1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 #include <linux/sizes.h> 24 25 #include <test_util.h> 26 #include <kvm_util.h> 27 #include <processor.h> 28 29 #define MEM_EXTRA_SIZE SZ_64K 30 31 #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE) 32 #define MEM_GPA SZ_256M 33 #define MEM_AUX_GPA MEM_GPA 34 #define MEM_SYNC_GPA MEM_AUX_GPA 35 #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE) 36 #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE) 37 38 /* 39 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 40 * Considering that each slot needs to have at least one page up to 41 * 8194 slots in use can then be tested (although with slightly 42 * limited resolution). 43 */ 44 #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE) 45 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE) 46 47 /* 48 * 128 MiB is min size that fills 32k slots with at least one page in each 49 * while at the same time gets 100+ iterations in such test 50 * 51 * 2 MiB chunk size like a typical huge page 52 */ 53 #define MEM_TEST_UNMAP_SIZE SZ_128M 54 #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M 55 56 /* 57 * For the move active test the middle of the test area is placed on 58 * a memslot boundary: half lies in the memslot being moved, half in 59 * other memslot(s). 60 * 61 * We have different number of memory slots, excluding the reserved 62 * memory slot 0, on various architectures and configurations. The 63 * memory size in this test is calculated by picking the maximal 64 * last memory slot's memory size, with alignment to the largest 65 * supported page size (64KB). In this way, the selected memory 66 * size for this test is compatible with test_memslot_move_prepare(). 67 * 68 * architecture slots memory-per-slot memory-on-last-slot 69 * -------------------------------------------------------------- 70 * x86-4KB 32763 16KB 160KB 71 * arm64-4KB 32766 16KB 112KB 72 * arm64-16KB 32766 16KB 112KB 73 * arm64-64KB 8192 64KB 128KB 74 */ 75 #define MEM_TEST_MOVE_SIZE (3 * SZ_64K) 76 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 77 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 78 "invalid move test region size"); 79 80 #define MEM_TEST_VAL_1 0x1122334455667788 81 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 82 83 struct vm_data { 84 struct kvm_vm *vm; 85 struct kvm_vcpu *vcpu; 86 pthread_t vcpu_thread; 87 uint32_t nslots; 88 uint64_t npages; 89 uint64_t pages_per_slot; 90 void **hva_slots; 91 bool mmio_ok; 92 uint64_t mmio_gpa_min; 93 uint64_t mmio_gpa_max; 94 }; 95 96 struct sync_area { 97 uint32_t guest_page_size; 98 atomic_bool start_flag; 99 atomic_bool exit_flag; 100 atomic_bool sync_flag; 101 void *move_area_ptr; 102 }; 103 104 /* 105 * Technically, we need also for the atomic bool to be address-free, which 106 * is recommended, but not strictly required, by C11 for lockless 107 * implementations. 108 * However, in practice both GCC and Clang fulfill this requirement on 109 * all KVM-supported platforms. 110 */ 111 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 112 113 static sem_t vcpu_ready; 114 115 static bool map_unmap_verify; 116 117 static bool verbose; 118 #define pr_info_v(...) \ 119 do { \ 120 if (verbose) \ 121 pr_info(__VA_ARGS__); \ 122 } while (0) 123 124 static void check_mmio_access(struct vm_data *data, struct kvm_run *run) 125 { 126 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); 127 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 128 TEST_ASSERT(run->mmio.len == 8, 129 "Unexpected exit mmio size = %u", run->mmio.len); 130 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && 131 run->mmio.phys_addr <= data->mmio_gpa_max, 132 "Unexpected exit mmio address = 0x%llx", 133 run->mmio.phys_addr); 134 } 135 136 static void *vcpu_worker(void *__data) 137 { 138 struct vm_data *data = __data; 139 struct kvm_vcpu *vcpu = data->vcpu; 140 struct kvm_run *run = vcpu->run; 141 struct ucall uc; 142 143 while (1) { 144 vcpu_run(vcpu); 145 146 switch (get_ucall(vcpu, &uc)) { 147 case UCALL_SYNC: 148 TEST_ASSERT(uc.args[1] == 0, 149 "Unexpected sync ucall, got %lx", 150 (ulong)uc.args[1]); 151 sem_post(&vcpu_ready); 152 continue; 153 case UCALL_NONE: 154 if (run->exit_reason == KVM_EXIT_MMIO) 155 check_mmio_access(data, run); 156 else 157 goto done; 158 break; 159 case UCALL_ABORT: 160 REPORT_GUEST_ASSERT(uc); 161 break; 162 case UCALL_DONE: 163 goto done; 164 default: 165 TEST_FAIL("Unknown ucall %lu", uc.cmd); 166 } 167 } 168 169 done: 170 return NULL; 171 } 172 173 static void wait_for_vcpu(void) 174 { 175 struct timespec ts; 176 177 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 178 "clock_gettime() failed: %d", errno); 179 180 ts.tv_sec += 2; 181 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 182 "sem_timedwait() failed: %d", errno); 183 } 184 185 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 186 { 187 uint64_t gpage, pgoffs; 188 uint32_t slot, slotoffs; 189 void *base; 190 uint32_t guest_page_size = data->vm->page_size; 191 192 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 193 TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size, 194 "Too high gpa to translate"); 195 gpa -= MEM_GPA; 196 197 gpage = gpa / guest_page_size; 198 pgoffs = gpa % guest_page_size; 199 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 200 slotoffs = gpage - (slot * data->pages_per_slot); 201 202 if (rempages) { 203 uint64_t slotpages; 204 205 if (slot == data->nslots - 1) 206 slotpages = data->npages - slot * data->pages_per_slot; 207 else 208 slotpages = data->pages_per_slot; 209 210 TEST_ASSERT(!pgoffs, 211 "Asking for remaining pages in slot but gpa not page aligned"); 212 *rempages = slotpages - slotoffs; 213 } 214 215 base = data->hva_slots[slot]; 216 return (uint8_t *)base + slotoffs * guest_page_size + pgoffs; 217 } 218 219 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 220 { 221 uint32_t guest_page_size = data->vm->page_size; 222 223 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 224 225 return MEM_GPA + slot * data->pages_per_slot * guest_page_size; 226 } 227 228 static struct vm_data *alloc_vm(void) 229 { 230 struct vm_data *data; 231 232 data = malloc(sizeof(*data)); 233 TEST_ASSERT(data, "malloc(vmdata) failed"); 234 235 data->vm = NULL; 236 data->vcpu = NULL; 237 data->hva_slots = NULL; 238 239 return data; 240 } 241 242 static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size, 243 uint64_t pages_per_slot, uint64_t rempages) 244 { 245 if (!pages_per_slot) 246 return false; 247 248 if ((pages_per_slot * guest_page_size) % host_page_size) 249 return false; 250 251 if ((rempages * guest_page_size) % host_page_size) 252 return false; 253 254 return true; 255 } 256 257 258 static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size) 259 { 260 uint32_t guest_page_size = data->vm->page_size; 261 uint64_t mempages, pages_per_slot, rempages; 262 uint64_t slots; 263 264 mempages = data->npages; 265 slots = data->nslots; 266 while (--slots > 1) { 267 pages_per_slot = mempages / slots; 268 if (!pages_per_slot) 269 continue; 270 271 rempages = mempages % pages_per_slot; 272 if (check_slot_pages(host_page_size, guest_page_size, 273 pages_per_slot, rempages)) 274 return slots + 1; /* slot 0 is reserved */ 275 } 276 277 return 0; 278 } 279 280 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 281 void *guest_code, uint64_t mem_size, 282 struct timespec *slot_runtime) 283 { 284 uint64_t mempages, rempages; 285 uint64_t guest_addr; 286 uint32_t slot, host_page_size, guest_page_size; 287 struct timespec tstart; 288 struct sync_area *sync; 289 290 host_page_size = getpagesize(); 291 guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 292 mempages = mem_size / guest_page_size; 293 294 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 295 TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size"); 296 297 data->npages = mempages; 298 TEST_ASSERT(data->npages > 1, "Can't test without any memory"); 299 data->nslots = nslots; 300 data->pages_per_slot = data->npages / data->nslots; 301 rempages = data->npages % data->nslots; 302 if (!check_slot_pages(host_page_size, guest_page_size, 303 data->pages_per_slot, rempages)) { 304 *maxslots = get_max_slots(data, host_page_size); 305 return false; 306 } 307 308 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 309 TEST_ASSERT(data->hva_slots, "malloc() fail"); 310 311 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 312 data->nslots, data->pages_per_slot, rempages); 313 314 clock_gettime(CLOCK_MONOTONIC, &tstart); 315 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 316 uint64_t npages; 317 318 npages = data->pages_per_slot; 319 if (slot == data->nslots) 320 npages += rempages; 321 322 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 323 guest_addr, slot, npages, 324 0); 325 guest_addr += npages * guest_page_size; 326 } 327 *slot_runtime = timespec_elapsed(tstart); 328 329 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 330 uint64_t npages; 331 uint64_t gpa; 332 333 npages = data->pages_per_slot; 334 if (slot == data->nslots) 335 npages += rempages; 336 337 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot); 338 TEST_ASSERT(gpa == guest_addr, 339 "vm_phy_pages_alloc() failed"); 340 341 data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr); 342 memset(data->hva_slots[slot - 1], 0, npages * guest_page_size); 343 344 guest_addr += npages * guest_page_size; 345 } 346 347 virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages); 348 349 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 350 sync->guest_page_size = data->vm->page_size; 351 atomic_init(&sync->start_flag, false); 352 atomic_init(&sync->exit_flag, false); 353 atomic_init(&sync->sync_flag, false); 354 355 data->mmio_ok = false; 356 357 return true; 358 } 359 360 static void launch_vm(struct vm_data *data) 361 { 362 pr_info_v("Launching the test VM\n"); 363 364 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 365 366 /* Ensure the guest thread is spun up. */ 367 wait_for_vcpu(); 368 } 369 370 static void free_vm(struct vm_data *data) 371 { 372 kvm_vm_free(data->vm); 373 free(data->hva_slots); 374 free(data); 375 } 376 377 static void wait_guest_exit(struct vm_data *data) 378 { 379 pthread_join(data->vcpu_thread, NULL); 380 } 381 382 static void let_guest_run(struct sync_area *sync) 383 { 384 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 385 } 386 387 static void guest_spin_until_start(void) 388 { 389 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 390 391 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 392 ; 393 } 394 395 static void make_guest_exit(struct sync_area *sync) 396 { 397 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 398 } 399 400 static bool _guest_should_exit(void) 401 { 402 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 403 404 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 405 } 406 407 #define guest_should_exit() unlikely(_guest_should_exit()) 408 409 /* 410 * noinline so we can easily see how much time the host spends waiting 411 * for the guest. 412 * For the same reason use alarm() instead of polling clock_gettime() 413 * to implement a wait timeout. 414 */ 415 static noinline void host_perform_sync(struct sync_area *sync) 416 { 417 alarm(2); 418 419 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 420 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 421 ; 422 423 alarm(0); 424 } 425 426 static bool guest_perform_sync(void) 427 { 428 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 429 bool expected; 430 431 do { 432 if (guest_should_exit()) 433 return false; 434 435 expected = true; 436 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 437 &expected, false, 438 memory_order_acq_rel, 439 memory_order_relaxed)); 440 441 return true; 442 } 443 444 static void guest_code_test_memslot_move(void) 445 { 446 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 447 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 448 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 449 450 GUEST_SYNC(0); 451 452 guest_spin_until_start(); 453 454 while (!guest_should_exit()) { 455 uintptr_t ptr; 456 457 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 458 ptr += page_size) 459 *(uint64_t *)ptr = MEM_TEST_VAL_1; 460 461 /* 462 * No host sync here since the MMIO exits are so expensive 463 * that the host would spend most of its time waiting for 464 * the guest and so instead of measuring memslot move 465 * performance we would measure the performance and 466 * likelihood of MMIO exits 467 */ 468 } 469 470 GUEST_DONE(); 471 } 472 473 static void guest_code_test_memslot_map(void) 474 { 475 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 476 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 477 478 GUEST_SYNC(0); 479 480 guest_spin_until_start(); 481 482 while (1) { 483 uintptr_t ptr; 484 485 for (ptr = MEM_TEST_GPA; 486 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 487 ptr += page_size) 488 *(uint64_t *)ptr = MEM_TEST_VAL_1; 489 490 if (!guest_perform_sync()) 491 break; 492 493 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 494 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; 495 ptr += page_size) 496 *(uint64_t *)ptr = MEM_TEST_VAL_2; 497 498 if (!guest_perform_sync()) 499 break; 500 } 501 502 GUEST_DONE(); 503 } 504 505 static void guest_code_test_memslot_unmap(void) 506 { 507 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 508 509 GUEST_SYNC(0); 510 511 guest_spin_until_start(); 512 513 while (1) { 514 uintptr_t ptr = MEM_TEST_GPA; 515 516 /* 517 * We can afford to access (map) just a small number of pages 518 * per host sync as otherwise the host will spend 519 * a significant amount of its time waiting for the guest 520 * (instead of doing unmap operations), so this will 521 * effectively turn this test into a map performance test. 522 * 523 * Just access a single page to be on the safe side. 524 */ 525 *(uint64_t *)ptr = MEM_TEST_VAL_1; 526 527 if (!guest_perform_sync()) 528 break; 529 530 ptr += MEM_TEST_UNMAP_SIZE / 2; 531 *(uint64_t *)ptr = MEM_TEST_VAL_2; 532 533 if (!guest_perform_sync()) 534 break; 535 } 536 537 GUEST_DONE(); 538 } 539 540 static void guest_code_test_memslot_rw(void) 541 { 542 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 543 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 544 545 GUEST_SYNC(0); 546 547 guest_spin_until_start(); 548 549 while (1) { 550 uintptr_t ptr; 551 552 for (ptr = MEM_TEST_GPA; 553 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) 554 *(uint64_t *)ptr = MEM_TEST_VAL_1; 555 556 if (!guest_perform_sync()) 557 break; 558 559 for (ptr = MEM_TEST_GPA + page_size / 2; 560 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) { 561 uint64_t val = *(uint64_t *)ptr; 562 563 GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2); 564 *(uint64_t *)ptr = 0; 565 } 566 567 if (!guest_perform_sync()) 568 break; 569 } 570 571 GUEST_DONE(); 572 } 573 574 static bool test_memslot_move_prepare(struct vm_data *data, 575 struct sync_area *sync, 576 uint64_t *maxslots, bool isactive) 577 { 578 uint32_t guest_page_size = data->vm->page_size; 579 uint64_t movesrcgpa, movetestgpa; 580 581 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 582 583 if (isactive) { 584 uint64_t lastpages; 585 586 vm_gpa2hva(data, movesrcgpa, &lastpages); 587 if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) { 588 *maxslots = 0; 589 return false; 590 } 591 } 592 593 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 594 sync->move_area_ptr = (void *)movetestgpa; 595 596 if (isactive) { 597 data->mmio_ok = true; 598 data->mmio_gpa_min = movesrcgpa; 599 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 600 } 601 602 return true; 603 } 604 605 static bool test_memslot_move_prepare_active(struct vm_data *data, 606 struct sync_area *sync, 607 uint64_t *maxslots) 608 { 609 return test_memslot_move_prepare(data, sync, maxslots, true); 610 } 611 612 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 613 struct sync_area *sync, 614 uint64_t *maxslots) 615 { 616 return test_memslot_move_prepare(data, sync, maxslots, false); 617 } 618 619 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 620 { 621 uint64_t movesrcgpa; 622 623 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 624 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 625 MEM_TEST_MOVE_GPA_DEST); 626 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 627 } 628 629 static void test_memslot_do_unmap(struct vm_data *data, 630 uint64_t offsp, uint64_t count) 631 { 632 uint64_t gpa, ctr; 633 uint32_t guest_page_size = data->vm->page_size; 634 635 for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) { 636 uint64_t npages; 637 void *hva; 638 int ret; 639 640 hva = vm_gpa2hva(data, gpa, &npages); 641 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 642 npages = min(npages, count - ctr); 643 ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED); 644 TEST_ASSERT(!ret, 645 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 646 hva, gpa); 647 ctr += npages; 648 gpa += npages * guest_page_size; 649 } 650 TEST_ASSERT(ctr == count, 651 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 652 } 653 654 static void test_memslot_map_unmap_check(struct vm_data *data, 655 uint64_t offsp, uint64_t valexp) 656 { 657 uint64_t gpa; 658 uint64_t *val; 659 uint32_t guest_page_size = data->vm->page_size; 660 661 if (!map_unmap_verify) 662 return; 663 664 gpa = MEM_TEST_GPA + offsp * guest_page_size; 665 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 666 TEST_ASSERT(*val == valexp, 667 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 668 *val, valexp, gpa); 669 *val = 0; 670 } 671 672 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 673 { 674 uint32_t guest_page_size = data->vm->page_size; 675 uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size; 676 677 /* 678 * Unmap the second half of the test area while guest writes to (maps) 679 * the first half. 680 */ 681 test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2); 682 683 /* 684 * Wait for the guest to finish writing the first half of the test 685 * area, verify the written value on the first and the last page of 686 * this area and then unmap it. 687 * Meanwhile, the guest is writing to (mapping) the second half of 688 * the test area. 689 */ 690 host_perform_sync(sync); 691 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 692 test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1); 693 test_memslot_do_unmap(data, 0, guest_pages / 2); 694 695 696 /* 697 * Wait for the guest to finish writing the second half of the test 698 * area and verify the written value on the first and the last page 699 * of this area. 700 * The area will be unmapped at the beginning of the next loop 701 * iteration. 702 * Meanwhile, the guest is writing to (mapping) the first half of 703 * the test area. 704 */ 705 host_perform_sync(sync); 706 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 707 test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2); 708 } 709 710 static void test_memslot_unmap_loop_common(struct vm_data *data, 711 struct sync_area *sync, 712 uint64_t chunk) 713 { 714 uint32_t guest_page_size = data->vm->page_size; 715 uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size; 716 uint64_t ctr; 717 718 /* 719 * Wait for the guest to finish mapping page(s) in the first half 720 * of the test area, verify the written value and then perform unmap 721 * of this area. 722 * Meanwhile, the guest is writing to (mapping) page(s) in the second 723 * half of the test area. 724 */ 725 host_perform_sync(sync); 726 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 727 for (ctr = 0; ctr < guest_pages / 2; ctr += chunk) 728 test_memslot_do_unmap(data, ctr, chunk); 729 730 /* Likewise, but for the opposite host / guest areas */ 731 host_perform_sync(sync); 732 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 733 for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk) 734 test_memslot_do_unmap(data, ctr, chunk); 735 } 736 737 static void test_memslot_unmap_loop(struct vm_data *data, 738 struct sync_area *sync) 739 { 740 uint32_t host_page_size = getpagesize(); 741 uint32_t guest_page_size = data->vm->page_size; 742 uint64_t guest_chunk_pages = guest_page_size >= host_page_size ? 743 1 : host_page_size / guest_page_size; 744 745 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 746 } 747 748 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 749 struct sync_area *sync) 750 { 751 uint32_t guest_page_size = data->vm->page_size; 752 uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size; 753 754 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 755 } 756 757 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 758 { 759 uint64_t gptr; 760 uint32_t guest_page_size = data->vm->page_size; 761 762 for (gptr = MEM_TEST_GPA + guest_page_size / 2; 763 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) 764 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 765 766 host_perform_sync(sync); 767 768 for (gptr = MEM_TEST_GPA; 769 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) { 770 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 771 uint64_t val = *vptr; 772 773 TEST_ASSERT(val == MEM_TEST_VAL_1, 774 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 775 val, gptr); 776 *vptr = 0; 777 } 778 779 host_perform_sync(sync); 780 } 781 782 struct test_data { 783 const char *name; 784 uint64_t mem_size; 785 void (*guest_code)(void); 786 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 787 uint64_t *maxslots); 788 void (*loop)(struct vm_data *data, struct sync_area *sync); 789 }; 790 791 static bool test_execute(int nslots, uint64_t *maxslots, 792 unsigned int maxtime, 793 const struct test_data *tdata, 794 uint64_t *nloops, 795 struct timespec *slot_runtime, 796 struct timespec *guest_runtime) 797 { 798 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE; 799 struct vm_data *data; 800 struct sync_area *sync; 801 struct timespec tstart; 802 bool ret = true; 803 804 data = alloc_vm(); 805 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 806 mem_size, slot_runtime)) { 807 ret = false; 808 goto exit_free; 809 } 810 811 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 812 if (tdata->prepare && 813 !tdata->prepare(data, sync, maxslots)) { 814 ret = false; 815 goto exit_free; 816 } 817 818 launch_vm(data); 819 820 clock_gettime(CLOCK_MONOTONIC, &tstart); 821 let_guest_run(sync); 822 823 while (1) { 824 *guest_runtime = timespec_elapsed(tstart); 825 if (guest_runtime->tv_sec >= maxtime) 826 break; 827 828 tdata->loop(data, sync); 829 830 (*nloops)++; 831 } 832 833 make_guest_exit(sync); 834 wait_guest_exit(data); 835 836 exit_free: 837 free_vm(data); 838 839 return ret; 840 } 841 842 static const struct test_data tests[] = { 843 { 844 .name = "map", 845 .mem_size = MEM_SIZE_MAP, 846 .guest_code = guest_code_test_memslot_map, 847 .loop = test_memslot_map_loop, 848 }, 849 { 850 .name = "unmap", 851 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 852 .guest_code = guest_code_test_memslot_unmap, 853 .loop = test_memslot_unmap_loop, 854 }, 855 { 856 .name = "unmap chunked", 857 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 858 .guest_code = guest_code_test_memslot_unmap, 859 .loop = test_memslot_unmap_loop_chunked, 860 }, 861 { 862 .name = "move active area", 863 .guest_code = guest_code_test_memslot_move, 864 .prepare = test_memslot_move_prepare_active, 865 .loop = test_memslot_move_loop, 866 }, 867 { 868 .name = "move inactive area", 869 .guest_code = guest_code_test_memslot_move, 870 .prepare = test_memslot_move_prepare_inactive, 871 .loop = test_memslot_move_loop, 872 }, 873 { 874 .name = "RW", 875 .guest_code = guest_code_test_memslot_rw, 876 .loop = test_memslot_rw_loop 877 }, 878 }; 879 880 #define NTESTS ARRAY_SIZE(tests) 881 882 struct test_args { 883 int tfirst; 884 int tlast; 885 int nslots; 886 int seconds; 887 int runs; 888 }; 889 890 static void help(char *name, struct test_args *targs) 891 { 892 int ctr; 893 894 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 895 name); 896 pr_info(" -h: print this help screen.\n"); 897 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 898 pr_info(" -d: enable extra debug checks.\n"); 899 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 900 targs->nslots); 901 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 902 targs->tfirst, NTESTS - 1); 903 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 904 targs->tlast, NTESTS - 1); 905 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 906 targs->seconds); 907 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 908 targs->runs); 909 910 pr_info("\nAvailable tests:\n"); 911 for (ctr = 0; ctr < NTESTS; ctr++) 912 pr_info("%d: %s\n", ctr, tests[ctr].name); 913 } 914 915 static bool check_memory_sizes(void) 916 { 917 uint32_t host_page_size = getpagesize(); 918 uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 919 920 if (host_page_size > SZ_64K || guest_page_size > SZ_64K) { 921 pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n", 922 host_page_size, guest_page_size); 923 return false; 924 } 925 926 if (MEM_SIZE % guest_page_size || 927 MEM_TEST_SIZE % guest_page_size) { 928 pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n"); 929 return false; 930 } 931 932 if (MEM_SIZE_MAP % guest_page_size || 933 MEM_TEST_MAP_SIZE % guest_page_size || 934 (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 || 935 (MEM_TEST_MAP_SIZE / guest_page_size) % 2) { 936 pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n"); 937 return false; 938 } 939 940 if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE || 941 MEM_TEST_UNMAP_SIZE % guest_page_size || 942 (MEM_TEST_UNMAP_SIZE / guest_page_size) % 943 (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) { 944 pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n"); 945 return false; 946 } 947 948 return true; 949 } 950 951 static bool parse_args(int argc, char *argv[], 952 struct test_args *targs) 953 { 954 uint32_t max_mem_slots; 955 int opt; 956 957 while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { 958 switch (opt) { 959 case 'h': 960 default: 961 help(argv[0], targs); 962 return false; 963 case 'v': 964 verbose = true; 965 break; 966 case 'd': 967 map_unmap_verify = true; 968 break; 969 case 's': 970 targs->nslots = atoi_paranoid(optarg); 971 if (targs->nslots <= 1 && targs->nslots != -1) { 972 pr_info("Slot count cap must be larger than 1 or -1 for no cap\n"); 973 return false; 974 } 975 break; 976 case 'f': 977 targs->tfirst = atoi_non_negative("First test", optarg); 978 break; 979 case 'e': 980 targs->tlast = atoi_non_negative("Last test", optarg); 981 if (targs->tlast >= NTESTS) { 982 pr_info("Last test to run has to be non-negative and less than %zu\n", 983 NTESTS); 984 return false; 985 } 986 break; 987 case 'l': 988 targs->seconds = atoi_non_negative("Test length", optarg); 989 break; 990 case 'r': 991 targs->runs = atoi_positive("Runs per test", optarg); 992 break; 993 } 994 } 995 996 if (optind < argc) { 997 help(argv[0], targs); 998 return false; 999 } 1000 1001 if (targs->tfirst > targs->tlast) { 1002 pr_info("First test to run cannot be greater than the last test to run\n"); 1003 return false; 1004 } 1005 1006 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 1007 if (max_mem_slots <= 1) { 1008 pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n"); 1009 return false; 1010 } 1011 1012 /* Memory slot 0 is reserved */ 1013 if (targs->nslots == -1) 1014 targs->nslots = max_mem_slots - 1; 1015 else 1016 targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1; 1017 1018 pr_info_v("Allowed Number of memory slots: %"PRIu32"\n", 1019 targs->nslots + 1); 1020 1021 return true; 1022 } 1023 1024 struct test_result { 1025 struct timespec slot_runtime, guest_runtime, iter_runtime; 1026 int64_t slottimens, runtimens; 1027 uint64_t nloops; 1028 }; 1029 1030 static bool test_loop(const struct test_data *data, 1031 const struct test_args *targs, 1032 struct test_result *rbestslottime, 1033 struct test_result *rbestruntime) 1034 { 1035 uint64_t maxslots; 1036 struct test_result result = {}; 1037 1038 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 1039 &result.nloops, 1040 &result.slot_runtime, &result.guest_runtime)) { 1041 if (maxslots) 1042 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 1043 maxslots); 1044 else 1045 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 1046 1047 return false; 1048 } 1049 1050 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 1051 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 1052 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 1053 if (!result.nloops) { 1054 pr_info("No full loops done - too short test time or system too loaded?\n"); 1055 return true; 1056 } 1057 1058 result.iter_runtime = timespec_div(result.guest_runtime, 1059 result.nloops); 1060 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 1061 result.nloops, 1062 result.iter_runtime.tv_sec, 1063 result.iter_runtime.tv_nsec); 1064 result.slottimens = timespec_to_ns(result.slot_runtime); 1065 result.runtimens = timespec_to_ns(result.iter_runtime); 1066 1067 /* 1068 * Only rank the slot setup time for tests using the whole test memory 1069 * area so they are comparable 1070 */ 1071 if (!data->mem_size && 1072 (!rbestslottime->slottimens || 1073 result.slottimens < rbestslottime->slottimens)) 1074 *rbestslottime = result; 1075 if (!rbestruntime->runtimens || 1076 result.runtimens < rbestruntime->runtimens) 1077 *rbestruntime = result; 1078 1079 return true; 1080 } 1081 1082 int main(int argc, char *argv[]) 1083 { 1084 struct test_args targs = { 1085 .tfirst = 0, 1086 .tlast = NTESTS - 1, 1087 .nslots = -1, 1088 .seconds = 5, 1089 .runs = 1, 1090 }; 1091 struct test_result rbestslottime = {}; 1092 int tctr; 1093 1094 if (!check_memory_sizes()) 1095 return -1; 1096 1097 if (!parse_args(argc, argv, &targs)) 1098 return -1; 1099 1100 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1101 const struct test_data *data = &tests[tctr]; 1102 unsigned int runctr; 1103 struct test_result rbestruntime = {}; 1104 1105 if (tctr > targs.tfirst) 1106 pr_info("\n"); 1107 1108 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1109 data->name, targs.runs, targs.seconds); 1110 1111 for (runctr = 0; runctr < targs.runs; runctr++) 1112 if (!test_loop(data, &targs, 1113 &rbestslottime, &rbestruntime)) 1114 break; 1115 1116 if (rbestruntime.runtimens) 1117 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1118 rbestruntime.iter_runtime.tv_sec, 1119 rbestruntime.iter_runtime.tv_nsec, 1120 rbestruntime.nloops); 1121 } 1122 1123 if (rbestslottime.slottimens) 1124 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1125 rbestslottime.slot_runtime.tv_sec, 1126 rbestslottime.slot_runtime.tv_nsec); 1127 1128 return 0; 1129 } 1130