test_memslot_unmap_loop(struct vm_data *data,
746 				    struct sync_area *sync)
747 {
748 	uint32_t host_page_size = getpagesize();
749 	uint32_t guest_page_size = data->vm->page_size;
750 	uint64_t guest_chunk_pages = guest_page_size >= host_page_size ?
751 					1 : host_page_size / guest_page_size;
752 
753 	test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
754 }
755 
756 static void test_memslot_unmap_loop_chunked(struct vm_data *data,
757 					    struct sync_area *sync)
758 {
759 	uint32_t guest_page_size = data->vm->page_size;
760 	uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size;
761 
762 	test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
763 }
764 
765 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
766 {
767 	uint64_t gptr;
768 	uint32_t guest_page_size = data->vm->page_size;
769 
770 	for (gptr = MEM_TEST_GPA + guest_page_size / 2;
771 	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size)
772 		*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
773 
774 	host_perform_sync(sync);
775 
776 	for (gptr = MEM_TEST_GPA;
777 	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) {
778 		uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
779 		uint64_t val = *vptr;
780 
781 		TEST_ASSERT(val == MEM_TEST_VAL_1,
782 			    "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
783 			    val, gptr);
784 		*vptr = 0;
785 	}
786 
787 	host_perform_sync(sync);
788 }
789 
790 struct test_data {
791 	const char *name;
792 	uint64_t mem_size;
793 	void (*guest_code)(void);
794 	bool (*prepare)(struct vm_data *data, struct sync_area *sync,
795 			uint64_t *maxslots);
796 	void (*loop)(struct vm_data *data, struct sync_area *sync);
797 };
798 
799 static bool test_execute(int nslots, uint64_t *maxslots,
800 			 unsigned int maxtime,
801 			 const struct test_data *tdata,
802 			 uint64_t *nloops,
803 			 struct timespec *slot_runtime,
804 			 struct timespec *guest_runtime)
805 {
806 	uint64_t mem_size = tdata->mem_size ? : MEM_SIZE;
807 	struct vm_data *data;
808 	struct sync_area *sync;
809 	struct timespec tstart;
810 	bool ret = true;
811 
812 	data = alloc_vm();
813 	if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
814 			mem_size, slot_runtime)) {
815 		ret = false;
816 		goto exit_free;
817 	}
818 
819 	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
820 	if (tdata->prepare &&
821 	    !tdata->prepare(data, sync, maxslots)) {
822 		ret = false;
823 		goto exit_free;
824 	}
825 
826 	launch_vm(data);
827 
828 	clock_gettime(CLOCK_MONOTONIC, &tstart);
829 	let_guest_run(sync);
830 
831 	while (1) {
832 		*guest_runtime = timespec_elapsed(tstart);
833 		if (guest_runtime->tv_sec >= maxtime)
834 			break;
835 
836 		tdata->loop(data, sync);
837 
838 		(*nloops)++;
839 	}
840 
841 	make_guest_exit(sync);
842 	wait_guest_exit(data);
843 
844 exit_free:
845 	free_vm(data);
846 
847 	return ret;
848 }
849 
850 static const struct test_data tests[] = {
851 	{
852 		.name = "map",
853 		.mem_size = MEM_SIZE_MAP,
854 		.guest_code = guest_code_test_memslot_map,
855 		.loop = test_memslot_map_loop,
856 	},
857 	{
858 		.name = "unmap",
859 		.mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
860 		.guest_code = guest_code_test_memslot_unmap,
861 		.loop = test_memslot_unmap_loop,
862 	},
863 	{
864 		.name = "unmap chunked",
865 		.mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
866 		.guest_code = guest_code_test_memslot_unmap,
867 		.loop = test_memslot_unmap_loop_chunked,
868 	},
869 	{
870 		.name = "move active area",
871 		.guest_code = guest_code_test_memslot_move,
872 		.prepare = test_memslot_move_prepare_active,
873 		.loop = test_memslot_move_loop,
874 	},
875 	{
876 		.name = "move inactive area",
877 		.guest_code = guest_code_test_memslot_move,
878 		.prepare = test_memslot_move_prepare_inactive,
879 		.loop = test_memslot_move_loop,
880 	},
881 	{
882 		.name = "RW",
883 		.guest_code = guest_code_test_memslot_rw,
884 		.loop = test_memslot_rw_loop
885 	},
886 };
887 
888 #define NTESTS ARRAY_SIZE(tests)
889 
890 struct test_args {
891 	int tfirst;
892 	int tlast;
893 	int nslots;
894 	int seconds;
895 	int runs;
896 };
897 
898 static void help(char *name, struct test_args *targs)
899 {
900 	int ctr;
901 
902 	pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
903 		name);
904 	pr_info(" -h: print this help screen.\n");
905 	pr_info(" -v: enable verbose mode (not for benchmarking).\n");
906 	pr_info(" -d: enable extra debug checks.\n");
907 	pr_info(" -q: Disable memslot zap quirk during memslot move.\n");
908 	pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
909 		targs->nslots);
910 	pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
911 		targs->tfirst, NTESTS - 1);
912 	pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
913 		targs->tlast, NTESTS - 1);
914 	pr_info(" -l: specify the test length in seconds (currently: %i)\n",
915 		targs->seconds);
916 	pr_info(" -r: specify the number of runs per test (currently: %i)\n",
917 		targs->runs);
918 
919 	pr_info("\nAvailable tests:\n");
920 	for (ctr = 0; ctr < NTESTS; ctr++)
921 		pr_info("%d: %s\n", ctr, tests[ctr].name);
922 }
923 
924 static bool check_memory_sizes(void)
925 {
926 	uint32_t host_page_size = getpagesize();
927 	uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
928 
929 	if (host_page_size > SZ_64K || guest_page_size > SZ_64K) {
930 		pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n",
931 			host_page_size, guest_page_size);
932 		return false;
933 	}
934 
935 	if (MEM_SIZE % guest_page_size ||
936 	    MEM_TEST_SIZE % guest_page_size) {
937 		pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n");
938 		return false;
939 	}
940 
941 	if (MEM_SIZE_MAP % guest_page_size		||
942 	    MEM_TEST_MAP_SIZE % guest_page_size		||
943 	    (MEM_TEST_MAP_SIZE / guest_page_size) <= 2	||
944 	    (MEM_TEST_MAP_SIZE / guest_page_size) % 2) {
945 		pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n");
946 		return false;
947 	}
948 
949 	if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE		||
950 	    MEM_TEST_UNMAP_SIZE % guest_page_size	||
951 	    (MEM_TEST_UNMAP_SIZE / guest_page_size) %
952 	    (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) {
953 		pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n");
954 		return false;
955 	}
956 
957 	return true;
958 }
959 
960 static bool parse_args(int argc, char *argv[],
961 		       struct test_args *targs)
962 {
963 	uint32_t max_mem_slots;
964 	int opt;
965 
966 	while ((opt = getopt(argc, argv, "hvdqs:f:e:l:r:")) != -1) {
967 		switch (opt) {
968 		case 'h':
969 		default:
970 			help(argv[0], targs);
971 			return false;
972 		case 'v':
973 			verbose = true;
974 			break;
975 		case 'd':
976 			map_unmap_verify = true;
977 			break;
978 #ifdef __x86_64__
979 		case 'q':
980 			disable_slot_zap_quirk = true;
981 			TEST_REQUIRE(kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) &
982 				     KVM_X86_QUIRK_SLOT_ZAP_ALL);
983 			break;
984 #endif
985 		case 's':
986 			targs->nslots = atoi_paranoid(optarg);
987 			if (targs->nslots <= 1 && targs->nslots != -1) {
988 				pr_info("Slot count cap must be larger than 1 or -1 for no cap\n");
989 				return false;
990 			}
991 			break;
992 		case 'f':
993 			targs->tfirst = atoi_non_negative("First test", optarg);
994 			break;
995 		case 'e':
996 			targs->tlast = atoi_non_negative("Last test", optarg);
997 			if (targs->tlast >= NTESTS) {
998 				pr_info("Last test to run has to be non-negative and less than %zu\n",
999 					NTESTS);
1000 				return false;
1001 			}
1002 			break;
1003 		case 'l':
1004 			targs->seconds = atoi_non_negative("Test length", optarg);
1005 			break;
1006 		case 'r':
1007 			targs->runs = atoi_positive("Runs per test", optarg);
1008 			break;
1009 		}
1010 	}
1011 
1012 	if (optind < argc) {
1013 		help(argv[0], targs);
1014 		return false;
1015 	}
1016 
1017 	if (targs->tfirst > targs->tlast) {
1018 		pr_info("First test to run cannot be greater than the last test to run\n");
1019 		return false;
1020 	}
1021 
1022 	max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
1023 	if (max_mem_slots <= 1) {
1024 		pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n");
1025 		return false;
1026 	}
1027 
1028 	/* Memory slot 0 is reserved */
1029 	if (targs->nslots == -1)
1030 		targs->nslots = max_mem_slots - 1;
1031 	else
1032 		targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1;
1033 
1034 	pr_info_v("Allowed Number of memory slots: %"PRIu32"\n",
1035 		  targs->nslots + 1);
1036 
1037 	return true;
1038 }
1039 
1040 struct test_result {
1041 	struct timespec slot_runtime, guest_runtime, iter_runtime;
1042 	int64_t slottimens, runtimens;
1043 	uint64_t nloops;
1044 };
1045 
1046 static bool test_loop(const struct test_data *data,
1047 		      const struct test_args *targs,
1048 		      struct test_result *rbestslottime,
1049 		      struct test_result *rbestruntime)
1050 {
1051 	uint64_t maxslots;
1052 	struct test_result result = {};
1053 
1054 	if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
1055 			  &result.nloops,
1056 			  &result.slot_runtime, &result.guest_runtime)) {
1057 		if (maxslots)
1058 			pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
1059 				maxslots);
1060 		else
1061 			pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
1062 
1063 		return false;
1064 	}
1065 
1066 	pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
1067 		result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
1068 		result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
1069 	if (!result.nloops) {
1070 		pr_info("No full loops done - too short test time or system too loaded?\n");
1071 		return true;
1072 	}
1073 
1074 	result.iter_runtime = timespec_div(result.guest_runtime,
1075 					   result.nloops);
1076 	pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
1077 		result.nloops,
1078 		result.iter_runtime.tv_sec,
1079 		result.iter_runtime.tv_nsec);
1080 	result.slottimens = timespec_to_ns(result.slot_runtime);
1081 	result.runtimens = timespec_to_ns(result.iter_runtime);
1082 
1083 	/*
1084 	 * Only rank the slot setup time for tests using the whole test memory
1085 	 * area so they are comparable
1086 	 */
1087 	if (!data->mem_size &&
1088 	    (!rbestslottime->slottimens ||
1089 	     result.slottimens < rbestslottime->slottimens))
1090 		*rbestslottime = result;
1091 	if (!rbestruntime->runtimens ||
1092 	    result.runtimens < rbestruntime->runtimens)
1093 		*rbestruntime = result;
1094 
1095 	return true;
1096 }
1097 
1098 int main(int argc, char *argv[])
1099 {
1100 	struct test_args targs = {
1101 		.tfirst = 0,
1102 		.tlast = NTESTS - 1,
1103 		.nslots = -1,
1104 		.seconds = 5,
1105 		.runs = 1,
1106 	};
1107 	struct test_result rbestslottime = {};
1108 	int tctr;
1109 
1110 	if (!check_memory_sizes())
1111 		return -1;
1112 
1113 	if (!parse_args(argc, argv, &targs))
1114 		return -1;
1115 
1116 	for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
1117 		const struct test_data *data = &tests[tctr];
1118 		unsigned int runctr;
1119 		struct test_result rbestruntime = {};
1120 
1121 		if (tctr > targs.tfirst)
1122 			pr_info("\n");
1123 
1124 		pr_info("Testing %s performance with %i runs, %d seconds each\n",
1125 			data->name, targs.runs, targs.seconds);
1126 
1127 		for (runctr = 0; runctr < targs.runs; runctr++)
1128 			if (!test_loop(data, &targs,
1129 				       &rbestslottime, &rbestruntime))
1130 				break;
1131 
1132 		if (rbestruntime.runtimens)
1133 			pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
1134 				rbestruntime.iter_runtime.tv_sec,
1135 				rbestruntime.iter_runtime.tv_nsec,
1136 				rbestruntime.nloops);
1137 	}
1138 
1139 	if (rbestslottime.slottimens)
1140 		pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
1141 			rbestslottime.slot_runtime.tv_sec,
1142 			rbestslottime.slot_runtime.tv_nsec);
1143 
1144 	return 0;
1145 }
1146